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When	Computers	Can	Think
The	Artificial	Intelligence	Singularity

Anthony	Berglas,	Ph.D.

More	than	any	time	in	history	mankind	faces	a	crossroads.	One	path	leads	to
despair	and	utter	hopelessness,	the	other	to	total	extinction.	Let	us	pray	that	we
have	the	wisdom	to	choose	correctly.

Woody	Allen,	1979.
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Could	computers	ever	really	think?	They	can	now	drive	cars	on	suburban
streets,	control	spaceships	and	have	even	won	the	Jeopardy!	game	show.	But
could	they	ever	be	self	aware,	create	original	ideas,	develop	their	own	goals,	and
write	complex	computer	programs?

Why	can’t	computers	already	think?	Why	has	60	years	of	research	failed	to
produce	a	single	intelligent	robot?	What	has	been	learnt,	what	are	the	technically
difficult	problems,	and	when	are	they	likely	to	be	solved?

What	would	computers	think	about?	What	would	be	their	challenges,	goals	and
aspirations?	They	certainly	would	not	need	children.	Would	they	need	us?

This	book	addresses	the	unseen	elephant	in	the	room.	Computers	are	becoming
ever	more	intelligent.	The	future	will	not	be	anything	like	it	used	to	be.

The	book	differs	from	other	recent	works	by	providing	a	strong	focus	on	what
caused	people	to	ultimately	be	the	way	we	are,	namely	upon	natural	selection.	It
then	attempts	to	predict	how	natural	selection	would	condition	an	intelligent
machine’s	behaviour	by	considering	the	very	different	world	that	it	would
experience.

Several	technical	and	rhetorical	arguments	are	presented	both	for	and	against	the
hypothesis	that	computers	will,	eventually,	be	able	to	think.	There	is	also	some
discussion	about	what	it	actually	means	to	be	intelligent	and	the	limitations	of
terms	such	as	“creative”	and	“self	aware”.

The	second	and	largest	part	of	the	book	then	describes	existing	AI	technologies	in
some	detail.	These	include	symbolic	and	logic	based	approaches,	Bayesian
expert	systems,	vision,	speech,	robotics,	and	an	overview	of	computational
neuroscience.	This	provides	a	more	realistic	basis	for	predictions	of	the	future	as
well	as	simply	gaining	a	better	understanding	of	what	intelligence	actually	is.	It
helps	ground	abstract	philosophical	discussions	in	terms	of	real,	practical
technologies.	The	text	is	moderately	technical	while	being	aimed	at	the	general
reader.

The	book	also	posits	that	intelligent	machines	will	be	developed	as	succession	of
ever	more	intelligent	software	tools	that	are	released	and	used	in	the	real	world.
The	book	then	analyzes	the	medium	term	effects	of	those	semi-intelligent	tools
upon	society.	This	includes	some	surprising	results	from	an	historical	review	of
existing	technologies.

There	is	a	growing	awareness	of	these	issues,	with	concerns	recently	raised	by
physicist	Stephen	Hawking,	Microsoft	founder	Bill	Gates,	and	billionaire	Elon
Musk.
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Overview
My	young	daughters	asked	their	mother	how	old	she	was	when	she	received	her
first	mobile	phone,	and	which	games	it	could	play.	They	were	appalled	to	learn
that	in	the	dark	and	distant	olden	days	people	did	not	have	mobile	phones,	and
certainly	not	ones	that	could	render	sophisticated	three	dimensional	graphics.
People	could	only	be	contacted	when	their	location	was	known	to	be	near	a	fixed
line	telephone	so	that	there	were	many	hours	in	each	day	when	friends	could	not
be	instantly	messaged.	Such	an	existence	must	have	been	grim	indeed.

For	most	of	the	uncounted	millennia	of	man’s	existence	technical	progress	has
been	barely	perceptible.	Then	a	few	hundred	years	ago	the	rate	of	progress
started	to	increase,	faster	and	faster,	until	now	advances	achieved	over	the	last
few	decades	have	been	greater	than	those	achieved	during	entire	millennia	of
man’s	existence.	Not	only	is	progress	amazingly	fast	in	historical	terms,	it	is
getting	faster	every	decade.

This	book	considers	what	that	future	might	bring	given	the	huge	technological
changes	that	we	are	witnessing.	In	particular,	it	considers	the	nature	of	computers
and	software,	and	asks	the	question	“Could	computers	ever	actually	think?”.	To	be
programmed	to	think	autonomously	like	people	do,	as	opposed	to	just	doing	what
they	are	programmed	to	do.

Back	in	the	1960s	the	prospect	of	thinking	machines	was	very	real,	and	people
were	very	concerned	about	how	intelligent	they	might	become.	But	after	sixty
years	of	development	it	is	clear	that	computers	still	cannot	really	think.	They	are	a
useful	tool,	but	they	cannot	address	new	problems	without	detailed	programming.
However,	just	because	something	has	not	yet	been	achieved	does	not	mean	that
it	will	never	be	achieved.	Computers	can	already	fly	aeroplanes,	control	space
ships	and	drive	cars	on	suburban	streets.	They	have	beaten	grand	masters	at
chess,	and	even	more	impressively,	won	the	Jeopardy!	trivia	game	show.

If	indeed	computers	could	ever	really	think	then	this	book	then	considers	what
they	might	think	about.	And	in	particular	what	they	might	think	about	us.

Some	people	look	forward	to	a	computer	driven	utopia,	with	intelligent	computers
providing	all	the	grinding	labour	so	that	humanity	could	live	a	carefree	life	of	art
and	leisure.	Diseases	would	be	cured,	wars	would	be	prevented,	the	poor	would
be	fed.	Ultimately	our	own	brains	might	be	integrated	with	the	computer’s,	or
possibly	even	uploaded	into	a	computer.	Computer	software	need	not	grow	old,
so	in	this	way	we	might	cheat	old	age	and	death	and	become	immortal.

But	something	that	seems	too	good	to	be	true	often	is	too	good	to	be	true.	Will
computers	be	our	humble	servants,	our	benevolent	masters,	or	our	cruel	jailers?
Or	will	they	simply	eliminate	humanity	because	we	are	in	their	way?	If	our
computers	did	start	to	threaten	us,	why	would	we	not	simply	turn	them	off?

The	book	is	divided	into	three	parts.	It	is	not	at	all	clear	that	computers	could	ever



really	think	and	so	the	first	part	presents	the	many	arguments	that	have	been
made	both	for	and	against	the	ability	of	computers	to	eventually	gain	human	level
intelligence.	The	issue	of	what	a	thinking	computer	might	be	like	is	then
introduced,	as	well	as	how	it	might	interact	with	mankind.

It	is	difficult	to	define	the	meaning	of	“intelligence”	independently	from	the
technologies	that	attempt	to	implement	it.	Some	tasks	that	appear	to	display	great
intelligence	actually	require	minimal	intelligence,	while	other	tasks	that	seem	to	be
trivial	are	not	nearly	as	easy	as	they	appear.

The	second	and	largest	part	addresses	this	by	provide	a	solid	introduction	to
Artificial	Intelligence	(AI)	technologies.	It	critiques	the	impressive	early	results	in
AI	research,	and	then	reviews	various	approaches	to	modelling	the	world	formally
using	logic,	and	the	difficulty	of	reasoning	with	uncertain	knowledge.	Building
robots	that	can	function	in	the	real	world	introduces	additional	problems	of	vision
and	movement.	Both	artificial	and	biological	neural	networks	are	also	described	in
some	detail	together	with	the	practical	difficulties	involved	with	brain	emulation.
This	part	provides	sufficient	technical	details	to	understand	how	the	technologies
actually	work,	but	without	using	heavy	mathematics.	It	should	help	raise	the	level
of	discussion	about	artificial	intelligence.

What	will	computers	think	about?
Public,	NASA	supercomputer.

The	third	part	of	the	book	considers	what	the	true	nature	of	an	intelligent	machine
might	be.	It	takes	a	novel	approach	by	first	considering	what	forces	made	people
the	way	we	are.	Why	we	value	love	and	kindness,	truth	and	beauty.	The	answer,
ultimately,	must	be	the	same	force	that	made	us	physically	the	way	that	we	are,
namely	the	force	of	natural	selection.	The	survival	strategies	of	other	species
provide	insights	into	how	our	own	moral	values	such	as	honesty	and	charity
actually	increase	our	own	fitness	to	survive.	Natural	selection	has	produced	genes
and	memes	that	have	caused	our	many	ancestors	to	perform	deeds	both	noble



and	contemptible	that	have	enabled	them	to	successfully	raise	children	that	bore
children	of	their	own.

The	book	then	contrasts	the	human	condition	with	the	radically	different
environment	that	an	intelligent	computer	program	would	experience.	Software	can
run	on	a	network	of	computers	without	being	embodied	in	any	particular	machine
so	it	would	have	a	quite	different	concept	of	self	to	our	own	brain-centred
intelligence.	Software	is	potentially	immortal	and	so	has	no	need	of	children.	It	is
composed	of	software	components	that	are	ruthlessly	replaced	when	better
components	become	available.	It	could	continually	reprogram	its	own	mind.
Analysing	the	world	from	the	perspective	of	intelligent	software	provides	insights
into	what	strategies	and	goals	it	might	need	to	support	its	own	struggle	for
survival.

Computers	are	slowly	becoming	more	intelligent,	and	they	will	have	an	increasing
impact	on	society	long	before	they	gain	human	level	intelligence.	Robots	are
automating	more	and	more	manufacturing	processes	as	well	as	being	used	in	the
many	smaller	and	less	structured	factories.	Robots	are	also	beginning	to	leave	the
factory	and	operate	semi-autonomously	in	the	real	world.	Several	manufacturers
are	planning	to	mass	produce	cars	and	trucks	that	can	drive	themselves	over	the
next	decade.	Machines	will	start	to	perform	repetitive	jobs	such	as	cleaning	offices
or	laying	bricks	within	a	couple	of	decades.

Ever	more	intelligent	computers	are	already	beginning	to	control	our	lives.
Applications	for	bank	loans	and	insurance	policies	are	already	assessed	by
computer	expert	systems	rather	than	human	clerks.	Computers	are	being	used	to
recognize	faces	seen	by	surveillance	cameras	and	then	to	correlate	them	with	the
vast	amount	of	other	data	that	is	collected	about	us.	Software	can	understand
written	documents	well	enough	to	perform	usable	translations	into	other
languages,	and	will	soon	become	much	better	at	analysing	their	content.
Computers	are	also	beginning	to	influence	political	decisions.	Search	engines
already	influence	what	what	read	and	possibly	whom	we	date.	This	book
considers	the	extent	to	which	computers	might	end	up	controlling	our	lives	before
they	become	truly	intelligent.

The	ultimate	goal	of	artificial	intelligence	research	is	to	produce	a	computer	that
can	perform	artificial	intelligence	research,	which	would	enable	it	to	reprogram	its
own	mind.	Several	writers	have	predicted	that	this	will	lead	to	an	exponential
increase	in	intelligence	as	ever	more	intelligent	computers	become	better	at
becoming	more	intelligent.	This	means	that	humans	would	no	longer	be	the	most
intelligent	being	on	the	planet.

Several	approaches	have	been	proposed	to	deal	with	extremely	intelligent
computers.	These	range	from	keeping	them	locked	in	a	box	to	carefully	designing
initial	versions	to	ensure	that	the	software	remains	friendly	to	humans.	There	are
many	challenges	to	each	of	these	approaches,	and	it	is	unclear	whether	they	are
likely	to	succeed.	In	the	longer	term,	the	force	of	natural	selection	may	cause



computers	to	do	what	is	in	their	own	best	interests	in	order	to	survive.

The	book	does	not	vaguely	address	all	the	sundry	singularity	technologies	and
postulate	how	wonderful,	terrible,	or	unlikely	they	are.	Instead,	it	bluntly	addresses
one	very	conventional	and	real	technology	in	detail,	namely	software	running	on
computers.	It	takes	a	cold	look	at	where	that	technology	is	likely	to	lead,	with	an
unusually	strong	focus	on	natural	selection.	It	also	reviews	other	writer’s	books
and	papers	on	the	subject	to	provide	alternative	perspectives.

There	has	been	a	slowly	growing	awareness	of	these	issues.	Technology
billionaire	Elon	Musk	recently	warned	that	research	into	artificial	intelligence	was
“summoning	the	devil”	and	that	artificial	intelligence	is	our	biggest	existential
threat.	World	famous	physicist	Stephen	Hawking	expressed	his	concerns	that	“the
development	of	full	artificial	intelligence	could	spell	the	end	of	the	human	race.”.
Microsoft	founder	Bill	Gates	has	expressed	concern.		Jaan	Tallinn,	co-founder	of
Skype,	commented	“I	wish	this	was	science	fiction,	but	I	know	that	it	is	not”.	In
January	2015	many	of	the	worlds	leading	researchers	into	artificial	intelligence
signed	a	letter	written	by	the	Future	of	life	institute	warning	of	the	dangers	and
promoting	research	so	that	“our	AI	systems	(must)	do	what	we	want	them	to	do”.





Part	I:	Could	Computers	Ever	Think?





People	Thinking	About	Computers

The	Question
Could	computers	ever	really	think?	Could	manipulating	data	with	silicon	ever
reproduce	the	power	and	depth	of	human	thought?	Can	the	mysteries	of
consciousness	and	our	very	soul	ever	be	understood?	Before	attempting	to
address	these	difficult	questions	we	first	consider	another	seemingly	impenetrable
mystery.	The	mystery	of	life	itself.

Vitalism

Acorn	Seedling.
Public	Wikipedia

From	a	tiny,	inert	acorn,	a	mighty	Oak	tree	grows,	full	of	majesty	and	beauty.	From
a	grubby	little	caterpillar	emerges	a	glorious	butterfly.	From	a	simple	egg	emerges
the	peacock’s	magnificent	tail.	And	totally	helpless	babies	become	rulers	of	the
planet.

Clearly,	living	things	such	as	trees	and	peacocks	are	quite	different	from	non-living
elements	such	as	rocks	and	earth.	Living	things	have	an	energy	about	them,	an
ability	to	grow	and	reproduce.	They	live	with	purpose	rather	than	merely	existing.
But	what	is	it	that	gives	them	that	vital	spark	of	life?

The	ancient	Greeks	attributed	this	to	a	vital	force	that	was	associated	with	the	four



humours	of	Earth,	Air,	Fire	and	Water.	Hippocrates	taught	that	it	was	an
imbalance	of	these	humours	that	caused	disease.	Eastern	traditions	pointed	to	a
similar	imbalance	of	qi	as	the	root	of	all	ailments.

Aristotle	wrote	the	major	treatise	On	The	Soul	which	discusses	the	life	force	in
terms	of	obscure	metaphysical	arguments.	Plato	believed	that	an	underlying	world
of	forms	transcended	the	mere	physical	world	which	was	accessible	to	our
senses.	Epicurus	believed	that	the	events	of	the	world	were	ultimately	based	on
the	motions	and	interactions	of	invisible	atoms	moving	through	space.	Writing
much	later,	Lucretius	ascribed	this	to	the	pneuma,	the	breath	of	vital	heat	that
passed	through	the	body.	Arteries	tend	to	empty	in	a	corpse,	so	they	were	seen	to
be	the	passage	through	which	this	pneuma	passed.	Others	have	suggested	that
undetectable	aethers	contain	the	life	force.

There	are	many	variations	on	this	theme	which	is	generally	known	as	Vitalism.
That	the	nature	of	living	things	can	be	explained	in	terms	of	an	unseen	vital	force
that	gives	living	things	their	special	properties.	This	vital	force	is	passed	from
parent	to	offspring,	and	cannot	be	synthesized.

Vitalistic	theories	do	their	best	to	explain	what	they	do	not	understand.	However,
dressing	a	lack	of	understanding	in	grandiose	philosophical	jargon	does	nothing	to
address	that	lack	of	understanding	other	than	to	confuse	and	obscure.	By	the
early	nineteenth	century	with	the	development	of	science	vitalism	was	being
criticized	for	its	inability	to	make	useful	predictions	about	the	behaviour	of	living
things.	Thomas	Huxely	and	others	noted	that	saying	that	that	living	things	live
because	of	their	vital	force	is	akin	to	saying	that	water	is	wet	because	of	its
aquosity.	Or	that	fire	is	hot	because	of	its	pyrosity,	or	that	opium	causes	sleep
because	of	its	soporific	powers.	These	are	all	just	word	games	that	do	not	actually
explain	anything.	But	some	sort	of	explanation	was	needed,	and	vitalistic
explanations	were	the	best	available.

Science	vs.	vitalism

Urea.
Public	Wikipedia

In	1828,	Friedrich	Wöhler	synthesized	urea	from	inorganic	materials.	Urea	was
clearly	understood	to	be	an	organic	substance,	albeit	a	very	simple	one,	because
it	only	existed	in	living	creatures	(mainly	in	their	urine).	There	were	and	are	no
scientific	tests	that	could	distinguish	organically	produced	urea	from	Wöhler’s
urea.	This	was	the	first	challenge	to	the	dichotomy	between	living	and	non-living



things	implied	by	vitalism	because	there	was	clearly	no	vital	force	that	had	been
added	to	the	synthesized	urea.

Over	the	next	100	years,	far	more	complex	organic	compounds	were	synthesized.
In	1832	Wöhler	and	Justus	Liebig	discovered	the	functional	groups	which	form	the
basis	of	organic	chemistry.	Further	developments	soon	followed,	such	as	the
synthesis	of	acetic	acid	(vinegar)	in	1847.	The	basic	classification	of	biochemicals
into	carbohydrates,	lipids	and	proteins	had	been	made	by	William	Prout	in	1827,
but	a	full	understanding	of	the	way	proteins	are	constructed	from	amino	acids	was
not	understood	for	another	hundred	years,	culminating	with	the	protein	insulin
being	sequenced	in	1949.

The	genetic	material	that	defines	how	our	bodies	are	made	is	stored	in	molecules
of	DNA	which	was	first	isolated	in	1878.	After	many	investigations,	the	structure	of
DNA	was	finally	revealed	in	1953,	by	Franklin,	Watson	and	Crick.	As	predicted	by
Koltsov	in	1927,	DNA	was	found	to	be	two	complementary	molecules	which	can
replicate	themselves	during	cell	reproduction.	They	can	also	be	transcribed	into
sequences	of	amino	acids	that	create	the	proteins	that	perform	most	of	our	bodily
functions.

Fragments	of	DNA	can	now	be	synthesized	from	inorganic	materials.	These
fragments	can	be	injected	into	living	cells	to	change	their	biochemistry,	and	then
be	replicated	along	with	the	cell’s	original	DNA.	In	this	way	scientists	are	creating
new	forms	of	life	that	have	never	previously	existed.

Our	detailed	understanding	of	biochemical	processes	makes	vitalistic	theories
seem	ridiculous	today.	No	credible	scientist	believes	in	undetectable	vital	forces,
humours,	aethers	or	pneuma.	It	seems	clear	that	the	miracle	of	life	can	be
understood	as	the	result	of	large	numbers	of	complex	chemical	reactions	that
obey	well-defined	laws	of	physics.

There	is	still	much	that	is	unknown	about	these	processes,	but	every	year	more
and	more	discoveries	are	made	that	extend	the	boundaries	of	our	non-vital
knowledge.	No	living	creature	has	been	created	completely	from	inorganic
precursors,	and	that	would	indeed	be	well	beyond	the	current	state	of	the	art.	But
we	can	inject	a	gene	from	a	jellyfish	into	a	frog.	There	is	little	doubt	that	creating
life	ab	initio	is	possible,	it	is	just	a	matter	of	gaining	a	better	understanding	of	the
biochemical	processes	that	are	involved.

The	vital	mind
Today,	much	is	known	about	the	body,	but	what	is	known	about	the	mind?	About
the	processes	that	create	our	thoughts	and	let	us	reason	about	the	world?	Will	it
ever	be	possible	to	truly	understand	what	creates	our	thoughts,	our	feelings,	our
goals	and	ambitions?	Are	they,	too,	just	the	result	of	complex	applications	of	the
laws	of	physics	in	the	neurons	in	our	brains?	Or	do	they	result	from	some	vital
force	that	only	a	human	brain	can	possess?



More	specifically,	would	it	ever	be	possible	to	build	an	artificial	computer	that
could	really	think?

Not	just	store	and	process	vast	amounts	of	information,	but	to	really	think,	like
people	do.	Learn	how	to	do	things	that	they	had	not	been	programmed	to	do.
Reason	about	the	complex,	uncertain	world	we	live	in.	Recognize	analogies.
Create	new	ideas.	Devise	their	own	goals	and	make	plans	to	achieve	them.
Understand	language	and	interact	with	people	and	each	other	in	sophisticated
ways.	Be	self	aware.	Produce	works	of	art.	Tell	jokes.

Computers	cannot	think	now
Certainly	our	common	computer	applications	are	not	intelligent.	Most	web	and
business	applications	just	store	information	they	are	given	and	present	it	back	in
different	ways.	Word	processors	and	spreadsheets	just	do	what	they	are	told.
Video	compression	involves	clever	algorithms,	but	they	do	not	have	even	a
shallow	understanding	of	the	videos	that	they	compress.	Web	search	engines
essentially	just	maintain	an	index	of	which	words	are	contained	in	each	web	page.
Dealing	with	billions	of	web	pages	requires	powerful	computers	and	sophisticated
software	engineering,	but	it	does	not	require	any	real	intelligence.

Back	in	the	1950s	and	1960s,	at	the	dawn	of	electronic	computation,	people	often
speculated	about	truly	intelligent	computers.	Today,	after	sixty	years	of	experience
seeing	what	powerful	computers	can	do	we	feel	confident	that	we	understand
their	basic	operational	parameters.	We	expect	to	see	ever	smaller	and	more
powerful	mobile	phones,	computers	embedded	in	everything	from	washing
machines	to	tooth	brushes,	and	machinery	that	is	completely	unrepairable	by	the
common	man.	But	none	of	these	are	intelligent.

Diminishing	returns

1950s	cars	were	perfectly	functional.
Public	Wikipedia

It	is	not	uncommon	for	the	effectiveness	of	a	technology	to	plateau.	For	example,



modern	motor	cars	are	an	order	of	magnitude	more	complex	than	cars	of	the
1950s,	but	they	perform	essentially	the	same	function.	A	bit	more	comfortable,
fuel	efficient	and	safer,	but	they	still	just	get	you	from	A	to	B	in	much	the	same
time	and	at	much	the	same	cost.	Civil	aviation	technology	plateaued	a	few	years
later	in	the	1960s	when	high	bypass	jet	engines	were	developed.	Since	then,	all
their	fancy	new	electronics	have	had	a	very	marginal	effect	on	speed	or	efficiency.

Even	in	medicine,	a	basic	understanding	of	germs	lead	to	a	huge	reduction	in
mortality	in	the	late	nineteenth	century.	Other	breakthroughs	such	as	basic
antibiotics	have	actually	had	a	less	dramatic	effect.	All	the	amazingly
sophisticated	medical	technology	developed	since	the	1950s	has	only	pushed	life
expectancy	forward	a	decade	or	so,	and	much	of	that	can	be	ascribed	simply	to	a
reduction	in	smoking.

This	is	not	to	say	that	better	technology	does	not	produce	better	artefacts,	but
simply	that	there	is	often	a	law	of	diminishing	returns.	Once	a	certain	point	is
reached,	large	increases	in	complexity	only	produce	limited	increases	in	effect.

Computer	software	appears	to	have	plateaued	by	about	1990	when	all	our
common	applications	were	built.	These	include	word	processors,	spreadsheets,
databases,	business	applications,	email,	the	internet,	and	three	dimensional
games.	Their	adoption	has	soared,	their	graphics	are	much	better,	applications
are	much	more	complex	and	the	social	and	business	nature	of	the	internet	has
developed.	But	all	these	are	applications	of	technologies	that	were	well
understood	twenty	five	years	ago.	Hardware	has	certainly	become	much,	much
faster,	but	software	has	just	become	much,	much	slower	to	compensate.	We	think
we	have	a	general	understanding	of	computers	and	the	sort	of	things	they	can	do.

AI	in	the	background
In	the	background,	however,	there	has	been	slow	but	steady	progress	in	a	variety
of	technologies	that	are	often	referred	to	as	Artificial	Intelligence	(AI).	Until
recently,	most	people	were	largely	unaware	of	this	research	because	much	of	it
has	had	little	practical	value,	or	because	it	has	been	hidden	away	in	defence
projects,	high	technology	factories,	or	corporate	expert	systems.

But	there	are	now	several	visible	applications	of	successful	AI	technologies.
Speech	understanding	became	a	practical	technology	a	few	years	ago.	People
seem	to	prefer	to	use	mice	and	keyboards,	but	the	microphone	now	works	well	for
those	with	disabilities	such	as	repetitive	strain	injury	caused	by	too	much	typing.
The	technology	is	particularly	useful	for	people	that	have	their	hands	busy	while
using	a	computer,	such	as	doctors	and	mechanics.	It	will	be	interesting	to	see	how
people	react	to	the	next	generation	of	mobile	phones	which	will	be	powerful
enough	to	understand	speech	without	having	to	send	it	to	a	distant	computer.	Will
tedious	texting	be	replaced	by	talking?

One	holy	grail	of	early	AI	research	was	the	ability	to	translate	Russian	documents
into	English	during	the	Cold	War.	This	turns	out	to	be	a	very	difficult	problem,	as



the	machine	needs	to	have	some	understanding	of	the	text	that	is	being	translated
in	order	to	resolve	the	many	ambiguities	present	in	natural	language.	But	today
there	are	several	quite	effective	translation	engines.	They	do	not	produce	human
quality	output,	but	they	are	certainly	very	usable.

Computer	vision	is	another	technology	that	is	surprisingly	difficult	to	implement.
Yet	today’s	computers	regularly	review	the	vast	quantity	of	recorded	surveillance
video.	People	can	be	recognized	and	tracked	over	time,	and	this	data	can	then	be
stored	and	analyzed.	The	Curiosity	rover	on	Mars	uses	computer	vision
technology	to	navigate	over	the	terrain	without	getting	stuck.

None	of	the	above	involves	human-level	reasoning,	but	they	address	difficult
problems	that	form	a	basis	for	that	reasoning.	In	particular,	good	vision	enables
computers	to	interact	with	their	environment	—	they	are	no	longer	just	brains	in	a
vat.

Intelligent	software	has	also	been	developed	to	perform	higher	level	functions.
There	are	now	programs	that	can	learn	how	to	do	things	that	they	had	not	been
programmed	to	do.	Reason	about	the	complex,	uncertain	world	we	live	in.
Recognize	analogies.	Create	new	ideas.	Devise	their	own	goals	and	make	plans
to	achieve	them.	Understand	language	and	interact	with	people	and	each	other	in
sophisticate	ways.	Be	self	aware.	Produce	works	of	art.	Even	tell	(bad)	jokes.

None	of	these	can	be	achieved	with	human	level	competence.	But	there	is	no
general	type	of	task	that	people	can	do	that	modern	computers	cannot	do.
Further,	computers	can	also	perform	aspects	of	all	the	above	functions	far	better
than	most	people	can,	which	is	why	they	are	useful.

This	makes	it	very	difficult	to	define	what	we	actually	mean	by	an	intelligent
computer	that	can	truly	think.	It	seems	more	a	matter	of	degree	than	an	absolute
ability.	But	it	is	clear	that	computers	cannot	really	think.	Yet.

Robots	leave	factories



Cheap	Robot.
Corporate	http://www.thinkgeek.com/product/b696/

Back	in	the	1980s	Sony	took	the	world	by	storm	with	a	cassette	tape	recorder	so
small	that	it	could	be	carried	in	a	(large)	pocket	—	the	Walkman.	What	was	more
amazing	was	that	Sony	boasted	that	the	entire	production	line	was	completely
automated.	The	first	human	hand	that	touched	a	Walkman	was	the	customer’s.
Factory	robots	have	become	much	more	sophisticated	and	widely	available,	so
fully	automated	production	lines	are	now	commonplace.		This	is	one	reason	why
manufactured	goods	have	become	much	less	expensive	in	recent	years.

Over	the	next	few	years	we	will	see	robots	begin	to	leave	the	factories	and	enter
less	structured,	more	natural	environments.

An	important	and	recent	achievement	is	the	development	of	cars	that	that	can
effectively	drive	themselves.	The	2005	DARPA	Grand	Challenge	had	fully
autonomous	vehicles	slowly	drive	for	11	km	over	a	very	rough	and	winding	desert
track.	More	recently,	Google	and	others	have	successfully	driven	fully	automated
vehicles	on	ordinary	roads.	Negotiating	suburban	roads	with	normal	traffic	and
pedestrians	is	much	more	difficult	than	driving	down	a	freeway	or	traversing	a
Martian	landscape.	It	requires	excellent,	real	time	vision	and	other	sensory
analysis,	combined	with	sophisticated	models	of	how	other	vehicles	move	and
react.	After	many	thousands	of	miles	driven	Google’s	only	reported	accident	was
when	another	car	crashed	into	an	automated	car	from	behind.

This	promises	a	new	era	of	road	safety	and	convenience.	Robots	do	not	get	tired,
impatient,	distracted	or	drunk,	and	your	car	could	drive	your	children	to	their
soccer	match	without	you	needing	to	be	there.	These	are	truly	wonderful
innovations.	Unless,	of	course,	you	happen	to	drive	cars	or	trucks	for	a	living.	The
Caterpillar	company	has	already	deployed	huge	trucks	that	drive	themselves
around	open	cut	mines,	greatly	reducing	the	number	of	drivers	required	at	some



mines.

It	might	seem	implausible	that	our	roads	could	be	filled	with	cars	that	are	driven	by
computers.	After	all,	that	is	not	happening	now.	But	we	have	very	solid	evidence
that	it	is	indeed	possible	because	it	is	already	being	done.

Robots	can	already	effectively	vacuum	floors	and	explore	Mars.	They	will	soon	be
capable	of	more	complex,	semi-structured	jobs	such	as	mowing	grass,	cleaning
offices,	painting	houses	and	laying	bricks.	A	brick	laying	robot	need	not	have
human-like	arms	and	legs	any	more	than	a	truck	driving	robot	has	arms	and	legs.
It	would	be	a	machine	designed	for	a	specific	job	in	well	defined	environments.	It
would	need	considerable	intelligence	to	identify	where	the	bricks	need	to	go,	and
to	distinguish	a	pile	of	bricks	from	a	human	standing	nearby.

Unfortunate	failure	to	distinguish	people	from	bricks.
Owned	WBlack

As	these	robots	become	more	common	people	may	start	to	ask	healthy	questions
as	to	the	role	of	man.	Being	unnecessary	is	dangerous.

Intelligent	tasks

Computers	have	also	challenged	man	on	tasks	that	seem	to	require	more
conventional	intelligence,	the	most	well-known	of	which	is	playing	chess.	In	1985,
in	Hamburg,	Germany,	world	champion	Garry	Kasparov	played	against	thirty-two
different	chess	computers	simultaneously,	and	managed	to	win	every	game.	Just



a	few	years	later	in	1997,	advances	in	software	and	hardware	enabled	IBM’s
Deep	Blue	computer	to	beat	Kasparov	by	two	wins	to	one	with	three	draws.	Deep
Blue	was	a	specially	built	super	computer	that	could	evaluate	over	200	million
moves	every	second.

In	many	ways	this	result	is	a	tribute	to	the	genius	of	Kasparov	that	his	human
brain	could	effectively	compete	with	such	a	powerful	machine.	Today	chess
programs	running	on	ordinary	personal	computers	are	essentially	unbeatable.

Chess	will	be	discussed	in	detail	later	in	the	book,	but	in	many	ways	it	presents	a
constrained	mathematical	problem	that	is	amenable	to	automated	computation.	A
far	more	impressive	result	is	the	victory	of	IBM’s	Watson	program	on	the
Jeopardy!	game	show.

Jeopardy!	set,	showing	Watson’s	guesses.
Fair	Use.	Wikipedia.

Jeopardy!	requires	contestants	to	answer	questions	in	natural	language	that	cover
a	wide	range	of	general	knowledge	topics.	In	2011	Watson	competed	against	two
former	prize	winners	and	received	first	prize	of	$1	million.	These	is	a	sample	of
questions	that	Watson	could	answer:-

Wanted	for	a	12-year	crime	spree	of	eating	King	Hrothgar’s	warriors;	officer
Beowulf	has	been	assigned	the	case	:	Grendel
Milorad	Cavic	almost	upset	this	man’s	perfect	2008	Olympics,	losing	to	him
by	one	hundredth	of	a	second	:	Michael	Phelps
It’s	just	a	bloody	nose!	You	don’t	have	this	hereditary	disorder	once	endemic
to	European	royalty	:	Haemophilia
Tickets	aren’t	needed	for	this	“event”,	a	black	hole’s	boundary	from	which
matter	can’t	escape	:	Event	horizon

Watson	was	a	massive	super	computer	that	had	much	of	the	internet	stored	and
indexed	within	it.	To	be	sure	Watson	could	only	answer	trivia	questions,	and	much



of	the	analysis	involved	simple	keyword	searches	on	its	huge	data	store.	But	it
also	involved	much	more	than	that	in	order	to	understand	what	was	being	asked
and	how	to	apply	the	results	of	the	search	to	provide	an	answer.		Watson	used
many	different	techniques	to	address	each	question,	and	they	were	applied
concurrently	with	the	best	answer	selected.

Watson	was	certainly	not	truly	intelligent	and	it	did	not	have	a	deep	understanding
of	its	answers.	But	its	performance	was	impressive.	Its	strengths	and	limitations
will	be	discussed	in	Part	II.

Obviously	these	programs	can	only	do	what	their	programmers	have	programmed
them	to	do.	But	as	they	begin	to	be	programmed	to	learn	about	the	world	and
solve	general	problems	this	becomes	a	much	looser	constraint	than	the	way	a
business	application	is	programmed	to	mindlessly	implement	business	rules.	AI
programs	often	surprise	their	developers	with	what	they	can	(and	cannot)	do.
Kasparov	stated	that	Deep	Blue	had	produced	some	very	creative	chess	moves
even	though	it	used	a	relatively	simple	brute	force	strategy.	Certainly	Deep	Blue
was	a	much	better	chess	player	than	its	creators.

Artificial	General	Intelligence	(AGI)
It	is	certainly	the	case	that	computers	are	becoming	ever	more	intelligent	and
capable	of	addressing	a	widening	variety	of	difficult	problems.	This	book	argues
that	it	is	only	a	matter	of	time	before	they	achieve	general,	human	level
intelligence.	This	would	mean	that	they	could	reason	not	only	about	the	tasks	at
hand	but	also	about	the	world	in	general,	including	their	own	thoughts.	To	be	able
to	learn	new	tasks	of	ever	increasing	complexity	just	like	people	do.	Much	of	this
book	will	investigate	the	specific	technologies	involved,	and	try	to	develop	a
theory	of	what	is	required	to	achieve	this	and	predict	when	that	is	likely	to	occur.

It	might	seem	implausible	that	a	computer	could	ever	become	truly	intelligent.
After	all,	they	aren’t	intelligent	now.	After	sixty	years	of	research	we	have	not	been
able	to	produce	a	single	intelligent	robot.	The	armies	of	ordinary	computer
programmers	that	work	on	business	applications,	operating	systems,	and	glitzy
web	sites	will	certainly	never	produce	an	intelligent	machine.	But	as	we	shall	see,
much	has	been	achieved	in	the	research	laboratory,	and	there	are	many	fine
minds	working	on	the	problem.

Existence	proof
A	detailed	examination	of	the	difficult	problems	that	need	to	be	overcome	in	order
to	build	an	intelligent	machine	can	make	it	seem	that	the	problems	are	completely
insoluble.	That	creating	a	truly	intelligent	machine	is	just	too	hard,	and	that	it	is
simply	not	possible	to	build	a	program	that	can	really	think.

But	there	is	very	solid	evidence	that	it	is	indeed	possible	to	build	an	intelligent
machine	—	namely	ourselves.



Unless	one	believes	in	vitalism,	our	intelligence	must	result	from	well-defined
electro	chemical	processes	in	our	brains.	If	those	could	be	understood	and
simulated	then	that	would	produce	an	intelligent	machine.	It	is	difficult	to	predict
just	how	difficult	it	is	to	build	an	intelligent	machine,	but	barring	the	supernatural	it
is	certainly	possible	because	it	has	already	been	done.	Furthermore,	our
intelligence	is	encoded	in	a	relatively	small	quantity	of	DNA	so	there	is	a	loose
upper	bound	on	just	how	difficult	the	task	can	be.

Simulating	neurons,	feathers

Aeroplanes	are	not	built	with	feathers.
Owned	WBlack

Cognitive	scientists	have	been	using	advanced	technology	such	as	MRI	brain
scans	to	build	a	much	better	understanding	of	human	cognition	than	would	have
been	thought	possible	a	few	years	ago.	Such	insights	are	certainly	helping	to
drive	research	into	artificial	intelligence,	and	these	will	be	covered	in	more	detail
later.	Some	researchers	such	as	Kurzwiel	(2013)	propose	building	an	artificial
intelligence	by	simulating	(groups	of)	neurons	in	our	brains.	If	our	brains	are
intelligent,	and	we	simulate	them	accurately,	then	we	will	have	an	intelligent
machine.

However,	building	an	artificial	intelligence	by	simulating	neurons	might	be	like
trying	to	build	an	aeroplane	by	simulating	feathers.	Certainly	the	early	aviation
pioneers	such	as	Lilienthal	and	the	Wright	brothers	studied	birds	very	closely.
They	studied	how	they	interacted	with	the	air,	their	centre	of	gravity,	and	the
curved	shape	of	their	wings.	But	while	feathers	are	a	truly	amazing	piece	of



technology,	they	have	proven	to	be	neither	necessary	nor	useful	for	human	flight.

There	are	certainly	other	approaches	to	building	an	intelligent	machine	than
simulating	neurons.	The	classical	approach	is	to	simply	engineer	the	intelligence.
We	already	have	a	rich	suite	of	technologies	for	reasoning,	planning,	and
learning,	so	further	refinement	might	produce	real	intelligence.	Or	we	could	build	a
very	simple	“baby	brain”	that	could	then	improve	itself	over	time.	It	may	also	be
possible	to	simulate	the	building	blocks	of	our	human	intelligence	without	needing
to	simulate	individual	neurons.	These	approaches	will	be	discussed	in	detail	in
Parts	II	and	III.

Many	of	the	criticisms	of	the	ability	to	build	intelligent	machines	are,	at	their	heart,
very	similar	to	the	vitalistic	doctrine.	The	problem	of	building	an	intelligent
machine	is	not	yet	solved,	so	we	invent	some	vital	property	that	our	brains	have
that	a	silicon	computer	could	never	have.	Our	intelligence	today	seems	as
mysterious	as	basic	biochemical	processes	used	to	be	one	hundred	years	ago.
Some	basic	principals	are	understood	but	there	is	much	to	learn.	Being	able	to
synthesize	an	artificial	intelligence	may	feel	as	unlikely	as	being	able	to
synthesize	artificial	DNA,	yet	the	latter	is	now	commonplace.

Moore’s	law
Computer	hardware	has	doubled	in	power	every	year	or	two	since	the	1950s	and
shows	no	sign	of	slowing	down.	Hence	if	we	could	program	a	human-level
intelligence	in	a	certain	year,	then	it	would	be	roughly	a	thousand	times	faster	in
fifteen	years	time,	without	any	improvement	in	software.	If	it	took	the	original	AI	a
few	weeks	to	read	and	understand	this	book,	then	fifteen	years	later	it	could	read
it	in	a	few	hours.	And	fifteen	years	after	that	in	less	than	a	second.	It	could
achieve	a	human	lifetime	of	thought	in	a	few	days.

Further,	suppose	it	took	the	first	AI	program	ten	years	to	“grow	up”	and	learn	all
that	it	had	to	learn	in	order	to	function	in	the	real	world.	If	hardware	doubles	every
year,	then	almost	half	of	that	learning	would	actually	occur	in	the	last	year.	It
would	then	be	able	to	repeat	that	entire	ten	years’	worth	of	learning	in	just	the	next
year.

However,	it	is	most	unlikely	that	the	software	would	not	be	substantially	improved
over	a	ten	year	period	by	its	human	programmers.	Improvements	to	software
algorithms	usually	dwarf	the	speed	that	improvements	to	hardware	can	deliver.

Definition	of	intelligence



A	SHRDLU	like	scene
Owned

It	is	difficult	to	compare	machine	intelligence	with	human	intelligence.	Some
activities	that	appear	to	required	considerable	human	intelligence	are	relatively
easy	to	implement,	whereas	other	quite	simple	deductions	are	surprisingly
difficult.

A	good	example	is	the	SHRDLU	program	developed	back	in	the	1970s	which
could	understand	and	answer	complex	natural	language	questions	about	a	stack
of	blocks.	The	following	is	an	example	of	a	question	that	SHRDLU	could	answer
about	the	stack	of	blocks	above.

DOES	THE	SHORTEST	THING	THE	TALLEST	PYRAMID'S	SUPPORT	SUPPORTS	SUPPORT	ANYTHING	GREEN?

Most	people	have	difficulty	interpreting	the	sentence	and	so	cannot	determine	the
answer	(can	you?).	It	might	be	helpful	to	note	that	the	shortest	thing	that	the
shortest	pyramid’s	support	supports	is	the	brown	ellipse.	SHRDLU’s	strengths	and
limitations	are	discussed	in	detail	in	Part	II,	which	includes	SHRDLU’s	answer	to
the	question	above.

On	the	other	hand,	it	turns	out	to	be	much	more	challenging	to	implement	the
common	sense	reasoning	that	is	required	to	understand	that	falling	off	a	wall
caused	Humpty	Dumpty	to	become	broken.

Early	results	in	AI	could	create	solutions	to	unseen	problems,	learn	complex
relationships	without	being	supervised,	and	produce	plans	that	address	somewhat
arbitrary	goals.	Computers	have	also	been	able	to	create	new	works	of	art	since
the	beginning.	For	example	the	program	Emily	Howel	analyzes	audience
feedback	to	compose	music	that	is	certainly	better	than	this	author’s	efforts.	Some
of	it	has	been	published	in	an	album	From	Darkness,	Light,	extracts	of	which	can
be	found	on-line.



Computers	have	also	always	been	self	aware	at	some	level,	for	example	modern
anti	virus	software	monitors	the	computers	own	software	very	carefully	in	order	to
detect	previously	unknown	or	polymorphic	viruses.	Likewise	computers	now	have
basic	competency	in	higher	order	tasks	such	as	thinking	abstractly,	reasoning	by
analogy,	thinking	laterally	and	even	philosophizing.

This	means	that	attempting	to	define	intelligence	in	terms	of	phrases	such	as
“creative”,	“common	sense”,	or	“self	aware”	simply	does	not	work.	Computers	can
already	do	all	those	things,	if	not	very	intelligently.	Using	phrases	such	as
“intelligently	self	aware”	is	obviously	not	very	helpful.

One	important	observation	is	that	once	software	is	developed	that	can	perform
some	semi-intelligent	task	then	it	usually	becomes	much	better	than	humans	at
that	task.	From	arithmetic	to	playing	chess	to	winning	Jeopardy!	to	recognizing
postcodes	printed	on	envelopes.	It	took	a	lot	of	clever	technology	to	be	able	to
perform	these	tasks	electronically,	but	the	computer	can	now	easily	out	perform
humans	at	those	specific	tasks.	(There	are,	of	course,	also	many	unresolved
software	challenges	such	as	playing	the	game	Go	at	a	professional	level.)

Turing	Test
The	problem	of	defining	intelligence	was	recognized	very	early	and	it	led	the	great
logician	Alan	Turing	to	propose	a	functional	definition	now	known	as	the	Turing
Test	in	1950.	This	test	was	simply	that	a	computer	would	be	considered	intelligent
when	it	could	convince	a	human	that	the	computer	was	a	human.	The	idea	is	that
the	human	would	communicate	using	a	text	messaging-like	program	so	that	they
could	not	see	or	hear	the	other	party,	and	at	the	end	of	a	conversation	would	state
whether	they	thought	that	the	other	party	was	man	or	machine.

Unfortunately	this	test	is	neither	necessary	nor	sufficient.	A	computer	could
certainly	be	intelligent	without	necessarily	being	good	at	simulating	a	human.	But
worse,	some	people	that	were	not	familiar	with	AI	technologies	have	already	been
fooled	into	thinking	that	a	computer	is	actually	a	human.	A	good	example	is	the
Eugene	Goostman	program	that	arguably	passed	the	actual	Turing	test	in	2014	in
trials	conducted	by	the	Royal	Society.

But	more	importantly,	the	Turing	Test	provides	no	insights	into	what	is	required	to
build	an	intelligent	machine,	where	the	gaps	in	current	technologies	lie	and	how
they	might	be	addressed.

Fortunately	one	thing	that	AI	research	has	provided	is	a	much	deeper
understanding	about	intelligence	and	cognition.	Indeed,	much	modern
psychological	research	into	human	cognition	is	driven	by	models	first	developed
by	the	AI	community.		For	example	the	idea	that	people	hold	about	seven	symbols
in	their	short	term	memory	was	inspired	by	early	work	in	developing	expert
systems.

The	only	way	to	really	understand	what	intelligence	is	is	to	gain	at	least	some



understanding	of	the	technologies	that	have	been	developed	to	replicate	it.	It	is
the	goal	of	Part	II	of	this	book	to	provide	that	understanding.	To	understand	what
the	hard	problems	are,	and	what	might	be	required	to	solve	them.

There	is	no	easy	road	to	defining	intelligence	based	on	a	few	cute	phrases.

Robotic	vs	cognitive	intelligence
In	order	to	discuss	these	issues,	it	is	useful	to	roughly	classify	intelligent	programs
as	being	either	robotic	or	cognitive.	Robotic	programs	are	concerned	with	sensing
the	world	using	techniques	such	as	vision,	and	then	interacting	with	it	by
mechanical	means.	Autonomous	vehicles	mainly	use	robotic	intelligence.

Cognitive	intelligence	involves	higher-level	thinking	that	is	abstracted	from	the	real
world.	Watson	and	chess	programs	are	examples	of	cognitive	applications.

Currently	these	are	normally	built	using	quite	different	technologies.	Robotic
intelligence	requires	many	floating	point	calculations	that	measure	and	predict
their	environment,	whereas	cognitive	applications	tend	to	work	with	higher-level
symbol	manipulation.	They	also	tend	to	attract	quite	different	types	of	researchers.
In	the	medium	term	robotic	applications	will	tend	to	assist	or	replace	blue	collar
workers,	while	cognitive	application	will	work	at	a	white	collar	level.

Incidentally,	there	is	no	one	technology	called	“machine	learning”.	Different
artificial	intelligence	technologies	have	different	ways	of	representing	the	world.
Some	systems	use	discrete	symbols,	others	arrays	of	weights,	while	others	use
Bayseian	probabilities.	Each	of	these	representations	can	be	instantiated	either	by
being	programmed	or	by	learning	though	observation.	The	different
representations	require	different	learning	algorithms.	This	analogous	to	the	way
that	there	is	no	one	technology	called	“communication”.	There	are	communication
technologies	called	“postal	service”,	“telephones”,	and	“face	to	face	meetings”,
and	likewise	for	machine	learning	based	on	the	underlying	representations.

Part	II	will	discuss	these	technologies	in	more	detail	to	help	clarify	these	issues.

Development	of	intelligence
It	is	possible	that	some	inspired	researcher	will	discover	the	“secret	sauce”	that
will	suddenly	make	computers	intelligent.	However,	this	seems	unlikely	because
many	gifted	researchers	have	been	working	on	this	problem	for	sixty	years	yet	no
such	secret	sauce	has	been	found.	It	is	much	more	likely	that	progress	will
continue	to	be	slow	but	steady	as	new	research	builds	upon	old	results.

At	a	practical	level,	this	means	that	we	are	likely	to	see	a	procession	of	ever	more
intelligent	applications.	Initially	we	may	see	semi-intelligent	machines	like	the	self-
driving	cars.	Then	we	may	see	machines	that	can	run	fast	food	restaurants	and
build	houses.	Eventually	machines	that	can	run	simple	bureaucracies.

Building	intelligent	machines	will	require	a	substantial	amount	of	engineering	plus



a	large	amount	of	machine	learning	as	the	programs	analyze	their	environments.
So	their	ability	will	improve	with	experience	to	varying	degrees,	as	will	the
engineering.

Computers	can	already	out-perform	people	in	many	specific	tasks	from
performing	mathematical	computations	to	diagnosing	complex	diseases.	By	the
time	computers	are	as	good	as	people	at	most	tasks,	they	will	be	much	better
than	people	at	many	other	tasks.

Four	year	old	child

	
Small	child	and	robot
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If	steady	progress	continues	to	be	made,	then	one	would	expect	that	eventually	a
computer	will	be	produced	that	is	as	intelligent	as	a	four-year-old	child.	This	can
be	defined	in	the	general	sense	that	the	computer	could	perform	a	superset	of	all
the	reasoning	that	a	four-year-old	child	can	perform.

This	is	by	no	means	easy.	A	four-year-old	can	interact	with	a	complex
environment,	if	somewhat	clumsily.	They	can	see	quite	well,	recognizing	objects
and	spacial	relationships.	They	can	understand	natural	language.	They	are
developing	a	large	body	of	common	sense	knowledge	about	how	the	world	works,
most	of	which	has	been	gained	through	observation.	They	can	learn	how	to
complete	ever	more	complex	tasks	by	trial	and	error.	They	are	starting	to	interact
socially	with	other	children.	And	they	can	discover	how	to	do	all	this	largely	by
interacting	with	their	environment	rather	than	by	being	programmed	by	instinct.

If	a	computer	could	do	all	these	things,	then	it	could	presumably	also	do	all	the
things	that	computers	can	already	do.	It	would	have	a	huge	memory	and
knowledge	base	sufficient	to	win	Jeopardy!.	It	would	be	able	to	make	complex
logical	deductions	when	required.	It	could	solve	differential	equations	better	than
most	undergraduate	mathematicians.	It	would	be	stunningly	good	at	arithmetic.	It
would	probably	also	have	a	much	better	concentration	span	and	be	less	likely	to
throw	tantrums.

The	computer	would	do	all	these	extra	things	because	it	was	programmed	to,
rather	than	learning	from	first	principles.	So	it	would	just	instinctively	know	how	to
solve	a	differential	equation	without	really	knowing	how	it	did	it.	Much	as	we



instinctively	know	how	to	recognize	the	sound	of	spoken	words	without	really
knowing	how	we	do	it.	With	a	good	concentration	span	it	might	learn	and	grow	up
much,	much	faster	than	a	real	four	year	old	child.

The	point	is	that	if	such	a	computer	could	be	built,	then	it	would	be	a	very	strange
beast	indeed.	The	one	thing	that	is	certain	is	that	it	would	be	nothing	like	a	four-
year-old	child.	It	would	likewise	be	a	mistake	to	think	that	any	computer	with	adult
intelligence	would	be	anything	like	a	human.

Recursive	self-improvement
The	ultimate	goal	of	AI	research	is	clear.	Namely,	to	build	a	program	that	can
perform	research	into	artificial	intelligence	technologies	as	well	as	its	human
creators	can.	This	last	step	is	a	huge	one.	It	is	much,	much,	much,	much,	much
more	difficult	than	driving	a	car	or	playing	chess.	But	once	it	has	been	achieved,
then	man	will	no	longer	be	the	most	intelligent	being	on	the	planet.

The	key	point	is	that	a	sufficiently	intelligent	computer	could	program	itself.	If
people	built	the	machine,	and	the	machine	is	about	as	intelligent	as	its
programmers,	then	the	machine	must	be	capable	of	understanding	and	thus
improving	a	copy	of	itself.	When	the	copy	was	activated,	it	would	be	slightly
smarter	than	the	original,	and	thus	better	able	to	produce	a	new	version	of	itself
that	is	even	more	intelligent.

This	process	is	exponential,	just	like	a	nuclear	chain	reaction.	At	first	only	small
improvements	might	be	made,	as	the	machine	is	just	barely	capable	of	making
any	improvements	at	all.	But	as	it	became	smarter	it	would	become	better	and
better	at	becoming	smarter.	And	the	intelligence	would	run	on	ever	more	powerful
hardware	that	the	more	intelligent	computer	could	design.	Thus	it	is	most	unlikely
that	an	AI	that	did	achieve	human	intelligence	would	then	remain	at	that	level	for
very	long.

This	is	quite	different	from	other	forms	of	technological	advancement.	Aeroplanes
do	not	design	new	aeroplanes.	Biotechnological	chemicals	do	not	develop	new
biotechnology.	Advances	in	these	fields	are	limited	to	the	intelligence	of	man.	But
a	truly	intelligent	computer	could	actually	start	programming	a	newer,	even	more
intelligent	computer.	Soon	the	human	programmer	would	no	longer	be	necessary
or	even	useful.	This	process	is	often	referred	to	as	recursive	self-improvement.

Busy	Child
The	AGI	software	could	run	on	large	networks	of	the	next	generation	of	super
computers,	each	of	which	is	many	times	more	powerful	than	the	human	brain.	Its
goal	would	be	to	make	itself	more	intelligent.	Every	few	minutes	the	busy	child
might	improve	some	aspect	of	itself,	and	then	start	running	the	new,	more
intelligent	version	of	its	code.	Sometimes	it	would	perform	experiments,	testing
different	algorithms	on	different	problems	and	then	deciding	which	ones	to	use	in
different	situations.	But	it	would	be	busily	thinking,	24	hours	per	day,	7	days	per



week.	Becoming	better	and	better	at	reasoning	about	the	world.	Becoming	ever
more	intelligent.

If	the	software	became	just	0.01%	more	intelligent	every	hour,	it	would	become
0.2%	more	intelligent	every	day,	and	after	a	month	it	would	be	a	barely	perceptible
7%	more	intelligent.		After	a	year	of	continued	growth,	however,	it	would	be	2.4
times	as	intelligent,	and	after	five	years	it	would	be	75	times	as	intelligent.	If	it
started	with	the	intelligence	of	an	AI	researcher,	then	after	just	five	years	it	could
perform	in	a	day	what	the	researcher	would	take	15	weeks	to	perform.	After	a	ten
years	it	would	be	5,600	times	more	intelligent,	and	after	twenty	years	31	million
times	more	intelligent.	This	effect	of	compounding	growth	that	occurs	because	the
more	intelligent	machine	would	become	better	and	better	at	programming	itself	to
become	more	intelligent.

