
228
J Y V Ä S K Y L Ä S T U D I E S I N C O M P U T I N G

Preventing Reverse
Engineering of Native

and Managed Programs

Michael Kiperberg

JYVÄSKYLÄ STUDIES IN COMPUTING 228

Michael Kiperberg

Preventing Reverse
Engineering of Native

and Managed Programs

Esitetään Jyväskylän yliopiston informaatioteknologian tiedekunnan suostumuksella
julkisesti tarkastettavaksi yliopiston Agora-rakennuksen auditoriossa 1

joulukuun 15. päivänä 2015 kello 10.

Academic dissertation to be publicly discussed, by permission of
the Faculty of Information Technology of the University of Jyväskylä,
in building Agora, auditorium 1, on December 15, 2015 at 10 o’clock.

UNIVERSITY OF JYVÄSKYLÄ

JYVÄSKYLÄ 2015

Preventing Reverse
Engineering of Native

and Managed Programs

JYVÄSKYLÄ STUDIES IN COMPUTING 228

Michael Kiperberg

Preventing Reverse
Engineering of Native

and Managed Programs

UNIVERSITY OF JYVÄSKYLÄ

JYVÄSKYLÄ 2015

Editors
Timo Männikkö
Department of Mathematical Information Technology, University of Jyväskylä
Pekka Olsbo, Ville Korkiakangas
Publishing Unit, University Library of Jyväskylä

URN:ISBN:978-951-39-6437-5
ISBN 978-951-39-6437-5 (PDF)

ISBN 978-951-39-6436-8 (nid.)
ISSN 1456-5390

Copyright © 2015, by University of Jyväskylä

Jyväskylä University Printing House, Jyväskylä 2015

ABSTRACT

Kiperberg, Michael
Preventing Reverse Engineering of Native and Managed Programs
Jyväskylä: University of Jyväskylä, 2015, 60 p.(+included articles)
(Jyväskylä Studies in Computing
ISSN 1456-5390; 228)
ISBN 978-951-39-6436-8 (nid.)
ISBN 978-951-39-6437-5 (PDF)
Finnish summary
Diss.

One of the important aspects of protecting software from attack, theft of algo-
rithms, or illegal software use is eliminating the possibility of performing reverse
engineering. One common method used to deal with these issues is code obfus-
cation. However, it is proven to be ineffective. Code encryption is a much more
effective means of defying reverse engineering, but it requires managing a cryp-
tographic key available to none but the permissible users. The thesis presents a
system for managing cryptographic keys in a protected environment and sup-
porting execution of encrypted code. The system has strong security guarantees.
In particular, the cryptographic keys are never stored on the target machine, but
rather delivered to it from a remote server, upon a successful verification of its
authenticity. The keys and the decrypted instructions are protected by a thin hy-
pervisor at all times. The system allows the encryption and execution of both
native and Java code.

During native code execution, the decrypted instructions are inaccessible
to a potentially malicious code. This is achieved by either preventing execution
of any other code or by protecting the memory region containing the decrypted
instructions during their execution.

Java programs, unlike native programs, are not executed directly by the pro-
cessor, but are interpreted (and sometimes compiled) by the Java Virtual Machine
(JVM). Therefore, the JVM will require the cryptographic key to decrypt the en-
crypted portions of Java code, and there is no feasible way of securing the key
inside the JVM. The thesis proposes to implement a Java bytecode interpreter in-
side the secure environment, governed by a thin hypervisor. This interpreter will
run in parallel to the standard JVM, both cooperating to execute encrypted Java
programs.

Keywords: trusted computing, virtualization, hypervisor, thin hypervisor, Java,
remote attestation, interpretation, buffered execution

Author Michael Kiperberg
Department of Mathematical Information Technology
University of Jyväskylä
Finland

Supervisors Professor Pekka Neittaanmäki
Department of Mathematical Information Technology
University of Jyväskylä
Finland

Doctor Nezer Zaidenberg
Department of Mathematical Information Technology
University of Jyväskylä
Finland

Reviewers Professor Vincenzo Piuri
Department of Computer Science
The University of Milan
Italy

Professor Samuel Itzikowitz
The School of Computer Science
The College of Management
Israel

Opponent Doctor Christian Grothoff
Decentralise team
Inria
France

ACKNOWLEDGEMENTS

First of all, I would like to thank my scientific supervisors, Prof. Pekka Neit-
taanmäki and Dr. Nezer Zaidenberg, for their guidance, help and moral support
throughout the work on this thesis.

I am indebted to the external reviewers of my thesis for their valuable com-
ments and suggestions. I would also like to thank Amit Resh, Asaf Algawi and
Roee Leon for co-authoring the joint publications included in this thesis.

I greatly appreciate the support of the COMAS Graduate School, which pro-
vided funding for this research. I am also grateful to the Department of Mathe-
matical Information Technology, which financially supported numerous confer-
ence trips.

I am thankful to my friends for their moral support and interest in my work.
Finally, I wish to thank my parents, Lubov and Yakov, and my brother

Arthur, without whom this work would not have been possible, for their love
and encouragement.

Jyväskylä
November 30, 2015
Michael Kiperberg

LIST OF FIGURES

FIGURE 1 Native code protection system.. 15
FIGURE 2 Java code protection system. .. 16
FIGURE 3 Relationships between the chapters and the described system. .. 18
FIGURE 4 Thin hypervisor. ... 21
FIGURE 5 The attestation protoco. ... 27
FIGURE 6 The structure of the attestation challenge................................. 28
FIGURE 7 Native code protection system.. 32
FIGURE 8 Structure of a Windows PE file. .. 32
FIGURE 9 Example of an encryption process of a single function. 34
FIGURE 10 Example of encrypted function execution. 36
FIGURE 11 Memory layout during buffered execution. 37
FIGURE 12 Execution modes... 39
FIGURE 13 Relationship between the components of the Java system. 41
FIGURE 14 Structure of Java’s class file. ... 42
FIGURE 15 A simplified control flow during Java’s encrypted method ex-

ecution. .. 43

LIST OF TABLES

TABLE 1 Frequencies of uninterpretable instructions. 45

CONTENTS

ABSTRACT
ACKNOWLEDGEMENTS
LIST OF FIGURES AND TABLES
CONTENTS
LIST OF INCLUDED ARTICLES

1 INTRODUCTION .. 11
1.1 Obfuscation ... 11

1.1.1 Instruction Set Architecture .. 12
1.1.2 Obfuscation Methods ... 12
1.1.3 Breaking Obfuscation... 12

1.2 Applicability of Obfuscation .. 13
1.2.1 Digital Rights Protection .. 13
1.2.2 Military .. 14

1.3 Encryption ... 14
1.4 Our Method ... 15

1.4.1 Native Code .. 15
1.4.2 Managed Code .. 16

1.5 Structure.. 17

2 HYPERVISORS .. 19
2.1 Hardware Assisted Virtualization .. 19
2.2 Thin Hypervisor ... 20
2.3 Remote Attestation and Initialization ... 21
2.4 Thin Hypervisor Protection ... 22
2.5 Synchronization ... 24

3 REMOTE ATTESTATION.. 25
3.1 Previous Work.. 25
3.2 Our Method ... 26
3.3 Side Effects .. 28

4 NATIVE CODE EXECUTION .. 31
4.1 Encryption Tool .. 31
4.2 Encrypted Program Execution ... 33

4.2.1 In-place Execution ... 35
4.2.2 Buffered Execution .. 36

4.3 Comparison ... 38

5 JAVA CODE EXECUTION .. 40
5.1 JVM TI... 40
5.2 System Design.. 41
5.3 Measurements.. 44

6 CONCLUSIONS .. 46
6.1 Contribution .. 46
6.2 Limitations and Further Research... 47

6.2.1 Native Programs ... 47
6.2.2 Java Programs ... 47

7 SUMMARY OF ORIGINAL ARTICLES .. 48
7.1 Trusted Computing and DRM.. 48

7.1.1 Research Problem .. 48
7.1.2 Results.. 48

7.2 An Efficient VM-based Software Protection................................. 49
7.2.1 Research Problem .. 49
7.2.2 Results.. 49

7.3 Truly-Protect: An Efficient VM-Based Software Protection............ 50
7.3.1 Research Problem .. 50
7.3.2 Results.. 50

7.4 Efficient Remote Authentication... 50
7.4.1 Research Problem .. 50
7.4.2 Results.. 51

7.5 Remote Attestation of Software and Execution-Environment in
Modern Machines... 51
7.5.1 Research Problem .. 51
7.5.2 Results.. 52

7.6 System for Executing Encrypted Java Programs........................... 53
7.6.1 Research Problem .. 53
7.6.2 Results.. 53

7.7 System for Executing Encrypted Native Programs 54
7.7.1 Research Problem .. 54
7.7.2 Results.. 54

YHTEENVETO (FINNISH SUMMARY) ... 55

REFERENCES.. 56

INCLUDED ARTICLES

LIST OF INCLUDED ARTICLES

PI Kiperberg, M.; Resh, A.; Zaidenberg, N.J.. Remote Attestation of Software
and Execution-Environment in Modern Machines. The 2nd IEEE Interna-
tional Conference on Cyber Security and Cloud Computing, 2015.

PII Zaidenberg, N.J.; Neittaanmäki, P.; Kiperberg, M.; Resh, A.. Trusted Com-
puting and DRM. Cyber Security: Analytics, Technology and Automation, vol.
78, pp. 205-212, 2015.

PIII Kiperberg, M.; Zaidenberg, N.J.. Efficient Remote Authentication. The Jour-
nal of Information Warfare , vol.12, no.3, 2013.

PIV Averbuch, A.; Kiperberg, M.; Zaidenberg, N.J.. Truly-Protect: An Efficient
VM-Based Software Protection. Systems Journal, IEEE , vol.7, no.3, pp. 455-
466, 2013.

PV Averbuch, A.; Kiperberg, M.; Zaidenberg, N.J.. An efficient VM-based soft-
ware protection. Network and System Security (NSS), 2011 5th International
Conference, pp. 121-128, 2011.

PVI Kiperberg, M.; Resh, A.; Algawi, A.; Zaidenberg, N.J.. System for Execut-
ing Encrypted Java Programs. IEEE Transactions on Dependable and Secure
Computing, Submitted.

PVII Kiperberg, M.; Leon, R.; Resh, A.; Zaidenberg, N.J.. System for Executing
Encrypted Native Programs. IEEE Symposium on Security and Privacy, Sub-
mitted.

The idea of encrypted code execution, which is described in articles [PV] and
[PIV], was devised together with Dr. Nezer Zaidenberg. The author designed
and implemented the encryption tool and the decryption system, and described
their design and performance analysis in articles [PV] and [PIV].

Article [PIII], which was written mainly by the author, discusses the secu-
rity problems of the system that was presented in articles [PV] and [PIV], and
presents possible solutions to those problems. The data presented in the article
was collected by the author.

The author devised a hypervisor detection method, which can be embedded
into the remote authentication scheme described by Kennell and Jamieson [KJ03].
In addition, the author adapted the remote authentication scheme to multi-core
processors. The improvements to the original scheme are described in article [PI],
which was written mainly by the author. The co-authors invented and presented
the performance counters chaining method.

The author implemented the hypervisor-based decryption system and the
encryption tool, as described in article [PVII], which was written mainly by the
author. The co-authors implemented the AES decryption scheme and the buffered
execution method.

The author devised and designed a system for executing encrypted Java
programs. The author implemented the decryption system: both the hypervisor
module and the user-mode module. The encryption tool was designed by the
author and implemented by the article’s co-authors. Article [PVI], which was
mainly written by the author, describes the system. The co-authors described the
encryption tool.

1 INTRODUCTION

This chapter describes the research area of the thesis, introduces the main con-
cepts, and outlines the structure of the thesis.

One of the important aspects of protecting software from attack, theft of
algorithms, or illegal software use is eliminating the possibility of performing re-
verse engineering. One common method used to deal with these issues is code
obfuscation. However, it is proven to be ineffective. Code encryption is a much
more effective means of defying reverse engineering, but it requires managing a
cryptographic key available to none but the permissible users. The thesis presents
a system for managing cryptographic keys in a protected environment and sup-
porting execution of encrypted code. The system has strong security guarantees.
In particular, the cryptographic keys are never stored on the target machine, but
rather delivered to it from a remote server, upon a successful verification of its
authenticity. The keys and the decrypted instructions are protected by a thin hy-
pervisor at all times. The system allows the encryption and execution of both
native and Java code.

1.1 Obfuscation

Software obfuscation is a set of techniques used to transform one program into
another, such that both have the same semantics but the latter is much harder for
a human reader to comprehend. An overview of different obfuscation techniques
and other digital rights managements approaches can be found in [PII]. The ven-
dors of obfuscation technologies rarely publish the design of their products, thus
preventing their public scrutinization. Nevertheless, some researchers deduce
the design of the obfuscating transformation from the resultant program and re-
port their findings in academic press. Usually their reports include not only a
detailed description of the transformation but also an outline of the design flaws.
Sometimes, the reporters devise an automatic or a semi-automatic tool which is
able to reverse the obfuscating transformation.

12

1.1.1 Instruction Set Architecture

An instruction set architecture (ISA) of a processor is a definition of the capabil-
ities of the processor and the means by which those capabilities can be utilized
by a program. In particular, the ISA defines the format and the meaning of each
instruction, specifies the arguments of the instruction and the result of its execu-
tion.

An ISA can be implemented in hardware, like x86, or in software, like Java
bytecode. An execution of a program written for one ISA on a hardware pro-
cessor of a different ISA is called emulation. Emulation is inherently inferior to
direct execution in terms of performance. Nevertheless, it is still widely used
in situations where the benefits of emulation (portability, for instance) outweigh
its performance penalty. Emulation was extensively studied and two main ap-
proaches evolved: interpretation and binary translation. In practice, emulators
usually include both an interpreter and a binary translator, and apply each of
them where appropriate.

1.1.2 Obfuscation Methods

The most general form of obfuscation, and the one which is generally used in
practice, is obfuscation through emulation. The obfuscating transformation trans-
lates the original program, in its binary form, to another ISA. The transformation
then bundles the transformed code with an emulator of the new ISA. This bundle
constitutes the new program, which is then delivered to consumers.

Any ISA allows the performance of operations on immediate values (con-
stants), which are usually supplied as instruction arguments. Obfuscating these
values is highly important since they may guide an adversary through the pro-
gram and lead to its (at least partial) understanding. Many obfuscating trans-
formations translate instructions with immediate values not only by retargeting
them at a different ISA, but also by replacing the immediate value with a sequence
of instructions whose computation results in this value.

Devising a new ISA for each obfuscating transformation is not practical.
Therefore, the obfuscating tools provide only a small set of target ISAs. In ad-
dition to the target ISA, the user of such tools can choose a permutation on the
instruction encoding, thus making the byte 0x12 mean "addition" according to
one permutation, and "multiplication" according to another.

1.1.3 Breaking Obfuscation

Obfuscation based on ISA retargeting is probably the most challenging to break.
In fact, even today many malicious programs use this type of obfuscation to pre-
vent their detection by anti-virus and anti-malware software.

Rolles has proposed [Rol09] a method to reconstruct the original program
from an obfuscated one. The method has three stages. At the first stage a human
adversary studies the obfuscated program, locates the interpreter, and analyzes

13

it.
The interpreter consists of two main parts: a dispatch loop and instruction

handlers. The dispatch loop performs the following three operations until the
program terminates: (1) fetch the next instruction, (2) decode it, and (3) dispatch
to the correct handler. The instruction handlers modify the internal state of the
interpreter according to the required operation. For example, the add instruction
handler may add the value of one variable to another variable (the variables may
represent registers of the emulated ISA). Some optimization may affect this con-
ceptual structure of the interpreter.

At the second stage the human adversary captures the meaning of each in-
struction handler in a few original ISA instructions. The result of this stage is a
dictionary from a previously unknown ISA to the original, known, ISA. This is
the last step performed by a human adversary.

The third stage is performed automatically. An automatic tool uses the in-
formation gathered by the human adversary to find, in the transformed program,
the dispatch loop and the instruction handlers. Then the automatic tool con-
structs a dictionary from the instruction encodings to the instruction handlers.
Together with the dictionary that maps instruction handlers to sequences of orig-
inal ISA instructions, this information is sufficient to translate the program to the
original ISA.

Researchers claim that with additional sophistication of the method de-
scribed above it is possible to recreate a program whose structure resembles the
structure of the original program. We note that human intervention is required
only when a new ISA is devised, which requires a human intervention as well, so
roughly the same effort is required from the attacking and defending sides.

1.2 Applicability of Obfuscation

Recreation of obfuscated programs requires a modest amount of work. There-
fore, obfuscation cannot be used to protect programs of high value, such as mil-
itary systems (high security value), algo-trading program (high financial value),
or even programs of moderately high (financial) value, such as video games.

1.2.1 Digital Rights Protection

Digital content such as games, videos, and the like may be susceptible to un-
licensed usage, which has a significant adverse impact on the profitability and
commercial viability of such products. Commonly, such commercial digital con-
tent may be protected by a licensing verification program; these, however, may be
circumvented by reverse engineering the program, which leaves them vulnerable
to misuse.

One way of preventing circumvention of the software licensing program,
may be using a method of obfuscation. The term obfuscation refers to making

14

software instructions difficult for humans to understand by deliberately clutter-
ing the code with useless, confusing pieces of additional software syntax or in-
structions. However, even when changing the software code and making it ob-
fuscated, the content is still readable to the skilled hacker.

Additionally, publishers may protect their digital content product by en-
cryption, using a unique key to convert the software code to an unreadable for-
mat, such that only the owner of the unique key may decrypt the software code.
Such protection may only be effective when the unique key is kept secured and
unreachable to an adversary. Hardware-based methods for keeping the unique
key secured are possible [SWP08, Pea02, ELM+03], but may have significant de-
ficiencies, mainly due to the investment required in dedicated hardware on the
user side — making it costly, and therefore, impractical. Furthermore, such hard-
ware methods have been successfully attacked by hackers [Tar10, Tar12].

Software copy-protection is currently predominantly governed by method-
ologies based on obfuscation, which are vulnerable to hacking or user malicious
activities. There is, therefore, a need for better techniques for protecting sensitive
software sections, such as licensing code.

1.2.2 Military

Software produced by military and intelligence organizations may contain sensi-
tive or classified information and algorithms. In this case the potential adversary
is well equipped, and is not limited by time or other resources, since it is sup-
ported by the government of a hostile state.

Our experience suggests that, generally, the only effective countermeasure
is the physical isolation of the software and its environment from a potential ad-
versary. In case of exposure, the software and its environment are physically de-
stroyed, either remotely or by the operator of this software. There are two main
disadvantages to this approach. The first is the danger of unintentional activation
of the destruction mechanism. The second is the failure to destroy the software
when an exposure is detected, either due to the inability of the human operator to
trigger the destruction sequence, or failure of the (possibly damaged) destruction
mechanism itself. Therefore, a better solution is required — a solution which can
guarantee the secrecy of the software information by design, and which does not
require any special or dangerous actions.

1.3 Encryption

Traditionally, when a sensitive information has to be placed in a potentially hos-
tile environment, it is first encrypted with a key, which is kept in a trusted en-
vironment at all times. Inspection and manipulation of the information requires
the key. Previously, researchers suggested [Bes80] a processor architecture that in-
cludes a cryptographic module, which can be used to decrypt the instructions as

15

FIGURE 1 Native code protection system. The original program is encrypted before its
distribution. The encryption key is stored in the attestation server, which de-
livers it to the hypervisor in the target machine upon successful attestation.
The hypervisor is responsible for decrypting the protected code and protect-
ing itself, the decryption key and the decrypted code from an adversary.

the first step in their execution process. The cryptographic keys are embedded in
the processor during the manufacturing process and are known only to the man-
ufacturer. This suggestion is partially realized in modern processors. For exam-
ple, Intel announced a new extension to their x86 processors, the software guard
extension (SGX), which adds cryptographic modules and embeds cryptographic
keys that protect a region of memory inside a program from unauthorized access.
The protected regions of memory are stored in encrypted form. This extension,
by its design, is primarily targeted at data protection rather than code protection,
although it is probably possible to use this technology for code protection as well.
Unfortunately, SGX is currently unavailable to computer manufacturers and its
future availability on the widespread processor families is uncertain.

1.4 Our Method

1.4.1 Native Code

This work provides a detailed description of a native code protection method
which is based on encryption and can be implemented on commonplace proces-
sors. Our method consists of several components, that together provide protec-
tion for both the decryption key and the encrypted program. Figure 1 outlines
the relationships between the different components of the system. Conceptu-

16

FIGURE 2 Java code protection system. The encryption tool transforms regular Java
classes into encrypted ones. Regular and encrypted Java classes are then
loaded by the JVM. The JVM loads a JVM TI agent through the JVM TI in-
terface. The agent links the hypervisor to the JVM and assists in the inter-
pretation process. The agent communicates with the JVM through JVM TI
and JNI. The communication between the agent and the hypervisor is based
on hypercalls and execution frames. The hypervisor receives the decryption
key from a remote server, which attests the validity of the hypervisor and
the hardware on which it executes.

ally, the components are deployed on three computers. The program is originally
compiled on the development machine and encrypted using the encryption tool.
Then the program is distributed to consumers, where it gets installed on the target
computer. The decryption key is stored in the attestation server, which delivers
it to the target computer upon its successful authentication. This scheme was
originally described in [PV, PIV].

In addition to the encrypted program, the installation package installs a hy-
pervisor, which has three aspects: attestation, protection, and decryption. The
attestation aspect refers to the hypervisor’s ability to participate in the remote at-
testation protocol. The purpose of this protocol is to verify the authenticity of the
target hardware and software, and deliver the cryptographic keys from the attes-
tation server to the target computer. The protection and decryption aspects refer
to the hypervisor’s ability to decrypt programs and execute them while guaran-
teeing the secrecy of the decrypted instructions and the cryptographic key. The
next chapters describe the design and implementation details of the three aspects.

1.4.2 Managed Code

In recent years, programs that are targeted at managed execution environments
have become widespread [DKGC07]. Unlike regular (native) programs, managed
programs cannot be executed directly by the CPU and, therefore, require a special
(native) program to interpret the managed program. Managed execution envi-
ronments are superior to native environments in memory management, debug-

17

ging and profiling support. For these reasons, managed execution environments
have become popular among developers of desktop and mobile applications.

While it is possible to guarantee that a sequence of native instructions can-
not be intercepted (read or modified) during its execution by a CPU, such a guar-
antee cannot be made for a managed execution environment, since an unexpected
behavior can be introduced into the software that implements the managed ex-
ecution environment. This work describes a technique for executing safely en-
crypted managed programs on the available managed execution environments.

Executing an encrypted managed program is more challenging and this re-
sults in a more complex system design, which is captured by Figure 2. Similarly to
the design of the native system, this design consists of three conceptual comput-
ers: an encryption tool, a hypervisor, and an attestation software. The hypervisor
still has the three aspects described above. This system extends the native system
by introducing two new components: the JVM, which is the standard execution
environment for Java programs, and Agent, which is a JVM TI agent capable of
inspecting and modifying the internal state of the program and the JVM.

In order to support near-optimal performance of executing the unencrypted
parts of a Java program, the proposed system executes them on a regular JVM.
The JVM TI agent intercepts attempts to execute encrypted code and transfers
control to the hypervisor. The hypervisor decrypts and executes the code until
it reaches an instruction, whose execution requires cooperation with the JVM. At
this point, the hypervisor returns control to the JVM TI agent and passes it the
decrypted instruction. The JVM TI agent executes the instruction and transfers
control back to the hypervisor. In contrast to the native code execution, this de-
sign leaks some secret information. This work provides estimates on the amount
of leaked information and discusses techniques that can reduce this amount.

1.5 Structure

The structure of the thesis is as follows: the next chapter overviews virtualiza-
tion in general and its applicability to program protection. Chapter 3 presents a
remote authentication method capable of authenticating software and hardware
of modern machines. Chapters 4 and 5 describe virtualization-based methods for
native and Java programs’ protection. An overview of the articles included in
the thesis is provided in chapter 7. Finally, chapter 6 summarizes the contribu-
tion and limitations of the thesis and outlines the directions of further research.
Figure 3 depicts the relationships between the chapters and the describe system.

18

FIGURE 3 Relationships between the chapters and the described system. The attes-
tation server authenticates the hypervisor which embeds either the native
execution module or the Java execution module.

2 HYPERVISORS

A hypervisor, also referred to as a Virtual Machine Monitor (VMM), is software,
which may be hardware assisted, that manages multiple virtual machines on a
single system [PG74]. The hypervisor virtualizes the hardware environment in a
way that allows several virtual machines, running under its supervision, to op-
erate in parallel over the same physical hardware platform, without obstructing
or impeding each other. Each virtual machine has the illusion that it is running,
unaccompanied, on the entire hardware platform. The hypervisor is referred to
as the host, while the virtual machines are referred to as guests.

2.1 Hardware Assisted Virtualization

Hypervisors have been in use as early as the 1960s on IBM mainframe computers
[Cre81]. After 2005, Intel and AMD introduced hardware support for virtualiza-
tion (Intel VT-X [Int07], AMD AMD-V [AMD10]), which allowed the implement-
ing of hypervisors in the ubiquitous PC platforms. There are slight differences
between Intel’s and AMD’s implementation of the x86 virtualization extension.
In this work we will discuss only Intel’s implementation and mention the differ-
ences where they are important for the discussion.

In order to support multiple OS guests, a hypervisor must unobtrusively
intercept OS access to hardware resources so it can attend to them itself. The hy-
pervisor can then manage hardware allocations that maintain proper separation
between the guests. The guest OS is unaware of the hypervisor’s intervention,
as it experiences a normal hardware access cycle. The only distinction being the
elapsed time, since the hypervisor mediation has a time-toll. This property led
to a debate regarding the detectability of a hypervisor [BYDD+10, RT07, RT08,
Fer07].

A virtual machine control structure (VMCS) is defined for each virtual en-
vironment managed by a virtual machine monitor (VMM). This structure defines
the values of privileged registers, the location of the interrupt descriptors table,

20

and additional values that constitute the internal state of the virtual environment.
In addition, this structure defines the events that the VMM is configured to inter-
cept, and the address of the function that should handle the interception. The act
of control transfer from the virtual environment to a predefined function is called
vm-exit and the act of control transfer from the function back to the virtual envi-
ronment is called vm-entry. Upon vm-exit the function can determine the reason
of the vm-exit by examining the fields of the VMCS and altering them, thus al-
tering the state of the virtual environment as it wishes. Finally, the VMCS can
define a mapping between the physical memory as it is perceived by the virtual
environment and the actual physical memory. As a consequence, the VMM can
prevent access to some physical pages by the virtual environment. Moreover, the
virtual environment will be unaware of this situation.

Interception of some events cannot be disabled, while interception of oth-
ers cannot be enabled. For example, execution of the CPUID instruction always
causes a vm-exit, while execution of the SYSCALL instruction never causes a vm-
exit. Processors manufactured by AMD allow for disabling of interception for all
events.

2.2 Thin Hypervisor

We propose to use a hypervisor for securing a single guest. Rather than wholly
virtualizing the hardware platform, a special breed of hypervisor, called a thin
hypervisor, is used [SET+09, CSK10]. A thin hypervisor is configured to intercept
only a small portion of events. All other events are processed without intercep-
tion, directly, by the OS. A thin hypervisor only intercepts the set of events that
allows it to protect an internal secret (such as a cryptographic key) and protect it-
self from subversion. Figure 4 depicts a thin hypervisor supporting a single guest.
Since a thin hypervisor does not control most of the OS interaction with the hard-
ware, multiple OS are not supported. On the other hand, system performance is
kept at an optimum.

A thin hypervisor facilitates a secure environment by: (a) setting aside por-
tions of memory that cannot be accessed by the guest, (b) storing the crypto-
graphic key in privileged registers, and (c) intercepting privileged instructions
that may compromise its protected memory or the cryptographic key.

Once this environment is correctly configured, a thin hypervisor can be uti-
lized to carry out specific operations, which may include use of the cryptographic
key, in a protected region of memory. As a result of the tightly configured inter-
cepts and absolute control of the protected memory regions, this activity can be
guaranteed to protect both the cryptographic key and the operations results.

21

FIGURE 4 Thin hypervisor. The hypervisor runs in a higher privilege level than the op-
erating system. System calls, traps, exceptions, and other interrupts, transfer
control from user mode applications to the operating system. The operating
system handles these conditions by requesting some service from the under-
lying hardware. A thin hypervisor can intercept some of those requests and
handle them according to some policy.

2.3 Remote Attestation and Initialization

A thin hypervisor can effectively protect the cryptographic key, after it is safely
stored in privileged registers and the thin hypervisor is correctly configured.
However, the target machine cannot store the cryptographic key prior to hypervi-
sor initialization, and, thus, must obtain it from an external server at some stage.

Obviously, the external server, which we later call the authentication author-
ity, has to verify that the remote machine, which is requesting the cryptographic
key, is authentic and can protect this key in a potentially hostile environment.
This verification process, which we call remote attestation, is discussed in chapter
3. Here we will outline the goals of this process.

The cryptographic keys are maintained by an authentication authority, which
is equipped with facilities to verify that a thin hypervisor on a remote machine
has been properly configured, such that a trusted environment is primed and can
accept the cryptographic key. The vehicle to perform this remote verification is a
piece of code, called a challenge [KJ03, SLS+05, SPvDK04]. The challenge is deliv-
ered to the remote machine during the last steps of hypervisor configuration. The
remote machine is required to load and execute the challenge code, returning an
attestation result to the authentication authority within a limited time-frame. The
challenge calculates the checksum of the hypervisor code, but, in addition, man-
gles the checksum calculation with hardware-driven side effects, sampled by the
challenge as it is executing. The authentication authority considers a correct re-
sponse received within the allotted time-frame proof that the correct hypervisor
code is executing and has true control of the remote system’s hardware.

22

The hypervisor’s code, being the only verified component, cannot call other
functions. In particular, the hypervisor cannot use any of the services provided by
the OS. Therefore, the part of the driver which is not included in the hypervisor
is responsible for interactions with the OS. Algorithm 2.1 depicts the initializa-
tion process of the hypervisor. The process starts by obtaining the challenge code
from the authentication authority. This step requires cooperation with the OS.
The initialization proceeds by disabling interrupts on all execution units, thus be-
ginning an exclusive execution of the initialization code. At this point we can
safely generate sensitive information, which we do by generating random values
(used later in the authentication protocol), and storing them in the debug regis-
ters. As explained in chapter 3, while one execution unit executes the challenge,
other execution units must be suspended. When the challenge execution com-
pletes, its result is concatenated with the random value and encrypted using the
public key of the authentication authority. Finally, the hypervisor is activated on
all execution units and the control is immediately transferred to the guest. Since
now the hypervisor can protect the sensitive information stored in the debug reg-
isters, we can re-enable interrupts and complete the authentication protocol. The
authentication authority encrypts the cryptographic key by the random value,
which is stored in the debug registers and protected by the hypervisor. The key
is transferred to the driver and then to the hypervisor. The hypervisor decrypts
the cryptographic key and stores it in the debug registers (the random value is
erased).

2.4 Thin Hypervisor Protection

The two main features of hypervisors that we actively use for protection are inter-
rupt interception and memory virtualization. An interrupt is an event generated
by the processor (or received from another processor) that requires immediate at-
tention. The OS can specify a different handler for each such interrupt, by storing
the addresses of these handlers in the interrupt descriptor table (IDT). Interrupt
interception refers to hypervisor’s ability to specify for each interrupt whether
the hypervisor should be notified about it before the control is transferred to the
interrupt handler. The hypervisor can then decide whether to ignore the interrupt
or inject it back to the guest.

There are two approaches to memory virtualization: software and hard-
ware. In software memory virtualization the hypervisor maintains a second hier-
archy of virtual page tables, called shadow page tables, in addition to the hierarchy
constructed by the OS. These shadow page tables are the ones used by the pro-
cessor, while the OS believes that its hierarchy is used. The hypervisor intercepts
all page faults and updates the shadow page tables according to the hierarchy
maintained by the OS. Before granting the requested access rights to a page, the
hypervisor verifies that this page does not contain sensitive information, which
has to be protected by the hypervisor.

23

Algorithm 2.1 Initialization sequence of the hypervisor. The steps performed by
the leading execution unit appear in the left column. The steps performed by all
other execution units appear in the right column. The description here assumes
that only two execution units are available, but it can be easily extended to any
amount of execution units.
Main Execution Unit

1. Send info to authority
2. Receive the challenge code
3. Disable interrupts
4. Generate random value R
5. Store R in debug registers
6. Suspend other execution units
7. Execute challenge
8. Encrypt challenge result and R
9. Resume the next execution unit

10. Suspend current execution unit
11.
12.
13.
14. Virtualize
15. Return to guest
16. Enable interrupts
17. Send encrypted result and R
18. Receive encrypted crypto key
19. Deliver the key to hypervisor
20. Decrypt the key using R
21. Store the key in debug registers

Other Execution Unit

1.
2.
3. Disable interrupts
4. Generate random value R
5. Store R in debug registers
6.
7.
8.
9.

10.
11. Execute challenge
12. Encrypt challenge result and R
13. Resume all execution units
14. Virtualize
15. Return to guest
16. Enable interrupts
17.
18.
19. Deliver the key to hypervisor
20. Decrypt the key using R
21. Store the key in debug registers

24

Hardware memory virtualization allows a hypervisor to define an addi-
tional translation hierarchy which maps guest physical addresses, i.e. physical ad-
dresses as they are perceived by the guest, to actual physical addresses. This ad-
ditional hierarchy, the extended page table (EPT), allows the hypervisor to specify
the access rights of each physical page. When the guest requests rights which are
higher than those specified in the EPT, a vm-exit occurs, allowing the hypervisor
to decide whether to grant the guest the requested privileges.

2.5 Synchronization

Modern processors consist of multiple execution units. Each unit is almost com-
pletely autonomous, which means that each unit executes a separate instance of
a hypervisor that share (but do not have to, in general) the code and some data
structures. As we will see in chapter 4, sometimes one instance of the hypervi-
sor has to communicate with another instance of the hypervisor. Sometimes one
instance even wants to request that another instance perform some operation.
This is a classic problem, which has two general solutions: a synchronous and an
asynchronous one.

