
A Model for Self-Modifying Code?

Bertrand Anckaert, Matias Madou, and Koen De Bosschere

Ghent University, Electronics and Information Systems Department
Sint-Pietersnieuwstraat 41 9000 Ghent, Belgium

{banckaer, mmadou, kdb}@elis.UGent.be
http://www.elis.UGent.be/paris

Abstract. Self-modifying code is notoriously hard to understand and
therefore very well suited to hide program internals. In this paper we in-
troduce a program representation for this type of code: the state-enhanced
control flow graph. It is shown how this program representation can be
constructed, how it can be linearized into a binary program, and how it
can be used to generate, analyze and transform self-modifying code.

1 Introduction

Self-modifying code has a long history of hiding the internals of a program. It
was used to hide copy protection instructions in 1980s MS DOS based games.
The floppy disk drive access instruction ’int 0x13’ would not appear in the
executable program’s image but it would be written into the executable’s mem-
ory image after the program started executing 1. A number of publications in
the academic literature indicate a renewed interest in the application of self-
modifying code to prevent undesired reverse engineering [1, 10, 14].

While hiding the internals of a program can be used to protect the intellectual
property contained within or protected by software, it can be applied for less
righteous causes as well. Viruses, for example, try to hide their malicious intent
through the use of self-modifying code [12].

Self-modifying code is very well suited for these applications as it is generally
assumed to be one of the main problems in reverse engineering [3]. Because self-
modifying code is so hard to understand, maintain and debug, it is rarely used
nowadays. As a result, many analyses and tools make the assumption that code
is not self-modifying, i.e., constant. Note that we distinguish self-modifying code
from run-time generated code as used in, e.g., a Java Virtual Machine.

This is unfortunate as, in theory, there is nothing unusual about self-modifying
code. After all, in the omnipresent model of the stored-program computer, which
was anticipated as early as 1937 by Konrad Zuse, instructions and data are held
in a single storage structure [22]. Because of this, code can be treated as data
and can thus be read and written by the code itself.

? The authors would like to thank the Institute for the Promotion of Innovation by
Science and Technology in Flanders (IWT) and the Fund for Scientific Research
Flanders (FWO) for their financial support. This research is also partially supported
by Ghent University and by the HiPEAC network

1 http://en.wikipedia.org/wiki/Self-modifying code, May 5th 2006

If we want tools and analyses to work conservatively and accurately on self-
modifying code, it is important to have a representation which allows one to
easily reason about and transform that type of code. For traditional code, which
neither reads nor writes itself, the control flow graph is such a representation.
Its main benefit is that it represents a superset of all executions. As such, it al-
lows analyses to reason about every possible run-time behavior of the program.
Furthermore, it is well understood how a control flow graph can be constructed,
how it can be transformed and how it can be linearized into an executable pro-
gram. Until now, there was no analogous representation for self-modifying code.
Existing approaches are often ad-hoc and usually resort to overly conservative
assumptions: a region of self-modifying code is considered to be a black box
about which little is known and to which no further changes can be made.

In this paper, we will discuss why the basic concept of the control flow graph
is inadequate to deal with self-modifying code and introduce a number of ex-
tensions which can overcome this limitation. These extensions are: (i) a datas-
tructure keeps track of the possible states of the program, (ii) an edge can be
conditional on the state of the target memory locations, and (iii) an instruction
uses the memory locations in which it resides.

We refer to a control flow graph augmented with these extensions as a state-
enhanced control flow graph. These extensions ensure that we no longer have
to artificially assume that code is constant. In fact, existing data analyses can
now readily be applied on code, as desired in the model of the stored-program
computer. Furthermore, we will discuss how the state-enhanced control flow
graph allows for the transformation of self-modifying code and how it can be
linearized into an executable program.

The remainder of this paper is structured as follows: Section 2 introduces
the running example. Next, the extensions to the traditional control flow graph
are introduced in Section 3. Section 4 provides algorithms to construct a state-
enhanced control flow graph from a binary program and vice versa. Example
analyses on and transformations of this program representation are the topic of
Section 5. An experimental evaluation is given in Section 6. Related work is the
topic of Section 7 and conclusions are drawn in Section 8.