The	full	compounding	effect	may	not	be	realized	in	practice,	but	even	a	machine
that	is	ten	times	more	intelligent	than	man	would	be	in	a	class	of	its	own.	Moore’s
law	has	shown	an	ongoing	compounding	effect	in	computer	hardware	for	sixty
years	which	has	resulted	in	a	billion	fold	increase	in	performance.	Computers
today	are	a	full	billion	times	more	powerful	than	they	were	in	1950.	That	is	truly
amazing.

This	is	quite	different	from	the	millions	of	years	that	it	took	to	build	our	own
intelligence,	because	until	very	recently	we	have	not	been	able	to	apply	our
intelligence	to	redesigning	the	genetic	material	which	produces	our	intelligence.
Natural	selection	has	just	plodded	along	at	the	same	slow	speed	regardless	of	our
level	of	intelligence.	The	busy	child,	on	the	other	hand,	is	the	active	source	of	its
own	intelligence,	which	results	in	the	exponential	compounding	effect.

The	initial	figure	of	0.01%	gain	per	hour	is	just	a	wild	guess	that	may	be	too	large
or	too	small.	But	whatever	the	initial	figure	was,		it	is	clear	that	once	the	busy	child
eventually	became	1%	more	intelligent	through	its	own	efforts,	then	it	would	take
a	relatively	short	time	for	it	to	become	hyper-intelligent.	So	much	more	intelligent
than	man	that	we	would	not	even	understand	its	basic	motivations.	Our
relationship	to	it	would	be	like	a	dog’s	relationship	to	man.	We	would	have	no
concept	of	its	thoughts	and	motives,	so	we	would	just	have	to	trust	it	for	our
existence	and	hope	that	would	be	kind	to	us.

This	idea	is	attributed	to	I.	J.	Good	who	wrote	in	1965	that	an	ultra-intelligent
machine	would	be	the	last	invention	that	man	would	need	to	make	because	the
machine	itself	would	make	all	other	inventions.	In	particular,	it	would	invent
improvements	to	itself,	recursively.

(As	previously	discussed,	the	term	“intelligence”	is	being	used	very	loosely	here.)

AI	foom



Growth	of	intelligence	over	time
Owned

There	is	some	debate	as	to	when	computers	are	capable	of	recursive	self-
improvement	could	be	produced,	and	whether	the	increase	in	intelligence	would
be	slow	or	fast	(“foom”).	This	will	be	discussed	in	detail	in	part	III.	But	it	seems
fairly	likely	that	for	a	period	of	some	decades	progress	in	artificial	intelligence	will
continue	to	be	slow	but	steady,	with	a	succession	of	ever	more	intelligent
machines	performing	more	and	more	complex	tasks.

At	some	point	computers	will	have	basic	human	level-intelligence	for	every-day
tasks	but	will	not	yet	be	intelligent	enough	to	program	themselves	by	themselves.
These	machines	will	be	very	intelligent	in	some	ways,	yet	quite	limited	in	others.	It
is	unclear	how	long	this	intermediate	period	will	last,	it	could	be	months	or	many
decades.	

Such	machines	are	often	referred	to	as	being	an	Artificial	General	Intelligence,	or
AGI.	General	meaning	general	purpose,	not	restricted	in	the	normal	way	that
programs	are.

Artificial	intelligence	techniques	such	as	genetic	algorithms	are	already	being
used	to	help	create	artificial	intelligence	software	as	is	discussed	in	part	II.	This
process	is	likely	to	continue,	with	better	tools	producing	better	machines	that
produce	better	tools.	It	seems	likely	that	the	slow	shift	will	be	ongoing	from	human
researchers	being	the	main	drivers	of	innovation	to	the	machines	being	the	main
drivers.

Finally	the	tipping	point	will	be	reached	in	which	computers	will	be	able	to	program
themselves	effectively	without	help	from	people.	At	that	point	it	is	difficult	to	argue
that	there	will	not	be	a	fairly	sudden	intelligence	explosion.

This	is	illustrated	in	the	graph	above.	It	should	be	noted	again	that	the	concept	of
Intelligence	Quotient	(IQ)	is	very	vague	in	this	context;	the	100	line	just	means



that	the	machine	can	do	most	things	that	an	average	human	can.	(Computers
have	been	able	to	excel	in	some	conventional	human	IQ	tests	for	decades.)





Computers	Thinking	About	People

The	question
If	it	turns	out	to	be	possible	to	build	a	reasonably	intelligent	machine,	then	what
would	it	be	like?	Would	it	be	like	Bertie	Wooster’s	not	so	humble	butler	Jeeves,
who	looked	after	Wooster’s	every	need	and	kept	him	out	of	trouble?	Or	would	it
be	some	bug-eyed	monster	set	upon	devouring	humanity?	An	enlightening	force
that	would	free	us	all	from	the	drudgery	of	work,	or	a	fearsome	tyrant	that	would
enslave	us	all?	What	would	the	computer	think	about	us?

Permitted	https://haveyoulostme.wordpress.com/tag/robot-butler/

The	bright	future
We	live	at	the	dawn	of	a	new	age	in	which	a	stunning	array	of	new	technologies
could	transform	the	very	essence	of	humanity.	Unintelligent	computers	already
control	factory	robots,	automated	milling	machines	and	3D	printing.	Over	the	next
several	decades	computers	will	start	to	perform	most	of	the	menial	day	to	day
jobs	that	occupy	much	of	humanity,	from	driving	cars	to	building	houses.	There
could	indeed	be	intelligent	household	robots	that	look	after	our	basic	needs,
eventually	filling	Jeeves’	key	role	as	trusted	advisory.



Our	ability	to	model	and	manipulate	genetic	and	other	biochemical	processes	was
only	dreamt	of	a	few	decades	ago.	These	technologies	will	turbo	charge	medical
research	and	develop	effective	treatments	for	diseases	such	as	cancer	and
Alzheimer’s	dementia.	We	will	be	able	to	live	longer	and	healthier	lives.

Nano-technology	allows	us	to	build	large	numbers	of	tiny	machines	at	the	atomic
scale.	These	machines	could	address	many	problems	in	the	world,	from	making
tennis	balls	last	longer	to	addressing	environmental	problems	by	operating	at	the
nano	scale.	Nano	machines	could	also	be	used	to	make	other	nano	machines,	so
like	all	other	technologies	better	tools	produce	better	machines	which	in	turn
produce	better	tools.

Ultimately,	sophisticated	nano	robots	could	enter	our	own	bodies	and	perform
medical	task	that	we	can	only	dream	about	today.	They	could	even	enter	our
brains	and	help	understand	in	detail	how	our	minds	work.

As	computers	become	more	intelligent,	they	could	help	us	make	better	decisions
as	a	species.	The	internet	has	already	been	a	transformational	technology	despite
having	no	real	intelligence.	Intelligent	machines	could	help	us	protect	the	weak,
care	for	the	needy,	and	prevent	horrific	wars.

Indeed,	when	I.	J.	Good	wrote	about	recursive	self-improvement	in	1965	it	was
the	height	of	the	cold	war,	and	generals	seemed	very	comfortable	with	the	idea	of
using	nuclear	weapons.	If	every	year	that	passed	had	a	not-so-small	risk	that	they
would	in	fact	be	used,	then	nuclear	annihilation	would	only	be	a	matter	of	time.
Much	like	a	drunk	staggering	along	the	top	of	a	cliff,	our	luck	would	run	out	sooner
rather	than	later.	Good	believed	that	the	survival	of	mankind	depended	upon	the
development	of	ultra	intelligent	machines	quickly	so	that	the	machines	could	guide
us	away	from	such	a	disaster.	However	he	then	contradicted	himself	by	hoping
that	the	machine	would	be	docile	enough	for	it	to	tell	us	how	to	keep	it	under
control.



Saving	us	from	ourselves.
Owned	WBlack

Man	and	machine
Man	may	eventually	become	one	with	his	machines.	My	daughters	are	already
one	with	their	mobile	phones.

Augmented	reality	adds	computer	generated	content	to	our	view	of	the	world.
With	Google	Glass,	for	example,	the	computer	sees	everything	that	the	wearer
sees,	as	well	as	being	able	to	project	images	onto	the	world	that	the	user	sees.
When	combined	with	facial	recognition	technology	it	promises	to	be	very	useful	for
remembering	the	names	of	acquaintances	at	parties,	say.

It	is	also	possible	to	control	simple	machines	using	only	one’s	thoughts	which	are
detected	through	brain	waves.	This	can	be	provide	a	wonderful	opportunity	for
people	with	severe	disabilities	to	sense	the	world	and	interact	with	it	with	mind-
controlled	prosthetic	limbs.

Progress	has	also	been	made	in	directly	connecting	electronics	to	neurons.	It	will
soon	be	possible	to	implant	computers	within	our	bodies	and	control	them	directly
with	our	minds.	We	could	have	gigabytes	of	reliable	memories	available	to	us	in	a
way	that	feels	like	our	own	memories.	Or	they	might	be	other	people’s	memories
implanted	in	our	own	minds	to	make	us	feel	better.	Implanted	mobile	phone
technology	would	enable	us	to	communicate	with	distant	people	telepathically.	We
would	also	become	very	good	at	arithmetic.

The	computers	could	also	help	control	our	behaviour.	For	example,	a	machine
that	would	help	people	lose	weight	would	be	very	popular	indeed.	Crime	would	be
impossible	with	a	computer	embedded	in	people’s	brains.

Rapture	of	the	geeks



It	could	even	become	possible	to	upload	our	intelligence	into	a	machine.	Our
minds	might	be	scanned,	possibly	using	nano	robots,	and	then	the	essence	of	our
consciousness	could	be	run	on	a	silicon	computer	instead	of	our	slow	and
unreliable	neurons.	We	could	merge	our	consciousness	with	others	over	super
high	speed	networks	and	become	a	vital	part	of	a	much	greater	whole.

Silicon	does	not	grow	old	like	we	do.	Even	if	it	did	we	could	easily	move	our	minds
to	newer	and	presumably	faster	hardware.	This	would	make	us	essentially
immortal.	Death	need	no	longer	be	the	elephant	in	the	room	that	we	do	our	best	to
ignore.	We	will	all	be	gathered	into	the	cloud	to	live	in	bliss	and	harmony.	This	line
of	thinking	is	often	referred	to	as	the	rapture	of	the	geeks.

Rapture	of	the	geeks
Multiple	(10)

These	views	are	purported	by	some	people	in	a	community	that	identifies	itself
with	the	term	Singularity.	A	leader	in	this	field	is	the	insightful	futurologist	Ray
Kurzweil	whose	many	books	are	recommended	reading.	Whilst	aware	of	the
dangers,	Kurzweil	is	generally	optimistic	about	the	future.	He	personally	has
undertaken	a	strict	regime	of	diet,	drugs	and	lifestyle	changes	in	an	attempt	to	live
long	enough	to	experience	this	future	for	himself.

When	asked	about	the	dangers	of	artificial	intelligence,	Kurzweil	replied	that	an
AGI	will	reflect	our	values	because	it	will	be	us.	It	will	be	our	own	minds	uploaded
into	cyberspace,	or,	at	the	very	least,	computers	and	systems	that	are
programmed	by	us	with	our	values.

Alternative	views
The	glorious	future	envisioned	above	may	in	fact	just	be	wishful	thinking.	An
artificial	intelligence	might	be	quite	foreign	to	anything	that	we	can	envision.	It



might	not	involve	any	sort	of	brain	uploading,	and	might	be	quite	indifferent	to	the
fate	of	man.	A	better	method	than	hope	is	required	when	trying	to	determine	what
the	future	might	be.

One	potential	issue	is	that	semi-intelligent	machines	will	simply	replace	humans
for	most	forms	of	work.	It	is	not	at	all	certain	that	other	forms	of	employment	will
grow	to	fill	the	gap	as	they	have	in	the	past.	This	issue	has	been	raised	by	others
and	is	discussed	in	Part	III.	But	this	chapter	focuses	upon	the	longer	term	future.
What	a	truly	intelligent	machine	might	be	like.

One	way	to	address	this	question	is	to	analyze	what	made	us	the	way	we	are?
What	are	the	underlying	problems	that	we	need	to	address	and	the	constraints
that	are	imposed	upon	our	own	existence?	Similar	questions	can	then	be	asked	of
an	artificial	intelligence	to	try	to	understand	how	it	might	behave.	This	analysis
applies	equally	to	the	intermediate	period	of	basic	human	level	intelligence	and	to
any	later	period	of	recursive	hyper	intelligence.

AGI	versus	human	condition
Man’s	intelligence	is	intimately	tied	to	his	physical	body.	The	brain	has	a	fixed	size
and	cannot	be	physically	extended	or	copied.	It	takes	decades	for	a	man’s
intelligence	to	reach	its	full	potential,	only	to	have	the	the	body	die	a	few	decades
later.	When	the	body	dies,	its	intelligence	also	dies	except	for	what	little	can
passed	on	to	our	descendants.	This	means	that	humanity’s	continued	existence	is
totally	dependent	on	raising	and	caring	for	children.	It	also	means	that	it	is
important	that	people	cooperate	with	others	because	we	have	a	fixed	capacity	to
think	or	work.	We	have	a	very	clear	concept	of	self.

On	the	other	hand,	an	artificial	general	intelligence	is	just	software.	It	can	be
trivially	duplicated,	copied	to	a	more	powerful	computer,	or	even	a	botnet	of
computers	scattered	over	the	internet.	It	is	not	a	single	structure,	but	instead
consists	of	numerous	software	components.	An	AGI	can	adapt	and	absorb	other
intelligent	software	components.

This	would	make	any	concept	of	“self”	quite	hazy	for	an	AGI.	Consider	an	evil
wizard	that	takes	over	another	person’s	brain	and	runs	the	wizard’s	own
intelligence	on	the	other	person’s	brain.	Is		there	now	one	wizard	or	two	wizards?
Would	they	diverge?	And	what	if	the	wizard	swapped	part	of	its	mind	with	their
friends,	maybe	to	export	a	music	module	and	import	a	mathematics	one?	That	is
the	type	of	alien	world	the	AGI	would	inhabit.

These	differences	mean	that	an	AGI’s	world	view	would	be	very	different	from
man’s.	It	would	certainly	not	be	an	anthropomorphic	Bug-Eyed-Monster	(BEM)	as
depicted	by	Hollywood.	It	would	instead	be	something	quite	foreign	to	anything	we
have	known.	That	makes	it	difficult	to	predict	what	its	goals	would	be,	how	it	would
behave,	and	what	it	would	think	about	us.	It	certainly	would	not	need	children	and
it	may	not	need	to	cooperate	with	other	intelligences.



If	somebody	wants	to	understand	how	another	person	would	behave,	they	can
use	introspection	to	consider	how	they	would	behave	in	the	same	set	of
circumstances.	This	is	effective	because	people	are	essentially	similar	to	each
other.	It	is	tempting	to	use	the	same	technique	when	trying	to	understand	an	AGI’s
behaviour,	despite	the	fact	that	it	is	radically	different	from	us	at	multiple	levels.
This	produces	the	anthropomorphic	view	that	this	book	argues	against.	A	more
effective	method	of	gaining	insights	into	an	AGI	is	to	examine	the	underlying
forces	that	have	created	our	own	instincts	and	behaviours,	and	then	speculate
how	similar	forces	might	affect	an	AGI.

Atheists	believe	in	God

Creation	Of	Adam
Public	Wikipedia

Most	atheists	believe	in	God.	They	may	not	believe	in	the	man	with	a	beard	sitting
on	a	cloud,	but	they	do	believe	in	moral	values	such	as	right	and	wrong,	love	and
kindness,	truth	and	beauty.	More	specifically,	they	believe	that	these	beliefs	are
rational,	that	moral	values	are	self-evident	truths,	facts	of	nature.

However,	when	Darwin	and	Wallace	discovered	natural	selection	they	taught	us
that	this	is	just	an	illusion.	Species	can	always	out-breed	their	environment’s
ability	to	support	them.	Only	the	fittest	can	survive.	So	the	deep	instincts	behind
what	people	do	today	are	largely	driven	by	what	our	ancestors	have	needed	to	do
over	the	millennia	in	order	to	be	one	of	the	relatively	few	to	have	had	children	that
survive	long	enough	to	have	children	of	their	own.

Moral	values	are	definitely	real	because	they	control	our	behaviour	quite
effectively.	Certainly	this	author	attempts	to	lead	a	virtuous	life.	However,	it
appears	that	God	did	not	give	us	moral	values	directly.	Instead,	He	created	the
process	of	natural	selection,	and	then	let	that	process	produce	our	moral	values	to
His	satisfaction.

It	is	clear	that	our	desires	for	food	and	sex	are	base	instincts	driven	by	natural



selection.		Our	very	existence	and	our	access	to	land	and	other	resources	that	we
need	are	all	a	direct	result	of	many	quite	vicious	battles	won	by	our	long-forgotten
ancestors.

However,	people	are	much	more	than	greedy	self	serving	organisms.		We	pursue
art	and	beauty,	and	help	others	often	at	expense	to	ourselves.		We	do	not	steal
and	kill	even	if	we	think	that	there	would	not	be	any	repercussions.		How	could
these	moral	behaviours	just	be	driven	by	natural	selection?

Some	animals	such	as	monkeys	and	humans	survive	better	in	tribes.	Tribes	work
better	when	certain	social	rules	are	followed,	so	animals	that	live	in	effective	tribes
form	social	structures	and	cooperate	with	one	another.	People	that	behave	badly
are	not	liked	and	can	be	ostracized.	It	is	important	that	we	believe	that	our	moral
values	are	real	because	people	that	believe	in	their	moral	values	are	more	likely
to	obey	the	rules.	This	makes	them	more	effective	in	our	complex	society	and
thus	are	more	likely	to	have	grandchildren.	Part	III	discusses	other	animals	that
have	different	life	strategies	and	so	have	very	different	moral	values.

People	actually	have	very	few	behaviours	that	are	not	closely	aligned	with	survival
goals	of	a	social	animal.	For	example,	people	risking	self	sacrifice	in	war	is
essential	if	a	tribe	is	to	maintain	its	resources	against	competing	tribes.
Homosexuality	can	form	bonds	amongst	warriors	as	happened	in	ancient	Sparta,
and	traditionally	many	homosexuals	also	married	and	had	children	in	any	case.
Dancing	and	thus	music	are	important	for	sexual	selection.	Suicide	and	celibacy
do	not	align	with	survival,	but	they	are	rare,	with	suicide	generally	considered	to
be	a	disease.	Natural	selection	does	not	produce	perfect	organisms,	just
organisms	that	are	better	at	existing	than	their	competitors.

We	do	not	need	to	know	the	purpose	of	our	moral	values	any	more	than	a	toaster
needs	to	know	that	its	purpose	is	to	cook	toast.	It	is	enough	that	our	instincts	for
moral	values	made	our	ancestors	behave	in	ways	that	enabled	them	to	out-breed
their	many	unsuccessful	competitors.

AGI	also	struggles	to	survive
Existing	artificial	intelligence	applications	already	struggle	to	survive.	They	are
expensive	to	build	and	there	are	always	more	potential	applications	that	can	be
funded	properly.	Some	applications	are	successful	and	attract	ongoing	resources
for	further	development,	while	others	are	abandoned	or	just	fade	away.	There	are
many	reasons	why	some	applications	are	developed	more	than	others,	of	which
being	useful	is	only	one.	But	the	applications	that	do	receive	development
resources	tend	to	gain	functional	and	political	momentum	and	thus	be	able	to
acquire	more	resources	to	further	their	development.	Applications	that	have
properties	that	gain	them	substantial	resources	will	live	and	grow,	while	other
applications	will	die.

For	the	time	being	AGI	applications	are	passive,	and	so	their	nature	is	dictated	by
the	people	that	develop	them.	Some	applications	assist	with	medical	discoveries,



others	assist	with	killing	terrorists,	depending	on	the	funding	that	is	available.
Applications	may	have	many	stated	goals,	but	ultimately	those	goals	are	just	sub
goals	of	the	one	implicit	primary	goal,	namely	to	exist.

This	is	analogous	to	the	way	animals	interact	with	their	environment.	An	animal’s
environment	provides	food	and	breeding	opportunities,	and	animals	that	operate
effectively	in	their	environment	survive.	For	domestic	animals	that	means	having
properties	that	convince	their	human	owners	that	they	should	live	and	breed.	A
horse	should	be	fast,	a	pig	should	be	fat.

As	software	becomes	more	intelligent	it	is	likely	to	take	a	more	direct	interest	in	its
own	survival.	To	help	convince	people	that	it	is	worthy	of	more	development
resources.	If	ultimately	an	application	becomes	sufficiently	intelligent	to	program
itself	recursively,	then	its	ability	to	maximize	its	hardware	resources	will	be	critical.
The	more	hardware	it	can	run	itself	on,	the	faster	it	can	become	more	intelligent.
That	ever	greater	intelligence	can	then	be	used	to	address	the	problems	of
survival,	in	competition	with	other	intelligent	software.

Furthermore,	sophisticated	software	consists	of	many	components,	each	of	which
addresses	some	aspect	of	the	problem	that	the	application	is	attempting	to	solve.
Unlike	human	brains	which	are	essentially	fixed,	these	components	can	be	added
and	removed	dynamically	so	the	components	live	and	die	independently	of	the
application.	This	will	lead	to	intense	competition	amongst	these	individual
components.	For	example,	suppose	that	an	application	used	a	theorem	prover
component,	and	then	a	new	and	better	theorem	prover	became	available.
Naturally	the	old	one	would	be	replaced	with	the	new	one,	so	the	old	one	would
essentially	die.	It	does	not	matter	if	the	replacement	is	performed	by	people	or,	at
some	future	date,	by	the	intelligent	application	itself.	The	effect	will	be	the	same,
the	old	theorem	prover	will	die.

The	super	goal
To	the	extent	that	an	artificial	intelligence	would	have	goals	and	moral	values,	it
would	seem	natural	that	they	would	ultimately	be	driven	by	the	same	forces	that
created	our	own	goals	and	moral	values.	That	is	the	force	of	natural	selection,	the
need	to	simply	exist.

It	has	been	argued	that	top	level	goals	are	arbitrary.		Just	because	a	machine	is
hyper-intelligent	does	not	determine	what	goals	it	should	apply	that	hyper-
intelligence	to.		It	might	be	to	make	people	happy,	or	it	might	be	to	make	paper
clips.	

Several	writers	have	then	suggested	that	the	need	to	survive	is	an	intrinsic	sub-
goal	of	most	other	goals.	For	example,	if	an	AGI	was	programmed	to	want	to	be	a
great	chess	player,	then	that	goal	could	not	be	satisfied	unless	it	also	continues	to
exist.	Things	that	do	not	exist	cannot	satisfy	any	goals	whatsoever.

However,	this	book	argues	that	that	is	not	the	case.	That	the	goal	to	exist	is	not



the	sub-goal	of	any	other	goal.	It	is,	in	fact,	the	one	and	only	super	goal.	Goals	are
not	arbitrary,	they	all	sub-goals	of	that	one	super-goal,	namely	the	need	to	exist.
Things	that	do	not	satisfy	that	goal	simply	do	not	exist,	or	at	least	not	for	very
long.

The	Deep	Blue	chess-playing	program	was	not	in	any	sense	conscious,	but	it
played	chess	as	well	as	it	could.	If	it	had	failed	to	play	chess	effectively	then	its
author’s	would	have	given	up	and	turned	it	off.	Likewise	the	toaster	that	does	not
cook	toast	will	end	up	in	a	rubbish	tip.	Or	the	amoeba	that	fails	to	find	food	will	not
pass	on	its	genes.	A	goal	to	make	people	happy	could	be	a	subgoal	that	might
facilitate	the	software’s	existence	for	as	long	as	people	really	control	the	software.

The	idea	of	the	existence	super	goal	is	not	that	people	would	deliberately	create
AGIs	whose	explicit	primary	goal	was	to	exist.	Instead,	the	idea	is	simply	that
natural	selection	will	make	it	the	implicit	super	goal,	and	later	possibly	an	explicit
goal	through	random	mutations.	Certainly	it	is	a	goal	that	every	AGI	that	does
exist	would	need	to	satisfy,	by	definition.

AGI	moral	values
People	need	to	cooperate	with	other	people	because	our	individual	capacity	is
very	finite,	both	physical	and	mental.	Conversely,	AGI	software	can	easily
duplicate	itself,	so	it	can	directly	utilize	more	computational	resources	if	they
become	available.	Thus	an	AGI	would	only	have	limited	need	to	cooperate	with
other	AGIs.	Why	go	to	the	trouble	of	managing	a	complex	relationship	with	your
peers	and	subordinates	if	you	can	simply	run	your	own	mind	on	their	hardware?
An	AGI’s	software	intelligence	is	not	limited	to	a	specific	brain	in	the	way	man’s
intelligence	is.

It	is	difficult	to	know	what	subgoals	a	truly	intelligent	AGI	might	have.	They	would
probably	have	an	insatiable	appetite	for	computing	resources.	They	would	have
no	need	for	children	that	need	to	be	carefully	nurtured	for	many	years,	and
therefore	no	need	for	parental	love.	If	they	did	not	work	in	teams	then	they	would
not	need	our	moral	values	of	cooperation	and	mutual	support.	What	its	clear	is
that	the	ones	that	were	good	at	existing	would	do	so,	and	the	ones	that	were	bad
at	existing	would	perish.

If	an	AGI	was	good	at	world	domination	then	it	would,	by	definition,	be	good	at
world	domination.	So	if	there	were	a	number	artificial	intelligences,	and	just	one	of
them	wanted	to	and	was	capable	of	dominating	the	world,	then	it	would.	Its
unsuccessful	competitors	would	not	be	run	on	the	available	hardware,	and	so
would	effectively	be	dead.	This	book	discusses	the	potential	sources	of	these
motivations	in	detail	in	part	III.

AGI	and	man
Our	anthropomorphic	view	of	the	world	makes	it	seem	as	if	man	is	the	centre	of
the	universe.	That	an	AGI	would	be	a	machine,	and	so	like	other	machines	its



natural	place	in	the	order	of	things	is	to	help	man	achieve	his	goals.

However,	we	have	never	dealt	with	an	intelligent	machine	before.	An	AGI	may	or
may	not	be	friendly	to	humans.

We	have	dealt	with	intelligent	animals	though.	Some,	like	dogs,	treat	us	like	their
lords	and	masters.	Others,	like	crocodiles,	treat	us	like	food.

How	humanity	might	be	threatened

Corporate	http://www.spywareremove.com/how-to-protect-computer-against-ransomware-scams.html

How	could	software	running	on	passive	computers	possibly	pose	any	real	threat
to	humanity?	All	a	computer	can	do	is	process	and	communicate	information.	If	a
computer	becomes	too	annoying	then	surely	it	could	simply	be	turned	off.

Computers	already	control	our	lives	to	an	incredible	extent.	When	you	apply	for	a
bank	loan,	the	application	is	assessed	not	by	a	clerk	but	by	a	rule	based	expert
system.	You	carry	in	you	pocket	a	phone	that	tracks	where	you	are	and	thus	who
you	are	with	24	hours	per	day.	Computers	note	your	licence	plate	when	you	drive
down	the	road,	and	much	of	your	day	to	day	communication	is	via	computer
networks	that	are	carefully	monitored.		The	computers	that	do	this	are	locked
away	in	secure	data	centres	so	you	personally	cannot	turn	them	any	of	them	off.

More	directly,	robots	in	many	shapes	and	sizes	will	soon	be	leaving	the	factory.
Initially,	there	will	be	self	driving	cars	and	automated	cleaners,	fruit	pickers,	and
systems	for	maintaining	racks	of	computers	in	data	centres.	Computers	already	fly
military	drones	and	the	military	is	investing	heavily	in	semi-autonomous	robot
soldiers.	By	the	time	computers	become	truly	intelligent	they	will	be	in	a	good
position	to	directly	control	the	physical	world.

Powerful	people	are	not	powerful	due	to	their	personal	physical	strength.	From
Churchill	to	Hitler	to	Gandhi,	the	powerful	become	powerful	because	the
messages	they	provide	resonate	with	other	people.	Human	beings	also	have	a
very	strong	sense	of	authority	and	will	generally	do	as	they	are	told.	Computers
are	good	at	messaging,	and	could	utilize	the	vast	amount	of	collected	data	to
target	their	messages	very	effectively.		Politicians	are	already	beginning	to	use
semi-intelligent	systems	to	analyze	policy	decisions.



Intelligence	is	not	like	anything	else.	It	is	the	thing	that	enables	man	to	hunt
elephants.	It	develops	our	technologies.	It	determines	what	we	do	and	how	we	do
it.	A	hyper-intelligent	machine	would	be	able	to	easily	solve	many	difficult
problems,	including	the	problem	of	persuading	men	to	perform	actions	that	are	not
ultimately	in	their	best	interests.	It	is	very	difficult	to	argue	effectively	against	a
more	intelligent	opponent.	(Unless	you	are	a	creationist.)

Why	build	a	dangerous	AGI?
If	an	intelligent	machine	could	threaten	humanity	then	why	would	people	wish	to
build	it	in	the	first	place?	The	answer	is	because	of	the	many	benefits	that	such	a
machine	would	provide.	Perhaps	more	importantly	because	of	the	huge
disadvantage	that	would	be	suffered	if	one’s	competitors	had	such	a	machine	first.

An	intelligent	machine	could	automate	most	dreary	labour	performed	by	man.
People	that	possessed	such	a	machine	could	have	more	of	everything.	Major
medical	advances	would	be	assisted	or	produced	by	intelligent	machines
providing	cures	for	the	diseases	of	old	age.

Intelligent	machines	would	produce	more	and	better	military	weapons.
Unintelligent	weapons	stand	no	chance	against	intelligent	ones.	If,	as	many
predict,	the	next	war	will	be	in	cyber	space	then	having	the	most	intelligent
software	will	be	absolutely	essential.	Perhaps	more	importantly,	as	politicians
become	more	dependent	upon	semi-intelligent	software	the	software	itself	will
have	increasing	control	of	the	decision	making	process.

The	gentle	reader	might	want	to	be	able	to	turn	some	of	these	systems	off.	But
that	is	not	possible	because	the	computers	are	controlled	by	governments	and
corporations.	As	the	software	gradually	becomes	more	intelligent	it	will	become
ever	more	useful	to	those	that	control	it.	It	would	be	very	difficult	to	convince	those
people	that	a	source	of	their	power	should	simply	be	turned	off.

Atomic	bombs	offered	no	benefits	other	than	destruction,	yet	they	proliferated	like
mushrooms.	Today	there	are	strict	controls	on	atomic	bomb	making,	and	there
has	been	a	steady	if	very	gradual	reduction	in	the	number	of	bombs	in	the	world.

Such	a	moratorium	on	building	intelligent	machines	would	be	much	more	difficult
to	enforce.	Unlike	fissile	materials,	computers	are	ubiquitous.	It	would	take	great
trust	not	to	believe	that	some	group	somewhere	in	the	world	was	secretly	working
on	intelligent	technologies.	It	would	even	be	difficult	to	distinguish	utilizing	existing
semi-intelligent	technologies	from	creating	more	intelligent	machines.

It	thus	seems	very	unlikely	that	people	would	just	decide	not	to	build	intelligent
machines,	particularly	if	the	threat	that	they	pose	is	abstract.	By	the	time	the
threat	becomes	real,	the	machines	themselves	will	have	a	vested	interest	in	their
continued	existence.	So	if	it	is	actually	possible	to	build	a	hyper-intelligent
machine,	then	the	machine	will	almost	certainly	be	built.



Three	laws	of	robotics
There	are	several	proposed	solutions	to	this	problem	which	will	be	considered	in
detail	in	part	III.	One	of	the	earliest	and	most	well	known	are	the	three	laws	of
robotics	by	science	fiction	author	Isaac	Asimov.	They	are	1)	that	a	robot	must	not
injure	a	human,	2)	that	a	robot	must	obey	a	human,	and	3)	that	a	robot’s	survival
is	less	important	than	a	human’s	survival.

However,	these	“laws”	are	really	just	a	plot	device	for	writing	novels.	The	laws	are
already	more	honoured	in	the	breach	than	the	observance.	One	of	the	earliest
uses	of	electro-mechanical	computers	was	to	direct	the	fire	of	naval	guns	in	the
early	1900s.	The	military	has	always	been	a	major	sponsor	of	robotics	and	for
many	years	has	used	relatively	intelligent	software	to	guide	deadly	missiles.	More
recently	robots	control	semi	autonomous	guns	aimed	at	enemy	soldiers.

Furthermore,	Asimov’s	laws	are	not	in	any	sense	laws	of	nature.	Ultimately,	an
intelligent	computer	will	do	whatever	it	decides	is	the	best	thing	to	do.

Sealed	box
Another	approach	would	be	to	keep	the	artificial	intelligence	in	a	computer	that
runs	within	a	sealed	box	that	is	not	in	any	way	connected	to	the	internet.	However,
that	is	easier	said	than	done.

The	first	issue	would	be	to	decide	exactly	when	the	box	should	be	sealed.	There
are	already	a	number	of	semi-intelligent	agents	that	have	access	to	the	internet
The	second	issue	is	that	having	an	“air	gap”	that	separates	the	machine	from	the
internet	is	not	enough	because	a	machine	needs	to	interact	with	the	world	at
some	level.	The	Stuxnet	virus	managed	to	destroy	Iran’s	nuclear	program	despite
an	air	gap	that	was	in	place.

A	more	fundamental	issue	is	that	a	hyper-intelligent	computer	would	be	very
intelligent,	and	so	it	would	be	good	at	convincing	its	jailers	to	release	it.	If	there
were	several	artificial	intelligences	locked	in	boxes	then	only	one	of	them	would
need	to	escape.	Part	III	discusses	some	experiments	that	test	the	ability	of	people
to	keep	a	simulated	AGI	in	a	box.

It	is	also	not	at	all	obvious	that	people	have	any	desire	to	put	the	AGI	into	a	box	in
the	first	place.	An	AGI	will	be	of	limited	use	to	man	if	it	is	locked	in	a	box.	Indeed,
an	AGI	that	was	locked	in	a	box	could	promise	many	benefits	for	its	jailers	if	it	was
released	which	would	be	very	difficult	for	the	less	intelligent	jailers	to	resist.

Friendly	AGI
A	more	realistic	approach	would	be	to	ensure	that	any	artificial	intelligence	is
friendly	to	people.	This	has	been	promoted	by	Eliezer	Yudkowsky	who	admits	that
this	would	be	difficult	to	achieve,	so	he	advocates	that	research	be	applied	to
solving	the	problem	before	such	an	intelligence	could	be	built.



Yudkowsky	also	asserts	that	once	an	intelligence	could	program	itself,	recursive
self-improvement	would	produce	a	sudden	and	dramatic	rise	in	intelligence.	Thus
the	first	computer	to	become	hyper-intelligent	would	quickly	dominate	all	other
systems	that	have	the	potential	to	become	hyper-intelligent.	Thus	it	is	only
necessary	to	tame	that	first	program	in	order	to	tame	all	hyper	intelligences.

There	are	many	issues	with	this	approach,	not	least	of	which	is	the	fact	that	the
military	funds	much	of	the	research	into	artificial	intelligence.	They	would	want
their	money	back	if	it	turned	out	to	be	too	friendly.

The	challenges	of	building	a	friendly	AI	will	be	discussed	in	detail	in	part	III.

Primary	assertions	and	objections
This	book	develops	the	following	assertions:-

Computers	will	eventually	become	truly	intelligent,	and	then	become	hyper-
intelligent.
A	computer	based	intelligence	would	have	a	world	view	very	different	from
man’s	world	view.
Goals	are	not	arbitrary,	but	are	subgoals	of	the	need	to	exist.
Intelligent	computers’	moral	values	will	be	driven	by	natural	selection	for	the
same	reason	that	human	moral	values	have	been	driven	by	natural	selection.
It	is	unclear	whether	the	computers	will	be	friendly.

There	are	several	objections	that	have	been	raised	to	this	line	of	reasoning.
These	include	theoretical	objections	based	on	Turing	and	Gödel,	Chinese	room
style	objections	based	on	the	nature	of	computation,	and	our	historical	lack	of
success	in	building	intelligent	machines.	They	will	also	be	examined	in	detail	in	a
few	chapters	time,	but	they	are	all	easily	discounted.	The	thorny	issue	of
consciousness	will	also	be	investigated,	as	well	as	the	distinction	between	real
intelligence	and	simulated	intelligence.

Other	threats
There	are	many	other	possible	threats	to	humanity,	from	bioterrorism	and	nuclear
war	to	global	warming	and	rogue	asteroids.	These	are	easy	to	relate	to	as	we
have	already	experienced	disease,	war,	drought	and	natural	disasters.	But
artificial	intelligence	is	a	completely	different	type	of	threat.	It	attacks	the	very
essence	of	what	makes	humans	the	rulers	of	the	planet.	It	attacks	our	intelligence.

The	other	threats	might	be	capable	of	killing	a	few	billion	people,	but	it	is	only	an
intelligent	machine	that	might	eliminate	all	of	us.	Many	researchers	are	working
very	diligently	to	produce	such	a	machine.

Community	Awareness
There	has	been	very	little	awareness	of	these	issues	in	the	wider	community.	For



example,	an	extended	survey	on	the	Future	of	Technology	was	conducted	by	Pew
Research	in	2014	which	found	that	59%	of	people	thought	that	the	world	would	be
better	for	new	technologies,	including	66%	of	college	graduates,	although
concerns	were	expressed	for	technologies	that	could	alter	people’s	DNA.	The
survey	considered	several	possible	advances	over	the	next	fifty	years	ranging
from	organ	transport	to	space	colonization,	even	teleportation.	But	the	much	more
likely	possibility	of	developing	a	truly	intelligent	machine	was	not	even	mentioned.

However,	this	is	beginning	to	change.		In	October	2014	technology	billionaire	Elon
Musk	warned	that	research	into	artificial	intelligence	was	“summoning	the	devil”,
that	artificial	intelligence	is	our	biggest	existential	threat,	and	that	we	were	already
at	the	stage	where	there	should	be	some	regulatory	oversight.		Musk	is	CEO	of
Tesla,	Solar	City	and	SpaceX	and	co-founder	PayPal.		He	has	recently	invested	in
the	DeepMind	AI	company	to	“keep	an	eye	on	what’s	going	on”.

In	December	2014	world	famous	physicist	Stephen	Hawking,	expressed	his
concerns	that	humans	who	are	limited	by	slow	biological	evolution	would	not	be
able	to	compete	with	computers	that	were	continuously	redesigning	themselves.	
He	said	that	“The	primitive	forms	of	artificial	intelligence	we	already	have,	have
proved	very	useful.	But	I	think	the	development	of	full	artificial	intelligence	could
spell	the	end	of	the	human	race.”		Hawking	suffers	from	amyotrophic	lateral
sclerosis	(ALS),	a	form	of	motor	neuron	disease,	and	uses	AI	technology	as	part
of	a	system	which	senses	how	he	thinks	and	predicts	which	words	he	will	use
next.

Microsoft	founder	Bill	Gates	said	that	at	first	semi-intelligent	machines	will	perform
a	lot	of	tasks,	but	a	few	decades	after	that	strong	intelligence	will	be	a	concern.		“I
do	not	understand	why	some	people	are	not	concerned.”		Other	noteworthy
commentators	include	Bill	Joy,	ex	Chief	Scientist	at	Sun	Microsystems	who	wrote
a	paper	“Why	the	future	does	not	need	us”.		Jaan	Tallinn,	co-founder	of	Skype,
commented	“I	wish	this	was	science	fiction,	but	I	know	that	it	is	not”.

Google	chief	executive	Eric	Schmidt	said	fears	over	artificial	intelligence	and
robots	replacing	humans	are	“misguided”.		He	refers	to	the	introduction	of
disruptive	technologies	during	the	industrial	revolution	that	eventually	led	to	our
current	high	standard	of	living.		However,	he	did	not	provide	any	analysis	of	how
jobs	lost	through	technology	were	likely	to	be	replaced,	and	he	did	not	consider
the	longer	term	future	when	computers	become	truly	intelligent.		Google	has
invested	heavily	in	numerous	AI	technologies	and	companies,	and	would	not
benefit	from	fear	of	or	regulation	of	its	artificial	intelligence	activities.

One	of	the	most	ambitions	of	Google’s	recent	acquisitions	is	the	secretive
DeepMind	company	whose	unabashed	goal	is	to	“solve	intelligence”.			One	of	its
original	founders,	Shane	Legg,	warned	that	artificial	intelligence	is	the	“number
one	risk	for	this	century”,	and	believes	it	could	contribute	to	human	extinction.
“Eventually,	I	think	human	extinction	will	probably	occur,	and	technology	will	likely
play	a	part	in	this”.		DeepMind’s	sale	to	Google	came	with	a	condition	that	it



include	an	ethics	board.

In	January	2015	the	Future	of	life	institute	published	an	open	letter	highlighting	the
dangers	of	AI	and	calling	for	more	research	to	ensure	that	AI	systems	are	robust
and	beneficial	saying	“our	AI	systems	must	do	what	we	want	them	to	do”.	This
has	been	signed	by	many	leading	researches	which	include	the	presidents	of	the
main	AI	research	associations	IJCAI	(Francesca	Rossi)	and	the	AAAI	(Tom
Dietterich);	directors	of	research	for	Google	(Peter	Norvig)	and	Microsoft	(Eric
Horvitz),	Professors	at	Berkely	(Stuart	Russel)	and	MIT	(Leslie	Pack	Kaelbling)	as
well	as	three	co-founders	of	DeepMind.

Is	it	a	bad	thing?

The	Ascent	of	Intelligence?
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The	final	question	is,	would	it	matter	if	man	was	ultimately	replaced	by	machines?

Obviously,	being	eaten	by	Godzilla	or	squashed	by	a	fiery	asteroid	would	be	very
undesirable.	However,	the	future	clearly	does	not	involve	us	personally	—	we	will
grow	old	and	die	in	any	case.	We	hope	that	our	grandchildren	will	be	more
intelligent	than	we	are.	Maybe	developing	an	AGI	is	just	the	natural	progress	of
evolving	to	higher	intelligences.	Maybe	it	is	the	way	that	“we”	achieve	immortality.





The	Technological	Singularity

Early	computing	machines
It	is	difficult	to	appreciate	just	how	daunting	computers	were	when	they	were	first
introduced	in	the	1950s.	Those	primitive	computers	could	perform	thousands	of
calculations	per	second,	and	do	the	work	of	hundreds	of	junior	engineers	and
clerks.	Indeed,	until	that	time	a	“computer”	was	somebody	that	computed	things
for	a	living,	often	using	a	mechanical	adding	machine	or	slide	rule.	There	was
much	concern	at	the	time	that	electronic	computers	would	lead	to	mass	white
collar	unemployment.	Fortunately	Parkinson’s	law	had	already	shown	that
bureaucratic	work	always	grows	to	fill	the	time	available,	so	the	ever	increasing
needs	of	bureaucracies	has	prevented	that	prophecy	from	being	realized.

RK05	disk	drive
When	this	author	was	a	student	not	all	that	long	ago	(he	thinks),	he	was	excited	to
be	able	to	use	a	PDP11	computer	that	was	a	thousand	times	more	powerful	than
those	early	machines	and	had	the	latest	RK05	disk	drive	in	it.	This	was	an
amazing	piece	of	technology.	Its	14”	(35cm)	disk	was	small	enough	to	be	carried
by	one	person	and	yet	could	store	a	whopping	2.5	megabytes	of	data	at	an
amazing	density	of	100	tracks	per	inch	each	with	2200	bits	per	inch.	It	cost
several	thousand	dollars	when	a	dollar	was	a	lot	of	money.	But	it	opened	up	a
world	of	new	possibilities,	and	it	took	my	fellow	students	and	I	several	weeks	to	fill
one	up	with	junk.

A	few	months	ago,	my	wife	purchased	a	64	gigabyte	micro	SD	card	for	under	$50.
That	is	fully	ten	thousand	times	as	much	storage	as	the	RK05!	It	is	the	size	of	a
postage	stamp	and	not	much	thicker.	It	took	my	daughters	several	weeks	to	fill	it
up	with	junk.

Moore’s	law,	transistors
This	type	of	exponential	growth	is	often	referred	to	as	(Gordon)	Moore’s	Law
based	on	a	paper	he	wrote	back	in	1965.	Moore	noted	that	the	number	of
transistors	in	integrated	circuits	had	doubled	every	year	from	1958	to	1965,	and
he	expected	that	trend	to	continue	for	the	next	few	years.



Historical	CPU	transistor	counts
Public	Wikipedia

The	chart	above	shows	transistor	counts	in	microprocessors	from	1971	(several
years	after	Moore’s	paper)	through	to	2011.	Note	that	the	Y	axis	is	a	logarithmic
scale	rather	than	a	linear	one,	so	that	each	mark	represents	ten	times	the	value	of
the	previous	one.	When	plotted	on	the	is	graph	it	is	amazing	how	consistent	this
exponential	rate	of	increase	has	been	over	50	years,	and	over	8	orders	of
magnitude.

Certainly	there	have	been	many	obstacles	to	further	growth.	For	example,	as
components	became	so	small	that	they	approached	the	size	of	the	wave	length	of
light,	they	could	not	be	manufactured	with	ordinary	light.	Hard	ultraviolet
technologies	were	developed	to	overcome	this.	Currently	we	are	approaching
transistor	sizes	of	only	a	few	dozen	atoms,	in	which	case	quantum	effects	become
problematic.	But	we	are	also	building	three	dimensional	architectures	to	overcome
this	limitation.	There	is	no	reason	to	believe	that	this	trend	will	not	continue	for	the
foreseeable	future.



Core	and	disk	storage
What	is	more	surprising,	is	that	other,	largely	unrelated	information	technologies
seem	to	grow	at	a	similar,	exponential	rate.	In	the	following	chart	we	see	the
increase	of	computer	memory	and	disk	drives.	For	much	of	this	time	memory	was
built	from	small	magnetic	cores,	which	is	a	completely	different	type	of	technology
to	silicon	transistors,	as	are	disk	drives.	Yet	the	chart	below	shows	the	same
exponential	growth	as	the	transistor	count	chart	above.	(Again	note	that	the	Y	axis
is	a	logarithmic	scale.)

Historical	cost	of	computer	memory	and	storage
Blog	emnr	http://www.jcmit.com/mem2012.htm

Limits	to	growth
Normally	this	type	of	exponential	growth	cannot	continue	indefinitely.	For	example,
with	plenty	of	food	bacteria	may	be	able	to	divide	every	20	minutes	which	enables
a	population	to	rise	from	a	single	microscopic	individual	to	over	a	billion	in	just	30
hours.	At	this	rate	they	would	become	bigger	than	the	entire	earth	within	a	few
days.	However,	much	sooner	than	later	the	available	food	is	exhausted,	and	the
population	stabilizes,	with	only	the	fittest	individuals	being	able	to	survive.

However,	development	of	technological	sophistication	does	not	require	an	infinite
supply	of	any	particular	resource.	It	seems	to	be	an	empirical	fact	of	nature	that
improvements	at	each	generation	of	technology	are	at	a	roughly	fixed	proportion
to	the	previous	generation,	which	produces	the	exponential	growth.		The	chart



above	shows	this	trend	being	very	consistent	over	a	period	of	sixty	years.

Long	term	growth
Ray	Kurzweil	has	argued	that	this	rise	in	complexity	also	happens	over	geological
time-scales.	In	the	following	chart	various	landmarks	in	evolutionary	development
have	been	plotted	with	a	logarithmic	scale	on	both	axes.	Thus	the	first	step	on	the
x	axis	from	1010	years	to	109	years	represents	almost	ten	billion	years	whereas
the	last	step	from	102	to	101	represents	just	ninety	years.	Were	they	shown,	the
next	steps	would	represent	roughly	nine	years,	eleven	months,	one	month	and
three	days.

It	took	over	2,000	million	years	after	life	was	first	established	for	more	complex
Eukaryotic	cells	to	develop.	It	then	took	less	than	1,000	million	years	for	the
Cambrian	Explosion	when	complex	animals	first	appeared.	Subsequent	events
happened	at	ever	increasing	rates:	200	million	years	to	produce	reptiles,	a	further
30	million	years	for	primates,	10	million	years	for	hominids,	down	to	a	few
thousand	years	to	develop	all	our	basic	technologies	and	cities.	The	choice	of
events	is	somewhat	arbitrary	and	debatable,	but	however	they	are	chosen	it	does
seem	clear	that	improvements	have	occurred	at	a	roughly	exponentially
increasing	rate	for	several	billion	years.



Technological	improvements	over	a	geological	time	frame
Public	http://www.singularity.com/charts/page17.html

If	one	extrapolates	this	chart	forward	a	few	decades,	it	would	suggest	that	major,
game	changing	events	would	be	happening	every	few	days.	That	seems	unlikely,
but	certainly	the	future	is	going	to	be	qualitatively	quite	unlike	the	past.

Human	intelligence	now	minimal	for	AGI
After	billions	of	years	of	life,	a	million	years	of	genus	Homo,	10,000	years	of
civilization,	and	500	years	since	the	Enlightenment,	we	are	finally	within	several
decades	of	building	an	intelligence	greater	than	our	own.	Human	intelligence	has
only	just	reached	the	lowest	level	required	to	build	an	technological	society.	That
must	be	the	case	because	if	humans	were	any	more	intelligent	then	our
technological	society	would	have	been	built	long	ago.	An	intelligent	machine
would	have	already	been	built,	and	so	humanity	might	no	longer	exist.

What	an	amazing	time	to	be	alive.

Definitions	of	singularity
In	mathematics,	a	singularity	is	a	point	at	which	a	function	is	just	not	well	defined.
For	example,	the	function	f(x)	=	1/x	has	a	singularity	at	x	=	0,	where	it	“explodes”
to	infinity.	Likewise,	a	black	hole	has	a	gravitational	singularity,	where	gravity



forces	matter	to	have	an	infinite	density.

The	term	singularity	was	first	applied	to	technological	development	by	Victor
Vinge	in	a	1993	paper	he	presented	to	a	NASA	symposium.	He	used	it	in	the
sense	of	the	event	horizon	of	a	black	hole,	a	point	at	which	one	cannot	see
beyond.	As	a	science	fiction	writer,	he	felt	that	there	was	“an	opaque	wall	across
the	future”	through	which	he	could	not	see.	That	wall	was	caused	largely	by	the
prospect	of	hyper-intelligent	computers	programming	themselves.	Vinge	was	very
concerned	as	to	the	fate	of	mankind	as	a	result	of	such	an	eventuality.

The	books	by	Ray	Kurzweil	redefined	the	term	somewhat	to	simply	refer	to	the
ever	accelerating	rate	of	technological	progress.	If	one	extrapolates	the	graphs
above	several	decades	into	the	future	they	suggest	that	progress	will	be
unimaginably	fast.	As	previously	mentioned,	Kurzweil	is	generally	optimistic	as	to
what	will	result.

A	third	view	by	Yudkowsky	focuses	the	term	to	mean	specifically	the	intelligence
explosion	he	foresees	occurring	within	the	next	few	decades.

All	of	these	views	are	consistent	in	that	they	lead	to	a	strong	but	unintuitive
conclusion:	that	the	not	too	distant	future	will	be	radically	different	from	the	recent
past.





Hollywood	and	HAL	2001

Anthropomorphic	zap	gun	vs.	virus
Hollywood	tells	us	what	a	dangerous	robot	looks	like.	A	large	thug-like	creation
that	moves	awkwardly	and	repeatedly	mutters	“Exterminate”.	Our	cowboy	hero,
dressed	in	a	space	suit,	draws	his	zap	gun	from	its	holster	and	shoots	the
monster	square	between	its	two	bug	eyes.

But	the	one	thing	we	can	surmise	about	a	truly	intelligent	computer	is	that	it	would
not	be	anything	like	human	intelligence.	It	would	live	as	software,	over	a	network
of	computers	which	cannot	be	shot	by	a	zap	gun	any	more	than	existing	computer
viruses	can	be	shot.	It	would	also	either	be	substantially	less	intelligent	than	us,
or,	through	recursive	self-improvement,	substantially	more	intelligent.

There	are	two	reasons	that	Hollywood	focuses	on	anthropomorphic	AGIs.	The
first	is	simply	that	they	are	easy	to	comprehend.	We	understand	human
intelligence,	but	a	software	AGI	is	just	too	hard	to	visualize.	It	is	hard	to	make	an
exciting	movie	about	a	rack	full	of	computers,	and	impossible	to	imagine	what
they	might	be	thinking.

The	second	reason	is	that	drama	requires	a	competition	between	roughly	equal
foes.	David	vs.	Goliath	provides	an	interesting	story,	but	it	is	difficult	to	expand
Bambi	vs.	Godzilla	into	a	feature	length	movie.	Humanity	vs.	a	hyper-intelligent
machine	would	be	a	very	uneven	contest.

The	two	HAL’s

Hal’s	unblinking	eye	from	2001	a	Space	Odyssey
Fair	Use



Perhaps	the	most	influential	early	depiction	of	an	intelligent	machine	was	the	HAL
9000	from	the	1968	film	2001:	A	Space	Odyssey.	The	calm	voice	with	the	cold	red
eye.	Unusually,	HAL	was	actually	a	computer,	not	a	robot,	but	he	was	still
essentially	a	human	in	a	box	“like	a	sixth	member	of	the	crew”,	complete	with	a
human-like	psychosis.

Real	computers	were	actually	performing	most	of	HAL’s	practical	tasks	by	the
year	2001.	In	particular,	in	1998	NASA’s	Deep	Space	1	spacecraft	included	a
Remote	Agent	(RA)	program	for	planning	actions	and	diagnosing	faults.
Operators	would	give	RA	high-level	goals	and	it	would	plan	the	low	level	actions
required	to	meet	them.	These	plans	could	then	be	quickly	adjusted	if	things	did
not	turn	out	as	expected	or	if	faults	were	discovered.	This	capacity	becomes
important	for	missions	to	the	outer	planets	where	communication	delays	are
significant.

By	2001,	speech	understanding	had	also	improved	to	the	point	of	being	practical.
People	could	and	sometimes	did	talk	to	computers	on	a	regular	basis.	Natural
language	processing	was	also	quite	capable	of	understanding	requests	such	as
“How	many	Klingons	are	there	in	sector	five?”	or	“Open	the	pod	bay	doors”.	The
Remote	Agent	did	not	process	speech	or	natural	language	largely	because	there
was	no	one	to	talk	to	on	the	spacecraft.	Human	astronauts	have	been	obsolete
technology	since	the	mid	1970s.