The asynchronous solution suggests maintaining a data structure for each
instance. Each instance periodically inspects this data structure and services all
requests recorded by this data structure. Other instances can submit their re-
quests by writing them to this data structure. Hypervisor’s configuration allows
the specification of a maximal amount of cycles after which a vm-exit is guaran-
teed to happen. This mechanism can be used to perform some periodic operation
in the hypervisor.

In the synchronous solution, one execution unit notifies another execution
unit by sending an inter-processor interrupt (IPI). When sent, an IPI causes the
destination execution unit to preempt its current execution and jump to an inter-
rupt handler. This solution is usually much more efficient, since it shortens the
request’s response time. Unfortunately, it is also much more complex, since it
involves modification of OS internal data structures. On 64-bit Windows, such
modifications are usually detected by the PatchGuard and cause the computer to
restart.

3 REMOTE ATTESTATION

The problem of remote software authentication, determining whether a remote
computer system is running the correct version of a software, is well known
[KJ03, SLS+05, YHL+11, SPvDK04, CFPS09, SWP08, SLP+06, YWZC07]. Equipped
with a remote authentication method, a service provider can prevent an unau-
thenticated remote software from obtaining some secret information or some
privileged service. For example, only authenticated gaming consoles can be al-
lowed to connect to the gaming networks [Ion09, Son15, Bri15], and only authen-
ticated bank terminals can be allowed to fetch records from the bank database
[Wik15].

3.1 Previous Work

The research in this area can be divided into two major branches: hardware-
assisted authentication and software-only authentication. Whilst, in theory, hardware-
assisted authentication may provide more conclusive results regarding the au-
thenticity of a remote machine, in practice the hardware fails to provide addi-
tional security due to the inappropriate designs of currently available operating
systems [SWP08].

Hardware assisted authentication uses an external hardware component,
such as Trusted Platform Module (TPM) to compute a cryptographic hash of the
computer’s hardware and software configuration and attest it.

Usually [Pea02, ELM+03, SZJvD04] the TPM is used as the root of the chain
of trust. The TPM measures the authenticity of the BIOS. The BIOS then measures
the authenticity of the boot loader and so on. Unfortunately, all common modern
operating systems (e.g. Linux, Windows, OS X) allow the user to load drivers for
execution with the same privileges as the operating system itself, i.e. ring 0 on
x86 and x64 hardware. Malicious or buggy drivers, which are executed with high
privileges, allow random code execution that makes it possible to circumvent the
authenticity measurements of the TPM.

26

Software-only authentication usually targets a specific instruction set archi-
tecture that varies from ATMega [SPvDK04], through Pentium [KJ03] to Intel
Core [YHL+11]. The authentication entails simultaneously authenticating some
software component(s) or memory region, as well as verifying that the remote
machine is not running in virtual or emulation mode. Software-only authentica-
tion methods may also involve a challenge code, that is sent by the authentication
authority and executed on the remote system. The challenge code computes a re-
sult that is then transmitted back to the authority. The authority deems the entity
to be authenticated if the result is correct and was received within a predefined
time-frame. The underlying assumption, which is shared by all such authenti-
cation methods, is that only an authentic system can compute the correct result
within the predefined time-frame. The methods differ in the means by which
(and if) they satisfy this underlying assumption.

3.2 Our Method

Kennell and Jamieson proposed [KJ03] a method that produces the result by com-
puting a cryptographic hash of a specified memory region. Any computation on
a complex instruction set architecture (Pentium in this case) produces side effects.
These side effects are incorporated into the result after each iteration of the hash-
ing function. Therefore, an adversary, trying to compute the correct result on a
non-authentic system, would be forced to build a complete emulator for the in-
struction set architecture to compute the correct side effects of every instruction.
Since such an emulator performs tens and hundreds of native instructions for ev-
ery simulated instruction, Kennell and Jamieson conclude that it will not be able
to compute the correct result within the predefined time-frame.

This work extends the method of Kennel and Jamieson, and adapts it to
modern processors. A detailed discussion of all the extensions can be found in
[PI, PIII]. Figure 5 depicts the interaction between the authentication authority
and the target computer. The initial messages of the protocol carry information
about the current configuration of the target machine. Following this exchange,
the authentication authority transmits a message containing the challenge code
to be executed on the target machine. The target machine executes the challenge,
which computes a result that is a cryptographic hash of some memory region,
possibly with some additional information. The target machine concatenates a
randomly generated number to the result, encrypts both values with the public
key of the authentication authority, and transmits the encrypted message. The au-
thentication authority verifies that the result is correct and was received within a
predefined time-frame. If both are true the target machine is considered authen-
tic. The authentication authority then shares some secret information with the
target machine. This secret information constitutes a proof of target’s authentic-
ity. The authentication authority encrypts the secret information with the random
value from message (3) acting as an encryption key, and transmits the encrypted

27

FIGURE 5 The attestation protocol between the authentication authority and the target
machine. The protocol consists of four messages. The first two messages
are sent unencrypted, while the two last messages are encrypted. The third
message is encrypted by the public key of the authentication authority and
the fourth message is encrypted by the random value transmitted in the third
message.

message to the target machine.
During every communication session, the authentication authority selects a

random challenge from the set of challenges that suit the target’s configuration.
During the construction of the challenge repository, the authentication authority
attaches additional information to each challenge — for example, the expected
result of the challenge and the maximal amount of time needed for its execution.
The authentication authority denies target machines whose results differ from the
expected, or were reported outside the predefined time-frame.

The population of the challenge repository is a randomized iterative pro-
cess, which generates a challenge (the randomized part), computes its result, and
stores the information in the repository.

Figure 6 presents the general structure of a challenge, which mostly consists
of checksumming and side effect accumulating blocks. Two special blocks that
appear in all challenges are the prologue and the epilogue. The prologue block is
the entry point of the challenge. This block is responsible for setting up an appro-
priate execution environment for the challenge (explained below). The prologue
then proceeds by initializing the result variable (actually, register) to zero and
transferring control to another block: a side effect accumulating block or a check-
summing block. A side effect accumulating block retrieves information about the
current internal state of the processors and incorporates it into the result variable.
Then, depending on the value of the result, it jumps to one of the three predefined
blocks. A checksumming block advances (in a pseudo-random fashion) a mem-
ory pointer to a new location, reads the content at this location and incorporates it
into the result. If the final location was reached, the checksumming block jumps
to the epilogue block, otherwise it jumps to one of the three predefined blocks

28

FIGURE 6 The structure of the attestation challenge. The white rectangles, together
with the gray rectangles beneath them, represent the challenge blocks. Each
gray rectangle is a conditional control transfer, which is represented by an ar-
row to another block. The white rectangles are the blocks themselves, which
compute checksum or incorporate side effects.

based on the result. The epilogue block restores the execution environment and
returns the computed result to the caller.

3.3 Side Effects

Every instruction that is executed by a processor modifies its internal state. Some
modifications result from the definition of the instruction operations; others are
performed by the processor to improve performance, e.g., cache population; or
for debugging and profiling purposes, e.g., L3 cache miss count. Previously, pro-
cessors were allowed to observe the state of side effects directly. Current ver-
sions of processors provide a different mechanism — performance counters. The
processor defines pairs of registers: an event selection register, which allows the
software to specify the execution event to be counted, and a monitoring counter
register, which is increased on each occurrence of the event specified by the first
register. The values of the counter registers can be considered the state of the side
effect and as such can be incorporated into the result by the side effect accumu-
lating blocks.

It is desirable to construct the challenge in a way that maximizes the side
effects produced by its execution. One of the side effects that were considered
in [KJ03] is the TLB management system. TLBs store translations of virtual ad-
dresses to physical addresses of pages that were recently accessed. Modern pro-

29

cessors contain separate TLBs for instructions and data as well as a shared TLB
of a higher level, which is larger but slower. When a new translation needs to be
stored in a TLB with no free slots, one of the slots is evicted according to some
policy, which varies between processors. In order to achieve high utilization of
the TLBs the authors of [KJ03] propose to map a large virtual memory region that
maps a smaller physical memory region that is to be authenticated. The challenge
then can compute the hash by reading the contents of the physical memory re-
gion through different pages of the virtual memory region, thus fully utilizing the
DTLB and inducing more side effects. In order to fully utilize the ITLB, we map
the challenge blocks to different virtual pages and use their addresses in those
pages as the control transfer destinations.

As we have seen in chapter 2, a hypervisor can prevent the virtual envi-
ronment from accessing some physical pages. Moreover, the virtual environment
will be unaware of this situation. In other words, a hypervisor can deceive the
virtual environment into thinking that it has full control of the underlying hard-
ware and no other software is currently being executed. Obviously a challenge,
being part of the virtual environment, can be deceived as well.

Fortunately, some events are intercepted by hypervisors unconditionally. In
particular, on processors manufactured by Intel, execution of the CPUID instruc-
tion always causes a vm-exit. On vm-exit, the processor loads the first instruction
of the function whose address is specified in VMCS. This behavior alone will
affect some of the caches, regardless of the actual implementation of the func-
tion. The lookup of the address modifies at least one entry of the ITLB and the
higher level TLB (STLB). Fetching the first instruction modifies at least one entry
in the instruction cache, L2 cache and L3 cache. In addition, execution of such
an instruction takes much more time when a VMM is active. Therefore, in chal-
lenges, which are targeted at modern processors, we widen the variety of blocks
by adding blocks that produce events whose interception cannot be disabled. An
example of such a block is a block that contains a CPUID instruction.

In modern processors, the number of possible performance events greatly
outnumber the available hardware counter circuits. Most processor models are
restricted to 2-4 individual performance counters. Therefore, it is possible to dy-
namically link an available performance counter to a specific performance event.
Once linked, the performance counter counts the number of events that occurred.

One of the challenge’s goals is to determine if the remote machine is exe-
cuting under emulation or not. Two factors are measured to determine this: the
challenge result and the challenge’s elapsed execution time. Since the result of
a challenge is affected by the values of performance counters at different execu-
tion points, an emulator is forced to keep track of their values. Even assuming
that such a feat is possible with regard to one of the side effect modules, referenc-
ing several modules in a single challenge would necessarily amplify the elapsed
execution time differences, since these emulations are mostly orthogonal.

It is, therefore, desirable to utilize a large variety of performance measure-
ments. Each such performance measurement increases the execution time of an
emulator, but has no effect on a non-emulated system. A clear deficiency with

30

respect to this is the low ratio of available performance counters to possible per-
formance events that can be measured. We suggest to overcome this deficiency
by using chained performance-counters.

The idea is to monitor many side effect inducing modules with a much
smaller number of available performance counters, by shifting the counters from
one module to the next according to a set of deterministic rules. All proces-
sor components that generate side effects are initialized to a known state before
the challenge execution begins. When challenge execution flow reaches a de-
terminable point, the contents of each side effect inducing module is determin-
istic and repeatable regardless of our measurement, i.e whether a performance
counter was used to monitor its side effects or not. It follows that a performance
counter can be connected to the module to count new events. The new events
will occur deterministically for the active challenge given the new determinable
state.

As a result, monitoring performance events on multiple modules, using a
single performance counter to measure the performance events of these modules,
during several separate time intervals, will require a masquerading emulator to
emulate all side effect inducing modules to achieve the correct result.

4 NATIVE CODE EXECUTION

Despite the rising popularity of managed execution environments, such as Java
and .NET, native programming languages, such as C and C++, are still widely
used, especially in areas that require high performance, e.g. Web browsing, im-
age and video editing, gaming, etc. Many of these programs contain proprietary
algorithms and licensing schemes, which might be subject to reverse engineering
and modification. The main countermeasure which is currently available is ob-
fuscation. As discussed in chapter 1 this measure can be easily circumvented by
a skilled professional and is, therefore, unreliable.

We propose to protect the sensitive parts of a native program by encrypt-
ing them. Encryption and execution of encrypted code require special software
components. This chapter summarizes the detailed description of these compo-
nents provided by [PVII]. The relationship between the components is depicted
in Figure 7. The general purpose and the abilities of a hypervisor, as well as the
necessity for a driver wrapper, were discussed in chapter 2. The attestation soft-
ware was discussed in chapter 3.

4.1 Encryption Tool

The encryption tool is responsible for encryption of selected functions in a pro-
gram. The user selects the functions to be encrypted by specifying their names
in a configuration file. A map file or a debug symbols file, which are produced by
a compiler, can then be used to translate the names of the functions to their loca-
tions in the program file.

On Windows, program files (executables and dynamic libraries) are stored
in Portable Executable (PE) format. Figure 8 depicts the structure of a PE file.
The different headers define the expected location of the PE file when loaded
to memory, sizes and positions of various data structures inside the PE file, the
number of sections contained in this PE file, etc. The section table contains a
description of each of the sections contained in the PE file. Following the section

32

FIGURE 7 Native code protection system. The original program is encrypted before its
distribution. The encryption key is stored in the attestation server, which de-
livers it to the hypervisor in the target machine upon successful attestation.
The hypervisor is initialized by a driver, which also hosts the code of the
hypervisor.

table are the sections themselves. Sections vary in their structure and purpose:
the .text section contains the code of the program, the .data section contains its
constants. Other sections may contain information about resources (images and
sounds) embedded in the PE file or information used during exception delivery.

The encryption tool modifies the given PE file by introducing a new sec-
tion, which stores the selected functions in encrypted form. The instructions of
the original functions are partially replaced by an exception-inducing instruction.
We propose to use either the halt instruction or the software breakpoint instruction.
The halt instruction is a privileged instruction, which deactivates the current pro-
cessor when executed in kernel mode, but generates a general protection fault
when executed in user mode. The software breakpoint instruction generates a

FIGURE 8 Structure of a Windows PE file. The structure contains a variable number of
sections. Two of the most common sections are presented.

33

breakpoint trap when executed in either kernel or user modes. Faults and traps,
being types of interrupts, can be intercepted by a hypervisor, which can then de-
crypt and execute the original encrypted function. Another benefit of the halt
and the software breakpoint instructions is that they can be represented by a sin-
gle byte (0xF4 for halt and 0xCC for software breakpoint), thus allowing them to
fully cover any number of bytes. The software breakpoint instruction is superior
to the halt instruction in that it generates an interrupt not only in user mode but
also in kernel mode.

As will be explained in section 4.2.1, it is highly important to intercept con-
trol transfers that leave the encrypted function. The encryption tool disassembles
the function to be encrypted and inspects its instructions. The instructions then
are classified as encryptable and non-encryptable. The encryption tool classifies an
instruction as non-encryptable if it might transfer control out of the encrypted
function. For example, the ret and the call instructions are always classified as
non-encryptable, but the jmp instruction is classified as non-encryptable only if
its destination lies outside the function’s bounds, or if the destination cannot be
determined statically (if it is a register, for instance).

The encryption tool produces two copies of the original function, the en-
cryptable copy (EC) and the non-encryptable copy (NEC). In the EC all the non-
encryptable instructions are replaced by the halt or the software breakpoint in-
structions. Then the encryption tool encrypts the EC and stores it in the new
section. In the NEC all the encryptable instructions are replaced by the halt or the
software breakpoint instructions. Then the encryption tool replaces the original
function by the NEC. Figure 9 presents an example of such transformation.

4.2 Encrypted Program Execution

In order to execute an encrypted program, the user must first install the driver,
which wraps the hypervisor. The driver monitors the PE files loaded by the OS,
and keeps track of PE files that contain the special section. When the first such
PE file is loaded, the driver initializes the hypervisor. During the initialization,
the driver communicates with the authentication authority, passes verification,
obtains the cryptographic key, and enters a virtualized state. Chapter 2 provides
a detailed description of this process.

The hypervisor is configured to intercept the general protection fault. When
a protected program transfers control to an encrypted function, the processor at-
tempts to execute the halt instruction, which induces a general protection fault,
transferring control to the hypervisor. General protection faults rarely occur dur-
ing the normal course of program execution, since they usually cause the pro-
gram to terminate abruptly. Nevertheless, the hypervisor uses the data struc-
tures prepared by the driver to test whether the general protection fault occurred
during execution of an encrypted function.

The hypervisor injects the interrupt back to the guest if it was not caused by

34

FIGURE 9 Example of an encryption process of a single function. The encryption begins
by classifying instruction is encryptable (normal face) and non-encryptable
(bold face), and creating to copies. The complementary instructions in each
copy are replaced by halts. Finally, one copy is written over the original
functions, and the other is encrypted and added to the special section.

35

an encrypted function execution. Otherwise, the hypervisor decrypts the func-
tion and starts its execution. Since during its execution, the function is stored in
memory in unencrypted form, it is highly important to ensure that no other code
has access to the unencrypted instructions of the function. We note that in mod-
ern processors, several execution units (logical processors) can execute programs
concurrently. Therefore, we must ensure that programs executed by all execution
units have no access to the unencrypted instructions.

We present two approaches to sensitive functions execution: in-place exe-
cution and buffered execution.

4.2.1 In-place Execution

According to this approach the hypervisor can be in one of two states: cold or
hot. In the cold state the memory does not contain any sensitive information
and only the cryptographic key and the hypervisor’s state must be protected.
This is the regular mode of operation described in chapter 2. The hypervisor
switches to the hot state when the memory contains sensitive information, which
cannot be protected by a regular memory protection technique (using EPT), since
its physical location is not known (or not constant). This switch occurs when the
hypervisor starts execution of an encrypted function.

In the following description, we assume that the encryption tool uses halt
as a replacement instruction, but the same is true for the software breakpoint
instruction.

At the initialization the hypervisor’s state is set to cold. In this state, in ad-
dition to the regular protection means described in chapter 2, the hypervisor in-
tercepts general protection faults. An encrypted function which was overwritten
by the NEC consists mainly of halt instructions. Execution of these instructions
induces a general protection fault, which causes a vm-exit and transfers control to
the hypervisor. The hypervisor inspects the source of the general protection fault,
and fetches the EC that corresponds to the NEC. Then the hypervisor switches to
hot mode and decrypts the EC to its natural location, currently occupied by the
NEC (the NEC is copied to a different location for future use).

During the switch to hot mode, the hypervisor freezes all other execution
units, and configures itself to intercept all interrupts. This behaviour guarantees
that the function in its decrypted form cannot be read by any other, potentially
malicious, code, simply because no other code can run in hot mode. We note that
all the control transfer instructions in the EC are replaced by the halt instruction,
which induces a vm-exit.

When a vm-exit occurs in hot mode, the hypervisor switches to cold mode.
First, the decryption function is replaced by the corresponding NEC. Then the
hypervisor unfreezes all the execution units, configures itself to intercept only
general protection faults, and returns to the guest. Figure 10 depicts the control
flow during encrypted function execution.

We suggest freezing other execution units by inducing a vm-exit on each
execution unit, and running a busy loop until the hypervisor switches back to

36

FIGURE 10 Example of encrypted function execution. The figure depicts two execution
units, each with two alternating states: guest and host.The dashed hori-
zontal lines are synchronization barriers, i.e. everything above the line is
guaranteed to complete before anything below the line starts.

cold mode. A vm-exit can be induced either implicitly on a timer, or explicitly by
sending an inter-processor interrupt (IPI). The former solution is much easier to
implement but the latter solution is much more efficient.

The hypervisor intercepts interrupts in hot mode by replacing the original
interrupt descriptor table (IDT) of the OS with a specially crafted IDT. In this spe-
cial IDT each handler induces a vm-exit — for example, by executing the CPUID
instruction. The hypervisor intercepts this instruction, realizes that an interrupt
at vector N occurred and switches to cold mode. The hypervisor proceeds by in-
stalling the original IDT and moving the instruction pointer of the guest to point
to the Nth interrupt handler of the original IDT.

4.2.2 Buffered Execution

This approach is more efficient but potentially less secure than the in-place exe-
cution. According to this approach, the decrypted functions are executed inside
the hypervisor. As a consequence these functions have the same privileges as the
hypervisor itself. In particular, they can read and write memory, which is oth-
erwise inaccessible to any code external to the hypervisor. One can argue that
it is impossible for an adversary to replace the EC with a random code, without
knowing the cryptographic key. Unfortunately, it is possible that some memory
manipulation can be performed indirectly by modifying the data on which the
encrypted function works. Although possible, it seems to be extremely difficult
to manipulate the behaviour of an unknown code through its data.

37

FIGURE 11 Memory layout during buffered execution. The functions resided at virtual
address 7862000, which is mapped to the physical address 7862000 (a coin-
cidence). The encrypted code is decrypted to virtual address ffffffff‘0197000
which is mapped to the physical address 2000. The hypervisor changes the
mapping of the virtual address 7862000 to map the physical address 2000.

In the following description, we assume that the encryption tool uses halt
as a replacement instruction for NECs and software breakpoint as a replacement
instruction for ECs.

In this approach, the hypervisor has only one state, in which it protects itself
as described in chapter 2. In addition, the hypervisor configures itself to intercept
general protection faults. Execution of halt instructions induces a general protec-
tion fault, which causes a vm-exit and transfers control to the hypervisor. The
hypervisor inspects the source of the general protection fault, and fetches the EC
that corresponds to this NEC.

When the EC is resolved, the hypervisor decrypts it to a pre-allocated mem-
ory buffer, which is protected by the hypervisor. Since the decrypted instructions
are inaccessible by any other execution unit (in guest mode), there is no need to
suspend them. Likewise, since the encrypted instructions are executed inside the
hypervisor, there is no need to modify the IDT of the guest. Finally, there is no
need to perform the costly transitions to and from the guest after every decryp-
tion. All these improve the overall performance of the system by a large factor.

The x86 instruction set architecture defines many memory access instruc-
tions as relative, meaning that their arguments should not be interpreted as ac-
tual memory locations but rather that they should be interpreted as offsets from
the current value of the instruction pointer. As a consequence, the same instruc-
tion may have different interpretations when executed from different locations.

38

Therefore we must execute the decrypted EC at its natural location. In order to
achieve this, the hypervisor modifies the virtual page table of the current pro-
cess by mapping the virtual page containing the NEC to the pre-allocated buffer
containing the decrypted EC. Figure 11 depicts this transformation.

The hypervisor proceeds by restoring the registers of the guest and trans-
ferring control to the decrypted EC. The decrypted EC executes inside the hyper-
visor (in kernel mode) until it reaches a software breakpoint instruction. At this
point, the processor invokes the breakpoint trap handler, which saves the regis-
ters and returns to the guest. Other interrupts, such as page faults, which can
occur during a normal course of program’s execution, are handled in a similar
fashion.

4.3 Comparison

As was explained above, the buffered execution method is superior to the in-
place execution method in terms of performance. Unfortunately, the buffered
execution method allows an adversary to access regions of memory that are nor-
mally protected by the hypervisor. Consider the memcpy function, for example.
Assume that this function is encrypted and is now being executed by the hypervi-
sor in buffered execution mode. By specifying the address of the VMCS structure
in the source or destination argument, an adversary can inspect and modify the
control structures of the hypervisor. Moreover, since the hypervisor executes in
kernel mode, the protected function can access OS memory region and execute
privileged instructions.

Fortunately, the x86 instruction set architecture provides a great variety of
memory protection mechanisms, which can be utilized by the buffered execu-
tion method. One such mechanism is the virtual memory protection, which is
available in both 32- and 64-bit execution modes. The virtual memory protected
mechanism allows to specify a separate set of accessibility rights for kernel mode
and user mode. Similarly, the hypervisor?s memory protection (virtualization, to
be precise) mechanism, called the Extended Page Table (EPT) on Intel processors,
allows to specify a separate set of accessibility rights for host mode and guest
mode. The different modes of execution and the protection mechanisms are sum-
marized in Figure 12.

The in-place execution method utilizes the EPT to protect hypervisor’s con-
trol structures and other sensitive data from an adversary. We propose to use the
virtual memory protection mechanism in the buffered execution method. In par-
ticular, the buffered execution method can execute the decrypted function in user
mode inside the host mode (the upper right block in Figure ??); this mode is never
used by the system described in this paper. In this mode we can prevent attempts
to execute privileged instructions or access hypervisor’s control structures.

The hypervisor can transit to this mode by executing the iret instruction,
which is usually used to terminate an interrupt handler. This instruction modi-

39

FIGURE 12 Execution modes. The left column represents the guest mode, while the
right column represents the host mode. The lower row represents the kernel
mode, while the upper row represents the user mode. The host mode can
protect itself from the guest mode through the EPT mechanism. The kernel
mode can protect itself from the user mode through the virtual memory
protection mechanism.

fies the execution location and the execution mode (from kernel to user). Since
the execution takes place in host mode, interrupts cannot be intercepted by the
hypervisor through configuration of the VMCS. The hypervisor is forced to use
the IDT, which allows the kernel to specify the interrupt service routines for each
of the 256 interrupt vectors. Upon interrupt, the interrupt service routine can
decide whether to handle the interrupt inside the hypervisor or inject it to the
guest.

5 JAVA CODE EXECUTION

Executing encrypted managed program, such as Java programs, is more chal-
lenging than executing native code, and this results in a more complex system
design, which is described in detail in [PVI] The design is further complicated by
our desire to provide near-optimal execution performance for the unencrypted
parts of a Java program. In order to achieve near-optimal performance, we must
cooperate with an industrial-grade JVM. Fortunately, the Java standard specifies
two interfaces, JNI and JVM TI, that allow the realization of such cooperation.

5.1 JVM TI

JVM TI [Ora] is an application programming interface (API) provided by the
JVM that allows the inspection and control of the state of the JVM and the pro-
gram it executes. This API is usually used performance profilers and debuggers
[BH06, HAD10, Lon05, Lue12]. JVM TI is a two-way interface. A client of JVM TI,
an agent, can be notified of interesting occurrences through events. An agent can
query the JVM through many functions, either in response to events or indepen-
dent of them. An agent is realized as a dynamic library. The JVM loads the agent
during initialization and allows it to specify a list of events to be intercepted, e.g.,
class loading, method invocation, exception handling, etc. When an event occurs,
the JVM invokes the interception function of the agent associated with this event.

In addition to events interception, JVM TI allows an agent to inspect and
manipulate the state of the JVM and the state of the program it executes. One
family of functions allows the inspection of the program structure. For exam-
ple, the GetClassMethods function retrieves the method identifiers of a specified
class, and the function GetMethodName retrieves the name and the signature
of a specified method. Another family of JVM TI functions allows the inspec-
tion of dynamic aspects of the execution. This family includes functions such
as GetLocalVariable, which retrieves the value of the method’s local variable (in
Java parameters are also variables), and GetStackTrace, which retrieves informa-

41

FIGURE 13 Relationship between the different components of the described system.
The encryption tool (1) transforms regular Java classes into encrypted ones.
Regular and encrypted Java classes are then loaded by the JVM. The JVM
loads a JVM TI agent (2) through a JVM TI interface. The agent links the
hypervisor to the JVM and assists in the interpretation process. The agent
communicates with the JVM through JVM TI and JNI. The communication
between the agent and the hypervisor is based on hypercalls and execution
frames. The hypervisor receives the decryption key from a remote server,
which attests the validity of the hypervisor and the hardware on which it
executes.

tion about the callers of the current method. Finally, another family of JVM TI
functions allows for the modifying of the program’s state. This family includes
functions such as SetLocalVariable, which assigns a value to the method’s lo-
cal variable; SetBreakPoint, which sets a breakpoint at a specified location of a
specified method; and ForceEarlyReturnObject, which requests to terminate the
execution of the current method.

5.2 System Design

The system we present comprises four main components: (1) encryption tool, (2)
JVM TI agent, (3) thin hypervisor, and (4) attestation server. Figure 13 depicts the
relationship between these components.

The encryption tool processes each class file (see Figure. 14), an execution
unit of a Java program, by first de-serializing it into memory based structures.
The code bytes of each method are located and zeroed out to create a sequence
of NOP instructions. The encryption tool extends the existing Constant Pool to
make room for encrypted versions of protected methods’ bytecode. The original
bytecodes of each method are encrypted and inserted in a new record appended
at the end of the Constant Pool table.

During the initialization of the JVM TI agent, it deploys the hypervisor and

42

FIGURE 14 Structure of Java’s class file. The constant pool contains all the constant ref-
erenced by the class as well as identifiers of all referenced classes, methods
and fields. Below the constant pool reside the definitions of the fields and
the methods of the class. Each method contains the bytecode of its imple-
mentation.

installs interception functions for the class loading and the breakpoint events.
The class loading event occurs whenever the JVM loads a class and before any
of the class code is executed. Upon this event the agent inspects the class and
determines whether it is encrypted. If so, the agent installs a breakpoint at the
first instruction of each method. These breakpoints induce a breakpoint event on
each entry to the encrypted methods. The agent intercepts the breakpoint event,
resolves the method that hosts the hit breakpoint, and begins the interpretation
process.

The interpreter constructs a frame, a data structure which constitutes the ex-
ecution environment of the current method invocation (including the encrypted
bytecodes of the current method), and transfers control to the hypervisor. The
hypervisor decrypts the bytecodes and starts interpreting them one-by-one un-
til it reaches an opcode which requires cooperation with the JVM. At this point,
the hypervisor returns control to the agent and provides it with the instruction,
which it could not interpret, in decrypted form. The agent proceeds by interpret-
ing the instruction using JVM TI and JNI and then transfers control back to the
hypervisor. Figure 15 presents the control flow diagram of the system operation.

The interpretation is performed by two interpreters: one is embedded in the
JVM TI agent and the other is embedded in the hypervisor. Each opcode is inter-
preted by only one of the two interpreters. When one interpreter cannot continue
interpretation, it transfers the control to the other interpreter. The interpreters
share a data structure, which we call a frame, in which they store the intermedi-

43

FIGURE 15 A simplified control flow during encrypted method execution. The JVM
reaches the breakpoint installed by the agent, and transfers the control to
the JVM TI agent. The agent creates a frame and transfers the control to the
hypervisor. The hypervisor decrypts the instructions, and interprets them
until an uninterpretable instruction is reached . Then, the hypervisor erases
all the other instructions and returns control to the JVM TI agent, which
interprets the instruction and either transfers the control to the hypervisor
or returns control back to the JVM.

44

ate results of the interpretation as well as some additional information.
We want to enable the interpreter, which is embedded in the hypervisor, to

interpret as many instructions as possible. Many instructions — arithmetic, logic,
type conversion, stack management, control transfer — operate only on the stack
and the program counter (PC), and can be easily interpreted by the hypervisor.
The load and store group of instructions allow the program to push the value of
local variables and constants onto the stack. In order to enable the hypervisor to
interpret instruction in these groups as well, we include the constant pool and the
local variables in the frame.

Some instructions, nevertheless, cannot be interpreted by the hypervisor.
Instructions that are responsible for object creation and manipulation, or method
invocation and return, require cooperation with the JVM. For example, the get-
field instruction, which pushes onto the stack the value of the specified field in
the specified object, must inspect the internal representation of the object as de-
fined by the JVM. Another example is the return instruction, which terminates
execution of the current method. This instruction must modify the internal rep-
resentation of the stack trace, which is managed by the JVM. Therefore, all these
instructions are interpreted by the JVM TI agent via JNI and JVM TI functions.

When the hypervisor encounters an instruction that requires cooperation
with the JVM, it delivers it to the JVM TI agent for interpretation. The JVM TI
agent interprets the delivered instruction by invoking the appropriate JVM TI
and JNI functions.

5.3 Measurements

According to [CMS07], invokevirtual is the second most popular instruction (ap-
pears with 8.9% frequency) and getfield is the fourth most popular instruction
(5.4%). Unfortunately, these instruction cannot be interpreted inside the hyper-
visor, and therefore, they are delivered in a decrypted form to the JVM TI agent,
which is not considered secure. According to the statistics in Table 1, the hyper-
visor delivers about 38% of the instructions in a decrypted form back to the JVM
TI. Therefore, in practice, only about 60% of the instructions in an encrypted class
are actually hidden from an adversary.

As we have seen, Java programs can be, at least partially, protected from an
adversary. We believe that this degree of protection is sufficient in cases where
traditionally obfuscation was used. In other cases, which require a higher degree
of protection, we suggest either avoiding using uninterpretable (by the hypervi-
sor) instructions, or use a tool which can reduce the frequency of uninterpretable
instruction, for instance, by inlining methods.

45

TABLE 1 Frequencies of uninterpretable instructions as reported by [CMS07]

invokevirtual 8.9
getfield 5.4
invokespecial 3.8
new 2.5
putfield 2.1
invokestatic 1.7
return 1.6
getstatic 1.6
areturn 1.3
aastore 1.2

invokeinterface 1.1
iastore 1.1
ireturn 1
checkcast 0.7
bastore 0.6
athrow 0.6
putstatic 0.4
anewarray 0.4
aaload 0.4
arraylength 0.3

iaload 0.3
newarray 0.2
instanceof 0.2
ifacmpne 0.2
sastore 0.1
monitorexit 0.1
lastore 0.1
castore 0.1
baload 0.1
Total: 38.1

6 CONCLUSIONS

In this chapter, we summarize the contributions of the thesis, discuss the limita-
tions of the reported research, and outline some directions for further research.

6.1 Contribution

The main contribution of the thesis is a complete system for execution of en-
crypted programs. The design of this system combines several components, some
of which were previously studied, and others which are novel. The thesis de-
scribes the novel components and extends the studied components. The contri-
bution of this thesis is, therefore, not limited to the area of encrypted code execu-
tion.

The thesis extends the remote authentication method, which was studied
by Kennell and Jamieson [KJ03] and others [SLS+05, SPvDK04, SLS+05, SLP+06].
The extension adapts this method to modern processors, which have multiple
execution units, a wide variety of performance events, and hardware-assisted
virtualization.

The thesis extends the notion of a thin hypervisor, proposed by [SET+09,
CSK10], to code protection. A complete system is described, which includes
remote authentication, cryptographic key delivery, and secure execution of en-
crypted methods. This work presents two execution techniques which vary in
their security and performance, thus allowing an engineer to apply the appropri-
ate technique in each case.

Finally, the thesis extends the idea of encrypted program execution to man-
aged programs. In particular, we present a complete system for encryption and
execution of Java programs. The system introduces the idea of co-interpretation
— interpretation of one program by a secure and a non-secure interpreters. This
work presents an evaluation of the performance and the security of the system.

47

6.2 Limitations and Further Research

This section presents the limitations of the described systems and outlines direc-
tions of further research.

6.2.1 Native Programs

Chapter 4 discussed two methods of native code execution: in-place execution
and buffered execution. The advantages and disadvantages of each method were
presented and compared. While the buffered execution method has a better per-
formance, the in-place execution is more secure. An engineer can decide which
method should be applied for a given problem.