2 The running example

For our example, we introduce a simple and limited instruction set which is
loosely based on the 80x86. For the sake of brevity, the addresses and immediates
are assumed to be 1 byte. It is summarized below:

Assembly Binary Semantics
movb value to 0xc6 value to set byte at address to to value value
inc reg 0x40 reg increment register reg
dec reg 0x48 reg decrement register reg
push reg 0xff reg push register reg on the stack
jmp to 0x0c to jump to absolute address to

As a running example, we have chosen to hide one of the simplest operations.
The linear disassembly of the obfuscated version is as follows:

Address Assembly Binary
0x0 movb 0xc 0x8 c6 0c 08

0x3 inc %ebx 40 01

0x5 movb 0xc 0x5 c6 0c 05

0x8 inc %edx 40 03

0xa push %ecx ff 02

0xc dec %ebx 48 01

If we would perform traditional CFG (Control Flow Graph) construction on
this binary, we would obtain a single basic block as shown in Figure 1(a). If we
step through the program however, we can observe that instruction A changes
instruction D into instruction G, resulting in a new CFG as shown in part (b).
Next instruction B is executed, followed by instruction C which changes itself
into jump instruction H (c). Then, instruction G transfers control back to B after
which H and F are executed. The only possible trace therefore is A,B,C,G,B,H,F.
While not apparent at first sight, we can now see that these instructions could
be replaced by a single instruction: inc %ebx.

(a) (b) (c)

Fig. 1. Traditional CFG construction before execution (a), after the first write instruc-
tion A (b), and after the second write instruction C (c)

3 The State-Enhanced Control Flow Graph (SE-CFG)

CFGs have since long been used to discover the hierarchical flow of control and
for data-flow analysis to determine global information about the manipulation
of data [16]. They have proved to be a very useful representation enabling the
analysis and transformation of code. Given the vast amount of research that has
gone into the development of analyses on and transformations of this program
representation, we are eager to reuse the knowledge resulting from this research.

3.1 A Control Flow Graph for Self-Modifying Code

One of the reasons a CFG is so useful is that it represents a superset of all the
possible executions that may occur at run time. As a result, many analyses rely

on this representation to reason about every possible behavior of the program.
Unfortunately, traditional CFG construction algorithms fail in the presence of
self-modifying code. If they are applied on our running example at different
moments in time, we obtain the three CFGs shown in Figure 1. However, none
of these CFGs allows for both a conservative and accurate analysis of the code.

We can illustrate this by applying unreachable code elimination on these
CFGs. This simple analysis removes every basic block that cannot be reached
from the entry block. If it is applied on Figure 1(a), then no code will be consid-
ered to be unreachable. This is not accurate as, e.g., instruction E is unreachable.
If we apply it on Figure 1(b), instructions E and F are considered to be unreach-
able, while Figure 1(c) would yield G and E. However, both F and G are reachable.
Therefore in this case, the result is not conservative.

We can however still maintain the formal definition of a CFG: a CFG is
a directed graph G(V, E) which consists of a set of vertices V , basic blocks,
and a set of edges E, which indicate possible flow of control between basic
blocks. A basic block is defined to be a sequence of instructions for which every
instruction in a certain position dominates all those in later positions, and no
other instruction executes between two instructions in the sequence.

The concept of an edge remains unchanged as well: a directed edge is drawn
from basic block a to basic block b if we conservatively assume that control can
flow from a to b. The CFG for our running example is given in Figure 2.

Fig. 2. The CFG of our running example (before optimization)

In essence, this CFG is a superposition of the different CFGs observed at
different times. In the middle of Figure 2, we can easily detect the CFG of Fig-
ure 1(a). The CFG of Figure 1(b) can also be found: just mask away instruction
D and H. Finally, the CFG of Figure 1(c) can be found by masking instruction
C and D. We will postpone the discussion of the construction of this CFG given
the binary representation of the program to Section 4. For now, note that, while
this CFG does represent the one possible execution (A,B,C,G,B,H,F), it also
represents additional executions that will never occur in practice. This will be
optimized in Section 5.

3.2 Extension 1: Codebytes

The CFG in Figure 2 satisfies the basic property of a CFG: it represents a
superset of all possible executions. As such it can readily be used to reason

about a superset of all possible program executions. Unfortunately, this CFG
does not yet have the same usability we have come to expect of a CFG.

One of the shortcomings is that it cannot easily be linearized into an exe-
cutable program. There is no way to go from this CFG to the binary represen-
tation of Section 2, simply because it does not contain sufficient information.