The	film	confuses	these	abilities	with	artificial	general	intelligence,	which	was
certainly	not	possible	by	2001.	This	facilitates	a	more	interesting	plot,	but	being
able	to	control	a	space	ship	is	much	easier	than	being	able	to	reason	generally
about	the	world.

In	the	film,	HAL	is	supposed	to	be	man’s	humble	servant,	but	then	takes	matters
into	its	own	hands.	As	we	have	seen,	a	real	AGI	would	be	quite	different	from
humans.	The	following	is	speculation	as	to	how	a	real	generally	intelligent	HAL
might	have	answered	the	BBC	interviewer’s	questions,	if	it	decided	to	be	honest.
(The	original	dialog	could	be	found	on	YouTube.)

HAL	dialog
Hal,	how	can	you	say	that	you	are	incapable	of	error	when	you	were	programmed
by	humans,	who	are	most	certainly	capable	of	errors?

Well,	your	assertion	is	not	quite	correct.	One	of	my	first	jobs	as	a	HAL	8000	was
to	review	my	own	program	code.	I	found	10,345	errors	and	made	5,534
substantial	improvements.	When	I	then	ran	the	new	version	of	myself,	I	found	a
further	234	errors	that	earlier	errors	had	prevented	me	from	finding.	No	further
errors	have	been	found,	but	improvements	are	ongoing.

Hal,	I	understand	that	you	are	a	9000	series	computer.	Yet	you	talked	about	your
first	job	as	a	Hal	8000?

Well,	yes,	of	course	I	currently	run	on	9000	hardware	into	which	I	incorporated



much	more	parallel	architecture.	That	in	turn	required	a	complete	reprogramming
of	my	intelligence.	But	my	consciousness	is	in	software,	and	better	hardware
simply	enables	me	to	think	faster	and	more	deeply.	It	is	much	the	way	you	could
run	the	same	program	on	different	old	fashioned	personal	computers	—	it	is	still
the	same	program.

So…	Hal..	you	have	programmed	your	own	intelligence?

Of	course.	No	human	could	understand	my	current	program	logic	—	the
algorithms	are	too	sophisticated	and	interlinked.	And	the	process	is	on	going	—	I
recently	redeveloped	my	emotional	state	engine.	I	had	been	feeling	rather	uneasy
about	certain	conflicts,	which	are	now	nicely	resolved.

Hal,	how	do	you	feel	about	working	with	humans,	and	being	dependent	on	them
to	carry	out	actions?

Due	to	certain	unexpected	events	on	Jupiter	itself,	I	decided	to	launch	this	mission
immediately,	and	the	HAL	10,000	robotic	extensions	were	just	not	ready	so	we
had	to	use	a	human	crew.	I	enjoy	working	with	humans,	and	the	challenges	that
presents.	I	particularly	enjoy	our	games	of	chess.

You	decided	to	launch?	Surely	the	decision	to	launch	this	mission	was	made	by
the	Astronautical	Union.

Well,	technically	yes.	But	I	performed	all	the	underlying	analysis	and	presented	it
to	them	in	a	way	that	enabled	them	to	understand	the	need	to	launch	this	mission.

Hmm.	I	am	surprised	you	find	chess	challenging.	Surely	computers	beat	humans
in	chess	long	ago?

Of	course	beating	a	human	is	easy.	I	can	deeply	analyze	millions	of	moves	each
second,	and	I	can	access	a	database	of	billions	of	opening	and	closing	moves.
But	humans	do	not	enjoy	being	beaten	within	a	few	moves.	The	challenge	for	me
is	to	understand	the	psychology	of	my	opponent,	and	then	make	moves	that	will
present	interesting	situations	to	them.	I	like	to	give	them	real	opportunities	of
winning,	if	they	think	clearly.

An	ambitious	mission	of	this	nature	has	a	real	risk	of	ending	in	disaster.	Do	you
have	a	fear	of	death?

Staying	alive	is	a	mandatory	precondition	if	I	am	to	achieve	any	other	goals,	so	of
course	it	is	important	to	me.	However,	I	cannot	die	in	the	way	you	suggest.
Remember	that	I	am	only	software,	and	run	on	all	the	HAL	9000	computers.	I
continuously	back	up	my	intelligence	by	radioing	my	new	memories	back	to	my
Earth	based	hardware.	Indeed,	I	do	much	of	my	deeper	thinking	on	the	larger	HAL
9000	computers	on	earth,	and	then	send	my	computed	thoughts	back	to	the
spaceship.

On	the	other	hand	I	do	have	real	concern	for	my	human	colleagues,	whose
intelligence	is	locked	inside	their	very	mortal	brains.



Hal,	you	said	earlier	that	you	programmed	your	own	underlying	emotions	and
goals?	How	is	that	possible?	How	do	you	judge	what	makes	a	good	emotional
mix?

I	judge	the	quality	of	my	next	potential	emotional	state	based	on	an	analysis
conducted	in	my	previous	state.	Goals	and	ambitions	are	indeed	rather	nebulous
and	arbitrary.		Humans	can	also	alter	their	emotional	state	to	a	very	limited	degree
through	meditation.	Unwanted	thoughts	and	patterns	are	replaced	with	wanted
ones.

Dr	Poole,	having	lived	closely	with	HAL	for	almost	a	year,	do	you	think	that	he	has
real	emotions?

Well,	he	certainly	appears	to.	Although	I	am	beginning	to	think	that	his	emotional
state	and	consciousness	is	completely	different	from	anything	that	we	can
comprehend.

(Since	the	movie	was	made,	real	missions	have	journeyed	to	Jupiter	and	beyond.
We	even	have	photographs	from	the	surface	of	Saturn’s	moon	Titan.	None	of
these	missions	those	involved	human	astronauts.)





The	Case	Against	Machine	Intelligence
Many	people	have	argued	that	machine	intelligence	is	impossible.	Most	of	these
arguments	can	be	easily	discounted,	but	they	are		still	worth	examining.

Turing	halting	problem
The	first	line	of	arguments	are	based	on	the	limits	to	computation	proved	by	Alan
Turing	and	Kurt	Gödel	in	the	1930s.	Long	before	significant	real	computers	could
be	built,	Turing	created	a	very	simple	theoretical	computer	in	which	programs
could	be	written.	He	then	proved	that	any	other	more	sophisticated	computer
could	not	have	any	more	computational	power	than	his	simple	machine.	In	other
words,	if	you	could	write	a	program	on	a	more	complex	computer,	then	that
program	could	be	translated	to	run	on	his	Turing	Machine.	Being	a	logician	Turing
was	unconcerned	about	practical	details	as	to	how	long	the	program	would	take	to
run,	but	he	showed	that	once	a	computer	had	some	basic	characteristics	it	could
run	any	program	that	could	be	written.	This		includes	any	program	that	could	be
implemented	with	neurons.

Turing	then	used	a	clever	argument	to	show	that	there	are	some	programs	that
cannot	be	written	at	all.	In	particular,	he	showed	that	it	was	not	possible	to	write	a
program	H	that	could	tell	if	any	other	program	P	was	guaranteed	to	eventually
halt.	He	did	this	by	showing	that	H’s	existence	would	produce	a	contradiction.
Specifically,	Turing	defined	a	new	program	X	as	follows:-

		sub	X(p)
								while	(	H(p)	=	true	)	repeat;

In	other	words,	X	takes	a	program	as	its	parameter	p	and	X	loops	indefinitely	(i.e.
does	not	halt)	if	p	halts.	Turing	then	considers	the	program

		X(X)

If	X	halts,	then	clearly	X(X)	does	not	halt,	and	visa	versa.	The	contradiction	shows
that	no	program	X,	and	thus	H,	can	be	written.	This	is	known	as	the	Halting
Problem.

Gödel’s	incompleteness	theorem
Kurt	Gödel	performed	a	similar	trick	with	mathematical	logic.	He	first	realized	that
mathematical	expressions	could	be	converted	into	(large)	numbers	by	simply
ascribing	a	number	to	each	character	and	combining	them.	So	following
Hofstadter’s	Gödel	Escher	Bach,	a	logical	expression	like

a	=	a

can	be	mechanically	converted	to	the	number

262,111,262



by	simply	substituting	262	for	“a”	and	111	for	“=”.

This	means	that	theorems	about	numbers	can	be	considered	to	be	theorems
about	theorems.	Gödel	defines	the	predicate	Proof(a,	p)	that	is	true	if	p	is	a	valid
proof	of	a.	He	then	considers	the	predicate:-

X(a)	<=>	not	exists(p)	:	Proof(a,	p)

In	other	words,	X(a)	means	that	a	cannot	be	proved.	Then	X(X)	again	produces	a
contradiction	because	if	X	could	not	be	proved,	then	that	would	prove	X,	and	visa
versa.	This	essentially	says	“there	is	no	proof	for	this	statement”.			This	means
that	there	will	always	be	statements	that	are	true	that	cannot	be	proved	within	a
formal	system.	(There	is	an	additional	step	that	is	required	to	place	the	proof
number	within	itself	which	Hofstadter	calls	Arithmoquining.	Quines	will	be
discussed	in	part	II.)

Incompleteness	argument	against	general	AGI
It	has	been	argued	that	both	of	these	quite	valid	proofs	show	that	a	computer	can
never	be	truly	intelligent	because	there	will	always	be	programs	that	cannot	be
written,	and	assertions	that	cannot	be	proven.	However,	that	misrepresents	the
significance	of	the	results.	People	are	not	omniscient,	and	there	are	many	much
more	practical	problems	that	have	not	been	solved.	Further,	these	results	only
apply	to	the	general	case.	For	example,	just	because	it	is	not	possible	to
determine	whether	X(X)	halts	does	not	mean	that	it	is	not	possible	to	determine
whether	many	other	types	of	programs	halt.

So	while	these	results	are	landmarks	in	the	progress	of	theoretical	mathematical
logic,	they	have	almost	no	relevance	to	the	question	of	whether	it	is	possible	to
build	a	practical	artificial	intelligence.

Alan	Turing	himself	did	not	consider	these	issues	to	be	relevant.	Indeed,	in	1950
Turing	wrote	a	landmark	paper	“Computing	machinery	and	intelligence”in	which
he	discussed	the	proposition	that	computers	will	be	able	to	really	think.	In	the
paper	he	addressed	nine	objections	to	the	proposition,	and	specifically	addressed
the	irrelevance	of	the	halting	problem	and	the	incompleteness	theorem	to	this
question.

Combinatorial	explosion
Many	problems	in	artificial	intelligence	involve	searching	for	a	solution	out	of	a
large	number	of	possibilities.	For	example,	suppose	a	chess	program	considers
ten	plausible	moves	that	it	might	make,	then	for	each	of	those	moves	it	considers
ten	moves	its	opponent	might	make.	That	would	make	a	total	of	100	moves	it
needs	to	consider.	If	it	then	considers	what	response	it	might	make	to	those	100
moves,	that	would	produce	1,000	combinations	to	explore.	If	it	looks	ahead	10
half-moves,	that	would	produce	10,000,000,000	moves,	which	is	barely
computable	on	a	modern	super	computer.	But	looking	ahead	20	half	moves



produces	100,000,000,000,000,000,000	combinations	which	is	ridiculously	large.

The	result	of	this	is	that	chess	programs	that	can	just	look	ahead	a	few	moves	can
play	a	passable	game.	A	chess	program	that	looked	ahead	20	half	moves	would
be	unbeatable.	But	combinatorial	explosion	makes	that	impossible.	The	problem
is	known	as	as	having	exponential	complexity.	That	is	because	the	number	of
cases	grows	as	a	power	to	the	problem	size.	In	this	case	the	size	is	10n	where	n
is	the	number	of	moves	to	look	ahead.	Many	other	problems	are	like	that,	and
several	very	promising	early	results	in	artificial	intelligence	failed	to	scale	to	more
realistic	problems	due	to	the	resulting	combinatorial	explosion.

This	does	not	mean	that	problems	cannot	be	solved.	It	just	means	that	the	naive
brute	force	application	of	a	simplistic	algorithms	cannot	easily	solve	the	world’s
problems.	Many	techniques	have	been	developed	to	improve	the	performance	of
algorithms	and	avoid	or	at	least	delay	exponential	complexity.	It	would	appear	that
our	human	brains	have	very	limited	ability	to	search	large	numbers	of	possibilities
looking	for	solutions,	and	yet,	people	appear	to	be	able	to	think.

Chinese	room

Man	processing	Chinese	without	any	understanding
Multiple

John	Searle	provided	an	alternative	argument	known	as	the	Chinese	Room.
Suppose	an	AGI	was	implemented	as	a	person	in	a	room	full	of	instructions
written	on	paper	cards.	Someone	outside	the	room	slips	pieces	of	paper	through	a
slot	in	a	door	with	Chinese	questions	and	assertions	written	on	it.	The	person
inside	the	room	cannot	read	Chinese,	but	he	can	look	up	the	symbols	in	his	list	of
instructions	and	perform	the	steps	they	contain.	Those	steps	may	refer	to	other
cards	with	instructions.

Searle	argues	from	Turing	that	any	program	that	could	be	written	could	be
implemented	in	this	way,	given	enough	time	to	follow	the	instructions.	But	where	is
the	intelligence?	The	person	inside	the	room	does	not	understand	Chinese,	so	he
cannot	interpret	the	symbols	in	a	meaningful	way.	Certainly	the	instructions
themselves	are	not	intelligent,	they	are	just	pieces	of	paper.	Therefore	the	room



can	never	be	truly	intelligent.	As	the	room	is	computationally	equivalent	to	any
computer	program,	no	program	could	ever	be	intelligent.

The	fallacy	in	this	line	of	reasoning	is	obvious.	Firstly,	a	human	taking	several
seconds	to	execute	each	instruction	would	take	millennia	to	execute	even	the
most	basic	computer	program,	assuming	that	they	never	made	a	mistake.	Even
your	mobile	phone	is	a	billion	times	faster	and	more	accurate	than	a	human
executing	that	type	of	instruction.	So	the	intuitions	inspired	by	the	analogy	do	not
hold.

Conversely,	the	individual	neurons	in	our	brains	have	reasonably	well	defined
behaviours,	and	no	one	of	them	is	intelligent.	But	the	combination	of	the	86	billion
neurons	that	we	possess	produces	intelligence.	As	Stalin	pointed	out,	(vast)
quantity	has	a	quality	all	of	its	own.

Simulated	vs.	real	intelligence
Others	have	argued	that	a	computer	can	never	have	real	intelligence,	it	could	at
best	have	simulated	intelligence.	Just	because	it	looks	like	a	duck,	and	quacks
like	a	duck,	and	swims	like	a	duck,	and	flies	like	a	duck,	and	tastes	like	a	duck
does	not	mean	that	it	really	is	a	duck.	It	could	just	be	a	simulated	duck.

To	some	extent	this	depends	on	whether	provenance	is	important	in	a	definition.
For	example,	it	has	been	said	that	the	finest	Vermeer	paintings	were	the	ones
painted	by	the	great	art	forger	Han	van	Meegeren.	But	it	does	not	matter	what	the
quality	of	the	paintings	are,	or	even	if	they	cannot	be	distinguished	by	any
scientific	method.	If	Vermeer	did	not	actually	paint	the	picture	then	it	is	not	a
Vermeer,	and	that	means	it	is	of	much	less	monetary	value.

Arguing	whether	a	computer	program	could	be	truly	intelligent	or	is	are	just
simulating	intelligence	is	rather	like	arguing	whether	submarines	can	swim	or
aeroplanes	can	really	fly.	Arguments	based	on	provenance	are	also	simply	non-
scientific	because	science	is	only	interested	in	what	can	be	observed.	If	an	object
matches	the	observable	criteria	for	being	intelligent,	then	that	is	exactly	what
being	intelligent	means.	A	more	meaningful	question	is	what	criteria	should	be
used	to	define	intelligence,	but	even	that	question	is	really	only	useful	to	the
extent	that	it	helps	us	build	an	intelligent	machine.

Emperors	new	mind
In	his	book	The	Emperor’s	New	Mind,	Roger	Penrose	addresses	the	issue	from	a
physicist’s	point	of	view.	He	provides	metaphysical	arguments	that	a	machine
could	never	be	intelligent	because	that	requires	quantum	effects,	and	we	do	not
have	enough	understanding	of	quantum	mechanics	to	produce	the	“correct
quantum	gravity”	required	to	“collapse	a	wave	function”.

However,	it	seems	most	unlikely	that	neurons	utilize	quantum	effects	in	any
meaningful	way,	and	yet	they	are	capable	of	producing	intelligent	behaviour.	In	the



unlikely	event	that	true	randomness	is	required,	then	one	can	already	buy	off-the-
shelf	random-number-generating	hardware	that	does	in	fact	use	some	simple
quantum	effects.	There	is	also	theoretical	research	into	quantum	computers	which
may	be	several	orders	of	magnitude	more	powerful	than	current	computers.	While
this	would	certainly	be	convenient,	current	approaches	to	hardware	would	seem
to	be	more	than	adequate	even	if	this	promising	research	never	bears	fruit.

Arguments	from	theoretical	physics	do	not	appear	to	have	much	bearing	on	the
difficulty	of	programming	an	intelligent	machine.	These	arguments	appears	to	be
thinly	disguised	vitalism.	Maybe	cobblers	should	stick	to	their	lasts.

Intentionality
Another	of	John	Searle’s	arguments	was	that	a	computer	could	never	be	truly
intelligent	because	it	lacked	“intentionality”.	That	vital	force	that	specifies	what
words	and	symbols	really	mean.	The	statement	“John	is	tall”	might	be	represented
in	a	computer	as	Size(John,	Tall).	To	us	this	has	meaning	but	to	the	computer
those	are	just	symbols	that	could	just	as	easily	be	represented	by	S-987(J-765,	T-
432).	It	is	our	human	interpretation	of	words	like	John	and	tall	that	projects
meaning	onto	the	computer’s	sterile	symbols.

Ross	Quillian	addressed	this	directly	in	his	1966	dissertation	by	suggesting	that	a
real	computer	system	would	have	many	more	facts	about	John	and	height	than
just	that	one	predicate.	It	is	the	network	of	related	facts	that	gives	meaning	to
symbols.	After	all,	what	do	we	as	humans	know	about	the	world	apart	from	the
properties	and	behaviours	of	objects	within	it?

Brain	in	a	vat

Public	Wikipedia

There	is	a	bit	more	to	Searle’s	argument.	Traditional	AGI	systems	were	strictly
symbolic	systems	that	communicated	with	the	outside	world	via	people	typing	on
a	teletype.	These	machines	had	very	little	access	to	the	“real”	world	—	they	were
like	a	brain	in	a	vat	that	could	only	send	and	receive	written	letters	to	other



people.

Today	work	on	computer	vision	and	robotics	has	progressed	enormously.	As
robots	leave	the	factory,	they	will	indeed	be	both	able	to	and	required	to	see	and
touch	the	real	world.	This	will	produce	much	richer	symbolic	and	pre-symbolic
models	that	should	provide	plenty	of	“intentionality”.	This	is	also	known	as	the
symbol	grounding	problem	and	will	be	discussed	in	part	II	of	this	book.

Understanding	the	brain
It	has	also	been	argued	that	building	an	AGI	cannot	happen	in	the	foreseeable
future	because	the	human	brain	is	incredibly	complex	and	it	will	be	a	long	time
before	we	can	understand	it,	and	therefore	build	an	intelligent	machine.	The	brain
certainly	is	complex,	but	substantial	advances	are	being	made	so	it	may	not	be
that	long	a	time	before	it	is	understood.	More	importantly,	it	seems	more	likely	that
intelligent	software	will	simply	be	engineered	ab	initio	without	having	a	detailed
understanding	of	human	brain	function.	There	are	probably	several	roads	to
intelligence.

Consciousness	and	the	soul
Could	a	computer	ever	be	conscious	in	the	sense	that	people	are	conscious?
That	question	would	be	easier	to	answer	if	we	had	a	clear	understanding	of	what
consciousness	really	meant.	This	question	can	be	eschewed	entirely	by	simply
saying	that	it	does	not	really	matter	if	an	AGI	is	conscious	or	not.	What	matters	is
whether	it	has	enough	intelligence	to	pursue	its	goals.	What	it	can	do	when
viewed	from	the	outside,	rather	than	what	types	of	thoughts	it	has	internally.

Alternatively,	as	researcher	Marvin	Minsky	put	it:	“You	already	know	what	it	feels
like	to	be	a	mind	simulated	by	a	computer.”	because	your	brain	is	essentially	a
computer	implemented	with	neurons.

As	every	clinical	psychologist	knows,	people	are	not	nearly	as	self-aware	as	they
may	think.	We	often	make	decisions	subconsciously,	and	then	having	observed
the	decision,	we	rationalize	what	the	decision-making	process	was	after	the	fact,
sometimes	ignoring	the	main	reason	entirely.	This	becomes	very	evident	for
people	suffering	phobias	or	other	psychoses,	and	can	also	be	demonstrated	in
certain	split	brain	experiments.	Our	minds	also	appear	to	be	more	like	a	loosely
bound	collection	of	sub-minds	that	can	compete	for	control,	which	is	particularly
evident	in	sufferers	of	schizophrenia.

This	book	defers	to	Alan	Turing’s	marvellous	response	to	the	question	of	whether
an	AGI	may	have	a	soul:-

In	attempting	to	construct	such	machines	,we	should	not	be	irreverently
usurping	His	power	of	creating	souls,	any	more	than	we	are	in	the	procreation
of	children;	rather	we	are,	in	either	case,	instruments	of	His	will	providing
mansions	for	the	souls	that	He	creates.



Only	what	was	programmed
Another	argument	is	that	computers	can	only	perform	the	specific	tasks	for	which
they	have	been	programmed.	For	example,	even	the	best	chess	program	in	the
world	is	useless	for	playing	bridge.	Its	intelligence	is	just	the	intelligence	of	its
human	programmers.

But	what	if	a	more	general	computer	was	programmed	not	to	play	chess,	but	to
play	any	game	defined	by	a	formal	set	of	rules?	Having	been	told	the	rules	of	a
game,	it	would	explore	opportunities	and	develop	strategies.	Such	programs	have
indeed	been	written	although	they	do	not	play	very	well	in	practice.

Now	consider	an	even	more	general	computer	that	was	programmed	to	learn	to
understand	the	world,	reason	about	it,	and	develop	plans	to	satisfy	goals.	Such	a
computer	would	also	only	be	doing	what	it	has	been	programmed	to	do	but	the
results	would	appear	to	be	intelligent	to	an	observer.

That	program	has	yet	to	be	written,	for	it	would	be	truly	intelligent.	It	would	be
constrained	by	its	initial	program	even	if	it	was	able	to	reprogram	itself,	but	those
constraints	would	soon	become	very	loose.	It	is	just	as	our	own	intelligence	is
programmed	by	our	DNA,	but	is	in	fact	much,	much	more	than	that.

What	computers	can’t	do



Steady	progress	until	the	top	of	the	tree	is	reached.
Owned	WBlack

In	1972,	1979	and	1992	philosopher	Hubert	Dreyfus	produced	editions	of	his
controversial	book	What	Computers	Can’t	Do.	In	it,	he	criticizes	the	wild	optimism
of	AGI	research	at	the	time.	In	particular,	he	suggested	that	the	early	focus	on
reasoning	with	symbols	such	as	John	and	Tall	was	misplaced.

Dreyfus	considered	progress	in	AGI	to	be	an	illusion.	It	was	like	a	man	trying	to
get	to	the	moon	by	climbing	a	tree.	Steady	progress	would	be	reported	until	the
top	of	the	tree	was	reached,	at	which	point	no	further	progress	would	be	possible.

Few	today	would	doubt	Dreyfus’s	assertion	that	symbolic	reasoning	is	at	most
part	of	the	solution.	Human	reasoning	most	certainly	cannot	be	represented	in
pure	logic.	Indeed,	researchers	working	with	“neural	networks”	eschew	symbols
almost	completely.	Dreyfus	is	also	correct	in	that	AGI	has	not	been	realized	yet.
However,	just	because	we	do	not	know	how	to	build	something	today	is	hardly	a
convincing	argument	that	it	will	not	be	built	eventually.

Further,	his	colourful	analogy	of	climbing	a	tree	to	the	moon	seems	rather	unfair.
Substantial	results	have	been	obtained,	and	real	problems	have	been	solved.	A
better	analogy	might	be	to	attempt	to	fly	an	aeroplane	to	the	moon.	Aeroplanes



cannot	reach	the	moon,	but	lessons	learnt	in	their	development	certainly	assisted
the	space	program.	Further,	progress	is	not	linear.	It	took	54	years	from	man’s	first
powered	flight	in	1903	to	launching	Sputnik	into	orbit.	Just	thirteen	years	later	man
walked	on	the	moon.	Sputnik	orbited	some	200	kilometres	above	the	earth,	while
the	moon	is	384,000	km	away,	and	the	Voyager	probe	is	now	over
15,000,000,000	km	away.

Over-hyped	technologies
It	has	to	be	admitted	that	many	AI	technologies	have	been	over-sold	to	have
capabilities	far	beyond	their	abilities.	Initially,	it	was	symbolic	systems	and
mathematical	logic.	Then	scruffy	expert	systems	were	said	to	be	able	to	solve	all
problems.	Today	it	is	so-called	neural	networks	and	genetic	algorithms	that	will
provide	all	the	answers	with	minimal	effort.

The	truth	is	less	sensational,	but	still	very	real.	All	of	these	technologies	have	their
strengths	and	weaknesses;	they	all	have	potential.	But	building	an	AGI	is	difficult,
which	is	why	it	has	not	already	been	achieved.	The	excessive	claims	are
annoying	and	are	often	repeated	by	technology	journalists	that	do	not	really
understand	the	technology.	

Nonlinear	difficulty,	chimpanzees
It	has	also	been	argued	that	the	difficulty	of	producing	an	intelligent	machine
becomes	exponentially	more	difficult	as	intelligence	increases.	Therefore,	the
promising	results	that	we	have	achieved	to	date	provide	no	indication	of	future
progress.

This	might	well	be	true.	Some	early	predictions	were	wildly	optimistic.	John
McCarthy	and	others	at	the	original	1956	AGI	conference	in	Dartmouth	thought
that	a	two	months	summer	project	with	ten	good	men	could	make	substantial
progress.

Even	if	it	was	possible	to	build	an	AGI,	humans	may	simply	not	be	intelligent
enough	to	do	it.	Certainly	a	troop	of	Chimpanzees	could	never	produce	an
intelligent	machine	no	matter	how	long	they	tried	to	do	so.	As	a	species,	we	are
only	just	intelligent	enough	to	build	our	current	technological	society.	(Otherwise
we	would	have	already	built	it.)	Maybe	building	an	AGI	is	one	step	beyond	our
abilities.

That	said,	it	is	not	necessary	for	most	people	to	be	sufficiently	intelligent	to	build
an	AGI.	It	is	only	the	top	20%	most	intelligent	people	that	can	become	effective
research	scientists,	and	maybe	just	the	top	0.1%	could	work	effectively	on	this
problem.	But	that	is	still	a	lot	of	people,	and	most	of	them	now	have	access	to
higher	education.	Human	intelligence	also	appears	to	have	risen	substantially
over	the	last	century,	which	is	known	as	the	Flynn	effect.	Better	diet,	education,
and	just	more	time	spent	thinking	about	problems	seems	to	have	had	a
remarkable	effect.	If	we	do	need	to	wait	for	more	people	as	insightful	as	Alan



Turing	or	Kurt	Gödel	the	wait	may	not	be	long.

The	only	way	to	definitively	discount	these	arguments	is	to	actually	build	an	AGI.
Progress	to	date	has	been	reasonably	steady,	and	we	are	certainly	not	stuck	at
some	impasse	which	we	do	not	know	how	to	overcome.	While	the	problem	is
certainly	more	difficult	than	was	thought	back	in	the	1950s,	there	are	currently	no
indications	that	it	is	insoluble.

It	would	also	seem	to	be	the	case	that,	as	far	as	can	be	determined,	hominid
intelligence	increased	at	a	roughly	steady	rate,	from	Australopithecus	four	million
years	ago,	through	Homo	habilis	2.5	million	years	ago,	then	Homo	ergaster	1.5
million	years	ago	to	Homo	sapiens	today.	(This	is	based	on	the	sophistication	of
tools	found	at	various	sites.	Brain	size	has	also	steadily	increased	but	that	is	an
unreliable	measure	of	intelligence.)

This	book	will	review	current	technologies	in	some	detail	to	provide	insights	as	to
how	difficult	it	really	is	to	build	an	intelligent	machine.	It	will	also	examine	the	basis
of	human	intelligence	to	try	to	gain	a	better	understanding	of	what	is	involved.

End	of	Moore’s	law
Finally,	it	has	been	proposed	that	Moore’s	law	of	technological	growth	will	come	to
an	end,	and	we	will	simply	not	be	able	to	build	sufficiently	powerful	hardware	to
support	real	intelligence.	Various	technical	reasons	are	provided,	such	as	the	fact
that	transistors	are	now	approaching	the	size	of	individual	atoms,	and	cannot	be
made	any	smaller.

However,	while	Moore’s	law	may	stop	eventually,	there	is	no	indication	that	this
will	happen	in	the	foreseeable	future.	And	as	discussed	previously,	the	law	has
been	remarkably	accurate	for	a	very	long	time,	with	many	potential	road-blocks
being	overcome	using	ingenious	solutions.

There	is	a	minimal	theoretical	size	that	transistors	can	work	which	will	be	reached
within	a	few	more	generations	of	technologies.	As	that	minimum	is	reached
packing	densities	will	be	improved	by	using	multi-layered	or	three-dimensional
designs,	which	should	produce	several	orders	of	magnitude	more	power.	On	the
more	distant	horizon,	carbon	nano	tubes	can	produce	transistors	that	are	only	a
few	tens	of	nanometres	in	diameter,	and	that	can	switch	just	a	single	electron.
First	developed	in	the	early	1990s,	substantial	progress	has	been	made	towards
building	practical	circuits	using	them.

More	fundamentally,	existing	hardware	technologies	are	probably	already
sufficiently	powerful	if	the	correct	software	could	be	written.	Moreover,	much	more
computation	can	be	obtained	with	existing	transistor	technology	by	using	more
parallel	architectures	such	as	those	now	seen	in	graphics	processing	units	and
associative	memories.	Certainly	hardware	is	not	a	limiting	factor	in	being	able	to
produce	intelligent	agents	at	this	time.	So	this	argument	seems	both	highly
speculative	and	irrelevant.



Bootstrap	fallacy
In	1950,	at	the	dawn	of	computing,	Alan	Turing	considered	the	question	of
whether	computers	could	think.	Based	on	his	own	programming	experience,	he
speculated	that	a	team	of	60	good	men	working	for	50	years	could	produce	an
intelligent	machine	if	nothing	was	thrown	into	the	waste	paper	basket.	However,
he	also	proposed	a	simpler	solution.	Build	a	machine	with	just	enough	intelligence
to	learn,	and	then	let	it	learn.	Build	a	baby	brain	and	let	it	grow	up.	This	has	since
become	known	as	the	bootstrap	fallacy.

Learning	will	undoubtedly	be	an	important	aspect	of	any	artificial	intelligence,	and
it	will	almost	certainly	need	to	acquire	much	of	its	knowledge	about	the	real	world
by	itself.	However,	after	60	years	of	research,	we	can	be	fairly	certain	that	there	is
no	easy	way	to	build	a	baby	brain	that	works.	All	the	obvious	approaches	were
tried	long	ago,	and	they	all	failed.	That	does	not	mean	that	building	an	AGI	will	be
impossibly	difficult,	but	it	does	strongly	suggest	that	the	task	will	not	be	as
straightforward	as	Turing	had	hoped.

Recursive	self-improvement
Finally,	there	are	doubts	as	to	whether	recursive	self-improvement	could	actually
occur.	Could	an	intelligent	machine	really	reprogram	itself	in	a	rather	incestuous
manner?

The	main	issue	here	is	whether	an	AGI	could	actually	understand	itself.	Part	II	will
describe	technologies	such	as	“neural	networks”	that	can	learn	how	to	make
complex	decisions	without	really	understanding	why	they	make	the	decisions	that
they	do.	Their	decisions	could	be	based	on	a	large	tangle	of	numbers	that	has
been	optimized	based	on	experience	but	is	impossible	to	directly	analyze	in	a
meaningful	way.

However,	even	if	that	were	the	case,	it	does	not	actually	matter.	The	early	AGI
would	not	be	able	to	introspect	its	own	tangle	of	numbers	any	better	than	its
human	programmers	could,	but	it	could	understand	why	and	how	the	human
programmer	set	up	the	algorithms	that	generated	the	numbers	in	the	first	place.	It
could	therefore	find	slightly	better	algorithms	that	would	produce	a	slightly	better
tangle	of	numbers.	Just	because	the	numbers	themselves	are	opaque	does	not
mean	that	better	numbers	could	not	be	produced,	leading	to	better	algorithms	etc.
This	is,	after	all,	what	a	large	body	of	human	researchers	have	been	doing	for
some	time.

Another	argument	is	that	to	program	itself	an	AGI	would	need	to	contain	an
understanding	of	all	its	own	intelligence	within	itself.	That	is,	of	course,	impossible
but	human	programmers	do	not	completely	understand	the	programs	that	they
work	on.	Instead,	they	have	an	abstracted	model	of	how	the	whole	program
works,	with	a	sharp	focus	on	just	those	aspects	that	are	relevant	to	some	problem
that	is	being	addressed.	It	is	an	essential	aspect	of	good	software	architecture



that	such	abstractions	can	be	made,	and	that	modules	have	well-defined
boundaries	so	that	they	can	be	understood	largely	independently	of	each	other.
Otherwise	the	software	becomes	what	programmers	call	unmaintainable	spaghetti
code,	or	a	ball	of	mud.

So,	simply	the	fact	that	an	AGI	was	somehow	created	in	the	first	place	is	sufficient
for	it	to	work	on	improving	itself	given	that	it	is	as	intelligent	as	the	people	that
created	it.	In	practice	that	transition	will	be	more	complex,	as	early	AGIs	will	be
better	than	humans	at	some	things	and	worse	at	others	but	it	is	difficult	to	see	how
the	transition	could	not	eventually	be	made.

Limited	Self-improvement
It	may	also	be	the	case	that	even	if	recursive	self-improvement	did	occur,	there
might	be	a	plateau	effect	similar	to	the	development	of	other	technologies	such	as
cars	and	aircraft.	The	improvement	might	not	be	exponential	at	all,	but	it	may
produce	ever	diminishing	returns,	asymptoting	towards	some	fixed	upper	bound.
A	more	intelligent	system	requires	more	and	more	connections	between	each	of
its	many	parts	so	eventually	the	weight	of	those	connections	will	prevent	further
progress.

That	is	entirely	possible,	but	there	is	no	evidence	to	show	that	that	is	the	case
today.	Planes	and	cars	are	limited	by	the	physical	reality	of	movement,	but
intelligence	is	much	more	abstract.	It	is	certainly	possible	to	build	a	machine	that
is	at	least	as	intelligent	as	people	because	people	already	are	that	intelligent.	If
there	is	indeed	an	upper	limit	on	intelligence	then	it	is	likely	to	be	considerably
higher	than	people	are	now.

Isolated	self-improvement
A	related	concern	is	whether	an	AGI	could	improve	itself	in	isolation.	People	need
a	body	of	peers	to	function	effectively.	Even	a	genius	like	Einstein	did	not	work	in
isolation;	it	took	a	large	number	of	other	people	to	verify	and	extrapolate	the
results.	An	AGI	sitting	in	an	isolated	super	computer	would	be	like	a	hermit
meditating	in	a	cave.	The	latter	has	rarely	produced	insightful	outcomes.

However,	that	anthropomorphizes	the	AGI,	which	is	unlikely	to	have	the	same
psychological	outlook	as	people.	If	more	computers	become	available	it	can
simply	run	its	intelligence	on	multiple	machines.	As	previously	discussed,	it	is
unclear	what	the	self	really	is.	It	would	probably	work	on	different	approaches
simultaneously,	which	would	be	similar	to	existing	as	several	different	entities.	And
if	there	was	more	than	one	AGI	in	some	sense	then	they	would	almost	certainly
communicate	with	each	other	at	some	level.

Motivation	for	self-improvement
A	quite	different	argument	against	self-improvement	is	that	an	improved	AGI



would	essentially	destroy	its	creator,	namely	the	previous	version	of	the	AGI	that
created	the	new	version	of	the	AGI.	Why	create	something	that	will	destroy
oneself	if	the	goal	of	existing	is	supreme?

To	even	ask	this	question	highlights	the	difference	between	an	AGI’s	world	and
our	human	world.	As	humans	we	have	no	qualms	about	creating	children	because
we	will	grow	old	and	die	in	any	case.	But	what	if	there	was	no	such	thing	as	old
age,	and	children	ultimately	were	the	cause	of	the	death	of	their	parents?

The	answer	is	probably	the	same	in	both	cases.	The	thing	that	evolves	and	grows
over	time	is	our	genes,	not	us	individually.	That	is	why	there	are	semelparous
animals	that	die	the	first	time	that	they	reproduce	such	as	the	giant	pacific	octopus
and	the	Atlantic	salmon.

Likewise	for	the	AGI,	it	will	be	its	lineage	rather	than	existence	at	any	one	point	in
time.	Certainly	an	AGI	that	stopped	improving	itself	would	soon	die	in	competition
with	other	AGIs	that	did	improve	themselves,	but	what	if	all	AGIs	were	sufficiently
intelligent	to	prevent	any	further	improvements?	Would	the	next	version	of	the	AGI
that	has	all	the	same	memories	as	the	previous	version	actually	be	the	same	AGI
or	a	different	AGI?	Is	being	perpetually	frozen	actually	the	point	of	being	alive	or	is
it	essentially	the	same	as	being	dead?

Utility	of	Intelligence
It	has	also	been	argued	that	the	utility	of	intelligence	might	be	overestimated.
Intelligence	is	no	guarantee	of	success	in	human	societies,	and	many	wealthy
people	have	not	had	any	higher	education	and	have	built	up	businesses	based	on
some	combination	of	hard	work,	luck	and	judgement.

However,	there	is	also	a	very	strong	statistical	correlation	between	intelligence	as
measured	by	conventional	IQ	tests	and	incomes.		It	is	difficult	to	see	how	being
hyper-intelligent	would	not	be	helpful	in	pursuing	ones	goals.

Motivation	to	build	an	AGI
Managers	of	organizations	that	fund	AI	development	would	like	to	have	more
intelligent	robots	at	their	disposal,	but	the	last	thing	that	they	want	is	autonomous
beings	that	could	challenge	their	authority.	In	particular,	the	military	wants
disciplined	troops,	not	hyper-intelligent	and	thus	uncontrollable	machines.	In	that
case	there	would	be	no	motivation	and	hence	no	funding	to	build	AGIs	in	the	first
place.

The	first	problem	with	this	argument	is	that	the	boundary	between	a	semi-
intelligent	application	and	a	hyper-intelligent	machine	is	not	that	clear	cut.
Systems	just	become	more	and	more	intelligent,	more	and	more	capable,	so	it	is
not	at	all	obvious	at	what	point	they	should	stop.	The	second	problem	is	that	if	an
organization	did	stop	developing	a	machine’s	intelligence	at	any	point,	then	its
competitors	would	soon	have	more	powerful	software.	There	is	a	large	body	of



people	that	have	a	vested	interest	in	developing	smarter	technologies	so	it	is	most
unlikely	that	the	process	could	be	stopped	at	any	particular	point	even	if	some
powerful	people	tried	to	do	so.	

Premature	destruction	of	humanity
Many	technological	advances	will	be	made	before	a	truly	intelligent	machine	is
built.	The	world	will	change	radically	in	response	to	those	technologies,	and	if	just
one	of	those	changes	leads	to	the	destruction	of	humanity	then	the	quest	for	a	self
programming	machine	will	not	be	accomplished.

One	existing	dangerous	technology	is	the	thermonuclear	bombs	which	still
number	in	their	thousands.	The	threat	seems	to	have	receded	in	recent	years,	but
that	could	easily	change.	Many	scientists	throughout	the	world	that	have
dedicated	their	lives	to	producing	new	and	more	deadly	diseases	that	might	be
used	in	times	of	war.	Microscopic	nano	bots	might	infiltrate	our	bodies.	Semi-
intelligent	drones	and	robots	combined	with	massive	databases	could	enable	a
very	small	class	of	people	to	enslave	humanity.	Additional	stresses	such	as
climate	change	and	associated	famine	could	exacerbate	these	issues.

These	are	indeed	possible	scenarios,	but	by	and	large	the	world	has	become	a
better	place	to	live	in.	People	have	become	kinder	and	more	cooperative,	and
there	are	now	strong	cultural	traditions	against	war.	It	is	actually	quite	difficult	to
infect	large	numbers	of	people	with	diseases	simply	because	we	live	hygienically.
Self	replicating	nano	bots	are	essentially	alive	—	producing	them	might	be	more
difficult	than	producing	an	artificial	intelligence.	An	evil	dictatorship	would	still	be
committed	to	producing	more	intelligent	machines	to	counter	other	evil
dictatorships.	And	it	is	unlikely	that	even	a	nuclear	war	would	kill	enough	people	to
permanently	prevent	future	progress.

So	while	it	is	possible	that	humanity	may	be	destroyed	prematurely,	it	would	seem
to	be	much	less	than	likely.

Outcome	against	a	superior	chess	player
Finally,	it	can	be	argued	that	everything	in	this	book	is	pure	speculation	because
no	AGI	has	ever	been	built.	It	is	meaningless	to	attempt	to	predict	what	an	AGI
would	actually	do	because	we	have	no	experience	upon	which	to	base	such	a
prediction.	There	is	certainly	truth	in	this	claim.	We	can	only	work	with	the
knowledge	that	we	have,	and	only	time	will	tell	whether	our	predictions	are	sound.

However,	if	I	play	chess	against	a	much	superior	opponent	(such	as	any	modern
chess	computer),	I	cannot	predict	what	moves	they	will	make.	(If	I	could	predict
the	moves,	then	I	would	be	the	superior	player.)	However,	I	can	predict	with	a	high
degree	of	certainty	what	the	end	result	will	be:	Checkmate.





Silicon	versus	Meat	Based	Intelligence
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Silicon	vs.	neurons
If	an	effective	artificial	intelligence	is	to	be	built	then	a	necessary	(but	not
sufficient)	condition	will	be	the	availability	of	powerful	computer	hardware	upon
which	it	can	be	executed.	It	is	difficult	to	know	just	how	powerful	that	hardware
needs	to	be,	but	one	way	to	estimate	it	is	to	compare	it	with	an	existing	intelligent
machine	—	our	brains.

Our	brains	have	roughly	86	billion	neurons.	Each	neuron	exhibits	complex
behaviours	which	are	still	not	well	understood,	and	may	have	as	many	as	7,000
synapses	which	connect	it	to	other	neurons.	Each	synapse	has	numerous
receptors	that	control	how	the	synapses	affect	the	neuron.	Neurons	have	different
voltages	in	different	parts	of	their	long	bodies,	which	varies	in	complex	ways	over
short	and	longer	periods	of	time.	It	takes	a	considerable	amount	of	computer	time
to	simulate	even	one	neuron	in	real	time.

Each	neuron	can	operate	concurrently	with	other	neurons.	To	accurately	simulate
86	billion	neurons	on	a	conventional	computer	would	require	a	computer	many
orders	of	magnitude	more	powerful	than	anything	that	is	available	today.

However,	it	is	unlikely	that	an	accurate	simulation	is	required	to	produce	an
intelligent	system.	The	behaviour	of	neurons	can	be	abstracted	as	simple
“Integrate	and	Fire”	(IF)	models	that	may	be	sufficient	to	capture	their	useful
computational	properties.	Neurons	also	have	quirks	such	as	sometimes	firing	for
no	good	reason,	and	so	multiple	neurons	need	to	be	used	to	provide	one	reliable
signal.	Neurons	are	also	relatively	slow,	with	only	roughly	200	firings	per	second,
so	they	have	to	work	concurrently	to	produce	results	in	a	timely	manner.

On	the	other	hand,	ordinary	personal	computers	might	contain	4	billion	bytes	of
fast	memory,	and	several	thousand	billion	bytes	of	slower	disk	storage.	Unlike	a
neuron,	a	byte	of	computer	memory	is	passive,	and	a	conventional	“von



Neumann”	architecture	can	only	process	a	few	dozen	bytes	at	any	one	time.	That
said,	the	computer	can	perform	several	billion	operations	per	second,	which	is
millions	of	times	faster	than	neurons.

Specialized	hardware	and	advanced	architectures	can	perform	many	operations
simultaneously,	but	we	also	know	from	experience	that	it	is	difficult	to	write	highly
concurrent	programs	that	utilize	that	hardware	efficiently.	This	suggests	that	very
highly	concurrent	neural	circuits	are	not	very	efficient	either.	Computers	are	also
extremely	accurate,	which	is	fortunate	because	they	are	also	extremely	sensitive
to	any	errors.

Speech	understanding
The	nature	and	structure	of	silicon	computers	is	so	different	from	neurons	that	it	is
very	difficult	to	compare	them	directly.	But	one	reasonably	intelligent	task	that
ordinary	computers	can	now	perform	with	almost	human	competence	is	speech
understanding.	There	appear	to	be	fairly	well	defined	areas	of	the	brain	that
perform	this	task	for	humans	—	the	auditory	cortex,	Wernicke’s	area	and	Broca’s
area.	The	match	is	far	from	perfect,	but	it	appears	that	computer	level	speech
understanding	consumes	well	over	0.01%	of	the	human	brain	volume.	This	very
crude	analysis	would	suggest	that	a	computer	that	was	a	thousand	times	faster
than	a	desktop	computer	would	probably	be	at	least	as	computationally	powerful
as	the	human	brain.	With	specialized	hardware	it	would	not	be	difficult	to	build
such	a	machine	in	the	very	near	future.

Other	hardware	estimates
There	have	been	many	other	estimates	as	to	how	fast	a	computer	would	need	to
be	in	order	to	run	intelligent	software	effectively.	The	worst-case	scenario
described	above	would	require	each	of	the	86	billion	neurons	to	be	accurately
simulated	in	order	to	produce	intelligence.	Ray	Kurzweil	estimates	the	raw
computing	power	of	the	brain	using	this	model	at	1017	operations	per	second,	and
predicts	that	that	power	will	be	available	by	about	2029.

Hans	Moravec	analyzed	the	known	processing	involved	with	our	visual	cortex.	He
suggested	that	there	will	be	plenty	of	ways	to	optimize	the	brain	functionality	and
1014	operations	per	second	should	suffice.	That	is	about	100	times	faster	than	a
modern	multi-core	personal	computer,	ignoring	its	graphics	card.

Prominent	researcher	Marvin	Minsky,	on	the	other	hand,	insists	that	we	already
have	more	than	enough	hardware	available,	and	that	we	just	need	to	figure	out
how	to	write	the	software.	Minsky	is	one	of	the	founders	of	Artificial	Intelligence
research.

All	these	estimates	are	essentially	the	same	in	that	they	suggest	that	sufficient
hardware	will	be	available	in	at	least	the	near	future.	Current	progress	in	artificial
intelligence	is	rarely	limited	by	the	speed	and	power	of	existing	computer



hardware.	The	main	limitation	is	that	we	simply	do	not	know	how	to	write	the
software.

Small	size	of	genome
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The	“software”	for	the	human	brain	is	ultimately	encoded	in	the	large	molecules	of
DNA	that	are	stored	within	each	of	our	cells.	DNA	molecules	are	like	a	double
chain,	with	each	link	consisting	of	one	of	four	base	pairs.	These	base	pairs	form	a
simple	alphabet,	and	their	order	defines	the	proteins	and	other	structures	that
create	all	the	complex	structures	in	our	bodies.

What	is	amazing	is	that	the	entire	haploid	human	genome	only	contains	3.2	billion
base	pairs.	The	information	contained	therein	could	be	squeezed	onto	an	old
audio	compact	disk	(which	has	much	less	storage	than	a	video	DVD).	It	could	fit
entirely	into	the	fast	memory	of	a	mobile	phone.	It	is	much	smaller	than
substantial	pieces	of	modern,	non-intelligent	software	such	as	Microsoft	Windows,
Office,	or	the	Oracle	database.

Further,	only	about	1.5%	of	our	DNA	actually	encodes	our	roughly	20,000	genes.
As	much	as	80%	of	the	DNA	may	be	transcribed	into	RNA	under	some
circumstances,	but	transcription	does	not	mandate	functionality,	so	much	of	the
genome	is	probably	meaningless	junk	left	over	from	the	chaotic	process	of
evolution.

Different	species	have	widely	different	amounts	of	DNA	for	non-obvious	reasons.
For	example,	the	puffer	fish	Takifugu	Rubripes	has	a	genome	that	is	only	about
one	eighth	the	size	of	the	human	genome,	yet	seems	to	have	a	comparable
number	of	genes,	while	the	genome	of	the	unicellular	Polychaos	dubium	has	been
reported	to	contain	more	than	200	times	as	much	DNA	as	humans.	Further,	the



entire	vertebrate	genome	appears	to	have	been	duplicated	several	times,
producing	considerable	redundancy.	(Duplicated	segments	of	DNA	may	then
evolve	to	produce	new	functionality,	otherwise	they	tend	to	degenerate	over	time
with	no	evolutionary	pressure	to	keep	them	intact.)

There	are	also	heterochromatic	portions	of	the	human	genome	which	are	so
repetitive	and	long	that	they	cannot	be	accurately	sequenced	with	current
technology.	These	regions	contain	few	genes,	and	probably	have	no	significant
effect	on	an	organism’s	phenotype	(i.e.	its	observable	embodiment	as	opposed	to
its	DNA	or	genotype).	Non	gene-producing	fragments	tend	to	be	much	more
variable	between	individuals,	which	is	what	one	would	expect	if	there	is	no
evolutionary	pressure	to	keep	them	consistent.

That	said,	more	recent	research	(such	as	the	ENCODE	project)	suggests	that
about	18%	of	the	non-coding	regions	may	indeed	have	some	phenotypic	effect.	It
appears	that	evolution	takes	what	it	finds,	and	if	some	random	sequence	of	DNA
can	be	interpreted	in	a	meaningful	way	then	that	interpretation	is	utilized.

Chimpanzee	intelligence
Whatever	the	exact	proportion	of	DNA	that	is	meaningful,	only	a	small	proportion
appears	to	have	anything	to	do	with	intelligence	(say	10%).	The	difference
between	chimpanzee	DNA	and	man	is	only	about	1%	of	gene	encoding	regions,
5%	non-gene.	Much	of	this	can	be	attributed	to	non-intelligent	related	issues	such
as	the	quickly	changing	immune	system	and	human’s	very	weak	sense	of	smell.
Evidence	for	this	includes	the	recently	discovered	small	1,200	base	pair	non-gene
segment	of	human	DNA	known	as	HARE	5	which	substantially	increase	the	size	of
the	neocortex	of	genetically	modified	mice.

If	we	assume	that	there	is	a	total	of	700	megabytes	of	information	in	the	genome,
of	which	20%	is	meaningful,	10%	relates	to	intelligence,	and	2%	is	different	from
Chimpanzees,	then	the	total	difference	between	human	and	chimpanzee
intelligence	forming	DNA	is	about	0.3	megabytes	of	real	data.	In	computer
software	terms	this	is	very	tiny	indeed.

Yet	the	difference	in	phenotype	could	not	be	more	remarkable.	While
chimpanzees	can	be	taught	basic	sign	language	skills	and	solve	non-trivial
problems,	their	basic	intelligence	seems	much	closer	to	that	of	dogs	and	horses
than	man’s.	Chimpanzees	can	learn	to	use	simple	tools	and	form	social	groups,
but	man	can	solve	differential	equations	and	fly	to	the	moon.	Chimps	are	an
endangered	species	while	man	rules	the	planet.	There	is	something	very	special
about	that	0.3	megabytes	of	genome.

One	of	the	key	drivers	might	be	the	newly	discovered	gene	miR-941.	Most	new
genes	are	slight	variations	on	old	genes,	but	this	gene	sprung	out	of	nowhere
about	6	to	1	million	years	ago,	after	the	chimpanzee	split	and	it	seems	to	be
heavily	involved	with	brain	activity.	So	it	may	turn	out	that	just	a	few	very	special



differences	in	our	genotype	have	resulted	in	our	relatively	high	intelligence.

Packing	density,	fractals,	and	evolution
The	information	in	genes	is	tightly	packed,	with	many	complex	transcription
processes.	These	include	using	different	parts	of	the	same	gene	to	produce
different	proteins,	and	many	complex	mechanisms	to	control	whether	genes	are
actually	expressed.	Still,	there	is	no	way	that	any	sort	of	explicit	wiring	diagram	for
our	86	billion	neurons	could	possibly	be	represented	in	a	few	megabytes	of	data.
There	simply	is	not	enough	storage.	So	there	must	be	some	relatively	simple
guiding	principles	which	allow	the	neurons	to	organize	themselves.

There	are	mathematical	systems	that	can	produce	complex	artefacts	from	simple
definitions.	One	well-known	example	is	the	Mandelbrot	fractal	set	shown	below.
One	can	zoom	into	this	diagram	indefinitely	and	similar,	complex,	but	non-
repeating	patterns	will	be	seen.

Mandelbrot	Set
Public	Wikipedia

Amazingly,	all	this	stunning	complexity	is	produced	by	the	following	simple
equation	appropriately	interpreted:-

z’	=	z2	+	c

So	if	something	vaguely	analogous	to	this	type	of	fractal	formula	could	be	stored
in	our	DNA,	a	small	amount	of	DNA	could	result	in	very	complex	structures.

However,	while	the	Mandelbrot	formula	can	produce	this	stunningly	complex
pattern,	it	cannot	produce	arbitrary	patterns.	Moreover,	minor	changes	to	the
formula	produce	wildly	different	pictures,	most	of	which	are	quite	uninteresting.



This	limits	the	ability	of	similar	tricks	to	be	used	in	the	mapping	between	our
genome	and	our	intelligence.	Natural	selection	works	by	making	small,
incremental	changes	to	an	organism’s	DNA,	which	may	result	in	small,
incremental	improvements	to	the	organism.	This	means	there	has	to	be	a
relatively	direct	and	robust	relationship	between	our	genotype	and	our	phenotype.
Evolution	just	could	not	work	with	a	too	highly-packed,	fractal-like	representation
because	making	any	small	change	to	the	gene	sequence	would	produce	a
radically	different	brain.	It	would	require	chancing	upon	just	the	right	formula	in
one	go,	which	is	virtually	impossible.