The chapter presents an additional memory protection mechanism, which
can be used to provide the security of the in-place execution method and the
performance of the buffered execution method. We plan to research this approach
in the near future in order to improve the overall performance of the system.

6.2.2 Java Programs

As reported in chapter 5, the performance and the security of the Java system are
not optimal. In particular, the performance can be improved, by caching the state
of objects in the hypervisor, thus eliminating the need to transfer control back to
the JVM TI agent on every invocation of the getfield and setfield instructions.

Another family of costly instructions is a family of method call instructions.
We can eliminate the control transfer to the JVM TI agent, when an encrypted
method calls another encrypted method, by emulating the call stack manipula-
tions and the argument passing, which are usually performed by the JVM. This
emulation not only saves the redundant vm-entry and vm-exit, but also elimi-
nates the need to call the costly JVM TI functions that retrieve the method’s argu-
ments values.

Finally, there are many other managed execution environments, such as
.NET, Javascript, Python, etc. To the best of our knowledge, these environments
do not offer an equivalent of JVM TI. Therefore, these environments will probably
require to embed the interpreter, which is now part of the JVM TI agent, in the ex-
ecution environment itself. While being more complex, this solution potentially
also seems to be much more efficient, since both such an embedded interpreter,
as well as the hypervisor’s interpreter, are aware of the internal representation of
the objects and other data structures, thus allowing them to interpret much more
instructions in the hypervisor.

7 SUMMARY OF ORIGINAL ARTICLES

In total 7 articles are included in the thesis. This chapter provides the summary
of each. For each article, the addressed research problem is formulated first, fol-
lowed by the description of the obtained results.

7.1 Trusted Computing and DRM

Zaidenberg, N.J.; Neittaanmäki, P.; Kiperberg, M.; Resh, A.; , "Trusted Computing
and DRM" in Cyber Security: Analytics, Technology and Automation, vol. 78, pp.
205-212 May 2015

7.1.1 Research Problem

This book chapter surveys novel trusted computing solutions based on the Trusted
Platform Module (TPM) as advertised by the Trusted Computing Group. We dis-
cuss the working principles and programming interface of the TPM. The chapter
covers the following aspects of the TPM: protected memory, remote attestation,
direct annonymous attestation, measurement counters and key storage.

7.1.2 Results

The TPM offers a key storage and an execution context, which are protected by
hardware obfuscations. While hardware-based security, as a result of its design,
is not vulnerable to eavesdropping or side-channel attacks, it has two main de-
ficiencies. The first deficiency is the requirement of additional hardware, which
can increase the cost of the final product. The second deficiency is the lack of flex-
ibility. While the TPM allows the user to attest an application and perform some
cryptographic primitives, it does not support execution of encrypted programs.
The approach which is described in this chapter is complementary to the system
presented in this thesis.

49

7.2 An Efficient VM-based Software Protection

Averbuch, A.; Kiperberg, M.; Zaidenberg, N.J., "An Efficient VM-based Software
Protection" in Network and System Security (NSS), 2011 5th International Conference,
pp.121-128, 6-8 Sept. 2011

7.2.1 Research Problem

This article studies the obfuscation methods for software protection, which are
predominantly used for digital rights management (DRM). The most sophisti-
cated obfuscations translate a program from one ISA to another, thus render-
ing a familiar x86 code incomprehensible to a human reader. Obviously, regular
processors cannot execute such programs directly, thus forcing the developers
of such obfuscation methods to equip the transformed program with an inter-
preter of the new ISA. Researchers showed that the presence of the interpreter
reveals enough information about the underlying ISA to reconstruct the original
program.

A completely different approach was proposed by [Bes80]. According to
this approach a cryptographic key is burned into every manufactured processor.
A program, which is intended to be executed by such a processor, is encrypted
with the key of this processor. The program is copied to the target computer in
its encrypted form. The processors executes this program by reading its instruc-
tions one-by-one and decrypting them inside the execution pipeline. This article
investigates the viability of achieving a comparable level of security on regular
processors.

7.2.2 Results

The article introduces a new framework for a protected execution of code. This
framework comprises of an encryption tool and an execution environment. The
encryption tool acts as an obfuscating transformation — it translates the program
from the original ISA to a new ISA and encrypts the instructions using some key.
The execution environment decrypts and executes the instructions.

The decryption key is stored in a remote server. The remote server provides
the execution environment with the decryption key upon successful validation.
The purpose of the validation process is to ensure that the key is provided to a
legitimate entity (the real execution environment), which is able to store the key
securely.

The article suggests the use of a polyalphabetic cipher for program encryp-
tion and describes an efficient method of its realization. Polyalphabetic ciphers
are very efficient but less secure than “real” ciphers, like AES or 3DES. However,
in many cases, we can sacrifice security for performance. The availability of an al-
ternative makes it an engineering decision. The article evaluates the performance
of the different encryption schemes.

50

7.3 Truly-Protect: An Efficient VM-Based Software Protection

Averbuch, A.; Kiperberg, M.; Zaidenberg, N.J., "Truly-Protect: An Efficient VM-
Based Software Protection" in Systems Journal, IEEE, vol.7, no.3, pp.455-466, Sept.
2013

7.3.1 Research Problem

This article extends the research published in [PV]. The article summarizes the
different approaches for defying reverse engineering and means to circumvent
them. All the reverse engineering prevention systems are based on obfuscation,
which is vulnerable to hacking or user malicious activities. Therefore, it is safe
to conclude that software should be protected by encryption rather than obfusca-
tion.

7.3.2 Results

The article presents a detailed description of a system for encrypting and exe-
cuting native programs. The article claims that a polyalphabetic cipher, being
extremely fast, can be used to encrypt moderately sensitive programs. The per-
formance of different ciphers is studied and reported, to enable an engineer to
make an informed decision regarding the encryption method.

The article presents a slight modification to the original design of the sys-
tem, that allows it to achieve a better performance on processors with multiple
execution units. The performance boost is achieve by parallelizing the interpreta-
tion; instructions decryption is performed by one execution unit while decrypted
instructions execution is performed by another execution unit.

7.4 Efficient Remote Authentication

Kiperberg, M.; Zaidenberg, N.J., "Efficient Remote Authentication" in The Journal
of Information Warfare, vol.12, no.3, Oct. 2013

7.4.1 Research Problem

Remote computer authentication is a process by which one computer ensures that
another computer is trustworthy. The exact properties of this trustworthiness
depend on the application, but generally the computer under test has to prove
that it is an actual, non-virtual, computer executing a legitimate software.

A method was proposed [KJ03] for establishing trustworthiness of a remote
computer, in which the authority sends a challenge code to the computer under
test and verifies that the correct result was received within a predefined period
of time. The challenge code has a special design, which prevents the adversary

51

from achieving the correct result within the time constraints. The two main com-
ponents of the challenge code are checksumming and side effect accumulation.
The checksumming component computes a hash of the memory region contain-
ing the software under test. The side effect accumulation component guarantees
that the computation cannot be simulated efficiently enough to accommodate the
time constraints.

The originally proposed method [KJ03] assumes that the software under test
is known in advance. While this assumption may hold in some embedded de-
vices, it definitely fails on personal computers or even complex portable devices,
such as phones and players. This article studies the structure of the software in
these devices and extends the proposed method to these dynamic environments.

7.4.2 Results

Popular operating systems have tens and hundreds of versions. In addition, the
device drivers are executed with the same privileges as the kernel itself, thus
forcing the authority to verify them as well. This article claims that the amount
of device drivers increases very slowly over time and it is feasible to track them.
Moreover, only a small fraction of the drivers are used in practice, which de-
creases the number of possible configurations of the system.

The article presents an automatic system that pre-computes the correct re-
sults of the challenge codes, as described by Kennell and Jamieson. In addition
the system schedules new computation requests for remote computers with pre-
viously unseen configurations. This computation request is serviced automati-
cally if the new configuration consists solely of authorized device drivers. Other-
wise, a manual intervention is required.

7.5 Remote Attestation of Software and Execution-Environment in
Modern Machines

Kiperberg, M.; Resh, A.; Zaidenberg, N.J., "Remote Attestation of Software and
Execution-Environment in Modern Machines" in The 2nd IEEE International Con-
ference on Cyber Security and Cloud Computing, Nov. 2015

7.5.1 Research Problem

The problem of remote software authentication is determining whether a remote
computer system is running the correct version of a software. Equipped with
a remote authentication method, a service provider can prevent an unauthenti-
cated remote software from obtaining some secret information or some privileged
service. For example, only authenticated gaming consoles can be allowed to con-
nect to the gaming networks [Ion09, Son15, Bri15] and only authenticated bank
terminals can be allowed to fetch records from the bank database [Wik15].

52

The research in this area can be divided into two major branches: hard-
ware assisted authentication and software-only authentication. This article con-
centrates on software-only authentication, in which the authentication authority
sends a challenge code to the computer under test and verifies that the correct
result was received within a predefined period of time. In particular, this arti-
cle extends a previously known method of software-only authentication [KJ03]
to modern machines. Modern machines have two main features that require a
special consideration by the challenge code designer.

The first feature is virtualization, which is available on processors designed
by Intel [Int07] and AMD [AMD10]. Virtualization allows a potential adversary
implementing an emulator which is as efficient as the original machine, thus de-
feating the authentication scheme.

The second feature is multi-processing, which is also widely implemented
by different manufacturers. The authentication method, which is referenced by
this article, accumulates information about side effects of the computation. Un-
fortunately, some of the processor’s internal state is shared by the different ex-
ecution units (logical processors). Therefore, one execution unit can affect the
computation of another execution unit, resulting in an incorrect computation and
eventually failing the authentication procedure.

7.5.2 Results

The article presents an extension to the original authentication procedure. This
extension addresses the two features of modern processors.

Virtualization on modern processors enables the system software to delib-
erately intercept execution of privileged instructions and access the hardware re-
sources. Interception of some instructions may depend on the processor’s con-
figuration while other instructions are intercepted unconditionally. One such in-
struction is CPUID, which is generally used to inspect processor’s features, and
is guaranteed to not affect the memory. However, when the virtualization is en-
abled, CPUID causes the system software to intercept this instruction, thus affect-
ing the memory. The article suggest incorporating the CPUID instruction in the
challenge code.

The multiplicity of execution units is resolved by stalling all logical pro-
cessors but the one that is currently executing the challenge code. The article
suggest to implement the stall using a MONITOR/MWAIT pair of instructions.
These instructions take a specified memory range and put the processor in an idle
state until the contents of that specified memory region is modified. Since no in-
structions are executed, other execution units are not affected by the idle logical
processors.

53

7.6 System for Executing Encrypted Java Programs

Kiperberg, M.; Resh, A.; Algawi, A.; Zaidenberg, N.J., "System for Executing En-
crypted Java Programs" in IEEE Transactions on Dependable and Secure Computing,
Submitted

7.6.1 Research Problem

This article studies the applicability of secure execution of encrypted (native) pro-
gram to managed program. Unlike regular (native) programs, managed pro-
grams cannot be executed directly by the CPU and therefore require a special
(native) program to interpret the managed program. Managed execution envi-
ronments are superior to native environments in memory management, debug-
ging and profiling support. These factors have caused them to become popular
among developers of desktop and mobile applications.

While it is possible to guarantee that a sequence of native instructions can-
not be intercepted (read or modified) during its execution by a CPU, such guaran-
tees cannot be made for a managed execution environment, since an unexpected
behavior can be introduced into the software that implements the managed ex-
ecution environment. There is, therefore, a need for a technique for executing
safely encrypted managed programs on the available managed execution envi-
ronments.

Java is the most popular example of a managed execution environment.
Java’s specifications are publicly available which makes it a good candidate for
a use-case study. Moreover, Java provides standardized interfaces that allow to
inspect and modify the internal state of the program and the execution environ-
ment. These interfaces, called JVM TI and JNI, allow to develop a third party
component that interacts with the JVM. The component is developed as a dy-
namic library and is called a JVM TI agent.

7.6.2 Results

The articles presents an execution system, which cooperates with the JVM and
incorporates a secure hypervisor, a JVM TI agent and an encryption tool. The en-
cryption tool transforms regular Java program to encrypted Java programs which
can be fed to the JVM just as regular programs. However, execution of such pro-
grams is possible only if the JVM TI agent is attached to the JVM.

The JVM TI agent intercepts attempts to execute encrypted code, constructs
an execution environment and transfers control to the hypervisor. The hypervisor
decrypts the code and begins interpretation. When the hypervisor reaches an un-
interpretable instruction, it returns the control to the JVM TI agent and transfers
the uninterpretable instruction in decrypted form. An instruction is considered
uninterpretable if its interpretation requires cooperation with the JVM. The JVM
TI agent interprets the instruction, and transfers control back to the hypervisor, if

54

the interpretation process shall continue.
Obviously, some information leaks during this process. The article estimates

that 38% of the decrypted instructions are transferred to the JVM TI agent. This
estimate is based on the statistical frequency of different instructions in an aver-
age Java program.

7.7 System for Executing Encrypted Native Programs

Kiperberg, M.; Leon, R.; Zaidenberg, N.J., "System for Executing Encrypted Na-
tive Programs" in The Conferece, Mon. Year

7.7.1 Research Problem

Digital content such as games, videos and the like may be susceptible to unli-
censed usage, having a significant adverse impact on the profitability and com-
mercial viability of such products. Commonly, such commercial digital content
may be protected by a licensing verification program; these, however, may be cir-
cumvented by reverse engineering of the software instructions of the computer
program which leaves them vulnerable to misuse.

One way of preventing circumvention of the software licensing program,
may be using a method of obfuscation [Ore, VMP], which is vulnerable to hacking
or user malicious activities [Rol09, Boh08]. There is therefore a need for a better
technique for protecting sensitive software sections, such as licensing code.

7.7.2 Results

This paper presents a system that allows encrypting and executing native pro-
grams written for the x86 architecture.

The article presents an execution system, which consists of an encryption
tool, a secure hypervisor and an authentication server. The encryption tool en-
crypts parts (functions) of a regular program, which can then be executed as a
regular program, provided that the proposed system is installed on the target
environment.

The decryption key is stored in the authentication server, which delivers it
to the target machine upon a successful authentication. During the authentication
protocol the authentication server verifies that the target machine is trustworthy,
and that an authentic hypervisor is configured correctly. The decryption key, as
well as any other sensitive information, is protected by the hypervisor. In addi-
tion to providing protection, the hypervisor decrypts and executes the encrypted
functions.

55

YHTEENVETO (FINNISH SUMMARY)

Ohjelmakoodin takaisinmallintamisen estäminen on tärkeä keino ohjelmistojen
suojaamiseen hyökkäyksiltä, algoritmien varastamiselta sekä laittomalta ohjelmis-
ton käytöltä. Eräs yleisesti käytetty suojausmenetelmä on koodin tarkoitukselli-
nen monimutkaistaminen, joka on kuitenkin osoittautunut tehottomaksi keinoksi.
Ohjelmakoodin salaaminen sen sijaan on vahva takaisinmallintamisen estämis-
menetelmä, mikäli salausavainten hallinnointi pystytään toteuttamaan turvallis-
esti.

Tämä väitöskirja esittää menetelmän, joka mahdollistaa salatun ohjelmakoodin
suorittamisen ja salausavainten hallinnan suojatussa ympäristössä. Menetelmä
on turvallinen, koska salausavaimia ei missään vaiheessa tallenneta ohjelmakoodia
suorittavalle tietokoneelle, vaan avaimet haetaan etäpalvelimelta tunnistautu-
misen jälkeen. Salausavaimet ja salauksesta avattu ohjelmakoodi pidetään jatku-
vasti virtuaalikoneita ajavan ohjelman, hypervisorin, suojaamina. Menetelmä
mahdollistaa sekä konekielisen, että Java ohjelmakoodin salaamisen ja suorit-
tamisen.

Suojauksesta avattu ohjelmakoodi voidaan suojata suorituksen aikana haitalliselta
ohjelmakoodilta joko estämällä muun ohjelmakoodin samanaikainen suorittami-
nen tai suojaamalla muistialue, jolla suojauksesta avatut komennot sijaitsevat.
Konekielisistä ohjelmista poiketen Java-ohjelmat suoritetaan prosessorin sijasta
Java virtuaalikoneessa (JVM). JVM tarvitsee salausavaimen salattujen ohjelmakoodin
osien purkamiseen, eikä ole olemassa keinoa, jolla salausavaimet voitaisiin säi-
lyttää turvallisesti JVM:n sisällä. Väitöskirjassa ehdotetaankin Java-tulkin imple-
mentointia ohuen hypervisorin ohjaaman suojatun ympäristön sisällä. Tulkkia
ajetaan tavallisen JVM:n rinnalla, jolloin tulkki ja JVM yhdessä pystyvät suoritta-
maan salattuja Java-ohjelmia.

56

REFERENCES

[AMD10] AMD64 Architecture Programmer’s Manual Volume 2: System Pro-
gramming, 2010.

[Bes80] R. M. Best. Preventing software piracy with crypto-microprocessors.
In Computer Society International Conference, COMPCON’80, 1980.

[BH06] Walter Binder and Jarle Hulaas. Exact and portable profiling for the
jvm using bytecode instruction counting. Electronic Notes in Theoret-
ical Computer Science, 164(3):45–64, 2006.

[Boh08] Lutz Bohne. Pandora’s Bochs: Automated Unpacking of Malware.
2008.

[Bri15] Brian. Nintendo starting to ban pirates from online services on 3ds.
Technical report, Nintendo everything, 2015.

[BYDD+10] Muli Ben-Yehuda, Michael D Day, Zvi Dubitzky, Michael Factor, Na-
dav Har’El, Abel Gordon, Anthony Liguori, Orit Wasserman, and
Ben-Ami Yassour. The Turtles Project: Design and Implementation
of Nested Virtualization. In OSDI, volume 10, pages 423–436, 2010.

[CFPS09] Claude Castelluccia, Aurélien Francillon, Daniele Perito, and Clau-
dio Soriente. On the Difficulty of Software-based Attestation of
Embedded Devices. In Proceedings of the 16th ACM Conference on
Computer and Communications Security, CCS ’09, pages 400–409, New
York, NY, USA, 2009. ACM.

[CMS07] Christian Collberg, Ginger Myles, and Michael Stepp. An Empirical
Study of Java Bytecode Programs. Softw. Pract. Exper., 37(6):581–641,
May 2007.

[Cre81] R. J. Creasy. The Origin of the VM/370 Time-sharing System. IBM J.
Res. Dev., 25(5):483–490, September 1981.

[CSK10] Yosuke Chubachi, Takahiro Shinagawa, and Kazuhiko Kato.
Hypervisor-based Prevention of Persistent Rootkits. In Proceedings
of the 2010 ACM Symposium on Applied Computing, SAC ’10, pages
214–220, New York, NY, USA, 2010. ACM.

[DKGC07] Daniel P Delorey, Charles D Knutson, and Christophe Giraud-
Carrier. Programming language trends in open source development:
An evaluation using data from all production phase sourceforge
projects. In Second International Workshop on Public Data about Soft-
ware Development (WoPDaSD’07), 2007.

57

[ELM+03] Paul England, Butler Lampson, John Manferdelli, Marcus Peinado,
and Bryan Willman. A Trusted Open Platform. Computer, 36(7):55–
62, July 2003.

[Fer07] Peter Ferrie. Attacks on more virtual machine emulators. Symantec
Technology Exchange, page 55, 2007.

[HAD10] Jason Howarth, Irfan Altas, and Barney Dalgarno. Information Flow
Control Using the Java Virtual Machine Tool Interface (JVMTI). In
Availability, Reliability, and Security, 2010. ARES’10 International Con-
ference on, pages 689–695. IEEE, 2010.

[Int07] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s
Manual - Volume 3, August 2007.

[Ion09] Daniel Ionescu. Microsoft bans up to one million users from xbox
live. Technical report, PC World, 2009.

[KJ03] Rick Kennell and Leah H. Jamieson. Establishing the Genuinity
of Remote Computer Systems. In Proceedings of the 12th Conference
on USENIX Security Symposium - Volume 12, SSYM’03, pages 21–21,
Berkeley, CA, USA, 2003. USENIX Association.

[Lon05] Frederick W Long. Software vulnerabilities in Java. 2005.

[Lue12] Mirko Luedde. Low impact debugging protocol, November 13 2012.
US Patent 8,312,438.

[Ora] Oracle Corporation. Java Virtual Machine Tool Interface.

[Ore] Oreans. Themida.

[Pea02] Siani Pearson. Trusted Computing Platforms: TCPA Technology in Con-
text. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2002.

[PG74] Gerald J. Popek and Robert P. Goldberg. Formal Requirements
for Virtualizable Third Generation Architectures. Commun. ACM,
17(7):412–421, July 1974.

[Rol09] Rolf Rolles. Unpacking Virtualization Obfuscators. In Proceedings of
the 3rd USENIX Conference on Offensive Technologies, WOOT’09, pages
1–1, Berkeley, CA, USA, 2009. USENIX Association.

[RT07] Joanna Rutkowska and Alexander Tereshkin. IsGameOver(), any-
one? In Blackhat 2007, 2007.

[RT08] Joanna Rutkowska and Alexander Tereshkin. Bluepilling the xen
hypervisor. Black Hat USA, 2008.

58

[SET+09] Takahiro Shinagawa, Hideki Eiraku, Kouichi Tanimoto, Kazumasa
Omote, Shoichi Hasegawa, Takashi Horie, Manabu Hirano, Kenichi
Kourai, Yoshihiro Oyama, Eiji Kawai, Kenji Kono, Shigeru Chiba,
Yasushi Shinjo, and Kazuhiko Kato. Bitvisor: A thin hypervisor for
enforcing i/o device security. In Proceedings of the 2009 ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environ-
ments, VEE ’09, pages 121–130, New York, NY, USA, 2009. ACM.

[SLP+06] Arvind Seshadri, Mark Luk, Adrian Perrig, Leendert van Doorn,
and Pradeep Khosla. Scuba: Secure code update by attestation in
sensor networks. In Proceedings of the 5th ACM Workshop on Wireless
Security, WiSe ’06, pages 85–94, New York, NY, USA, 2006. ACM.

[SLS+05] Arvind Seshadri, Mark Luk, Elaine Shi, Adrian Perrig, Leendert van
Doorn, and Pradeep Khosla. Pioneer: Verifying code integrity and
enforcing untampered code execution on legacy systems. In Proceed-
ings of the Twentieth ACM Symposium on Operating Systems Principles,
SOSP ’05, pages 1–16, New York, NY, USA, 2005. ACM.

[Son15] Sony. Information on banned accounts and consoles. Technical re-
port, Sony consumer electronics, accessed on may 2015.

[SPvDK04] A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla. SWATT:
softWare-based attestation for embedded devices. In Security and
Privacy, 2004. Proceedings. 2004 IEEE Symposium on, pages 272–282,
May 2004.

[SWP08] Dries Schellekens, Brecht Wyseur, and Bart Preneel. Remote Attesta-
tion on Legacy Operating Systems with Trusted Platform Modules.
Sci. Comput. Program., 74(1-2):13–22, December 2008.

[SZJvD04] Reiner Sailer, Xiaolan Zhang, Trent Jaeger, and Leendert van Doorn.
Design and Implementation of a TCG-based Integrity Measurement
Architecture. In Proceedings of the 13th Conference on USENIX Security
Symposium - Volume 13, SSYM’04, pages 16–16, Berkeley, CA, USA,
2004. USENIX Association.

[Tar10] Chris Tarnovsky. Semiconductor Security Awareness Today and yes-
terday. In Blackhat, 2010.

[Tar12] Chris Tarnovsky. Attacking TPM part two. In Defcon, 2012.

[VMP] VMProtect Software. VMProtect.

[Wik15] Wikipedia. An analysis of proposed attacks against genuinity tests.
Technical report, accessed on May 2015.

[YHL+11] Qiang Yan, Jin Han, Yingjiu Li, Robert H. Deng, and Tieyan Li. A
software-based root-of-trust primitive on multicore platforms. In

59

Proceedings of the 6th ACM Symposium on Information, Computer and
Communications Security, ASIACCS ’11, pages 334–343, New York,
NY, USA, 2011. ACM.

[YWZC07] Yi Yang, Xinran Wang, Sencun Zhu, and Guohong Cao. Distributed
software-based attestation for node compromise detection in sensor
networks. In Proceedings of the 26th IEEE International Symposium on
Reliable Distributed Systems, SRDS ’07, pages 219–230, Washington,
DC, USA, 2007. IEEE Computer Society.

ORIGINAL PAPERS

PI

REMOTE ATTESTATION OF SOFTWARE AND
EXECUTION-ENVIRONMENT IN MODERN MACHINES

by

Kiperberg, M.; Resh, A.; Zaidenberg, N.J. 2015

The 2nd IEEE International Conference on Cyber Security and Cloud Computing

PII

TRUSTED COMPUTING AND DRM

by

Zaidenberg, N.J.; Neittaanmäki, P.; Kiperberg, M.; Resh, A. 2015

Cyber Security: Analytics, Technology and Automation, vol. 78, pp. 205-212

PIII

EFFICIENT REMOTE AUTHENTICATION

by

Kiperberg, M.; Zaidenberg, N.J. 2013

The Journal of Information Warfare , vol.12, no.3

PIV

TRULY-PROTECT: AN EFFICIENT VM-BASED SOFTWARE
PROTECTION

by

Averbuch, A.; Kiperberg, M.; Zaidenberg, N.J. 2013

Systems Journal, IEEE , vol.7, no.3, pp. 455-466

IEEE SYSTEMS JOURNAL, VOL. 7, NO. 3, SEPTEMBER 2013 455

Truly-Protect: An Efficient VM-Based
Software Protection

Amir Averbuch, Michael Kiperberg, and Nezer Jacob Zaidenberg, Member, IEEE

Abstract—We present Truly-Protect that is a software protec-
tion method. Previously published protection methods relied solely
on obscurity. Rolles proposed a general approach for breaking
systems that are based on obscurity. We show that, under certain
assumptions, Truly-Protect is resistant not only to Rolles’ attack
but also to any other attacks that do not violate the assumptions.
Truly-Protect is based on a virtual machine that enables us to
execute encrypted programs. Truly-Protect can serve as a platform
for preventing software piracy of obtaining unlicensed copies.
Truly-Protect by itself is not a digital rights management system
but can form a basis for such a system. We discuss several scenar-
ios and implementations and validate the performance penalty of
our protection. A preliminary version of this paper appeared in
the 5th International Conference on Network and System Security
(NSS2011). It was extended by expanding the system’s descrip-
tion, adding more efficient parallel implementation, just-in-time
decryption, and a comprehensive performance analysis. It also
contains all the necessary proofs.

Index Terms—Copy-protection, DRM, process virtual machine.

I. INTRODUCTION

ARISING trend in the field of virtualization is the use of
virtual machine (VM)-based digital rights and copy pro-

tection. The two goals of introducing VMs to digital rights pro-
tection are to encrypt and obfuscate the program. Forcing the
hackers to migrate from a familiar x86 environment to an unfa-
miliar and obfuscated virtual environment is intended to pose a
greater challenge in breaking the software copy protection.
A generic and semiautomatic method for breaking VM-

based protection is proposed by Rolles [23]. It assumes that
the VM is, broadly speaking, an infinite loop with a large
switch statement called the op-code dispatcher. Each case in
this switch statement is a handler of a particular op-code.
The first step a reverse engineer should take according to

Rolles’ method is to examine the VM and construct a translator.
The translator is a software tool that maps the program instruc-
tions from the VM language to some other language chosen by
the engineer, for example, x86 assembly. The VMmay be stack

Manuscript received October 1, 2011; revisedMarch 15, 2012, July 20, 2012,
and August 31, 2012; accepted September 1, 2012. Date of current version
July 3, 2013. The work of N. J. Zaidenberg work was supported by the Graduate
School in Computing andMathematical Sciences (COMAS) and the Artturi and
Ellen Nyyssösen Foundation.

A. Averbuch is with the School of Computer Science, Tel Aviv University,
39040 Tel Aviv, Israel (e-mail: amir@math.tau.ac.il).

M. Kiperberg and N. J. Zaidenberg are with the Department of Mathematical
Information Technology, University of Jyväskylä, 40014 Jyväskylä, Finland
(e-mail: mikiperb@student.jyu.fi; nezer.j.zaidenberg@jyu.fi).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSYST.2013.2260617

based or register based. The reverse-engineer work is similar in
both cases.
Rolles calls a language that the translators translate the code

it reads into, i.e., an intermediate representation (IR). The first
step is done only once for a particular VM-based protection,
regardless of how many software systems are protected using
the same VM. In the second step, the method extracts the VM
op-code dispatcher and the obfuscated instructions from the ex-
ecutable code. The op-codes of these instructions, however, do
not have to correspond to those of the translator: the op-codes
for every program instance can be permuted differently. In the
third step, the method examines the dispatcher of the VM and
reveals the meaning of each op-code from the code executed by
its handler. Finally, the obfuscated instructions are translated to
IR. At this point, the program is not protected anymore since
it can be executed without the VM. Rolles further applies a
series of optimizations to achieve a program, which is close to
the original one. Even by using Rolles’ assumptions, we argue
that a VM, which is unbreakable by the Rolles’ method, can
be constructed. In this paper, we will describe how to construct
such a VM.
We do not try to obfuscate the VM. Its detailed description

appears herein. We protect the VM by secretly holding the op-
code dispatcher. By secretly we mean inside the CPU internal
memory. Holding the op-code dispatcher in secret makes it
impossible to perform the second step described by Rolles.
Moreover, we claim that the security of the system can be

guaranteed under the following assumptions:

• The inner state of the CPU cannot be read by the user.
• The CPU has a sufficient amount of internal memory.

The former assumption simply states that the potential at-
tacker cannot access the internal hardware of the CPU. In
other words, we assume that the attacker cannot access the
transistors that constitute the registers and the cache of the CPU
through physical means. The second assumption, however, is
more vague; hence, the properties of such an internal memory
are discussed in Section VI.
The paper has the following structure: Section II provides

an overview of related work. Section III outlines a step-by-
step evolution of our system. Final details of the evolution
are provided in Section IV. Section V describes the security
of the proposed system. Section VI describes how to use
different facilities of modern CPUs to implement the required
internal memory. The performance is analyzed in Section VIII.
Section IX provides an example of a C program and its corre-
sponding encrypted bytecode.

1932-8184/$31.00 © 2013 IEEE

456 IEEE SYSTEMS JOURNAL, VOL. 7, NO. 3, SEPTEMBER 2013

II. RELATED WORK

A. Virtual Machines for Copy Protection

The two goals of introducing VM to trusted computing are
to encrypt and to obfuscate the program. Forcing the hackers
to migrate from a familiar x86 environment to an unfamiliar
and obfuscated virtual environment is intended to pose a greater
challenge in breaking the software copy protection.
However, not much has been published on the construction

of VMs for digital rights protection as it would be counter
productive for the obfuscation efforts that were the main reason
for using VMs. Therefore, we often learn about VM protection
from their breakers instead of their makers, for example, [5],
[24], and [25].
Examples of using virtualization for copy protection include

the hypervisor in Sony Play Station 3 [28] and XBox 360. The
Cell OS Level 1 is a system VM that is not exposed to the user.
The XBox 360 hypervisor also ensures that only signed code
will be executed [7]. For PC software, Code Virtualizer [22] or
VMProtect [32] are both software protection packages based on
process VMs.

B. Hackers Usage of Virtualization

By running the protected software in a virtual environment,
it became possible to disguise it as a different system. For
example, running OS X on a standard hardware using a VM
disguised as an Apple machine [10]. Protection methods against
virtualization were researched in [15]. Inspecting and freezing
the CPU and memory of a running system to obtain, for
example, a copy of a copyrighted media, is another threat faced
by media protectors such as NDS PC Show [21].

C. Execution Verification

Protecting and breaking software represent a long struggle
between vendors and crackers that began even before VM
protection gained popularity. Users demand a mechanism to
ensure that the software they acquire is authentic. At the same
time, software vendors require users to authenticate and ensure
the validity of the software license for business reasons.
Execution verification and signatures is now a part of Apple

Mach-O [1] object format and Microsoft Authenticode [19]. It
also exists as an extension to Linux ELF [20].
The trusted components have been heavily researched in

industry [31] and academia [29], among others, with mixed
results. Both software rights protectors and hackers were able
to report on a partial success.
From the hackers’ camp, [30] is a fundamental paper dis-

secting all Microsoft’s security mistakes in the first XBox
generation.

III. SYSTEM EVOLUTION

Here, we describe the evolution of the proposed system
in several phases which are fictional interim versions of the
system. For each version, we describe the system and discuss
its advantages, disadvantages, and fitness to today’s world of
hardware and software components.

Fig. 1. Just-in-time decrypting.

We explore the means to improve the analyzed version and
consider the implementation details worth mentioning, as well
as any related work.
The first version describes the system broken by Rolles.

The second version cannot be broken by Rolles but has much
stronger assumptions. The rest of the evolution process consists
of our engineering innovation. The sixth version is as secure
as the second one but requires only the assumptions of the first
version.
In the seventh version, we propose a completely different

approach: a just-in-time decryption mechanism, which incurs
only minor performance penalty (see Fig. 1).
The last section presents a parallelization scheme for the

sixth version, which can theoretically improve its performance
by utilizing an additional core present at a potential CPU. This
idea was not implemented and thus described at the end of this
section.

A. Dramatis Personae

The following are actors that participate in our system use
cases:

1) Hardware Vendor: The Hardware Vendor is trustworthy
and manufactor of the hardware used. The Hardware
Vendor can identify components he manufactured. A real-
world example is Sony as the Hardware Vendor of Play
Station 3.

2) Software Distributor: Software Distributor distributes
copy protected software. It is interested in providing con-
ditional access to the software. In our case, the Software
Distributor is interested in running the software on one
End User CPU per license. A possible real-world example
is VMProtect.

3) “Game”: The software we wish to protect. It may be a
computer game, a copyrighted video, or other piece of
software.

AVERBUCH et al.: TRULY-PROTECT: AN EFFICIENT VM-BASED SOFTWARE PROTECTION 457

4) End User: The End User may purchase legal copy of the
Game from a Software Distributor. The End User may
be interested in providing other users with illegal copies
of the Game. The End User is not trustworthy. The goal
of the system described herein is to prevent any of the
End Users from obtaining even a single illegal copy of
the Game.