For example, there are two fall-through paths out of block B. Note that
we follow the convention that a dotted arrow represents a fall-through path,
meaning that the two connected blocks need to be placed consecutively. Clearly,
in a linear representation, only one of these successors can be placed after the
increment instruction. Which one should we then choose?

To overcome this and other related problems, we will augment the CFG with
a datastructure, called codebytes. This datastructure will allow us to reason
about the different states of the program. Furthermore, it will indicate which
instructions overlap and what the initial state of the program is.

In practice, there is one codebyte for every byte in the code segment. This
codebyte represents the different states the byte can be in. By convention, the
first of these states represents the initial state of that byte, i.e. the one that will
end up in the binary representation of the program. For every instruction, there
is a sequence of states representing its machine code. For our running example,
this is illustrated in Figure 3. We can see that instruction A and C occupy three
codebytes, while the others occupy two codebytes. A codebyte consists of one or
more states. For example, codebyte 0x0 has one state: c6 and codebyte 0x8 has
two states: 40 and 0c. We can also see that instruction H and C overlap as they
have common codebytes. As the first state of codebyte 0x5 is that of instruction
C, and the other states are identical, instruction C will be in the binary image of
the program, while instruction H will not.

Codebytes are not only useful for the representation of the static code section,
but also for the representation of code that could be generated in dynamically
allocated memory. A region of memory can be dynamically allocated and filled
with bytes representing a piece of code which will be executed afterwards. The
difference between a codebyte representing a byte in the static code section and
a codebyte representing a byte that will be dynamically produced at run time
is that it has no initial state because the byte will not end up in the binary
representation of the program.

3.3 Extension 2: Codebyte Conditional Edges

We have repeatedly stressed the importance of having a superset of all possible
executions. Actually, we are looking for the exact set of all possible executions,
not a superset. In practice, it is hard, if not impossible to find a finite repre-
sentation of all possible executions and no others. The CFG is a compromise in
the sense that it is capable of representing all possible executions, at the cost
of representing executions that cannot occur in practice. Therefore, analyses on
the CFG are conservative, but may be less accurate than optimal because they
are safe for executions that can never occur.

Fig. 3. The SE-CFG of our running example (before optimization)

A partial solution to this problem consists of transforming the analyses into
path-sensitive variants. These analyses are an attempt to not take into ac-
count certain unexecutable paths. Clearly, for every block with multiple outgoing
paths, only one will be taken at a given point in the execution. For constant code,
the chosen path may depend upon a status flag (conditional jump), a value on
the stack (return), the value of a register (indirect call or jump), However,
once the target of the control transfer is known, it is also known which instruc-
tion will be executed next. For self-modifying code the target address alone does
not determine the next instruction to be executed. The values of the target lo-
cations determine the instruction that will be executed as well. To take this into
account, we introduce additional conditions on arrows. These conditions can be
found on the arrows itself in Figure 3. As instruction B is not a control transfer
instruction, control will flow to the instruction at the next address: 0x5. For
constant code, this would determine which instruction is executed next: there is
at most one instruction at a given address. For self-modifying code, this is not
necessarily the case. Depending on the state of the program, instruction B can
be followed by instruction C (*(0x5)==c6) or instruction H (*(0x5)==0c).

3.4 Extension 3: Consumption of Codebyte Values

The third, and final extension is designed to model the fact that when an in-
struction is executed, the bytes representing that instruction are read by the
CPU. Therefore, in our model, an instruction uses the codebytes it occupies.
This will enable us to treat code as data in data-flow analyses. For example, if
we want to apply liveness analysis on a codebyte, we have the traditional uses
and definitions of that value: it is read or written by another instruction. For
example, codebyte 0x8 is defined by instruction A. On top of that, a codebyte is

used when it is part of an instruction, e.g., codebyte 0x8 is used by instruction D

and G. Note that this information can be deduced from the codebyte structure.

Wrap-up The SE-CFG still contains a CFG and therefore, existing analyses
which operate on a CFG can be readily applied to an SE-CFG. Furthermore,
code can be treated exactly the same way as data: the initial values of the
codebytes are written when the program is loaded, they can be read or written
just as any other memory location and are also read when they are executed.

Note that in our model traditional code is just a special case of self-modifying
code. The extensions can be omitted for traditional code as: (i) the code can
easily be linearized since instructions do not overlap, (ii) the target locations of
control transfers can only be in one state, and (iii) the result of data analyses
on code are trivial as the code is constant.