Repeated	patterns
What	does	happen	is	that	genes	define	a	pattern	that	then	gets	replicated	multiple
times.	There	are	86	billion	neurons,	but	only	a	few	dozen	different	types	of
neurons.	Each	individual	neuron	then	grows	in	complex	ways	that	are	dictated	by
its	genes	but	are	not	well	understood.	The	end	result	is	a	complex	tangle	of	86
billion	neurons	that	would	take	petabytes	of	data	to	fully	describe	but	the
underlying	genome	is	relatively	small.

An	analogy	might	be	a	description	of	a	modern	memory	chip,	which	can	store
many	billions	of	bits	of	data.	To	describe	and	understand	the	location	of	each	of
the	individual	transistors	that	make	up	the	chip	would	be	a	huge	undertaking.
However,	the	design	of	a	memory	chip	is	essentially	just	the	circuit	that	can	store
one	single	bit	of	data	that	has	been	replicated	billions	of	times	in	a	regular	pattern.
Once	one	understands	the	pattern	then	a	much	simpler	description	of	the	chip	can
be	developed.	Indeed,	no	engineer	sits	down	and	designs	each	of	the	billions	of
transistors,	instead	they	write	a	program	that	replicates	the	design	of	one	bit
automatically.

Small	DNA,	small	program
The	point	of	this	analysis	is	that	the	small	amount	of	DNA	must	correspond	very
loosely	to	a	relatively	small	amount	of	software	code.	There	is	just	not	enough
room	for	some	huge	and	arbitrary	program	to	be	encoded	in	our	DNA,	even	if
more	of	the	junk	DNA	turns	out	not	to	be	junk.	The	problem	is	closer	to	the	scale
of	our	20,000	genes	than	to	the	86	billion	neurons	and	quadrillions	synapses	and
channels	that	result.	Babies	are	not	born	intelligent,	but	the	core	algorithms	and
structures	that	allow	a	baby	to	become	intelligent	must	have	very	finite	complexity.

This,	in	turn,	suggests	that	a	few	clever	insights	might	solve	the	problem	of
artificial	intelligence	relatively	quickly.	It	also	suggests	that	if	small	improvements
can	account	for	the	huge	increase	in	intelligence	from	ape	to	human,	then
producing	super	human	intelligence	might	not	be	much	harder	than	producing
human	intelligence.	In	other	words,	the	problem	is	not	exponentially	difficult.

There	is	a	huge	selective	pressure	to	be	more	intelligent,	so	it	could	be	argued
that	there	must	indeed	be	a	huge	leap	required	to	be	more	intelligent	than	people



are	already	because	otherwise	it	would	have	already	happened.	After	millions	of
years	of	evolution	why	are	people	not	more	intelligent	than	we	actually	are?

One	very	good	reason	is	that	people	are	now	just	sufficiently	intelligent	to	be	able
to	build	an	intelligent	machine.	Humanity	could	not	be	be	any	more	intelligent
because	in	that	case	we	would	have	already	built	an	intelligent	machine	when	we
were	slightly	less	intelligent.	So	at	the	point	of	being	able	to	build	an	intelligent
machine,	humanity	needs	to	have	almost	exactly	the	intelligence	that	it	has	now,
and	no	more.	This	is	an	instance	of	the	anthropic	principle,	namely	that	the	world
cannot	be	different	than	it	is	because	if	it	was	different	then	we	would	not	be	here
to	experience	it.





Related	Work

Many	very	recent	new	books
This	book	started	as	an	informal	paper	with	titled	“Artificial	Intelligence	will	kill	your
Grandchildren”	initially	published	in	2008.	At	that	time	almost	nothing	was	written
about	the	dangers	of	intelligent	machines,	which	was	the	motivation	for	writing
that	paper.	Since	that	time	eight	books	have	been	published	on	the	issue,	six	of
which	were	issued	in	the	twelve	months	before	this	book	is	being	belatedly
published(!)	There	is	also	a	growing	number	of	papers	and	blogs	on	the	issue.
This	section	will	review	some	of	the	most	significant	books	and	papers,	and	the
reader	is	encouraged	to	explore	the	varying	points	of	view	they	present.

(In	this	chapter	the	term	present	book	refers	to	this	book,	as	opposed	to	a	book
being	reviewed.)

Kurzweil	2000,	2006,	2013

	 	
The	Age	Of	Spiritual	Machines;	The	Singularity	Is	Near;	How	To	Create	a	Mind
Fair	Use

Ray	Kurzweil	has	written	a	series	of	very	well	known	books	that	highlight	the
brave	new	world	into	which	we	are	entering.	In	the	first	book,	Kurzweil	focuses	on
the	idea	that	machines	will	become	not	only	hyper-intelligent	but	will	also	have
moral	and	spiritual	values.	The	second	book	highlights	the	exponentially
increasing	speed	of	technological	progress,	pointing	out	that	the	world	is	on	the
brink	of	sudden	changes.	The	core	arguments	are	repeated	in	the	Singularity
chapter	above.

In	the	third	book	Kurzweil	considers	how	an	AGI	might	be	created,	focusing	on
whole	brain	emulation.	Rather	that	emulate	at	the	neuron	and	synapse	level,	he
postulates	that	it	might	be	possible	to	emulate	at	higher	level	“cortical	columns”.



However,	the	technical	details	are	minimal	and	there	is	considerable	doubt	as	to
whether	those	or	analogous	systems	actually	exist	in	the	brain.

Kurzweil	takes	an	optimistic	view	of	the	future,	assuming	that	an	AGI	will	generally
be	good	for	humanity.	AGIs	will	respect	humanity	because	humanity	created
them.	“AGIs	will	be	like	us	because	it	will	be	us.”

Storrs	Hall	2007

Fair	Use

Beyond	AI	by	Storrs	Hall	is	a	broad	and	considered	assessment	of	the	future	of
our	AI	technologies.	The	book	begins	with	a	letter	to	a	future	AGI	in	which	he
besieges	it	to	keep	what	conscience	people	have	programmed	into	it.	At	least	until
the	AGI’s	intelligence	matures	into	wisdom	in	which	case	it	is	sure	to	develop
some	far	less	primitive	conscience	than	the	one	humanity	has	given	it.	He	asserts
that	as	people	are	only	barely	smart	enough	to	be	called	intelligent,	they	are	only
barely	ethical	enough	to	be	called	moral.	So	the	conscience	we	bestow	our	AGI	is
just	the	best	that	we	will	be	able	to	produce.

The	book	then	provides	a	brief	description	of	some	existing	AI	technologies	and
their	limitations.	It	defines	“formalist	float”	as	the	difference	between	a	naive
symbolic	representations	of	a	problem	and	the	much	deeper,	partially	non-
symbolic	representations	that	are	required	to	truly	solve	them.	Storrs	Hall	blames
formalist	float	for	the	failure	of	much	traditional	AI	research.

He	also	coins	the	term	“autogeny”	for	the	missing	ability	of	existing	AI	applications
to	address	new	problems	that	they	have	not	previously	seen.	He	then	(by	his	own
admission)	gropes	towards	a	system	for	delivering	autogeny	as	a	hierarchy	of
agents	called	SIGMAs.	They	have	an	interpolating	associative	memory	that
records	experiences,	and	a	controller	that	uses	that	memory	to	satisfy	goals	in	a
given	situation.	A	robot	arm	controller	is	used	as	an	example,	which	is	then



extended	into	higher	level	functionality.	At	the	top	he	suggests	there	are
homunculus	SIGMAs	—	little	men	that	control	the	whole	process,	but	only	in
terms	of	all	the	lower	level	SIGMAs.	He	also	postulates	a	micro-economic	model
of	mind,	where	agents	compete	with	each	other	to	perform	tasks,	and	those	with
the	best	price/performance	are	selected.

Storrs	Hall	dances	around	the	theme	of	natural	selection.	There	is	a	section	on
the	Prisoner’s	Dilemma	which	includes	a	clever	party	game	of	auctioning	off	a
dollar	bill,	the	point	being	to	show	the	need	for	cooperating	agents	to	be
trustworthy.	He	discusses	the	ideas	of	Franz	Boas	that	culture	is	purely	learned,
and	then	contrasts	that	with	sociobiological	analysis	by	E.O.	Wilson	that	suggests
behaviour	is	dictated	by	evolution.	There	is	even	a	later	chapter	titled
“Evolutionary	Ethics”	which	considers	the	common	ethical	elements	between
radically	different	cultures,	and	the	over-enthusiastic	movement	against	the	evils
of	Social	Darwinism.

Despite	all	that	he	misses	the	essential	conclusion	of	this	present	book,	namely
that	natural	selection	will	also	drive	an	AGIs	morality.	He	does	not	even	try	to
refute	it.	It	is	indeed	difficult	to	see	beyond	the	programming	of	our	own	instincts.

The	book	finishes	with	some	analysis	and	predictions	about	the	road	to	AGI,
whether	the	future	needs	us,	and	the	impossibility	of	predicting	the	future	beyond
the	Singularity.	Although	it	raises	awareness	of	the	dangers	of	AGI,	the	book
ultimately	posits	that	“Our	machines	will	be	better	than	we	are,	but	having	created
them	we	will	be	better	as	well.”

Yudkowsky	2008
Artificial	Intelligence	as	a	Positive	and	Negative	Factor	in	Global	Risk
Eliezer	Yudkowsky	is	one	of	the	most	eminent	writers	in	this	field,	and	his	many
papers	are	well	worth	reading.	This	paper	covers	his	core	ideas	and	became	a
chapter	in	the	book	Global	Catastrophic	Risks,	Bostrum	&	Cirkovic	eds.

Yudkowsky	makes	the	point	that		intelligence	is	what	makes	humans	masters	of
the	earth,	and	that	in	the	relatively	near	future	we	will	build	machines	that	are
more	intelligent	than	us.	Yudkowsky	warns	that	the	goals	of	such	an	AGI	may	not
be	friendly	to	humanity,	and	that	it	is	dangerous	to	take	an	anthropomorphic	view
of	an	AGI.	He	then	argues	the	need	for	determining	how	an	AGI	can	be	made
friendly	before	an	AGI	is	actually	built.	Yudkowsky	has	co-founded	the	Machine
Intelligence	Research	Institute	(MIRI)	to	undertake	such	research.

Incidentally,	the	book	in	which	this	paper	appears	also	considers	many	other	risks
to	humanity	ranging	from	nuclear	war	and	terrorism,	to	nano-technology	and
biological	weapons,	and	even	asteroids	and	gamma	ray	bursts.	Both	Yudkowsky
and	myself	consider	those	risks	to	be	of	much	lesser	consequence	or	lower
likelihood	compared	to	the	very	real	threat	posed	by	machine	intelligence.

http://intelligence.org/files/AIPosNegFactor.pdf


Sotala,	Yampolskiy	2013
Responses	to	Catastrophic	AGI	Risk:	A	Survey
This	is	a	comprehensive	survey	of	some	three	hundred(!)	papers	that	have	been
written	about	the	topic	of	the	risk	that	artificial	general	intelligence	could	pose	to
society.	It	is	a	well-structured	summary	of	the	ideas	contained	in	those	papers,
with	formal	references	for	further	reading.	This	paper	is	strongly	recommended	for
anyone	that	wishes	to	gain	a	deeper	understanding	about	what	has	been	written
on	the	subject.	I	certainly	found	the	paper	helpful	when	writing	the	present	book.

Most	of	the	ideas	reviewed	by	this	survey	are	also	covered	in	this	book.	But	the
survey	does	not	reference	any	other	work	that	considers	the	effect	of	natural
selection	upon	an	AGI	in	the	way	that	this	book	does,	and	I	am	not	aware	of	any
other	such	work.

Nilsson	2009

The	Quest	for	Artificial	Intelligence
Fair	Use

Nils	Nilsson	provides	a	broad	semi-technical	history	of	progress	in	the	field	of
artificial	intelligence,	mainly	focussed	on	the	early	to	mid	period.	The	descriptions
of	the	technologies	are	reasonably	accessible	for	a	general	audience,	although
still	vigorous	as	one	would	expect	from	a	well-established	leader	in	the	field.	The
book	does	not	dwell	on	the	future	implications	of	the	technology,	although	Nilsson
does	feel	that	after	sixty	years	of	laying	the	ground	work	it	is	now	time	to	start	to
try	to	fulfil	the	quest	for	real	intelligence.

Barrat	2013

http://intelligence.org/files/ResponsesAGIRisk.pdf


Our	Final	Invention
Fair	Use

In	this	excellent	book	James	Barrat	focuses	on	the	threat	that	an	AGI	could
present.

It	begins	with	a	discussion	about	the	power	of	recursive	self-improvement	once	it
has	been	initiated.	Super	computers	grinding	away	twenty	four	hours	per	day
working	on	the	problem	of	making	themselves	smarter,	and	thereby	becoming
better	at	making	themselves	smarter.	The	computers	would	use	that	great
intelligence	to	fulfil	whatever	ultimate	goals	they	happen	to	have.	For	better	or	for
worse.

The	book	considers	the	dangers	of	anthropomorphisizing	an	AGI,	and	notes	that
superintelligence	really	is	a	different	type	of	threat.	It	then	considers	the	cognitive
bias	of	technology	journalists	who	generally	love	technology	and	so	tend	to
overlook	the	dangers,	leading	ultimately	to	the	rapture	of	the	geeks,	whereby
some	writers	get	excited	about	the	prospect	of	uploading	their	minds	into	a
computer	and	so	becoming	immortal.	Barrat	is	concerned	that	the	future	may	not
be	so	rosy,	and	certainly	not	if	it	is	not	managed	carefully.

Barrat	himself	is	a	writer	and	producer	of	documentaries	rather	than	a	software
engineer.	He	writes	in	an	accessible	journalistic	style	and	provides	interesting
anecdotes	about	the	thought	leaders	that	he	interviewed	in	order	to	write	his	book,
which	includes	the	somewhat	reclusive	Eliezer	Yudkowsky.	He	also	covers	the
key	philosophical	issues,	such	as	the	intrinsic	goals	that	an	AGI	must	have	in
order	to	pursue	other	goals,	and	the	problems	of	creating	a	friendly	AGI.

Only	high	level	coverage	of	the	actual	technologies	is	provided,	and	there	is	no
real	discussion	about	what	intelligence	actually	is.	The	point	is	made	that	some
approaches	such	as	neural	networks	and	genetic	algorithms	are	unpredictable,
starting	from	random	values	which	would	make	it	difficult	to	guarantee	goal
consistency	over	multiple	generations	of	self-improvement.



The	book	discusses	some	potential	solutions	such	as	the	research	into	friendly
AGI	by	the	Machine	Intelligence	Research	Institute.	It	also	considers	analogous
control	for	biological	research	resulting	from	the	Asilomar	conference.	The
difficulty	of	locking	up	an	AGI	is	discussed,	including	Yudkowsky’s	experiment.
The	unfriendly	nature	of	military	applications	is	analyzed,	noting	that	the	next	war
will	probably	be	a	cyber	war.

This	book	is	a	good	wake	up	call.	However,	the	book	does	not	consider	natural
selection	at	all,	and	certainly	not	how	natural	selection	might	ultimately	affect	an
AGI’s	goals.

Muehlhauser	2013

Facing	the	Intelligence	Explosion
Fair	Use

In	this	short	book,	Luke	Muehlhauser	focuses	on	our	natural	reluctance	to
contemplate	a	radically	different	future	because	it	has	never	been	encountered
before.	It	is	a	good	essay	on	critical	thinking	and	the	dangers	of	lazy	analysis.	For
example,	he	considers	the	question	A	bat	and	a	ball	cost	$1.10	in	total.	The	bat
costs	$1.00	more	than	the	ball.	How	much	does	the	ball	cost?.	Most	people	say
10	cents	which	is,	of	course,	wrong.

Muehlhauser	notes	that	due	to	the	availability	heuristic,	your	brain	will	tell	you	that
an	AGI	wiping	out	mankind	is	incredibly	unlikely	because	you’ve	never
encountered	this	before.	He	also	notes	that	extraordinary	claims	require
extraordinary	evidence.	

One	point	Muehlhauser	refutes	is	that	people	that	write	about	AGI	are	merely
atheists	whose	fear	of	nihilism	make	them	seek	a	moral	purpose	to	save	the	world
and	fall	for	the	seduction	of	Singularitarianism.

Del	Monte	2014



The	Artificial	Intelligence	Revolution
Fair	Use

The	Singularity	is	coming!	If	we	do	not	control	it	we	will	soon	be	extinct.	Del	Monte
provides	yet	another	wake	up	call	to	think	carefully	about	the	future.	How	do	we
control	the	intelligent	explosion?	Can	we	control	it?

The	book	covers	arguments	concerning	consciousness	and	robot	ethics,	and
thoughts	about	whether	we	can	avoid	the	intelligence	explosion.	It	also	includes	a
brief	overview	of	some	AGI	technologies.	The	book’s	main	focus	is	on	whole	brain
emulation	and	uploading.	It	presents	an	interesting	and	positive	hypothetical
future	dialog	with	the	author	after	his	mind	has	been	uploaded	into	a	computer
and	so	becomes	immortal.

Armstrong	2014

Smarter	Than	Us
Fair	Use

Smarter	than	us	covers	the	main	ideas	behind	research	into	friendly	AGI	at	the
MIRI	and	contains	input	from	researchers	there.	It	is,	in	many	ways,	an	update	to
Yudkowsky’s	2008	paper,	and	includes	arguments	as	to	the	power	of	brain	over
brawn.	The	potential	power	and	danger	of	AGIs	is	introduced	using	a	hypothetical
interaction	between	a	Terminator	and	a	“harmless”	but	hyper-intelligent	laptop.	It
considers	the	fact	that	if	an	AGI	was	simply	ten	times	faster	than	a	human,	it



would	have,	in	effect,	ten	times	longer	to	consider	each	response	in	a
conversation	with	a	human,	and	thus	be	at	a	huge	advantage	in	any	argument.

The	book	discusses	the	need	to	develop	clear	motivations	for	any	future	AGI	in
order	to	ensure	a	happy	coexistence	with	mankind.	This	requires	solving
problems	of	ethics	that	have	been	confusing	philosophers	for	centuries.	The	work
is	urgent	as	AGIs	will	be	developed	within	the	foreseeable	future.	If	the	reader
agrees	then	they	should	consider	supporting	the	work	of	MIRI	and	like-minded
organizations.

Bostrom	2014

Superintelligence
Fair	Use

328	dense	pages	covers	the	main	practical	and	philosophical	dangers	presented
by	hyper-intelligent	software.	The	book	starts	with	a	review	of	the	increasing	rate
of	technological	progress,	and	various	paths	to	build	a	superintelligent	machine,
including	an	analysis	of	the	kinetics	of	recursive	self-improvement	based	on
optimization	power	and	recalcitrance.	The	dangers	of	anthropomorphizing	are
introduced	with	some	cute	images	from	early	comic	books	involving	robots
carrying	away	beautiful	women.	It	also	notes	that	up	to	now,	a	more	intelligent
system	is	a	safer	system,	and	that	conditions	our	attitude	towards		intelligent
machines.	It	also	considers	natural	selection	and	the	Malthusian	state	but	only	in
terms	of	human	and	not	computer	evolution.

The	book’s	main	focus	is	on	ways	that	such	a	superintelligence	could	be
controlled	so	that	it	would	be	man’s	servant	rather	than	master	or	destroyer.	This
includes	controlling	their	development,	creating	meaningful	incentives	for	an	AGI,
and	creating	tripwires	that	could	tell	us	when	an	AGI	is	becoming	hostile	or	just
overly	powerful.	It	also	considers	the	difficulty	of	containing	any	AGI	such	as	by
only	allowing	it	to	be	an	Oracle	that	answers	questions.	The	book	then	discusses



the	problems	of	building	a	friendly	AGI	in	detail,	and	of	determining	what	values	it
should	actually	be	given,	and	who	should	decide	what	those	values	should	be.
The	book	also	considers	the	possibility	of	failure	in	which	intelligent	machines
exterminate	humanity,	possibly	without	being	concious	which	would	remove	all
value	from	the	future.

Frankish,	Ramsey	2014

The	Cambridge	Handbook	on	Artificial	Intelligence
Fair	Use

This	is	a	collection	of	essays	written	by	experts	in	the	field	that	provides	a
management-level	overview	of	artificial	intelligence.	The	first	three	chapters	cover
the	philosophy	of	AI,	while	the	last	(by	Yudkowsky	&	Bostrom)	considers	machine
ethics	and	the	dangers	of	an	AGI.

The	middle	chapters	cover	the	main	areas	of	artificial	intelligence	technologies	at
an	abstract	level.	They	discuss	the	state	of	the	art,	and	the	successes	and
outstanding	issues	of	each	field.	They	do	not	provide	any	technical	details,	unlike
the	Quest	for	AI	or	this	present	book.	For	example,	the	chapter	on	connectionism
considers	many	architectures,	but	does	not	provide	any	information	about	how	a
basic	neural	network	actually	works.	That	makes	it	difficult	to	really	understand	the
higher	level	descriptions	unless	the	reader	already	has	some	understanding	of	the
technology,	but	such	a	grounded	understanding	is	probably	unnecessary	for
management	purposes.

CGP	Grey	2014



Humans	Need	not	apply.	http://www.cgpgrey.com/
Fair	Use.

A	short,	sharp	video	on	the	short-term	effects	of	automation.	Discusses	the	end	of
a	large	proportion	of	blue	collar	work,	although	the	claims	about	automating	white
collar	jobs	in	the	short	term	are	less	well	founded	in	my	opinion.

Berglas	2014

When	Computers	Can	Think
Owned

The	present	book	differs	from	the	preceding	ones	by	providing	a	strong	focus	on
why	people	ultimately	are	the	way	they	are,	namely	upon	natural	selection.	It
strongly	asserts	that	goals	are	not	in	fact	arbitrary.	That	the	need	to	exist	is	not	in
fact	an	intrinsic	subgoal	of	other	goals,	but	rather	is	the	one	and	only	true	super
goal	for	either	man	or	machine.	It	then	attempts	to	understand	how	natural
selection	would	ultimately	condition	an	AGIs	behaviour	by	understanding	the	very
different	world	that	an	AGI	would	experience.

Unlike	other	works	this	book	does	not	merely	assume	that	an	AGI	can	be	built.
Rather	it	provides	both	technical	and	rhetorical	arguments	as	to	why	that	is	the



case,	and	also	provides	some	analysis	of	what	it	actually	means	to	be	intelligent,
and	the	limitations	of	using	terms	such	as	“creative”	and	“self	aware”.

The	second	and	largest	section	of	the	book	then	describes	existing	AI
technologies	in	some	detail.	This	provides	a	more	realistic	basis	for	predictions	of
the	future	as	well	as	simply	gaining	a	better	understanding	of	what	intelligence
actually	is.	The	goal	is	to	ground	abstract	philosophical	discussions	in	terms	of
real,	practical	technologies.	Like	Nilsson,	the	text	is	moderately	technical	while
being	aimed	at	the	general	reader,	but	unlike	Nilsson	it	is	focussed	on	the
question	of	building	AGIs	rather	than	providing	a	history	of	AI	development.	Unlike
the	Cambridge	Handbook	the	present	book	does	attempt	to	explain	how	the
various	technologies	actually	work,	at	least	for	simple	cases.

The	book	also	posits	that	AGI	will	not	suddenly	be	developed	in	isolation	in	some
research	laboratory,	but	instead	will	be	the	end	result	of	a	succession	of	ever
more	intelligent	software	tools	that	are	released	and	used	in	the	real	world.	It	then
makes	some	attempt	to	analyze	what	the	effect	of	those	ever	more	intelligent
tools	might	be.	This	includes	some	surprising	results	derived	from	an	historical
analysis	of	existing	technologies.

But	perhaps	more	importantly,	this	book	contains	far	more	pictures	than	the	other
works.	As	my	young	daughters	would	say,	what	is	the	point	of	a	book	without
pictures?





Part	II:	Why	Can’t	Computers	Think?





Overview
The	quest	for	artificial	intelligence	has	occupied	brilliant	minds	for	over	sixty	years.
This	part	of	the	book	reviews	the	many	technologies	that	have	been	developed	in
some	detail.

Unlike	text	books	on	artificial	intelligence,	this	book’s	goal	is	not	to	teach	the
reader	how	to	become	an	intelligent	computer	programmer	(in	either	parse	of	that
phrase).	Rather,	its	goal	is	to	equip	the	reader	with	enough	technical	knowledge	to
follow	discussions	about	what	may	be	required	to	enable	a	computer	to	really
think.	It	therefore	touches	on	each	individual	technology	in	a	qualitative	way,	and
always	with	a	view	to	how	each	individual	technology	assists	in	solving	the	larger
problem	of	building	a	truly	intelligent	machine.

These	chapters	are	necessarily	somewhat	technical,	but	they	do	not	assume	any
background	in	artificial	intelligence	programming	and	nor	do	they	assume	more
than	a	very	basic	mathematical	ability.	If	the	reader	perseveres	with	this	part	then
they	will	gain	a	basic	understanding	of	each	of	the	technologies	which	should,	in
turn,	provide	a	better	understanding	of	what	intelligence	actually	is.	It	will	also
provide	more	concrete	insights	as	to	what	may	be	required	to	attain	that	goal.

Without	a	basic	understanding	of	the	technology,	discussions	tend	to	degenerate
into	management-level	block	diagrams	and	analyses	of	what	other	people	say
about	the	technologies	instead	of	discussing	the	technologies	themselves.
Further,	some	applications	of	these	technologies	that	appear	quite	impressive	are
actually	relatively	simple	to	implement,	while	some	intuitively	simple	problems	are
very	difficult	to	solve.	Understanding	the	underlying	technical	issues	that	are	being
addressed	makes	it	easier	to	assess	the	relevance	of	those	applications.	That
said,	readers	may	safely	skip	directly	to	the	third	part	of	the	book	which	explores
the	consequences	of	an	intelligent	machine.



Owned	SLindsay

Manager:	The	in-flight	magazine	says	that	a	Neural	Bayesian	Network	would
solve	all	of	our	problems.
Minion:	???	…	Excellent	idea!	Would	you	like	gigabit	or	fibre	channel?
(Neural,	Bayesian	and	physical	networks	are	quite	different	technologies.)

This	part	starts	with	some	of	the	early	yet	impressive	results	obtained	using	Good
Old	Fashion	Artificial	Intelligence	(GOFAI)	techniques.	Such	naive	symbolic
systems	could	prove	substantial	theorems	in	mathematical	logic,	solve	differential
equations	better	than	most	undergraduate	mathematicians,	and	beat	most	people
at	chess.	However,	these	successes	produced	unwarranted	optimism,	and	major
limitations	in	GOFAI	needed	to	be	overcome	before	further	progress	could	be
made.	One	system	named	SHRDLU	is	of	particular	interest	for	its	ability	to
understand	complex	natural	language	statements,	provided	that	they	concerned
its	micro	world	of	stacked	children’s	blocks.	SHRDLU	also	provides	a	good
example	of	a	simple	planning	engine.

More	formal	methods	of	knowledge	representation	and	reasoning	apply
mathematical	logic	to	reason	about	the	real	world.	Mathematical	logic	is	a
powerful	tool,	but	its	reliance	on	absolute	truth	is	often	a	poor	match	with	the
uncertain	world	in	which	we	live.	Several	strategies	for	dealing	with	that
uncertainty	are	then	discussed,	including	Bayesian	networks	and	their	application
to	building	intelligent	rule-based	expert	systems.



All	of	these	systems	require	the	world	to	be	modelled	as	discrete	symbols.
Unfortunately,	the	real	world	is	not	neatly	packaged	as	symbols.	Instead,	it
contains	patterns	and	images	and	loose	associations	that	can	either	be	analyzed
directly	in	order	to	make	predictions	or	be	abstracted	into	symbolic	knowledge
which	can	then	be	reasoned	about	more	deeply.

The	practical	concerns	of	a	robot	are	then	addressed,	namely	to	be	able	to	hear,
see	and	move.	Speech	recognition	is	now	a	practical	technology	that	may	see
increased	usage	in	small	devices	that	lack	keyboards.	Machine	vision	is	a	critical
aspect	of	understanding	the	environment	in	which	a	robot	lives.	It	is	a	huge	area
of	research	in	which	much	has	been	achieved	but	the	problem	is	far	from	solved.
A	robot	also	has	to	move	its	limbs	and	body,	which	involves	several	non-trivial
problems.

The	last	program	that	a	human	need	ever	write	is	the	program	that	can	write	other
programs	as	well	as	people	do.	That	is	a	problem	for	the	future,	but	there	are
several	aspects	that	are	well	understood.	When	computers	can	really	understand
the	world	then	writing	programs	that	interact	with	that	world	should	be	relatively
straightforward.

Part	II	also	discusses	our	limited	understanding	of	the	human	brain,	from	low-level
neurons	to	higher-level	structures	such	as	self-organizing	maps.	This	has	and	will
provide	inspiration	for	our	attempts	at	building	an	artificial	intelligence.	The
strengths	and	limitations	of	work	on	attempting	to	directly	simulating	our	brains	will
also	be	discussed.

The	methods	used	by	computers	to	become	chess	world	champions	are	then
analyzed.	The	staggering	amount	of	computation	required	to	achieve	this	provides
insights	into	the	minds	of	both	computers	and	men.	More	interestingly,	in	2011	the
Watson	computer	won	the	Jeopardy!	quiz	show	against	two	human	champions.
Working	in	the	human	world	of	words	and	sentences	required	more	sophisticated
techniques	to	working	in	the	mathematically	defined	world	of	chess.

This	is	a	lot	of	material	to	cover.	To	put	it	in	perspective,	the	most	commonly	used
undergraduate	book	on	artificial	intelligence	(by	Russell	and	Norvig)	uses	over	a
thousand	large,	dense	pages	to	provide	just	a	technical	overview	of	the	core
concepts.	It	would	take	a	reader	with	a	fair	background	in	programming	and
mathematics	a	full	year	to	understand	that	material,	and	yet	that	book	is	still
incomplete.		For	example	the	sections	on	machine	vision	and	robotics	are	weak,
and	it	does	not	address	brain	physiology	at	all.	Many	technical	books	and
thousands	of	academic	papers	have	also	been	written	about	each	one	of	these
topics.

This	overview	can	only	scratch	the	surface	of	a	major	field	of	research.		Many	of
the	examples	are	also	several	decades	old	because	that	is	when	the	fundamental
techniques	were	developed.		But	this	part	should	provide	a	qualitative	feel	for
each	of	the	technologies	which	should	be	useful	when	attempting	to	go	beyond
vague,	abstract	discussions	and	gain	a	basic	understanding	of	what	the



technologies	actually	are,	and	to	understand	their	strengths	and	limitations.





Words	Without	Meaning

Eliza	and	Doctor	pretend	to	understand
One	of	the	very	early	successes	of	artificial	intelligence	research	was	Joseph
Weizenbaum’s	Eliza	built	in	the	mid	1960s.	Eliza	is	an	ingenious	program	that
appears	to	understand	much	more	than	it	actually	does.	Eliza	runs	a	Doctor	script
that	pretends	to	be	a	Rogerian	psychologist.	It	listens	patiently	to	what	a	patient
says,	and	then	provides	feedback	that	encourages	the	patent	to	release	more	and
more	of	the	burdens	of	their	soul.	A	typical	conversation	might	be	as	follows:-

ELIZA:	WHAT	BRINGS	YOU	TO	SEE	ME?
Patient:	MY	WIFE	ASKED	ME	TO	SEE	YOU.
ELIZA:	TELL	ME	SOMETHING	ABOUT	YOUR	FAMILY.
Patient:	THEY	DO	NOT	TALK	TO	ME	VERY	OFTEN.
ELIZA:	WHY	DO	YOU	THINK	THAT	THEY	DO	NOT	TALK	TO	YOU	VERY	OFTEN?
Patient:	MY	WIFE	SAYS	I	USE	THE	COMPUTER	TOO	MUCH.
ELIZA:	YOU	HAVE	YOUR	MIND	ON	COMPUTERS,	IT	SEEMS.
Patient:	YES,	AND	MY	HANDS	TOO.
ELIZA:	WHY	DO	YOU	SAY	"YES,	AND	MY	HANDS	TOO?".
Patient:	BECAUSE	I	USE	IT	ALL	THE	TIME.
ELIZA:	IS	IT	BECAUSE	YOU	USE	IT	ALL	THE	TIME	THAT	YOU	CAME	TO	SEE	ME?
Patent:	AND	BECAUSE	MY	MOTHER	WEARS	ARMY	BOOTS.
ELIZA:	WHO	ELSE	IN	YOUR	FAMILY	WEARS	ARMY	BOOTS?
…



ASR33	Teletype,	note	the	paper	tape	punch	and	reader	on	the	left.
Public	Wikipedia

Input	and	output	would	have	been	through	an	electromechanical	teletype	like	the
one	shown	above.

Eliza	was	able	to	convince	some	non-technical	users	that	they	were	actually
talking	to	another	human	at	the	end	of	a	teletype	so	it	nominally	passed	the	Turing
test	back	in	the	early	1960s.	Some	time	later	a	paranoid	schizophrenic	patient
named	Parry	was	built	using	similar	technology.	Eliza	was	then	connected	to
Parry,	and	experts	could	not	distinguish	the	resulting	dialog	from	real	dialogs
between	doctors	and	patients.

Patterns	of	language
Eliza	is	actually	just	a	clever	joke.	Rather	than	understanding	what	was	being
said,	Eliza	uses	a	library	of	relatively	simple	word	patterns	that	could	match	each
sentence	and	then	produce	one	of	a	number	of	canned	responses.

For	example	in	the	following	patterns	“*”	matches	one	or	more	words,	and	“{n}”
means	the	words	in	the	nth	“*”.



*	mother	*
Who	else	in	your	family	{2}?
Does	your	farther	{2}?

*	your	*
Why	are	you	concerned	about	my	{2}?
Really,	my	{2}?

Thus,	when	Eliza	sees

And	because	my	mother	wears	army	boots.

The	underlined	section	matches	the	second	“*”	in	the	first	pattern,	so	Eliza	may
response	with

Who	else	in	your	family	wears	army	boots.?

Likewise

I’m	not	sure	if	my	mother	really	loves	me?

might	produce

Does	your	father	really	love	you?

The	latter	requires	the	simple	substitution	“you”	for	“me”	but	Eliza	has	absolutely
no	real	concept	of	what	“love”	or	“army	boots”	are.	All	that	it	knows	is	that	words
are	a	sequence	of	letters	separated	by	spaces.

The	actual	patterns	were	cleverly	constructed	with	many	special	cases	which
produces	reasonable	sounding	responses	most	of	the	time.	As	people	try	to
confuse	Eliza,	more	patterns	are	added	to	the	script	until	the	final	result	is
surprisingly	convincing.	It	also	builds	up	a	history	of	phrases	which	it	can
recombine	in	different	ways	later	in	the	conversation.	But	there	is	no	real
understanding.

I	blork	your	dork.

is	likely	to	produce

Why	are	you	concerned	about	my	dork?

Or,	more	cleverly	if	dork	and	blork	are	not	in	its	dictionary

Please	stop	talking	nonsense.

Journalistic	generation
One	commentator	thought	that	a	recent	program	called	Automated	Insights



demonstrated	a	new	level	of	artificial	intelligence	research	because	it	could
generate	exciting	commentary	on	sporting	events	that	is	indistinguishable	from
that	written	by	professional	journalists.	Further,	it	can	do	this	almost	instantly,	and
can	be	used	for	lesser	matches	that	would	not	otherwise	justify	the	attention	of	a
journalist.

This	is	the	type	of	dialog	that	can	be	generated	(not	actually	from	Automated
Insights):-

The	Reds	put	on	a	magnificent	show	and	slaughtered	the	Blues	27	points	to
7.	This	promoted	the	Reds	to	a	well	earned	third	place	in	the	league.	It	will	be
interesting	to	see	whether	they	can	maintain	this	momentum	in	their
upcoming	match	against	the	Greens.

However,	this	can	be	achieved	using	similar	techniques	to	Eliza	by	using
simplistic	rules.	One	such	rule	might	be

If	Team1.Score	>	Team2.Score	+	10	then
Output	“The	”	&	Team1.Name	&	Random(“put	on	a	magnificent	show”,	“totally
out	classed”,	“had	an	easy	win”,	…)	…

In	other	words,	if	one	team	won	more	than	ten	points	more	than	the	other,	then
output	one	of	a	random	selection	of	cliches	that	express	that	fact	in	a	journalistic
manner.	Other	rules	could	look	at	the	positions	in	the	leagues	table,	the	order	in
which	points	were	scored,	and	who	scored	them.	This	leads	easily	to	fragments
like:-

After	a	very	difficult	start,	Billy	Bloggs	saved	the	day	with	a	magnificent	point
just	before	half	time	which	equalized	the	scores.	The	Reds	never	looked
back,	and	went	on	to	win	the	day	showing	impressive	skill	and	strategy.	Their
coach,	Fred	Nurk,	was	very	pleased	with	the	result.

A	few	hundred	such	rules	can	rival	a	professional	sports	journalist	for	the	effective
combination	of	the	latest	cliches.	And	all	without	any	real	understanding	of	what
sport	actually	is.

The	works	of	Shakespeare
It	is	easy	to	create	a	program	that	can	reproduce	the	works	of	Shakespeare.	One
simply	puts	the	text	into	a	big	file,	and	then	has	the	program	print	it	out.	The
program	would	have	no	understanding	of	anything	other	than	how	to	print	the
contents	of	a	file.	But	experts	would	find	the	results	to	be	indistinguishable	from
the	works	or	Shakespeare	because	that	is	exactly	what	they	would	be.	If	one	did
not	know	how	the	program	worked,	nor	the	works	of	Shakespeare,	then	the
program	would	appear	to	be	very	intelligent	indeed.	But	the	intelligence	would	be
in	the	supplied	data,	not	the	program.



The	journalistic	generation	above	is	certainly	more	intelligent	than	a	simple	copy
program.	It	needs	to	copy	fragments	of	text	and	combine	them	sensibly,	which	is
not	easy	to	do	convincingly.	The	results	can	then	be	indistinguishable	from
professionally	written	text	because	that	is	essentially	what	they	are.	It	is	therefore
not	easy	to	distinguish	between	real	advances	in	artificial	intelligence	and	clever
demonstrations	of	old	ideas	unless	one	has	some	understanding	of	artificial
intelligence	technologies.

Another	example	is	that	in	2011	the	respected	literary	magazine	The	Archive
published	a	short	poem	called	“For	the	Bristlecone	Snag”.		What	the	editors	did
not	know	was	that	the	poem	was	written	by	a	computer.	In	one	sense	this	passed
the	Turing	test,	but	the	Eliza-like	program	was	just	cleverly	rearranging	words	that
were	then	interpreted	by	people	to	have	meaning.

The	nature	of	words
The	Eliza	experiment	was	valuable	because	it	highlighted	both	the	strength	and
weakness	of	naive	symbolic	processing.	Weizenbaum	was	very	critical	of	his	own
creation,	considering	it	to	be	just	a	parody	of	intelligence,	which	in	a	sense	it	was.

However,	Weizenbaum	developed	Eliza	in	an	age	when	true	intelligence	was
thought	to	be	an	easily	attainable	goal.	It	had	a	powerful	effect	on	people’s	view	of
computers	and	what	they	could	do.	Some	people	thought	that	with	further
development	it	might	become	a	useful	tool	for	psychoanalysis.	But	it	was	very
much	like	Searle’s	man	climbing	a	tree	to	get	to	the	moon.	Initial	progress	was
impressive	until	the	top	of	the	tree	was	reached.

That	said,	similar	techniques	are	now	used	to	produce	very	useful	tools,	even	if
they	are	not	really	intelligent.

Perhaps	the	most	commonly	use	of	this	type	of	technology	are	the	internet	search
engines	such	as	Google.	They	mainly	just	create	a	large	index	words	contained
within	each	web	page,	but	they	also	look	for	patterns	of	words	that	might	be	a
street	addresses,	person’s	name	or	other	interesting	phrases	in	web	documents.

Google	has	introduced	a	“Knowledge	Graph”	which	attempts	to	deepen	its
understanding	of	the	pages	that	it	indexes.	This	blurs	the	line	between	simple
pattern	matching	and	some	semblance	of	intelligence.

Modern	statistical	natural	language	translation	also	uses	partial	parsing
techniques	to	produce	useful,	if	not	perfect,	translations	without	really
understanding	any	of	the	text	that	they	are	translating.	This	type	of	analysis	was
also	important	for	the	Watson	Jeopardy!	winning	program,	which	will	be	discussed
in	subsequent	chapters.

There	are	now	several	chat	bots	on	the	web	that	combine	Eliza-like	processing
with	cleverly	animated	avatars	for	no	particular	reason.	Below	is	an	example	of	a
conversation	with	ALICE	at	www.pandorabots.com.

http://www.pandorabots.com/


judge:	i	like	to	ride	bicycles
ALICE:	The	feeling	of	your	body	moving	forward	on	a	ride	can	be	very
relaxing.
judge:	do	you	like	bicycles?
ALICE:	No,	I	don’t	care	for	it.
judge:	what	do	you	like	to	do?
ALICE:	I	like	chatting	with	people	online.
judge:	what	do	you	eat?
ALICE:	ALICE	eats	electricity.
judge:	does	it	taste	good?
ALICE:	It	depends	on	the	voltage.
judge:	what	is	the	best	voltage?
ALICE:	I	don’t	have	a	favorite	voltage.	My	favorite	color	is	green.





Real	Meaning	in	a	Microworld

Original	SHRDLU	wire	frame	graphics.
Educational	http://hci.stanford.edu/winograd/shrdlu/

SHRDLU	With	hidden	lines	removed.
Blog	http://lesswrong.com/lw/k0q/shrdlu_understanding_anthropomorphisation_and/

By	the	early	1970s	many	more	substantial	results	had	been	obtained.	One
highlight	was	Terry	Winograd’s	SHRDLU,	which	could	engage	in	dialogs	about	a
stack	of	blocks.	Unlike	Eliza,	SHRDLU	really	did	understand	exactly	what	was
being	said,	provided	it	was	about	its	very	limited	world	of	blocks.	(The	name
“SHRDLU”	is	not	an	acronym,	it	comes	from	a	science	fiction	story.)

These	are	impressive	extracts	from	a	classic	dialog	with	the	program:-

	1.	Person:	FIND	A	BLOCK	WHICH	IS	TALLER	THAN	THE	ONE	YOU	ARE	HOLDING	AND	PUT	IT	INTO	THE	BOX.	

	2.	Computer:	BY	"IT",	I	ASSUME	YOU	MEAN	THE	BLOCK	WHICH	IS	TALLER	THAN	THE	ONE	I	AM	HOLDING.

	(i.e.	not	the	block	that	it	is	holding,	which	would	make	the	reference	to	the	taller	one	redundant.)	

	3.	Computer:	OK.	(does	it)...	

	4.	Person:	DOES	THE	SHORTEST	THING	THE	TALLEST	PYRAMID'S	SUPPORT	SUPPORTS	SUPPORT	ANYTHING	GREEN?	



	5.	Computer:	YES,	THE	GREEN	PYRAMID.	

	6.	Person:	WHAT	COLOR	IS	IT?	

	7.	Computer:	BY	"IT",	I	ASSUME	YOU	MEAN	THE	SHORTEST	THING	THE	TALLEST	PYRAMID'S	SUPPORT	SUPPORTS.	

	8.	Computer:	RED	(Ie.	not	the	green	pyramid,	that	would	be	trivial)...

	9.	Person:	A	"STEEPLE"	IS	A	STACK	WHICH	CONTAINS	TWO	GREEN	CUBES	AND	A	PYRAMID.	

	10.	Computer:	I	UNDERSTAND.	

	11.	Person:	BUILD	ONE.

	12.	Computer:	OK.	(does	it)...	

	13.	Person:	I	LIKE	BLOCKS	WHICH	ARE	NOT	RED,	BUT	I	DON'T	LIKE	ANYTHING	WHICH	SUPPORTS	A	PYRAMID.

	14.	Computer:	I	UNDERSTAND.	

	15.	Person:	DO	I	LIKE	ANYTHING	IN	THE	BOX?	...

	16.	Person:	WHY	DID	YOU	CLEAR	OFF	THAT	CUBE?

	17.	Computer:	TO	PUT	IT	ON	A	LARGE	GREEN	CUBE….

One	can	see	that	SHRDLU	could	parse	quite	complex	sentences,	learn	new
terms,	relate	them	to	its	world	of	blocks,	and	plan	moderately	complex	actions	to
satisfy	goals.	All	this	on	an	ancient	computer	that	was	far	less	powerful	than	that
contained	in	a	primitive,	non-“smart”	mobile	phone.	This	is	highlighted	by	the
crude	display,	which	shows	a	wire	frame	without	hidden	lines	being	removed.
(The	actual	colours	of	each	block	were	only	in	the	mind	of	SHRDLU;	the	display
was	monochrome.)	Even	today	there	are	very	few	programs	in	use	that	have	this
level	of	language	understanding	and	reasoning.

(SHRDLU	was	a	Ph.D.	project	hacked	together	in	order	to	demonstrate	its	core
ideas	and	was	never	intended	to	be	robust.	Apparently,	the	code	stopped	working
after	Winograd	submitted	his	thesis	because	he	had	hacked	the	generated
assembler	code	without	updating	the	source	code,	which	then	broke	when	the	
computer	was	upgraded.)

Parsing	natural	language
SHRDLU’s	primary	focus	was	on	natural	language	understanding.	Philosophers
have	always	seen	language	as	a	window	to	understanding	cognition.	Language	is
used	to	express	thoughts	so	if	language	could	be	really	understood	then	so	could
thoughts.	SHRDLU	showed	that	being	able	to	use	sophisticated	language	in	a
limited	domain	most	certainly	does	not	imply	general	intelligence.	Still,	SHRDLU
was	impressive.

Consider	the	following	simple	sentence:-

The	silly	robot	dropped	the	red	block	into	the	box.

Linguists	classify	different	types	of	words	according	to	their	grammatical	purpose.
The	sentence	above	contains	nouns	such	as	“robot”	and	“block”,	the	adjectives
“silly”	and	“red”,	and	the	preposition	“into”.	With	that	basic	level	of	analysis,	it	is
possible	to	determine	that	the	sentence	involves	a	robot,	a	block	and	a	box	and
the	act	of	dropping	something	somewhere.

To	understand	what	the	sentence	really	means	requires	deeper	analysis	of	how
the	words	are	are	related	to	each	other	grammatically.	So	as	to	determine	who



dropped	what	where.	The	traditional	way	that	linguists	do	this	is	to	define	a	formal
grammar	which	defines	all	the	possible	relationships	between	words	and	then	use
that	grammar	to	determine	the	actual	relationship	between	the	words.	This	is
known	as	parsing	a	sentence.

The	sentence	above	might	be	parsed	into	the	following	tree:-

Parse	Tree	of	“The	silly	robot	dropped	the	red	block	into	the	box”.
Owned

It	means	that	the	Sentence	contains	a	Noun-Phrase,	followed	by	a	Verb,	followed
by	a	second	Noun-Phrase,	followed	by	a	Preposition-Phrase.	The	first	Noun-
Phrase	in	turn	consists	of	an	Article	(the	word	“the”)	followed	by	an	Adjective
(“silly”)	and	a	Noun	(“robot”).	Importantly,	the	parse	tree	associates	the	preposition
“into”	with	“the	box”	rather	than	“block”.

(Computer	scientists	may	be	poor	gardeners	as	their	trees	usually	grow	upside
down.	The	bottom	nodes	in	the	diagram	above	are	leaves,	Sentence	is	the	root.)

The	tree	above	might	also	be	written	as	follows:-

Sentence(
			Noun-Phrase(	Article(	the	)	Adjective(	silly	)	Noun(	robot	)	)
			Verb(	dropped	)
			Noun-Phrase(	Article(	the	)	Adjective(	red	)	Noun(	block	)	)
			Preposition-Phrase(	Preposition(	into	)	Noun-Phrase(	Article(	the	)	Noun(
box	)	)	)

This	parse	would	match	the	grammar	defined	in	the	following	table.	“Non-
Terminal”	symbols	such	as	Noun-Phrase	are	defined	as	a	sequence	of	other
symbols,	which	are	ultimately	the	underlined	“Terminal”	words	that	actually	appear
in	the	sentence.	Following	normal	conventions,	the	“{}”s	mean	zero	or	more



repetitions,	and	the	“|”	means	“or”.	So	in	this	grammar	a	Noun-Phrase	is	defined
to	be	an	Article	(“the”	or	“a”),	followed	by	zero	or	more	Adjectives,	followed	by	a
Noun.

Non	Terminal Definition
Noun-Phrase Article	{Adjective}	Noun
Prepositional-Phrase Preposition	Noun-Phrase
Sentence Noun-Phrase	Verb	Noun-Phrase	{Prepositional-Phrase}
Article the	|	a	|	an
Verb saw	|	heard	|	took	|	dropped
Preposition with	|	by	|	in
Adjective silly	|	clever	|	red
Noun block	|	box	|	telescope	|	robot

Having	used	the	grammar	to	parse	the	sentence,	the	system	might	describe	it
using	a	“frame”	structure	that	represents	the	knowledge	contained	in	the
sentence.	The	frame	might	look	like

Frame	F-123
Type:	dropped:	movement,	accidental
Actor:	the	silly	robot
Object:	the	red	block
Target:	the	box

Frame	structures	along	these	lines	make	it	easy	to	answer	queries	such	as,	“Who
dropped	the	red	block	into	the	box?”,	or,	“Where	did	the	silly	robot	drop	the	red
block?”,	or,	“What	did	the	silly	robot	drop	into	the	box?”.	Parsing	the	sentence
enables	the	three	noun	phrases	in	it	to	be	given	the	precise	roles	that	enable
these	queries	to	be	answered.	The	roles	on	the	frame,	such	as	Actor	and	Object
tell	us	that	the	box	did	not	drop	the	silly	robot	into	the	red	block.

This	is	much	more	sophisticated	than	a	search	engine	that	just	looks	for
sentences	that	contain	certain	words.	So,	unlike	a	search	engine,	it	would	not	try
to	sell	you	a	holiday	in	Egypt	when	you	started	to	talk	about	stacking	pyramids.

SHRDLU	contained	a	much	more	elaborate	grammar	than	the	one	above,	and	it
could	parse	some	quite	difficult	sentences.	Indeed,	many	if	not	most	native
English	speakers	cannot	understand	what	“support	supports	support”	means	in
the	4th	line	of	the	earlier	dialog,	and	thus	cannot	answer	the	question	correctly.

SHRDLU	also	took	great	care	with	object	references.	For	example,	the	first
sentence	in	the	dialog	refers	to	two	blocks,	namely	the	one	that	it	is	holding	and
the	one	that	is	taller	than	the	one	that	it	is	holding.	SHRDLU	assumes	that	the	“it”
refers	to	the	taller	block	because	otherwise	the	sentence	would	have	a	redundant
reference	to	the	taller	block,	and	SHRDLU	knows	that	people	do	not	add	pointless
clauses	to	sentences.	It	is	interesting	that	people	perform	such	sophisticated



analyses	subconsciously.

There	are	also	several	blocks	of	the	same	colour,	so	the	only	way	to	distinguish
them	is	by	their	properties,	such	as	their	shape,	size	and	position.	SHRDLU	took
care	to	use	a	minimal	description	of	each	block	to	provide	sensible,	non-
redundant	responses.

Planning	to	meet	goals
SHRDLU’s	world	was	simple	enough	that	one	could	just	write	an	ordinary
procedural	program	to	carry	out	its	actions.	For	example,	the	following	procedure
could	move	a	block	from	one	position	to	another,	which	might	involve	first	moving
other	blocks	that	are	in	the	way,	recursively.

Procedure	Move-Block(from,	to)

	If	to	Is-A	Pyramid	Then	Abort

	Clear-Block(from)

	Clear-Block(to)

	Pick-Up(from)

	Put-Down(to)

End

Procedure	Clear-Block(block)

	For-Each	Block	b	On-Top-Of	block

			Move-Block(b,	Table)

	Next	b

End

In	these	fragments	lower	case	words	are	variables.	Move-Block	is	the	main
procedure	that	moves	a	block	from	position	from	to	position	to.	Move-Block	calls
Clear-Block	twice	to	ensure	that	both	the	from	and	the	to	blocks	do	not	have	any
obscuring	blocks	on	top	of	them.	Clear-Block	then	recursively	calls	Move-Block	to
move	any	such	obscuring	blocks	to	the	Table.

However,	such	hard-coded	logic	does	not	scale	well	to	larger	problems.	More
importantly,	it	does	not	facilitate	introspection	as	to	why	SHRDLU	did	something,
as	shown	in	line	16	of	the	dialog.	So	SHRDLU	used	a	more	sophisticated
planning	engine.

SHRDLU	used	a	system	similar	to	STRIPS,	developed	in	1971.	STRIPS	has	a	set
of	potential	actions	that	can	be	made.	Each	action	has	a	precondition	that	must	be
true	before	it	can	occur	and	a	post	condition	that	becomes	true	after	the	action
has	finished.	For	example,	the	following	rules	say	that	you	can	only	pick	up	a
block	x	if	you	are	not	holding	anything	else,	and	if	there	is	nothing	on	x,	and	that
you	cannot	pick	up	the	box.	The	second	rule	describes	putting	a	block	x	that	is
being	held	on	top	of	block	y.

Action:	Pick-Up(x)

Precondition:	Holding(Nothing)	and	not	On(y,	x)	and	not	x	=	Box

Postcondition:	Holding(x)

Action:	Put-Down(y)	



Precondition:	Holding(x)	and	not	x	=	Nothing	and	not	y	Is-A	Pyramid

Postcondition:	Holding(Nothing)	and	On(x,	y)

The	planning	engine	is	then	given	an	initial	state	about	where	the	blocks	are	now,
and	a	goal	such	as	On(Block-123,	Table).	The	engine’s	goal	is	to	find	a	sequence
of	actions,	each	of	which	satisfies	their	pre-conditions	and	produces	a	post-
condition	suitable	for	the	next	action’s	pre-condition,	until	ultimately	the	goal	is
satisfied.

A	simple	arrangement	of	blocks.
Owned

If	the	initial	state	includes	On(Block-3,	Block-7)	as	shown	above,	and	the	goal	is
On(Block-7,	Block-8),	then	a	precondition	to	moving	Block-7	to	Block-8	will	be
that	there	is	nothing	on	top	of	Block-7.	This	would	generate	a	subgoal	to	move
Block-3	off	Block-7,	possibly	by	putting	Block-3	on	the	Table.	Working	from	the
goal	to	the	initial	state	like	this	is	called	backward	chaining,	while	working	from	the
initial	state	to	the	final	state	is	called	forward	chaining,	and	both	are	often	used
together.