5) VM: A software component developed and distributed by
a Software Distributor.

6) VM Interpreter: A subcomponent of the VM that inter-
prets the instructions given by the Game.

7) VM Compiler: A software component used by the Soft-
ware Distributor to convert a Game code developed in
a high-level programming language to instructions inter-
pretable by the VM Interpreter.

8) Malicious End User: The Malicious End User would like
to obtain illegitimate copy of the game. The VM Com-
piler, VM Interpreter, and VM are tools manufactured
by the Software Distributor and Hardware Vendor that
prevent the Malicious End User from achieving her goal:
a single unlicensed copy. The Malicious End User may
enlist one or more End User with legal copies of the game
to achieve her goal.

B. Evolution

The building of the system will be described in steps.
1) System Version 1: The VM Interpreter represents a vir-

tual unknown instruction set architecture (ISA) or a permuta-
tion of a known instruction set, such as MIPS, in our case. The
VM Interpreter runs a loop:

Algorithm 1 System 1—VM Interpreter Run Loop

1: while VM is running do
2: fetch next instruction
3: choose the instruction handling routine
4: execute the routine
5: end while

The VM Compiler reads a program in a high-level program-
ming language and produces the output in the chosen ISA.

2) System Version 1—Discussion: Cryptographically speak-
ing, this is an implementation of a replacement cipher on the
instruction set. This method was described by Rolles [23] and
used by VMProtect. Of course, the VM may include several
other obfuscating subcomponents that may even provide greater
challenge to a malicious user, but this is beyond our scope.
The protection is provided by the VM complexity and by the
user’s lack of ability to understand it and, as stated previously,
in additional obfuscations.
Rolles describes a semiautomatic way to translate a program

from the unknown ISA to IR and later to the local machine
ISA. Understanding how the VMworks is based on understand-
ing the interpreter. This problem is unavoidable. Even if the
interpreter is implementing a secure cipher such as Advance
Encryption Standard (AES), it will be unable to provide a

tangible difference as the key to the cipher will also be stored
in the interpreter in an unprotected form.
Therefore, it is vital to use a hardware component that

the End User cannot reach to provide an unbreakable
security.

3) System Version 2: The Hardware Vendor cooperates with
the Software Distributor. He provides a CPU that holds a secret
key known to the Software Distributor. Furthermore, the CPU
implements an encryption and decryption algorithms.
The compiler needs to encrypt the program with the CPU’s

secret key. This version does not require a VM since the
decryption takes place inside the CPU and its operation is
similar to that of a standard computer.

4) System Version 2—Discussion: This version can imple-
ment any cipher, including AES, which is considered strong.
This form of encryption was described by Best [3]. Some infor-
mation about the program, such as memory access patterns, can
still be obtained.
This method requires manufacturing processors with cryp-

tographic functionality and secret keys for decrypting every
fetched instruction. Such processors are not widely available
today.

5) System Version 3: This system is based on system version
2, but the decryption algorithm is implemented in software. We
alleviate the hardware requirements of system version 2. The
CPU stores a secret key that is also known to the Software
Distributor. The VM Compiler reads the Game in a high-level
programming language and provides the Game in an encrypted
form where every instruction is encrypted using the secret key.
The VM knows how to decrypt the value stored in one register
with a key stored in another register.
The VM Interpreter runs the following loop:

Algorithm 2 System 3—VM Interpreter Run Loop

1: while VM is running do
2: fetch next instruction
3: decrypt the instruction
4: choose the instruction handling routine
5: execute the routine
6: end while

6) System Version 3—Discussion: This version is as secure
as system version 2, assuming that the VM internal state is
stored at all times inside the CPU internal memory.
This method dramatically slows down the software. For

example, decrypting one instruction using AES takes up to 112
CPU cycles.

7) System Version 4: System version 3 took a dramatic
performance hit, which we now try to improve.
By combining versions 1 and 3, we implement a substitution

cipher as in version 1. The cipher is polyalphabetic, and the spe-
cial instructions embedded in the code define the permutation
that will be used for the following instructions.
Similar to system version 3, we use the hardware for holding

a secret key that is known also to the Software Distributor.

458 IEEE SYSTEMS JOURNAL, VOL. 7, NO. 3, SEPTEMBER 2013

The VM Interpreter runs the following code:

Algorithm 3 System 4—VM Interpreter Run Loop

1: while VM is running do
2: fetch next instruction
3: decrypt the instruction
4: if current instruction is not special then
5: choose the instruction handling routine
6: execute the routine
7: else
8: decrypt the instruction arguments using the secret key
9: build a new instruction permutation
10: end if
11: end while

8) System Version 4—Discussion: Section VIII defines a
structure of the special instructions and a means to efficiently
encode and reconstruct the permutations.
Dependent instructions should have the same arguments as

justified by the following example, which is extracted from the
Pi Calculator described in Section IX:

01: $bb0_1:
02: lw $2, 24($sp)
03: SWITCH (X)
04: lw $3, 28($sp)
05: subu $2, $2, $3
06: beq $2, $zero, $bb0_4
07: . . .
08: $bb0_3:
09: \ldots
10: lw $3, 20($sp)
11: SWITCH (Y)
12: div $2, $3
13: mfhi $2
14: SWITCH (Z)
15: sw $2, 36($sp)
16: $bb0_4:
17: sw $zero, 32($sp)
18: lw $2, 28($sp)

This is a regular MIPS code augmented with three special
instructions on lines 3, 11, and 14. The extraction consists of
three basic blocks labeled bb0_1, bb0_3, and bb0_4. Note that
we can arrive at the first line of bb0_4 (line 17) either from the
conditional branch on line 6 or by falling through from bb0_3.
In the first case, line 17 is encoded by X and in the second case,
it is encoded by Z. The interpreter should be able to decode
the instruction regardless of the control flow; thus, X should
be equal to Z. In order to precisely characterize the dependence
values between SWITCH instructions, we define the term “flow”
and prove some facts about it.
Although a flow can be defined on any directed graph, one

might want to imagine a control flow graph derived from some
function. Then, every basic block of the graph corresponds to a
vertex and an edge connecting x and y, suggesting that a jump
from x to y might occur.

A flow comprises two partitions of all basic blocks. We call
the partitions left and right. Every set of basic blocks from the
left partition has a corresponding set of basic blocks from the
right partition and vice versa. In other words, we can think of
these partitions as that of a set of pairs. Every pair (A,B) has
three characteristics: the control flow can jump from a basic
block in A only to a basic block in B; the control flow can
jump to a basic block in B only from a basic block in A; the
sets A and B are minimal, in the sense that no basic blocks can
be omitted from A and B.
The importance of these sets emerges from the following

observation. In order to guarantee that the control flow arrives
at a basic block in B with the same permutation, it is enough to
make the last SWITCH instructions of basic blocks in A share
the same argument. This is so, because we arrive at a basic
block in B from some basic block in A. The formal proof
follows.

Definition 1: Given a directed graph G = (V,E) and a
vertex v ∈ V . A flow is a pair (Av, Bv) defined iteratively as
follows:

• v ∈ Av;
• If x ∈ Av then for every (x, y) ∈ E, y ∈ Bv;
• If y ∈ Bv then for every (x, y) ∈ E, x ∈ Av .

No other vertices appear in A or B.
A flow can be characterized in another way, which is less

suitable for computation but simplifies the proofs. One can
easily see that the two definitions are equivalent.

Definition 2: Given a directed graph G = (V,E) and a ver-
tex v ∈ V . A flow is a pair (Av, Bv) defined as follows: v ∈ Av

if there is a sequence u = x0, x1, . . . , xk = v s.t. for every
1 ≤ i ≤ k, there is yi ∈ V for which (xi−1, yi), (xi, yi) ∈ E.
We call a sequence with this property a chain.
Bv is defined similarly.
We use the aforementioned definition to prove several lem-

mas on flows. We use them later to justify the characterization
of dependent SWITCHes.
Since the definition is symmetric with respect to the chain

direction, the following corollary holds.
Corollary 1: For every flow, v ∈ Au implies u ∈ Av .
Lemma 1: If v ∈ Au then Av ⊆ Au.

Proof: A chain according to the definition is u =
x0, x1, . . . , xk = v. Letw ∈ Av , and let v = x′

0, x
′
1, . . . , x

′
k′ be

the chain that corresponds to w. The concatenation of these
chains proves that w ∈ Au. Therefore, Av ⊆ Au. �

Lemma 2: If Au and Av are not disjoint then Au = Av .
Proof: A chain according to the definition is u =

x0, x1, . . . , xk = v. Let w ∈ Au ∩Av . From the corollary, u ∈
Aw. The previous lemma implies thatAu ⊆ Aw andAw ⊆ Av ,
thus Au ⊆ Av . The other direction can be proved in a similar
manner. �

Lemma 3: If Au and Av are not disjoint or if Bu and Bv are
not disjoint, then Au = Av and Bu = Bv .

Proof: We omit the proof since it is similar to the proof of
the previous lemma. �

Claim 1: Let G = (V,E) be a control flow graph s.t. V is
the set of basic blocks, and (x, y) ∈ E if the control flow jumps
from x to y. Two SWITCH instructions should share the same
argument if and only if they are the last SWITCH instructions in

AVERBUCH et al.: TRULY-PROTECT: AN EFFICIENT VM-BASED SOFTWARE PROTECTION 459

the basic blocks u and v s.t. Au = Av . We assume that every
basic block contains a SWITCH instruction.

Proof: Consider the instruction γ. We need to prove that
the interpreter arrives at γ with the same permutation, regard-
less of the execution path being taken.
If there is a SWITCH instruction α preceding γ in the same

basic block, then every execution path passes through α in its
way to γ; hence, the interpreter arrives at γ with the permutation
set at α.
If there is no SWITCH instruction preceding γ in its basic

blockw, then consider two execution pathsP andQ and letu and
v be the basic blocks preceding w in P andQ, respectively. De-
note by α the last SWITCH of u and by β the last SWITCH of v.
Clearly, w ∈ Bu and w ∈ Bv , and thus by the last lemma,

Au = Av . Therefore, α and β share the same argument, and
on both paths, the interpreter arrives at γ with the same
permutation. �
The proposed system allows calling or jumping only to destin-

ations known at compile-time, otherwise the dependency graph
cannot be constructed reliably. Nevertheless, polymorphic be-
havior still can be realized. Consider a type hierarchy in which a
function F is overridden. The destination address of a call to F
cannot be determined at compile-time. Note however that such
a call can be replaced by a switch statement, that dispatches to
the correct function according to the source object type.

9) System Version 5: We rely on the previous version but
give up on the assumption that the CPU is keeping a secret key
that is known to the Software Distributor. Instead, we run a key-
exchange algorithm [26].

Algorithm 4 Key Exchange in System 5

1: The Software Distributor publishes his public key.
2: The VM chooses a random number. The random number

acts as the secret key. The random number is stored inside
one of the CPU registers.

3: The VM encrypts it using a sequence of actions using the
software distributor public key.

4: The VM sends the encrypted secret key to the Software
Distributor.

5: The Software Distributor decrypts the value and gets the
secret key.

10) System Version 5—Discussion: The method is secure if
and only if we can guarantee that the secret key was randomized
in a real (nonvirtual) environment where it is impossible to
read CPU registers. Otherwise, it would be possible to run
the program in a virtual environment where the CPU registers,
and therefore, the secret key is accessible to the user. Another
advantage of random keys is that different Games have different
keys. Thus, breaking the protection of one Game does not
compromise the security of others.

11) System Version 6: This version is built on top of the
system described in the previous section. Initially, we run
the verification methods described by Kennell and Jamieson
[15]. Kennell and Jamieson propose a method of hardware and
software verification that terminates with a shared “secret key”

stored inside the CPU of the remote machine. The method is
described in algorithm 5.

Algorithm 5 System 6—Genuine Hardware and Software
Verification

1: The operating system (OS) on the remote machine sends
a packet to the distributor containing information about its
processor.

2: The distributor generates a test and sends a memory
mapping for the test.

3: The remote machine initializes the virtual memory
mapping and acknowledges the distributor.

4: The distributor sends the test (a code to be run) and public
key for response encryption.

5: The remote machine loads the code and the key into
memory and transfers control to the test code. When the
code completes computing the checksum, it jumps to a
(now verified) function in the OS that encrypts the
checksum and a random quantity and sends them to the
distributor.

6: The distributor verifies that the checksum is correct and
the result was received within an allowable time, and if
so, acknowledges the remote host of success.

7: The remote host generates a new session key. The session
key acts as our shared secret key, concatenates it with the
previous random value, encrypts them with the public key,
and then sends the encrypted key to the distributor.

Using the algorithm of Kennell and Jamieson, we can guar-
antee the genuineness of the remote computer, i.e., the hardware
is real and the software is not malicious.
The memory verified by algorithm 5 should reside in the

internal memory of the CPU. This issue is discussed in greater
detail in Section VI.

12) System Version 6—Discussion: System 6 alleviates the
risk of running inside a VM that is found in system version 5.

13) System Version 7: Modern VMs, such as Java VM
[18] and Common Language Runtime [4], employ just-in-time
compilers to increase the performance of the program being
executed. It is natural to extend this idea to the just-in-time
decryption of encrypted programs. Instead of decrypting only a
single instruction each time, we can decrypt an entire function.
Clearly, decrypting such a large portion of the code is safe
only if the CPU instruction cache is sufficiently large to hold
it. When the execution leaves a decrypted function either by
returning from it or by calling another function, the decrypted
function is erased and the new function is decrypted. The exe-
cution continues. The benefit of this approach is obvious: every
loop that appears in the function is decrypted only once, as
opposed to being decrypted on every iteration by the interpreter.
The relatively low cost of decryption allows us to use stronger
and, thus, less efficient cryptographic functions, making this
approach more resistant to cryptanalysis.
This approach uses the key-exchange protocol described in

system version 6. We assume that there is a shared secret
key between the Software Distributor and the End User. The

460 IEEE SYSTEMS JOURNAL, VOL. 7, NO. 3, SEPTEMBER 2013

Software Distributor encrypts the binary program using the
shared key and sends the encrypted program to the End User.
The VM loads the program to the memory in the same fashion
that the OS loads regular programs to the main memory. After
the program is loaded and just before its execution begins, the
VM performs the following steps:

1) Make a copy of the program’s code in another location.
2) Overwrite the original program’s code with some value

for which the CPU throws an illegal op-code exception,
e.g., 0xFF on x86.

3) Set a signal handler to catch the illegal op-code exception.

We call the memory location containing the illegal op-codes
as the “text segment” or “T.” The copy, which was made on the
first step, is called the “copy segment” or “C.” After performing
these steps, the program execution begins and then immediately
throws an illegal op-code exception. This, in turn, invokes the
handler set on step 3.
This mechanism is similar to just-in-time compilation. The

handler is responsible for:

1) realizing which function is absent;
2) constructing it.

The first step can be done by investigating the program stack.
We begin by finding the first frame whose instruction pointer
is inside T. The list of instruction pointers can be obtained
through the “backtrace” library call. Next, we have to identify
the function that contains this address. This can be done either
by naively traversing the entire symbol table, giving us linear
time complexity, or by noting that this problem can be solved by
the “interval tree” data structure [6]. The interval tree provides a
logarithmic complexity: each function is a memory interval that
contains instructions. The instruction pointer is a point, and we
want to find an interval that intersects with this point.
After finding the function F to be constructed in T, we can

compute its location in C, copy F from C to T, and finally
decrypt it in C.
Note that, in contrast to just-in-time compilers, we need to

destroy the code of the previously decrypted function before
handling the new function. The easiest way to do this is to write
0xFF over the entire text segment.

Algorithm 6 Just-In-Time Decryption

1: while Execution continues do
2: The program is copied from T to C.
3: T is filled with illegal instructions.
4: Illegal op-code exception is thrown and the OS starts

handling this exception.
5: The execution is transferred to the VM handler.
6: T is filled with illegal instructions.
7: Intersection is found between the instruction pointer and

an interval in the interval tree.
8: The corresponding function is copied from C to T and

decrypted.
9: end while

14) System Version 7—Discussion: Nowadays, when CPUs
are equipped with megabytes of cache, the risk of instruction

Fig. 2. Just-in-time decryption performance. Program running time (in sec-
onds) as a function of input size. Note the logarithmic scale.

eviction is low even if the entire functions of moderate size are
decrypted at once. Moreover, we propose to hold in the cache
several frequently used functions in a decrypted form. This way,
as shown in Fig. 2, we improve the performance drastically.
We did not explore in-depth the function erasure heuristic, i.e.,
which functions should be erased upon exit and which should
remain. However, we believe that the naive approach described
below will suffice, meaning it is sufficient to hold the most
frequently used functions, such that the total size is limited by
some fraction of the cache size. This can be easily implemented
by allocating a counter for each function and counting the
number of times the function was invoked.

15) Parallel System—Future Work: Modern CPUs consist
of multiple cores, and a cache is shared between these cores.
This system is based on system version 6 that tries to increase
its performance by utilizing the additional cores available on
the CPU.
The key observation is that the decryption of the next instruc-

tion and the execution of the current instruction can be done in
parallel on different cores. In this sense, we refer to the next
instruction as the one that will be executed after the execution
of the current instruction. Usually, the next instruction is the
instruction that immediately follows the current instruction.
This rule, however, has several exceptions. If the current

instruction is SWITCH, then the next instruction, decrypted by
another thread, is decrypted with the wrong key. If the current
instruction is a branch instruction, then the next instruction,
decrypted by another thread, will not be used by the main
thread. We call the instructions of these two types “special
instructions.” In all the other cases, the next instruction is being
decrypted while the current instruction is executed.
These observations give us a distributed algorithm for the

interpreter.

Algorithm 7 Core I Thread

1:while VM is running do
2: read instruction at PC + 1
3: decrypt the instruction
4: wait for Core II to execute the instruction at PC
5: erase (write zeros over) the decrypted instruction
6: end while

AVERBUCH et al.: TRULY-PROTECT: AN EFFICIENT VM-BASED SOFTWARE PROTECTION 461

Algorithm 8 Core II Thread

1: while VM is running do
2: if previous instruction was special then
3: decrypt instruction at PC
4: end if
5: fetch next instruction at PC
6: choose instruction handler routine
7: execute instruction using handler routine
8: if previous instruction was special then
9: erase (write zeros over) the decrypted instruction
10: end if
11: wait for Core I to decrypt the instruction at PC + 1
12: end while

16) System Version 7—Discussion: We did not implement
the proposed system, and it is a work in progress. Clearly,
it can substantially increase the system performance. Note
that we benefit here from a polyalphabetic cipher, since it is
practically impossible to use a block cipher, such as AES, in
this context. Block ciphers operate on large portions of plaintext
or ciphertext; hence, they may require the decryption of many
instructions at once. After branching to a new location, we will
have to find the portion of a program that was encrypted with
the current instruction and decrypt all of them. Obviously, this
is far from being optimal.

IV. FINAL DETAILS

A. Scenario

Here, we provide a scenario that involves all the dramatis per-
sonae. We have the following participants: Victor—a Hardware
Vendor, Dan—a Software Distributor, Patrick—a programmer
developing PatGame, and Uma—an End User.
Uma purchased a computer system supplied by Victor with

Dan’s VM preinstalled as part of the OS. Patrick, who wants
to distribute his Game, sends it to Dan. Dan updates his online
store to include PatGame as a new Game.
Uma, who wants to play PatGame, sends a request for

PatGame to Dan via his online store. Dan authenticates Uma’s
computer system, possibly in cooperation with Victor, as de-
scribed in system version 6. After the authentication is suc-
cessfully completed, Uma’s VM generates a random secret
key R, encrypts it with Dan’s public key D, and sends it to
Dan. Dan decrypts the message obtaining R. This process was
described in version 5. As described in version 4, Dan compiles
the PatGame with the key R and sends it to Uma. Uma’s
VM executes the PatGame decrypting the arguments of special
instructions with R.
A problem arises when Uma’s computer is rebooted, since

the key R is stored in a volatile memory. Storing it outside the
CPU will compromise its secrecy, and thus the security of the
whole system. We propose to store the key R on Dan’s side.
Suppose Uma wants to play an instance of PatGame already

residing on her computer. Uma’s VM generates a random secret
keyQ, encrypts it with Dan’s public keyD, and sends it to Dan.

Dan authenticates Uma’s computer. After the authentication
successfully completes, Dan decrypts the message obtainingQ.
Dan encrypts the stored key R with the key Q, using AES for
example, and sends it back to Uma. Uma decrypts the received
message obtaining R, which is the program’s decryption key.
Thus, the encrypted program does not have to be sent after
every reboot of Uma’s computer.

B. Compilation

Since the innovation of this paper is mainly the fourth version
of the system, we provide here a more detailed explanation
of the compilation process. See Section IX for an example
program passing through all the compilation phases.
The compiler reads a program written in a high-level pro-

gramming language. It compiles it as usual up to the phase of
machine code emission. The compiler then inserts new special
instructions, which we call SWITCH, at random with probability
p before any of the initial instructions. The argument of the
SWITCH instruction determines the permutation applied on the
following code up to the next SWITCH instruction. Afterwards,
the compiler calculates the dependence values between the
inserted SWITCH instructions. The arguments of the SWITCH

instructions are set randomly but with respect to the dependence
values.
The compiler permutes the instructions following SWITCH

according to its argument. In the final pass, we encrypt the
arguments of all SWITCHes by AES with the key R.

C. Permutation

In order to explain how the instructions are permuted, we
should describe first the structure of the MIPS ISA we use.
Every instruction starts with a 6-bit op-code that includes up to
three 5-bit registers and, possibly, a 16-bit immediate value. The
argument of the SWITCH instruction defines some permutation
σ over 26 numbers and another permutation τ over 25 numbers.
σ is used to permute the op-code, and τ is used to permute the
registers. Immediate values can be encoded either by computing
them, as described by Rolles [23], or by encrypting them
using AES.

V. SECURITY

The method described by Rolles requires a complete
knowledge of the VM’s interpreter dispatch mechanism. This
knowledge is essential for implementing a mapping from byte-
code to IR. In the described system, a secret key, which is part of
the dispatch mechanism, is hidden from an adversary. Without
the secret key, the permutations are secretly constructed. With-
out the permutations, the mapping from bytecode to IR cannot
be reproduced.
The described compiler realizes an autokey substitution ci-

pher. This class of ciphers is, on one hand, more secure than the
substitution cipher used by VMProtect, and, on the other hand,
does not suffer from the performance penalties typical to the
more secure AES algorithm.
As discussed by Goldreich [9], some information can be

gathered from memory accessed during program execution.

462 IEEE SYSTEMS JOURNAL, VOL. 7, NO. 3, SEPTEMBER 2013

The author proposes a way to hide the access patterns, thus not
allowing an adversary to learn anything from the execution.
In an effort to continue improving the system performance,

we have considered using an efficient low-level VM [17]. Un-
fortunately, modern VMs with efficient just-in-time compilers
are unsuitable for software protection. Once the VM loads the
program, it allocates data structures representing the program,
which are stored unencrypted in memory. Since this memory
can be evicted from cache at any time, these data structures
become a security threat in a software protection system.

VI. ASSUMPTIONS IN MODERN CPUS

We posed two assumptions on the CPU that guarantee the
security of the entire system. This section discusses the appli-
cation of the system to the real-world CPUs. In other words,
we show how to use the facilities of modern CPUs to imply the
assumptions.
Let us first recall the following assumptions:
• The inner state of the CPU cannot be read by the user.
• The CPU has a sufficient amount of internal memory.
As to the later assumption, we should first clarify the purpose

of the internal memory. In essence, this memory stores three
kinds of data. The first one is the shared secret key. The second
is the state of the VM, specifically the current permutation and
the decrypted instruction. The third kind of data is some parts
of the kernel code and the VM code. The reason behind the last
kind is less obvious; therefore, consider the following attack.
An attacker lets the algorithm of Kennell and Jamieson to

complete successfully on a standard machine equipped with a
special memory. This memory can be modified externally and
not by the CPU. Note that no assumption prohibits the attacker
to do so. Just after the completion of the verification algorithm,
the attacker changes the memory containing the code of the
VM to print every decrypted instruction. Clearly, this breaks
the security of the proposed system. Observe that the problem is
essentially the volatility of critical parts of the kernel code and
the VM code. To overcome this problem, we have to disallow
modification of the verified memory. Since the memory residing
inside the CPU cannot be modified by the attacker, we can
assume it to remain unmodified.
Note that the first and second kinds, which hold the shared

secret key and the VM’s state, should be readable and writeable,
whereas the third kind, which holds the critical code, should be
only readable.
On Intel CPUs, we propose to use registers as a storage for

the shared secret key and the VM’s state and to use the internal
cache as a storage for the critical code.
To protect the key and the state, we must store them in

registers that can be accessed only in the kernel mode. On Intel
CPUs, only the special purpose segment registers cannot be
accessed in the user mode. Since these registers are special, we
cannot use them for our purposes. However, on 64-bit CPUs
running a 32-bit OS, only half of the bits in these registers are
used to provide the special behavior. The other half can be used
to store our data.
The caching policy in Intel CPUs can be turned on and

off. The interesting thing is that, after turning it off, the data

are not erased from the cache. Subsequent reads of these data
return what is stored in the cache even if the memory has
been modified. We use this property of the cache to extend
the algorithm of Kennell and Jamieson not only to validate
the code of the kernel and the VM before the key genera-
tion but also to guarantee that the validated code will never
change. Two steps should be performed just after installing the
virtual memory mapping received from the distributor in the
verification algorithm: loading the critical part of the kernel
and the VM program code (i.e., the TEXT segments) into the
cache and turning the cache off. This behavior of Intel CPUs is
documented in [14].
The first assumption disallows the user to read the aforemen-

tioned internal state of the CPU physically, i.e., by opening its
case and plugging wires into the CPU’s internal components.
Other means of accessing the internal state are controlled by
the kernel and hence are guaranteed to be blocked.

VII. COUNTERATTACKS

Here, we present possible counterattacks on the presented
system. For each counterattack, we propose a way to accom-
modate it.
The success of our approach depends on the secrecy of the

secret key and the VM’s internal state. We claimed that it is
possible to guarantee that both the key and the state never leave
the CPU. This is indeed true during a regular operation of the
CPU, i.e., this information cannot be accessed by a malicious
software and it never appears on the system bus. However,
some Intel CPUs are equipped with Test Access Port (TAP)
[12], which can be used to fetch the values of all registers.
The work through TAP is done solely by hardware means;
hence, a software has no ability to prevent it. We leave it an
open question if TAP can be detected using side-effect-based
detection.
To the best of our knowledge, there is no mechanism similar

to TAP on AMD CPUs. If this is so, AMD CPUs can be used
to realize our system. Moreover, TAP is not an essential part of
the CPU, it was initially designed to test printed circuit boards.
Hence, we are convinced that removing TAP from Intel CPUs
should not be difficult.
An essential building block of our system is a protocol that

verifies the software and hardware genuineness. This paper
is based on a protocol described in [15]. Any attack on this
protocol invalidates our approach too. However, in this paper,
we assume that such a protocol exists. The assumption is
reasonable, since such protocols can be developed, attacked,
and fixed in parallel to our work and independently of it.
For completeness, we note that, soon after the publication of
[15], an attack [27] was proposed, which was followed by a
clarification of the original authors [16]. Therefore, the protocol
can be considered intact. In case an attack on [15] is found,
some of the recently published tests [8] can be used as an
alternative.
Another essential building block of our system is the crypto-

graphic algorithm we use to encrypt and decrypt permutations.
Currently, we use the AES algorithm. To the best of our
knowledge, there is no information theoretic quantization of

AVERBUCH et al.: TRULY-PROTECT: AN EFFICIENT VM-BASED SOFTWARE PROTECTION 463

the amount of security achieved by AES, or any other block
cipher. Therefore, we cannot guarantee that AES and, as a
consequence, our system cannot be attacked. The National
Security Agency stated that the strength of AES is sufficient
to protect classified information [11]. We rely on this statement
for the time being. Anyhow, AES can be replaced by any other
block cipher, without any modifications of our system.

VIII. PERFORMANCE

Here, we analyze in detail the performance of the proposed
cipher. Throughout this section, we compare our cipher to AES.
This is due to recent advances in CPUs that make AES to be
the most appropriate cipher for program encryption [13]. We
provide both theoretical and empirical observations proving our
algorithm’s supremacy.
We denote the number of cycles needed to decrypt one word

of length w using AES by α.
The last subsection compares system version 7 to a regular

unprotected execution.

A. Version 3 Performance

Consider version 3 of the proposed system and assume it uses
AES as a cipher. Every instruction occupies exactly one word,
such that n instructions can be decrypted in nα cycles.

B. Switch Instructions

As previously described, the SWITCH instruction is responsi-
ble for choosing the current permutation σ. This permutation is
then used to decrypt the op-codes of the following instructions.
Some details were previously omitted, since they affect only

the system’s performance but do not affect its security or overall
design.
• How does the argument of a switch instruction encode the
permutation?

• Where is the permutation stored inside the processor?
Before answering these questions, we introduce two

definitions.
Definition 3: Given an encrypted program, we denote the

set of all instructions encrypted with σ by Iσ and call it color-
block σ.

Definition 4: Given a set I of instructions, we denote by
D(I) the set of different instructions (those having different op-
codes) in I .
The key observation is that it is enough to define how σ acts

on the op-codes of D(Iσ), which are instructions that occur in
the color-block σ. Likewise, we noticed that some instructions
are common to many color-blocks, while others are rare.
Denote by F = {f1, f2, . . . , f�} the set of the � most fre-

quent instructions. Let R(I) be the set of rare instructions in I ,
i.e., R(I) = D(I)− F . The argument of SWITCH preceding a
color-block σ has the following structure (and is encrypted by
AES, as described in version 5):

σ(f1), σ(f2), . . . , σ(f�),

r1, σ(r1), r2, σ(r2), . . . , rk, σ(rk)

TABLE I
CORRELATION BETWEEN �, φ, AND q. HERE, p = 0.2

where R(Iσ) = {r1, r2, . . . , rk}. If σ acts on m-bit-long op-
codes, then the length of the encoding of σ is φ = (�+ 2k)m
bits. Thus, its decryption takes ((�+ 2k)m/w)α cycles.

C. Version 4 Performance

Consider a sequence of instructions between two SWITCHes
in the program’s control flow. Suppose these instructions belong
to Iσ and the sequence is of length n. The VM Interpreter starts
the execution of this sequence by constructing the permutation
σ. Next, the VM Interpreter goes over all the n instructions,
decrypts them according to σ, and executes them, as described
in version 5.
The VM Interpreter stores σ(f1), σ(f2), . . . , σ(f�) in the

CPU registers and the rest of σ in the internal memory. This
allows decryption of frequent instructions in one cycle. De-
cryption of rare instructions takes β + 1 cycles, where β is the
internal memory latency in cycles. Denote by q the number of
rare instructions in the sequence.
We are now ready to compute the number of cycles needed

to decrypt the sequence

σ construction :
(�+ 2k)m

w
α+

frequent instructions : (n− q)+

rare instructions : q(β + 1).

D. Comparison

On MIPS op-codes are m = 6 bits long and w = 32. The
best available results for Intel newest CPUs argue that α = 14
[33]. Typical CPUs’ Level-1 cache latency is β = 3 cycles. The
correlation between �, φ, and q is depicted in Table I.
We have noticed that most of the cycles are spent con-

structing permutations, and this is done every time SWITCH

is encountered. The amount of SWITCHes, and thus the time
spent constructing permutations, varies with the probability p of
SWITCH insertion. The security, however, varies as well. Fig. 3
compares program decryption time (in cycles) using AES and
our solution with different values of p.

Note that on CPUs not equipped with AES/GCM [33], such
as Pentium 4, α � 112. In this case, our solution is even more
beneficial. Fig. 4 makes the comparison.

E. Version 7 Performance

The performance is affected mainly by the amount of func-
tion calls, since each call to a new function requires the function
decryption. This performance penalty is reducedby allowing sev-
eral functions to be stored in a decrypted form simultaneously.
Fig. 2 compares the running times of the same program in

three configurations and with inputs of different sizes. The

464 IEEE SYSTEMS JOURNAL, VOL. 7, NO. 3, SEPTEMBER 2013

Fig. 3. Program decryption time (in cycles) using AES and our cipher with
different values of p. � = 4. α = 14.

Fig. 4. Program decryption time (in cycles) using AES and our cipher with
different values of p. � = 4. α = 112.

program inverses the given matrix using Cramer’s rule. The
program consists of three functions computing determinant,
minor, and finally inversion of a square matrix. The determinant
is recursively computed, reducing the matrix order on each step
by extracting its minor. We run this program on matrices of
different sizes.
The three configurations of the program include:

1) nonencrypted configuration—just a regular execution;
2) encrypted configuration allowing two functions to reside

in the cache simultaneously;
3) encrypted configuration allowing a single function to

reside in the cache simultaneously.

F. Comparison to Non-Protected System

Fig. 5 demonstrates the protected program execution time
when compared to compiled and interpreted programs on with-
out protection. For comparison purposes, we use both instruc-
tion switching and AES encryption for protection.

IX. EXAMPLE

We provide a detailed example of a program passing through
all the compilation phases. The original program is written

Fig. 5. Program decryption time (in cycles) using (left to right) a regular
execution, interpretation, AES, and our cipher. � = 4. α = 112. p = 0.2. Note
the logarithmic scale.

in C. It computes the sum of the first 800 digits of π.

int main(){
int a = 10000, b, c = 2800, d, e,
f[2801], g, s;
for (; b−c;) f[b++] = a/5;
for (; d = 0, g = c ∗ 2; c− = 14, e = d%a) {
for (b = c;

d+ = f[b] ∗ a, f[b] = d%−−g, d/ = g−−,
−−b;

d∗ = b);
s+ = e+ d/a;

}
return s;

}

The corresponding output of the compiler is a combination of
MIPS assembly and MIPS machine instructions. Block labels
are emphasized.
Instructions of the form

addiu $zero, $zero, . . .

are an implementation of the SWITCH instruction. Colors
correspond to the permutation that should be applied to the
instructions.
For example, consider the instruction at 000c (see Fig. 6).

It sets the current permutation to 5 (corresponding to gray
color). As a result, all following instructions (up to the next
SWITCH) are colored gray. Note that the instruction at 000c
is not colored gray, since it should be encoded by the previ-
ous permutation (pink, corresponding to number 4 and set at
0005).
After the instructions are permuted according to their col-

ors, the final phase takes place: the compiler encrypts special
instructions’ arguments using AES with the secret key.