Where possible, we will make the same simplifications. For example, we will
only add constraints to arrows where necessary and limit them to the smallest
number of states to discriminate between different successors.

4 Construction and Linearization of the SE-CFG

In this section, we discuss how an SE-CFG can be constructed from assembly
code. Next, it is shown how the SE-CFG representation can be linearized.

4.1 SE-CFG Construction

Static SE-CFG construction is only possible when we can deduce sufficient in-
formation about the code. If we cannot detect the targets of indirect control
transfers, we need to assume that they can go to every byte of the program. If
we cannot detect information about the write instructions, we need to assume
that any instruction can be at any position in the program. This would result
in overly conservative assumptions, hindering analyses and transformations.

When looking at applications of information hiding, it is likely that attempts
will have been made to hide this information. It is nevertheless useful to devise
such an algorithm, because there are applications of self-modifying code outside
the domain of information hiding which do not actively try to hide such infor-
mation. Furthermore, reverse engineers often omit the requirement of proved
conservativeness and revert to approximate, practically sound information. Fi-
nally, it could be used to extend dynamically obtained information over code not
covered in observed executions. For programs which have not deliberately been
obfuscated, linear disassembly works well. As a result, the disassembly phase can
be separated from the flowgraph construction phase. However, when the code
is intermixed with data in an unpredictable way, and especially when attempts
have been made to thwart linear disassembly [13], it may produce wrong results.
Kruegel et al.[11] introduce a new method to overcome most of the problems
introduced by code obfuscation but the method is not useful when a program
contains self-modifying code. To partially solve this problem, disassembly can be

combined with the control flow information. Such an approach is recursive traver-
sal. The extended recursive traversal algorithm which deals with self-modifying
code is:

00: proc main()
01: for (addr = code.startAddr ; addr ≤ code.endAddr ; addr++)
02: codebyte[addr].add(byte at address addr);
03: while (change)
04: MarkAllAddressesAsUnvisited();
05: Recursive(code.entryPoint);
06: proc Recursive(addr)
07: if (IsMarkedAsVisited(addr)) return;

08: MarkAsVisited(addr);
09: for each (Ins) — Ins can start at codebyte[addr]
10: DisassembleIns(Ins);
11: for each (v,w) — Ins can write v at codebyte w
12: codebyte[w].add(v);
13: for each (target) — control can flow to target after Ins
14: Recursive(target);

Disassembly starts at the only instruction that will certainly be executed as
represented in the binary: the entry point (line 5). When multiple instructions
can start at a codebyte, all possible instructions are disassembled (line 9, code-
byte 0x8 in Figure 4(a)). When an instruction modifies the code, state(s) are
added to the target codebyte(s) (line 11-12). This is illustrated in Figure 4(a):
state 0c is added to codebyte 0x8. Next, all possible successors are recursively
disassembled (line 13-14). In our example, the main loop (line 3) will be executed
three times, as the second instruction at codebyte 0x5 will be missed in the first
run. It will however be added in the second run. In the third run, there will be
no further changes. The overall result is shown in Figure 4(b).

(a)

(b)

Fig. 4. Recursive Traversal Disassembly of Self-Modifying Code

Once we have detected the instructions, the SE-CFG construction is straight-
forward: every instruction I is put into a separate basic block basicblockI . If
control can flow from instruction I to codebyte c, then for every instruction J

that can start at c, we draw an edge basicblockI → basicblockJ . Finally, basic
blocks are merged into larger basic blocks where possible. The thus obtained
SE-CFG for our running example is given in Figure 3. Note that it still contains
instructions that cannot be executed and edges that cannot be followed. It is
discussed in Section 5 how these can be pruned.

4.2 SE-CFG Linearization

Traditional CFG linearization consists of concatenating all basic blocks that need
to be placed consecutively in chains. The resulting chains can then be ordered
arbitrarily, resulting in a list of instructions which can be assembled to obtain
the desired program.

When dealing with self-modifying code, we cannot simply concatenate all
basic blocks that need to be placed consecutively and write them out. One of
the reasons is that this is impossible when dealing with multiple fall-through
edges. Instead, we will create chains of codebytes. Two codebytes need to be
concatenated if one of the following conditions holds: (i) c and d are successive
codebytes belonging to an instruction, (ii) codebyte c is the last codebyte of
instruction I and codebyte d is the first codebyte of instruction J and I and J are
successive instructions in a basic block, and (iii) codebyte c is the last codebyte
byte of the last instruction in basic block A and d is the first codebyte of the
first instruction in basic block B and A and B need to be placed consecutively
because of a fall-through path.