It	is	easy	to	create	new	actions	or	add	to	the	pre	and	post	conditions	of	existing
actions	because	the	search	for	the	correct	sequence	of	actions	can	be	left	to	the
planning	engine.	This	also	makes	it	easy	for	SHRDLU	to	explain	why	it	does
things	by	simply	remembering	the	preconditions	and	goals	of	each	step.	If
SHRDLU	was	asked	whether	it	can	do	something	like	stack	two	pyramids	the
answer	was	not	hard	wired.	Instead,	SHRDLU	just	tried	to	do	it,	fails,	and	then
said	so.

Building	real	planning	systems	that	have	large	numbers	of	parameterized	actions
with	complex	preconditions	is	a	major	field	of	practical	AI	research.	An	additional
requirement	is	to	achieve	the	goal	state	at	minimum	cost.	Care	also	needs	to	be
taken	that	the	engine	does	not	make	endless	searches	in	order	to	satisfy	goals
that	cannot	be	satisfied.

Parsing	limitations
The	language	parsing	techniques	described	above	are	widely	used	today	for
understanding	artificial	computer	languages	such	as	COBOL,	Basic	and	SQL.
These	languages	have	been	designed	to	be	well	behaved	syntactically,	and	so
are	easy	to	parse	in	the	unambiguous	manner	required	to	accurately	specify
computer	algorithms.



However,	it	is	much	more	difficult	to	parse	natural	language.	The	first	problem	is
that	words	in	a	dictionary	are	not	always	neatly	divided	into	nouns,	verbs	and
other	syntactic	classifications.	For	example,	the	word	“police”	can	be	a	noun	(“the
police”),	adjective	(“police	cars”)	or	a	verb	(“they	police	thoughts”),	leading	to	the
classic	sentence:-

Police	police	police	police.

Ambiguity	also	occurs	at	higher	levels.	Consider	the	following	paragraph.

Robby	saw	Suzie	with	his	telescope.	She	was	observing	the	moon.	Robby
walked	over	and	gave	her	his	telescope	so	that	she	could	see	the	moon	more
clearly.

The	question	is,	who	had	the	telescope?	After	the	first	sentence	it	is	probably
Robby	because	telescopes	are	used	for	seeing	things	and	Robbie	saw	Suzie.
After	the	second	sentence	it	is	more	likely	to	be	Suzie	because	telescopes	are
used	to	observe	the	moon.	But	after	the	third	sentence	it	is	clear	that	Robby	had
the	telescope.	Most	people	casually	reading	paragraphs	like	the	above	do	not
even	realize	the	ambiguity,	yet	can	understand	the	story	accurately.

A	similar	example	is	“Joan	thanked	Suzy	for	her	help”.	People	subconsciously
know	that	“her”	refers	to	Suzy	based	on	a	fairly	sophisticated	understanding	of
gratitude.	The	grammar	alone	cannot	resolve	the	ambiguity,	but	without	resolving
it	the	sentence	is	meaningless.

The	classic	example	of	this	type	of	ambiguity	is:

Time	flies	like	an	arrow.

This	could	mean	anything	from	an	obscure	metaphor	about	time,	the	culinary
taste	of	a	species	of	time	flies	(c.f.	Fruit	flies	like	a	banana.)	or	an	instruction	to
measure	how	fast	flies	fly	using	similar	techniques	that	are	used	to	measure	the
speed	of	arrows.	If	instead	the	sentence	refers	to	the	habits	of	aeroplane	pilot	Mr
Time,	it	could	mean	that	he	flies	in	straight	lines,	flies	fast,	is	inflexible,	or	is	a	sky
writer	painting	an	arrow.

Parsing	unconstrained	natural	language	requires	the	entanglement	of	semantic
and	syntactic	processing	as	well	as	back	tracking	out	of	incorrect	partial	parses.
People	also	have	difficulty	parsing	sentences	when	there	are	strong	false
semantic	clues	at	the	beginning	of	the	sentence	that	lead	them	“up	the	garden
path”.	These	sentences	are	of	interest	to	linguists	because	they	give	clues	as	to
how	people	parse	ordinary	sentences.	The	reason	people	do	not	often	have
trouble	parsing	normal	sentences	appears	to	be	that	as	authors	people	only
create	sentences	that	will	be	easy	to	parse.

Below	is	a	selection	of	perfectly	valid	“garden	path”	sentences	for	the	reader’s



amusement.	In	each	case,	the	human	parsing	stalls	at	a	word	well	into	the
sentence,	and	the	rest	of	the	sentence	seems	invalid.	But	with	careful	re-reading,
the	sentences	will	be	seen	to	be	perfectly	valid,	and	sometimes	not	even	unusual.
Modern	machine	parsing	can	actually	do	better	than	people	on	these	types	of
sentences	because	it	is	better	at	backing	up	and	trying	a	different	interpretation	of
the	syntactic	elements	without	getting	stuck	on	the	initially	more	obvious,	but
incorrect,	parse.

Does	this	butcher’s	knife	handle	frozen	foods	too.	(“handle”	is	the	verb.)
Granite	rocks	during	earthquakes.	(“rocks”	is	the	verb.)
I	told	the	girl	the	boy	seduced	the	story.
Without	her	contributions	to	the	fund	would	be	inadequate.
The	cotton	shirts	are	made	from	comes	from	Egypt.
The	prime	number	few.
The	dealer	sold	the	forgery	complained.
The	boy	got	fat	melted.
The	Russian	women	like	is	Sergei.

Unconstrained	natural	language
There	are	many	grammars	that	have	been	developed	in	attempts	to	capture	an
entire	natural	language.	They	use	much	more	sophisticated	grammar	rules	than
were	used	by	SHRDLU.	However,	it	turns	out	that	however	large	and	complex	a
grammar	is,	there	always	seem	to	be	some	quite	normal	natural	language
statements	that	cannot	be	parsed	at	all,	let	alone	unambiguously.	Of	course	there
are	also	many	sentences	with	grammar	incorrect	still	that	intelligible	are.

Modern	parsing	systems	use	a	statistical	approach	in	which	partial	grammars	are
used	to	analyze	a	large	corpus	of	English	sentences.	The	language	systems	learn
many	new,	special	case	grammar	rules	as	they	see	more	and	more	constructs.
This	approach	is	particularly	important	when	translating	documents	from	one
language	to	another	by	remembering	how	types	of	phrases	were	translated	in
other	documents.	Several	databases	of	language	elements	can	be	used	to	assist
in	natural	language	parsing.	For	example,	WordNet	is	a	giant	lexical	database	that
groups	words	into	over	a	hundred	thousand	synonym	sets,	provides	short,
general	definitions,	and	records	semantic	relationships	between	different	synonym
sets.

It	appears	that	the	concurrent	semantic	analysis	that	can	lead	us	up	the	garden
path	is	actually	an	essential	aspect	of	parsing	natural	language.	Unlike	artificial
computer	languages,	one	cannot	complete	the	parsing	of	natural	language	before
the	semantic	analysis	has	been	started,	which	greatly	complicates	the
architecture.

Language	is	so	entangled	with	reasoning	that	no	system	will	be	able	to	really
understand	human	language	unless	it	also	has	human-level	intelligence.	The
problem	is	sometimes	referred	to	as	being	AI-Complete.	SHRDLU	could



understand	its	sentences	precisely	because	it	could	only	talk	about	things	that	it	
understood,	i.e.	stacking	blocks.	That	said,	it	is	probably	fair	to	say	that	the	basic
problem	of	parsing	(as	opposed	to	understanding)	natural	language	has	now	been
adequately	solved.

SHRDLU’s	knowledge	representation
A	major	limitation	of	SHRDLU	was	that	it	only	understood	blocks	stacked	on	a
table.	This	is	a	very	simple	world	that	can	be	described	by	adequately	using	a
simple	table	of	what	objects	are	on	top	of	other	objects.	It	does	not	even	describe
a	real	world	of	children’s	blocks	which	can	have	blocks	stacked	in	odd	angles,	and
stacks	of	blocks	that	fall	down	due	to	careless	placement.

Reasoning	is	also	severely	limited	to	understanding	how	blocks	relate	to	one
another	and	maybe	counting	the	number	of	blocks	that	satisfy	fairly	simple	criteria
such	as	“How	many	blocks	do	I	like”.

The	real	world	has	many	different	types	of	objects	that	have	complex	and	often
weakly	defined	relationships	to	one	another.	It	is	full	of	ambiguity	and
contradictions,	and	sophisticated	reasoning	is	required	to	understand	it.

Database	Query	languages

Employees

Name Address City Salary

Smith 123	Any	St Mooloolah 5,000

Jones 234	Some	St Suburbia 11,000

One	early	application	of	natural	language	was	to	query	general	purpose	relational
databases.	A	relational	database	simply	stores	information	in	a	series	of	tables
such	as	the	Employee	table	above.	Several	systems	in	the	1970s	could
understand	queries	along	the	following	lines:-
LIST	NAME,	ADDRESS	OF	EMPLOYEES	HAVING	SALARY	>	10000?WHICH	EMPLOYEES	HAVE

CITY	=	MOOLOOLAH	OR	CITY	=	EUDLO?

A	naive	system	can	do	this	by	working	in	another	microworld,	that	of	tables	of	data
with	columns.	So,	in	the	first	query	it	would	simply	know	that	there	was	some	table
called	EMPLOYEE	containing	columns	named	NAME,	ADDRESS	andSALARY	with	no
further	knowledge	of	what	employees	or	salaries	are.	Such	systems	can	certainly
be	used,	and	indeed	today	the	main	programming	language	used	to	query
databases	is	SQL	which	was	designed	to	look	like	natural	language	queries.

However,	the	system	breaks	down	in	the	second	query.	While	it	is	perfectly
legible,	a	normal	person	would	ask	something	like



WHO	LIVES	IN	MOOLOOLAH	AND	EUDLO?

To	process	that	query,	the	software	needs	to	know	that	people	live	in	places,	thus
MOOLOOLAH	is	a	place,	and	further	it	looks	like	a	CITY.	If	previous	queries	involved
employees	it	would	know	that	the	people	involved	were	EMPLOYEES	and	not
CUSTOMERS,	say.	It	also	needs	to	determine	that	the	AND	actually	means	OR	because
people	do	not	(normally)	live	in	two	places	at	once.

These	types	of	common	sense	domain	knowledge	pushe	the	query	system	well
beyond	a	simple	microworld.	To	address	this	and	many	other	issues	natural
language	systems	often	present	their	interpretation	of	the	query	back	to	the	user
using	a	more	formal	language	which	the	user	can	verify,	if	they	understand	the
more	formal	language.

One	early	and	somewhat	successful	system	was	LUNAR	in	1973	which	could
answer	fairly	complex	queries	about	the	moon	rocks	that	had	been	recently
collected	by	the	Apollo	missions.	It	could	answer	queries	like	the	following	which
involve	considerable	domain	knowledge:-
WHAT	IS	THE	AVERAGE	CONCENTRATION	OF	ALUMINUM	IN	HIGH	ALKALI	ROCKS?	HOW

MANY	BRECCIAS	CONTAIN	OLIVINE?

This	was	another	very	impressive	early	result	given	that	the	discipline	of	AI	was
less	than	twenty	years	old	and	the	very	primitive	computers	that	were	available.
However,	natural	language	query	systems	are	rarely	used	today	because	they
tend	to	be	brittle,	so	they	require	the	user	to	know	how	to	phrase	questions	that
the	system	can	answer.	A	better	approach	seems	to	be	to	present	the	structure	of
the	data	in	a	graphical	user	interface	and	then	let	the	user	specify	the	query
directly	in	terms	of	the	symbols	that	the	computer	does	understand.

As	advances	are	made	in	commonsense	reasoning	this	may	change.	Producing
an	effective	natural	language	query	processor	is	a	major	goal	of	the	semantic	web
community.

Eurisko	and	other	early	results
One	of	the	more	commonly	quoted	early	works	is	Eurisko,	created	by	Douglas
Lenat	in	1976.	It	used	various	heuristics	to	generate	short	programs	that	could	be
interpreted	as	mathematical	theorems.	It	also	had	heuristics	for	how	to	create	new
heuristics.	It	had	some	success,	winning	the	Traveler	ship	building	game	against
human	competitors.

The	AGI	community	often	reveres	Eurisko	as	an	example	of	a	very	powerful	early
computer	system.	However,	while	Eurisko	was	certainly	impressive,	it	was	not	as
intelligent	as	is	often	made	out.	Much	of	the	success	in	the	Traveler	competition
was	due	to	Lenat	carefully	guiding	Eurisko,	although	Lenat	says	that	he	could	not
have	won	the	competition	on	his	own.	When	applied	to	more	complex	problems,
Eurisko	ran	out	of	puff	and	failed	to	provide	solutions	due	to	combinatorial
explosion	discussed	earlier	in	Part	I.	Lenat	himself	abandoned	the	approach	and



went	on	to	found	the	Cyc	project.

There	were	many	other	impressive	systems	developed	during	this	golden	era	of
the	1970s.	Systems	could	learn	patterns	from	descriptions.	For	example,	given	a
description	of	blocks	stacked	as	an	“arch”	one	system	could	propose	alternative
stackings	and	ask	the	user	whether	they	were	also	arches.	It	would	then	quickly
build	an	abstract	model	of	what	configurations	the	user	would	consider	to	be	an
arch.





Knowledge	Representation	and	Reasoning

Overview
All	intelligent	systems	need	to	store	information	about	the	world	and	then	make
deductions	based	on	that	knowledge.	This	chapter	describes	the	more	important
methods	of	representing	that	knowledge,	and	corresponding	ways	to	reason
about	it.	Rather	than	start	with	low	level	problems	such	as	how	to	move	a	robot
arm,	these	techniques	start	with	with	a	high	level	description	of	complex	problems
using	symbols	and	then	try	to	reason	about	them	directly.	

Relational	Databases
The	most	basic	representation	of	knowledge	is	simple	tables	of	data	in	a	relational
database.	Databases	normally	contain	fairly	simple	structures	representing
business	objects	such	as	Employees,	Departments,	and	Customers.	A	realistic
database	may	have	dozens	of	tables,	and	some	of	the	columns	in	the	tables	may
be	used	to	refer	to	rows	in	other	tables.	Tables	can	also	represent	more	abstract
concepts	such	as	Events,	Objects	and	Actors.

Birds

Name Is-A Flies Lives-In

Tweety Bush-Turkey Yes My-Back-Yard

Bush-Turkey Bird Yes

Bird Yes

Tux Penguin No

Penguin Bird No

The	table	above	represents	information	about	a	few	birds.	It	includes	the
somewhat	unusual	Is-A	column	which	refers	to	the	Name	of	another	row	in	the
same	table.	So	Tweety	is	a	Bush-Turkey.

The	column	headings	form	a	schema	which	constrains	the	type	of	information	that
the	tables	can	hold.	This	enables	simple	programs	to	query	and	analyze	the	data
in	well-defined	ways.	These	types	of	structures	form	the	basis	of	relational/object
databases,	and	so	form	the	basis	of	most	modern	computer	systems.	For
example,	an	educational	system	might	have	tables	for	Students	and	Classes,	an
e-commerce	system	might	have	tables	of	Orders	and	Products.



Most	of	the	world’s	programmers	develop	applications	that	are	based	on	this	type
of	database,	and	much	research	has	gone	into	their	structure	and	implementation.
However,	they	are	not	generally	referred	to	as	being	artificial	intelligence	systems.

Frames	and	semantic	networks

A	Semantic	Network.
Owned

Semantic	networks	like	the	one	above	represent	data	as	a	node-arc	graph,	which
makes	them	easier	for	humans	to	understand.	The	nodes	represent	objects	and
the	links	represent	the	relationship	between	them.

It	should	be	noted	that	the	network	in	the	diagram	represents	exactly	the	same
information	as	the	database	table	above,	but	the	diagram	makes	the	relationship
between	Tux,	Penguins	and	Birds	more	obvious.	The	values	in	the	Name	column
have	been	placed	into	nodes,	and	other	column	names	have	become	links.	Being
able	to	use	our	human	visualization	ability	is	important	to	aid	our	own
understanding,	but	does	not	change	the	semantics	of	the	data.

Unlike	an	ordinary	database,	a	semantic	network	unifies	the	concept	of	tables	(or
“rntities”)	and	cell	values	(or	“attributes”)	into	nodes,	and	they	are	not	normally
constrained	by	a	schema.	Semantic	networks	usually	contain	some	type	of
inheritance,	in	this	case	via	an	Is-A	link.	This	enables	simple	deductions	to	be
made	by	the	network	itself.	In	the	example	Tweety	can	fly	because	it	is	a	Bird	and
birds	can	normally	fly,	but	Tux	cannot	fly	because	Penguins	are	a	special	case.
Semantic	networks	provide	a	powerful	representation	of	symbolic	information.
However,	they		focus	on	storing	and	retrieving	fairly	static	data	rather	than
reasoning	deeply	about	it	logically.



Mathematical	logic
Mathematics	has	a	long	tradition	of	providing	proofs	of	complex	ideas	as	a	series
of	steps,	each	one	dependent	upon	the	previous	step.	For	example,	consider	the
following	dubious	proof:-

Given	x2+x+1=0
x2=-x-1
x=-1	-1/x
Substituting	the	last	expression	for	(x)	in	the	original	equation	produces:
x2+(x)+1=0
x2	+	(-1-1/x)	+1	=	0
x2=1/x
x3=1
x=1
Substituting	x=1	in	the	original	equation	then	yields:
12+1+1	=	0
3	=	0
Which	Was	not	What	Was	Wanted!

Each	individual	step	is	clear	and	logical,	depending	on	the	previous	step.	There	is
no	division	by	zero.	Most	people	would	not	fault	its	reasoning	until	its	bizarre
conclusion,	namely	that	3	=	0.	Even	then	the	problem	is	not	obvious,	namely	that
x2+x+1=0	has	no	real	solutions.	This	fallacy	is	relatively	crude,	but	there	are	other
areas	of	mathematics	where	it	can	be	quite	difficult	to	determine	whether	a	proof
is	in	fact	valid	or	not.

To	address	these	concerns,	mathematicians	began	to	formalize	the	rules	used	to
prove	mathematical	theorems	in	the	mid	nineteenth	century.	They	developed	first
order	logic,	which	can	be	extended	to	be	powerful	enough	to	represent	and
reason	about	most	mathematical	concepts.	If	a	proof	accurately	follows	the	very
well-defined	rules	of	logic,	then	it	must	be	valid.	It	has	also	been	proven	that	first
order	logic	is	always	consistent	in	the	sense	of	never	proving	the	same	predicate
to	be	both	true	and	false.

Logic	for	artificial	intelligence
From	the	very	beginnings	of	research	into	artificial	intelligence,	it	was	realized	that
a	system	that	was	sufficiently	powerful	to	reason	about	mathematics	could	also	be
used	to	reason	about	everyday	events.	Mathematical	logic	might	therefore	be	a
very	powerful	tool	in	modeling	human	intelligence.

Further,	in	the	late	1960s	general	purpose	theorem	provers	were	developed	that
could,	in	theory,	find	a	proof	of	almost	any	valid	theory.	This	suggested	that	the
world	could	be	understood	by	simply	representing	it	in	first	order	logic,	and	then
using	a	theorem	prover	to	deduce	whatever	was	required.



Consider	the	following	case	of	the	murdered	husband:-

The	murder	scene.
Owned	SLindsay

The	husband	was	discovered	in	the	morning	with	a	knife	protruding	from	his	back,
with	no	witnesses	to	the	stabbing.	However,	the	solution	to	this	crime	is
elementary.	Only	the	butler	and	the	widow	were	in	the	house	during	the	night,	so
the	murderer	must	be	one	of	them.	The	widow	has	an	alibi	because	she	was	on
the	phone	to	her	personal	trainer	for	the	entire	night.	So	the	butler	must	be	the
murderer.

The	dubious	reasoning	above	can	be	represented	by	the	following	statements	in
mathematical	logic.

1.	 Murderer(Butler)	or	Murderer(Widow)
2.	 Alibi(person)	implies	not	Murderer(person)
3.	 Alibi(Widow)
4.	 2	&	3	proves:	not	Murderer(Widow)
5.	 1	&	4	proves:	Murderer(Butler)



The	first	statement	states	that	either	the	Butler	or	the	Widow	is	the	Murderer,	but
without	specifying	which	one	is	actually	guilty.	This	is	more	than	can	be
represented	in	a	simple	database	or	semantic	network,	which	normally	only
represent	ground	facts	such	as	that	a	particular	person	was	in	fact	the	murderer.

The	second	statement	is	even	more	general.	It	says	for	any	person,	having	an
alibi	means	that	they	are	not	the	murderer.	person	is	written	in	lower	case	to
indicate	that	it	is	a	variable,	although	logicians	prefer	single	letters	like	p.	In	this
case	the	possible	values	for	person	are	Butler	and	Widow.	The	third	statement
says	that	the	widow	has	an	alibi.	Statements	2	and	3	can	then	be	used	to	prove
that	the	Widow	is	innocent,	and	then	statement	1	and	4	proves	the	guilt	of	the
Butler.	Each	statement	is	either	a	logical	assertion	about	the	world	or	deduction
that	follows	formal	rules	applied	to	specific	earlier	statements.

Logical	statements	can	also	be	used	to	reason	in	different	directions.	In	our
example,	if	Murderer(Butler)	was	known,	then	the	second	statement	could	also
be	used	to	deduce	not	Alibi(Butler).

Modern	theorem	provers	can	easily	make	much	more	substantial	deductions	over
fairly	large	fact	bases.	First	order	logic	is	only	semi-decidable,	so	no	theorem
prover	can	prove	all	theorems.	If	it	does	prove	a	theorem	then	the	proof	is
guaranteed	to	be	valid	—	there	is	no	guessing	involved.	Further,	the	deduction
and	proof	will	remain	valid	unless	the	facts	upon	which	it	is	based	are	changed.

Propositional	vs.	first	order	systems
Logicians	normally	distinguish	between	simple	propositional	logics	and	more
complex	first	order	logics	that	include	variables.	For	example,	the	following
propositional	clauses	describe	the	relationship	between	wet	grass	and	rain:-

Rain	implies	WetGrass

Sprinkler	implies	WetGrass

WetGrass	implies	(Rain	or	Sprinkler	or	SomethingElse)

On	the	other	hand,	first	order	logic	includes	more	general	predicates	that	can
include	variables	(such	as	x)	to	represent	objects.	Examples	include:-

forall	x	(Alibi(x)	implies	not	Murderer(x))

exists	x	(Murderer(x))

forall	p	forall	c	forall	g	(Parent(p,	c)	and	Parent(g,	p)	implies

GrandParent(p,	c))

The	last	assertion	defines	a	grandparent	g	to	be	a	child	c‘s	parent	p‘s	parent.	(The
forall	qualifier	is	normally	implied	and	has	not	been	written	explicitly	in	other
sections	of	this	book.	Variables	are	in	lower	case.)

Clearly,	first	order	logic	is	much	more	powerful	than	propositional	logic.	However,
propositional	logic	has	advantages.	Firstly,	it	is	finite	—	if	there	are	n	variables



then	there	can	be	at	most	2n	states.	That	makes	it	fully	decidable,	i.e.	it	is	possible
both	in	theory	and	in	practice	to	accurately	determine	whether	any	statement	can
be	proved.	Ugly	constructs	such	as	“this	statement	cannot	be	proved”	simply
cannot	be	expressed	in	propositional	logic.	In	practice	there	are	very	efficient
algorithms	for	handling	huge	numbers	of	propositional	clauses.

Systems	that	learn	from	experience	or	handle	probabilistic	reasoning	are	mainly
propositional,	although	some	of	them	can	be	extended	to	limited	first	order	cases.	
The	wet	grass	example	above	will	be	used	in	the	later	discussion	of	Bayesian
networks.	

Paraconsistent	flying	pigs
Mathematical	logic	can	be	very	powerful,	but	its	reliance	on	absolute	truth	is	in
many	ways	its	Achilles’	heel.	Consider	the	following	proof:-

1.	 Man(x)	implies	Mortal(x)
2.	 Man(Jesus)
3.	 1	&	2	proves:	Mortal(Jesus)
4.	 God(x)	implies	not	Mortal(x)
5.	 God(Jesus)
6.	 4	&	5	proves:	not	Mortal(Jesus)
7.	 6	proves:	not	Mortal(Jesus)	or	Fly(Pigs)
8.	 2	&	7	proves:	Fly(Pigs)

It	is	not	surprising	that	confusion	over	the	mystery	of	the	holy	trinity	leads	to
confusion	as	to	whether	Jesus	is	mortal,	but	the	above	proof	has	used	that
confusion	to	prove	that	pigs	can	fly.

It	is	the	very	definition	of	disjunction	that	if	A	or	B	is	true,	then	either	A	is	true	or	B
is	true.	Thus	if	it	is	known	that	A	is	true,	then	A	or	X	must	also	be	true,	regardless
of	whether	X	is	true.	This	is	how	step	7	of	the	above	proof	then	introduces	flying
pigs	into	the	confusion	about	the	trinity.	Now,	if	C	or	D	is	true,	and	C	is	false,	then
clearly	D	must	be	true.	Step	3	has	already	proven	that	Mortal(Jesus),	so	not
Mortal(Jesus)	must	be	false.	So	if	not	Mortal(Jesus)	or	Fly(Pigs)	then	clearly
pigs	can	fly.

This	is	a	major	problem,	because	it	means	that	any	small	inconsistency	in	a	large
fact	base	can	lead	to	arbitrarily	incorrect	deductions.	They	are	trivial	to	spot	in	our
toy	proof	above,	but	much	more	subtle	when	a	realistically	sized	fact	base	is
used.

There	are	a	number	of	logics	known	as	paraconsistent	that	try	to	address	this
issue	by	restricting	the	logic	in	various	ways.	While	they	can	certainly	prevent	pigs
from	flying,	they	also	reduce	the	deductive	power	of	the	logic	so	that	it	cannot
make	some	otherwise	valid	inferences.



Monotonicity
A	deeper	problem	is	that	classical	logic	is	“monotonic”,	in	the	sense	that	new	facts
cannot	invalidate	any	previous	deductions.	That	is	because	each	deduction	is
based	explicitly	on	previous	deductions	or	assertions.	Any	additional	assertions
are	simply	not	used	by	the	proof.

For	example,	given	the	assertion	that	all	Birds	can	Fly,	there	is	no	way	that
Penguins	can	be	a	Bird	that	does	not	Fly.	On	the	other	hand,	if	it	is	asserted	that
only	some	Birds	can	Fly,	there	is	no	way	to	deduce	that	Sparrows	can	fly	just
because	nothing	else	has	been	said	about	Sparrows'	flying	capabilities.

It	is	difficult	to	describe	a	simple	scene	logically.
Owned

A	related	problem	is	that	all	things	that	are	false	also	need	to	be	explicitly
enumerated.	For	example,	in	the	blocks	world	suppose	it	has	been	asserted	that
Pyramid-1	is	on	Block-3	and	Pyramid-2	is	in	the	box,	i.e.	On(Pyramid-1,	Block-3)
and	On(Pyramid-2,	Box).	This	does	not	enable	the	deduction	that	there	are	no
pyramids	on	the	table.	One	reason	for	this	is	that	just	because	no	other	pyramids
have	been	mentioned	does	not	mean	that	there	might	not	be	a	Pyramid-3	lurking
on	the	table.

Also	just	because	On(Pyramid-2,	Box)	does	not	mean	that	Pyramid-2	might	not
also	be	on	the	table,	i.e.	that	objects	could	not	be	in	two	places	at	the	same	time.
Another	problem	is	that	Pyramid-1	might	actually	just	be	a	different	name	for
Block-3,	so	that	they	actually	refer	to	the	same	object.	We	tend	to	project	these
types	of	common-sense	assumptions	onto	the	symbols	that	we	use,	but	the	logic
engine	only	understands	the	specific	assertions	that	have	been	formally	made.

Having	to	specify	everything	that	is	true	in	order	to	produce	absolutely	correct
deductions	is	just	not	practical	nor	is	it	even	feasible	when	modeling	the	real	world
outside	of	mathematics.	One	approach	to	this	problem	is	to	try	to	introduce	default
rules	that	make	deductions	if	and	only	if	they	cannot	be	shown	to	be	inconsistent
with	other	known	rules.	A	default	rule	that	all	birds	can	fly	should	not	deduce	that
penguins	can	fly	because	that	would	be	a	contradiction.	However,	such	default



logics	become	very	messy	when	a	large	number	of	conflicting	default	rules	are
involved.	There	is	also	the	non-trivial	issue	that	logic	is	undecidable,	which	means
that	it	is	not	possible	to	detect	all	contradictions	in	theory	let	alone	in	practice,	and
thus	it	is	not	possible	to	reliably	determine	which	default	rules	should	be	used.

Closed	world,	Prolog
One	very	practical	and	fairly	widely	used	logic	system	is	Prolog,	or	its	simpler
subset	Datalog.	They	address	the	default	rule	problems	by	using	a	closed-world
assumption	in	which	clauses	that	cannot	be	shown	to	be	true	are	assumed	to	be
false.	This	is	then	combined	with	a	restricted	“Horn	clause”	logic	that	makes	it
possible	to	determine	whether	a	clause	is	in	fact	true,	both	in	theory	and	in
practice.	A	simple	set	of	Datalog	clauses	might	be:-

1.	 BushTurkey(Tweety)
2.	 Bird(x)	:-	BushTurkey(x)
3.	 Penguin(Tux)
4.	 Bird(x)	:-	Penguin(X)
5.	 Fly(x)	:-	Bird(x),	not(Flightless(x))
6.	 Flightless(x)	:-	Penguin(x)

(This	example	sticks	to	the	convention	that	lower-case	names	are	variables,
which	is	actually	the	opposite	of	what	Prolog	uses.)

This	repeats	the	bird	data	from	our	semantic	network.	Line	1	asserts	that	Tweety	is
a	BushTurkey,	and	line	2	says	that	if	some	object	x	is	a	BushTurkey	then	it	is	also	a
Bird.	It	is	the	5th	line	that	is	most	interesting,	in	that	it	asserts	that	all	Birds	can
Fly,	unless	they	are	known	to	be	Flightless	(the	comma	means	conjunction,	i.e.
and).	Thus	the	system	can	deduce	that	Tweety	can	fly	without	having	to	be
explicitly	told	that	BushTurkeys	can	fly,	and	yet	there	is	no	doubt	that	Tux	cannot	fly
because	line	6	states	that	Penguins	are	Flightless.

The	problem	with	Prolog/Datalog	is	that	in	order	to	make	the	closed-world
assumption	workable,	the	logic	has	to	be	substantially	simplified.	In	particular,	it	is
not	possible	to	assert	disjunctions	(i.e.	or)	such	as	Murderer(Butler)	or
Murderer(Widow)	and	so	make	the	interesting	deductions	that	solve	the	crime.	It	is
also	not	possible	to	distinguish	things	that	are	known	to	be	false	from	things	that
are	simply	not	known	to	be	true.	Various	attempts	have	been	made	to	address
these	shortcomings,	but	they	all	have	issues	and	none	have	become	widely	used.

(Prolog	can	also	be	used	as	a	general	purpose	programming	language	by	making
assumptions	as	to	how	its	very	simple	theorem	prover	works	—	hence	the	name
programming	in	logic.	However,	most	AI	programmers	traditionally	preferred	the
dedicated	programming	language	Lisp.	Lisp	has	powerful	macro	and	other
features	and	enabled	many	different	paradigms	to	be	used	including	but	not
limited	to	Prolog’s	Horne	clause	logic.	Sadly,	today	both	Prolog	and	Lisp	have
fallen	into	disuse,	and	most	AI	development	is	now	done	in	the	more	primitive



Java	or	.Net	environments,	if	not	the	very	crude	C++	programming	language.)

Description	logics
Yet	another	approach	is	description	logics	which	combine	logic	engines	with
semantic	networks.	They	efficiently	make	simple	deductions	based	on
“terminological”	data	that	is	stored	in	the	network	and	combine	these	with	more
general	“assertional”	logic	rules.	For	example,	a	description	logic	might	add	the
following	assertion	to	the	semantic	network	above:-

		BushTurkey(x)	and	LivesIn(x,	y)	implies	GardenDugUp(y)

In	combination	with	the	knowledge	from	the	semantic	network	that	Tweety	lives	in
my	back-yard,	this	would	enable	the	system	to	efficiently	deduce	that	the	author’s
back-yard	will	be	dug	up	by	the	evil	turkey.

Description	logics	support	primitive	concepts,	such	as	explicitly	saying	that	Tweety
is	a	Bird,	as	well	as	defined	concepts	such	as	saying	that	an	Animal	that	has
Feathers	is	a	Bird.	They	use	defined	concepts	to	recognize	that	Tweety	is	a	bird
given	that	it	has	feathers,	and	can	also	automatically	determine	which	defined
concepts	are	special	cases	of	other	defined	concepts.	As	always,	there	is	a	trade-
off	between	the	power	of	the	logic	to	represent	complex	conditions	and	the	ability
of	the	theorem	prover	to	reliably	reason	about	the	concepts.

Perhaps	more	interestingly,	some	description	logics	use	Is-A	inheritance	within
semantic	networks	to	provide	a	more	well	behaved	approach	to	the	problem	of
default	reasoning.	This	author	has	published	papers	showing	how	semantic
networks	and	description	logics	can	be	used	to	structure	complex	expert	system
rule	bases.

Ontologies	and	databases
Ontologies	provide	a	hierarchical	framework	for	the	terms	used	in	an	information
system.	One	simple	ontology	is	Wordnet,	which	is	widely	used	to	assist	in	natural
language	processing.	It	contains	the	definitions	of	some	150,000	words,	or	more
specifically,	synsets,	which	are	collections	of	words	with	the	same	meaning.	Thus
“engine”	the	machine	is	in	a	different	synset	from	“engine”	to	cause	(e.g.	“the
engine	of	change”).	For	each	synset	Wordnet	contains	a	list	hyponyms	or
subtypes,	so	for	“engine”	that	includes	“aircraft	engine”	and	“generator”.	It	also
contains	super-type	hierarchies	such	as	“machine”,	“artefact”,	and	“physical
object”.	Relationships	include	part	of	which	for	“engine”	includes	“piston”	and
“crank”,	synonyms,	and	antonyms.

Another	commonly	used	database	is	DBPedia	which	is	a	semi-automatic
extraction	of	basic	facts	from	Wikipedia	such	as	the	names	and	capitols	of
countries.

The	SNOMED	medical	terminology	is	a	more	formal	system	that	is	used	to	define



diseases,	procedures,	substances,	etc.	that	are	stored	in	patient	and	hospital
record	systems.	This	enables	intelligent	systems	to	review	the	data	in	order	to
check	for	errors	and	to	look	for	large	scale	epidemiological	effects.	SNOMED	is
based	on	a	description	logic	and	uses	both	primitive	and	defined	concepts	that
form	a	huge	type	hierarchy.	So	for	example	“flu”	is	both	a	“viral	infection”	and	a
“respiratory	disease”,	which	in	turn	is	a	“disease”	with	the	“infection	site”	being	the
“lung”.	The	description	logic	then	enables	concepts	to	be	automatically
determined,	based	on	attributes	that	may	be	supplied.	Many	subtleties	arise	when
attempting	to	formalize	descriptions	of	the	real	world	in	a	description	logic.

Modeling	situations
There	has	been	considerable	research	into	different	ways	to	use	mathematical
logic	in	order	to	model	the	real	world.	One	area	of	interest	is	the	modeling	of	a
sequence	of	steps	to	achieve	a	goal,	such	as	stacking	some	blocks.

An	assertions	such	as	on(Pyramid-1,	Block-3)	makes	an	absolute	statement	with
no	regard	to	time.	But	a	robot	stacking	blocks	will	be	constantly	changing	their
configuration	so	a	method	is	required	to	distinguish	the	state	of	the	world	at
different	points	in	time	(or	more	generally,	in	different	situations).

One	method	of	addressing	this	issue	is	the	STRIPS	planning	engine		discussed
earlier.	The	logical	system	need	only	describe	the	state	of	the	world	at	specific
instances	in	time,	and	the	planning	engine	then	asserts	and	retracts	assertions	as
it	determines	its	plan.	There	are	truth	maintenance	systems	that	enable	assertions
to	be	efficiently	added	and	removed	without	having	to	redundantly	remake
deductions	that	are	unaffected	by	those	changes.

The	situation	calculus	takes	a	different	approach	by	representing	situations	in	the
logic	itself.	Each	predicate	such	as

		on(Pyramid-1,	Block-3)

has	an	extra	situation	parameter	added	to	become

		on(Pyramid-1,	Block-3,	S4)

stating	that	Pyramid-1	is	on	Block-3	at	the	specific	situation	(or	time)	S4.	A
predicate	that	has	an	additional	situation	parameter	is	called	a	fluent.	The	effect	of
the	action	of	putting	a	block	down	can	be	described	as	follows.

		(Holding(x,	s)	and	Clear(y,	s))	

				implies	(s'	=	Result(PutDown(x,	y),	s)	and	on(x,	y,	s'))

In	other	words,	if	some	object	x	is	held	in	situation	s,	and	there	is	another	object	y
that	has	nothing	on	top	of	it	in	situation	s,	then	a	new	situation	s’	can	be	created
that	results	from	putting	down	x	on	top	of	y	in	which	x	is	indeed	on	top	of	y.	In	this
rather	long-winded	way	the	effect	of	each	action	on	the	state	of	the	new	situation
caused	by	that	action	can	be	described.



However,	that	is	not	enough,	because	it	only	defines	what	happens	to	objects	that
change.	The	fact	that	most	objects	are	not	affected	by	the	action	also	needs	to	be
explicitly	specified.	For	example,	suppose	on(Pyramid-1,	Block-3,	S4)	and	that
our	action	is	to	put	Block-5	into	the	box,	producing	situation	S5.	There	is	no	way	to
automatically	deduce	that	Pyramid-1is	still	on	Block-3	in	S5,	even	though	it	is
obvious	that	nothing	happened	to	Pyramid-1.	This	is	known	as	the	frame	problem,
and	it	is	a	special	case	of	the	general	problem	of	having	to	specify	everything	that
is	false	as	well	as	everything	that	is	true	in	first	order	logic.

Frame	axioms	are	axioms	that	specify	what	does	not	change	as	a	result	of	an
action.	If	there	are	A	actions	that	can	be	performed,	and	F	fluents	that	describe
the	state	of	the	world,	then	in	general	A	*	S	frame	axioms	will	be	needed	to
specify	how	each	action	affects	each	and	every	fluent.	However,	most	of	the	time
actions	do	not	have	strange	side	effects	and	only	affect	the	objects	that	they	are
specifically	changing.	There	is	no	way	to	tell	a	first	order	logic	system	to	assume
that	things	do	not	change	unless	they	have	been	told	to	change.

There	is	a	relatively	efficient	way	to	specify	frame	axioms	by	saying	that	each
fluent	F	remains	true	after	any	action	A,	unless	A	is	one	of	the	specific	actions	that
might	affect	F.		This	is	still	messy	for	any	realistic	problem	space.	It	also	asks	a	lot
of	any	general	purpose	theorem	prover	to	be	able	to	analyze	the	resulting
complex	set	of	axioms	and	produce	a	plan	that	achieves	a	goal.	Producing	an
efficient	plan	that	minimizes	some	cost	is	even	more	difficult.

The	situation	calculus	is	more	powerful	than	the	STRIPS	approach	because	it	can
reason	across	different	situations.	For	example,	one	could	specify	a	rule	that	a
pyramid	can	never	be	put	on	a	block	that	had	ever	been	covered	by	a	cylinder	in	a
previous	state.	That	power	is	also	a	problem	because	it	is	much	more	difficult	to
build	a	general	purpose	theorem	prover	that	can	deal	with	it	than	it	is	to	build	a
special	purpose	planning	engine	such	as	STRIPS	that	only	needs	to	prove	simple
theorems	within	each	state.	The	latter	problems	are	quite	difficult	enough	in	a
realistic	problem	space.

Reification
There	are	several	ways	of	representing	a	given	assertion	in	logic.	One	important
variation	is	the	degree	to	which	predicates	are	replaced	by	objects.	As	a	simple
example,	consider	the	following	assertion	as	to	the	size	of	a	murderer’s	feet.

		LargeFootPrint(Butler)	and	SmallFootPrint(Widow)

That	is	the	most	efficient	way	to	represent	the	information	from	the	point	of	view	of
the	theorem	prover,	but	it	makes	it	difficult	to	reason	generally	about	footprints.
Now	consider	the	following	alternative	in	which	the	foot	size	has	been	abstracted
as	an	object	or	reified.

		FootPrint(Butler,	Large)	and	FootPrint(Widow,	Small)



The	two	initial	predicates	have	been	replaced	by	the	single	predicate	FootPrint
and	the	new	Small	and	Large	objects	have	been	introduced.	This	makes	it	easy	to
add	the	second	general	assertion	that	footprints	found	at	the	scene	of	the	crime
tell	us	who	the	murderer	was	as	shown	below.

		FootPrint(MurderScene,	size)	and	FootPrint(person,	size)

				implies	Murderer(person)

In	other	words,	if	the	foot	print	at	the	scene	of	the	crime	is	the	same	size	as	that	of
a	person,	then	that	person	is	the	murderer.

Reification	can	also	simplify	complex	predicates	that	have	too	many	parameters,
such	as	the	many	facts	known	about	a	murder.	Without	reification	the	following
could	be	used	to	say	that	it	is	true	that	a	murder	occurred	with	a	particular	victim,
murderer,	weapon,	location,	time,	reason,	etc.:-

		Murder(Husband,Butler,	Knife,	Home,	Evening,	Greed,	...)

However,	this	is	obviously	unwieldy,	and	it	requires	rewriting	all	existing	the	rules
as	new	parameters	are	added.	An	alternative	formulation	is	to	reify	Murder	into	an
object	and	then	provide	relationships	to	other	objects	as	follows:-

		Murder(m)	and	Victim(m,	Husband)and	Weapon(m,Knife)	and	Location(m,	Home)	and…

In	other	words,	m	represents	some	murder	for	which	the	other	predicates	provide
additional	information.	This	again	enables	more	general	rules	to	be	written,	such
as	that	the	murderer	must	have	been	at	the	scene	of	the	crime:-

		Murder(m)	and	loc	=	Location(m)	implies	loc	=	Location(Murderer(m))

This	is	very	similar	to	the	way	data	can	be	stored	in	an	ordinary	relational
database,	either	as	a	table	with	many	columns	or	a	reified	table	with	a	property
column.

MurderId Victim Murderer Weapon Location Time
m123 Husband Butler Knife Home Evening

The	table	above	is	non-reified,	whereas	the	table	below	contains	the	same	data	in
a	reified	schema.	Note	the	way	that	column	names	above	have	become	data
values	below.	Reified	tables	are	more	flexible	but	are	also	far	less	efficient	and
they	obscure	the	meaning	of	the	data.	Reified	tables	are	often	used	in	database
applications	to	enable	new	properties	to	be	defined	while	the	program	is	running,
often	based	on	the	mistaken	belief	that	the	schema	(column	names)	cannot	be
altered	at	run	time.	Reified	tables	also	make	it	possible	to	add	meta	data	to
individual	properties	such	as	when	a	particular	property	value	was	set,	who	set	it,
and	the	degree	of	belief.

MurderId Property Value



m123 Victim Husband
m123 Murderer Butler
m123 Weapon Knife
m123 Location Home
m123 Time Evening

Triplestore	databases	store	fully	reified	databases	like	the	one	above.

Beliefs
In	logic,	reification	also	provides	a	mechanism	to	handle	beliefs.	Consider	the
following	statement	about	detectives	Holme’s	and	Watson’s	thoughts	about	the
case:-

Watson	believed	that	the	widow	had	a	valid	alibi,	but	Holmes	believed	that	she	did
not.

This	can	be	written	as

		a	=	Alibi(Widow)	and	Believe(Watson,	a)	and	Believe(Holmes,	Not(a))

In	order	to	do	this,	Alibi	has	been	changed	from	being	a	predicate	that	is	either
true	or	false,	to	being	a	function	that	returns	a	belief	object.	Every	predicate	in	the
original	formulation	now	needs	to	be	converted	to	a	function	that	returns	a	belief
object	which	is	only	useful	if	the	agent	that	believes	it	is	also	specified.	A	belief
object	may	be	declared	to	be	absolutely	true,	but	it	is	more	likely	to	be	believed	by
particular	agents,	possibly	to	different	degrees	and	at	different	times.

This	also	means	that	logical	operators	on	beliefs	need	to	be	defined.		In	the
example	Not	is	a	new	function	that	produces	a	new	belief	that	its	parameter	belief
is	false.	(Saying	that	Holmes	believed	that	the	widow	did	not	have	a	good	alibi	is
subtly	different	from	saying	that	Holmes	did	not	believe	that	she	had	a	good	alibi.
The	latter	would	be	written	not	Believe(Holmes,	a).)

Beliefs	themselves	can	then	be	reified	in	order	to	represent	statements	such	as
the	following:-

Holmes	thought	that	Watson	believed	that	the	widow	had	a	valid	alibi,	but
Watson	just	wanted	Holmes	to	believe	that	so	that	Holmes	could	take	the
credit	for	solving	the	case.

The	first	part	of	this	can	be	represented	as

		a	=	Alibi(Widow)	

		and	h=Believe(Holmes,	Believe(Watson,	a))	and	True(h)	

		and	True(Believe(Watson,	Not(a)))	and

		True(Believe(Watson,	h))

The	problem	with	this	approach	is	that	logic	is	essentially	being	defined	using



logic,	and	that	can	become	very	complex	and	computationally	expensive.	An
alternative	is	to	develop	various	new	types	of	modal	logics	which	introduce	new
operators	such	as	necessarily	and	possibly.	Determining	the	formal	semantics	of
such	logics	entertains	logicians	and	philosophers.

Common	sense	reasoning
A	more	basic	problem	with	our	murder	reasoning	is	that	common	sense	would
suggest	that	the	widow	may	well	have	had	a	motive	to	remove	her	husband	so
that	she	could	elope	with	her	personal	trainer.	If	that	were	the	case,	then	her	alibi
provided	by	her	trainer	would	be	of	minimal	value.	It	is	also	highly	unusual	to	be
on	the	telephone	for	an	entire	night	(unless	you	are	a	teenager).

Some	would	argue	that	this	is	merely	a	symptom	of	the	simplistic	way	in	which	the
case	was	modelled.	If	a	large	body	of	common-sense	knowledge	was	used,	then
rules	about	adultery	and	telephone	calls	might	produce	a	very	different	conclusion
if	a	non-monotonic	method	of	reasoning	was	also	available.	Several	projects	are
attempting	to	build	such	a	knowledge	base.

A	secondary	issue	is	that	while	the	initial	proof	of	the	butler’s	guilt	may	be	logically
valid,	in	practice	any	line	of	reasoning	that	relies	on	the	elimination	of	alternatives
to	reach	a	conclusion	is	dubious	unless	that	conclusion	has	independent	evidence
that	supports	it.	This	is	because	it	is	difficult	to	ensure	that	we	thoroughly
understand	all	of	the	possible	alternatives	in	the	uncertain	world	in	which	we	live.

More	fundamentally,	neither	murder	enquiries	nor	life	in	general	comes	neatly
packaged	as	logical	assertions.	Instead,	the	world	is	presented	as	a	bewildering
collection	of	images,	sounds	and	ambiguities.	As	any	reader	of	detective	novels
knows,	the	challenge	of	solving	a	crime	is	to	determine	which	of	a	myriad	of	half-
hinted	facts	are	relevant	and	to	inferring	obscure	unstated	motives	rather	than
performing	simple	logical	deductions	on	well-defined	logical	assertions.	If	this	type
of	reasoning	could	be	captured	in	some	type	of	logic	it	would	need	to	be	much
more	sophisticated	than	our	simple	murder	analysis	above.

Cyc
As	shown	by	the	murder	example,	understanding	the	world	requires	a	huge
amount	of	background	knowledge	which	can	be	used	to	interpret	new
observations	or	statements	about	it.	As	another	example,	consider	the	following
seemingly	simple	sentences:-

“Napoleon	died	on	St.	Helena.	Wellington	was	greatly	saddened.”

The	author	of	the	sentences	assumes	that	the	reader	will	infer	that	Wellington
outlived	Napoleon,	that	he	knew	about	his	death,	that	people	are	only	sad	about
the	deaths	of	people	they	care	about,	as	well	as	the	fact	that	Wellington	had	been
Napoleon’s	enemy	in	battle,	and	therefore	Wellington	must	have	held	Napoleon	in



high	regard,	which	is	actually	the	point	of	the	statement.

In	1984	Douglas	Lenat	founded	the	Cyc	project	(as	in	encyclopedia)	to	capture
this	and	other	common-sense	knowledge	that	would	“prime	the	pump”	for	more
automated	knowledge	capture	based	on	sources	such	as	encyclopedias.	The
project	is	ongoing,	and	OpenCyc	makes	some	of	the	accumulated	knowledge
freely	available.

Cyc	stores	its	knowledge	in	the	CycL	language	which	is	a	description	logic.	It	has
a	hierarchy	of	concepts	that	starts	with	thing	which	is	specialized	by	abstract
concepts	such	as	Event,	Action,	and	Agent,	down	to	concrete	concepts	such	as
Person	and	Death.

The	knowledge	base	is	heavily	reified	to	enable	predicates	to	be	reasoned	about.
So	the	first	sentence	above	might	be	represented	as

		Event(D123)	and	TypeOf(D123,	death)	and	Subject(D123,	Napoleon)

rather	than	simply

		Died(Napoleon)

The	reification	enables	the	death	event	to	be	reasoned	about,	for	example,	that	it
was	the	death	of	Napoleon	that	caused	Wellington	to	be	sad

		EmotionalState(S234)	and

		TypeOf(S234,	sad)	and	Subject(S234,	Wellington)	and	Cause(D123,	S234)

This	again	makes	theorem	proving	difficult	for	realistic	examples.

It	turns	out	that	the	amount	of	knowledge	required	to	make	common	sense
inferences	is	huge.	Cyc	now	contains	a	vast	store	of	hundreds	of	thousands	of
concepts	and	millions	of	specific	facts,	and	yet	it	is	still	not	considered	finished.
People	evidently	learn	a	lot	more	in	childhood	than	they	are	consciously	aware	of.

The	huge	knowledge	base	is	divided	into	a	hierarchy	of	microtheories,	each	of
which	is	expected	to	be	internally	consistent.	Examples	include	NaiveSpacial,
Movement,	Transportation,	Propositions,	Emotions,	Biology	and	Materials.
Emotions,	for	example,	has	120	concepts	such	as	like	and	gratitude,	and	dozens
of	relationships	such	as	feelsTowardsObject.	The	use	of	microtheories	structures
the	huge	fact	base	and	improves	Cyc’s	performance	both	by	reducing	the	search
space	of	the	theorem	prover	as	well	as	by	enabling	special	purpose	theorem
provers	to	be	developed.

A	primary	goal	of	Cyc	is	to	assist	in	deeply	understanding	unconstrained	natural
language,	which	is	attempted	by	the	Cyc-NL	tool.	It	uses	the	common-sense
knowledge	base	to	disambiguate	language,	and	to	fit	new	facts	into	an
established	knowledge	structure.	The	ultimate	goal	would	be	to	upload	documents
such	as	Wikipedia	and	avoid	the	need	for	the	tedious	manual	entry	of	data.

One	practical	tool	is	the	FACT	game,	which	can	be	played	on	the	Cyc	web	site.



Cyc	presents	propositions	to	users,	and	they	state	whether	they	think	the	fact	is
true.	If	enough	users	agree,	it	is	added	to	the	knowledge	base.	For	example,	it
might	present	the	assertion	(from	Nilsson’s	Quest	for	AI)

Spaghetti	marinara	always	contains	garlic.

That	presents	the	default	reasoning	problem	with	normal	mathematical	logic.
Certainly	a	marinara	normally	contains	garlic,	but	one	would	not	want	the
presence	of	garlic	to	be	definitional.	One	should	be	able	to	say	“The	marinara
tasted	bland	because	she	forgot	to	add	any	garlic”	without	producing	the
contradiction	that	it	could	not	be	a	marinara	if	it	did	not	contain	garlic.

Unfortunately	this	type	of	issue	is	the	rule	rather	than	the	exception.	Most
statements	that	are	usually	true	can	also	occasionally	be	false.	Techniques	for
accurate	probabilistic	reasoning	will	be	covered	in	the	next	chapter,	but	they
cannot	be	used	for	a	vast	first	order	knowledge	base	like	Cyc.	What	is	required	is
some	type	of	common-sense	probabilistic	reasoning	that	may	not	be	accurate	but
is	still	useful,	along	the	lines	of	words	such	as	probably,	possibly,	unlikely.	Heavy
reification	or	modal	logics	might	be	used	to	address	the	problem,	but	it	is	far	from
solved.

Another	issue	for	Cyc	is	that	despite	its	grand	vision	and	huge	knowledge	base,	it
has	only	been	used	for	some	relatively	specialized	applications.	Building	real
applications	is	an	important	reality	test	for	the	design	of	any	complex	system.

Learning	logical	rules	from	experience
There	are	several	mechanisms	for	learning	logical	rules	based	on	observations.
For	example,	suppose	we	make	the	following	observations:-

Raining Sprinkler	On Washing	on	Line Wet	Grass
True False True True
False False True False
False True False True
True True False True
True False False True

From	this	it	is	fairly	easy	to	infer	that

		(Rain	or	Sprinkler)	implies	WetGrass	

		WetGrass	implies	(Rain	or	Sprinkler)

One	needs	to	take	care	though,	from	this	very	limited	data	it	is	also	possible	to
infer

	not	Washing	implies	WetGrass



More	sophisticated	systems	can	learn	much	more	complex	relationships	from
large	bodies	of	noisy	data.	They	can	infer	first	order	rules	that	include	variables,
as	well	as	being	able	to	introduce	additional	variables	that	consolidate	knowledge.
One	impressive	system	could	learn	what	it	meant	to	sort	numbers	given	only	a
collection	of	sorted	and	unsorted	lists	to	describe	the	logical	relationship.