X. SUMMARY

We have discussed several steps toward software protection.
Our system has been designed only to mask the code of the

AVERBUCH et al.: TRULY-PROTECT: AN EFFICIENT VM-BASED SOFTWARE PROTECTION 465

Fig. 6. MIPS machine instructions.

software from a malicious user. The system can be used to
prevent the user from either reverse engineering the Game
or to create an effective key validation mechanism. It does
not prevent access to the Game data, which may be stored
unprotected in memory. Even if the entire Game is encoded

with this system, a player may still hack the Game data to
affect his high score, credits, or “lives.” A different encryption
mechanism, which can be protected by Truly-Protect, can be
added to prevent it. For similar reasons, the system cannot be
used to prevent copying of copyrighted content, such as movies

466 IEEE SYSTEMS JOURNAL, VOL. 7, NO. 3, SEPTEMBER 2013

and audio, unless the content is also encrypted. Truly-Protect
can be used to mask the decoding and decryption process.

ACKNOWLEDGMENT

The authors would like to thank D. Sotnikov for his brilliant
ideas and his valuable comments on both forms and content of
this paper.

REFERENCES

[1] Apple Ltd. Mac OS X ABI Mach-O File Format Reference. [Online].
Available: http://developer.apple.com/library/mac/#documentation/
DeveloperTools/Conceptual/MachORuntime/Reference/reference.html

[2] A. Averbuch, M. Kiperberg, and N. J. Zaidenberg, “An efficient VMBased
software protection,” in Proc. NSS, 2011, pp. 121–128.

[3] R. M. Best, “Preventing software piracy with crypto-microprocessors,” in
Proc. IEEE Spring COMPCON, Feb. 1980, pp. 466–469.

[4] D. Box, Essential.NET, Volume 1: The Common Langugage Runtime.
Reading, MA, USA: Addison-Wesley, 2002.

[5] Bushing, Marcan, and Sven, “Console hacking 2010 PS3 epic fail,” in
Proc. CCC 2010: We Come in Peace, 2010.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, “Interval
tree,” in Introduction to Algorithms, 2nd ed. Cambridge, MA, USA:
MIT Press, 2001, ch. 14.3, pp. 311–317.

[7] F. Domka and M. Steil, “Why silicon-based security is still that hard:
Deconstructing Xbox 360 security,” in Proc. CCC, 2007.

[8] P. Ferrie, “Attacks on virtual machine emulators,” Symantec Adv. Threat
Res., Mountain View, CA, USA, Tech. Rep., 2006.

[9] O. Goldreich, “Toward a theory of software protection,” in Proc. Adv.
CRYPTO, 1987, pp. 426–439.

[10] A. Graf, “Mac OS X in KVM,” in Proc. KVM Forum, 2008.
[11] L. Hathaway, “National policy on the use of the advanced encryption

standard (AES) to protect national security systems and national security
information,” NIST, Gaithersburg, MD, USA, Tech. Rep., 2003.

[12] Intel Itanium 2 Processor, Hardware Developer’s Manual, Intel Corp.,
Santa Clara, CA, USA, 2001.

[13] Breakthrough AES Performance With Intel AES New Instructions, Intel
Corp., Santa Clara, CA, USA, 2010.

[14] Intel 64 and IA-32 Architectures Developer’s Manual, Intel Corp., Santa
Clara, CA, USA, 2012.

[15] R. Kennell and L. H. Jamieson, “Establishing the genuinity of remote
computer systems,” in Proc. 12th USENIX Secur. Symp., 2003, p. 21.

[16] R. Kennell and L. H. Jamieson, “An analysis of proposed attacks against
genuinity tests,” CERIAS, Purdue Univ., West Lafayette, IN, USA, Tech.
Rep. 2004-27, 2004.

[17] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in Proc. Int. Symp. CGO: Feedback-
Directed Runtime Optim., 2004, p. 75.

[18] T. Lindoholm and F. Yellin, The Java Virtual Machine Specification,
2nd ed. Reading, MA, USA: Addison-Wesley, 1999.

[19] Microsoft Cooperation, Windows Authenticode Portable Executable
Signature Form. [Online]. Available: http://msdn.microsoft.com/en-us/
windows/hardware/gg463180.aspx

[20] millerm. elfsign. [Online]. Available: http://freshmeat.net/projects/
elfsign/

[21] NDS. PC Show. [Online]. Available: http://www.nds.com/solutions/
pc_show.php

[22] Oreans Technologies. Code Virtualizer. [Online]. Available: http://www.
oreans.com/products.php

[23] R. Rolles, “Unpacking virtualization obfuscators,” in Proc. 4th USENIX
WOOT , 2009, p. 1.

[24] R. E. Rolles, Unpacking VMProtect. [Online]. Available: http://www.
openrce.org/blog/view/1238/

[25] Scherzo, Inside Code Virtualizer. [Online]. Available: http://rapidshare.
com/files/16968098/Inside_Code_Virtualizer.rar

[26] B. Schneier, “Key-exchange algorithms,” in Applied Cryptography,
2nd ed. Hoboken, NJ, USA: Wiley, 1996, ch. 22.

[27] U. Shankar, M. Chew, and J. D. Tygar, “Side effects are not sufficient to
authenticate software,” in Proc. 13th USENIX Secur. Symp., Aug. 2004,
p. 7.

[28] SONY Consumer Electronics, Playstayion 3. [Online]. Available: http://
us.playstation.com/ps3/

[29] M. Srivatsa, S. Balfe, K. G. Paterson, and P. Rohatgi, “Trust management
for secure information flows,” in Proc. 15th ACM Conf. Comput. Com-
mun. Security, Oct. 2008, pp. 175–188.

[30] M. Steil, “17 mistakes Microsoft made in the XBox security system,”
presented at the 22nd Chaos Communication Congr., Berlin, Germany,
2005.

[31] Trusted Computing Group, TPMMain Specification. [Online]. Available:
http://www.trustedcomputinggroup.org/resources/tpmmainspecification

[32] VMPSoft. VMProtect. [Online]. Available: http://www.vmprotect.ru
[33] Wikipedia, the Free Encyclopedia. AES Instruction Set.

Amir Averbuch was born in Tel Aviv, Israel. He
received the B.Sc. and M.Sc. degrees in mathematics
from the Hebrew University of Jerusalem, Jerusalem,
Israel, in 1971 and 1975, respectively, and the Ph.D.
degree in computer science from Columbia Univer-
sity, New York, NY, USA, in 1983.
During 1966–1970 and 1973–1976, he served with

the Israeli Defense Forces. During 1976–1986, he
was a Research Staff Member with the Department
of Computer Science, IBM Thomas J. Watson Re-
search Center, Yorktown Heights, NY. In 1987, he

joined the School of Computer Science, Tel Aviv University, Tel Aviv, where
he is now a Professor of computer science. His research interests include ap-
plied harmonic analysis, wavelets, signal/image processing, security, numerical
computation, and scientific computing (fast algorithms).

Michael Kiperberg was born in Ukraine, in 1987,
and migrated to Ashkelon, Israel. He received B.Sc.
degree (cum laude) in computer science and the
M.Sc degree (cum laude) from Tel Aviv University,
Tel Aviv, Israel. in 2009 and 2012, respectively. He is
currently working toward the Ph.D. degree in the De-
partment of Mathematical Information Technology,
University of Jyväskylä, Jyväskylä, Finland, under
the supervision of N. Zaidenburg.
In 2009, he joined the Israeli Defense Forces. He

is currently serving as an Academic Officer with the
Israeli Air Force.

Nezer Jacob Zaidenberg (M’11) was born in
Tel Aviv, Israel, in 1979. He received B.Sc. degree
in computer science and statistics and operations
research, the M.Sc. degree in operations research,
and the MBA degree from Tel Aviv University, Tel
Aviv, in 1999, 2001, and 2006, respectively, and
the Ph.D. degree from the University of Jyväskylä,
Jyväskylä, Finland, in 2012.
He is currently a Postdoctoral Researcher with the

University of Jyväskylä.

PV

AN EFFICIENT VM-BASED SOFTWARE PROTECTION

by

Averbuch, A.; Kiperberg, M.; Zaidenberg, N.J. 2011

Network and System Security (NSS), 2011 5th International Conference, pp.
121-128

An Efficient VM–Based Software Protection

Amir Averbuch
Tel Aviv University

P.O.Box 39040

Ramat Aviv, Israel

Email: amir@math.tau.ac.il

Michael Kiperberg
Tel Aviv University

P.O.Box 39040

Ramat Aviv, Israel

Email: kiperber@post.tau.ac.il

Nezer Jacob Zaidenberg
University of Jyväskylä

P.O.Box 35, FI-40014

Jyväskylä, Finland

Email: nezer.j.zaidenberg@jyu.fi

Abstract—This paper presents Truly–protect, a system, incor-
porating a virtual machine, that enables execution of encrypted
programs. Our intention is to form a framework for a conditional
access/digital rights management system.

We avoid relying on obscurity and rely only on assumptions
about the system itself and on cryptographic measures to develop
VM–based conditional access/trusted computing environment.

Rolles in [18], proposes a general way of breaking systems
of type described herein. We claim that Rolles’ method fails to
defeat our system.

I. INTRODUCTION

In recent years, there has been a steady growth in the field

of virtualization. “Virtual machines” are separated into two

major categories: process virtual machines and system virtual

machines.

Process virtual machine, such as JVM[13] or CLR[5], are

controlled environments for running processes.

System virtual machines, such as VMWare[31], Xen[2] or

KVM[12], [3], are virtual environments for running complete

operating systems. These environments can run directly above

the hardware (in which case they are called “Type-1 hypervi-

sor”) such as VMWare ESX server, or as a process running on

host OS (in which case they are called “Type-2 hypervisor”)

such as QEMU.

In industry, virtual machines (VM) of both types are used to

provide multiple cross cutting aspects such as replication[7],

sandboxing[24], instrumentation[29], etc.

Another rising trend in the field of virtualization is the use

of VM based digital rights and copy protection. This trend has

been growing in popularity over the last few years.

A generic and semi-automatic method for breaking VM

based protection is proposed by Rolles [18]. He assumes that

the VM is, broadly speaking, an infinite loop, with a large

switch statement — the opcode dispatcher. Each case of this

switch statement is a handler of a particular opcode.

At first, a reverse–engineer examines the virtual machine

to construct a translator which maps the program instructions

form the VM language (which might be stack–based) to some

other language chosen by the engineer (which might be x86

assembly). Rolles calls the later language an intermediate

representation (IR). The first step is done only once for a

particular VM based protection. In the second step, the method

extracts the VM opcode dispatcher and the obfuscated instruc-

tions from the executable. The opcodes of these instructions,

however, don’t have to correspond to those of the translator:

the opcodes for every program instance can be permuted

differently. So, in the third step, the method examines the

dispatcher of the VM, and reveals the meaning of each opcode

from the code executed by its handler. Finally, the obfuscated

instructions are translated to the IR. At this point the program

is not protected anymore, since it can be executed without the

VM. Rolles further applies a series of optimizations to achieve

a program which is close to the original one.

In this paper we don’t try to obfuscate the VM: its source–

code is publicly available and its detailed description appears

herein. We protect the VM by holding secretly (inside the

CPU) the opcode dispatcher. This makes it impossible to

perform the second step described by Rolles.

Moreover, we claim that the security of the system can be

guaranteed under the following assumptions:

• A chain of trust starting from the CPU can be realized.

• The inner state of the CPU can not be read by hardware.

• The CPU has a unique identifier stored in its register.

These assumptions are further refined throughout the paper.

The remainder of the paper is organized in the following

way. Section II provides an overview of the related work.

Section III outlines a step-by-step evolution of our system.

Final details of the evolution are given in section IV. Section

V describes the security of the proposed system and the

performance impact is discussed in section VI. Appendix A

provides an example of a program in C and the corresponding

encrypted bytecode.

II. RELATED WORK

A. Virtual machines for copy protection

The two goal of introducing VM to trust computing are to

encrypt and to obfuscate the program. Forcing the hackers to

migrate from a familiar x86 environment to unfamiliar and

obfuscated virtual environment, is intended to pose a greater

challenge in breaking the software copy protection.

However, not much is published on the construction of

virtual machines for digital rights protection as it would be

counter productive to the obfuscation efforts that were the

main reason for using VMs. Hackers, on the other hand, have

opposite goals and tend to publish their results more often.

Therefore, we often learn about VM protection from their

breakers instead of their makers. For example, [20] is the

121978-1-4577-0460-4/11/$26.00 ©2011 IEEE

most complete documentation of Code Virtualizer internals

available outside Oreans.

Examples for using VM for copy protection include Cell OS

level 1 in Sony Play station 3[25] (System Virtual Machine),

Code Virtualizer[17] or VMProtect[30] (both are Process

Virtual Machines).

In all cases very little was published by the software

provider. However, the means for attacking virtual machine

protection has been published by PS3 hackers [6] or by Rolles

in [19] (with respect to VMProtect).

B. Hackers use of virtualization

By running protected software in a virtual environment it

became possible to disguise it as a different system. For exam-

ple, running OS X on standard hardware using a VM disguised

as Apple machine (among others in [9].) Protection methods

against virtualization were researched by [11]. Inspecting and

freezing CPU and memory of a running system to obtain, for

example, a copy of a copyrighted media, is another threat

faced by media protectors such as NDS PC Show[16]. It is

also possible to construct a malware that will obfuscate itself

using a VM. [23] describes how malware obfuscated by VM

can be detected.

C. Execution verification

Protecting and breaking software is a long struggle between

vendors and crackers that began even before VM protection

gained popularity.

Users demand mechanism to ensure the software they ac-

quire is authentic. At the same time, software vendors require

users to authenticate and to ensure the validity of the software

license for business reasons.

Execution verification and signatures is now a part of Apple

Mach-O[1] object format and Microsoft Authenticode[14]. It

also exists as an extension to Linux ELF[15].

The trusted components have been heavily researched in

industry [28] and academia (in [26] among others) with mixed

results. Both software rights protectors and hackers can report

partial success.

From hackers’ camp, [27] is a fundamental paper dissecting

all Microsoft’s security mistakes in the first generation XBox.

III. SYSTEM EVOLUTION

In this section we describe the evolution of the proposed

system in several phases — fictional interim versions of the

system. For each version we describe a system and discuss

its advantages, disadvantages and fitness to today’s world of

hardware and software components.

We explore means to improve the version and consider

implementation details worth mentioning as well as any related

work.

The first version, describes the system broken by Rolles.

The second version cannot be broken (by Rolles) but has

much stronger assumptions. The rest of the evolution process

consists of our engineering innovation. The final version is as

secure as the second one but requires only the assumptions of

the first version.

A. Dramatis Personae

The following are actors that participate in our system use

cases.

Hardware Vendor manufactures and provides the hardware.

The Hardware Vendor can identify components he manufac-

tured. The Hardware Vendor is trust worthy. (Possible real

world example — Sony as Hardware Vendor of Play station

3).

Software Distributor distributes copy protected software.

Interested in providing conditional access to the software.

In our case, the Software Distributor is interested in running

the software on one End User CPU per license. (Possible real

world example — VMProtect).

“Game” — The software we wish to protect. It may indeed

be a computer game, a copyrighted video or other piece of

software.

End User purchases at least one legal copy of the ”Game”

from the Software Distributor. The End User may be interested

in providing other users with illegal copies of the ”Game”. The

End User is not trustworthy.

Virtual Machine(VM) — A software component, developed

and distributed by Software Distributor.

VM Interpreter — A sub–component of the Virtual Machine

that interprets the instructions given by the “Game”.

VM Compiler — A software component used by the soft-

ware distributor to convert “Game” code developed in high

level programming language to instructions interpretable by

the VM Interpreter.

B. System Version 1

The VM Interpreter represents virtual, unknown ISA (In-

struction Set Architecture) or permutation of a known instruc-

tion set (such as MIPS in our case). The VM Interpreter runs

a loop:

Algorithm 1 System 1 - VM Interpreter run loop

while VM is running do

Fetch next instruction

Choose instruction handler routine

Execute instruction using handler routine

end while

The VM Compiler reads a program in a high level program-

ming language and produces output in the chosen ISA.

C. Discussion — System Version 1

Cryptographically speaking this is an implementation of

replacement cipher on the instruction set. This method was

described by Rolles[18] and used by VMProtect. Of course,

the VM may include several other obfuscating subcomponents,

that may even provide greater challenge to a malicious user,

but this is beyond our scope. The protection is provided by the

complexity of the VM and the user’s lack of ability to under-

stand it (and, as stated previously, in additional obfuscations).

Rolles describes a semi–automatic way to translate a pro-

gram from the unknown ISA to intermediate representation

122

and later to the local machine ISA. Understanding how the VM

works is based on understanding the interpreter. This problem

is unavoidable. Even if the interpreter were implementing a

secure cipher (such as AES) it wouldn’t be able to provide

a tangible difference, as the key to the cipher would also be

stored in the interpreter in an unprotected form.

Therefore, it is vital to use a hardware component that the

End User cannot reach to provide an unbreakable security.

D. System Version 2

The hardware vendor co-operates with the software distrib-

utor. He provides a CPU that holds a secret key, known to

the software distributor. Furthermore, the CPU implements an

encryption and decryption algorithms.

The compiler needs to encrypt the program with the CPU’s

secret key. This version doesn’t require a VM (since the

decryption takes place inside the CPU) and its operation is

similar to that of a standard computer.

E. Discussion — System Version 2

This version could implement any cipher, including AES,

which is considered strong. This form of encryption was

described by Best [4]. Some information about the program,

such as memory access patterns, can still be obtained.

This method requires manufacturing processors with cryp-

tographic functionality (and secret keys) for decrypting every

fetched instruction. Such processors are not widely available

today.

F. System Version 3

This system is based on the system version 2 but the

decryption algorithm is implemented in software. We alleviate

the hardware requirements of system 2. The CPU stores a

secret key which is also known to the software distributor. The

VM Compiler reads the “Game” in high level programming

language and provides the “Game” in an encrypted form where

every instruction is encrypted using the secret key. The VM

knows how to decrypt value stored in one register with a key

stored in another register.

The VM Interpreter runs the following loop:

Algorithm 2 System 3 - VM Interpreter run loop

while VM is running do

Read next instruction

Decrypt the instruction

Choose instruction handling routine

Execute the instruction using handling routine

end while

G. Discussion — System Version 3

This version, is as secure as system version 2, assuming the

VM internal state is stored inside the CPU cache memory at

all times.

If only the VM runs on the CPU then we can make sure that

the state of the VM (e.g., its registers), never leaves the CPU:

the VM just has to access all the memory blocks incorporating

its state, once in a while (the exact frequency depends on cache

properties).

This method dramatically slows down the software —

decrypting one instruction using AES takes up to 112 CPU

cycles.

H. System Version 4

System 3 took dramatic performance hit which we now try

to improve.

By combining System 1 and System 3 we implement a

substitution cipher as in version 1. The cipher is polyalphabetic

and special instructions embedded in the code define the

permutation that will be used for the following instructions.

Similarly to system version 3 we use the hardware for

holding a secret key that is known also to the software

distributor.

The VM Interpreter runs the following code

Algorithm 3 System 4 - VM Interpreter run loop

while VM is running do

Fetch current instruction

Decrypt current instruction

if Current instruction is not special instruction then

Choose instruction handler routine

Execute instruction using handler routine

else

Decrypt the instruction arguments using the private key

Build new instruction permutation translation table

end if

end while

I. Discussion — System Version 4

Section VI defines a structure of the special instructions and

means to efficiently encode and reconstruct the permutations.
Dependent instructions should have the same arguments,

as justified by the following example (extracted from the Pi
Calculator (see Appendix A)):

01: $bb0_1:
02: lw $2, 24($sp)
03: SWITCH (X)
04: lw $3, 28($sp)
05: subu $2, $2, $3
06: beq $2, $zero, $bb0_4
07: ...
08: $bb0_3:
09: ...
10: lw $3, 20($sp)
11: SWITCH (Y)
12: div $2, $3
13: mfhi $2
14: SWITCH (Z)
15: sw $2, 36($sp)
16: $bb0_4:
17: sw $zero, 32($sp)
18: lw $2, 28($sp)

This is a regular MIPS code augmented with 3 special in-

structions on lines 3, 11 and 14. The extract consists of 3

123

basic blocks, labeled: bb0 1, bb0 3 and bb0 4. Note that we

can arrive at the first line (line 17) of bb0 4 either from the

conditional branch on line 6 or by falling through from bb0 3.

In the first case line 17 is encoded by X and in the second

case it is encoded by Z. The interpreter should be able to

decode the instruction regardless of the control flow, thus X

should be equal to Z. In order to characterize precisely the

dependence between SWITCH instructions we introduce the

following definition.
Definition [Flow] : Given a directed graph G = (V,E) and

a vertex v ∈ V a flow is a pair (Av, Bv) defined iteratively:

v ∈ Av.

If x ∈ Av then for every (x, y) ∈ E, y ∈ Bv .

If y ∈ Bv then for every (x, y) ∈ E, x ∈ Av .

(No other vertices appear in A or B).
Claim: Two SWITCH instructions should share the same

argument if and only if they are the last instructions of the

basic blocks u and v s.t. Au = Av.

J. System Version 5

We rely on the previous version but give up on the assump-

tion that the CPU is keeping a secret key that is known to the

software distributor. Instead we run a key exchange algorithm

[21].

Algorithm 4 Key exchange in system 5

The software distributor publishes his public key

The VM chooses a random number (the secret key); which

is stored inside one of the CPU registers.

The VM encrypts it using a sequence of actions using the

software distributor public key.

The VM sends the encrypted secret key to the software

distributor.

The software distributor decrypts the value and gets the

secret key.

K. Discussion — System Version 5

The method is secure if and only if we can guarantee the

secret key was randomized in real (non–virtual) environment

where reading CPU registers can be considered impossible.

Otherwise it would be possible to run the program in a

virtual environment where the CPU registers (and therefore,

the secret key) are accessible to the user. Another advantage

of random keys is that different “Game”s have different keys.

Thus breaking one ”Game” doesn’t compromise the security

of others.

L. System Version 6

This version is built on top of the system described in

the previous section. Initially we run the verification methods

described by Kennell and Jamieson in [11]. Using the methods

described there we can guarantee the genuinity of the remote

computer. i.e. the hardware is real and the software is not

malicious.

A simple way to perform such verification is described

below. In order to ensure that the hardware is real we can

require any CPU to keep an identifier, a member of a random

sequence. This will act as shared secret in the identification

algorithm. The algorithm is performed by the VM without

knowing the identifier itself. Identification algorithms are

described in greater detail in [22].

In order to ensure the genuinity of the software we can

initiate the chain of trust in the CPU itself (as in XBox

360). The CPU will initiate its boot sequence from internal,

unreplaceable ROM.

M. Discussion — System Version 6

System 6 alleviates the risk of running inside a VM that is

found in system version 5.

IV. FINAL DETAILS

A. Scenario

In this section we provide a scenario involving all the

dramatis personae. We have the following participants: Victor

— the hardware vendor, Dan — the software distributor,

Patrick — a programmer developing PatGame and Uma —

an end user.

Uma has purchased a computer system supplied by Victor

with Dan’s VM preinstalled as part of the operating system.

Patrick, who wants to distribute his ”Game”, sends it to Dan.

Dan updates his online store to include this new ”Game”,

PatGame.

Uma, who wants to play PatGame, sends a request for

PatGame to Dan via his online store. Dan authenticates Uma’s

computer system (possibly in cooperation with Victor), as

described in version 6. After the authentication completes

successfully, Uma’s VM generates a random secret key R,

encrypts it with Dan’s public key D and sends it to Dan. Dan

decrypts the message obtaining R. This process was described

in version 5. As described in version 4, Dan compiles PatGame

with the key R and sends it to Uma. Uma’s VM executes

PatGame decrypting the arguments of special instructions with

R.

A problem arises when Uma’s computer is rebooted, since

the key R is stored in a volatile memory. Storing it outside

the CPU will compromise its secrecy and thus the security of

the whole system. We propose to store the key R on Dan’s

side.

Suppose Uma wants to play an instance of PatGame already

residing on her computer. Uma’s VM generates a random

secret key Q, encrypts it with Dan’s public key D and

send it to Dan. Dan authenticates Uma’s computer. After

the authentication completes successfully, Dan decrypts the

message obtaining Q. Dan encrypts the stored key R with the

key Q (using AES, for example) and sends it back to Uma.

Uma decrypts the received message obtaining R, which is the

program’s decryption key. Thus the encrypted program doesn’t

have to be sent after every reboot of Uma’s computer.

B. Compilation

Since the innovation of this paper is mainly the 4th version

of the system, we provide here a more detailed explanation

124

of the compilation process. See Appendix A for an example

program passing through all the compilation phases.

The compiler reads a program written in a high level

programming language. It compiles it as usual up to the

phase of machine code emission. The compiler, then, inserts

new special instructions, which we call SWITCH, at random

with probability p (before any of the initial instructions). The

argument of SWITCH instruction determines the permutation

applied on the following code (up to the next SWITCH in-

struction). Afterwards, the compiler calculates dependencies

between the inserted SWITCH instructions. The arguments of

the SWITCH instructions are set randomly but with respect to

the dependencies.

The compiler permutes the instructions following SWITCH

according to its argument. In the final pass we encrypt the

arguments of all SWITCHes by AES with the key R.

C. Permutation

In order to explain how instructions are permuted, we

should describe first the structure of the ISA we use — MIPS

ISA. Every instruction starts with a 6-bit op-code, includes

up to three 5-bit registers and, possibly, a 16-bit immediate

value. The argument of the SWITCH instruction defines some

permutation σ over 26 numbers and another permutation τ

over 25 numbers. σ is used to permute the op-code and τ

is used to permute the registers. Immediate values can be

encoded either by computing them as described by Rolles [18]

or by encrypting them using AES.

V. SECURITY

The method described by Rolles, requires a complete knowl-

edge of the VM’s interpreter dispatch mechanism. This knowl-

edge is essential for implementing a mapping from bytecode

to intermediate representation (IR). In the described system, a

secret key, which is part of the dispatch mechanism, is hidden

from an adversary. Without the secret key, the permutations

are constructed secretly. Without the permutations the mapping

from bytecode to IR can not be reproduced.

The described compiler realizes an auto–key substitution

cipher. This class of ciphers is on one hand more secure than

the substitution cipher used by VMProtect, and, on the other

hand, doesn’t suffer from the performance penalties typical to

the more secure AES algorithm.

As discussed by Goldreich [8] some information can be

gathered from memory accesses during program execution.

The author proposes a way to hide the access patterns, thus

not letting an adversary to learn anything from the execution.

VI. PERFORMANCE

In this section we analyze in detail the performance of

the proposed cipher. Throughout the section we compare our

cipher to AES. This is due to recent advances in CPUs that

make AES to be the most appropriate cipher for program

encryption [10]. We provide both theoretical and empirical

observations proving our algorithm’s supremacy.
We denote the number of cycles needed to decrypt one word

of length w using AES by α.

A. Version 3 Performance

Consider version 3 of the proposed system and assume it

uses AES as a cipher. Every instruction occupies exactly one

word, so n instructions can be decrypted in nα cycles.

B. Switch Instructions

As described above, the switch instruction is responsible for

choosing the current permutation σ. This permutation is, then,

used to decrypt the op-codes of the following instructions.

Some details were omitted previously, since they affect only

system’s performance, but not its security or overall design:

• How does the argument of a SWITCH instruction encode

the permutation?

• Where is the permutation stored inside the processor?

Before answering these questions we introduce two defini-

tions:

• Given an encrypted program, we denote the set of all

instructions encrypted with σ by Iσ and call it color–

block σ.

• Given a set I of instructions, we denote by D(I) the set

of different instructions (those having different op–codes)

in I .

The key observation is that it is enough to define how σ acts

on the op–codes of D(Iσ) — instructions occurring in the

color–block σ. Likewise, we noticed that some instructions

are common to many color–blocks, while others are rare.

Denote by F = {f1, f2, . . . , f�} the set of the � most

frequent instructions. Let R(I) be the set of rare instructions in

I , i.e. R(I) = D(I)−F . The argument of SWITCH preceding

a color–block σ has the following structure (and is encrypted

by AES as described in version 5):

σ(f1), σ(f2), . . . , σ(f�),

r1, σ(r1), r2, σ(r2), . . . , rk, σ(rk)

where R(Iσ) = {r1, r2, . . . , rk}. If σ acts on m–bits long op–

codes, then the length of σ’s encoding is φ = (�+2k)m bits.

Thus, it’s decryption takes
(�+2k)m

w
α cycles.

C. Version 4 Performance

Consider a sequence of instructions between two SWITCHes

in the program’s control flow. Suppose these instructions

belong to Iσ and the sequence is of length n. The VM

Interpreter starts the execution of this sequence by constructing

the permutation σ. Next, the VM Interpreter goes over all the

n instructions, decrypts them according to σ and executes, as

described in version 5.

The VM Interpreter stores σ(f1), σ(f2), . . . , σ(f�) in the

CPU registers and the rest of σ — in the cache. This allows,

decryption of frequent instructions in one cycle. Decryption

of rare instructions takes β + 1 cycles where β is the cache

latency (in cycles). Denote by q the number of rare instructions

in the sequence.

125

� 0 1 2 3 4 5 6

φ 58 39 42 41 58 46 48
q

n
100% 70% 50% 34% 34% 26% 21%

Fig. 1. Correlation between �, φ and q. Here p = 0.2

0.05 0.1 0.15 0.2 0.25 AES

400

600

800

1,000

1,200

Fig. 2. Program decryption time (in cycles) using AES and our cipher with
different values of p. � = 4. α = 14.

We are, now, ready to compute the number of cycles needed

to decrypt the sequence:

σ construction:
(� + 2k)m

w
α+

frequent instructions: (n− q) +

rare instructions: q(β + 1)

D. Comparison

On MIPS op-codes are m = 6 bits long and w = 32. The

best available results for Intel newest CPUs argue that α = 14
[32]. Typical CPUs’ Level–1 cache latency is β = 3 cycles.

The correlation between �, φ and q is depicted on figure 1.

We have noticed that most of the cycles are spent con-

structing permutations, this is done every time SWITCH is

encountered. The amount of SWITCHes, and thus the time

spent constructing permutations, varies with the probability

p of SWITCH insertion. The security, however, varies as well.

Figure 2 compares program decryption time (in cycles) using

AES and our solution with different values of p.

Note that on CPUs not equipped with AES/GCM [32], like

Pentium 4, α � 112. In this case our solution is even more

beneficial. Figure 3 makes the comparison.

VII. ACKNOWLEDGMENTS

We would like to thank Dmitry Sotnikov for his brilliant

ideas and his valuable comments on both form and content of

this paper. This work would not have been possible without

his help.

Nezer J. Zaidenberg work was financed by COMAS

graduate school add Artturi and Ellen Nyyssönen foundation.

0.05 0.1 0.15 0.2 0.25 AES

0.2

0.4

0.6

0.8

1

·104

Fig. 3. Program decryption time (in cycles) using AES and our cipher with
different values of p. � = 4. α = 112.

VIII. SUMMARY

We discussed several steps toward software protection. Our

paper didn’t discuss obfuscation procedures (beyond using

a VM) as very little can be said about. Since obfuscations

may provide the bread and butter of many real life products

and since such measures may make the challenges faced

by software hackers much more difficult we make no claim

regarding any product vulnerability.

REFERENCES

[1] Apple Ltd. Mac OS X ABI Mach-O file format reference.
http://developer.apple.com/library/mac/#documentation/DeveloperTools/
Conceptual/MachORuntime/Reference/reference.html.

[2] P. Barham, B. Dragovic, K. Fraser, S. H, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield. Xen and the art of virtualization. In In

SOSP (2003), pages 164–177, 2003.
[3] F. Bellard. Qemu, a fast and portable dynamic translator. In FREENIX

Track: 2005 USENIX Annual Technical Conference, 2005.
[4] R. M. Best. Preventing software piracy with crypto-microprocessors. In

Proceedings of IEEE Spring COMPCON 80, pages 466–469, February
1980.

[5] D. Box. ”Essential .NET, Volume 1: The Common Langugage Runtime”.
Addison-Wesley, 2002.

[6] bushing, marcan, and sven. Console hacking 2010 ps3 epic fail. In CCC

2010: We come in peace, 2010.
[7] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and

A. Warfield. Remus: High availability via asynchronous virtual machine
replication. In 5th USENIX Symposium on Network Systems Design and

Implementation, 2008.
[8] O. Goldreich. Toward a theory of software protection. In Proceedings

of advances in cryptology – CRYPTO86, 1986.
[9] A. Graf. Mac OS X in KVM. In KVM Forum 2008, 2008.

[10] Intel. Breakthrough AES performance with Intel AES NewInstructions,
2010.

[11] R. K. . L. H. Jamieson. Establishing the genuinity of remote computer
systems. In Proceedings of the 12th USENIX Security Symposium, 2003.

[12] A. Kivity. Kvm: The kernel-based virtual machine. In Ottawa Linux

Symposium, 2007.
[13] T. Lindoholm and F. Yellin. ”The Java Virtual Machine Specification,

2nd ed.”. Addison–Wesley, 1999.
[14] Microsoft Cooperation. Windows authenticode portable executable

signature form. http://msdn.microsoft.com/en-us/windows/hardware/
gg463180.aspx.

[15] millerm. elfsign. http://freshmeat.net/projects/elfsign/.

126

[16] NDS. PC Show. http://www.nds.com/solutions/pc show.php.

[17] Oreans Technologies. Code virtualizer. http://www.oreans.com/products.
php.

[18] R. Rolles. Unpacking virtualization obfuscators. In Proc. of 4th USENIX

Workshop on Offensive Technologies (WOOT ’09), 2009.

[19] R. E. Rolles. Unpacking VMProtect. http:/http://www.openrce.org/blog/
view/1238/.

[20] scherzo. Inside code virtualizer. http://rapidshare.com/files/16968098/
Inside Code Virtualizer.rar.

[21] B. Schneier. Key–exchange algorithms. In Applied Cryptography 2nd

ed., chapter 22. Wiley, 1996.

[22] B. Schneier. Key–exchange algorithms. In Applied Cryptography 2nd

ed., chapter 21. Wiley, 1996.