The resulting chains of codebytes can be concatenated in any order into a
single chain. At this point, the final layout of the program has been determined,
and all relocated values can be computed. Next, the initial states of the codebytes
can be written out.

For example, in Figure 3, codebyte 0x0, 0x1 and 0x2 need to be concate-
nated because of condition (i), codebyte 0x9 and 0xa because of condition (ii)
and codebyte 0x4 and 0x5 because of condition (iii). When all conditions have
been evaluated, we obtain a single chain. If we write out the first state of every
codebyte in the resulting chain, we obtain the binary code listed in Section 2.

5 Analyses on and Transformations of the SE-CFG

In this section, we will demonstrate the usability of the SE-CFG representation
by showing how it can be used for common analyses and transformations. We
will illustrate how issues concerning self-modifying code can be mapped onto
similar issues encountered with constant code in a number of situations.

Note that once the SE-CFG is constructed, the eventual layout of the code
is irrelevant and will be determined by the serialization phase. Therefore, the
addresses of codebytes are irrelevant in this phase. However, for the ease of

reference, we will retain them in this paper. In practice, addresses are replaced
by relocations.

5.1 Constant Propagation

The CFG of Figure 2 satisfies all requirements of a CFG: it is a superset of all
possible executions. As this CFG is part of the SE-CFG in Figure 3, analyses
which operate on a CFG can be reused without modifications. This includes
constant propagation, liveness analysis, . . .

Because of the extensions, it is furthermore possible to apply existing data
analyses on the code as well. This can be useful when reasoning about self-
modifying code. A common question that arises when dealing with self-modifying
code is: “What are the possible states of the program at this program point?”.
This question can be answered through traditional data analyses on the code-
bytes, e.g., constant propagation.

If we would perform constant propagation on codebyte 0x8 on the SE-CFG
of Figure 3, we can see that codebyte 0x8 it is set to 40 when the program is
loaded. Subsequently, it is set to 0c by instruction A. Continuing the analysis,
we learn that at program point C it can only contain the value 0c. Therefore,
the edge from instruction C to instruction D is unrealizable, since the condition
*(0x8)==40 can never hold. The edge can therefore be removed.

5.2 Unreachable Code Elimination

Traditionally, unreachable code elimination operates by marking every basic
block that is reachable from the entry node of the program. For self-modifying
code, the approach is similar. For our running example, this would result in
the elimination of basic blocks D and E. Note that the edge between C and D is
assumed to have been removed by constant propagation.

Similarly, we can remove unreachable codebytes. A codebyte can be removed
if it is not part of any reachable basic block and if it is not read by any instruction.
This allows us to remove codebyte 0xa and 0xb. While we have removed the
inc %edx-instruction, its codebytes could not be removed, as they are connected
through another instruction. Note that we now have a conservative and accurate
unreachable code elimination.

5.3 Liveness Analysis

Another commonly asked question with self-modifying code is as follows: “Can
I overwrite a piece of code?”. Again, this is completely identical to the question
whether you can overwrite a piece of data. You can overwrite a piece of the
program if you can guarantee that the value will not be read later on by the
program before it is overwritten. In our model, for self-modifying code, a value
is read when (i) it is read by an instruction (standard), (ii) the flow of control
can be determined by this value (extension 2), and (iii) the CPU will interpret
it as (part of) an instruction (extension 3).

We could, for example, perform liveness analysis on codebyte 0x8. This shows
us that the value 40, which is written when the program is loaded, is a dead value:
it is never read before it is written by instruction A. As a result, it can be removed
and we could write the second state 0c immediately when the program is loaded.
In our representation, this means making it the first state of codebyte 0x8.

Subsequently, an analysis could point out that instruction A has now become
an idempotent instruction: it writes a value that was already there. As a result,
this instruction can be removed. We have now obtained the SE-CFG of Figure 5.

Fig. 5. The SE-CFG after partial optimization, before unrolling

5.4 Loop Unrolling

Subsequently, we could peel of one iteration of the loop to see if this would lead
to additional optimizations. This results in the SE-CFG in Figure 6. Note that
we had to double write operation C, as we should now write to both the original
and the copy of the codebyte in order to be semantically equivalent.