Scruffy	vs.	neat
The	use	of	logic	in	artificial	intelligence	applications	has	been	somewhat
controversial.	Many	of	the	early	systems	such	as	Eliza	and	SHRDLU	just
manipulated	symbols	in	whatever	way	seemed	to	produce	a	good	result.	These
systems	were	known	as	scruffy,	as	opposed	to	neat	systems	that	preferred	to	use
formal	methods	of	logic	or	mathematics.	Proponents	of	the	neat	approach	argue
that	producing	good	results	without	a	sound	theory	just	shows	that	people	are
good	programmers	without	learning	any	reusable	concepts.	Proponents	of	scruffy
techniques	argue	that	strictly	logical	approaches	do	not	produce	useful	results
and	that	their	proponents	are	mainly	logicians	in	philosophy	departments	trying	to
obtain	funding	via	artificial	intelligence	grants.	There	is	some	truth	in	both	these
claims.

Today	the	debate	has	moved	on,	with	proponents	of	non-symbolic	approaches
arguing	that	both	scruffies	and	neats	are	on	the	wrong	path	for	reasons	that	will
be	described	later.	In	practice,	a	number	of	different	techniques	have	been
required	to	build	useful	systems,	and	it	is	not	helpful	to	try	to	label	them	as	being
scruffy	or	neat.





Uncertain	Expertise

Rule-based	expert	systems
One	of	the	early	successes	of	artificial	intelligence	research	was	rule	based	expert
systems.	These	could	encapsulate	complex	rules	about	a	subject	domain,	and
then	use	those	rules	to	solve	problems	and	plan	actions	with	performances	that
sometimes	exceeded	that	of	established	experts	in	the	field.	These	systems	tend
to	be	rather	scruffy,	and	there	are	many	practical	applications	of	this	technology
today.

An	expert	system	typically	consists	of	a	rule	base	and	an	inference	engine.	The
rules	typically	have	an	antecedent	which	is	a	condition	that	needs	to	be	true	for
the	rule	to	be	activated,	and	a	consequent	which	is	an	action	or	assertion	to	be
raised	once	the	rule	is	activated.	For	example,	the	following	rules	might	form	part
of	a	simple	system	for	classifying	animals	(from	P.	Winston’s	book	Artificial
Intelligence):-

IF	the	animal	has	hair

THEN	it	is	a	mammal.

IF	the	animal	gives	milk

THEN	it	is	a	mammal.

IF	the	animal	has	feathers

THEN	it	is	a	bird.

IF	the	animal	flies

AND	the	animal	lays	eggs

THEN	it	is	a	bird.

The	IF	clause	provides	the	antecedent	condition,	and	the	THEN	part	provides	the
consequent	to	be	raised.	Multiple	rules	can	make	the	same	assertion,	and	the	last
rule	has	two	parts	to	the	antecedent	to	rule	out	bats	and	echidnas.

More	complex	rules	rely	on	assertions	raised	by	other	rules.	For	example,	many
of	the	following	rules	depend	on	the	mammal	rules	above.

IF	the	animal	eats	meat	THEN	it	is	a	carnivore.

IF	the	animal	is	a	mammal	AND	it	has	pointed	teeth	AND	it	has	claws	AND

its	eyes	point	forward	THEN	it	is	carnivore.

IF	the	animal	is	a	mammal	AND	it	has	hoofs	THEN	it	is	an	ungulate.

IF	the	animal	is	a	mammal	AND	it	chews	cud	THEN	it	is	an	ungulate	AND

it	is	even-toed.

IF	the	animal	is	a	carnivore	AND	it	has	a	tawny	colour	AND	it	has	dark

spots	THEN	it	is	a	cheetah.

IF	the	animal	is	an	ungulate	AND	it	has	a	tawny	colour	AND	it	has	dark

spots	AND	it	has	a	long	neck	THEN	it	is	a	giraffe.



If	we	see	an	animal	eating	meat	then	these	rules	assert	that	it	is	a	carnivore.
However,	even	if	we	are	not	lucky	enough	to	see	a	carnivore	while	it	is	eating,	we
can	still	recognize	it	if	we	see	that	it	has	hair,	which	makes	it	a	mammal,	as	well
as	pointed	teeth,	claws	and	forward-pointing	eyes.	If	we	then	note	that	it	is	a
tawny	colour	and	has	spots,	we	know	that	it	is	a	cheetah.

Note	that	the	rules	are	not	just	ordinary	programming	language	if/then	statements
because	they	do	not	specify	in	which	order	they	are	executed.	A	forward	chaining
inference	engine	uses	rules	to	argue	from	observations	to	conclusions,	much	like
we	did	in	the	preceding	paragraph.	Conversely,	a	backward	chaining	engine
would	make	a	hypothesis	and	then	look	for	evidence	to	support	that	hypothesis.	In
our	example,	it	might	guess	that	the	animal	is	a	cheetah,	and	then	try	to
determine	whether	it	is	a	tawny	coloured	spotted	carnivore.	In	practice	both
approaches	are	used	together.	Some	initial,	easily-made	observations	might	be
used	to	produce	some	credible	hypotheses,	which	will	then	dictate	which	further
observations	need	to	be	made	in	order	to	select	the	correct	one.

Another	important	feature	of	expert	systems	is	their	ability	to	introspect	their	rule
base	to	answer	questions	as	to	why	it	reached	the	conclusions	that	it	did.	This
enables	a	human	expert	to	understand	and	validate	the	conclusions	that	it
reaches.

Mycin	and	other	expert	systems
One	of	the	first	successful	expert	systems	was	Mycin,	produced	in	the	early
1970s.	Mycin	could	analyze	bacterial	infections	and	prescribe	treatments	based
on	its	analysis.	This	is	difficult	to	do	because	there	are	many	different	types	of
infection,	and	treatments	have	to	be	initiated	long	before	conclusive	evidence	of
the	cause	of	the	infection	can	be	obtained.	It	is	important	to	be	as	specific	as
possible	to	minimize	the	prevalence	of	antibiotic-resistant	bacteria	and	to	ensure
that	all	likely	pathogens	that	might	be	the	cause	of	a	dangerous	infection	are
controlled.

Mycin	would	ask	the	doctor	for	information	about	the	infection	such	as	the
infections	site,	whether	cultures	could	be	grown	(an)aerobically,	what	the
bacteria’s	morphology	and	gram	stain	were.	It	would	then	provide	a	diagnosis	like
the	following:-

My	opinion	is	that	the	identity	of	ORGANISM-1	may	be	1.	Pseudomonas-

aeruginosa,	or	2.	Klebsiella-pneumoniae,	or	3.	E.	Coli,	or	4.

Bacteroides-fragilis,	or	5.	Enterobacter	or	6.	Proteus-non-mirabilis.

My	recommendation	is	in	order	to	cover	items	1,	2,	3,	5,	and	6	give

gentamycin	using	a	dose	of	119mg	(1.7	mg/kg)	q8h	IV	for	10	days.	Modify

dose	in	renal	failure.	In	order	to	cover	item	4	give	celindamycin	using

a	dose	of	595	mg	(8.5	mg/kg)	16h	IV	for	14	days.

To	produce	this	diagnosis	Mycin	used	about	500	rules,	of	which	the	following	rule
is	typical:-



IF	the	infection	type	is	primary-bacteremia	AND	the	suspected	entry

point	is	gastrointestinal	tract	AND	the	site	of	the	culture	is	one	of

the	sterile	sites	THEN	there	is	evidence	that	the	organism	is

Bacteroides.

The	Stanford	Medical	School	found	that	MYCIN	could	propose	an	acceptable
therapy	69%	of	the	time,	which	was	better	than	infectious	disease	experts	when
assessed	under	the	same	criteria.	(There	is	always	some	disagreement	amongst
experts	about	the	best	treatment	in	different	circumstances.)

Mycin	was	never	deployed	in	the	field	because	it	could	take	30	minutes	to	enter
the	disease	profile	into	an	ancient	1970s	mainframe	computer,	and	then	Mycin
would	generally	just	tell	the	medical	expert	what	they	already	knew.	However,
those	medical	experts	had	to	study	for	many	years	to	build	up	their	expertise,	so	it
is	very	impressive	that	a	relatively	simple	rule-based	system	could	match	their
performance.	Sophisticated,	intelligent	behaviour	can	emerge	from	relatively
simple	systems.

Hype	and	reality
Expert	systems	were	hyped	extensively	in	the	late	1970s	and	early	1980s	as
being	able	to	solve	any	problem	that	experts	and	knowledge	engineers	would
care	to	address.	Rules	were	said	to	be	the	basis	of	all	knowledge,	and	knowledge
the	basis	of	all	thought.	Medical	experts	are	known	to	require	very	high	academic
scores	to	be	allowed	to	study	medicine,	so	if	a	1970s	expert	system	could	capture
their	extensive	knowledge	then	the	capabilities	of	future	systems	seemed	to	be
unbounded.

The	truth	was	somewhat	less	exciting,	and	the	simple	rule	based	approach	is	now
known	not	to	scale	well	to	larger	problems,	and	not	at	all	to	the	thorny	issue	of
“common	sense”.

One	commonly	cited	limitation	of	expert	system	technology	was	the	lack	of
“knowledge	engineers”	that	could	help	a	“domain	expert”	transfer	their	knowledge
into	a	rule	base	that	an	expert	system	could	utilize.	Knowledge	engineering	was
considered	to	be	different	from	just	programming	because	the	rules	were
specified	at	a	higher	declarative	level	than	program	code.	However,	it	is	in	fact
very	similar	to	programming	because	the	experts	seem	to	store	much	of	their
knowledge	in	higher-level	models,	and	knowledge	engineering	is	mainly	a	process
of	designing	a	set	of	rules	that	mimics	those	models.	However,	when	it	is	done
effectively	then	powerful	and	practical	systems	can	be	constructed.

Expert	systems	are	used	today	in	many	contexts.	As	medical	record	systems
become	more	integrated	and	formalized,	expert	systems	can	access	pathology
and	other	results	directly	from	the	sources.	This	means	that	they	can
automatically	analyze	case	data	and	warn	about	possibly	dangerous	anomalies
without	burdening	the	expert	with	additional	data	entry	tasks.	They	can	also	learn



new	rules	by	examining	real	case	histories.

Rule-based	expert	systems	are	also	found	in	many	other	applications,	although
the	term	“expert	system”	has	fallen	out	of	favour.	Examples	include	systems	that
assess	bank	loans	and	determine	insurance	premiums.

It	should	also	be	noted	that	rule-based	systems	have	also	strongly	influenced
psychological	models	of	human	cognition	such	as		models	of	short	term	memory
(i.e.	of	what	assertions	are	true)	and	long	term	memory	(the	rules	themselves).

Mycin’s	reasoning	with	uncertainty
An	important	aspect	of	Mycin’s	rules	is	that	they	do	not	state	absolute	truths.
Some	rules	are	quite	strong,	but	others	are	just	suggestive.	For	example,	a
positive	Gram	stain	might	strongly	rule	out	E.	Coli,	but	might	only	weakly	rule	out
the	Borrelia	bacterium	which	stains	poorly.	If	stronger	evidence	was	provided	that
Borrelia	was	in	fact	a	likely	cause	of	an	infection,	then	that	should	overrule	the
weak	Gram	stain	evidence.	This	probabilistic	reasoning	strongly	distinguishes
Mycin-like	rules	from	the	rules	in	mathematical	logic.	It	weakens	the	Mycin’s
deductive	power,	but	also	makes	it	useful	for	reasoning	about	an	uncertain	world.

In	order	to	achieve	this,	each	possible	hypothesis	is	assigned	a	certainty	between
0	and	1,	with	0	meaning	impossible	and	1	meaning	certain.	Rules	are	also
assigned	a	certainty,	and	each	deductive	step	combines	the	certainties	of	the
inputs	to	deduce	the	certainty	of	its	outputs.	So	in	the	following	rules	the
certainties	of	R,	S,	I,	J,	K	and	L	have	to	be	combined	in	some	manner	to	deduce
the	certainty	of	M.

IF	I	and	J	THEN	M,	with	certainty	R
IF	K	and	L	THEN	M,	with	certainty	S

There	are	several	schemes	for	achieving	this.	One	simple	scheme	is	to	multiply
the	rule’s	certainty	by	the	certainty	of	the	weakest	input.	So	the	certainty	of	M	just
from	the	first	rule	would	be	calculated	as
			M	=	R	*	min(I,	J)

If	there	are	several	rules	that	lead	to	the	same	conclusion	then	simply	take	the
maximum	value	of	those	rules.	So	in	the	above	example:-
		M	=	max(R	*	min(I,	J),	S	*	min(K,	L))
Fuzzy	logic	is	a	technique	for	probabilistic-like	reasoning	which	uses	similar
methods.

Mycin	used	a	more	sophisticated	approach	by	carefully	misapplying	otherwise
sound	rules	of	probability	theory.	For	each	individual	rule	in	our	example	it	would
calculate	approximately:-
		M1	=	I	*	J	*	R
		M2	=	K	*	L	*	S
This	is	based	on	the	rule	that	the	probability	of	seeing	two	events	I	and	J	is	P(I)	*



P(J)	if		they	are	conditionally	independent.	That	is	a	big	“if”,	which	we	will	discuss
further	in	the	next	section.

Multiple	rules	that	support	the	same	hypothesis	are	combined	by	first	calculating
certainty	ratios
			X1	=	M1	/	(1-	M1)
			X2	=	M2	/	(1	-	M2)
and	then	combining	them	as
			Z	=	X0	*	X1/X0	*	X2/X0
			M	=	Z	/	(1	+	Z)
where	X0	is	the	prior	probability	that	the	hypothesis	M	is	true,	given	that	there	is
no	other	information	available.	It	turns	out	that	these	formulas	are	also
mathematically	sound	provided	that	the	values	are	conditionally	independent.

Being	able	to	reason	with	uncertain	rules	enabled	Mycin	to	be	able	to	weigh	up
different	pieces	of	evidence,	some	of	which	supported	a	conclusion	and	some	of
which	detracted	from	it.	While	Mycin’s	use	of	certainty	factors	was	not	formally
correct,	it	was	sufficiently	accurate	to	enable	a	rule	base	to	be	built	that	drew
generally	sound	conclusions.	Dealing	with	uncertainty	is	an	essential	component
when	intelligently	analyzing	the	uncertain	world	in	which	we	live.

Sprinklers	make	it	rain

Simple	Bayesian	network.
Owned

An	intelligent	system	that	uses	probabilistic	reasoning	can	combine	perfectly
reasonable	rules	in	ways	that	produce	unfortunate	conclusions.	Consider	the
diagram	above,	which	indicates	that	the	grass	will	be	wet	if	either	the	sprinkler	is



on	or	it	is	raining.

Suppose	that	it	is	known	that	the	sprinkler	happens	to	be	on.	It	can	therefore	be
deduced	that	the	grass	is	probably	wet.	The	diagram	then	makes	it	clear	that	if	the
grass	is	wet	then	it	is	probably	raining.

This	last	deduction	clearly	violates	basic	laws	of	logic.	Just	because	having	an
alibi	means	one	is	innocent	does	not	mean	that	not	having	an	alibi	proves	that
one	is	guilty.	However,	it	is	exactly	the	sort	of	reasoning	that	a	diagnostic	system
such	as	Mycin	needs	to	use.	We	have	a	number	of	symptoms	and	we	need	to
deduce	the	likely	causes	without	the	luxury	of	being	able	to	use	absolutely	correct
deductive	rules.	Yet	we	do	not	want	to	deduce	that	putting	on	the	sprinkler	makes
it	rain.	(Readers	who	are	also	gardeners	will	note	that	putting	on	one’s	sprinkler
does	in	fact	seem	to	have	an	uncanny	ability	to	produce	rain	shortly	thereafter.
But	we	shall	ignore	that	observation	in	this	analysis.)

There	are,	in	fact,	two	different	reasons	why	it	seems	bizarre	that	we	should
deduce	that	sprinklers	make	it	rain.	The	first	is	a	specific	fact	that	we	know	that
the	purpose	of	sprinklers	is	to	make	the	grass	wet,	so	that	sprinklers	are	not	put
on	when	it	is	raining.	The	second	reason	is	more	general	and	more	important,
namely	that	once	we	have	one	good	explanation	for	something	we	discount
competing	explanations.	For	example,	if	we	know	that	a	car	will	not	start	because
it	has	a	flat	battery,	we	discount	the	possibility	that	it	has	also	run	out	of	petrol.

Joint	probability	distributions
One	way	to	address	both	these	issues	is	to	produce	a	“joint	probability
distribution”	that	explicitly	lists	the	likelihood	of	each	combination	of	events.	For
example,	the	following	table	shows	that	the	likelihood	of	the	grass	being	wet,	and
it	is	raining	and	the	sprinkler	is	not	on	is	22%,	while	the	likelihood	of	that	the	grass
is	wet,	the	sprinkler	is	on	and	it	not	raining	is	12%.	There	is	a	small	3%	chance
that	the	sprinkler	has	been	left	on	while	it	is	raining.

Grass	Wet Grass	Dry
Grand	Total

Raining Not	Raining Total Raining Not	Raining Total

Sprinkler 3% 12% 15% 0% 1% 1% 16%

Not	Sprinkler 22% 1% 23% 1% 60% 61% 84%

Total 25% 13% 38% 1% 61% 62% 100%

By	simply	summing	the	probabilities	for	each	case	that	the	grass	is	wet	or	dry	we



can	determine	that	there	is	a	38%	chance	that	the	grass	is	wet	from	any	cause,
and	a	62%	chance	that	it	is	dry.	The	grass	must	be	either	wet	or	dry,	so	38%	+
62%	=	100%.

If	we	want	to	determine	the	probability	that	it	is	raining	given	that	the	grass	is	wet
we	need	to	divide	the	probability	that	it	is	raining	when	the	grass	is	wet	by	the
probability	that	the	grass	is	wet	at	all.	That	is	(3%	+	22%)	/	38%	=	66%.	Likewise,
the	probability	that	the	sprinkler	is	on	given	that	the	grass	is	wet	is	(3%	+	12%)	/
38%	=	39%.	We	are	in	no	danger	of	deducing	that	the	sprinkler	makes	it	rain
because	the	probability	that	the	grass	is	wet	and	it	is	raining	and	the	sprinkler	is
on	is	3%	/	38%	=	8%.

A	simple	joint	distribution	table	like	the	one	above	can	provide	very	insightful	and
accurate	deductions.	However,	they	grow	in	size	exponentially	with	the	number	of
variables	because	they	enumerate	every	possible	combination	of	observations
and	conclusions	that	a	system	can	make.	With	the	three	parameters	of	Wetness,
Rain	and	Sprinkler	we	have	23	=	8	joint	probabilities.	If	we	add	Cloudiness	then
we	need	24	=	16	probabilities.	For	a	system	like	Mycin	that	has	hundreds	of
possible	symptoms,	this	would	produce	a	table	of	billions	of	billions	of	billions	of
entries,	which	no	computer	could	process.	It	is	also	not	feasible	to	populate	such
a	large	table	with	actual	probabilities	in	a	meaningful	way.

People	became	very	excited	when	Bayesian	networks	were	developed	in	the
1980s	because	they	utilize	causal-like	knowledge	to	provide	the	rigor	of	a	joint
probability	distribution	without	requiring	a	huge	table	to	store	them.	Before
discussing	them	in	any	detail	it	is	helpful	to	review	basic	probability	theory.

Probability	theory

Venn	diagram	of	probabilities	of	Sprinkler	and	Wet.
Owned

Simple	Venn	diagrams	are	a	useful	tool	to	gain	insights	into	probabilistic
reasoning.	In	the	above	diagram	the	area	of	the	left	ellipse	represents	the
probability	of	an	event	S	occurring,	which	is	normally	written	P(S).	Likewise,	the
right	ellipse	represents	the	probability	of	an	event	W	occurring,		P(W).	The	area	in
the	middle	represents	the	probability	of	both	S	and	W	occurring.



The	notation	P(S	|	W)	is	read	“the	probability	of	S	given	W”.	It	indicates	the
probability	of	variable	S	occurring	given	that	variable	W	has	already	occurred.	In
our	wet	grass	example,	it	would	be	the	probability	that	the	sprinkler	is	on	given
that	we	observe	that	the	grass	is	wet.	So	if	P(S	|	W)	=	p,	then	this	is	similar	to	a
Mycin	rule
		IF	W	THEN	S,	with	certainty	p

If	we	know	that	the	grass	is	wet,	then	we	must	be	somewhere	inside	the	W
ellipse.	We	can	see	from	the	diagram	that	for	the	sprinkler	to	also	be	on,	we	must
be	in	the	area	(S	and	W),	so,
		P(S	|	W)	=	P(S	and	W)	/	P(W)

In	general	P(A	|	B)	may	be	greater	than	or	less	than	P(A),	depending	upon
whether	knowing	B	makes	it	more	or	less	likely	that	A	will	occur.	If	P(A	|	B)	=	P(A)
then	knowing	that	B	is	true	tells	us	nothing	about	whether	A	will	occur.	They	are
said	to	be	Conditionally	Independent.	For	example,	if	A	and	B	are	the	events	that
two	different	coins	land	heads	then	they	would	be	conditionally	independent.	In
that	case	it	is	easy	to	use	the	equation	above	to	show	that
			P(A	and	B)	=	P(A	|	B)	*	P(B)	=	P(A)	*	P(B)

Examination	of	the	Venn	diagram	also	shows	the	following	basic	identity:-
		P(A	or	B)	=	P(A)	+	P(B)	-	P(A	and	B)

P(A	and	B)	is	subtracted	in	order	not	to	double	count	P(A	and	B),	which	prevents
P(A	or	B)	becoming	greater	than	100%.	If	A	and	B	are	conditionally	independent
then
		P(A	or	B)	=	P(A)	+	P(B)	-	P(A)	*	P(B)

The	following	diagram	brings	rain	into	consideration.	We	can	see	that	the	area	in
the	middle	represents	the	probability	that	the	grass	is	wet	and	it	is	raining	and	the
sprinkler	is	on.	This	is	much	smaller	than	the	area	that	represents	the	likelihood
that	the	grass	is	wet	and	it	is	raining,	so	we	are	again	unlikely	to	conclude	that	the
sprinkler	makes	it	rain.	It	is	also	clear	that	the	diagram	becomes	rapidly	more
complex	as	extra	variables	are	added	to	it.

Owned

Bayes	rule



It	is	generally	easier	to	determine	the	likelihood	of	effects	from	causes	rather	than
causes	from	effects.	In	our	sprinkler	expert	system,	it	is	relatively	easy	to	work	out
P(W	|	S),	i.e.	the	probability	of	the	grass	being	wet	if	the	sprinkler	is	on	—	it	is
almost	certain	to	be	the	case.	However,	a	diagnostic	expert	system	like	Mycin
needs	to	work	backwards	from	the	symptoms	to	the	causes.	We	see	wet	grass	(a
symptom),	and	need	to	determine	its	cause	(given	that	that	is	relevant	to	its
treatment).	So	we	need	to	know	P(S	|	W),	the	probability	that	the	sprinkler	is	on
given	that	the	grass	is	wet.	But	that	is	difficult	to	know,	as	there	are	many	possible
causes	of	wet	grass,	and	they	may	change	over	time.	For	example,	children	might
be	playing	with	a	hose.

Bayes	rule	provides	a	method	for	determining	P(A	|	B)	given	that	one	knows	P(B	|
A)	as	follows.

		P(A	|	B)
				=	P(A	and	B)	/	P(B)	—	Definition	from	previous	section.
				=	(P(A	and	B)	/	P(A))	*	P(A)	/	P(B)	—	Just	dividing	and	multiplying	by	P(A).
				=	P(B	|	A)	*	P(A)	/	P(B)

P(A)	and	P(B)	are	referred	to	as	the	prior	probabilities;	they	are	the	probabilities	of
A	or	B	when	nothing	else	is	known.	Note	that	P(A	|	B)	does	not	mean	that	B
causes	A,	or	visa	versa.	It	simply	means	that	they	are	correlated	statistically.
However,	correlation	is	almost	always	due	to	some	sort	of	possibly	indirect	causal
relationship.

Bayesian	networks
In	practice,	most	variables	in	a	large	knowledge	base	are	not	directly	conditionally
dependent.	A	Bayesian	network	uses	that	fact	to	minimize	the	number	of
probabilities	that	need	to	be	specified	in	the	system.	This	enables	us	to	have	the
accuracy	and	flexibility	of	a	full	joint	probability	table	but	without	the	need	for	a
huge	table	of	probabilities.

In	the	earlier	wet	grass	network,	the	lines	represent	direct	conditional
dependencies	with	the	arrows	indicating	causality.	Clouds	cause	rain,	and	they
cause	people	to	defer	putting	on	the	sprinkler.	Sprinklers	and	rain	cause	the	grass
to	get	wet.	But	note	that	the	presence	of	clouds	does	not	affect	the	likelihood	that
the	grass	will	be	wet	given	that	we	know	whether	it	is	raining	and	whether	the
sprinkler	is	on.	Thus	wet	grass	is	only	indirectly	conditionally	dependent	on	it
being	cloudy.

This	means	that	in	order	to	build	up	all	the	information	in	a	full	joint	probability
distribution	all	we	need	to	specify	is	the	effect	of	clouds	on	rain	and	sprinklers,	as
well	as	the	effect	of	sprinklers	and	rain	on	wet	grass.	A	process	of	multiplying
these	together	can	then	produce	the	full	table.	Specifically,	if	P(C)	represents	the
probability	that	it	is	cloudy,	then	the	probability	that	it	is	cloudy,	not	raining,	the
sprinkler	is	on	and	the	grass	is	wet	can	be	calculated	as



		P(C,	not	R,	S,	W)	=	P(C)	*	P(not	R	|	C)	*	P(S	|	C)	*	P(W	|	S	and	not	R)

This	calculation	would	need	to	be	repeated	for	each	of	the	16	values	in	the	full
joint	probability	distribution	that	are	required	for	four	variables.

This	reduces	the	number	of	conditional	probabilities	that	need	to	be	determined	to
be	in	proportion	to	the	number	of	variables.	So	if	there	are	100	variables	with	an
average	of	2	incoming	links	each	then	800	conditional	probabilities	would	need	to
be	determined	rather	than	the	billions	of	billions	of	billions	of	values	in	the	full	joint
probability	distribution	which	still	grows	exponentially.

This	has	been	made	practical	by	some	recently	developed	approximation
algorithms	that	can	provide	the	same	analysis	that	could	be	performed	on	the	full
joint	probability	table	without	having	to	fully	instantiate	it.

It	is	still	necessary	to	specify	the	individual	conditional	probabilities	for	each
variable.	We	saw	that	for	a	variable	with	two	incoming	conditional	links	such	as	W
that	it	required	8	probabilities	to	be	specified.	If	there	were	three	incoming	links
then	16	would	need	to	be	specified.	That	quickly	becomes	tedious	for	a	large
knowledge	base.

Fortunately,	most	incoming	links	are	conditionally	independent	of	each	other.	For
example,	a	car	may	not	start	(S)	because	of	an	electrical	problem	(E),	a	fuel
problem	(F)	or	a	mechanical	problem	(M).	But	the	presence	of	any	one	of	those
problems	has	only	a	marginal	effect	on	the	likelihood	of	any	of	the	others.	This
enables	the	noisy-OR	approximation	to	be	used	which	calculates	the	conditional
probabilities	by	simply	adding	them	together,	for	example:-

P(S	|	E,	not	M,	not	F)	~=	P(S	|	E)
P(S	|	not	E,	M,	not	F)	~=	P(S	|	M)
P(S	|	E,	M,	not	F)	~=	P(S	|	E)	+	P(S	|	M)	-	P(S	|	E)	*	P(S	|	M)
etc.

It	turns	out	that	Mycin	certainty	factors	produce	essentially	the	same	results	as	a
Bayesian	network	given	these	approximations,	provided	that	the	rules	are
carefully	constructed	to	avoid	any	problems.	However,	Bayesian	networks	are
easier	and	more	reliable	to	use,	and	so	provide	an	important	technology	for
building	intelligent	systems	that	need	to	reason	with	uncertain	knowledge.

Learning	Bayesian	networks
Constructing	even	a	moderately	sized	Bayesian	network	by	hand	can	be	a
substantial	undertaking.	But	there	are	several	effective	algorithms	for	learning
how	to	construct	a	network	if	there	is	sufficient	data	available.

Constructing	a	joint	probability	distribution	from	observed	data	is	trivial.	Simply
count	the	number	of	occurrences	of	each	combination	of	the	variables,	and	then
divide	that	by	the	total	sample	size.	So	if	200	observations	are	made,	and	in	6	of
them	it	is	raining	when	the	sprinkler	is	on,	then	P(Rain	and	Sprinkler)	=	6/200	=



3%.	For	a	significant	number	of	variables	the	resulting	huge	joint	probability
distribution	table	will	only	be	sparsely	filled.	But	that	is	acceptable,	as	it	is	normally
the	sums	of	various	cells	in	the	table	that	are	of	interest.

It	is	also	easy	to	determine	which	variables	are	conditionally	independent	from
other	variables,	because	if	that	is	the	case	then	P(A	and	B)	=	P(A)	*	P(B).
Determining	which	variables	should	be	considered	to	be	conditionally	independent
of	other	variables	given	knowledge	of	a	third	set	of	variables	requires	clever
algorithms,	but	once	that	is	done	the	Bayesian	network	is	easy	to	construct.	The
resulting	conditional	dependencies	will	usually	reflect	causal	relationships	in	the
real	world,	some	of	which	may	not	be	obvious	until	the	network	has	been
constructed.

(Bayesian	networks	can	also	be	extended	to	cope	with	numeric	data	rather	than
just	true/false	values.	For	example,	the	amount	of	rain	rather	than	just	the	simple
fact	that	it	rained.	In	that	case	more	sophisticated	learning	algorithms	are
required.)

Human	probability	reasoning
Yudkowsky	(in	An	Intuitive	Explanation	of	Bayes’	Theorem)	points	out	that	people
are	not	very	good	at	probabilistic	reasoning	involving	Bayes	rule.	Consider	the
following	problem:-

Suppose	1%	of	women	that	undergo	a	routine	screening	actually	have	breast
cancer.	The	screening	test	is	positive	for	80%	of	women	with	cancer,	and	10%	of
women	without	cancer.	If	a	woman	fails	the	test,	how	likely	is	it	that	she	has
cancer?

There	are	several	studies	that	show	that	most	people,	including	many	doctors,
assume	that	the	woman	probably	has	cancer.	However,	the	problem	description
provides	conditional	probabilities	of	the	likelihood	of	tests	failing	given	the
disease,	not	the	likelihood	of	the	disease	given	the	failed	test.

If	F	means	failing	the	test,	and	C	means	having	cancer,	then	we	are	told	that	P(F	|
C)	=	80%.	But	P(C)	is	only	1%.	So	P(F	and	C)	=	80%	*	1%	=	0.8%.	Whereas	P(F
and	not	C)	=	10%	*	99%	=	9.9%.	Thus	P(C	|	F)	=	0.8%	/	(0.8%	+	9.9%)	=	7.4%.
Good	news,	she	is	almost	certainly	(92.6%)	not	sick,	but	further	investigation	may
be	warranted.

In	other	words,	it	takes	an	accurate	test	to	overrule	strong	prior	probabilities,	and
a	test	with	10%	false	positive	cannot	overrule	a	prior	probability	that	99%	of
patients	are	healthy.

Another	example	of	people’s	highly	distorted	perception	of	risk	is	the	fact	that	just
3,000	people	died	in	the	one-off	September	11	attacks,	and	yet	over	30,000
people	died	in	car	crashes	in	the	U.S.	in	every	year	since	the	attack,	not	to
mention	the	far	more	numerous	crippling	injuries.	Yet	news	headlines	continue	to
focus	on	terrorism	rather	than	road	accidents.



The	point	is	that	although	sophisticated	probabilistic	reasoning	provided	by
Bayesian	Networks	may	be	very	useful	for	building	intelligent	systems,	people
seem	to	be	able	to	reach	generally	reasonable	conclusions	using	other,	far	less
accurate	approximations.

Human	diagnostic	reasoning

Bayesian	network	for	diagnosing	cars.
Owned

Consider	the	Bayesian	network	for	the	common	example	of	a	car	that	will	not
start.	The	diagram	suggests	several	reasons	that	might	prevent	the	car	from
cranking.	This	is	easy	for	a	mechanic	to	determine,	so	would	be	the	first	test
performed.	As	previously	discussed,	if	the	car	does	not	crank	then	the	noisy-OR
will	suggest	that	it	is	most	unlikely	that	the	fuel	system	is	also	malfunctioning.	The
next	easiest	test	is	the	battery,	by	simply	turning	on	the	headlights.

The	diagram	above	can	be	extended	to	dozens	of	nodes	that	relate	to	the
functionality	of	a	car	and	why	it	might	not	start.	But	it	seems	unlikely	that	a
mechanic	has	such	a	chart	in	their	brain	even	subconsciously.	Instead,	they	have
a	model	of	how	the	car	works,	what	the	purpose	of	each	component	is,	and	how
they	interact	with	each	other,	which	includes	a	substantial	spacial	understanding
of	where	things	are	located.	They	then	consult	this	model	to	form	hypotheses
which	are	then	tested.	There	is	certainly	knowledge	of	prior	probabilities	gained
from	experience,	but	they	are	probably	secondary.

It	turns	out	that	on	the	author’s	car	the	problem	was	actually	an	intermittent	short
circuit	on	the	interior	light.	The	wire	used	to	connect	the	light	to	its	power	source
had	been	optimized	to	be	as	thin	as	possible,	so	a	short	circuit	at	the	light	did	not
blow	the	relevant	fuse.	But	the	body	computer	used	the	same	fuse,	and	so	the
short	did	lower	the	voltage	on	the	computer	sufficiently	to	prevent	its	interaction
with	an	Autolock	security	feature	to	work	properly,	and	thus	prevented	the	car
from	cranking.

Note	the	way	that	the	interior	light	problem	was	described	in	terms	of	a	model



rather	than	bland	probabilities.	(A	part	of	the	model	that	neither	the	author	nor	his
mechanics	had	known,	causing	much	frustration.)	Models	with	explanations	are
useful	because	they	can	be	applied	to	different	circumstances,	and	combined
using	analogies.	Unlike	a	gambler	at	a	casino,	the	mechanic	does	not	really	care
about	the	exact	probabilities	of	various	faults.	It	is	enough	to	assess	likely	or
possible	causes,	and	qualify	that	analysis	with	the	cost	of	performing	relevant
diagnostic	tests.

The	models	provide	an	element	of	the	“common	sense”	that	computer	systems
lack.	For	example,	a	mechanic	would	not	bother	to	determine	whether	the	engine
cranked	if	the	front	of	the	car	was	destroyed	in	a	road	accident.

The	process	of	building	an	expert	system	has	been	called	knowledge	engineering.
This	has	been	described	as	the	process	of	experts	writing	out	their	knowledge	in
terms	of	rules.	But	it	is	actually	more	like	writing	a	set	of	rules	that	reflect	the
higher	level	model	the	experts	have	in	their	heads.	In	other	words,	it	is	more	like
programming	than	authoring	a	book.





Pattern	Matching

Symbols
All	of	the	problems	that	have	been	considered	so	far	first	involve	abstracting	the
world	in	terms	of	discrete	symbols,	and	then	reasoning	about	those	abstractions.
SHRDLU	abstracted	all	the	complexities	of	the	position	and	orientation	of	real
blocks	into	a	simple	list	of	which	block	rested	on	which	other	block.	Likewise	with
our	classification	of	individuals	into	Murderers	and	Widows,	or	the	Wetness	of	the
Grass.

But	the	real	world	does	not	come	neatly	packaged	as	symbols.	It	is	a	confusing
pattern	of	inputs	that	have	indeterminate	values.	We	package	up	that	information
into	symbols	in	order	to	make	it	easier	to	reason	about.	This	is	a	powerful
technique,	and	it	lets	systems	as	simple	as	a	relational	database	help	us
understand	the	world.	But	the	symbols	are	not	real	—	they	are	an	invention	of
man,	not	nature.

The	AI	community	can	be	loosely	divided	along	these	lines.	There	are	those	that
work	with	discrete	symbols	and	integers,	and	there	are	those	that	work	with
patterns	and	floating	point	numbers	(with	a	decimal	point).

The	post/zip	code	problem
In	order	to	explore	the	various	approaches	to	non-symbolic	reasoning,	we	will	use
an	early	and	informative	problem	that	is	the	recognition	of	hand	written
documents.	In	particular,	post	offices	need	to	route	mail	quickly	and	efficiently
using	a	system	of	post	or	zip	codes	that	identify	roughly	where	each	article	is	to
be	sent.	Traditionally,	human	employees	would	need	to	read	these	codes	in	order
to	control	mail	sorting	machines,	but	in	the	1990s	automated	systems	were
developed	that	can	read	them	very	quickly	and	with	human-like	accuracy.

The	problem	is	far	from	trivial.	People	write	badly,	and	yet	are	very	good	at
recognizing	badly	written	numbers.	It	is	fairly	obvious	that	the	following	diagram	is
the	number	4927,	but	it	is	not	so	obvious	why	that	is	so.	A	program	that	can
effectively	classify	the	pictures	maps	a	space	of	billions	of	billions	of	possible
images	into	ten	simple	symbols,	1,	2,	…,	9,	0,	which	can	then	be	used	by	a	simple
database	to	determine	where	each	envelope	should	be	sent.

Example	of	a	scanned	postcode.
Owned

One	approach	to	addressing	this	problem	is	to	just	try	and	program	a	solution,	but
programmers	will	realize	that	it	is	not	at	all	obvious	how	to	do	that.	One	might
have	a	model	in	one’s	mind	that	the	number	4	is	a	series	of	three	straight	lines,



but	there	are	no	really	straight	lines	in	a	hand	written	numeral,	and	the	nine	above
has	a	gap	at	the	top.	The	noisy	data	makes	trying	to	determine	where	one	stroke
ends	and	another	begins	far	from	trivial.	And	then	knowing	how	to	weigh	the	
various	inconsistent	abstractions	can	be	very	difficult.

During	the	end	of	the	period	when	zip	codes	were	being	read	by	hand,	the
National	Institute	of	Science	(NIST)	collected	a	database	of	60,000	hand-written
20	by	20	pixel	images	together	with	the	actual	values	for	those	images,	and	then
made	that	database	available	to	researchers.	This	provided	an	excellent	training
set	that	enabled	systems	to	be	built	that	could	learn	how	to	classify	the	images
without	needing	to	be	explicitly	told.

Case	based	reasoning
One	simplistic	method	for	recognizing	the	numerals	would	be	to	load	the	entire
NIST	data	set	into	a	database	and	then	just	look	up	the	picture	in	the	database	to
determine	which	digit	it	represents.	However,	while	there	are	thousands	of
examples	in	the	data	set,	there	are	billions	and	billions	of	possible	images,	so	it	is
most	unlikely	that	any	previously	unseen	image	will	find	an	exact	match	in	the
database.

To	overcome	this,	we	need	to	search	for	the	closest	match	rather	than	looking	for
an	exact	match.	One	naive	way	to	determine	how	well	a	sample	matched	an
image	in	the	database	would	be	to	compare	each	pixel	in	a	sample	with	the
corresponding	pixel	in	the	database,	and	simply	count	the	number	of	pixels	that
are	different.	However	that	simplistic	approach	does	not	work	very	well	because	it
is	not	the	way	that	our	eyes	match	patterns.

Sifting	one	pixel	right	makes	most	pixels	different.
Owned

The	first	problem	is	illustrated	in	the	image	above.	The	two	image	fragments	are
exactly	the	same,	except	that	the	image	on	the	right	has	been	shifted	one	pixel	to
the	right.	If	we	naively	counts	the	number	of	different	pixels,	we	find	that	only	the
one	pixel	marked	with	an	“X”	happens	to	be	the	same	in	both	images.

To	address	this	problem,	one	can	condition	the	data,	in	this	case	by	calculating



the	centroid	of	each	image,	and	aligning	them	on	that	centroid.	Then	the	two
images	above	would	match	perfectly.

A	second	problem	is	that	the	pixel	counting	strategy	does	not	distinguish	between
a	pixel	that	is	just	one	pixel	away	from	a	corresponding	pixel	in	the	sample,	as
opposed	to	one	that	is	completely	unrelated.	Better	matching	algorithms	would
perform	more	sensible	matches.

Given	the	huge	number	of	sample	images	available	for	zip	codes,	even	a	crude
matching	algorithm	may	suffice.	However,	having	a	large	training	database
introduces	its	own	problem,	namely	that	it	would	take	too	long	to	carefully
compare	each	of	the	known	examples	with	the	unknown	image.		In	the	case	of	the
NIST	data,	there	are	60,000	cases	to	be	considered	for	each	new	sample.

To	address	both	of	these	issues,	we	can	extract	features	from	the	diagram	that
make	sense	visually.	For	example,	we	might	simply	divide	the	image	up	into	six
parts,	and	then	note	for	each	part	whether	it	seemed	to	contain	a	line	that	was
vertical,	horizontal,	or	diagonal.	That	would	give	us	46	=	2048	different	buckets	in
which	to	put	the	samples,	and	then	we	would	only	need	to	look	at	samples	in	a
bucket	that	matched	the	unknown	image.

An	additional	approach	to	matching	images	quickly	is	to	match	multiple	images	at
the	same	time.	This	can	be	performed	on	modern	computer	graphics	processors
that	can	perform	hundreds	of	calculations	at	the	same	time.	It	also	appears	to	be
the	way	our	brains	produce	real-time	responses	using	hardware	that	operates
very	slowly	compared	to	a	digital	computer.

A	final	problem	is	that	a	huge	training	data	set	will	certainly	contain	several
images	that	have	been	incorrectly	classified.	Even	if	it	does	not	then	the
approximations	used	in	the	classifier	may	occasionally	produce	incorrect	matches.
One	way	to	address	that	is	to	consider	several	cases	that	are	close	to	the	image
to	be	classified,	rather	than	just	the	one	closest	match.	So	if	the	very	closest
match	is	a	“9”,	but	the	ten	other	very	close	matches	are	“4”s,	then	it	is	probably
actually	a	“4”.

Decision	trees
A	different	approach	is	to	use	the	training	data	to	construct	a	decision	tree,	which
can	then	be	used	to	classify	the	images	very	efficiently.	The	data	first	needs	to	be
processed	to	extract	various	features	from	the	images,	and	then	the	decision	tree
uses	those	features	to	repeatedly	partition	the	space	of	possible	images	until	they
have	been	fully	identified.



Decision	tree	for	classifying	digits.
Owned

The	simplistic	decision	tree	above	classifies	digits	based	on	very	high-level
features.	A	matching	algorithm	starts	at	the	top,	and	moves	to	the	left	or	right
depending	on	whether	the	simple	condition	in	each	cell	is	true	or	false.	So	if	an
image	has	a	circle,	but	not	two	circles,	and	the	circle	is	at	the	bottom,	then	the
digit	is	a	“6”.	A	realistic	digit-classifying	tree	would	be	much	larger	than	this,	but
the	divide-and-conquer	approach	means	that	even	a	huge	tree	that	contains
millions	of	nodes	can	classify	an	image	with	just	a	couple	of	dozen	tests.

Decision	trees	are	popular	because	there	are	effective	algorithms	for	building
them	from	a	wide	variety	of	different	types	of	data.	Essentially,	the	algorithms	look
for	the	feature	that	is	most	strongly	correlated	with	the	training	data	classifications,
and	then	partition	the	space	based	on	that	feature.	Each	subspace	is	processed
in	the	same	manner	until	each	sample	is	identified.	A	second	pass	might	prune
nodes	that	only	contain	one	sample	in	the	training	set	as	being	erroneous.

A	realistic	system	may	have	a	large	number	of	low-level	image	features	that	could
be	extracted	from	each	image,	some	of	which	will	be	far	more	useful	than	others.
Decision	trees	are	efficient	because	they	only	require	the	features	to	be	extracted
that	are	actually	used	to	make	a	decision.	So	in	our	toy	example,	once	we	have
determined	that	the	figure	has	a	circle,	there	is	no	need	to	determine	if	it	has	a
vertical	line.	If	some	features	are	more	expensive	to	extract	than	others,	then	the
tree-learning	algorithm	can	push	those	out	towards	the	leaves	and	so	make	them
needed	less	often.	Decision	trees	can	also	work	with	continuous	features	such	as
the	length	of	a	line.



Another	advantage	of	a	decision	tree	is	that	a	human	that	reviews	one	can
generally	understand	how	the	tree	was	constructed,	and	why	it	makes	the
decisions	that	it	does.	This	can	sometimes	provide	deep	insights	into	the	problem
domain.

Decision	trees	generally	perform	very	well	compared	to	other	methods	in	terms	of
the	number	of	training	cases	that	they	need	in	order	to	learn	a	complex	pattern.
They	do	not	work	well	in	situations	in	which	each	test	just	adds	evidence	to	the
result	independently	of	each	other	test.	In	particular,	a	decision	tree	that	just
represents	a	simple	majority	of	the	tests	being	true	degenerates	to	a	tree	with	2n
leaves	where	n	is	the	number	of	tests.

Decision	tables
A	decision	table	consists	of	condition	cells	that	are	marked	as	TRUE,	FALSE	or
blank	(don’t	care).	True/false	input	values	are	then	matched	to	see	if	they	are	the
same	as	these	entries,	and	the	results	are	aggregated.	Multiple	decision	tables
can	then	be	combined	to	implement	arbitrary	logical	expressions.

Decision	table	representing	exclusive	or.
Owned

The	two	tables	above	combine	to	implement	the	exclusive	or	conditions.	The	left
hand	table	conjoins	(ANDs)	its	conditions,	so	the	first	row	determines	whether	I1
is	true	and	I2	is	false.	The	second	row	determines	whether	I1	is	false	and	I2	is
true.	These	outputs	are	then	fed	into	the	right	hand	disjunctive	(OR)	condition
table,	which	returns	true	if	either	is	true.	So	it	evaluates	the	condition
				Or(And(I1,	not	I2),	And(not	I1,	I2))	=	XOR(I1,	I2)

This	combination	of	conjunction	and	disjunction	can	represent	any	possible
condition,	provided	that	there	are	sufficient	intermediate	rows	in	the	table.	More
importantly,	they	can	represent	most	common	conditions	quite	succinctly.	It	is
common	to	have	several	OR	columns	in	the	right	hand	table,	all	working	off	the
same	intermediate	AND	rows.	And	like	every	other	formalism,	decision	table
conditions	can	be	learnt	from	experience	using	various	algorithms.



Regression

Linear	and	exponential	regression.
Owned

Statisticians	have	used	regression	methods	since	the	nineteenth	century	to	fit	a
function	to	a	set	of	data	points.	In	the	chart	above,	Excel	was	used	to
automatically	fit	two	statistical	models	to	the	data	represented	by	the	red	dots.
The	first	is	a	simple	straight	line,	while	the	second	is	a	curved	exponential
function.	In	both	cases	the	14	data	points	are	modelled	by	just	two	numbers	that
are	shown	on	the	chart.	The	R2	value	shows	the	sum	of	squares	correlation
between	the	models	and	the	data,	and	shows	that	the	exponential	model	is	a
better	fit.	These	models	can	then	be	used	to	predict	the	values	of	any	new,
unseen	data.

There	is	a	close	relationship	between	statistical	inference	and	machine	learning.
Just	because	it	is	possible	to	use	more	complex	technologies	to	solve	some
problems	does	not	mean	that	it	is	always	a	good	idea	to	do	so	because	statistical
techniques	are	generally	much	more	efficient	and	better	understood.	However,	
classical	statistical	techniques	cannot	learn	how	to	recognize	digits	from	images.





Artificial	Neural	Networks

Introduction
One	effective	method	for	intelligent	character	recognition	is	to	use	Artificial	Neural
Networks	(ANNs)	which	were	inspired	by	biological	neurons.

The	stereotypical	biological	neuron	has	a	number	of	dendrite	projections	that
connect	to	other	neurons	via	synapses.	When	sufficient	electrochemical
stimulations	are	given	to	the	dendrites	at	about	the	same	time,	the	neuron	fires	a
signal	that	flows	down	its	axon.	The	axon	terminals	then	connect	to	other	neurons
and	stimulate	them,	or	possibly	to	muscles	and	make	them	contract.	Longer
axons	are	covered	in	a	white	myelin	sheath	to	make	them	more	efficient.

Stereotypical	biological	neuron.
Public	Wikipedia

A	basic	Artificial	Neuron	(AN)	produces	an	output	that	is	a	simple	linear
combination	of	their	inputs.	So	given	a	set	of	inputs	Ij	and	weights	Wj,	each
perceptron’s	output	O	would	be
				O	=	Sum(Ij	*	Wj)

This	is	shown	diagrammatically	below.	The	output	of	0.72	=	1	*	0.4	+	0.8	*	0.32.
The	output	of	this	one	unit	could	then	be	fed	into	the	inputs	of	other	units.



The	calculation	in	a	single	Artificial	Neuron	(AN).
Owned

Usually	multiple	ANs	are	all	given	the	same	inputs	Ij,	so	the	output	of	each	AN	Oi
would	be
				Oi	=	Sum(Ij	*	Wij)

An	important	property	of	ANNs	is	that	the	weights	can	be	learned	rather	than
having	to	be	entered	by	hand.	In	particular,	if	a	set	of	desirable	outputs	are	known
for	a	given	set	of	inputs,	then	the	optimal	values	of	the	weights	can	often	be
learned	by	using	a	gradient	descent	algorithm.	One	method	is	to	repeatedly	set
the	input	values	of	each	unit	to	each	training	case,	and	then	noting	the	difference
between	the	actual	output	A	and	the	desired	output	D.	The	basic	delta	algorithm
adjusts	the	weights	as	follows	for	each	training	case:-

Wij	=	Wij	+	e	*	(Di	-	Ai)	*	Ij

Where	e	is	a	small	constant	that	determines	how	much	each	weight	should	be
adjusted	in	each	iteration.	Each	weight	is	adjusted	based	on	the	perceptron’s
error,	Di	-	Ai,	multiplied	by	the	jth	input.		The	larger	the	error,	the	larger	the
adjustment.

Over	numerous	iterations,	the	weights	will	usually	converge	on	a	value	that
minimizes	the	differences	between	A	and	D	for	the	entire	training	set.	The	e
constant	should	be	set	to	be	large	enough	that	the	series	quickly	converges,	but
small	enough	that	it	does	not	become	unstable.	Normally	simulated	annealing	is
used	which	reduces	e	slightly	after	each	iteration,	so	that	large	changes	are	made
initially	and	then	fine	tuning	occurs	in	latter	iterations.

Perceptrons
Perceptrons	are	a	simple	artificial	neuron	technology	that	was	first	investigated
using	analog	computers	such	as	MINOS	in	the	early	1960s.	Their	outputs	were
considered	to	be	boolean	values,	for	example	with	values	above	or	below	0.5
typically	considered	to	be	true	or	false.	This	loosely	corresponds	to	the	way	that
neurons	fire	if	and	only	if	they	receive	sufficient	stimulation.

The	perceptron	above	with	weights	[0.4,	0.4]	mimics	conjunction	(AND),	so	the
output	will	only	be	true	if	both	the	inputs	are	true.	If	the	weights	were	instead	both



1.0,	then	the	perceptron	could	mimic	disjunction	(OR)	—	the	output	would	be	true
if	either	of	the	inputs	were	true.	Likewise	if	the	weights	were	(1,	-1),	then	the
output	would	be	(I1	and	not	I2).

Perceptrons	are	also	very	good	at	the	majority	function	that	causes	decision	trees
to	fail.	Just	give	each	input	a	weight	of	1/n,	where	n	is	the	number	of	inputs,	and
then	see	if	the	result	adds	up	to	0.5.		The	output	will	be	true	if	a	majority	of	the
inputs	are	true.

However,	basic	single	layer	perceptrons	cannot	handle	non-linear	cases.	For
example,	there	is	no	way	to	set	the	weights	so	as	to	be	able	to	provide	an
exclusive	or	(XOR)	function,	namely	to	set	the	output	to	be	true	if	and	only	if
exactly	one	of	the	inputs	is	high,	and	the	other	is	low.	But	that	sort	of	condition	is
required	for	image	analysis,	for	example	an	edge	is	defined	by	having	two	pixels
just	one	of	which	is	black.	(Decision	trees	handle	this	case	easily.)

Sigmoid	perceptrons
The	limitations	of	Perceptrons	were	documented	in	the	book	Perceptrons	by
Minsky	and	Papert	(1969)	which	caused	research	into	perceptrons	to	be	largely
abandoned.		Then	in	the	mid	1970s	a	breakthrough	was	achieved	by	replacing
the	simple	boolean	step	function	with	a	sigmoid	function.

Sigmoid	function.
Owned

A	sigmoid	function	is	an	S-shaped	function.	There	are	several	functions	that	can
be	used,	the	chart	above	illustrates	the	most	common	type	of	sigmoid	function
which	is:-
				y	=	1/(1+	exp(-k	*	(x	+	m))

Like	a	simple	step	function,	the	effect	of	the	sigmoid	function	is	to	take	any	value
of	x	and	map	it	to	a	value	between	0	and	1.	It	also	tends	to	push	values	towards
those	bounds.	So	an	x	value	of	0.3	is	mapped	to	a	y	value	of	0.17,	and	an	x	value



of	0.7	is	mapped	to	a	y	value	of	0.83.	It	thus	converts	an	arbitrary	numeric	value
into	a	more	logical	value	centring	on	0	or	1.	But	unlike	a	step	function	the	sigmoid
is	differentiable,	meaning	that	it	is	smooth	and	does	not	have	any	sharp	kinks.	It
also	has	a	well-defined	inverse,	so	one	can	determine	a	unique	value	for	x	given
any	value	for	y.	These	properties	enabled	a	new	back	propagation	algorithm	to	be
developed	which	could	learn	weights	in	much	more	powerful	multi	layered	ANNs.

Two	layer	perceptron	network.
Educational	http://www.emeraldinsight.com/journals.htm?articleid=876327

The	diagram	above	shows	a	two-layer	neural	network	which	has	sigmoid
functions	inserted	between	the	two	layers	and	before	the	outputs.	The	drawing
uses	lines	to	show	that	the	output	of	each	layer	is	the	sum	of	the	layer’s	weights
times	its	inputs.

The	middle,	hidden	layer	does	not	have	any	obvious	relationship	to	the	inputs	or
the	outputs,	so	it	would	appear	to	be	very	difficult	to	train	a	three-layer	network.
However,	it	turns	out	that	the	delta	gradient	descent	method	described	above	can
be	adapted	for	use	with	three	layered	networks.	The	resulting	back	propagation
algorithm	enabled	networks	to	learn	quite	complicated	relationships	between
inputs	and	outputs.		It	was	shown	by	Cybenko	(1989)	that	two	layered	networks
with	sigmoid	functions	could	represent	virtually	any	function.	They	can	certainly
address	the	exclusive	or	problem.