[23] M. Sharif, A. Lanzi, J. Giffin, and W. Lee. Automatic reverse engineer-
ing of malware emulators. In Proc. of the 30th IEEE Symposium on

Security and Privacy, 2009.

[24] M. Sharif, W. Lee, W. Cui, and A. Lanzi. Secure In-VM Monitoring
Using Hardware Virtualization. In Proceedings of 16th ACM Conference

on Computer and Communications Security, November 2009.

[25] SONY Consumer Electronics. Playstayion 3. http://us.playstation.com/
ps3/.

[26] M. Srivatsa, S. Balfe, K. G. Paterson, and P. Rohatgi. Trust management
for secure information flows. In Proceedings of 15th ACM Conference

on Computer and Communications Security, October 2008.

[27] M. Steil. 17 mistakes Microsoft made in the Xbox security system. In
22nd Chaos Communication Congress, 2005.

[28] Trusted Computing Group. TPM main specification. http://www.
trustedcomputinggroup.org/resources/tpm main specification.

[29] Valgrind’s developers. Valgrind. http://www.valgrind.org.

[30] VMPSoft. Vmprotect. http://www.vmprotect.ru.

[31] VMWare. Vmware. http://www.vmware.com.

[32] Wikipedia, the free encyclopedia. AES instruction set.

APPENDIX A

This appendix provides a detailed example of a program

passing through all the compilation phases. The original pro-

gram is written in C. It computes the sum of the first 800

digits of π.

int main(){
int a=10000,b,c=2800,d,e,f[2801],g,s;

for(;b-c;) f[b++]=a/5;

for(;d=0,g=c*2;c-=14,e=d%a){
for(b=c;

d+=f[b]*a,f[b]=d%--g,d/=g--,--b;
d*=b);

s += e+d/a;
}

return s;
}

The corresponding output of the compiler is listed below.

It is a combination of MIPS assembly and MIPS machine

instructions. The leftmost column contains the instruction

number. The second column contains the machine instruction.

The rightmost column contains the assembly instruction. Block

labels are emphasized.

Instructions of the form

addiu $zero, $zero, ...

are an implementation of the SWITCH instruction. Colors

correspond to the permutation that should be applied to the

instructions.

For example, consider the instruction at 000c. It sets the

current permutation to 5 (corresponding to gray color). As a

result, all the following instructions (up to the next SWITCH)

are colored gray. Note that the instruction at 000c is not

colored gray, since it should be encoded by the previous

permutation (pink, corresponding to number 4 and set at 0005).

After the instructions are permuted according to their colors,

the final phase takes place: the compiler encrypts special

instructions’ arguments using AES (with the secret key).
$main (1)

0001 24000002 addiu $zero, $zero, 2

0002 24000003 addiu $zero, $zero, 3

0003 27bdd400 addiu $sp, $sp, -11264
0004 24022710 addiu $2, $zero, 10000
0005 24000004 addiu $zero, $zero, 4

0006 afa00010 sw $zero, 16($sp)
0007 24030af0 addiu $3, $zero, 2800
0008 afa20014 sw $2, 20($sp)
0009 afa3001c sw $3, 28($sp)

$bb0 1 (4)

000b 8fa20018 lw $2, 24($sp)
000c 24000005 addiu $zero, $zero, 5

000d 8fa3001c lw $3, 28($sp)
000e 00431023 subu $2, $2, $3
000f 10020000 beq $2, $zero, $bb0_4

0011 3c026666 lui $2, 26214
0012 34426667 ori $2, $2, 26215
0013 8fa30014 lw $3, 20($sp)
0014 8fa40018 lw $4, 24($sp)
0015 00620018 mult $3, $2
0016 00001010 mfhi $2
0017 00400803 sra $3, $2, 1
0018 24000006 addiu $zero, $zero, 6

0019 0040f801 srl $2, $2, 31
001a 27a50030 addiu $5, $sp, 48
001b 00801000 sll $6, $4, 2
001c 24840001 addiu $4, $4, 1
001d 24000004 addiu $zero, $zero, 4

001e 00621021 addu $2, $3, $2
001f 00a61821 addu $3, $5, $6
0020 afa40018 sw $4, 24($sp)
0021 ac620000 sw $2, 0($3)
0022 0800000a j $bb0_1

$bb0 3 (7)

0024 8fa20020 lw $2, 32($sp)
0025 24000008 addiu $zero, $zero, 8

0026 8fa30014 lw $3, 20($sp)
0027 0043001a div $2, $3
0028 00001012 mflo $2

127

0029 8fa30024 lw $3, 36($sp)
002a 8fa42bf8 lw $4, 11256($sp)
002b 00621021 addu $2, $3, $2
002c 00821021 addu $2, $4, $2
002d afa22bf8 sw $2, 11256($sp)
002e 8fa2001c lw $2, 28($sp)
002f 2442fff2 addiu $2, $2, -14
0030 afa2001c sw $2, 28($sp)
0031 8fa20020 lw $2, 32($sp)
0032 8fa30014 lw $3, 20($sp)
0033 24000009 addiu $zero, $zero, 9

0034 0043001a div $2, $3
0035 00001010 mfhi $2
0036 24000005 addiu $zero, $zero, 5

0037 afa20024 sw $2, 36($sp)

$bb0 4 (5)

0039 afa00020 sw $zero, 32($sp)
003a 8fa2001c lw $2, 28($sp)
003b 00400800 sll $2, $2, 1
003c afa22bf4 sw $2, 11252($sp)
003d 10020000 beq $2, $zero, $bb0_8

003f 8fa2001c lw $2, 28($sp)
0040 afa20018 sw $2, 24($sp)

$bb0 6 (5)

0042 8fa20018 lw $2, 24($sp)
0043 27a30030 addiu $3, $sp, 48
0044 00401000 sll $2, $2, 2
0045 00621021 addu $2, $3, $2
0046 2400000a addiu $zero, $zero, 10

0047 8c420000 lw $2, 0($2)
0048 8fa40014 lw $4, 20($sp)
0049 8fa50020 lw $5, 32($sp)
004a 00440018 mult $2, $4
004b 2400000b addiu $zero, $zero, 11

004c 00001012 mflo $2
004d 00a21021 addu $2, $5, $2
004e afa20020 sw $2, 32($sp)
004f 8fa42bf4 lw $4, 11252($sp)

0050 2484ffff addiu $4, $4, -1
0051 afa42bf4 sw $4, 11252($sp)
0052 8fa50018 lw $5, 24($sp)
0053 00a01000 sll $5, $5, 2
0054 0044001a div $2, $4
0055 00001010 mfhi $2
0056 00651821 addu $3, $3, $5
0057 ac620000 sw $2, 0($3)
0058 8fa22bf4 lw $2, 11252($sp)
0059 2400000c addiu $zero, $zero, 12

005a 2443ffff addiu $3, $2, -1
005b afa32bf4 sw $3, 11252($sp)
005c 8fa30020 lw $3, 32($sp)
005d 0062001a div $3, $2
005e 00001012 mflo $2
005f afa20020 sw $2, 32($sp)
0060 24000007 addiu $zero, $zero, 7

0061 8fa20018 lw $2, 24($sp)

0062 2442ffff addiu $2, $2, -1
0063 afa20018 sw $2, 24($sp)
0064 10020000 beq $2, $zero, $bb0_3

0066 8fa20018 lw $2, 24($sp)
0067 2400000d addiu $zero, $zero, 13

0068 8fa30020 lw $3, 32($sp)
0069 00620018 mult $3, $2
006a 00001012 mflo $2
006b 24000005 addiu $zero, $zero, 5

006c afa20020 sw $2, 32($sp)?006d 08000041 j
$bb0_6

$bb0 8 (5)

006f 8fa22bf8 lw $2, 11256($sp)
0070 27bd2c00 addiu $sp, $sp, 11264
0071 03e00008 jr $ra

APPENDIX B

The code of Truly–protect is freely available at

http://code.google.com/p/truly-protect

128

PVI

SYSTEM FOR EXECUTING ENCRYPTED JAVA PROGRAMS

by

Kiperberg, M.; Resh, A.; Algawi, A.; Zaidenberg, N.J. Submitted

IEEE Transactions on Dependable and Secure Computing

1

System for Executing
Encrypted Java Programs

Michael Kiperberg, Amit Resh, Asaf Algawi, and Nezer Zaidenberg

Abstract—An important aspect of protecting software from attack, theft of algorithms, or illegal software use, is eliminating the
possibility of performing reverse engineering. One common method to deal with these issues is code obfuscation. However, it is proven
to be ineffective. Code encryption is a much more effective means of defying reverse engineering, but it requires managing a secret
key available to none but the permissible users. Adequate systems for managing secret keys in a protected trust-zone and supporting
execution of encrypted native code have been proposed in the past [1], [2]. Nevertheless, these systems are not suitable as is for
protecting managed code. In this paper we propose enhancements to these systems so they support execution of encrypted Java
programs that are resistant to reverse engineering. The main difficulty underlying Java protection with encryption is the interpretation
that is performed by the JVM. The JVM will require the key to decrypt the encrypted portions of Java code and there is no feasible way
of securing the key inside the JVM. To solve this, the authors propose implementing a Java bytecode interpreter inside a trust-zone,
governed by a thin hypervisor. This interpreter will run in parallel to the standard JVM, both cooperating to execute encrypted Java
programs.

Index Terms—Java, Trusted Computing, Hypervisor, Virtualization, Remote Attestation

�

1 INTRODUCTION

DIGITAL content such as games, videos, and the like
may be susceptible to unlicensed usage, which has a

significant adverse impact on the profitability and commer-
cial viability of such products. Commonly, such commercial
digital content may be protected by a licensing verification
program; these, however, may be circumvented by reverse
engineering of the software instructions of the computer
program which leaves them vulnerable to misuse.

One way of preventing circumvention of the software
licensing program, may be using a method of ”obfuscation”
[3], [4]. The term obfuscation refers to making software
instructions difficult for humans to understand by deliber-
ately cluttering the code with useless, confusing pieces of
additional software syntax or instructions. However, even
when changing the software code and making it obfuscated,
the content is still readable to the skilled hacker [5], [6].

Additionally, publishers may protect their digital content
product by encryption, using a unique key to convert the
software code to an unreadable format, such that only the
owner of the unique key may decrypt the software code.
Such protection may only be effective when the unique key
is kept secured and unreachable to an adversary. Hardware
based methods for keeping the unique key secured are
possible [7], [8], [9], but may have significant deficiencies,
mainly due to an investment required in dedicated hard-
ware on the user side, making it costly, and, therefore, im-
practical. Furthermore, such hardware methods have been
successfully attacked by hackers [10], [11].

Software copy-protection is currently predominantly

• M. Kiperberg, A. Resh, A. Algawi and N. Zidenberg are with the
Department of Mathematical Information Technology, University of
Jyvaskyla, Jyvaskyla, Finland. E-mails: michael@trulyprotect.com,
amit@trulyprotect.com, asaf@trulyprotect.com, nezer@trulyprotect.com

governed by methodologies based on obfuscation, which
are volatile to hacking or user malicious activities. There
is, therefore, a need for a better technique for protecting
sensitive software sections, such as licensing code.

In recent years, programs that are targeted at managed
execution environments have become widespread [12]. Un-
like regular (native) programs, managed programs cannot
be executed directly by the CPU and therefore require a
special (native) program to interpret the managed program.
Managed execution environments are superior to native en-
vironments in memory management, debugging, and pro-
filing support. All of these benefits increased the popularity
of managed execution environments among developers of
desktop and mobile applications.

We would like to stress the key difference between native
and managed execution environments. While it is possible
to guarantee that a sequence of native instructions cannot
be intercepted (read or modified) during its execution by a
CPU, such a guarantee cannot be made for a managed ex-
ecution environment, since an unexpected behavior can be
introduced into the software that implements the managed
execution environment. There is, therefore, a need for a tech-
nique for executing safely encrypted managed programs on
the available managed execution environments.

In this paper, we present a system that allows encrypting
and executing programs written for the Java Virtual Ma-
chine (JVM) [13]. The system execution engine is based on
a thin hypervisor and works in cooperation with the JVM
through the standardized JVM Tool Interface (JVM TI) and
the Java Native Interface (JNI). The hypervisor acquires the
decryption key during the initialization of the JVM and
is responsible for decrypting and executing the encrypted
parts of the Java program. The unencrypted parts of the
program are executed directly by the JVM, which, in many
cases, makes the overall performance comparable to the

2

performance of the original, unencrypted, program.
The paper is organized as follows. Sections 2 and 3

describe Java’s instruction set and its executable file format.
Section 4 presents an API which allows the inspections
and manipulation of Java programs and their execution
environments. Hypervisors are discussed in section 5. We
present the design of our system in section 6 and discuss a
specific aspect of this design in section 7. The performance
and security measurements of the system are presented in
section 8. Section 9 discusses the limitations of the presented
system and its possible extensions. Section 10 summarizes
the results of this paper.

2 JAVA BYTECODE

Java bytecode is the instruction set of the JVM [13]. Pro-
grams written in Java are compiled to the Java bytecode and
stored, together with additional information, in class files.

JVM is a stack machine: the arguments of an instruction
are pushed onto a stack, the instruction is executed, which
pops the arguments off the stack and the result is pushed
back onto the stack. Moreover, JVM is a strongly typed
machine, which means that each value on the stack is tagged
with a type. Each instruction verifies that the types of its
arguments are valid, and failure during this verification
results in an exception condition.

Each instruction consists of a one-byte opcode and a list
of arguments, whose length is determined by the opcode (in
most cases). Currently 198 opcodes are in use, which can be
subdivided into a number of broad groups:

1) Load and store (push the value of a local variable
onto a stack)

2) Arithmetic and logic (pop two values off the stack
and push their sum onto the stack)

3) Type conversion (change the type of the value at the
top of stack from integer to double)

4) Object creation and manipulation (create an instance
of type T)

5) Operand stack management (duplicate the value at
the top of the stack)

6) Control transfer (pop the value off the stack and if
it is true increment the IP by 42)

7) Method invocation and return (terminate the cur-
rent method)

8) Other (throw an exception)

Many instructions have prefixes and suffixes that determine
the types of the operands they operate on.

Each method has its own stack and its own area of local
variables (which also includes method’s parameters). Any
constants used in a method, e.g. numerical constants, type
names, or method names, are stored in a constant pool
belonging to the class in which the method is defined. The
method references these constants via their indices.

Many languages, Java among them, have introduced a
notion of exceptions. An exception is an abnormal condi-
tion detected by the program, which cannot be handled
locally, i.e. in the method which detected this condition.
The process of transferring the control to the handler of
the abnormal condition is called throwing an exception. The
handler is called an exception handler. The exception handler

usually needs additional information about the nature of the
abnormal condition. In Java this information is encapsulated
in an object whose type implements the interface Throwable.

Most exceptions occur synchronously as a result of an
action by the thread in which they occur. An asynchronous
exception, by contrast, can potentially occur at any point in
the execution of a program. Asynchronous exceptions are
not covered in our work. Synchronous exceptions can occur
as a result of execution of the athrow instruction or any
other instruction that specifies an exception as a possible
result. For example, the idiv instruction, which divides two
integers, throws an ArithmeticException if the value of the
divisor is 0.

Each method may be associated with zero or more ex-
ception handlers. An exception handler specifies the range
of instructions for which the exception handler is active, and
describes the type of exception that the exception handler
is able to handle. When an exception is thrown, the JVM
searches for a matching exception handler in the current
method. If a matching exception handler is found, the
system branches to the exception handling code specified
by the matched handler.

If no such exception handler is found in the current
method, the current method’s frame is popped, reinstating
the frame of the invoking method. The exception is then
rethrown in the context of the invoker’s frame and so on,
continuing up the method invocation chain.

3 JAVA FILE STRUCTURE

Java is an object-oriented programming language [14]. All
code in a Java program is written in classes. The source code
is compiled into intermediate bytecode that is stored in class
files [13]. Each class file contains the compiled bytecode of
a class along with descriptions of its fields, interfaces and
methods.

A class file is a serialized stream of 8-bit bytes, grouped as
1, 2, 4 and 8 byte items. The file contains information fields
and several major sections:

• constant pool
• fields
• methods
• attributes

The constant pool is a table in which the entries con-
tain: numerical constants, string literals, class and interface
names, field names as well as some additional constants
referred to inside the file.

The methods section is a table in which the entries contain
all the information relevant to the methods of the class. Most
importantly, it contains the Java bytecode of the compiled
method.

Java applications normally constitute an abundance of
class files, metadata and a variety of resource files such as
icons, text files and images. The files are usually organized
in a directory structure. An entire Java application sub-
directory structure along with all its associated files can
be packaged in a single jar file. The jar file is an archive
file, based on ZIP format compressed files. It provides a
convenient method to distribute complete Java applications.
The jar file is also used to store a Java library.

3

The proposed system for encrypting Java programs is
designed to encrypt all class files within a given jar archive.
A configuration file can be specified to include or exclude
given sets of class files based on file names or sub-directory
location.

Similarly to other instrumentation tools [15], [16], [17],
our encryption tool analyzes each class file that was defined
to be protected. It analyzes and makes appropriate changes
to the file by overwriting nops on the original bytecodes in
the class’ methods and storing the encrypted bytecodes of
each method in a separate section in the class file.

Once encryption is completed, the encryption tool serial-
izes the class structures back into a modified class file, which
replaces the original one in the jar file.

4 JNI/JVM TI

JVM TI [18] is an application programming interface (API)
provided by the JVM that allows the inspection and the
controlling of the state of the JVM and the program it
executes. This API is usually used by performance profilers
and debuggers [19], [20], [21], [22]. JVM TI is a two-way
interface. A client of JVM TI, an agent, can be notified of
interesting occurrences through events. An agent can query
the JVM through many functions, either in response to
events or independent of them. An agent is realized in a
dynamic library, a dynamic link library on Windows or a
shared object on Linux. In order to attach an agent to a JVM,
its path should be passed on the command line during the
invocation of the JVM.

The JVM loads all agents before loading any classes. For
each loaded agent, the Agent OnLoad function is called.
This function is responsible for specifying the set of events
to be intercepted and the interception functions. The in-
terception functions may have different sets of parameters
that capture the parameters of event occurrences. Consider
the two events ThreadStart and ClassPrepare. The Thread-
Start event occurs whenever the JVM creates a new thread
and the interception function receives, as a parameter, the
identifier of the newly created thread. The ClassPrepare
event occurs whenever a class is loaded and the interception
function receives, as a parameter, the identifier of the thread
which loaded the identifier of the loaded class.

In addition to events interception, JVM TI allows an
agent to inspect and manipulate the state of the JVM and
the state of the program it executes. For example, the Get-
ClassMethods function retrieves the method identifiers of
a specified class. The methods can be further investigated
using functions like GetMethodName, which retrieves the
name and the signature of a specified method, and GetByte-
codes, which retrieves the bytecodes of a specified method.

Another family of JVM TI functions allows inspection
of dynamic aspects of the execution. This family includes
functions such as GetLocalVariable, which retrieves the
value of method’s local variable (in Java parameters are also
variables), and GetStackTrace, which retrieves information
about the callers of the current method.

Finally, another family of JVM TI functions allows modi-
fying the state of the program. This family includes func-
tions such as SetLocalVariable, which assigns a value to

method’s local variable, SetBreakPoint, which sets a break-
point at a specified location of a specified method, and
ForceEarlyReturnObject, which requests to terminate the
execution of the current method.

JNI is an API provided by the JVM that enables Java
programs to call and be called by native programs. JNI
provides functions that can inspect and manipulate Java
objects. These functions can be subdivided to the follow-
ing families: class operations, exceptions, accessing fields,
calling methods, etc.

The class operations family includes functions such as
FindClass, which loads a class by its name, and IsAs-
signableFrom, which determines whether an object of one
class can be safely cast to another class. The exceptions
family includes functions such as Throw and ThrowNew,
that request to handle the specified exception, and Excep-
tionOccurred, which determines whether an exception is
being handled. The accessing fields family includes func-
tions such as GetObjectField, which retrieves the value of
the specified field in the specified object, and SetObjectField,
which assigns a value to the specified field in the specified
object. The calling methods family includes functions such
as CallVoidMethod, which calls the specified method of
the specified object, and CallNonvirtualVoidMethod, which
calls the specified method of the specified class (not neces-
sarily object’s class).

The JVM passes pointers to the JVM TI and the JNI
on each invocation of the interception functions. The in-
terception functions can use these interfaces to manipulate
the state of the program and the JVM. In particular, these
interfaces provide means to build a partial interpreter, i.e.
an interpreter of some but not all of the code, inside a JVM
TI agent. Such an interpreter is required to cooperate with
the JVM, so that the JVM can observe the modification in
state made by the interpreter and vice-versa. The functions
provided by JVM TI and JNI are sufficient to implement this
cooperation, as will be explained later.

Two important events provided by JVM TI with regard
to exceptions are: Exception and ExceptionCatch. The first
event occurs when an exception is thrown due to athrow
execution or any other instruction. The interception function
receives the location in which the exception was thrown, the
exception object, and the location of the exception handler
which was found by the JVM. The ExceptionCatch event
occurs after the control was transferred to the exception
handler but before its first instruction was executed. The
interception function receives the location of the exception
handler and the exception object. The system described in
this paper uses only the ExceptionCatch event. The Excep-
tion event was described for completeness.

5 THIN HYPERVISOR

A hypervisor, also referred to as a Virtual Machine Monitor
(VMM), is software, which may be hardware-assisted, to
manage multiple virtual machines on a single system [23].
The hypervisor virtualizes the hardware environment in a
way that allows several virtual machines, running under its
supervision, to operate in parallel over the same physical
hardware platform, without obstructing or impeding each
other. Each virtual machine has the illusion that it is running

4

Fig. 1. Virtualized system featuring a hypervisor and two operating sys-
tems executing six programs. The hypervisor runs in a higher privilege
level than the operating system. System calls, traps, exceptions and
other interrupts, transfer control from user mode applications to their
operating system. The operating system handles these conditions by
requesting some service from the underlying hardware. The hypervisor
intercepts those requests and handles them according to some policy.

unaccompanied on the entire hardware platform. The hy-
pervisor is referred to as the host, while the virtual machines
are referred to as guests. Hypervisors are further categorized
as: type-1 (or bare metal) and type-2 hypervisors. A type-
1 hypervisor executes independently and directly over the
system hardware. The OS of the guests run above the
hypervisor, in effect decoupled by the hypervisor from the
system hardware. A type-2 hypervisor [24] executes above a
cooperating OS, where guests run atop the hypervisor. This
type of hypervisor uses the cooperating OS as a means to
access and manage hardware resources.

Hypervisors have been in use from as early as the 1960s
on IBM mainframe computers [25]. After 2005, Intel and
AMD introduced hardware support for virtualization (Intel
VT-X [26], AMD AMD-V [27]) which allowed implementing
type-1 hypervisors in the ubiquitous PC platforms.

In order to support multiple OS guests, a type-1 hyper-
visor must unobtrusively intercept OS access to hardware
resources so it can attend to them itself [28]. The hypervisor
can then manage hardware allocations that maintain proper
separation between the guests. The guest OS is unaware
of the hypervisor’s intervention, as it experiences a normal
hardware access cycle. The only distinction is the elapsed
time, since the hypervisor mediation has a time-toll. This
property led to a debate regarding the detectability of a
hypervisor [29], [30], [31], [32].

To intercept OS hardware access, hypervisors are con-
figured to intercept privileged instructions, memory access,
interrupts, exceptions and I/O, which are the OS vehicles
for hardware access. Executing an intercepted privileged
instruction causes a hypervisor VM EXIT. In other words,
the guest VM is exited and the configured Hypervisor
intercept-routine is executed. When this occurs, the CPU
mode changes from guest-mode to host-mode. Guest ap-
plications that require hardware resources execute system
calls to request support from their OS. Figure 1 depicts
this chain-of-execution for a type-1 hypervisor with two
guest stacks. After fulfilling the intercept, the hypervisor
indiscernibly returns to the guest. While hypervisors were
generally designed to serve as virtual machine monitors,

Fig. 2. Thin hypervisor. The hypervisor runs in a higher privilege level
than the operating system. System calls, traps, exceptions and other
interrupts, transfer control from user mode applications to the operating
system. The operating system handles these conditions by requesting
some service from the underlying hardware. A thin hypervisor can
intercept some of those requests and handle them according to some
policy.

type-1 hypervisors, which control the underlying hardware
platform, are also very good candidates to serve as software
security facilitators.

The authors propose the use of a type-1 hypervisor
environment for securing a single guest stack. Rather than
wholly virtualizing the hardware platform, a special breed
of hypervisor, called a thin-hypervisor, is used [33], [34]. The
thin-hypervisor is configured to intercept only a small por-
tion of the system’s privileged events. All other privileged
instructions are executed without interception, directly, by
the OS. The thin-hypervisor only intercepts the set of privi-
leged instructions that allows it to protect an internal secret
(such as cryptographic key material) and protect itself from
subversion. Figure 2 depicts a thin-hypervisor supporting a
single guest stack. Since the thin-hypervisor does not control
most of the OS interaction with the hardware, multiple OS
are not supported. However, system performance is kept at
an optimum.

A Hypervisor facilitates a secure environment by:

• setting aside portions of memory that can be ac-
cessed only when the CPU is in host mode

• storing cryptographic key material in privileged reg-
isters and

• intercepting privileged instructions that may com-
promise its protected memory or key material

A thin-hypervisor is less susceptible to being hacked as a
result of vulnerabilities, since its code and complexity are
greatly reduced when compared to a full-blown hypervisor.

Once this environment is correctly setup and configured,
the thin-hypervisor can be utilized to carry out specific
operations, which may include use of the internal stored
key material, in a protected region of memory. As a result of
the tightly configured intercepts and absolute host control
of select memory regions, this activity can be guaranteed
to protect both the secret key material and the operations
results.

In the proposed system, to execute encrypted Java byte-
code, the thin-hypervisor capabilities are exploited to de-
crypt the encrypted Java bytecode (using the secret key) into

5

protected memory regions and following up with interpre-
tation and execution of the decrypted instructions while in
host mode.

The thin-hypervisor can effectively protect the secret
key material, after it is safely stored in privileged registers
and the thin-hypervisor is correctly configured and active.
However, the procedure by which the secret material gets
stored while the thin-hypervisor is being setup is risky, since
an adversary can potentially grab the secret at that point. An
additional question requiring an answer is where the secret
is kept while the thin-hypervisor is not active.

The authors’ approach to solving these questions is
comprised of the following principles:

1) While the thin-hypervisor is not active, the secret
key material shall not be stored anywhere in the
system

2) When setting up a thin-hypervisor, an external sys-
tem shall be used to verify that the thin-hypervisor
has control over the underlying hardware

3) The same external system that verifies the thin-
hypervisor shall provide the secret key material

The first principle is important to rule out the possibility
of keeping secret material under the cover of obfuscation,
which is known to be ultimately vulnerable. The second and
third principles require maintaining a remote key-server
system and equipping it with the facilities to verify that a
thin-hypervisor on a remote system has been properly setup
and configured, such that a trusted environment is primed
and can accept secret material.

The vehicle to perform this remote verification is a
piece of code, called an attestation-challenge [1], [35], [36],
[37]. The attestation-challenge is administered by the key-
server to the remote machine, as it is configuring the thin-
hypervisor. The thin-hypervisor is required to load and
execute the challenge code, returning an attestation result to
the key-server within a limited time-frame. The attestation-
challenge calculates the checksum of the thin-hypervisor
code, but in addition mangles the checksum calculation
with hardware-driven side-effects, sampled by the challenge
as it is executing. The side-effect samples are hardware-
generated counts of hardware events, such as cache hits or
misses, TLB hits or misses etc.

The key-server considers a correct response received
within the allotted time-frame proof that the correct thin-
hypervisor code is executing and has true control of the
remote system’s hardware.

6 SYSTEM DESIGN

The system we present comprises four main components:
(1) encryption tool, (2) JVM TI agent, (3) thin hypervisor, (4)
attestation server. Figure 5 depicts the relationship between
these components.

The encryption tool processes each class file by first de-
serializing it into memory based structures. The code bytes
of each method are located and zeroed out to create a
sequence of nop instructions except for the very first code
byte and the last three bytes. In the first code-byte (offset
0) it always inserts an aconst null opcode (a single-byte
instruction that pushes a NULL on the operand stack). In

Fig. 3. Pattern of an encrypted method.

the last 3 bytes it inserts a jump instruction that loops back to
the 1st nop instruction (offset 1). The reason for this pattern
is to allow a means to synchronize the JVM processing of the
decrypted bytecode, as will be detailed later. The aconst null
opcode at the beginning of the method’s code is required to
appease the Java verifier. Without the aconst null, the veri-
fier contemplates that in the event of exception handling, the
loop back to the method’s start may have a stack depth of 1,
while during other loops, stack depth is 0. This discrepancy
is not allowed. With the aconst null opcode, the stack depth
is always 1 regardless, and thus allowed by the verifier.
Figure 3 illustrates this process.

Methods that are smaller than 5 bytes and cannot accom-
modate this pattern are simply not encrypted. The authors
assume that the security penalty for this will be insignifi-
cant. If there exist (rare) very short methods that must be
encrypted, they will need to be artificially enlarged with do-
nothing instructions.

The encryption tool extends the existing constant pool
to make room for encrypted versions of protected methods’
bytecode. The original bytecodes of each method are en-
crypted and inserted in a new record appended at the end
of the constant pool table.

After adding all the new encrypted entries, the encryp-
tion tool adds a trailer record at the very end, detailing
the number of preceding encrypted entries. When the Java
class is loaded for execution, the runtime decryption and
execution engine can find this information by looking up
the trailer-record at the end of the constant pool.

Once encryption is completed, the encryption tool serial-
izes the class structures back into a modified class file, which
replaces the original one in the jar file.

During the initialization of the JVM TI agent, it deploys
the hypervisor and installs interception functions for the fol-
lowing events (1) class loading, (2) breakpoint, (3) exception
catch. The class loading event occurs whenever the JVM
loads a class and before any of the class code is executed.
Upon this event the agent inspects the class and determines
whether it is encrypted. If so, the agent installs a breakpoint
at the first instruction of each method. These breakpoints
induce a breakpoint event on each entry to the encrypted
methods. The agent intercepts the breakpoint event, resolves
the method that hosts the hit breakpoint, and begins the
interpretation process.

6

Fig. 5. Relationship between the different components of the described system. The encryption tool (1) transforms regular Java classes into
encrypted ones. Regular and encrypted Java classes are then loaded by the JVM. The JVM loads a JVM TI agent (2) through a JVM TI interface.
The agent links the hypervisor to the JVM and assists in the interpretation process. The agent communicates with the JVM through JVM TI and JNI.
The communication between the agent and the hypervisor is based on hypercalls and execution frames. The hypervisor receives the decryption
key from a remote server, which attests the validity of the hypervisor and the hardware on which it executes.

Fig. 6. A simplified control flow during encrypted method execution. The JVM reaches the breakpoint installed by the agent, and transfers the control
to the JVM TI agent. The agent creates a frame and transfers the control to the hypervisor. The hypervisor decrypts the instructions, and interprets
them until an uninterpretable instruction is reached. Then the hypervisor erases all the other instructions and returns control to the JVM TI agent,
which interprets the instruction and either transfers the control to the hypervisor or returns control back to the JVM.

The interpreter constructs a frame, a data structure
which constitutes the execution environment of the current
method invocation (including the encrypted bytecodes of
the current method), and transfers control to the hyper-
visor. The hypervisor decrypts the bytecodes and starts
interpreting them one-by-one until it reaches an opcode
which requires cooperation with the JVM. At this point, the
hypervisor returns control to the agent and provides it with
the instruction, which it could not interpret, in decrypted
form. The agent proceeds by interpreting the instruction
using JVM TI and JNI and then transfers control back to
the hypervisor. Figure 6 presents the control flow diagram
of the system operation.

7 CO-INTERPRETATION

The interpretation is performed by two interpreters: one is
embedded in the JVM TI agent and the other is embedded
in the hypervisor (further reference to the thin-hypervisor
will be simply: ”hypervisor”). Each opcode is interpreted
by only one of the two interpreters. When one interpreter
cannot continue interpretation, it transfers the control to
the other interpreter. The interpreters share a data structure,
which we call a frame, and in which they store the interme-
diate results of the interpretation as well as some additional
information. The Frame’s structure is depicted in Figure 7
and explained below.

We want to enable the interpreter, which is embedded in
the hypervisor, to interpret as many instructions as possible.
Many instructions operate only on the stack and the pro-
gram counter (PC). These instructions include the following

7

Fig. 7. Frame’s structure. The frame contains the computation stack and a pointer to its top element. The frame includes copies of all the local
variables and the constant pool. The program counter contains the location of the next instruction to be executed. The ”encrypted code” buffer
contains the encrypted bytecode of the current method, which is then decrypted and interpreted by the hypervisor. The ”decrypted code” buffer
contains the last instruction that could not be interpreted by the hypervisor. If the hypervisor encountered an abnormal condition, it reports its nature
through the exception name buffer and sets the ”exit reason” field accordingly.

Fig. 4. Extended constant pool.

groups of instructions: arithmetic/logic, type conversion,
stack management, control transfer. These instructions re-
quire the following information to be included in the stack:
(a) PC, (b) stack. The load and store group of instructions al-
low the pushing of the value of local variables and constants
onto the stack. In order to enable the hypervisor to interpret
instructions in these groups, we include the (c) constant pool
and the (d) local variables in the frame.

Instructions that belong to the following groups are
interpreted by the JVM TI agent: object creation and ma-
nipulation, method invocation and return, and others. These
instructions require cooperation with the JVM. For example,
the getfield instruction, which pushes onto the stack the
value of the specified field in the specified object, must
inspect the internal representation of the object as defined
by the JVM. Another example is the return instruction,
which terminates execution of the current method. This
instruction must modify the internal representation of the
stack trace, which is managed by the JVM. Therefore, all
these instructions are interpreted by the JVM TI agent via
JNI and JVM TI functions.

In addition to the data structures which are used dur-
ing interpretation, the frame includes three data structures
which are used for communication between the two in-
terpreters: (a) encrypted code, (b) decrypted code, (c) exit
reason. Before transferring the control to the hypervisor, the
encrypted code buffer is filled with the encrypted bytecodes
of the current method by the JVM TI agent . The hypervisor
decrypts the buffer and begins interpretation until it reaches
an instruction, which cannot be interpreted (inside the hy-
pervisor). This instruction is written to the decrypted code
buffer and the exit reason is set to signify that the interpre-
tation was suspended due to an uninterpretable instruction.
The JVM TI agent interprets this single instruction and the
process continues.