Fig. 6. The SE-CFG after unrolling

5.5 Finishing up

Similar to Section 5.1, we can now find out that the paths B’→ H’ and B→ C are
unrealizable. As a result, we no longer have a loop. Instruction C, C2, G and
H’ are unreachable. Applying the same optimization as in Section 5.3, we can
remove the first state of codebyte 0x5 and instruction C’. The value written by
C2’ is never used and thus C2’ can be removed. Through jump forwarding, we
can remove instruction H. Finally, given that the decrement instruction performs
exactly the opposite of the increment instruction, we now see that the code can
be replaced by a single instruction: inc %ebx.

6 Evaluation

To evaluate the introduced concepts, we implemented a form of factorization
through the use of self-modifying code. The goal however is not to shrink the bi-
nary, but to hide program internals. Therefore, we will also perform factorization
if the cost is higher than the gain.

In the first phase, we split the code up in what we call code snippets. These
code snippets are constructed as follows: if a basic block is not followed by a
fall-through edge, the basic block itself makes up a code snippet. If basic block
a was followed by a fall-through edge e to basic block b, a new basic block c is
created with a single instruction: a jump to b. The target of e is then set to c.
The combination of a and c is then called a code snippet.

A code snippet is thus a small piece of code that can be placed independently
of the other code. It consists of at most two consecutive basic blocks. If there is a
second basic block, this second basic block consists of a single jump instruction.
The advantage of code snippets is that they can be transformed and placed
independently. The downside is that their construction introduces a large number
of jump instructions. This overhead is partially eliminated by performing jump
forwarding and basic block merging at the end of the transformation.

Next, we perform what we call code snippet coalescing. Wherever possible
with at most one modifier we let two code snippets overlap. Both code snippets
are then replaced by at most one modifier and a jump instruction to the coalesced
code snippet. On the 80x86, this means that code snippets are merged if they
differ in at most 4 consecutive bytes.

As an example, consider the two code snippets in Figure 7(a). While these
two code fragments seem to have little in common, their binary representation
differs in only one byte. Therefore, they are eligible for code snippet coalescing.
The result is shown in Figure 7(b). The codebytes of the modifier and jump
instructions are not shown to save space. In this example, subsequent branch
forwarding will eliminate one of the jumps. (Note that this example uses the
actual 80x86 instruction set.)

Intuitively, this makes the binary harder to understand for a number of rea-
sons. Firstly, as overlapping code snippets are used within multiple contexts,
the number of interpretations of that code snippet increases. It also becomes

(a) Snippets to coalesce (b) Coalesced snippets

Fig. 7. Example of coalescing code snippets

more difficult to distinguish functions as there boundaries have been blurred.
And most importantly, the common difficulties encountered for self-modifying
code have been introduced: the code is not constant and therefore, the static
binary does not contain all the instructions that will be executed. Furthermore,
multiple instructions will be executed at the same address, so there is no longer
a one to one mapping between addresses and instructions.

To further obfuscate the program, we have added an additional transforma-
tion, called code snippet splitting. Whenever possible, two different versions are
created for code snippets that were not yet protected by the previous transfor-
mation. This is often possible because of the redundancy of machine code and
especially the 80x86 instruction set. Using an opaque predicate of the type P ? [5]
one of both versions is chosen at run time. Next, we merge both versions using
code snippet coalescing.

The measurements have been performed a Linux system on a 2.8GHz Pen-
tium IV on 10 C programs of the SPECint 2000 benchmark suite. The bench-
marks have been compiled with gcc 3.3.2 and statically linked against uclibc
0.27. The library code has been obfuscated as well. We strongly recommend ob-
fuscating library code as well as it otherwise serves as reference points about
which the attacker knows everything and he can then continue to fill in the
missing pieces in between two library calls, which allows him to focus on much
smaller pieces of code. Furthermore, in the case of data obfuscation, escaping
values would need to be turned back into the correct format before every library
call, which would severely limit the scope of these obfuscating transformations.