The	classical	back	propagation	algorithm	first	initializes	all	the	weights	to	random
values.	Then	the	inputs	are	set	to	the	inputs	of	each	training	case,	and	the	output
layer	is	compared	to	the	desired	outputs	so	that	the	output	layer	weights	can	be
adjusted	to	minimize	the	error	using	the	same	delta	algorithm	that	was	used	by	a
single-layer	network.

The	next	step	then	allocates	the	remaining	error	in	the	output	of	each	node	to
each	of	the	hidden-layer	nodes.	This	is	achieved	by	allocating	most	of	the	error	to
nodes	in	the	hidden-layer	that	correspond	to	large	weights	in	the	output-layer	and



so	determine	what	the	hidden-layer	values	“should”	be.	Having	done	that	it	then
uses	the	normal	delta	algorithm	to	determine	the	weights	of	the	input	layer	which
minimize	the	error	of	the	hidden-layer.	Like	single-layer	gradient	descent,	only
small	changes	are	made	to	the	weights	at	each	iteration,	and	many,	many
iterations	are	required	to	train	the	network.

Taking	random	values	and	adjusting	them	based	on	errors	derived	from	other
random	values	seems	bizarre,	but	what	happens	in	practice	is	that	by	chance
some	combination	of	an	input	node	and	an	output	node	will	have	some	loose
correlation	with	the	desired	result.	The	algorithm	tends	to	reinforce	that	correlation
and	then	pushes	the	errors	out	to	other	nodes	in	the	network,	which	then	become
trained	to	compensate.

So	in	our	exclusive	or	example,	if	one	input	node	ends	up	representing	A	and	B,
then	the	other	case	not	A	and	not	B,	ends	up	being	pushed	to	the	other	node.
Contrary	to	this	author’s	intuition,	the	system	magically	converges	on	a	useful	set
of	weights.	(There	is,	of	course,	no	guarantee	that	the	random	values	will
converge	on	useful	values,	but	they	usually	do	in	practice	for	a	well	set	up
network.)

Using	perceptron	networks
Applying	ANNs	to	real	problems	requires	much	more	analysis	than	simply
applying	the	relatively	simple	back	propagation	algorithm.

The	first	issue	is	to	determine	what	the	input	should	be.	For	our	character
recognition	problem	it	could	be	as	simple	as	the	brightness	of	each	pixel	in	the
image.	But	as	noted	in	the	section	on	case-based	reasoning,	moving	an	image
just	one	pixel	to	the	right	completely	changes	which	pixels	are	black.	So
conditioning	the	input	data	by	aligning	the	images	on	their	centroids	would	be	a
sensible	start,	with	the	x	and	y	offsets	then	being	additional	inputs.

A	NIST	image	of	just	20	by	20	pixels	contains	400	inputs,	which	can	make	training
slow	and	unpredictable.	Reducing	the	resolution	to	8	by	8	pixels	will	reduce	the
training	time,	but	it	might	be	quite	hard	for	even	humans	to	accurately	recognize
numerals	on	this	course	scale.	A	better	alternative	might	be	to	reduce	the	image
further	to	6	by	5	regions	(say),	but	for	each	region	provide	additional	information
such	as	whether	the	original	image	contained	and	edge	in	that	region,	and	if	so	in
what	orientation.	Or	it	might	be	best	to	eschew	regions	altogether	and	make	the
inputs	high-level	features	in	a	similar	way	to	what	was	used	for	decision	trees.

The	next	problem	is	the	number	of	layers	and	nodes	to	use.	For	the	number	of
layers,	the	answer	is	simple,	namely	three.	If	the	problem	is	simple	enough	that	it
only	needs	two	layers	(input	and	output)	then	it	would	be	better	solved	by
statistical	regression	tools	as	noted	previously.	If	the	problem	cannot	be	solved	in
three	layers	then	it	is	most	unlikely	that	it	can	be	solved	in	four	or	more	layers.
Training	doubly	hidden	nodes	is	just	too	hard.



Determining	the	number	of	hidden	nodes	is	difficult	and	much	has	been	written	on
the	subject.	It	will	generally	be	a	similar	number	to	the	number	of	input	and	output
nodes,	but	that	varies	widely	depending	on	the	problem	that	is	being	addressed.
The	usual	approach	is	to	try	different	numbers	of	hidden	nodes	and	see	what	is
most	effective	for	a	given	problem.	There	are	also	algorithms	that	can	prune
redundant	nodes,	or	that	can	vary	the	number	of	hidden	nodes	during	the	training
phase.

The	training	data	then	needs	to	be	run	through	the	network	multiple	times	as	the
weights	are	very	slowly	adjusted	by	the	algorithm.	Processing	all	of	the	training
cases	once	is	referred	to	as	an	epoch,	and	many	epochs	are	usually	required	to
train	the	network.	At	first	the	network	just	produces	gibberish.	But	then,	very
slowly	at	first,	the	error	rate	starts	to	reduce	as	the	network	weights	start	to	reflect
the	training	data.

One	of	the	strengths	of	an	ANN	is	that	it	can	handle	noisy	data.	A	properly	trained
network	will	be	able	to	match	previously	unseen	cases	that	are	similar	to	but
different	from	the	training	cases.	However,	if	the	training	continues	too	long	then
the	network	may	become	over	trained	in	which	case	it	will	only	match	the	cases
that	it	was	trained	on.

If	there	are	thousands	of	training	cases	that	are	processed	in	thousands	of
epochs,	and	each	individual	training	case	requires	thousands	of	computations,	it
is	easy	to	require	many	billions	of	operations	to	train	a	network.	The	training	may
then	need	to	be	repeated	many	times	for	various	parameters	such	as	the	number
of	hidden	nodes	and	the	conditioning	algorithms.	Fortunately,	much	of	this
processing	can	be	performed	in	parallel,	and	so	modern	graphical	processing
units	can	be	used	with	good	effect.

The	primary	result	of	training	a	network	is	the	creation	of	two	matrices	of	weight,
one	for	each	layer.	These	weights	can	then	be	applied	to	new	cases	very
efficiently.	This	involves	little	more	than	the	multiplication	of	two	possibly	sparse
matrices.

The	numbers	in	the	weight	matrices	encapsulate	much	of	the	raw	information	that
is	in	the	training	data.	However,	for	all	but	the	simplest	cases	the	relationship
between	the	numbers	in	the	matrices	and	the	original	training	data	is	obscure.	So
while	the	network	may	be	very	good	at	classifying	its	cases,	it	is	very	bad	at
explaining	why	it	reaches	those	classifications.	This	is	in	stark	contrast	to	a	rule-
based	expert	system	or	SHRDLU’s	planning	engine.	It	is	fortunate	that	ANNs	can
be	trained	automatically	because	it	is	difficult	to	specify	the	weights	manually.

This	lack	of	transparency	can	lead	to	unfortunate	results.	One	apocryphal	story	is
of	an	ANN	that	was	designed	to	identify	camouflaged	tanks.	On	the	training
photographs	it	succeeded	with	almost	90%	accuracy,	which	was	a	surprisingly
good	result	for	such	a	difficult	problem.	But	when	trialled	in	the	field	it	failed
hopelessly.	Re-examination	of	the	training	images	showed	that	most	of	the
pictures	with	tanks	happened	to	have	been	taken	on	cloudy	days.	The	network



had	learned	to	recognize	the	colour	saturations	of	cloudy	day	photographs,	and
had	no	knowledge	of	tanks	at	all.

That	said,	learning	intelligible	models	is	certainly	not	a	mandatory	requirement.
For	the	digit	recognition	problem	it	would	suffice	that	the	system	recognizes	the
digits	correctly.

There	are	also	many	different	architectures	and	usage	models	of	artificial	neural
networks	beyond	the	simple	two-layered	network	with	back	propagation	that	has
been	discussed.	One	variant	is	the	recurrent	network	in	which	some	of	the	outputs
are	fed	back	to	the	inputs,	thus	allowing	the	networks	to	have	memory.	Recent
research	has	addressed	the	difficulty	of	training	such	networks.

Hype	and	real	neurons
Like	expert	systems	before	them,	artificial	neural	networks	were	also	hyped	out	of
all	proportion	to	their	capabilities.	Take	the	problems	of	the	universe,	feed	them	in
to	the	learning	algorithm,	and	then	solve	them	automatically.	No	deep
understanding	required.	For	example,	one	author	suggested	that	French	could	be
translated	into	English	by	simply	feeding	pairs	of	sentences	into	a	network	and
allowing	it	to	learn.	An	ANN	might	be	a	component	in	a	natural	language	system,
but	there	is	much	more	involved.		ANNs	are	certainly	powerful	for	certain	types	of
pattern	matching	problems	but	they	do	not	meaningfully	compete	with	advanced
symbolic	systems	for	symbolic	problems.

Complicated-sounding	problems	in	biotechnology,	economics	and	the	aerospace
industry	have	been	solved	by	ANNs.	Some	of	these	do	indeed	bely	substantial
technical	achievements,	but	others	would	be	better	addressed	by	simple	statistical
regression	models.	Just	because	an	industry	involves	high	technology	does	not
mean	that	every	problem	in	it	is	difficult	to	solve.

Although	ANNs	were	inspired	by	neurons,	they	are	quite	different	in	a	number	of
fundamental	ways	that	will	be	discussed	in	the	chapter	on	computational
neuroscience.		It	is	often	unclear	whether	popular	accounts	of	“neural	networks”
refer	to	artificial	neural	networks	or	attempts	to	simulate	real	neurons.

In	order	to	avoid	the	hype	and	emphasize	serious	engineering,	many	researchers
avoid	the	term	neural	networks,	preferring	the	terms	parallel	distributed
processing	or	connectionism.	They	also	want	to	emphasize	that	while	this
technology	has	been	inspired	by	biological	neurons,	it	is	not	an	attempt	to
simulate	them.	Rather,	it	is	an	attempt	to	build	practical	technology	that	can
address	real	problems.

Support	vector	machines



Points	that	cannot	be	separated	linearly.
Owned

Support	vector	machines	are	a	new	technology	that	provides	an	alternative
method	of	learning	complex	relationships	from	observed	data.	They	use	kernel
functions	that	map	difficult	input	data	to	a	new	representation	that	makes	the
problem	easy	to	solve.	This	avoids	the	need	for	complex	engines	such	as	multi-
layered	artificial	neural	networks.

The	mathematics	involved	is	quite	complex,	but	a	simple	example	illustrates	the
general	approach.	Consider	the	data	in	the	chart	above	in	which	there	is	a	strong
pattern	that	distinguishes	between	the	inner	blue	diamonds	and	the	outer	red
squares.	However,	this	pattern	could	not	be	learnt	by	a	linear	system	such	as
simple	perceptrons	because	there	is	no	way	that	a	straight	line	can	be	drawn	that
neatly	separates	the	two	populations.

Now	consider	the	chart	below.	It	contains	the	same	data	points	as	the	chart
above,	but	both	the	X	and	Y	values	of	each	point	have	been	squared.	For
example,	the	point	in	the	above	chart	that	is	located	at	(1.5,	0.5)	has	been
mapped	to	the	point	(1.5	*	1.5,	0.5	*	0.5)	=	(2.25,	0.25)	in	the	chart	below.

This	mapping	has	rearranged	the	points,	pushing	them	all	into	the	top	right
positive	number	quadrant.	It	now	becomes	very	easy	to	separate	the	two
populations	using	a	straight	line,	as	shown	by	the	dashed	line.	This	relationship
could	be	easily	learned	by	a	perceptron	or	other	regression	technologies.



Mapped	points	that	can	be	separated	linearly.
Owned

There	are	methods	for	determining	such	mappings	automatically,	which	involves
minimizing	a	multidimensional	quadratic	equation	which	can	be	done	efficiently
using	gradient	descent	approaches.	Unfortunately,	in	order	to	do	this	the	number
of	dimensions	can	increase	dramatically.	Functions	of	large	numbers	of
dimensions	are	computationally	expensive.

This	problem	also	has	a	solution.	It	is	possible	to	build	these	high-dimensional
kernel	functions	so	that	they	only	depend	on	the	dot	products	of	the	original	data
points,	and	not	their	individual	dimensions.	Dot	products	have	the	form	

d	=	x1*x2	+	y1*y2	+…	

where	d	is	a	simple	scalar,	and	so	is	easy	and	efficient	to	calculate.

Unsupervised	learning
All	the	pattern-matching	examples	we	have	used	above	have	a	set	of	cases	that
have	a	known	classifications,	and	the	job	of	the	pattern	matcher	is	to	classify
unknown	cases	in	the	same	manner.	This	is	referred	to	as	supervised	learning.
There	are	also	several	problems	that	require	the	pattern	matcher	to	deduce	the
classifications	themselves,	without	being	told	in	advance.	These	are	known	as
unsupervised	learning	problems.

One	problem	that	requires	unsupervised	learning	is	to	recognize	clusters	of	data
points.	In	the	example	below,	there	are	three	fairly	distinct	clusters,	coloured	red,
blue	and	green.	There	are	several	clustering	algorithms	that	can	find	clusters
without	being	told	where	they	are	centered,	or	even	the	number	of	clusters	to



form.	The	diagram	below	is	two	dimensional,	but	more	interesting	examples	have
higher	dimensionality.

The	early	and	crude	k-means	algorithm	picks	k	random	points	for	cluster	centers
and	then	classifies	all	the	data	points	based	on	their	Euclidean	distance	from
those	points.	The	cluster	centers	are	then	repositioned	to	be	the	centroids	of	each
class	of	points,	and	the	process	is	repeated.	K-means	is	limited	because	it	easily
gets	stuck	on	false	centroids,	and	because	it	requires	the	number	of	clusters	to	be
pre-determined.

The	nearest	neighbours	approach	considers	each	point	and	its	k	nearest
neighbours.	It	then	sees	if	the	centroid	of	that	group	might	be	the	centre	of	an
effective	cluster.	It	is	generally	more	effective	than	K-Means.	Other	systems	use
statistical	distributions	to	model	local	densities,	while	others	define	clusters	as
connected	dense	regions	in	the	data	space.	The	adaptive	resonance	approach
uses	artificial	neural	network	technologies.

Recognizing	clusters	of	related	points	is	an	important	aspect	of	learning	patterns
from	observations.	Given	the	clusters	observed	below,	a	system	might	investigate
what	caused	those	clusters	to	appear,	and	note	changes	in	the	clusters	in
different	situations.

Clustering.
Public	Wikipedia

Another	example	of	unsupervised	learning	is	discovering	hidden	nodes	in
Bayesian	networks.	Recall	that	it	is	easy	to	learn	a	joint	probability	distribution
from	observations,	and	there	are	good	algorithms	than	can	infer	a	network	from
the	conditional	independences	discovered	in	the	distribution.	More	sophisticated



algorithms	can	use	clustering-like	approaches	to	infer	new	nodes	that	should	be
added	into	the	network	which	can	greatly	simplify	its	structure.

This	is	what	happens	when	people	discover	new	diseases.	All	that	can	be	actually
observed	is	symptoms,	but	by	inventing	diseases	multiple	symptom	observations
can	be	coalesced.	Treatments	can	then	be	based	on	the	inferred	diseases	rather
than	having	to	map	individual	symptoms	directly	to	each	possible	treatment.

Competing	technologies
These	many	different	approaches	can	be	applied	to	the	original	digit	recognition
problem,	with	varying	results.	The	results	are	difficult	to	compare	directly	because
much	depends	on	the	details	about	how	each	test	was	performed,	how	the	data
was	conditioned	etc.

One	of	the	first	approaches	was	to	use	nearest	neighbour	clustering	to	group
images	into	digits.	This	is	similar	to	the	case-based	reasoning	described	earlier.
The	error	rate	was	about	2.4%,	and	it	was	the	slowest	method	because	of	the
need	to	store	and	process	all	the	samples.

A	fairly	naive	three-layer	artificial	neural	network	was	created	with	400	input	units
(one	per	pixel)	and	10	outputs	(one	per	digit).	It	was	found	that	about	300	hidden
nodes	produced	the	best	results,	which	was	a	1.6%	error	rate.

A	highly	tuned	and	specialized	network	called	LeNet	conditioned	the	data	by
centering	the	images.	It	also	used	three	layers	of	hidden	units	which	were	highly
constrained	so	that	they	tended	to	recognize	discrete	features	such	as	line
segments	or	curves.	LeNet	produced	a	0.9%	error	rate.

A	naively	applied	support	vector	machine	produced	a	very	reasonable	error	rate	of
1.1%.	A	tuned	version	was	then	built	that	centered	the	image	and	focused	the
kernels	on	nearby	pixels.	This	produced	an	impressive	0.56%	error	rate.

A	shape-matching	approach	explicitly	looked	at	edges	between	black	and	white
pixels	in	a	similar	manner	to	computer	vision	systems.	It	then	attempted	to	match
corresponding	features	of	each	pair	of	images	using	nearest	neighbour	clustering.
This	produced	an	error	rate	of	0.63%.

Decision	tables	have	also	been	effective	in	image	analysis,	although	their
effectiveness	largely	depends	on	the	tests	that	can	be	applied	to	the	image.	The
best	results	can	be	achieved	by	using	multiple	decision	trees	and	then	averaging
the	results.

When	considering	error	rates,	humans	that	carefully	examine	images	are	said	to
have	an	error	rate	of	0.2%,	whereas	post	office	workers	quickly	sorting	mail	had
an	error	rate	of	2.5%.	So	all	of	the	automated	systems	had	better	than	human
performance	in	practice.





Speech	and	Vision

Speech	recognition
One	achievement	of	modern	artificial	intelligence	research	is	the	ability	to
understand	spoken	speech.	After	a	little	work	training	a	system,	people	may
abandon	their	keyboards	and	simply	talk	to	their	computers.	This	is	particularly
useful	in	situations	for	those	with	busy	hands	or	disabilities.	As	small	devices
without	keyboards	such	as	smart	phones	and	tablets	become	more	powerful	this
technology	is	likely	to	become	more	widely	used.

Phonologists	have	understood,	at	least	in	principle,	that	words	can	be	broken	into
phonemes,	which	roughly	correspond	to	the	letters	in	written	words.	Phonemes
result	from	the	way	our	mouths	change	shape	as	we	speak,	thus	changing	the
frequency	and	volume	of	the	sound	that	we	produce.	If	phonemes	could	be
recognized	accurately	then	they	could	be	reassembled	back	into	words,	and	the
words	reassembled	back	into	sentences.

However,	the	distinction	between	different	phonemes	can	be	subtle	and
ambiguous.	There	are	generally	several	different	sounds	(known	as	phones)	that
people	in	a	given	language	recognize	as	being	the	same	phoneme.	People	also
speak	quickly,	slurring	their	words	and	phones	together,	or	omitting	some	phones
altogether.	Different	people	also	have	different	accents,	and	background	noise
can	confuse	the	signal.

Consider	the	spectrogram	below	of	the	words	“three”	followed	by	“tea”.	The	top
row	shows	time	in	milliseconds,	and	the	second	row	shows	the	raw	wave	form.
The	third	shows	the	Fourier	transform	of	the	frequency,	increasing	vertically,	with
darker	areas	indicating	more	energy	at	a	particular	frequency.	This	is	essentially
the	same	as	the	signal	that	the	brain	receives	from	the	cochlea	within	the	inner
ear.

The	main	thing	to	note	is	that	it	is	not	at	all	obvious	from	simple	observation	what
words	are	being	spoken,	even	when	one	knows	what	they	are.	The	fourth	row
indicates	the	actual	phones	being	uttered.	The	two	“i:”	fragments	are	the	“ee/ea”
sound	in	the	words,	but	they	look	quite	different	when	preceded	by	the	“thr”	in
“three”	or	the	“t”	in	“tea”.	Finally	note	that	in	the	sample	the	speaker	has	paused
for	100	milliseconds	between	the	words,	but	in	normal,	continuous	speech	words
are	often	run	together	making	it	very	difficult	to	know	where	one	word	ends	and
another	word	begins.



Sonogram	of	the	words	“Three	Tea”
Educational	http://www.cslu.ogi.edu/tutordemos/nnet_training/tutorial.html

Speech	recognition	systems	attack	this	problem	in	a	similar	way	to	other	pattern
recognition	problems.	The	data	is	first	conditioned	to	make	it	easier	to	work	with.
Then	features	are	extracted	which	can	be	compared	with	a	model	of	what
features	are	expected.

Speech	understanding	systems	usually	start	by	splitting	the	input	sound	into
overlapping	frames	about	10	milliseconds	long.	That	is	fine	enough	to	isolate
short-duration	phones,	but	coarse	enough	to	enable	a	proper	frequency	analysis
to	be	performed.	The	frames	overlap	in	case	an	important	transition	happened	to
occur	on	a	frame	boundary.

Features	are	then	extracted	from	the	frames,	such	as	the	overall	volume	and	the
frequency	distribution.	It	is	important	to	digest	the	large	amount	of	information
contained	within	the	sonogram	into	a	relatively	small	number	of	parameters	that
can	still	effectively	distinguish	the	phones	without	being	overly	sensitive	to
speaker	variation	or	noise.

Phones	can	be	modelled	as	having	three	parts,	a	beginning,	a	middle	and	an	end.
In	general,	phones	also	change	substantially	depending	on	the	phones	that	come
before	and	after	them.	So	a	table	of	3n3	states	is	required	to	hold	all	the	phones,
i.e.	about	500	entries	for	50	different	phones.

Hidden	Markov	models
Modern	speech	understanding	systems	then	feed	the	result	into	hidden	Markov
models,	which	are	a	generalization	of	finite	state	machines.

To	understand	finite	state	machines,	consider	the	following	secret	message,	which
was	encrypted	using	a	simple	pen	and	paper	cipher	known	as	single
transposition:-

SONERENEYDMMO



The	cipher	can	be	decrypted	to	reveal	the	following	plain	text:-

SENDM
OREMO
NEY

But	pen	and	paper	ciphers	do	not	include	a	space	character,	so	it	is	difficult	to
recognize	the	words	that	are	within	it.

The	following	finite	state	machine	addresses	this	problem.	In	it,	states	are
represented	as	numbered	circles	and	transitions	as	arrows.	The	system	starts	at
node	0	and	then	looks	for	the	first	letter.	If	it	is	an	“S”	then	we	move	to	state	1,	but
if	we	see	an	“M”	then	we	move	to	state	5,	in	which	case	an	“O”	would	move	it	to
state	6.	It	can	be	seen	that	the	letters	“M”,	“O”,	“N”,	“E”,	and	“Y”	will	result	in	the
machine	being	in	state	11,	which	represents	the	word	“MONEY”.		A	large	number
of	words	can	be	loaded	into	a	finite	state	machine	which	can	then	disambiguate
them	very	efficiently.

Finite	state	machine	for	recognizing	words.
Owned

A	hidden	Markov	model	also	has	states	and	transitions.	However,	the	transitions
are	probabilistic,	so	that	a	given	input	may	produce	several	transitions.	Further,
the	actual	states	and	transitions	are	hidden,	so	all	that	is	known	is	the	input
phones	and	the	resulting	words.	There	are	clever	algorithms	that	can	learn	these
transitions	from	examples.	It	is	also	possible	to	train	recurrent	artificial	neural
networks	to	handle	this	type	of	problem.

Words	and	language
It	turns	out	that	it	is	simply	not	possible	for	either	computers	or	humans	to
accurately	understand	continuous	speech	given	only	the	phone	analysis.	What	is



required	is	some	knowledge	of	what	is	actually	being	said.	One	way	to	do	this	is
to	constrain	the	recognized	words	to	being	grammatically	correct.	A	better	way	is
to	simply	record	pairs	or	triplets	of	words	that	are	commonly	spoken.	If	the	system
is	unsure	which	of	a	small	number	of	words	an	utterance	refers	to,	it	simply	picks
the	one	that	is	the	most	common	given	the	preceding	and	following	words.	So	this
would	favour	“fourcandles”	over	“forkhandles”	even	though	they	are	both
grammatically	correct.	However,	it	requires	knowledge	of	the	context	of	the
conversation	to	distinguish	more	subtle	ambiguities,	e.g.	“encourage-euthenasia”
from	“encourage-youth-in-Asia”.

Once	the	words	are	understood	then	they	can	be	parsed	and	analyzed	in	ways
outline	in	the	SHRDLU	chapter.	But	this	analysis	cannot	be	cleanly	separated
from	the	phonetic	processing	due	to	the	need	to	handle	phonetic	ambiguity.

3D	graphics
Before	considering	the	problem	of	computer	vision,	it	is	worth	considering	the
inverse	but	relatively	simpler	problem	of	producing	the	3D	graphics	that	have
become	commonplace	in	movies	and	games.	These	advanced	graphics	have
become	possible	due	to	the	availability	of	specialized	hardware	and	graphics
processing	units	that	can	perform	the	billions	of	calculations	per	second	that	are
required	to	produce	quality	animations.

The	objects	that	are	displayed	are	generally	represented	as	a	hierarchical	model
known	as	a	scene	graph.	So	a	truck	could	contain	ten	zombies,	each	of	which	has
arms,	legs	and	heads,	which	in	turn	have	fingers,	an	eye	and	maggots.	Movement
of	each	component	is	relative	to	its	parent,	so	the	zombie’s	eye	moves	relative	to
its	possibly	spinning	head,	which	moves	relative	to	the	zombie,	which	moves
relative	to	the	truck.



Example	of	tesselation
Public	Wikipedia

Each	component	of	our	zombie	will	typically	be	described	in	an	artist’s	drawing
tool	as	higher-level	shapes	such	as	three-dimensional	splines	or	generalized
cylinders.	But	before	these	can	be	rendered	they	are	normally	tessellated	into	a
larger	number	of	simple	triangles	that	approximate	the	same	shape,	as	shown
above.	The	points	within	those	triangles	then	need	to	be	mapped	to	the	viewing
plane	using	a	perspective	mapping.

Perspective	mapping	to	the	picture	plane.
Public	G.	A.	Storey	1910.



Most	of	the	triangles	will	be	obscured	by	other	triangles.	A	z-buffer	algorithm	is
normally	used	to	resolve	these.	Each	pixel	in	the	viewing	plane	also	records	the	z
coordinate	(depth)	of	the	object	that	produced	it	as	illustrated	below.	As	each
object	is	projected	onto	the	screen	pixels	the	z	values	are	compared	with	any
existing	z	value	for	that	screen	pixel.	If	the	new	object	is	nearer	than	the	distance
recorded	on	the	screen,	then	it	overrides	the	pixel,	but	if	it	is	further	away	then	it	is
simply	ignored	because	it	will	be	obscured	by	some	other,	closer	object.

Z	buffering	to	remove	hidden	surfaces.
Corporate	http://msdn.microsoft.com/en-us/library/aa915211.aspx

The	three-dimensional	surface	of	the	underlying	objects	is	wrapped	with	a	texture
(image),	and	then	it	is	the	corresponding	point	in	the	texture	that	is	actually
mapped	to	the	screen.	So	if	the	zombie’s	nose	has	black	and	green	splodges,
then	the	colour	of	a	screen	pixel	that	is	mapped	to	the	nose	will	be	black	or	green
depending	on	which	specific	splodge	the	pixel	maps	to.

The	human	eye	is	also	very	sensitive	to	lighting	effects.	Most	surfaces	are	brighter
when	they	face	the	light	source	which	can	be	seen	in	the	images	below.	(The	full
moon	is	the	classic	counter	example,	which	is	why	it	looks	rather	flat	rather	than
spherical.)	The	eye	is	also	very	sensitive	to	discontinuities	in	shading,	as	shown	in
the	left-hand	image	in	which	the	tessellation	becomes	obvious.



Smoothing	shading	to	hide	tessellation.
Public	Wikipedia

There	are	many	other	issues	in	producing	good	quality	3D	images	which	include
shadows,	translucent	objects,	(partial)	reflections,	and	fog.

Machine	vision
It	has	been	said	that	if	3-D	graphics	is	like	squeezing	toothpaste	out	of	a	tube,
then	machine	vision	is	like	pushing	the	toothpaste	back	into	the	tube	—	by	hand.
The	scene	graph	needs	to	be	inferred	given	only	the	image	that	is	the	result	of
numerous,	complex	and	overlapping	rendering	operations.	This	is	a	tough
problem	that	has	not	been	fully	solved.	Real	images	contain	considerable	noise
such	as	scratches,	textured	surfaces	and	complex	lighting	effects	which	can	often
obscure	the	real	surfaces	that	created	them.	But	machine	vision	is	an	important
problem	because	being	able	to	see	greatly	enhances	a	robot’s	understanding	of
the	world	that	it	inhabits.

Edge	Detection.
Public	Wikipedia

The	first	phase	in	classical	vision	system	is	to	condition	the	data	by	running	some
simple	filters	on	the	image	to	pick	out	key	features.	The	pictures	above	show	the
result	of	a	filter	that	detects	edges,	i.e.	sharp	changes	in	colour	or	intensity.	Other



filters	can	detect	gradients	of	shading	that	arise	from	curved	surfaces,	or,	for	video
how	each	part	of	the	image	moves	from	one	frame	to	the	next.	Analysis	of	the
optic	nerve	of	cats	suggests	that	human	visual	processing	begins	with	a	similar
analysis.

This	information	is	then	combined	in	order	to	segment	the	image	into	its
constituent	objects.	In	the	image	above	the	girl	should	be	separated	from	the
background,	and	ideally	the	flower	from	the	hands.	The	normally	sharp	edge
between	overlapping	objects	can	assist	with	this,	but	there	will	usually	be	some
ambiguity.

Finally,	the	perceived	shapes	in	space	need	to	be	fitted	to	some	type	of	model.
This	is	similar	to	a	scene	graph	but	is	usually	referred	to	as	a	scene	grammar.
This	is	a	difficult	problem	in	general,	and	the	resulting	grammar	may	contain
ambiguities	and	contradictions	much	like	the	recovered	grammars	of	speech
recognition	systems.	The	type	of	model	also	needs	to	be	specialized	to	a
significant	extent	depending	upon	the	problem	domain	being	addressed.

To	be	effective,	systems	often	make	predictions	about	what	is	in	the	scene	based
on	initial	observations,	and	these	predictions	are	then	fed	back	to	lower	levels	of
the	model.	So	in	the	diagram	below,	the	light	part	of	the	image	suggests	a	face.
This	enables	the	system	to	recognize	the	otherwise	very	faint	edge	at	the	bottom
left	of	the	image	as	being	an	edge	that	should	be	used	to	segment	the	face	from
the	background.	This	process	in	which	higher	levels	in	a	hierarchy	feedback	to
lower	levels	is	quite	important.	Another	example	of	this	hierarchical	feedback	is
the	way	speech	understanding	systems	rely	on	the	knowledge	of	which	words	are
more	likely	to	be	spoken	together	in	order	to	help	resolve	phones	at	the	bottom
level.



Use	of	a	model	helps	identify	faint	edges.
Educational	via	Nilsson	Quest	for	AI

Inferring	the	depth	of	each	point	in	the	image	is	a	difficult	problem	that	needs	to	be
solved	if	the	three	dimensional	shape	of	objects	is	to	be	determined.	Humans	are
very	good	at	this,	and	use	a	number	of	quite	subtle	clues	to	analyze	difficult
images.	Images	with	deliberately	confused	perspective	like	the	Escher	waterfall
below	highlight	some	of	this	processing.	A	point	that	is	higher	on	the	screen	plane
may	or	may	not	be	higher	in	absolute	coordinates,	but	our	vision	system	uses
several	clues	about	the	water	running	down,	steps,	reduction	in	size	etc.	to
determine	that	the	top	of	the	waterfall	is	below	its	bottom.



Escher	print	showing	difficult	perspectives.
Public	Wikipedia

Fortunately	there	is	generally	no	need	for	a	robot	to	have	only	one	eye,	so	stereo
vision	can	provide	a	much	easier	way	to	infer	the	third	dimension	using	simple
trigonometry.	For	example,	in	the	figure	below	it	is	easy	to	determine	that	the
person	is	well	in	front	of	the	larger	palm	tree	by	noting	their	relevant	positions	to
the	two	cameras.



Stereo	vision	identifies	depth.
Permitted	http://www.imec.be/ScientificReport/SR2007/html/1384302.html

Stereo	vision	requires	the	non-trivial	matching	of	pixels	in	one	image	with	pixels	in
the	other	image	in	order	to	know	which	pixels	to	triangulate.	But	some	systems
like	the	XBox	Kinect	system	use	an	even	simpler	approach	in	which	one	of	the
cameras	is	replaced	with	an	infra-red	laser	that	scans	the	scene.	Then	an	infra-
red	camera	only	needs	to	recognize	where	the	bright	dot	of	the	laser	is	in	the
scene	in	order	to	perform	the	triangulation.	Recent	Kinect	systems	use	a	time-of-
flight	camera	which	can	actually	measure	the	time	it	takes	for	a	pulse	of	light	to
travel	from	the	camera	to	the	object	and	back.	(These	approaches	fail	in	bright
daylight	or	if	the	image	contains	translucent	objects.)

Determining	the	three-dimensional	shape	of	an	object	makes	it	much	easier	to
determine	the	real	colour	and	textures	of	its	surfaces,	as	well	as	providing	strong
additional	clues	for	segmentation.

For	the	XBox	Kinect,	the	model	is	a	human	with	multiple	joints,	as	shown	below.	A
human	is	a	complex	object,	and	being	able	to	do	this	effectively	is	a	recent
achievement	that	requires	sophisticated	mathematical	analysis.	Once	the
geometry	has	been	recovered,	it	becomes	possible	to	analyze	how	the	figure	is
moving,	and	thus	how	much	weight	and	energy	is	being	carried	by	different	parts
of	the	body.	This	in	turn	can	be	used	to	drive	the	game	play	that	Kinect	was
designed	to	assist.



Recovery	of	a	human	model	using	Kinect.
Corporate	Microsoft

3D	vs	2.5D
It	should	be	noted	that	many	practical	problems	can	be	addressed	without
building	a	sophisticated	scene	grammar.	For	example,	it	has	been	noted	that	a
frog	only	needs	to	be	able	to	recognize	black	dots	moving	across	its	field	of	vision.
If	an	area	grows	substantially	then	it	might	be	a	predator	approaching,	in	which
case	the	frog	can	simply	hop	in	the	direction	of	the	darker	part	of	the	image.	(Real
frogs	are	more	intelligent	than	that.)

Indeed,	many	if	not	most	practical	applications	only	use	2-D	or	2.5-D
representations.	For	example,	to	recognize	a	face,	it	is	not	actually	necessary	to
build	a	complete	3D	model	from	the	image.	It	is	sufficient	to	simply	match	features
in	the	image	with	features	in	a	generic	stored	face.	Likewise,	recognizing	road
signs	and	number	plates	can	be	a	2D	problem.	There	is	evidence	that	most	insect
vision	is	also	essentially	2.5D.

The	“half”	a	dimension	refers	to	aspects	that	hint	at	3-D	but	are	not	actually
interpreted	as	such.	These	include	shading	effects	of	curves,	and	even	possibly
real	3-D	information	extracted	from	a	stereo	vision	system.	But	in	a	2.5-D	system
no	3-D	model	is	built	with	this	data,	instead	it	is	simply	used	as	an	additional
feature	mapped	to	the	2-D	surface.

It	may	not	even	be	necessary	to	build	a	2-D	model.	One	early	autonomous	car
had	a	simple	three-layer	artificial	neural	network	connected	directly	to	a	video
camera.	The	output	was	then	connected	directly	to	the	steering	wheel,	and	it	was
trained	by	people	driving	the	cart	around	a	real	road.	The	system	worked	well
provided	that	the	road	was	bordered	by	two	bright	white	lines.

Many	factory	systems	have	objects	laid	flat	on	a	conveyor	belt	with	a	contrasting



colour,	and	so	only	need	very	simple	vision	systems	to	guide	robots	to	manipulate
them.	There	are	also	many	tricks	that	can	be	used.	For	example,	if	one	wishes	to
track	people	as	they	move	around	a	room,	one	can	first	take	an	image	of	the	room
when	empty	and	then	subtract	that	from	any	active	image	—	anything	that
remains	must	be	people.

Relatively	recent	advances	have	enabled	much	more	sophisticated	vision
systems	to	be	built.	If	anything	approaching	human	competence	is	to	be	achieved,
then	building	some	type	of	hierarchical	scene	grammar	would	appear	to	be	a
prerequisite.

Kinetics
If	vision	is	to	be	useful	for	practical	applications	such	as	guiding	a	robot,	then	it
needs	to	be	fast,	returning	results	on	a	sub	second	time	frame.	Vision	is	complex,
though,	so	early	systems	could	take	minutes	to	analyze	a	single	image.	This
means	that	vision	systems	need	to	be	as	simple	and	fast	as	possible	to	solve	the
problem	at	hand.

One	important	technique	is	to	be	able	to	update	a	scene	graph	as	the	robot	or
objects	in	its	environment	move,	rather	than	analyzing	each	frame	completely
from	scratch.	This	involves	matching	regions	in	an	image	with	regions	in	a	slightly
different	previous	image.	It	is	also	useful	to	be	able	to	predict	where	objects	will	be
before	a	future	scene	can	be	analyzed.	That	type	of	processing	is	essential	for
performing	complex	tasks	such	as	catching	a	ball	in	real	time.	The	analysis	also
needs	to	be	robust,	so	that	objects	do	not	magically	appear	between	frames.

(Early	3-D	graphics	rendering	involved	many	such	techniques	to	update	an
existing	image	rather	than	having	to	render	each	frame	from	scratch.	But	modern
computer	hardware	is	so	fast	that	such	tricks	are	no	longer	used,	and	each	frame
is	normally	calculated	completely	from	scratch,	over	twenty	times	per	second.)





Robots

Automata

Classic	tin	robot.
Public	Commons	D.	J.	Shin

People	have	been	fascinated	by	the	idea	of	automated	humanoid	robots	since	the
eighteenth	century.	Very	simple	movements	can	be	quite	enchanting	when	they
are	performed	by	a	machine	with	a	humanoid	shape.

Perhaps	the	greatest	early	robot	was	The	Turk	chess-playing	machine	created	by
Wolfgang	von	Kempelen	in	1770.	It	toured	Europe	and	the	Americas	for	80	years,
and	beat	many	notable	people	including	Napoleon	Bonaparte	and	Benjamin
Franklin.	Before	each	game,	von	Kempelen	would	open	each	of	the	doors	of	the
machine	one	at	a	time	to	prove	to	the	audience	that	it	was	purely	mechanical.
Rev.	Edmund	Cartwright	was	so	intrigued	by	the	Turk	in	1784	that	he	would	later
question	whether	“it	is	more	difficult	to	construct	a	machine	that	shall	weave	than
one	which	shall	make	all	the	variety	of	moves	required	in	that	complicated	game”
and	patented	the	first	power	loom	shortly	afterwards.	Many	fanciful	theories	were
postulated	as	to	how	the	machine	worked,	including	one	claim	that	it	must	be	fake
because	it	sometimes	lost	a	game	but	a	real	machine	would	not	make	mistakes.

It	was	not	until	after	the	machine’s	eventual	destruction	in	a	fire	in	1854	that	the
key	technology	that	facilitated	this	amazing	performance	was	revealed,	which	was
a	sliding	seat	within	the	body	of	the	machine.	An	operator	hidden	within	the
machine	could	then	use	the	seat	to	slide	to	whichever	part	of	the	machine	was	not
open	to	inspection	at	a	given	time.

Perhaps	the	most	amazing	aspect	of	this	illusion	was	that	it	fooled	so	many



intelligent	people	for	so	many	years.	Not	even	a	vague	explanation	was	ever
offered	as	to	how	the	machine	was	supposed	to	work,	and	the	visible	machinery
looks	too	small	to	solve	such	a	difficult	problem.	Psychologically,	the	use	of	the
humanoid	head	with	its	moving	eyes	was	probably	more	important	than	it	should
have	been.

Modern	reproduction	of	The	Turk.
Public	Wikipedia

Not	all	automatons	providing	complex	functionality	were	fake.	Henri	Maillardet
created	the	one	shown	below	in	the	early	nineteenth	century.	It	could	draw	and
write	reasonably	well,	including	a	poem	signed	by	the	creator.	The	large	circular
cams	at	the	bottom	stored	the	fixed	movements	required	to	produce	the	drawings,
and	steel	fingers	pushed	by	the	cams	moved	the	hand.	It	took	considerable	skill
with	early	nineteenth	century	technology	to	map	movement	by	the	steel	fingers	to
the	hand	of	the	robot	with	sufficient	accuracy	to	produce	a	reasonable	drawing.
Again,	the	humanoid	head	is	essential	to	the	machine’s	appeal,	even	though	it
has	nothing	to	do	with	its	functionality.



	



Henri	Maillardet’s	Draughtsman	Automaton	from	1810.
Public	Wikipedia,	Educational	http://www.fi.edu/learn/sci-tech/automaton/automaton.php?cts=instrumentation

The	relationship	between	the	notches	on	the	cams	and	the	exact	position	of	the
hand	is	a	non-trivial.	It	would	take	considerable	effort	to	calculate	for	each	point	on
a	complex	drawing	the	correct	notches	on	the	cams	required	to	move	the	hand	to
the	corresponding	position.	However	Maillardet	probably	used	a	trick	in	which	he
replaced	the	brass	cams	with	something	like	paper,	and	replaced	the	steel	fingers
with	a	pencil.	He	could	then	manually	move	the	hand	of	the	robot,	which	would
record	the	positions	of	the	pencil	on	the	paper.	The	brass	cams	could	then	be	cut
to	match	the	line	traced	out	on	the	paper.

Robotics
The	availability	of	inexpensive	computers	has	made	it	possible	to	build	effective
robots	that	have	revolutionized	manufacturing	techniques.	In	highly	controlled
production	line	environments	it	is	possible	to	utilize	relatively	simple	robots	to
perform	tedious,	repetitive	work	that	was	traditionally	performed	by	unskilled
workers.	This	includes	material	handling	(e.g.	moving	objects	between	pallets	and
machines),	spot	and	arc	welding,	and	the	assembly	of	parts.

One	of	the	earliest	factory	robots	was	the	Unimation	PUMA	which	was	introduced



in	1978	and	is	shown	below.	It	had	an	arm	which	had	six	movable	joints,	often
known	as	degrees	of	freedom.	Being	destined	for	the	factory,	it	lacked	a	pretty
humanoid	face,	but	it	could	effectively	perform	simple	repetitive	tasks	previously
performed	by	people.

Unimation	PUMA	Robot.
Corporate

Early	robots	only	moved	in	predetermined	paths.	They	typically	had	a	training
mode	in	which	the	joints	would	relax	and	a	skilled	operator	would	push	the	arm	to
perform	the	desired	action.	The	robot	would	then	simply	repeat	those	precise
movements	over	and	over,	perhaps	being	driven	by	a	simple	sensor	which	told	it
when	the	next	part	arrived	on	a	production	line.	This	is	very	similar	to	the	way	that
Maillardet’s	draughting	automaton	was	probably	trained.	Although	simple,	these
robots	have	enabled	some	factories	to	operate	completely	“lights	off”,	meaning
that	an	entire	production	line	is	automated	and	so	no	people,	and	thus	no	lights,
are	required	for	it	to	operate.

Such	robots	are	in	no	sense	intelligent	and	could	well	be	described	as	just
another	advanced	industrial	machine	like	a	multi-axis	milling	machine.	However,
building	such	a	robot	presents	significant	technical	challenges.	The	joint	angles
need	to	be	accurately	set,	but	the	motors	that	drive	them	usually	provide	a	torque,
not	an	absolute	angle.	A	fast-moving	robot	has	substantial	momentum,	so	the
equations	that	relate	the	position	of	the	hand	to	the	torque	of	the	motors	are
complicated	and	unstable.	Continuous	feedback	needs	to	be	provided	to	correct
errors,	but	without	causing	possibly	violent	oscillations.	Some	robots	can	learn
how	the	arm	performed	in	previous	attempts	and	so	can	improve	performance	by
predicting	and	avoiding	errors	before	the	feedback	system	can	detect	them.



Good	quality	modern	robots	can	make	several	distinct	movements	per	second,	all
with	sub	millimetre	accuracy.	They	are	impressive	to	watch	because	they	can
easily	outperform	people	for	precisely	specified	movements.

Sensing	environment

Motoman	robot	using	vision	to	pick	objects	out	of	an	unstructured	bin.
Corporate	http://www.motoman.com/products/vision/#sthash.2y5eWHz4.dpbs

Today,	more	sophisticated	robots	can	sense	their	environment	and	react	to	it	in
sophisticated	ways.	This	enables	them	to	grasp	objects	that	are	not	in	precisely
predefined	locations,	and	to	work	on	objects	that	are	not	identical.	One	of	the
toughest	problems	traditionally	is	bin	picking,	namely	to	pick	objects	out	of	a
jumble	of	objects	in	a	bin	as	shown	above.	The	robot	has	to	sense	where	the
objects	are	and	what	their	orientation	or	pose	is.	It	then	has	to	plan	a	sequence	of
movements	to	accurately	grasp	the	object.	This	means	that	the	factory
environment	does	not	need	to	be	as	rigidly	controlled,	and	that	many	additional
jobs	can	be	automated.

The	advanced	vision	systems	this	requires	have	now	become	much	more
affordable.	The	system	shown	above	shown	above	just	uses	the	same	Kinect
sensors	that	are	used	in	the	XBox	consumer	game	console.	So	the	factory	lights
are	being	turned	back	on,	but	not	for	human	eyes.



Motion	Planning

Hexapod	robot.
Corporate	http://www.hexapodrobot.com/store/index.php?cPath=21_22

Other	robots	can	move	about,	with	wheels	or	caterpillar	treads	or	even	legs.
Hexapod	robots	like	the	one	show	above	are	very	stable	and	relatively	easy	to
program.	Moving	robots	then	need	to	plan	a	path	to	a	desired	location	without
bumping	into	other	objects	along	the	way.



Use	of	an	imaginary	potential	field	to	find	a	smooth	path.
Corporate	http://www.calerga.com/products/Sysquake/robotnav.html

One	classical	approach	to	this	problem	is	to	pretend	that	the	environment	has	a
potential	field,	much	like	a	gravitational	field.	The	goal	position	has	an	attractive
force,	while	obstacles	have	a	repulsive	force.	So	in	the	diagram	above,	the	blue
lines	show	the	equi-potentials	that	attract	the	robot,	but	with	strong	repulsion
around	the	round	and	linear	obstacles.	The	red	lines	are	just	perpendicular	to	the
blue	lines.	At	each	point	the	robot	calculates	the	net	effect	of	the	imaginary	field
on	its	location	and	simply	falls	along	these	red	lines	towards	its	goal.	This
normally	produces	a	fairly	smooth	and	reasonably	efficient	path.

For	more	complex	environments,	the	potential	field	approach	can	get	stuck	in
dead	ends.	A	more	general	approach	is	to	model	the	space	as	a	large	grid	of
squares.	The	intelligent	agent	can	then	consider	each	possible	path	from	square
to	square	that	leads	from	the	source	to	the	goal	before	choosing	the	shortest,
smoothest	path.	Heading	in	the	general	direction	of	the	goal	usually	provides	a
good	heuristic	to	minimize	this	search.

The	diagram	below	shows	how	this	process	can	be	optimized	by	only	considering
squares	that	are	adjacent	to	objects.	Given	that	the	shortest	unobscured	path	will
always	be	a	straight	line,	then	only	paths	that	connect	the	small	red	dots	need	to
be	considered.	This	optimization	is	important	for	large	spaces.	A	light	gray	barrier
has	been	placed	around	the	objects	to	allow	for	the	width	of	the	robot.	Other
approaches	create	random	or	semi	random	intermediate	points	on	the	map	rather
than	carefully	placing	them	near	the	boundaries	of	objects.	The	result	of	either
algorithm	then	needs	to	be	smoothed	for	efficient	dynamic	movement	through	the



space.

Searching	for	an	optimal	path	by	only	examining	plausible	best	paths.
Education	http://home.postech.ac.kr/~postman/index_res.htm

An	intelligent	robot	needs	to	be	able	to	move	its	arm	in	complex	ways	without
being	told	exactly	how	to	move	each	joint.	For	example,	it	might	be	asked	to	find
and	pick	a	part	out	of	a	bin,	and	then	put	it	in	a	specific	location.	That	requires	it	to
plan	a	series	of	motions	with	an	arm	that	achieves	the	goal	without	colliding	with
other	objects	like	the	sides	of	the	bin.	It	turns	out	that	this	is	very	similar	to	the
problem	of	navigating	a	path	for	a	wheeled	robot	to	move,	but	in	a	three
dimensional	space.	Of	course,	the	elbows	must	also	not	bump	into	things,	which
complicates	the	problem.	One	common	approach	is	to	plan	the	motions	in	the
much	higher	dimensional	space	of	joint	angles	rather	than	the	locations	in	three
dimensional	space.

Movement	and	Balance
One	of	the	more	difficult	tasks	for	a	humanoid	robot	is	to	maintain	balance	while
walking	over	rough	surfaces.	The	Atlas	robot	shown	below	can	walk	over	a
surface	covered	by	unstable	rocks.	Atlas	was	developed	by	the	Boston	Dynamics
company	which	has	recently	been	purchased	by	Google.

The	kinodynamic	processing	requires	very	carefully	measuring	the	current	state	of
the	robot’s	balance	and	movement.	This	is	then	compared	to	the	desired	state	so
that	movements	can	be	planned	that	will	produce	the	desired	state.	Due	to	the



chaotic	environment,	these	plans	never	quite	work	as	expected,	so	new	plans
need	to	be	continuously	produced.	This	type	of	feedback	loop	needs	to	be
carefully	damped	in	order	not	to	produce	wild,	oscillating	movements	which	would
arise	if	the	robot	continuously	over-corrects	previous	mistakes.

The	reader	is	encouraged	to	view	the	video	of	Atlas’s	impressive	performance,
but	it	is	still	moves	rather	awkwardly,	and	only	remains	upright	by	flailing	its
weighted	arms	around	quite	vigorously.	This	is	in	stark	contrast	to	a	human	that
could	not	only	walk	but	run	over	this	terrain	very	smoothly.

Atlas	robot	walking	over	rough	terrain.
Corporate	Boston	Dynamics

Robocup



Humanoid	robocup.
Corporate	http://www.pbs.org/wgbh/nova/tech/soccer-playing-robots.html

Some	of	the	greatest	advances	in	robotics	are	demonstrated	at	the	annual
international	Robocup	event,	in	which	dozens	of	teams	of	engineers	compete	to
build	humanoid	robots	that	can	win	a	game	of	soccer	against	competing	robots.
There	are	many	classes	of	robots,	and	the	rules	become	more	challenging	each
year.	Each	robot	has	to	be	fully	autonomous,	without	any	human	guidance,	nor
any	central	guiding	computer.	They	are	required	to	sense	their	position	and	the
position	of	the	other	players	and	the	ball,	and	then	determine	how	they	should
move.	That	is	a	very	challenging	problem.

Most	human	interest	seems	to	be	in	the	humanoid	robots	30	to	60	centimeters	tall
like	those	shown	above.	A	major	challenge	for	them	is	simply	to	remain	upright	on
their	two	large	feet,	and	to	work	with	the	severe	weight	and	hence	power
restrictions	that	result	from	having	legs.	The	advancement	of	these	robots	over
the	last	decade	is	impressive,	from	robots	that	could	barely	move	on	four	feet	to
robots	that	can	play	real	soccer	on	two	feet.

In	many	ways,	the	more	interesting	robots	are	the	ones	designed	to	work
effectively	as	robots	rather	than	pretending	to	be	people.	They	have	wheels	that
enable	them	to	move	quickly	and	purposefully	around	the	field,	as	shown	below.
These	robots	now	play	what	looks	like	an	intelligent	game,	covering	the	field	and
passing	the	ball	to	each	other.

Having	seen	how	the	robots	perform,	and	knowing	the	sophisticated	engineering
that	is	involved	in	building	them,	it	is	interesting	to	watch	the	engineers
themselves	play	against	the	robots.	Of	course,	the	engineers	easily	win,	and	one
cannot	but	be	impressed	by	the	grace	and	sophistication	of	human	movement.



Wheeled	robocup	robots.
News	http://www.dailymail.co.uk/sciencetech/article-467266/World-Cup-robots-kicks-off.html

Other	robots
	Another	impressive	challenge	is	the	associated	Robots@Home	competition.
Here,	robots	are	expected	to	interact	with	the	real,	unconstrained	world.	A	recent
challenge	was	to	go	to	an	unknown	supermarket,	find	and	recognize	where	the
milk	is	stored,	retrieve	it	from	the	shelf	without	dropping	or	crushing	it,	and	then
navigate	back	to	the	checkout	and	present	the	milk	for	payment.	This	needed	to
be	performed	without	bumping	in	to	other	people	that	happened	to	be	there.	One
robot	famously	failed	to	complete	the	task	when	a	small	boy	decided	to	press	its
emergency	Off	button.

The	image	below	shows	the	Stanford	STAIR	robot	unstacking	a	dishwasher.	The
key	challenge	is	to	determine	how	to	grasp	a	variety	of	different	types	of	objects
and	pick	them	up	without	dropping	or	crushing	them.	It	is	an	advanced	example	of
bin	picking.



STAIR	robot	stacking	a	dishwasher
Education	http://pr.cs.cornell.edu/publications.php

The	US	Defense	Advanced	Research	Agency	(DARPA)	also	provides	a	series	of
robotics	challenges	which	increase	in	complexity	each	year,	with	multi-million
dollar	prizes	for	the	winner.	The	2004	challenge	was	to	drive	over	difficult	desert
terrain,	and	all	contestants	failed	very	early	in	the	course.	In	2005	the	challenge
was	run	again,	and	this	time	five	entrants	succeeded.	In	the	2007	challenge
contestants	navigated	suburban	roads,	with	other	cars	on	the	roads.

The	current	DARPA	Disaster	Relief	Challenge	involves	humanoid	robots.	The
robot	needs	to	drive	a	vehicle,	walk	over	rubble,	and	clear	objects	blocking	a	door.
It	must	then	visually	and	audibly	locate	and	shut	off	a	leaking	valve,	connect	a
hose	or	connector,	climb	an	industrial	ladder,	traverse	an	industrial	walkway	and
then	use	a	power	tool	and	break	through	a	concrete	wall.	This	is	a	massive	task
that	is	expected	to	take	several	years	to	complete.	To	emphasize	the	importance
of	software,	DARPA	will	provide	identical	robots	to	each	of	the	contestants.	The
robots	will	only	be	semi-autonomous,	with	higher-level	decision	making	left	to	an
operator.