Exceptions are an essential part of Java; they are embed-
ded into the low level bytecode instructions. Our interpreter
supports exceptions (actually the support for asynchronous
exceptions is partial) both in instructions that are interpreted
by the JVM TI agent and those that are interpreted by the
hypervisor. Clearly, our interpreter must cooperate with the
JVM since it is possible that an encrypted method throws
an exception which is handled by a non-encrypted method
and vice-versa.

The implementation of exceptions in our interpreter
can be divided into two parts: exception generation and
exception handling. We begin our discussion with exception
generation. The interpreter should generate an exception
when it executes an instruction which generates an excep-
tion either explicitly (by executing the athrow instruction)
or implicitly (e.g. by executing the idiv instruction with
invalid arguments). The JVM TI agent delivers an exception
to the JVM by calling the Throw or ThrowNew functions of
JNI. The former function delivers the specified object as an
exception. The latter function allocates a new object of the
specified class and then delivers this newly allocated object
as an exception.

Unfortunately, the hypervisor cannot call JNI functions
directly. Therefore, whenever the hypervisor detects an ab-
normal condition, it transfers the control to the JVM TI
agent. The nature of the exception is delivered through the

8

invokevirtual 8.9
getfield 5.4
invokespecial 3.8
new 2.5
putfield 2.1
invokestatic 1.7
return 1.6
getstatic 1.6
areturn 1.3
aastore 1.2

invokeinterface 1.1
iastore 1.1
ireturn 1
checkcast 0.7
bastore 0.6
athrow 0.6
putstatic 0.4
anewarray 0.4
aaload 0.4
arraylength 0.3

iaload 0.3
newarray 0.2
instanceof 0.2
ifacmpne 0.2
sastore 0.1
monitorexit 0.1
lastore 0.1
castore 0.1
baload 0.1
Total: 38.1

TABLE 1
Frequencies of uninterpretable instructions as reported by [38]

exception field of the current frame. The JVM TI agent then
delivers the exception on the hypervisor’s behalf.

In order to locate the correct exception handler, the JVM
traverses the call stack of the currently executing methods.
For each method, the JVM inspects the location in which
the execution of the method was suspended and transferred
to another method. These locations are part of the internal
state of the JVM. The JVM updates these locations during
program execution.

Our interpreters, however, cannot modify these locations
directly, leaving the locations at 0 in all the encrypted
methods. Whenever our interpreters need to modify the
location of the currently executing method, they install a
breakpoint at a desired location and return control to the
JVM. The JVM executes the instrumented bytecode of the
method (generally NOPS and a jump to the beginning at the
end), as described in section 6, until it reaches the installed
breakpoint, and transfers the control back to the JVM TI
agent, which continues the interpretation process. Since
our interpreter can affect only the location of the currently
executing method, it must update the location before calling
other methods.

The interpreter handles exceptions by intercepting the
ExceptionHandled event of JVM TI. This event occurs when
the JVM resolves an exception handler for a thrown excep-
tion. The interception function receives the exception object
and the location of the exception handler. If the exception
handler is not encrypted, the control is returned to the JVM.
Otherwise, the interpreter pushes the exception object onto
the stack and begins the interpretation process from the
specified location.

8 MEASUREMENTS

According to [38], invokevirtual is the second most popular
instruction (appears with 8.9% frequency) and getfield is the
fourth most popular instruction (5.4%). Unfortunately, these
instruction cannot be interpreted inside the hypervisor, and,
therefore, they are delivered in a decrypted form to the JVM
TI agent, which is not considered secure. According to the
statistics in Table 1, the hypervisor delivers about 38% of
the instructions in a decrypted form back to the JVM TI.
Therefore, in practice, only about 60% of the instructions in
an encrypted class are actually hidden from an adversary.

8.1 Performance Benchmarks
To compare performance of protected-Java vs. non-
protected-Java, two empirical measurements were con-
ducted.

Algorithm 1 Algorithm measuring the correlation between
instruction sequence length and its execution time.

for i = 1,10000 do
t = System.nanoTime()
baseTime += System.nanoTime() - t
baseTime /= 10000

end for
for all k ∈ {10, 20, 30, ..., 190, 200, 400, 600, ..., 10000} do

for i = 1,10000 do
t = System.nanoTime()
for i = 1,k do

nothing
end for
sumTime += System.nanoTime() - t
sumTime /= 10000

end for
end for
Output: baseTime, sumTime

8.1.1 Code Execution Throughput
The purpose of this study was to compare code inter-
pretation of decrypted Java bytecode in the hypervisor to
regular, non-protected, JVM code interpretation. Algorithm
1 presents the pseudo code of a method that was run in
protected and unprotected mode.

The first repeat block measures the overhead associated
with system time measurement during 10000 iterations. The
second repeat block performs the actual timed measure-
ment. The number of interpreted instructions measured are
a function of parameter k. The Java bytecodes measured are
an empty for loop and include the instructions to manipulate
the control variable and to cycle the loop. The value of
k governs the number of instructions processed during
each iteration. Measurements are performed for k assuming
values 10 to 200 at increments of 10 and then 200 to 1000
— at increments of 200. To cancel out random measurement
errors as a result of asynchronous events, 10000 iterations
are performed for each value of k and the average value is
output. The difference between sumTime and baseTime, the
overhead measurement, is the net time duration of the in-
struction interpretation process. When measuring protected
Java interpretation the baseTime of the non-protected java is
subtracted from the measured result, in order to include in
the time measurement a hypervisor exit and a hypervisor
entry from/to the agent which is performed in order to call
the System.nanoTime() method.

8.1.2 Results
Non-protected Java baseTime : 55 nanoseconds
Protected Java baseTime: 28726 nanoseconds

Since the System.nanoTime() method call is always executed
by the JVM (it is not protected), the overhead time difference
(28671 nanoseconds) is attributed to the transitions between
the hypervisor and the agent.

The measurement result for the span of k values is
plotted in Figure 8 on a logarithmic scale. Note that the
transition overhead is significant (as compared to code
interpretation) up until k = 1000. Since the size of the empty
for loop in bytecode is about 10 bytes, it can be determined

9

Algorithm 2 Algorithm measuring the correlation between
function’s number of arguments and its invocation time.

baseTime = System.nanoTime()
for i = 1,40000 do

nothing
end for
baseTime = System.nanoTime() – baseTime
for all k=0,15 do

Tk = System.nanoTime()
for i = 1,40000 do

Call fk(0, 1, ..., k)
end for
Tk = System.nanoTime() – Tk

Tk /= 40000
end for
Output: baseTime, T0, T1, ..., T15

that the transition overhead is significant for bytecode sizes
of up to 10000 bytes. For larger bytecodes the performance
comparison is stable at about a 1:10 factor.

While interpretation performance in the hypervisor can
be optimized to achieve a result better than 1:10, this mea-
surement shows that for all practical purposes the transition
time will overshadow this. Therefore, optimization efforts
should be concentrated there.

8.1.3 Protected Method Invocation
The purpose of this study was to measure the overhead of
calling a protected method as a function of the number of its
parameters. When a protected method is called, the agent
needs to construct the frame context and transfer control
to the hypervisor (via a hypercall). The hypervisor needs
to locate the encrypted bytecode, decrypt it and perform
the local interpretation. When complete, it needs to return
control to the agent, which will adjust the JVM frame
context.

To measure this entire process, functions of a varying
number of parameters were called and the call procedure
was timed. The function contents were identical:

fk(int p0, int p1, ..., int pk) {p0 = p0 ∗ p0; }
As in the previous study, each measurement was carried out
multiple times (400000) to reduce error, and a baseTime was
calculated to reflect the overhead associated with managing
the loop process, as shown in Algorithm 2.

The baseTime was subtracted from the function call
measurements results. Three types of measurements were
conducted, each for all values of k:

• Non-protected Java run
• Calling method protected, callees non-protected
• Calling method non-protected, callees protected

Figure 9 plots these measurements on a logarithmic scale.

8.1.4 Results
The largest overhead was acquired when the callees were
encrypted, since this operation is the most involved: re-
quiring preparation of the environment, transferring to
the hypervisor, decrypting, interpreting in hypervisor and

restoring the environment. It is roughly 1.5 to 2 orders of
magnitude greater as compared to the case where only the
caller was protected, since this has moderate overhead, only
requiring the hypervisor to prepare the environment and
transfer control to the agent.

The number of parameters generally increase the timing
linearly, as can be expected. However, when comparing the
two protected cases, it can be seen that the gap between
the results increases with the number of parameters. This
indicates that the overhead of preparing and restoring the
environment is more significant when the callee function is
protected.

9 FUTURE WORK

The largest rival for Java in the world of managed languages
is the .NET framework which was published by Microsoft
on February 11, 2002. The framework itself is based on a
language called ”Common Intermediate Language” (CIL),
formerly known as ”Microsoft Intermediate Language”
(MSIL) and a ”Common Language Runtime” (CLR), whose
responsibilities are to execute a given file written in CIL [39].
In order for a given programming language to be a .NET
language it only needs a compiler from that language into
CIL code. When Microsoft released the .NET framework,
it also released the C# language as an abstraction for CIL
along with the C# CIL compiler. As of 2015, it is the primary
language for the .NET framework, although other languages
exist (e.g., J#, F#, VB.NET and many more). Some of them
were created by Microsoft, and some by other developers
and companies. In this section we shall discuss the basic
mechanisms of the CLR, the differences from JVM and why
the solution we described in this paper does not apply to
the .NET framework.

When a developer compiles a program written in some
.NET language, e.g., C#, it actually compiles into an exe-
cutable containing a CIL source code semantically identical
to the original C# source code. Once the executable file is
executed it loads the CLR into it and that CLR takes over
and executes the program. It does so by means of a Just In
Time (JIT) compiler — that is, whenever a piece of code is
called for the first time it compiles into native machine code
and only then it runs. This is in contrast to Java where the
JVM interprets the piece of code each and every time it’s
being executed.

Therefore in order to come up with a solution for CIL
source code, we need to accommodate the fact that the
executable is actually compiled by a third party (the CLR)
into native machine code and is then executed on its own
(but governed by that CLR). Another design issue with .NET
we have to take to consideration is that a managed excep-
tion cannot traverse the boundaries of the CLR — that is,
exception cannot move from managed to unmanaged world
outside the CLR. The current solution for Java uses an agent
attached to the JVM, which intercepts the method invocation
event. When the event occurs, the agent simulates execution
of the invoked method. Since that agent has full access to
the program memory, it can inspect and manipulate objects
and primitive types along the method’s simulation. The
counterpart for that agent in the world of .NET are a set

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·104

101

102

103

k

na
no

se
co

nd
s

Protected
Non-protected

Fig. 8. Execution time of Algorithm 1 in nanoseconds. The figure presents two graphs that correspond to two execution modes: (1) protected mode,
in which the algorithm is realized by an encrypted method, (2) non-protected mode, in which the algorithm is realized by a regular, non-encrypted
method.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
101

102

103

104

105

106

k

na
no

se
co

nd
s

Encrypted Callee Encrypted Caller Non-encrypted

Fig. 9. Execution time of Algorithm 2 in nanoseconds. The figure presents three graphs that correspond to three execution modes: (1) the callee,
i.e. the function fk, is encrypted (2) the caller is encrypted (3) neither the caller nor the callee are encrypted.

of APIs called ”.NET Unmanaged API” [40]. Within them,
the following APIs are of interest for us:

1) CLR Hosting API - Intended to allow any native ap-
plication — that is, a C/C++ application — to host
the CLR in its memory and allows us to gain access
to advanced APIs (which are described below), and
on top of that it allows us to host and execute a .NET
application directly from that native application.

2) Profiling API - Intended for program logging and
monitoring, this API enables a developer to create a
program called profiler which the CLR incorporates
at certain extension points, such as object creation,

function compilation and even function enter and
leave. The profiler can even be used to rewrite the
CIL source code of the function before it is compiled.
The profiler enables program monitoring and mem-
ory inspection, but it cannot be used for memory
manipulation, at least not in a straightforward way,
since in order to do so it must interact with the CLR
which is not supported by the API itself.

3) Reflection API - Intended to allow inspection and
execution of .NET objects and functions from a
native application. Unlike the profiling API, this one
does not grant access to the program CIL source

11

code; gaining access to this API requires direct ac-
cess to the CLR.

4) Debugging API - Intended to allow any developer
to write a debugger for .NET applications. This
API can access any aspect of the running program,
including its memory, parameters (static and non-
static), and CIL source code. A program utilizing
this API will have the debugger running on a sepa-
rate thread than the .NET application itself.

Using the above APIs, several applications can be imag-
ined which mimic the protection scheme devised in the
above paper, but they all fail due to lack of support from the
APIs themselves. All of these pitfalls are exception related,
and since exceptions are a big part of the language, and
developers depend on them, this pitfalls cross out use of
these APIs.

First the debugging API will be examined, as it is the
simplest to refute. The main pitfall with this API is that it is
running on a separate thread than the rest of the application.
Hypothetically, if an interpreter was created and identified
a division by zero, it should throw an exception. However,
since the interpreter is running on another (native) thread
and the .NET program is running on a different managed
thread, the debugger cannot inject an exception to the .NET
program. Therefore, program flow (which relies on excep-
tion catching and handling) cannot continue as it should.

Next, the profiler API will be examined. Using this API,
function enters can be caught, and subsequently run in
interpreter mode within the profiler. However, a problem
occurs whenever object creation is required — the profiler
can read existing objects, but it cannot call function or create
objects for that manner. Therefore, using it as an interpreter
is useless.

Lastly, there is the combination of Profiler and Reflection.
Before examining this option, it must be noted that using
the CLR within the profiler is not supported and can cause
unexpected results. Despite that, in exploring this option, a
native application is created, and the CLR is imported into
it using the hosting API. The Reflection API is imported
using the CLR object created before and placed in a shared
memory space for later use. The CLR object is used to start
the managed application that we wish to interpret. Before
continuing, it is important to note that both the native
app and the CLR (and therefore the managed application
and reflection object) all live in the same application, and
can access the memory of the other (which would not be
possible through Microsoft). Once the profiler catches a
function enter event, the CIL source code is accessed and the
interpretation begins. Whenever we need to access a func-
tion or an object we use the reflection object in the shared
memory to do so. The problem with this option arises, once
again, from exceptions. When an exception needs to be
raised from the interpreter, or even from a function called
by the interpreter, the exception has to propagate through
the native code. As stated before, this cannot be done —
the exception object cannot traverse the boundaries of the
managed code. Therefore, when the exception leaves the
profiler and is caught in the managed code, only an SEH
exception is identified — that is, a native exception which
cannot be used in the same manner as managed exceptions.

This, of course, affects the flow of a program which is
built on exception handling. Therefore, this solution is also
deemed unacceptable.

As proven with previous examples, the main problem
which occurs with interpreting .NET applications is excep-
tion handling. Since exceptions cannot propagate correctly
from unmanaged to managed code, we cannot use an ap-
plication which lives outside of the CLR to interpret the ap-
plication, at least not with the current toolset Microsoft pro-
vides with its Unmanaged APIs. Therefore, protecting .NET
managed code requires direct CLR manipulation which will
be described in future work.

10 CONCLUSIONS

As has been shown, Java programs can be, at least partially,
protected from an adversary. We believe that this degree of
protection is sufficient in cases where traditionally obfusca-
tion was used. In other cases, which require a higher degree
of protection, we suggest either avoiding using uninter-
pretable (by the hypervisor) instructions or use a tool which
can reduce the frequency of uninterpretable instruction (by
inlining methods, for instance).

While the performance penalty can be significant (2-2.5
orders of magnitude) on frequent transitions between the
hypervisor and the JVM TI agent, the performance improves
when longer sequences of instructions can be interpreted
in the hypervisor at once. Obviously, sporadic execution of
the protected parts of a Java program has little effect on
the overall performance of the program. In case of repeated
invocation of the protected parts, we suggest restraining the
use of uninterpretable instructions, such as getfield, setfield
and invokevirtual, in those parts. To conclude, by following a
set of simple guidelines and using the proposed method, a
developer can obtain a secure and reasonably efficient Java
program.

REFERENCES

[1] M. Kiperberg, A. Resh, and N. J. Zaidenberg, “Remote Attestation
of Software and Execution-Environment in Modern Machines,” in
CSCloud, 2015.

[2] A. Averbuch, M. Kiperberg, and N. J. Zaidenberg, “Truly-Protect:
An Efficient VM-Based Software Protection,” Systems Journal,
IEEE, vol. 7, no. 3, pp. 455–466, 2013.

[3] Themida, http://www.oreans.com/, Oreans.
[4] VMProtect, http://vmpsoft.com/, VMProtect Software.
[5] R. Rolles, “Unpacking Virtualization Obfuscators,” in Proceedings

of the 3rd USENIX Conference on Offensive Technologies, ser.
WOOT’09. Berkeley, CA, USA: USENIX Association, 2009,
pp. 1–1. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1855876.1855877

[6] L. Bohne, “Pandora’s Bochs: Automated Unpacking of Malware,”
2008.

[7] D. Schellekens, B. Wyseur, and B. Preneel, “Remote Attestation on
Legacy Operating Systems with Trusted Platform Modules,” Sci.
Comput. Program., vol. 74, no. 1-2, pp. 13–22, Dec. 2008. [Online].
Available: http://dx.doi.org/10.1016/j.scico.2008.09.005

[8] S. Pearson, Trusted Computing Platforms: TCPA Technology in Con-
text. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2002.

[9] P. England, B. Lampson, J. Manferdelli, M. Peinado, and
B. Willman, “A Trusted Open Platform,” Computer, vol. 36, no. 7,
pp. 55–62, Jul. 2003. [Online]. Available: http://dx.doi.org/10.
1109/MC.2003.1212691

[10] C. Tarnovsky, “Semiconductor Security Awareness Today
and yesterday,” in Blackhat, 2010. [Online]. Available: https:
//www.youtube.com/watch?v=WXX00tRKOlw

12

[11] ——, “Attacking TPM part two,” in Defcon, 2012. [Online].
Available: https://www.youtube.com/watch?v=Ed 9p7E4jIE

[12] D. P. Delorey, C. D. Knutson, and C. Giraud-Carrier, “Program-
ming language trends in open source development: An evaluation
using data from all production phase sourceforge projects,” in
Second International Workshop on Public Data about Software Develop-
ment (WoPDaSD’07), 2007.

[13] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley, The Java Virtual
Machine Specification, Oracle Corporation.

[14] “The Java Language Specification.” Oracle Corporation, 2015.
[15] A. Chander, J. C. Mitchell, and I. Shin, “Mobile code security by

Java bytecode instrumentation,” in DARPA Information Survivabil-
ity Conference & Exposition II, 2001. DISCEX’01. Proceedings,
vol. 2. IEEE, 2001, pp. 27–40.

[16] H. B. Lee and B. G. Zorn, “BIT: A Tool for Instrumenting Java
Bytecodes,” in USENIX Symposium on Internet technologies and
Systems, 1997, pp. 73–82.

[17] M. Harkema, D. Quartel, B. Gijsen, and R. D. van der Mei,
“Performance monitoring of Java applications,” in Proceedings of
the 3rd international workshop on Software and performance. ACM,
2002, pp. 114–127.

[18] Java Virtual Machine Tool Interface, http://docs.oracle.com/javase/
7/docs/platform/jvmti/jvmti.html, Oracle Corporation.

[19] W. Binder and J. Hulaas, “Exact and portable profiling for the jvm
using bytecode instruction counting,” Electronic Notes in Theoretical
Computer Science, vol. 164, no. 3, pp. 45–64, 2006.

[20] J. Howarth, I. Altas, and B. Dalgarno, “Information Flow Con-
trol Using the Java Virtual Machine Tool Interface (JVMTI),” in
Availability, Reliability, and Security, 2010. ARES’10 International
Conference on. IEEE, 2010, pp. 689–695.

[21] F. W. Long, “Software vulnerabilities in Java,” 2005.
[22] M. Luedde, “Low impact debugging protocol,” Nov. 13 2012, US

Patent 8,312,438.
[23] G. J. Popek and R. P. Goldberg, “Formal Requirements for

Virtualizable Third Generation Architectures,” Commun. ACM,
vol. 17, no. 7, pp. 412–421, Jul. 1974. [Online]. Available:
http://doi.acm.org/10.1145/361011.361073

[24] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “kvm:
the Linux virtual machine monitor,” in Proceedings of the Linux
Symposium, vol. 1, 2007, pp. 225–230.

[25] R. J. Creasy, “The Origin of the VM/370 Time-sharing System,”
IBM J. Res. Dev., vol. 25, no. 5, pp. 483–490, Sep. 1981. [Online].
Available: http://dx.doi.org/10.1147/rd.255.0483

[26] Intel 64 and IA-32 Architectures Software Developer’s Manual - Volume
3, Intel Corporation, August 2007.

[27] “AMD64 Architecture Programmer’s Manual Volume 2: System
Programming,” AMD, 2010.

[28] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the
art of virtualization,” in Proceedings of the Nineteenth ACM
Symposium on Operating Systems Principles, ser. SOSP ’03. New
York, NY, USA: ACM, 2003, pp. 164–177. [Online]. Available:
http://doi.acm.org/10.1145/945445.945462

[29] M. Ben-Yehuda, M. D. Day, Z. Dubitzky, M. Factor, N. Har’El,
A. Gordon, A. Liguori, O. Wasserman, and B.-A. Yassour, “The
Turtles Project: Design and Implementation of Nested Virtualiza-
tion,” in OSDI, vol. 10, 2010, pp. 423–436.

[30] J. Rutkowska and A. Tereshkin, “IsGameOver(), anyone?” in
Blackhat 2007, 2007. [Online]. Available: http://invisiblethingslab.
com/resources/bh07/IsGameOver.pdf

[31] ——, “Bluepilling the xen hypervisor,” Black Hat USA, 2008.
[32] P. Ferrie, “Attacks on more virtual machine emulators,” Symantec

Technology Exchange, p. 55, 2007.
[33] T. Shinagawa, H. Eiraku, K. Tanimoto, K. Omote, S. Hasegawa,

T. Horie, M. Hirano, K. Kourai, Y. Oyama, E. Kawai,
K. Kono, S. Chiba, Y. Shinjo, and K. Kato, “Bitvisor: A thin
hypervisor for enforcing i/o device security,” in Proceedings
of the 2009 ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments, ser. VEE ’09. New York,
NY, USA: ACM, 2009, pp. 121–130. [Online]. Available:
http://doi.acm.org/10.1145/1508293.1508311

[34] Y. Chubachi, T. Shinagawa, and K. Kato, “Hypervisor-based
Prevention of Persistent Rootkits,” in Proceedings of the 2010
ACM Symposium on Applied Computing, ser. SAC ’10. New
York, NY, USA: ACM, 2010, pp. 214–220. [Online]. Available:
http://doi.acm.org/10.1145/1774088.1774131

[35] R. Kennell and L. H. Jamieson, “Establishing the Genuinity of
Remote Computer Systems,” in Proceedings of the 12th Conference on
USENIX Security Symposium - Volume 12, ser. SSYM’03. Berkeley,
CA, USA: USENIX Association, 2003, pp. 21–21. [Online].
Available: http://dl.acm.org/citation.cfm?id=1251353.1251374

[36] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla,
“Pioneer: Verifying code integrity and enforcing untampered
code execution on legacy systems,” in Proceedings of the Twentieth
ACM Symposium on Operating Systems Principles, ser. SOSP ’05.
New York, NY, USA: ACM, 2005, pp. 1–16. [Online]. Available:
http://doi.acm.org/10.1145/1095810.1095812

[37] A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla, “SWATT:
softWare-based attestation for embedded devices,” in Security and
Privacy, 2004. Proceedings. 2004 IEEE Symposium on, May 2004, pp.
272–282.

[38] C. Collberg, G. Myles, and M. Stepp, “An Empirical Study
of Java Bytecode Programs,” Softw. Pract. Exper., vol. 37,
no. 6, pp. 581–641, May 2007. [Online]. Available: http:
//dx.doi.org/10.1002/spe.v37:6

[39] “Standard ECMA-335: Common Language Infrastructure (CLI).”
ECMA International, 2012.

[40] “Unmanaged API Reference.” Microsoft Corporation.

Michael Kiperberg was born in Ukraine in 1987
and migrated to Israel in 1997. He received his
B.Sc. and M.Sc. (Cum Laude) in Computer Sci-
ence from Tel Aviv University, Israel in 2012.
Michael is currently a Ph.D. student at the Uni-
versity of Jyvaskyla, under the supervision of
Prof. Pekka Neittaanmaki. Michael served as an
academic officer in the Israeli Air Force, and now
he is a Chief Scientist in a startup company.

Amit Resh was born in Haifa, Israel, in 1959.
He received his B.Sc. in Computer-Engineering
and MBA from the Technion, Israel Institute of
Technology, in 1986 and 2001 respectively. In
2013 he received his M.Sc. from the University of
Jyvaskyla, Finland. He has more than 25 years
of professional experience in hi-tech companies
in Israel and the USA. He has previously worked
as Program-Manager at Apple and as VP of R&D
at Connect One, as well as other companies in
the embedded-systems industry. Currently he is

COO of TrulyProtect, a startup company developing trusted computing
systems based on virtualization technology. As of 2014 he is working
towards his Ph.D. at the University of Jyvaskyla, Finland.

Asaf Algawi was born in Haifa, Israel in 1986.
He received his B.Sc. in Information Systems
Engineering from Ben-Gurion University of the
Negev, Israel in 2009. He has 6 years of pro-
fessional experience in hi-tech military units in
the IDF, these include 3 years as a system an-
alyst and another 3 years leading a small team
of .NET developers. As of 2014 he is working
towards his M.Sc. at the University of Jyvaskyla,
Finland.

13

Nezer Jacob Zaidenberg was born in Tel Aviv,
Israel, in 1979. He received his B.Sc in Com-
puter Science and Statistics and Operations Re-
search in 1999, M.Sc in Operations Research in
2001, and MBA in 2006 from Tel Aviv University.
Nezer completed his Ph.D. studies in 2012 at the
University of Jyvaskyla. Nezer is the owner of
Warp speed solution consulting group and has
been consulting to NDS, IBM, Kardan VC, Sin-
tecmedia, Videocells among others. Currently
Nezer is CTO of TrulyProtect.

PVII

SYSTEM FOR EXECUTING ENCRYPTED NATIVE PROGRAMS

by

Kiperberg, M.; Leon, R.; Resh, A.; Zaidenberg, N.J. Submitted

IEEE Symposium on Security and Privacy

System for Executing
Encrypted Native Programs

Michael Kiperberg∗, Amit Resh∗, Roee Leon∗, Nezer J. Zaidenberg∗

∗Department of Mathematical Information Technology, University of Jyvaskyla, Finland

{michael, amit, roee, nezer}@trulyprotect.com

Abstract—An important aspect of protecting software from1

attack, theft of algorithms, or illegal software use, is eliminating2

the possibility of performing reverse engineering. One common3

method to deal with these issues is code obfuscation. However, it is4

proven to be ineffective. Code encryption is a much more effective5

means of defying reverse engineering, but it requires managing6

a secret key available to none but the permissible users. The au-7

thors propose a new and innovative solution. Critical functions in8

a protected software are encrypted using well-known encryption9

algorithms. Following verification by external attestation, a thin10

hypervisor is used as the basis of an eco-system that manages just-11

in-time decryption, inside the CPU, where decrypted instructions12

are then executed and finally discarded, while keeping the secret13

key and the decrypted instructions absolutely safe. The paper14

presents and compares two methodologies that perform the just-15

in-time decryption: in-place and buffered execution. The former16

being safer, while the latter boasts better performance17

Index Terms—Trusted Computing, Hypervisor, Virtualization,18

Remote Attestation19

I. INTRODUCTION20

Digital content such as games, videos, and the like may21

be susceptible to unlicensed usage, which has a significant22

adverse impact on the profitability and commercial viability23

of such products. Commonly, such commercial digital content24

may be protected by a licensing verification program; these,25

however, may be circumvented by reverse engineering of the26

software instructions of the computer program which leaves27

them vulnerable to misuse.28

One way of preventing circumvention of the software licens-29

ing program, may be using a method of obfuscation [1], [2].30

The term obfuscation refers to making software instructions31

difficult for humans to understand by deliberately cluttering32

the code with useless, confusing pieces of additional software33

syntax or instructions. However, even when changing the34

software code and making it obfuscated, the content is still35

readable to the skilled hacker [3], [4].36

Additionally, publishers may protect their digital content37

product by encryption, using a unique key to convert the38

software code to an unreadable format, such that only the39

owner of the unique key may decrypt the software code.40

Such protection may only be effective when the unique key is41

kept secured and unreachable to an adversary. Hardware based42

methods for keeping the unique key secured are possible [5]–43

[7], but may have significant deficiencies, mainly due to an44

investment required in dedicated hardware on the user side,45

making it costly, and, therefore, impractical. Furthermore, such46

hardware methods have been successfully attacked by hackers 47

[8], [9]. 48

Software copy-protection is currently predominantly gov- 49

erned by methodologies based on obfuscation, which are 50

volatile to hacking or user malicious activities. There is, 51

therefore, a need for a better technique for protecting sensitive 52

software sections, such as licensing code. 53

In this paper, we present a system that allows encrypting 54

and executing native programs written for the x86 architecture. 55

The system is based on the approach proposed by Averbuch et 56

al. [10], in which an attested kernel module is responsible for 57

decryption and execution of encrypted functions. The main 58

deficiency of the proposed approach is the inability of the 59

kernel module to protect itself from the operating system. 60

As a consequence, a vulnerability in the operating system 61

may compromise the secret key. Moreover, the attestation 62

server has to attest not only the kernel module responsible 63

for decryption but also the entire operating system. The 64

complications of operating system attestation and a partial 65

mitigation are described in [11]. 66

This paper proposes to solve all these complications by 67

utilizing the virtualization extension, which is available on 68

modern processors [12], [13], in order to enable the decrypting 69

kernel module to protect itself, thus eliminating the need for 70

operating system attestation. Figure 1 depicts the components 71

of the proposed system as well as their relationships. The 72

system is deployed on three computers: a development ma- 73

chine, on which the program to be encrypted, is compiled and 74

encrypted; the attestation server, which stores the decryption 75

key, and delivers it to the target machine; and the target 76

machine, which executes the encrypted program. A special 77

driver, which embeds a hypervisor, is installed on the target 78

machine prior to execution of an encrypted program. The 79

hypervisor obtains the decryption key, which is necessary 80

for program execution, from the attestation server, when an 81

encrypted program is loaded to the memory. 82

The paper is organized as follows. Section II presents the 83

structure of executable files, and describes the transformation 84

applied to these files by the encryption tool. Hypervisors and 85

their role in security are discussed in section III. Section IV 86

outlines the attestation protocol, which is performed during 87

hypervisor’s initialization. We discuss the execution process 88

of an encrypted function in section V. The performance and 89

security measurements of the system are presented in section 90

Fig. 1. Native code protection system. The original program is encrypted
before its distribution. The encryption key is stored in the attestation server,
which delivers it to the hypervisor in the target machine upon successful
attestation. The hypervisor is initialized by a driver, which also hosts the
code of the hypervisor.

Fig. 2. Structure of a Windows PE file. The structure contains a variable
number of sections. Two of the most common sections are presented.