As can be seen in the first row of Table 1, the small granularity of the code
snippets and the relatively large overhead of the modifiers (7 byte for a one-
byte modifier and 10 byte for a four-byte modifier) can cause a considerable
increase in the code size of the program. The impact on the execution speed
can be even higher. When all basic blocks are eligible for transformation, the
slowdown is unacceptable for most real life applications. Therefore, we excluded
hot code (based upon profile information collected from the train input sets)

from consideration. The resulting slowdown on the reference input sets is given
in the second row of Table 1. The third row indicates the percentage of the total
number of original code snippets that is protected by code snippet coalescing.
The fourth row the percentage that is protected by code snippet splitting.

Benchmarks bzip2 crafty gap gzip mcf parser perlbmk twolf vortex vpr

code bloat (%) 114.51 100.95 111.8 123.17 121.38 151.63 106.63 100.19 142.01 102.2

slowdown (%) 27.47 128.82 71.47 15.71 0.5 116.37 300 36.38 274.42 21.16

coalescing (%) 22.98 18.14 26.18 22.66 21.79 22.02 27.67 19.6 22.07 21.55

splitting (%) 23.06 26.04 21.24 24.06 22.35 29.2 19.2 23.41 31.62 21.34
Table 1. Increase in code size and execution speed; percentage of coalesced code
snippets and split-coalesced code snippets

We have attached a dynamic instrumentation framework [15] to the resulting
programs. When no modifications were made to the program other than to keep
the program under control and to keep the internal datastructures consistent
with the code, we experienced a slowdown of a factor 150 to 200. The bulk of
this slowdown is due to the monitoring of the write instructions. These results
show that the cost of self-modifying code is fairly high and that it is best avoided
in code which will be frequently executed. On the other hand, the slowdown
experienced by an attacker, who, e.g., wants to modify the program on the fly,
can be much higher.

The concepts described in this paper have been integrated into a link-time bi-
nary rewriter: Diablo. It can be downloaded from http://www.elis.ugent.be/diablo.

7 Related Work

Some of the work on self-modifying code is situated in the domain of viruses,
and therefore, not well documented. Because pattern matching is a common
technique to detect viruses, some viruses contain an encrypted static image of
the virus and code to decrypt it at run time [12]. As different keys are used in
different generations, they can have many different static forms. This is a specific
type of self-modifying code, which we call self-decryption.

Viruses which do not change during the execution of the virus, but which
change in every new generation [20, 19] are often referred to as self-modifying as
well. We do not consider them to be self-modifying, however. Instead, we refer
to this technique as mutation. An appraoch that could be used to detect viruses
which change in every generation is proposed by Chistodorescu and Jha[2].

Protecting a program from being inspected trough the use of self-modifying
code is also possible. When the architecture requires explicit cache flushing, a
debugger could be fooled if it flushes the cache too early: it will execute the new
instruction while the real execution will execute the old instruction untill a cache
flush is forced. Vice versa, when cache flushing is done automatically as blocks
of code are executed in an instrumentator, anti-debugging could be modifying
the next instruction. The instrumentator will execute the old instruction while
the real execution will execute the new instruction.

A technique similar to self-decryption can be used for program compaction. In
this approach, described by Debray and Evans [6], infrequently executed portions
of the code are compressed in the static image of the program and decompressed
at run time when needed. This technique could be called self-extraction.

One of the earliest publications in academic literature on tamper-resistant
software in general and self-modifying code in particular is due to Aucsmith [1].
The core of the discussed approach consists of integrity verification kernels, which
are self-modifying, self-decrypting and installation unique and which verify each
other and critical operations of the program.

Kanzaki et al. [10] scramble instructions in the static image of the program
and restore them at run time. This restoration process is done through modifier
instructions that are put along every possible execution path leading to the
scrambled instructions. Once the restored instructions are executed, they are
scrambled again. As only one instruction can be executed at a given memory
location, there is still a one to one mapping between instructions and addresses.

Madou et al. [14] introduce a coarse-grained form of self-modifying code.
Functions which are not frequently in the same working set are assigned to the
same position in the binary. At this position, a template function is placed which
contains the common pieces of both functions. Descriptions of the changes that
need to be made to the template to obtain the original functions are stored in the
binary image as well. At run time, a code editing engine uses these descriptions
to create the desired function. As a result the one to one mapping between
instructions and addresses is lost.

Dux et al. [8] discuss a time-based visualization of self-modifying code, the
concept of which can be compared to that of Figure 1. While this visualiza-
tion can clearly facilitate the understanding of self-modifying code, it does not
represent a superset of all possible executions at any time. To the best of our
knowledge, existing approaches use specific algorithms and do not use a generally
usable representation as the one discussed in this paper.