VI. Section VII discusses the limitations of the presented1

system and its possible extensions. Section VIII summarizes2

the results of this paper.3

II. ENCRYPTION TOOL4

The encryption tool is responsible for encryption of selected5

functions in a program. The user selects the functions to be6

encrypted by specifying their names in a configuration file.7

A map file or a debug symbols file, which are produced by8

a compiler, can then be used to translate the names of the9

functions to their locations in the program file.10

On Windows, program files, executables and dynamic li-11

braries, are stored in Portable Executable (PE) format [14].12

Figure 2 depicts the structure of a PE file. The different headers13

define the expected location of the PE file when loaded to14

memory, sizes and positions of various data structures inside15

the PE file, the number of sections contained in this PE file,16

etc. The section table contains a description of each of the17

sections contained in the PE file. Following the section table18

are the sections themselves. Sections vary in their structure and19

purpose: the .text section contains the code of the program, the20

.data section contains its constants. Other sections may contain21

information about resources (images and sounds) embedded in22

the PE file or information used during exception delivery.23

On Linux, program files, executable files and dynamic 24

libraries, are stored in Executable And Linkable Format (ELF) 25

format [15]. Figure 3 depicts the structure of an ELF file. An 26

ELF file consists of a header, which is followed by data. The 27

data may include: 28

• Program header table, describing zero or more segments. 29

Only two segments can be defined as loadable: the code 30

segment and the data segment. The code segment is 31

loaded to memory with read-write-execute permissions, 32

while the data segment is loaded with read-only permis- 33

sions. Other segments are not loaded to memory. 34

• Section header table, describing zero or more sections. 35

A typical ELF file holds a section called .text, which 36

contains the code of the program. 37

• Data referenced by entries in the program header table or 38

section header table. 39

The segments contain information that is necessary for runtime 40

execution of the file, while the sections contain data for linking 41

and relocation. Figure 3 depicts the structure of an ELF virtual- 42

image at load time. 43

The encryption tool modifies the given PE/ELF file by 44

introducing a new section, which stores the selected functions 45

in encrypted form. The instructions of the original functions 46

are partially replaced by an exception inducing instruction. 47

We propose to use either the halt instruction or the software 48

breakpoint instruction. The halt instruction is a privileged 49

instruction, which deactivates the current processor when 50

executed in kernel mode, but generates a general protection 51

fault when executed in user mode. The software breakpoint 52

instruction generates a breakpoint trap when executed in 53

either kernel or user modes. Faults and traps, being types of 54

interrupts, can be intercepted by a hypervisor, which can then 55

decrypt and execute the original encrypted function. Another 56

benefit of the halt and the software breakpoint instructions 57

is that they can be represented by a single byte (0xF4 for 58

halt and 0xCC for software breakpoint), thus allowing them 59

to fully cover any number of bytes. The software breakpoint 60

instruction is superior to the halt instruction in that it generates 61

an interrupt not only in user mode but also in kernel mode. 62

As will be explained in section V, it is highly important to 63

intercept control transfers that leave the encrypted function. 64

The encryption tool disassembles the function to be encrypted 65

and inspects its instructions. The instructions then are classi- 66

fied as encryptable and non-encryptable. The encryption tool 67

classifies an instruction as non-encryptable if it might transfer 68

control out of the encrypted function. For example, the ret and 69

the call instructions are always classified as non-encryptable, 70

but the jmp instruction is classified as non-encryptable only if 71

its destination lays outside of the protected function’s bounds 72

or if the destination cannot be determined statically (if it is 73

stored in a register, for instance). 74

The encryption tool produces two copies of the original 75

function, the encryptable copy (EC) and the non-encryptable 76

copy (NEC). In the EC all the non-encryptable instructions are 77

replaced by the halt or the software breakpoint instructions. 78

Then the encryption tool encrypts the EC and stores it in the 79

Fig. 3. The left image represents the structure of an ELF file as it is stored in disk. The right image represents the structure of an ELF file as it is loaded to
memory.

new section. In the NEC all the encryptable instructions are1

replaced by the halt or the software breakpoint instructions.2

Then the encryption tool replaces the original function by the3

NEC. Figure 4 presents an example of such transformation.4

III. HYPERVISOR5

A hypervisor, also referred to as a Virtual Machine Monitor6

(VMM), is software, which may be hardware-assisted, to7

manage multiple virtual machines on a single system [16]. The8

hypervisor virtualizes the hardware environment in a way that9

allows several virtual machines, running under its supervision,10

to operate in parallel over the same physical hardware plat-11

form, without obstructing or impeding each other. Each virtual12

machine has the illusion that it is running unaccompanied on13

the entire hardware platform. The hypervisor is referred to as14

the host, while the virtual machines are referred to as guests.15

A virtual machine control structure (VMCS) is defined16

for each virtual environment managed by a virtual machine17

monitor (VMM) [12]. This structure defines the values of18

privileged registers, the location of the interrupt descriptors19

table, and additional values that constitute the internal state20

of the virtual environment. In addition, this structure defines21

the events that the VMM is configured to intercept, and the22

address of the function that should handle the interception.23

The act of control transfer from the virtual environment to a24

predefined function is called vm-exit and the act of control25

transfer from the function back to the virtual environment26

is called vm-entry. Upon vm-exit the function can determine27

the reason of the vm-exit by examining the fields of the 28

VMCS and altering them, thus altering the state of the virtual 29

environment as it wishes. Finally, the VMCS can define a 30

mapping between the physical memory as it is perceived 31

by the virtual environment and the actual physical memory. 32

As a consequence, the VMM can prevent access to some 33

physical pages by the virtual environment. Moreover, the 34

virtual environment will be unaware of this situation. 35

We propose to use a hypervisor for securing a single 36

guest. Rather than wholly virtualizing the hardware platform, 37

a special breed of hypervisor, called a thin hypervisor, is 38

used [17], [18]. A thin hypervisor is configured to intercept 39

only a small portion of events. All other events are processed 40

without interception, directly, by the OS. A thin hypervisor 41

only intercepts the set of events that allows it to protect an 42

internal secret (such as a cryptographic key) and protect itself 43

from subversion. Figure 5 depicts a thin hypervisor supporting 44

a single guest. Since a thin hypervisor does not control most 45

of the OS interaction with the hardware, multiple OS are not 46

supported. On the other hand, system performance is kept at 47

an optimum. 48

A thin hypervisor facilitates a secure environment by: (a) 49

setting aside portions of memory that cannot be accessed 50

by the guest, (b) storing the cryptographic key in privileged 51

registers, and (c) intercepting privileged instructions that may 52

compromise its protected memory or the cryptographic key. 53

Once this environment is correctly configured, a thin hy- 54

Fig. 4. Example of an encryption process of a single function. The encryption begins by classifying instruction is encryptable (normal face) and non-encryptable
(bold face), and creating to copies. The complementary instructions in each copy are replaced by halts. Finally, one copy is written over the original functions,
and the other is encrypted and added to the special section.

Fig. 5. Thin hypervisor. The hypervisor runs in a higher privilege level than
the operating system. System calls, traps, exceptions, and other interrupts,
transfer control from user mode applications to the operating system. The
operating system handles these conditions by requesting some service from the
underlying hardware. A thin hypervisor can intercept some of those requests
and handle them according to some policy.

pervisor can be utilized to carry out specific operations, which1

may include use of the cryptographic key, in a protected region2

of memory. As a result of the tightly configured intercepts and3

absolute control of the protected memory regions, this activity4

can be guaranteed to protect both the cryptographic key and5

the operations results.6

IV. REMOTE ATTESTATION 7

The problem of remote software authentication, determining 8

whether a remote computer system is running the correct 9

version of a software, is well known [5], [19]–[25]. Equipped 10

with a remote authentication method, a service provider can 11

prevent an unauthenticated remote software from obtaining 12

some secret information or some privileged service. For ex- 13

ample, only authenticated gaming consoles can be allowed to 14

connect to the gaming networks [26]–[28], and only authenti- 15

cated bank terminals can be allowed to fetch records from the 16

bank database [29]. 17

The research in this area can be divided into two ma- 18

jor branches: hardware assisted authentication [5]–[7] and 19

software-only authentication [19]–[22]. In this paper we con- 20

centrate on software-only authentication, although the system 21

can be adapted to other authentication methods, as well. 22

The authentication entails simultaneously authenticating some 23

software component(s) or memory region, as well as verifying 24

that the remote machine is not running in virtual or emulation 25

mode. Software-only authentication methods may also involve 26

a challenge code, that is sent by the authentication authority, 27

and executed on the remote system. The challenge code 28

computes a result that is then transmitted back to the authority. 29

The authority deems the entity to be authenticated if the 30

result is correct and was received within a predefined time- 31

Fig. 6. The attestation protocol between the authentication authority and the
target machine. The protocol consists of four messages. The first two messages
are sent unencrypted, while the two last messages are encrypted. The third
message is encrypted by the public key of the authentication authority and
the fourth message is encrypted by the random value transmitted in the third
message.

frame. The underlying assumption, which is shared by all such1

authentication methods, is that only an authentic system can2

compute the correct result within the predefined time-frame.3

The methods differ in the means by which (and if) they satisfy4

this underlying assumption.5

Kennell and Jamieson proposed [19] a method that produces6

the result by computing a cryptographic hash of a specified7

memory region. Any computation on a complex instruction set8

architecture (Pentium in this case) produces side effects. These9

side effects are incorporated into the result after each iteration10

of the hashing function. Therefore, an adversary, trying to11

compute the correct result on a non-authentic system, would12

be forced to build a complete emulator for the instruction13

set architecture to compute the correct side effects of every14

instruction. Since such an emulator performs tens and hun-15

dreds of native instructions for every simulated instruction,16

Kennell and Jamieson conclude that it will not be able to17

compute the correct result within the predefined time-frame.18

The method of Kennel and Jamieson was further adapted to19

modern processors [30]. The adaptation solves the security is-20

sues that arise from the availability of virtualization extensions21

and multiplicity of execution units.22

The authentication protocol is depicted in Figure 6. The23

initial messages of the protocol carry information about the24

current configuration of the target machine. Following this25

exchange, the authentication authority transmits a message26

containing the challenge code to be executed on the target27

machine. The target machine executes the challenge, which28

computes a result, that is a cryptographic hash of some29

memory region, possibly with some additional information.30

The target machine, concatenates a randomly generated num-31

ber to the result, encrypts both values with the public key32

of the authentication authority, and transmits the encrypted33

message. The authentication authority verifies that the result34

is correct and was received within a predefined time-frame. If35

both are true the target machine is considered authentic. The36

authentication authority then shares some secret information37

with the target machine. This secret information constitutes38

a proof of target’s authenticity. The authentication authority 39

encrypts the secret information with a random value obtained 40

from message (3) acting as the encryption key, and transmits 41

the encrypted message to the target machine. 42

V. ENCRYPTED INSTRUCTIONS EXECUTION 43

In order to execute an encrypted program, the user must 44

first install the driver, which encapsulates the hypervisor. The 45

driver monitors the PE files loaded by the OS, and keeps 46

track of PE files that contain the special encrypted functions 47

section. When the first such PE file is loaded, the driver 48

initializes the hypervisor. During the initialization, the driver 49

communicates with the authentication authority, passes the 50

attestation verification, obtains the cryptographic key, and 51

enters a virtualized state. 52

The hypervisor is configured to intercept the general pro- 53

tection fault. When a protected program transfers control to 54

an encrypted function, the processor attempts to execute the 55

halt instruction, which induces a general protection fault, thus 56

transferring control to the hypervisor. General protection faults 57

rarely occur during the normal course of program execution, 58

since they usually cause the program to terminate abruptly. 59

Nevertheless, the hypervisor uses the data structures prepared 60

by the encryption tool to test whether the general protection 61

fault occurred during execution of an encrypted function. 62

The hypervisor injects the interrupt back to the guest, if it 63

was not caused by an encrypted function execution. Otherwise, 64

the hypervisor decrypts the function and starts its execution. 65

Since during its execution, the function is stored in memory 66

in unencrypted form, it is highly important to ensure that no 67

other code has access to the decrypted instructions of the 68

function. We note that in modern processors, several execution 69

units (logical processors) can execute programs concurrently. 70

Therefore, we must ensure that programs executed by all 71

execution units have no access to the unencrypted instructions. 72

We present two approaches to sensitive functions execution: 73

in-place execution and buffered execution. 74

A. In-place Execution 75

According to this approach the hypervisor can be in one 76

of two states: cold or hot. In the cold state the memory 77

does not contain any sensitive information and only the 78

cryptographic key and the hypervisor’s state must be protected. 79

This is the regular mode of operation described in section III. 80

The hypervisor switches to the hot state when the memory 81

contains sensitive information, which cannot be protected by 82

a regular memory protection technique (using EPT), since its 83

physical location is not known (or not constant). This switch 84

occurs when the hypervisor triggers execution of a decrypted 85

function. 86

In the following description, we assume that the encryption 87

tool uses halt as a replacement instruction, but the same is true 88

when the software breakpoint instruction is used. 89

At initialization the hypervisor’s state is set to cold. In this 90

state, in addition to the regular protection means described in 91

section III, the hypervisor intercepts general protection faults. 92

Fig. 7. Example of encrypted function execution. The figure depicts two
execution units, each with two alternating states: guest and host.The dashed
horizontal lines are synchronization barriers, i.e. everything above the line is
guaranteed to complete before anything below the line starts.

An encrypted function, which was overwritten by the NEC1

consists mainly of halt instructions. Execution of any of these2

instructions induces a general protection fault, which causes a3

vm-exit and transfers control to the hypervisor. The hypervisor4

inspects the source of the general protection fault, and fetches5

the EC that corresponds to this NEC. Then the hypervisor6

switches to hot mode and decrypts the EC into its natural7

location, currently occupied by the NEC (the NEC is saved in8

a different location for future use).9

During the switch to hot mode, the hypervisor freezes10

all other execution units, and configures itself to intercept11

all interrupts. This behaviour guarantees that the function in12

its decrypted form cannot be read by any other, potentially13

malicious, code, simply because no other code can run in hot14

mode. We note that all the control transfer instructions in the15

EC are replaced by the halt instruction, which induces a vm-16

exit.17

When a vm-exit occurs in hot mode, the hypervisor first18

replaces the decrypted function with the NEC, and switches19

to cold mode. Following this, the hypervisor resumes all the20

execution units, configures itself to intercept only general21

protection faults, and returns control to the guest. Figure 722

depicts the control flow during encrypted function execution.23

We suggest to freeze other execution units by inducing24

a vm-exit on each execution unit, and running a busy loop25

until the hypervisor switches back to cold mode. A vm-exit26

can be induced either implicitly with a timer or explicitly by27

sending an inter-processor interrupt (IPI). The former solution28

is much easier to implement but the later solution is much29

more efficient.30

The hypervisor intercepts interrupts in hot mode by replac-31

ing the original interrupt descriptor table (IDT) of the OS32

with a specially crafted IDT. In this special IDT each handler 33

induces a vm-exit, for example, by executing the CPUID 34

instruction. The hypervisor intercepts this instruction, realizes 35

that an interrupt at vector N occurred and switches to cold 36

mode. The hypervisor proceeds by installing the original IDT 37

and moves the guest’s instruction pointer to point to the N th 38

interrupt handler of the original IDT. 39

B. Buffered Execution 40

In the following description, we assume that the encryption 41

tool uses halt as a replacement instruction for NECs and 42

software breakpoint as a replacement instruction for ECs. 43

According to this approach, the hypervisor has only one 44

state, in which it protects itself as described in section III. In 45

addition, the hypervisor configures itself to intercept general 46

protection faults. Execution of halt instructions induces a 47

general protection fault, which causes a vm-exit and transfers 48

control to the hypervisor. The hypervisor inspects the source 49

of the general protection fault, and fetches the EC that corre- 50

sponds to this NEC. 51

When the EC is resolved, the hypervisor decrypts it into 52

a pre-allocated memory buffer, which is protected by the 53

hypervisor. The decrypted EC will be executed in host mode, 54

thus allowing it to reside in an EPT-protected buffer. Since the 55

decrypted instructions are inaccessible by any other execution 56

unit (in guest mode), there is no need to suspend them. 57

Likewise, since the encrypted instructions are executed inside 58

the hypervisor, there is no need to modify the IDT of the guest. 59

Finally, there is no need to perform the costly transitions to 60

and from the guest after every decryption. All these improve 61

the overall performance of the system by a large factor. 62

The x86 instruction set architecture defines many memory 63

access instructions as relative, meaning that their arguments 64

should not be interpreted as actual memory locations but rather 65

they should be interpreted as offsets from the current value of 66

the instruction pointer. As a consequence, the same instruction 67

may have different interpretations when executed at different 68

locations. Therefore we must execute the decrypted EC at 69

its natural location. In order to achieve this, the hypervisor 70

modifies the virtual page table of the current process by 71

mapping the virtual page containing the NEC to the physical 72

address of the pre-allocated buffer containing the decrypted 73

EC. Figure 8 depicts this transformation. 74

The control flow during the execution of an encrypted 75

function is illustrated in Figure 9. The process begins when 76

an encrypted function is called. The first instruction in the 77

NEC is the halt instruction; its execution triggers the general 78

protection exception, which induces a vm-exit. The hypervisor 79

prepares the system for buffered execution by performing 80

the following steps: (1) the EC is decrypted into a pre- 81

allocated buffer; (2) the virtual page table is modified to 82

map the natural location of the function to the pre-allocated 83

buffer, as illustrated in Figure 8; (3) the values of the guest 84

registers, which were stored during the vm-exit transition, are 85

restored; (4) the decrypted function is called. The decrypted 86

function executes until an interrupt occurs. The interrupt can 87

Fig. 8. Memory layout during buffered execution. The functions resided at virtual address 7862000, which is mapped to the physical address 7862000 (a
coincidence). The encrypted code is decrypted to virtual address ffffffff‘0197000 which is mapped to the physical address 2000. The hypervisor changes the
mapping of the virtual address 7862000 to map the physical address 2000.

be triggered by a software breakpoint instruction or by some1

other condition, e.g., a page fault. In both cases the hypervisor2

suspends the buffered execution by performing the following3

steps: (1) the values of the registers are stored to a memory4

region from which they will be restored during vm-entry; (2)5

the virtual page table is restored to its original state; (3) the6

decrypted EC is erased. If the interrupt was triggered by a7

software breakpoint instruction, the hypervisor resumes the8

guest immediately. However, if the interrupt was triggered by9

some other condition, the hypervisor injects the interrupt to the10

guest, and then resumes it. The interrupt injection mechanism11

allows the hypervisor to delegate the responsibility of interrupt12

handling to the operating system. Figure 9 illustrates the13

simple case of software breakpoint interrupt.14

This approach is more efficient but potentially less secure15

than the in-place execution. According to this approach, the16

decrypted functions are executed inside the hypervisor itself.17

As a consequence these functions have the same privileges as18

the hypervisor. In particular, they can read and write memory,19

which is otherwise inaccessible to any code external to the20

hypervisor. One can argue that it is impossible for an adversary21

to replace the EC with random code, without knowing the22

cryptographic key. However unfortunately, it is possible that23

some memory manipulation can be performed indirectly by24

modifying the data on which the encrypted function works.25

Nevertheless, although possible, it seems to be extremely26

difficult to manipulate the behaviour of unknown code through27

its data.28

VI. MEASUREMENTS29

This section presents a performance analysis of the two30

execution methods that were described in section V. The31

Fig. 9. Example of encrypted function execution in buffered execution mode.
The figure depicts the control flow during the execution of an encrypted
function.

measurements were performed on programs with a single 32

Fig. 10. Execution modes. The left column represents the guest mode, while
the right column represents the host mode. The lower row represents the
kernel mode, while the upper row represents the user mode. The host mode
can protect itself from the guest mode through the EPT mechanism. The
kernel mode can protect itself from the user mode through the virtual memory
protection mechanism.

encrypted function. The functions that were chosen do not call1

other functions. Therefore, these functions can be executed at2

once. The size of the functions varied, as will be explained3

below.4

According to the in-place execution method, at the begin-5

ning of each execution cycle, the main execution unit freezes6

other execution units. This is usually accomplished with the7

following sequence of actions:8

1) The main execution unit writes freeze requests to the9

data structures of other execution units.10

2) The main execution unit triggers a vm-exit in other11

execution units.12

3) Other execution units inspect their data structures.13

4) Other execution units enter a busy-loop.14

5) The main execution unit proceeds (to decryption, exe-15

cution, etc.).16

Usually, in order to perform some operation on a different17

execution unit, the current execution unit sends an inter-18

processor interrupt (IPI), which triggers an interrupt service19

routine. This is probably the most efficient, and at the same20

time, the most complicated solution. We chose to induce21

a vm-exit periodically on every execution unit, through the22

preemption-timer field of the VMCS, which defines the maxi-23

mal amount of time that the guest can execute before returning24

to the hypervisor. Figure 11 depicts the relation between the25

execution time of a function and the preemption-timer interval.26

The figure also includes the execution times of the function27

under the following conditions:28

• Regular, unencrypted, execution time.29

• Execution time using the buffered method.30

• Execution time using the in-place method, which skips31

the freeze step.32

Figures 12 and 13 present the time division between the33

steps of the in-place and the buffered execution methods,34

respectively. The in-place execution method consists of the35

following steps:36

• vm-exit37

• execution units freezing38

• decryption39

• vm-entry40

• instructions execution41

• vm-exit 42

• erasure of the decrypted function 43

• execution units unfreezing 44

• vm-entry 45

Figure 12 presents the execution time of each step. The 46

buffered execution method consists of the following steps: 47

• vm-exit 48

• virtual page table modification 49

• decryption 50

• instructions execution 51

• erasure of the decrypted function and virtual page table 52

restoration 53

• vm-entry 54

Figure 13 presents the execution time of each step. 55

Finally, figure 14 compares the execution times of the in- 56

place and the buffered execution methods for functions of 57

different lengths. 58

VII. FUTURE WORK 59

As was explained above, the buffered execution method 60

is superior to the in-place execution method in terms of 61

performance. Unfortunately, the buffered execution method 62

allows an adversary to access regions of memory that are 63

normally protected by the hypervisor. Consider the memcpy 64

function, for example. Assume that this function is encrypted 65

and is now being executed by the hypervisor in buffered 66

execution mode. By specifying the address of the VMCS 67

structure in the source or destination argument, an adversary 68

can inspect and modify the control structures of the hypervisor. 69

Moreover, since the hypervisor executes in kernel mode, the 70

protected function can access OS memory region and execute 71

privileged instructions. 72

Fortunately, the x86 instruction set architecture provides 73

a great variety of memory protection mechanisms, which 74

can be utilized by the buffered execution method. One such 75

mechanism is the virtual memory protection, which is avail- 76

able in both 32- and 64-bit execution modes. The virtual 77

memory protected mechanism allows to specify a separate 78

set of accessibility rights for kernel mode and user mode. 79

Similarly, the hypervisor’s memory protection (virtualization, 80

to be precise) mechanism, called the Extended Page Table 81

(EPT) on Intel processors, allows to specify a separate set 82

of accessibility rights for host mode and guest mode. The 83

different modes of execution and the protection mechanisms 84

are summarized in Figure 10. 85

The in-place execution method utilizes the EPT to protect 86

hypervisor’s control structures and other sensitive data from an 87

adversary. We propose to use the virtual memory protection 88

mechanism in the buffered execution method. In particular, 89

the buffered execution method can execute the decrypted 90

function in user mode inside the host mode (the upper right 91

block in Figure 10); this mode is not used by the system 92

described in this paper. In this mode we can prevent attempts 93

to execute privileged instructions or access the hypervisor’s 94

control structures. 95

No encryption Buffered No freezing 16 32 64
0

0.5

1

·104

72

8,741
7,910

9,902
10,995 10,743

cy
cl

es

Fig. 11. Comparison of execution times as a function of the preemption-timer value. The columns represent the following cases (from left to right): regular
execution — no encryption, buffered execution, in-place execution without freezing, in-place execution in which the preemption timer is set to 16, in-place
execution in which the preemption timer is set to 32, in-place execution in which the preemption timer is set to 64.

vm-exit+vm-entry1 freezing decryption execution vm-exit+vm-entry2 completion
0

2,000

4,000

419

4,057

2,238

1,617

419

1,152

cy
cl

es

Fig. 12. Execution times of the steps in the in-place execution method (in which the preemption timer was set to 16). The columns represent the following
steps (from left to right): entering and exiting the host; decrypting the function; executing the function; entering and exiting the host; erasing the decrypted
function.

vm-exit+vm-entry preparation decryption execution completion
0

1,000

2,000

3,000

4,000

419

1,960

1,227

1,811

3,324

cy
cl

es

Fig. 13. Execution times of the buffered execution method steps. The columns represent the following steps (from left to right): entering and exiting the host;
modifying the virtual page table and restoring the guest register; decrypting the function; executing the function; erasing the decrypted function, saving the
registers, and restoring the virtual page table.

Small Medium Large
0

2

4

·104

9,902

19,309

47,119

8,741

15,228

30,717

cy
cl

es

In-place

Buffered

Fig. 14. Execution times of the in-place and the buffered execution methods for functions of different lengths. The small function is 92 bytes long. The
medium function is 968 bytes long. The large function is 5056 bytes long.

The hypervisor can transit to this mode by executing the1

iret instruction, which is usually used to terminate an interrupt2

handler. This instruction modifies the execution location and3

the execution mode (from kernel to user). Since the execution4

takes place in host mode, interrupts cannot be intercepted5

by the hypervisor through configuration of the VMCS. The6

hypervisor is forced to use the IDT, which allows the kernel7

to specify the interrupt service routines for each of the 2568

interrupt vectors. Upon interrupt, the interrupt service routine9

can decide whether to handle the interrupt inside the hypervi-10

sor or inject it to the guest.11

We believe that the described approach will substantially12

improve the security of the buffered execution method, thus13

making it absolutely superior to in-place execution.14

VIII. CONCLUSIONS15

We present research pertaining to the methodologies of ex-16

ecuting encrypted native machine-code, where decryption and17

execution are done on the fly and secure with a thin hypervisor.18

Two alternative methods are considered: in-place and buffered19

— that trade security for performance. The in-pace method20

executes decrypted-code in guest mode, thereby limiting the21

functionality of the decrypted function to whatever a guest22

may perform. In buffered execution method, the decrypted23

function executes in host mode, penitentially incurring the risk24

of a rogue implementation accessing sensitive memory areas.25

For this reason the in-place method is considered safer. How-26

ever, in modern multi-processor systems, the in-place method27

requires controlling (freezing) other execution units, while a28

single execution unit executes decrypted code. This requires29

larger overhead when compared to the buffered method and30

thus has a performance toll. Measurements show that the larger31

overhead is more significant for larger functions. The reason32

for this is related to the fact that overhead is acquired during33

transitions between cold to hot and hot to cold modes in the34

in-place method, as compared to transitions between host-35

execution of decrypted code and guest-execution of interrupts.36

Larger functions acquire more transitions, therefore overhead 37

is more prominent in the in-place method. Given these results 38

our conclusions are to use the (safer) in-place methodology for 39

short functions (smaller than 1000 bytes). For medium (larger 40

than 1000 bytes), allow a user-defined switch in the encryption 41

tool to prefer security, in which case in-place shall be used, or 42

performance, in which case buffered shall be used. In future 43

work we plan to augment the buffered method to overcome 44

its potential security flaws and render it the single and best 45

alternative to use. 46

REFERENCES 47

[1] Themida, http://www.oreans.com/, Oreans. 48

[2] VMProtect, http://vmpsoft.com/, VMProtect Software. 49

[3] R. Rolles, “Unpacking Virtualization Obfuscators,” in Proceedings of 50

the 3rd USENIX Conference on Offensive Technologies, ser. WOOT’09. 51

Berkeley, CA, USA: USENIX Association, 2009, pp. 1–1. [Online]. 52

Available: http://dl.acm.org/citation.cfm?id=1855876.1855877 53

[4] L. Bohne, “Pandora’s Bochs: Automated Unpacking of Malware,” 2008. 54

[5] D. Schellekens, B. Wyseur, and B. Preneel, “Remote Attestation 55

on Legacy Operating Systems with Trusted Platform Modules,” Sci. 56

Comput. Program., vol. 74, no. 1-2, pp. 13–22, Dec. 2008. [Online]. 57

Available: http://dx.doi.org/10.1016/j.scico.2008.09.005 58

[6] S. Pearson, Trusted Computing Platforms: TCPA Technology in Context. 59

Upper Saddle River, NJ, USA: Prentice Hall PTR, 2002. 60

[7] P. England, B. Lampson, J. Manferdelli, M. Peinado, and B. Willman, 61

“A Trusted Open Platform,” Computer, vol. 36, no. 7, pp. 55–62, Jul. 62

2003. [Online]. Available: http://dx.doi.org/10.1109/MC.2003.1212691 63

[8] C. Tarnovsky, “Semiconductor Security Awareness Today and 64

yesterday,” in Blackhat, 2010. [Online]. Available: https: 65

//www.youtube.com/watch?v=WXX00tRKOlw 66

[9] ——, “Attacking TPM part two,” in Defcon, 2012. [Online]. Available: 67

https://www.youtube.com/watch?v=Ed 9p7E4jIE 68

[10] A. Averbuch, M. Kiperberg, and N. J. Zaidenberg, “Truly-Protect: An 69

Efficient VM-Based Software Protection,” Systems Journal, IEEE, vol. 7, 70

no. 3, pp. 455–466, 2013. 71

[11] M. Kiperberg and N. J. Zaidenberg, “Efficient Remote Authentication,” 72

in The Journal of Information Warfare, vol. 12, no. 3, 2013. 73

[12] Intel 64 and IA-32 Architectures Software Developer’s Manual - Volume 74

3, Intel Corporation, August 2007. 75

[13] “AMD64 Architecture Programmer’s Manual Volume 2: System Pro- 76

gramming,” AMD, 2010. 77

[14] M. Pietrek, “An in-depth look into the Win32 portable executable file 78

format,” in MSDN Mag. 17, 2, 2002, pp. 80–90. 79

[15] E. Youngdale, “Kernel korner: The elf object file format by dissection,”1

Linux Journal, vol. 1995, no. 13es, p. 15, 1995.2

[16] G. J. Popek and R. P. Goldberg, “Formal Requirements for Virtualizable3

Third Generation Architectures,” Commun. ACM, vol. 17, no. 7, pp.4

412–421, Jul. 1974. [Online]. Available: http://doi.acm.org/10.1145/5

361011.3610736

[17] T. Shinagawa, H. Eiraku, K. Tanimoto, K. Omote, S. Hasegawa,7

T. Horie, M. Hirano, K. Kourai, Y. Oyama, E. Kawai, K. Kono, S. Chiba,8

Y. Shinjo, and K. Kato, “Bitvisor: A thin hypervisor for enforcing i/o9

device security,” in Proceedings of the 2009 ACM SIGPLAN/SIGOPS10

International Conference on Virtual Execution Environments, ser. VEE11

’09. New York, NY, USA: ACM, 2009, pp. 121–130. [Online].12

Available: http://doi.acm.org/10.1145/1508293.150831113

[18] Y. Chubachi, T. Shinagawa, and K. Kato, “Hypervisor-based Prevention14

of Persistent Rootkits,” in Proceedings of the 2010 ACM Symposium on15

Applied Computing, ser. SAC ’10. New York, NY, USA: ACM, 2010,16

pp. 214–220. [Online]. Available: http://doi.acm.org/10.1145/1774088.17

177413118

[19] R. Kennell and L. H. Jamieson, “Establishing the Genuinity of Remote19

Computer Systems,” in Proceedings of the 12th Conference on USENIX20

Security Symposium - Volume 12, ser. SSYM’03. Berkeley, CA,21

USA: USENIX Association, 2003, pp. 21–21. [Online]. Available:22

http://dl.acm.org/citation.cfm?id=1251353.125137423

[20] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla,24

“Pioneer: Verifying code integrity and enforcing untampered code25

execution on legacy systems,” in Proceedings of the Twentieth26

ACM Symposium on Operating Systems Principles, ser. SOSP ’05.27

New York, NY, USA: ACM, 2005, pp. 1–16. [Online]. Available:28

http://doi.acm.org/10.1145/1095810.109581229

[21] Q. Yan, J. Han, Y. Li, R. H. Deng, and T. Li, “A software-based root-of-30

trust primitive on multicore platforms,” in Proceedings of the 6th ACM31

Symposium on Information, Computer and Communications Security,32

ser. ASIACCS ’11. New York, NY, USA: ACM, 2011, pp. 334–343.33

[Online]. Available: http://doi.acm.org/10.1145/1966913.196695734

[22] A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla, “SWATT: softWare-35

based attestation for embedded devices,” in Security and Privacy, 2004.36

Proceedings. 2004 IEEE Symposium on, May 2004, pp. 272–282.37

[23] C. Castelluccia, A. Francillon, D. Perito, and C. Soriente, “On38

the Difficulty of Software-based Attestation of Embedded Devices,”39

in Proceedings of the 16th ACM Conference on Computer and40

Communications Security, ser. CCS ’09. New York, NY, USA: ACM,41

2009, pp. 400–409. [Online]. Available: http://doi.acm.org/10.1145/42

1653662.165371143

[24] A. Seshadri, M. Luk, A. Perrig, L. van Doorn, and P. Khosla, “Scuba:44

Secure code update by attestation in sensor networks,” in Proceedings45

of the 5th ACM Workshop on Wireless Security, ser. WiSe ’06.46

New York, NY, USA: ACM, 2006, pp. 85–94. [Online]. Available:47

http://doi.acm.org/10.1145/1161289.116130648

[25] Y. Yang, X. Wang, S. Zhu, and G. Cao, “Distributed software-49

based attestation for node compromise detection in sensor networks,”50

in Proceedings of the 26th IEEE International Symposium on51

Reliable Distributed Systems, ser. SRDS ’07. Washington, DC, USA:52

IEEE Computer Society, 2007, pp. 219–230. [Online]. Available:53

http://dl.acm.org/citation.cfm?id=1308172.130823754

[26] D. Ionescu, “Microsoft bans up to one million users from55

xbox live,” PC World, Tech. Rep., 2009. [Online]. Available:56

http://www.pcworld.com/article/182010/xbox users banned.html57

[27] Sony, “Information on banned accounts and consoles,” Sony58

consumer electronics, Tech. Rep., accessed on may 2015.59

[Online]. Available: https://support.us.playstation.com/app/answers/60

detail/a id/1260/∼/information-on-banned-accounts-and-consoles61

[28] Brian, “Nintendo starting to ban pirates from on-62

line services on 3ds,” Nintendo everything, Tech.63

Rep., 2015. [Online]. Available: http://nintendoeverything.com/64

nintendo-starting-to-ban-pirates-from-online-services-on-3ds65

[29] Wikipedia, “An analysis of proposed attacks against genuinity66

tests,” Tech. Rep., accessed on May 2015. [Online]. Available:67

http://en.wikipedia.org/wiki/Warden (software)68

[30] M. Kiperberg, A. Resh, and N. J. Zaidenberg, “Remote Attestation69

of Software and Execution-Environment in Modern Machines,” in70

CSCloud, 2015.71

	Preventing Reverse Engineering of Native and Managed Programs
	ABSTRACT
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	CONTENTS
	LIST OF INCLUDED ARTICLES
	1 INTRODUCTION
	1.1 Obfuscation
	1.2 Applicability of Obfuscation
	1.3 Encryption
	1.4 Our Method
	1.5 Structure

	2 HYPERVISORS
	2.1 Hardware Assisted Virtualization
	2.2 Thin Hypervisor
	2.3 Remote Attestation and Initialization
	2.4 Thin Hypervisor Protection
	2.5 Synchronization

	3 REMOTE ATTESTATION
	3.1 Previous Work
	3.2 Our Method
	3.3 Side Effects

	4 NATIVE CODE EXECUTION
	4.1 Encryption Tool
	4.2 Encrypted Program Execution
	4.3 Comparison

	5 JAVA CODE EXECUTION
	5.1 JVM TI
	5.2 System Design
	5.3 Measurements

	6 CONCLUSIONS
	6.1 Contribution
	6.2 Limitations and Further Research

	7 SUMMARY OF ORIGINAL ARTICLES
	7.1 Trusted Computing and DRM
	7.2 An Efficient VM-based Software Protection
	7.3 Truly-Protect: An Efficient VM-Based Software Protection
	7.4 Efficient Remote Authentication
	7.5 Remote Attestation of Software and Execution-Environment in Modern Machines
	7.6 System for Executing Encrypted Java Programs
	7.7 System for Executing Encrypted Native Programs

	YHTEENVETO (FINNISH SUMMARY)
	REFERENCES
	ORIGINAL PAPERS
	REMOTE ATTESTATION OF SOFTWARE AND EXECUTION-ENVIRONMENT IN MODERN MACHINES
	TRUSTED COMPUTING AND DRM
	EFFICIENT REMOTE AUTHENTICATION
	TRULY-PROTECT: AN EFFICIENT VM-BASED SOFTWARE PROTECTION
	AN EFFICIENT VM-BASED SOFTWARE PROTECTION
	SYSTEM FOR EXECUTING ENCRYPTED JAVA PROGRAMS
	SYSTEM FOR EXECUTING ENCRYPTED NATIVE PROGRAMS

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