Other research involves the use of self-modifying code for optimization [18]
and the treatment of self-modifying code in dynamic binary translators like
Crusoe [7] and Daisy [9].

There is a considerable body of work on code obfuscation in particular and
code protection in general that focuses on techniques other than self-modifying
code. We refer to other papers for an overview [4, 17, 21].

8 Conclusion

In this paper we have introduced a novel program representation for self-modifying
code. We have shown how it enables the generation, accurate and conservative
analysis, and transformation of self-modifying code. The evaluation illustrates
that self-modifying code can significantly increase the effort an attacker needs
to make, but that it should be avoided in frequently executed code.

References

1. D. Aucsmith. Tamper resistant software: an implementation. Information Hiding,
LNCS, 1174:317–333, 1996.

2. Mihai Christodorescu and Somesh Jha. Static analysis of executables to detect
malicious patterns. In Proceedings of the 12th USENIX Security Symposium, pages
169–186. USENIX Association, 2003.

3. C. Cifuentes and K. Gough. Decompilation of binary programs. Software - Practice
& Experience, 25(7):811–829, 1995.

4. C. Collberg and C. Thomborson. Watermarking, tamper-proofing, and obfusca-
tion - tools for software protection. IEEE Transactions on Software Engineering,
28(8):735–746, 2002.

5. C. Collberg, C. Thomborson, and D. Low. Manufacturing cheap, resilient, and
stealthy opaque constructs. In Proc. of the 25th ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages, pages 184–196, 1998.

6. S. Debray and W. Evans. Profile-guided code compression. In Proc. of the ACM
SIGPLAN Conference on Programming language design and implementation, 2002.

7. J. Dehnert, B. Grant, J. Banning, R. Johnson, T. Kistler, A. Klaiber, and J. Matt-
son. The transmeta code morphing software: Using speculation, recovery, and
adaptive retranslation to address real-life challenges, 2003.

8. B. Dux, A. Iyer, S. Debray, D. Forrester, and S. Kobourov. Visualizing the behavior
of dynamically modifiable code. In Proc. of the 13th International Workshop on
Program Comprehension, pages 337–340, 2005.

9. K. Ebcioglu, E. Altman, M. Gschwind, and S. Sathaye. Dynamic binary translation
and optimization. IEEE Transactions on Computers, 50(6):529–548, 2001.

10. Y. Kanzaki, A. Monden, M. Nakamura, and K. Matsumoto. Exploiting self-
modification mechanism for program protection. In Proc. of the 27th Annual In-
ternational Computer Software and Applications Conference, pages 170–181, 2003.

11. C. Kruegel, W. Robertson, F. Valeur, and G. Vigna. Static disassembly of obfus-
cated binaries. In Proc. of the 13the USENIX Security Symposium, 2004.

12. The Leprosy-B virus, 1990. http://familycode.atspace.com/lep.txt.
13. C. Linn and S. Debray. Obfuscation of executable code to improve resistance to

static disassembly. In Proc. 10th. ACM Conference on Computer and Communi-
cations Security (CCS), pages 290–299, 2003.

14. M. Madou, B. Anckaert, P. Moseley, S. Debray, B. De Sutter, and K. De Boss-
chere. Software protection through dynamic code mutation. Information Security
Applications, LNCS, 3786:194–206, 2005.

15. J. Maebe, M. Ronsse, and K. De Bosschere. DIOTA: Dynamic Instrumentation,
Optimization and Transformation of Applications. In Proc. Int. Conf. on Parallel
Architectures and Compilation Techniques, 2002.

16. S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann
Publischers, Inc., 1997.

17. G. Naumovich and N. Memon. Preventing piracy, reverse engineering, and tam-
pering. Computer, 36(7):64–71, 2003.

18. R. Pike, B. Locanthi, and J. Reiser. Hardware/software tradeoffs for bitmap graph-
ics on the blit. Software - Practice & Experience, 15(2):131–151, 1985.

19. P. Szor. The Art of Computer Virus Research and Defense. Addison Wesley, 2005.
20. P. Szor and P. Ferrie. Hunting for metamorphic, 2001.
21. P.C. van Oorschot. Revisiting software protection. Information Security, LNCS,

2851:1–13, 2003.
22. Konrad Zuse. Einführung in die allgemeine dyadik, 1937.