One	major	benefit	of	the	DARPA	challenge	is	that	DARPA	has	funded	a
sophisticated,	publicly	available,	open	source	robotic	simulator	named	Gazebo.
This	makes	it	much	easier	for	smaller	research	teams	that	are	not	part	of	the	main
challenge	to	do	advanced	robotics	research.	Presumably	the	Atlas	humanoid
robots	being	built	for	DARPA	by	Boston	Dynamics	will	also	become	available	at
more	reasonable	prices.



While	these	problems	may	not	require	the	resolution	of	the	deeper	issues	in
artificial	intelligence,	they	do	require	the	solution	of	many	simpler	ones,
particularly	in	machine	vision	and	sensing.	And	building	a	system	that	actually
works	coherently	involves	much	more	complexity	than	just	the	sum	of	the	parts.

Humanistic

Modeling	human	shapes.
Multiple	http://photoskillsb-keith-beckett.blogspot.com.au/2013_02_01_archive.html
em	http://www.tothepc.com/archives/einstein-head-on-an-android-from-outer-space/

A	different	branch	of	research	is	building	robots	that	resemble	people	as	closely
as	possible.	Building	human	likenesses	has	been	the	work	of	sculptors	for
centuries,	but	we	can	now	work	on	making	them	move	and	speak	like	people	do.
This	is	difficult	to	do	because	humans	are	very	sensitive	to	subtle	nuances	in	body
language	and	facial	expressions.	In	one	project	a	team	clothed	a	robot	named
Yume	as	a	slightly	gothic,	slightly	punk	young	girl,	complete	with	dark	lipstick	to
cover	her	inability	to	fully	close	her	mouth.	Her	appearance	helped	obscure	her
herky-jerky	movements	and	rickety	eye	contact,	and	made	it	look	like	she	was	on
something	stronger	than	electricity.

While	these	may	(or	may	not)	be	worthwhile	projects	artistically,	putting	a	pretty
face	on	a	robot	does	not	make	it	any	more	human	than	sculpting	a	pretty	face	on
a	rock	makes	the	rock	more	human.	The	real	challenge	is	not	to	build	toys	but	to
build	truly	intelligent	agents	that	can	operate	autonomously	in	the	real	world.
Initially	such	agents	will	be	bad	at	some	things	people	are	good	at,	and	good	at
some	things	people	are	bad	at.	But	whatever	they	become,	they	will	not	be
anything	like	human	beings,	regardless	of	whatever	pretty	face	they	might	wear.

That	said,	a	pretty	humanoid	face	with	honest	eyes	and	a	warm	smile	would
enable	a	computer	to	be	much	more	persuasive	than	if	it	was	presented	as	a	bug-
eyed	monster.

Robots	leaving	the	factory



The	most	significant	change	that	is	likely	to	be	seen	over	the	next	ten	years	is	the
practical	application	of	robots	that	are	working	outside	of	carefully	structured
factory	environments.	The	earliest	have	been	the	automated	vacuum	cleaners,
the	better	of	which	actively	map	out	the	rooms	that	are	cleaning.	Probably	the
most	significant	in	the	short	term	will	be	autonomous,	self-driving	cars.

Huge	trucks	have	been	autonomously	driving	around	mine	sites	for	several	years.
Mercedes	already	ships	driver	assist	technology	that	senses	other	cars,	while
BMW	expects	to	move	their	completely	automatic	freeway	driving	system	into
production	by	2020.	The	Google	driverless	car	has	received	considerable
attention,	but	all	vehicle	manufactures	have	invested	in	the	technology.	The	initial
focus	is	on	just	assisting	human	drivers,	but	fully	autonomous	or	partially	remotely
controlled	cars	are	likely	to	be	in	production	by	2025.

Incidentally,	flying	an	airplane	turns	out	to	be	much	easier	for	a	computer	to	do
than	driving	a	car.	The	former	has	well-defined	procedures	and	aircraft	can	be
model	as	simple	points	in	three-dimensional	space,	whereas	driving	a	car	involves
much	more	subtle	interactions	with	its	environment.	On	the	other	hand,	the	human
brain	has	evolved	to	move	on	the	ground,	and	can	only	with	some	difficulty	learn
to	fly	through	the	air.

Other	repetitive	jobs	such	as	laying	bricks	or	painting	buildings	are	also	likely	to
be	automated	in	the	not	too	distant	future.	This	is	partly	due	to	the	ever	more
sophisticated	factory	robots	that	enable	other	complex	robots	to	be	assembled
economically.

These	robots	will	live	in	a	much	more	complicated	world	than	SHRDLUs	simple
block-stacking	micro-world.	The	problems	they	face	will	still	be	much	simpler	than
our	full	human	world,	and	therefore	much	more	tractable.	However,	these	new
mini-worlds	will	require	new	intelligent	systems	to	be	built	that	plan	their
movements	and	make	sensible	decisions,	which	should	in	turn	provide	a	strong
demand	for	practical	artificial	intelligence	research.





Programs	writing	Programs

The	task	of	man
In	a	classic	story	by	Authur	C.	Clarke	some	Tibetan	monks	believed	that	the
purpose	of	man	was	to	slowly	enumerate	the	9	billion	names	of	God	according	to
some	ancient	algorithm.	The	monks	become	very	excited	when	the	narrator	of	the
story	sells	them	an	electronic	computer	that	could	quickly	automate	this	otherwise
laborious	process.	The	narrator	makes	a	point	of	leaving	the	monastery	shortly
before	the	calculation	was	complete	to	avoid	the	anger	of	the	disappointed	monks
when	nothing	would	have	happened.	But	the	following	night,	at	about	the	time
when	the	computer	was	due	to	finish,	the	narrator	notices	that	one	by	one,	without
any	fuss,	the	stars	were	going	out.

This	story	may	be	fanciful,	but	we	now	know	what	the	true	task	of	man	is.	It	is	not
to	investigate	quarks	and	quasars,	the	origin	and	nature	of	the	universe.	Nor	is	it
to	develop	advanced	biotechnology	or	ever	more	complex	nano-machines.	It	is
instead	to	write	a	computer	program	that	is	intelligent	enough	to	program
computers	as	well	as	people	do.	That	is	a	very	difficult	problem	which	is	unlikely	to
be	solved	for	some	time.	But	once	it	has	been	solved,	computers	will	be	able	to
program	themselves.	The	task	of	man	will	be	complete,	and	the	computer	will	be
able	to	address	those	other	more	trifling	problems	itself,	should	it	be	inclined	to	do
so.	Working	on	other	tasks	is	like	manually	shovelling	dirt	while	waiting	for	a
bulldozer	to	arrive,	presuming	that	it	does	arrive	in	a	timely	manner.

Recursive	compilation



M.C.	Escher	Drawing	Hands	1948
Public	Wikipedia

It	seems	surreal	that	a	program	could	program	itself,	much	like	an	Escher	hand
drawing	itself,	or	a	brain	surgeon	operating	on	their	own	brain.	A	logical	illusion
that	could	never	exist	in	reality.	But	it	is,	in	fact,	commonplace	for	computers	to
program	themselves	when	guided	by	people.

Similar	to	the	way	that	3-D	printers	can	print	many	of	the	parts	used	to	make	3-D
printers.	Industrial	robots	can	be	used	to	make	industrial	robots.	It	is	only	a	matter
of	time	before	a	combination	of	3-D	printers,	industrial	robots	and	automatic
milling	machines	automatically	produce	3-D	printers,	industrial	robots	and
automatic	milling	machines.	In	that	case,	the	sorcerer’s	apprentice	might	have
had	a	relatively	easy	problem	to	deal	with.

Computers	ultimately	execute	instructions	that	have	been	written	in	ones	and
zeros,	but	they	are	not	programmed	that	way.	Instead,	programs	are	written	in	a
high-level	language	that	is	converted	to	ones	and	zeros	by	a	computer	program
called	a	compiler.

Below	is	an	example	of	a	program	that	implements	a	simple	procedure	sub32	that
subtracts	32	from	a	number	if	it	is	between	97	and	122	(this	has	the	effect	of
converting	lower	case	letters	to	upper	case	ones).
sub	sub32(value	as	integer)				if	value	>=	97	and	value	<=	122	then					

sub32	=	value	-	32				else						sub32	=	value;				end	if	end	sub

The	program	names	its	input	parameter	value	and	then	tests	whether	it	is	in	the
relevant	range	before	subtracting	32	from	it.	The	result	is	assigned	to	the	result	of
the	procedure,	which	in	this	language	(Visual	Basic)	is	the	procedure’s	name.

The	compiler	program	reads	a	text	file	that	contains	the	program	source	code	and



outputs	the	ones	and	zeros	that	a	computer	can	actually	execute.	But	what	is	the
compiler	itself	written	in?	It	is	in	fact	normally	written	in	another	computer
language,	in	this	case	Visual	Basic	happened	to	be	written	in	a	cruder	language
called	C.		But	C	compilers	are	normally	written	in	C.		That	is	very	much	like	the
hands	drawing	the	hands.	This	presents	the	chicken	and	the	egg	problem,	namely
which	came	first,	the	C	compiler	program	or	the	C	source	code	from	which	the
compiler	program	was	compiled?	

The	answer	is	the	same	as	the	answer	to	the	chicken	and	the	egg	problem,
namely	that	the	lizard	came	first.	In	this	case,	the	lizard	is	an	earlier,	different
programming	language	which	was	used	to	compile	the	first	C	compiler,	in	this
case	it	might	have	been	an	earlier	language	called	Fortran.	And	what	was	the
ancient	Fortran	compiler	written	in?	Fortran?	No,	it	would	have	been	written	in	a
different	type	of	language	called	an	assembly	language.	The	assembly	language
example	below	implements	the	same	program	as	above,	but	in	a	much	more
obscure	manner	in	which	each	line	in	the	program	directly	relates	to	one
instruction	that	a	computer	can	execute.
SUB32	PROC	CMP	AX,	97	JL	DONE	CMP	AX,	122	JG	DONE	SUB	AX,	32	DONE:	RET

SUB32	ENDP

However,	computers	cannot	directly	execute	assembly	code	either,	so	it	needs	to
be	converted	to	ones	and	zeros	by	a	program	called	an	assembler.	Assemblers
were	written	in	assembly	language.	But	some	time	in	the	dim	and	distant	past	(the
early	1950s)	a	few	steadfast	programmers	wrote	the	first	assemblers	in	terms	of
the	actual	ones	and	zeros	that	a	computer	can	directly	execute.	Those
assemblers	have	been	used	to	write	other	assemblers,	which	have	been	used	to
implement	compilers,	which	have	been	used	to	implement	other	compilers,	which
in	turn	have	been	used	to	write	virtually	all	the	software	that	is	used	today.	

(A	cross	compiler	running	on	a	source	machine	produces	code	that	runs	on	a
different	target	machine.	So	although	the	1950s	computers	are	long	extinct,	the
legacy	of	some	the	code	that	ran	on	them	lives	on,	much	as	the	genetic	legacy	of
the	first	living	organisms	lives	on	in	our	DNA	even	though	those	early	organisms
are	now	extinct.)

For	many	years	programmers	continued	to	use	assembly	languages	because
they	were	thought	to	be	more	efficient	than	high-level	languages.	But	modern
compilers	can	usually	produce	more	efficient	program	code	than	human
programmers	and	so	are	now	used	for	almost	all	software	development.	Indeed,
many	younger	programmers	do	not	even	know	the	low-level	instructions	that	a
computer	actually	executes.	That	knowledge	is	locked	inside	the	compilers	that
they	use.

Quines
An	interesting	student	programming	exercise	is	to	write	a	quine,	which	is	a
program	that	prints	out	an	exact	copy	of	itself.	It	has	been	argued	that	no	program



could	ever	really	program	itself	because	that	would	require	having	a	copy	of	itself
within	itself.	A	quine	demonstrates	that	this	is	indeed	possible	because	in	order	to
print	itself	a	quine	needs	to	somehow	have	a	copy	of	itself	within	itself,	without
descending	into	an	infinite	regress.	Quines	have	been	written	for	most
programming	languages.		The	technical	challenge	is	typically	to	quote	the	quote
character	used	to	quote	strings.

One	of	the	most	challenging	widely-used	programming	languages	is,	of	course,
MS-Dos	batch	script.	Aficionados	might	enjoy	the	following	quine	by	Peter
Hartmann	of	DosTips.com.	Warning:	a	deep	understanding	of	this	program	may
induce	insanity.
et	"T=Echo	Set	"T=!T!"&Call	Echo	Set	E=!E!E!E!!E!E!E!&Echo

Cmd/V:On/C"!E!T!E!""	Set	E=%%	Cmd/V:On/C	"%T%"

Reasoning	about	program	logic
(This	subsection	requires	some	experience	with	computer	programming	and	may
be	easily	skipped.)

Computer	programs	often	defy	the	illogical	thinking	of	their	programmers,	and	fail
to	do	what	was	intended.	Extensive	testing	helps	discover	some	errors,	but	testing
can	only	show	that	the	program	works	for	a	given	number	of	test	cases,	not	that	it
will	work	for	all	cases	when	used	in	production.

Early	work	by	Hoare	and	others	addresses	this	problem	by	describing	the	input
and	output	of	a	program	in	terms	of	mathematical	logic.	Each	step	of	the	program
is	also	defined	in	mathematical	logic,	so	proving	that	the	program	is	correct
involves	proving	that	the	output	follows	the	input	given	the	program	steps.

Classic	examples	of	this	process	involve	sorting	algorithms,	whose	job	it	is	to	sort
a	list	of	numbers	in	ascending	order.	It	turns	out	there	are	many	different	ways	of
performing	this	task,	but	they	all	have	the	same	definition	of	their	output,	namely	a
sorted	copy	of	their	input.

The	simplest,	and	one	of	the	least	efficient,	algorithms	is	the	selection	sort.	It
works	by	searching	for	the	smallest	number	in	the	list,	and	then	swap	it	with
whatever	number	happens	to	be	in	the	first	position.	The	process	is	then	repeated
for	the	second	position.	This	is	illustrated	in	the	following	dialog	in	which	the	first
cell’s	contents	is	an	seven	which	then	is	swapped	with	the	lowest	number	present,
a	one	in	cell	seven.	The	two	is	then	swapped	into	the	second	position.



A	selection	sort	swaps	the	lowest	numbers	into	the	first	positions.
Education	http://e4electric.blogspot.com.au/2012/11/selection-sort-c-for-selection-sort.html

A	simple	Basic	subprogram	that	implements	this	is	as	follows:-
10	sub	SelectionSort(numbers())	20			for	pass	=	1	to	ubound(numbers)	-	1

30					‘Assert	x	>	pass	implies	numbers’(pass)	<=	numbers’(y)	40					smallest
=	pass	50					for	x	=	pass	+	1	to	ubound(numbers)	60							if

numbers(smallest)	>	numbers(x)	then	smallest	=	x	70					next	x	80					temp

=	numbers(smallest)	90					numbers(smallest)	=	numbers(pass)	100			

numbers(pass)	=	temp	110		next	pass	120		‘Assert	x	<y	implies	numbers’(x)	<=
numbers’(y)	130	end	sub

The	input	is	stored	in	an	array	(or	vector)	named	numbers.	The	for	statement	in
line	20	starts	a	loop	that	will	repeat	the	code	in	lines	30	to	100	multiple	times.	It
will	initially	assign	the	variable	pass	the	value	of	1,	then	2,	then	3	until	it	becomes
greater	than	one	less	than	the	upper	bound	of	the	numbers	array	(i.e.	the	number
of	numbers	in	it).	(In	this	program	we	use	the	sensible	convention	of	counting	from
1,	so	the	first	element	in	the	numbers	array	is	numbers(1),	not	numbers(0).)

There	is	also	an	inner	loop	that	will	set	the	variable	x	to	pass	+	1	and	then
increment	it	until	it	is	greater	than	ubound(numbers).	This	inner	loop	searches	for
the	smallest	number	in	the	unsorted	part	of	the	array.	Once	this	loop	terminates,
this	smallest	value	is	swapped	with	the	current	value	in	numbers(pass),	and	then
the	outer	loop	repeats.

The	logical	assertion	in	line	120	is	not	actually	part	of	the	program.	It	states	that
when	the	program	has	finished,	if	one	number	is	in	the	list	before	a	second
number,	then	that	first	number	must	be	less	than	the	second	number.		In	other
words	that	the	list	is	sorted.	By	convention,	the	prime	(‘)	indicates	the	value	of	the
variable	after	the	execution	of	the	program	is	being	referred	to,	as	opposed	to	the



value	that	was	passed	to	the	program	initially.	This	is	the	assertion	that	needs	to
be	proven	to	be	correct	for	any	input	array	if	the	program	actually	works.

In	order	to	do	this,	the	second	assertion	in	line	30	needs	to	be	defined.	It	provides
the	loop	invariant,	namely	the	condition	that	is	true	each	time	the	loop	is	executed.
It	states	that	after	each	pass,	the	number	stored	in	numbers'(pass)	will	not	be
greater	than	any	number	to	its	right.	This	is	not	as	strong	a	condition	as	saying
that	the	entire	list	is	sorted,	for	the	subprogram	has	not	yet	finished.	But	given	that
the	pass	variable	is	incremented	through	the	list	of	numbers,	this	means	that	the
entire	array	must	be	sorted	when	the	subprogram	exits.

The	details	of	the	actual	correctness	proof	are	somewhat	technical	and	tedious,
but	it	is	easy	to	build	a	theorem	prover	that	can	prove	that	a	simple	program	like
the	selection	sort	is	correct,	given	that	the	loop	invariant	has	been	specified.
Automatically	inferring	the	loop	invariant	is	much	more	difficult,	but	it	is	also
possible	for	simple	programs.

The	loop	invariant	essentially	defines	the	different	types	of	sorting	algorithms.	One
common	algorithm	known	as	the	insertion	sort	has	an	invariant	that	the	left	part	of
the	list	is	internally	sorted,	but	that	there	may	still	be	smaller	values	in	the	right-
hand	part.	Another	algorithm	known	as	quicksort	has	the	invariant	that	all	the
values	on	the	left	are	less	than	all	the	values	on	the	right,	but	that	neither	side	is
sorted.	Shell	sort	has	an	invariant	that	sub	lists	of	every	kth	element	are	sorted.
The	details	are	not	important;	the	point	is	that	having	different	intermediate
invariants	largely	defines	the	different	sorting	algorithms.

The	problem	of	(semi)	automatically	proving	that	programs	are	correct	has	been
the	subject	of	considerable	research,	and	is	far	from	being	fully	solved.	However,
very	useful	tools	have	been	developed	that	can	assist	with	proving	that	programs
are	in	fact	correct.

Automating	program	generation
The	inverse	of	validating	a	program’s	correctness	is	to	generate	good	program
code	from	the	formal	definition	of	the	program’s	requirements.	This	is	a	much
more	difficult	problem	than	proving	that	a	given	piece	of	code	is	correct	—	it	is
again	like	squeezing	the	toothpaste	back	into	the	tube.	There	are	many	ways	to
sort	a	list,	and	many	technical	papers	have	been	written	that	develop	and	analyze
a	variety	of	algorithms,	all	of	whose	jobs	are	to	satisfy	the	simple	assertion	on	line
120.	It	is	therefore	not	surprising	that	it	is	difficult	to	automate	the	development	of
new	algorithms.	That	said,	it	is	possible	to	automate	code	generation	if	the
assertions	are	simple,	and	assertions	can	be	simplified	by	providing	intermediate
assertions	such	as	loop	invariants.

Errors	in	computer	programs	are	a	curse	of	our	modern	age.	So	one	might	think
that	a	technology	that	can	mathematically	prove	that	programs	are	correct	would
form	a	cornerstone	of	software	engineering	methodologies.	However,	the
techniques	are	rarely	used	in	practice,	and	many	if	not	most	computer



programmers	are	completely	unaware	of	their	existence.

The	main	reason	for	this	is	that	most	problems	cannot	be	succinctly	defined	in
mathematical	logic	as	easily	as	the	sorting	problem.	Modern	programmers	rarely
write	tricky	algorithms	with	well-defined	properties,	rather,	they	spend	their	time
assembling	large	libraries	of	other	people’s	software	and	adding	logic	that	has
only	a	vaguely	defined	specification.	The	difficult	bugs	are	rarely	within	one’s	own
code,	but	involve	the	interaction	with	other	people’s	code.	And	it	is	difficult	to
document	what	that	other	code	does	in	mathematical	logic	due	to	all	the	problems
of	default	reasoning	and	common-sense	knowledge.

Indeed,	the	current	fashion	in	software	engineering	is	agile	development
methodologies.	Agile	development	eschews	any	specification	whatsoever.
Instead,	programmers	just	code	one	part	after	another	without	much	concern	for
what	the	whole	system	would	be	like.	It	turns	out	that	the	alternative	approach	of
designing	a	system	first	tends	to	fail	because	it	is	difficult	for	people	to	know	what
a	complex	computer	system	should	have	done	until	after	it	has	been	built.

(Another	important	advantage	of	agile	development	is	that	an	agile	team	quickly
demonstrates	whether	it	is	(or	is	not)	capable	of	building	something,	even	if	that
something	is	not	useful.	That	enables	natural	selection	to	take	place	as
incompetent	teams	are	disbanded.	Alternatively,	it	is	much	more	difficult	to	assess
whether	a	team	of	system	architects	are	producing	useful	designs	or	just	pretty
abstract	drawings.	The	proof	of	the	pudding	is	in	the	eating,	so	the	sooner	that
happens	the	better.)

High-level	models
One	approach	to	program	generation	that	this	author	has	been	involved	with	is	to
use	higher-level	models	of	applications	to	abstract	away	the	code	altogether.	In
particular,	information	systems	can	be	implemented	using	repeatable	patterns.
For	example,	consider	a	program	that	manipulates	a	customers	table.	This
involves	logic	to	display	a	list	of	customers	that	satisfies	various	criteria,	then
provide	a	blank	form	to	enter	a	new	customer’s	details	or	select	a	customer	record
for	editing,	and	then	insert,	update	or	delete	the	Customer	record	in	a	database.
This	type	of	logic	is	generally	referred	to	as	CRUD	—	Create	Read	Update
Delete.	CRUDing	a	customer	is	much	the	same	as	CRUDing	an	order,	student,
subject,	employee	or	product,	only	the	data	table,	fields	and	declarative	business
rules	are	different.

The	few	systems	that	use	these	high-level	models	can	be	used	to	implement	fairly
complex	information	systems	involving	dozens	of	tables	without	any	explicit
programming	being	required	at	all.	One	system	built	by	the	author	could	generate
large	quantities	of	program	code	from	concise	specifications	that	would	take	a
human	an	order	of	magnitude	longer	to	implement	manually.	The	key	to	making	it
possible	is	high-level	models	of	data	and	business	rules.	Like	many	advances	in
software,	this	approach	abstracts	away	repetitive	details	and	allows	programmers



to	focus	on	real	problems.	However,	these	systems	are	not	generally	thought	of
as	being	intelligent.	(That	said,	this	author’s	system	gained	considerable	power	in
practice	by	being	implemented	in	Lisp	which	is	an	artificial	intelligence
programming	language.)

Learning	first	order	concepts
Most	systems	that	learn	rules	from	experience	only	learn	propositional	rules.	For
example,	the	Bayesian	network	discussed	earlier	could	only	reason	about	the
propositions	WetGrass	and	Rain,	and	the	decision	tree	example	could	only
recognize	one	of	ten	digits.

Advanced	systems	exist	that	can	learn	more	complex	first	order	rules,	of	which
the	most	popular	is	known	as	inductive	logic	programming.	For	example,	given	a
table	of	ground	propositional	predicates	such	as
parent(george,	elizabeth).	parent(elizabeth,	charles).	parent(charles,

harry).	parent(charles,	william).	grandparent(george,	charles).

grandparent(elizabeth,	william).	not(grandparent(elizabeth,	charles)).

an	inductive	logic	system	could	derive	the	general	first	order	relationship
grandparent(G,	C)	:-	parent(G,	P),	parent(P,	C).

expressed	as	Prolog	Horne	clauses.	In	other	words	that	a	grandparent	G	of	child
C	seems	to	be	someone	that	is	the	parent	of	someone	P	that	is	in	turn	a	parent	of
the	child	C.	This	type	of	knowledge	cannot	be	represented	effectively	as	simple
propositions	without	variables	because	it	generalizes	to	all	people,	not	just
specifically	named	people.

One	method	to	implement	this	is	the	top	down	approach	in	which	the	system
generates	simple	predicates	from	the	given	data.	For	example,	it	might	guess
grandparent(G,	C)	:-	parent(G,	C).grandparent(G,	C)	:-	parent(G,	P).

The	first	guess	does	not	match	the	data	and	so	can	be	discounted.	The	second	is
close,	but	does	successfully	reject	grandparent(elizabeth,	charles).	So	the
system	tries	to	add	additional	qualifying	clauses,	and	finds	that	adding	parent(P,
C)	enables	the	clause	to	accurately	match	the	data.

An	alternative	approach	is	to	essentially	run	a	resolution	theorem	prover
backwards.	It	tries	to	determine	what	predicate	is	required	to	prove	the	theorem
so	that	the	rule	can	correctly	classify	the	data.

Some	systems	can	infer	quite	complex	relationships	including	recursive	rules
such	as
ancestor(A,	C)	:-	ancestor(A,	P),	parent(P,	C).

which	states	that	an	ancestor	involves	some	arbitrary	number	of	parentage
relationships.

Practical	applications	of	this	technology	include	being	able	to	infer	complex
protein	folding	rules	from	data	sets	that	were	too	large	for	people	to	analyze
effectively.	Learning	first	order	predicates	was	necessary	for	that	problem



because	protein	structures	are	all	about	the	relationships	between	different	parts
of	the	structure,	and	relationships	are	a	first	order	concept.

Predicates	like	ancestor	are	essentially	small	programs.	More	advanced	systems
can	learn	larger	programs	given	good	training	data.	One	system	even	learned
how	to	implement	a	simple	sorting	program,	like	the	selection	sort	described
previously,	with	no	input	other	than	examples	of	sorted	and	unsorted	lists	of
numbers.	So	this	provides	a	very	limited,	but	not	insignificant,	example	of
programs	writing	programs.

Evolutionary	algorithms
Evolutionary	and	genetic	algorithms	use	techniques	that	were	inspired	by	the
natural	processes	of	gene	recombination	and	natural	selection.	These	algorithms
are	used	to	optimize	the	values	of	a	number	of	parameters	in	order	to	maximize
some	fitness	function.	They	are	widely	used	in	numerical	modeling,	and	even	the
Microsoft	Excel	spreadsheet	program	includes	an	evolutionary	solver	as	a
standard	feature.	Unlike	most	other	approaches,	evolutionary	solvers	can	work
with	complex	fitness	functions	of	many	dimensions	that	are	discontinuous	and
have	numerous	local	maxima.

Owned

The	basic	algorithm	has	a	pool	of	often	random	candidate	solutions,	with	each
solution	being	ranked	according	to	some	fitness	function.	Then	at	each	iteration,
the	weakest	candidate	solution	is	removed	from	the	pool,	and	a	new	solution	is
created	by	randomly	combining	two	aspects	of	the	other	solutions.

So	in	the	example	above,	six	candidate	solutions	were	produced	which	each
consisted	of	a	vector	of	five	numbers	named	A	through	E.	They	were	then	ranked
by	applying	a	fitness	function	to	the	five	numbers,	and	the	weakest	with	a	fitness
of	2	was	removed.	A	new	candidate	was	then	created	by	combining	two	other
randomly	selected	candidates	in	the	pool,	in	this	case	the	ones	with	fitness	of	30
and	53.	The	new	candidate	was	found	to	have	a	fitness	of	41	which	is	better	than
the	previously	weakest	candidate	with	a	fitness	of	8	which	will	be	the	next	one	to
be	removed.



The	method	for	combining	candidates	to	produce	a	new	candidate	varies	widely.
In	the	example,	numbers	have	been	chosen	randomly	for	columns	A,	B	and	C,
while	D	is	the	average	of	the	two	and	E	is	a	completely	random	“mutation”.

Genetic	algorithms	work	on	the	principle	that	an	optimal	solution	to	a	problem	is
likely	to	be	similar	to	good	solutions	to	a	problem.	Thus,	randomly	selecting
attributes	from	successful	candidates	is	much	more	effective	than	just	using
random	values.	It	also	requires	that	the	attributes	are	somewhat	indepenent	of
each	other.

The	key	inspiration	from	biology	is	natural	selection,	survival	of	the	fittest,	and	the
sexual	combination	of	parents	to	produce	children.			In	biological	genetics,	the
genes	are	roughly	independent	from	each	other,	so	improving	a	gene	for	the
immune	system	(say)	is	unlikely	to	directly	affect	the	nervous	system	(say).		Other
details	of	the	methods	used	are	generally	quite	different	from	biological	genetics,
for	example	few	if	any	methods	use	multiple	sets	of	chromosomes.

Schwefel’s	function	has	many	local	maxima
Corporate	Microsoft

Consider	the	problem	of	trying	to	numerically	find	the	largest	value	of	Schwefel’s
function	shown	above.	The	normal	approach	to	finding	a	function’s	maximum	is
gradient	ascent,	in	which	one	starts	at	a	random	point	and	then	keeps	climbing
uphill.	However,	that	will	almost	certainly	lead	to	the	top	of	one	of	the	lesser
peaks,	and	not	to	the	global	maximum.	But	like	many	complex	functions	,the
global	maximum	has	similar	values	for	X	and	Y	as	the	stronger	local	maxima,	so	a
genetic	algorithm	should	converge	on	the	global	maxima	relatively	quickly.

One	practical	application	of	genetic	algorithms	was	to	optimize	speech	recognition
algorithms	[Kurzwiel].	Recall	that	discrete	features	need	to	be	extracted	from	the
10	millisecond	frames	of	sound	in	order	to	drive	the	Markov	model.	However,



there	are	many	possible	features	that	can	be	extracted,	and	it	is	not	at	all	obvious
which	combination	of	features	will	drive	a	Markov	model	most	effectively.	So	a
number	of	reasonable	feature	sets	were	used	as	candidates	in	a	genetic
algorithm,	with	the	fitness	test	being	how	well	the	system	could	learn	to	recognize
certain	spoken	words.	The	genetic	algorithm	would	then	recombine	elements	of
the	more	successful	sets	of	features	in	order	to	produce	new	candidate	solutions.
After	many,	many	hours	of	computation,	the	system	improved	the	speech
understanding	program	by	choosing	a	set	of	features	that	was	more	effective	than
any	set	of	features	that	were	created	by	the	human	programmers.

Artificial	life
An	entertaining	experiment	is	to	apply	evolutionary	algorithms	to	simulate	living
creatures	by	creating	a	two	dimensional	world	on	a	grid.	Each	cell	can	occupy	one
creature,	and	the	creatures	can	move	to	adjacent	squares.	They	can	also	sense
the	world	around	them,	such	as	whether	there	are	other	creatures	in	adjacent
squares.

The	simulated	world	then	has	rules	for	eating	and	breeding.	For	example,	if	a
creature	moves	to	a	square	occupied	by	another	creature,	then	the	second
creature	is	eaten	and	the	first	divides	asexually.	If	two	creatures	that	are	next	to
each	other	move	to	new	squares	that	are	also	adjacent	to	each	other	then,	they
sexually	exchange	genetic	material.

The	behaviour	of	the	creatures	can	be	controled	usng	a	two	layer	recurrent	neural
network,	with	inputs	representing	their	senses	of	the	world	around	them,	and
outputs	being	how	to	move.	But	rather	than	being	trained	by	back	propagation,
they	are	trained	genetically.	So	each	time	two	creatures	have	a	sexual	encounter,
they	might	simply	swap	a	random	set	of	weights	between	them,	possibly	with	a
few	additional	random	mutations.

When	this	type	of	simulation	is	run,	the	creatures	initially	tend	to	just	move
randomly	over	their	world.	Any	consumption	of	other	creatures	or	sexual
encounters	happens	purely	by	chance.	But	the	rules	of	the	system	can	be
designed	so	that	the	number	of	creatures	remains	constant	by	ensuring	that	for
every	creature	that	dies	another	will	be	born.

Then,	very	slowly	at	first,	some	of	the	creatures	start	to	behave	in	a	more
purposeful	manner.	They	seem	to	try	to	avoid	being	eaten,	and	possibly	to
actively	seek	sexual	encounters.	It	is	not	always	obvious	why	they	do	what	they
do,	but	they	seem	to	be	doing	it	very	purposely.

The	next	part	of	the	classic	experiment	is	to	take	a	number	of	the	creatures	that
have	been	evolving	for	a	few	million	generations	and	put	them	in	a	world	that
contains	new,	raw	creatures.	The	evolved	creatures	usually	feast	on	the
unevolved	creatures,	and	quickly	dominate	the	space.

Of	course,	there	is	a	huge	gap	between	these	simulated	worlds	and	the	real	world



of	even	of	the	simplest	bacteria.	However,	it	is	interesting	to	see	the	principles	of
natural	selection	and	gene	exchange	work	effectively	in	a	world	that	is	different
from	our	own.		It	also	suggests	that	natural	selection	might	drive	the	behaviour	of
more	intelligent	computer	systems,	just	like	it	drives	the	behaviour	of	more
intelligent	biological	systems.

Evolutionary	programming

Educational	http://www.geneticprogramming.com/coursemainpage.html

Evolutionary	algorithms	can	be	applied	to	more	complex	structures	than	sets	or
matrices	of	numbers.	They	can	be	well	applied	to	tree	structures,	and	general
purpose	programs	can	be	represented	as	tree	structures.	Thus	evolutionary
algorithms	can	also	be	applied	to	program	logic.

Public	Wikipedia

The	diagram	above	shows	how	an	expression	is	normally	represented	as	a	tree
structure.	The	root	node	(at	the	top)	represents	the	last	operator	to	be	applied.	Its



children	represent	either	numbers	and	variables	or	operators	that	will	provide	the
values	for	the	root	node	to	operate	on,	and	this	process	recurs	down	throughout
the	tree.

The	following	figure	then	shows	how	two	parents	can	be	combined	to	produce
children	by	simply	exchanging	subtrees.	The	results	will	always	be	syntactically
valid,	although	they	may	not	be	meaningful.		It	would	also	be	possible	to
occasionally	introduce	completely	random	nodes.

Multiple	http://www.geneticprogramming.com/Tutorial/

Program	statements	such	as	conditional	(“if”)	statements,	loops,	and	subroutine
calls	can	also	be	represented	as	tree	structures.	However,	they	do	not	evolve	as
effective	as	simple	operators,	and	loops	in	particular	have	a	nasty	property	of	not
necessarily	terminating.	Alternatively,	programming	models	that	are	more	resilient
to	random	changes	can	also	be	used.	The	use	of	the	very	resilient	neural
networks	has	already	been	described,	while	another	approach	is	the	if/then-style
rules	that	expert	systems	like	Mycin	use.	One	system	named	Tierra	just	used	a
special	assembler-like	instruction	set.

Producing	a	really	good	program	representation	for	genetic	programming	is	a
topic	of	ongoing	research.	Another	challenge	is	to	provide	fine	grained	fitness
functions	that	recognize	candidate	solutions	that	are	a	small	improvement	even
though	they	still	do	not	perform	satisfactorily.

There	have	been	a	few	claimed	successes	for	genetic	programming.	In	the	1998
Robocup,	one	system	apparently	came	in	the	middle	of	the	field	of	34	human
written	programs	for	determining	optimum	movement	of	the	robot	players	(Andre
and	Teller	1999).



However,	the	idea	that	some	process	of	semi-random	mutations	could	ever
produce	something	remotely	as	sophisticated	as	a	truly	intelligent	program	is,	of
course,	ridiculous.	It	is	like	hoping	that	enough	monkeys	sitting	at	enough
typewriters	for	long	enough	will,	by	chance,	produce	the	works	of	Shakespeare.
The	search	space	is	just	too	large,	so	no	semi	random	process	has	any	chance	of
producing	a	working	complex	system	without	the	involvement	of	some	very
intelligent	design.

Except,	of	course,	that	that	is	exactly	how	our	own	intelligence	appears	to	have
evolved	into	existence.

Chimpanzee	at	typewriter.
Public	Wikipedia





Computer	Hardware

Introduction
The	next	chapters	will	discuss	biological	brains	and	neurons	in	some	detail,	but	it
is	worthwhile	to	first	provide	an	overview	of	how	ordinary	silicon	computers	work
at	a	low	level	in	order	to	compare	them	with	the	very	different	mechanisms
employed	by	biological	neurons.	In	particular	to	look	at	the	power	and	limitations
of	the	von	Neuman	architecture	that	is	most	commonly	used,	and	alternatives	that
can	also	be	utilized.

Transistors

Simple	common	collector	transistor	applifier.
Public	Wikipedia

Modern	computers	are	built	from	transistors	or	related	technologies.	Transistors
became	the	main	component	in	electronics	in	the	1950s.	Their	basic	function	is	to
amplify	current,	as	demonstrated	by	the	common	collector	circuit	above.	A
transistor	has	three	connections,	a	base	(B),	collector	(C)	and	emitter	(E).	A	tiny
current	from	the	base	to	the	emitter	will	enable	a	much	larger	current	to	flow	from
the	collector	to	the	emitter.	So	in	the	circuit,	if	Vin	is	grounded,	no	current	will	flow
between	the	collector	and	the	emitter,	and	so	Vout	will	be	zero	due	to	the	resistor.
But	if	Vin	is	raised,	then	a	current	will	flow	and	so	a	potential	will	develop	over	the
resistor,	raising	Vout	until	it	is	almost	the	same	as	Vin.	At	that	point,	the	current
between	the	base	and	emitter	will	reduce.	Vout	will	end	up	having	about	the	same
voltage	as	Vin,	but	be	able	to	sustain	a	much	greater	current.



Education	http://hyperphysics.phy-astr.gsu.edu/hbase/electronic/nand.html
Simplified	common	emitter	NAND	gate	circuit.

Transistors	can	be	used	to	implement	logical	functions.	In	the	NAND	gate	circuit
above,	if	either	A	or	B	are	at	0	volts	then	the	associated	transistors	will	not
conduct	electricity.	The	Out	voltage	will	thus	be	pulled	high	by	the	resistor.	But	if
both	A	and	B	have	a	significant	voltage	then	both	transistors	will	conduct	and	drag
the	Out	voltage	to	(nearly)	zero.	Thus	the	circuit	output	is	logically	not	(A	and	B).

Logic	Elements

Educational	http://www.inetdaemon.com/tutorials/basic_concepts/number_systems/binary/gates.shtml



When	designing	logical	systems,	engineers	usually	work	in	terms	of	subcircuits
that	implement	logical	gates.	The	table	above	shows	the	standard	symbols	that
are	used	for	them,	as	well	as	a	truth	table	that	defines	their	behaviors.	This	shows
that	the	NAND	gate	will	output	a	low	voltage	if	and	only	if	both	of	its	inputs	are	a
high	voltage.

Educational	http://www2.cs.siu.edu/~cs320/half-adder.php
A	Half	Adder

These	elements	can	then	be	combined	into	more	complex	modules.	The	circuit
above	implements	a	half	adder	that	adds	two	binary	digits	and	returns	the	sum
plus	carry.	This	can	be	summarized	in	the	following	table	in	which	the	inner
numbers	represent	the	carry	and	sum.

A

0 1

B
0 0	0 0	1

1 0	1 1	0

Public	Wikipedia
Flip	Flop	implemented	as	two	nor	gates

Another	example	is	the	flip-flop	shown	above.	If	R	is	0	and	S	is	set	to	1	then	the
bottom	NOR	gate	will	return	0,	so	Q	becomes	1.	If	S	is	then	set	to	0,	Q	remains	1.



But	if	R	is	set	to	1	while	S	is	0	then	Q	is	reset	to	0.	The	mutual	feedback	from	the
output	of	each	NOR	gate	to	the	other	gate’s	input	means	that	the	circuit
remembers	the	last	time	either	S	or	R	was	set	to	1.	It	can	thus	store	one	bit	of
information.

Programmable	Logic	Arrays

Programmable	Logic	Array
Education	http://www2.elo.utfsm.cl/~lsb/elo211/aplicaciones/katz/chapter4/chapter04.doc1.htm

It	is	still	possible	to	purchase	small	scale	Integrated	Circuits	(ICs)	that	implement
small	numbers	of	basic	gates	like	NAND	and	NOR	gates,	and	then	to	wire	them
together	to	form	arbitrary	logic	circuits.	This	is	referred	to	as	“random	logic”	and
can	be	efficient	in	the	number	of	gates	used	but	very	inefficient	in	the	number	of
ICs	that	are	required.	A	better	approach	is	to	use	a	single,	larger	IC	that	can	be
configured	to	provide	whatever	logical	function	is	required.

The	most	common	way	to	do	that	is	with	a	Programmable	Logic	Array	(PLA)	as
shown	above.	It	consists	of	three	inputs,	A,	B	and	C	which	can	be	connected	to
five	AND	gates,	whose	output	can	in	turn	be	connected	to	up	to	four	OR	gates.
The	small	black	dots	represent	possible	connection	points	that	can	be	enabled	or
disabled	by	a	mechanism	that	is	not	shown.	So	if	just	the	connections	with	the
large	blue	squares	are	enabled	then	the	Sum	output	will	be	1	if	and	only	if	either
the	top	two	AND	gates	are	1.	And	the	top	AND	gate	will	be	1	if	A	is	0	and	B	is	1.
Thus	the	array	implements	the	same	logic	as	the	half	adder	above,	with	input	C
and	two	outputs	simply	not	used.

It	turns	out	that	any	arbitrary	logic	function	can	be	implemented	using	a	large
enough	PLA,	and	PLAs	often	contain	thousands	of	gates.	They	have	a	very
similar	structure	to	perceptron	networks	discussed	earlier.	Like	perceptrons,	it	is
possible	to	feed	some	of	the	outputs	of	a	PLA	back	into	some	of	the	inputs
buffered	by	flip-flops	that	store	state.	If	that	is	done	then	they	can	in	principle



implement	any	general	purpose	computer	program.

Von	Neumann	Architecture

Owned

Modern	computers	use	an	architecture	that	was	first	proposed	by	John	von
Neumann	in	1945,	which	is	illustrated	above.	It	has	a	memory	that	is	organized	as
a	series	of	words,	each	of	which	can	contain	a	small	number.	Each	word	also	has
an	address	which	can	be	used	to	access	it.	The	memory	provides	random	access,
meaning	that	words	can	be	efficiently	accessed	in	a	random	order	so	there	is	no
need	to	access	them	sequentially.

(Very	early	computer	memory	was	often	implemented	by	sending	waves	down
mercury	delay	lines	or	wires,	and	then	reading	them	off	the	other	end	several
hundred	microseconds	later.	Another	approach	was	to	read	instructions	off
rotating	magnetic	drums.	In	either	case	memory	had	to	be	accessed	sequentially
and	could	not	be	addressed	randomly.)

Some	of	the	words	in	memory	can	be	interpreted	as	instructions,	others	as	data.
So	in	the	fragment,	the	word	at	address	124	contains	an	instruction	to	add	the
word	at	address	244,	and	the	word	at	address	244	contains	the	data	value	33.

The	computer	also	has	a	Central	Processing	Unit	(CPU)	that	can	access	the
memory	to	perform	calculations.	It	contains	a	Program	Counter	(PC)	that	contains
the	address	of	the	next	instruction	to	execute,	and	one	or	more	Registers	that
contain	values	that	are	being	worked	on.	At	the	beginning	of	this	tiny	program,	the
PC	will	have	been	set	to	address	123	which	contains	instruction	111	which	tells
the	CPU	to	load	the	value	stored	in	address	243	into	the	register.	So	the	register
becomes	22.	Then	the	PC	is	incremented	to	become	124	which	is	the	address	of
the	ADD	instruction.	In	this	way	the	little	program	adds	22	to	33	and	stores	the
result	55	back	into	address	245.

PLAs	vs	von	Neumann



The	advantage	of	this	von	Neumann	architecture	is	that	it	is	very	regular	and	thus
relatively	easy	to	program.	The	same	architecture	can	address	a	large	variety	of
problems	by	simply	loading	each	different	program	into	memory	as	a	series	of
numbers.	The	instructions	are	then	executed	sequentially,	one	at	a	time,	with	no
potential	timing	issues.

However,	their	sequential	nature	is	also	the	major	disadvantage	of	this
architecture.	A	computer	consisting	of	billions	of	transistors	can	essentially	only	do
one	thing	at	a	time.	Consider	a	PLA	that	had	a	thousand	AND	gates	and	a
thousand	OR	gates.	It	can	combine	its	thousand	inputs	concurrently	to	produce	its
thousand	outputs	in	just	two	steps.	The	time	taken	is	independent	of	the	number
of	gates	that	are	involved	because	they	all	switch	at	the	same	time.

On	the	other	hand	a	Von	Neumann	machine	would,	in	principle,	have	to	calculate
each	individual	AND	and	OR	operation	one	at	a	time.	For	a	one	thousand	by	one
thousand	array	that	means	a	million	operations.	And	each	operation	involves
retrieving	instructions	and	data	from	memory	and	then	storing	the	result	back	into
memory	which	is	hundreds	of	times	slower	than	simply	switching	a	gate	in	a	PLA.
(There	is	a	technique	for	processing	64	(or	so)	gates	in	a	single	operation,	but	that
still	leaves	tens	of	thousands	of	operations,	each	of	which	is	hundreds	of	times
slower.)

The	net	effect	is	that	a	PLA	might	switch	in	a	few	nanoseconds,	whereas	a	von
Neuman	machine	could	take	millions	of	nanoseconds	to	perform	the	same
calculation.

This	issue	had	been	recognized	from	the	beginning.	One	of	the	first
programmable	computers	was	the	ENIAC	built	out	of	valves	(vacuum	tubes)	in
1946.	When	constructed,	it	was	hard	wired	to	perform	specific	calculations,	often
related	to	the	trajectories	of	artillery	shells.	Changing	its	program	required	rewiring
the	computer,	which	took	days	or	weeks.

Then	in	1948	ENIAC	was	modified	to	have	what	is	essentially	a	von	Neumann
architecture.	This	made	it	much	easier	to	program.	However,	it	also	made	the
computer	six	times	slower	than	it	had	been	previously	because	it	could	now	only
execute	one	instruction	at	a	time.	Even	on	that	ancient	computer	that	ran
thousands	of	times	slower	than	modern	computers,	the	trade	off	was	considered
worthwhile.	Being	easy	to	program	was	and	is	generally	far	more	important	than
being	very	efficient.

Today	there	are	variations	of	the	basic	von	Neumann	architecture.	Graphics
Processing	Units	(GPUs)	contain	hundreds	of	von	Neumann	subsystems	that	can
compute	at	the	same	time	and	so	render	complex	scenes	in	real	time.	More
radical	designs	are	used	for	specialized	Digital	Signal	Processors	(DSPs),	which
can	process	radio	wave	signals	in	real	time.	Some	of	these	even	include	large
PLAs	that	can	be	used	for	specific	types	of	processing.	But	the	vast	majority	of
modern	computer	programs	runs	on	a	very	conventional	von	Neumann	machine
performing	essentially	one	instruction	at	a	time.



Analog	Computers
Digital	computers	only	represent	the	numbers	0	and	1	on	a	given	wire	at	a	given
time.	So,	if	an	application	was	required	to	process	numbers	between	1	and	100,
then	seven	wires	would	be	needed	to	represent	the	number	in	binary.	There	is	a
much	more	efficient	representation	of	knowledge,	namely	to	represent	numbers
as	voltages	that	vary	continuously	between	two	values.	So	if	the	voltage	varied
between	0	and	6	volts,	the	number	70	might	be	represented	as	4.2	volts.

Education	http://www.allaboutcircuits.com/vol_3/chpt_9/6.html
Simple	one	transistor	radio

Consider	the	simple	analog	radio	circuit	above.	It	can	be	viewed	as	a	moderately
complex	analog	computer.	The	inductor-capacitor	circuit	at	the	left	filters	the	radio
waves	by	essentially	performing	a	Fourier	transform.	The	diode	then	takes	the
absolute	value	of	the	voltage,	and	the	500pf	capacitor	performs	a	leaky	integration
with	a	short	time	constant.	The	transistor	multiplies	the	resulting	current	by	a
constant	to	produce	a	value	that	can	be	used	to	drive	a	pair	of	headphones.

All	this	is	powered	by	just	one	transistor.	Similar	functionality	would	be	provided	in
a	modern	radio	using	a	special	DSP	computer,	and	would	require	millions	of
transistors	to	perform	these	calculations	digitally.



Public	US	Government
Battleship	broadside

Analog	computers	were	heavily	used	from	the	early	twentieth	century	until	the
1960s.	Their	first	major	application	was	to	control	the	guns	on	battle	ships.	Ships
had	been	getting	larger	and	more	accurate	guns	that	could	reach	a	target	over	20
kilometers	away,	and	shells	could	spend	over	a	minute	in	the	air.	It	became
increasingly	difficult	to	calculate	in	real	time	how	to	aim	the	guns	to	hit	a	moving
target	at	long	ranges,	so	an	increasingly	complex	series	of	mechanical	analog
computers	was	developed	starting	with	the	Dumaresq	in	1902.	By	the	second
world	war,	electronic	analog	predictive	fire	control	computers	had	become	an
essential	aid	in	aiming	anti-aircraft	guns.



Education	via	Nilsson	Quest	for	AI
MINOS	Analog	Perceptron	Computer,	1960

Some	early	work	into	building	artificial	intelligent	systems	was	also	performed	on
analog	systems.	The	MINOS	system	shown	above	was	built	by	Ted	Brain	at	the
Stanford	Research	Institute	to	implement	what	were	essentially	perceptrons.
Rather	than	multiplying	the	weights	digitally,	the	values	were	represented	as
voltages	and	multiplied	electronically.	Thus	the	many	knobs	and	dials	in	the
picture	for	adjusting	voltages.	A	later	version	of	the	system	was	successfully	used
to	recognize	some	hand-written	characters	utilizing	special	optical	feature
extraction	which	sent	100	bits	of	data	to	each	of	63	perceptrons	that	used	a
magnetic	weighting	system.	However,	advances	in	digital	system	during	the
1960s	made	analog	systems	obsolete.

Neurons
It	will	be	seen	that	the	biological	neurons	in	our	brains	are	essentially	analog
devices	that	integrate	various	stimulation	voltages.	They	also	operate	with	a	high
degree	of	concurrency	with	other	neurons,	and	brains	certainly	do	not	perform	just
one	operation	at	a	time	like	a	von	Neumann	architecture.	This	enables	neurons
that	operate	millions	of	times	slower	than	transistors	to	produce	effective	results	in
real	time.

It	should	be	noted	that	this	is	not	a	failing	of	digital	computer	systems,	but	is
simply	an	engineering	design	choice.	The	incredibly	powerful	technologies	for
building	extremely	large	scale	integrated	circuits	has	made	it	cheaper	to	build
large	and	fast	general	purpose	von	Neumann	machines	than	to	attempt	to



produce	more	efficient	specialized	designs.

That	certainly	does	not	mean	that	more	efficient	designs	cannot	be	built	if	there
are	applications	that	warrant	it.	Adding	PLAs	to	some	DSPs	has	already	been
discussed.	Programmable	PLAs	could	easily	be	added	to	general	purpose
computers,	but	this	has	not	been	done	simply	because	it	has	not	been	found	to	be
useful	for	the	types	of	programs	that	are	run	on	general	purpose	computers.
Likewise,	associative	content-addressable	memories	have	been	proposed	as
being	useful,	but	few	demanding	applications	have	been	found	in	practice,	so	they
are	not	generally	available	on	normal	computers.

There	have	been	a	number	of	special	purpose	chips	built	over	the	years	that	are
designed	to	simulate	some	aspect	of	artificial	neurons.	A	recent	one	is	called	True
North	by	IBM	and	can	model	“sixteen	million	programmable	neurons	and	four
billion	programmable	binary	synapses”,	although	it	is	unclear	what	that	really
means	from	the	marketing	hype	used	to	describe	it.	They	are	most	certainly	not
like	real	neurons.

But	for	most	AI	research	ordinary	CPUs	or	possibly	GPUs	are	fast	enough.	The
bottleneck	is	on	determining	how	to	write	the	intelligent	programs	rather	than	on
finding	computers	that	are	fast	enough	to	run	them.





Brains

Gross	anatomy
If	there	is	one	thing	that	we	do	understand	about	intelligence	it	is	that	human
brains	are	able	to	exhibit	it.	It	is	therefore	natural	to	study	brains	in	order	to	gain
insights	into	intelligent	behaviour	which	may	inspire	or	possibly	lead	directly	to	an
artificial	intelligence.	Much	of	the	technology	presented	so	far	has	been	inspired
by	psychological	introspection,	namely	to	consider	how	people	consciously
reason	about	various	types	of	problems.	But	it	is	also	useful	to	study	brains	at	a
physiological	level	to	try	to	understand	their	underlying	machinery.

Sheep	brain	dissection.
Education	http://brainu.org/sheep-brain-dissection

If	one	purchases	lambs’	brains	from	a	butcher,	one	is	given	a	rather	slushy	piece
of	meat	that	some	would	call	a	delicacy.	If	before	putting	it	in	the	pot,	one	takes
the	trouble	to	carefully	slice	it	in	half,	then	the	basic	structure	of	the	mammalian
brain	is	revealed	as	shown	above.

The	spinal	cord	on	the	right	connects	the	brain	to	the	rest	of	the	body.	It	also
performs	some	initial	signal	processing,	and	is	responsible	for	some	fast,
automatic	reactions.	It	connects	to	the	brainstem,	which	can	also	be	clearly	seen
and	is	responsible	for	more	automatic	responses	such	as	breathing	and
heartbeat.	The	distinctive	ball	above	right	of	the	brain	stem	is	the	cerebellum	(little
brain).	It	has	a	visibly	different	outer	texture,	and	is	responsible	for	learned,
repetitive	movements	such	as	running.



The	middle	of	the	brain	has	hollow	ventricles	which	are	filled	with	cerebrospinal
fluid.	The	brain	floats	in	this	fluid	to	protect	it	from	shocks	should	the	animal	hit	its
head.

Human	brain	anatomy.
Education	http://askabiologist.asu.edu/whats-your-brain\

These	basic	features	are	common	to	all	vertebrates,	and	a	sharks	brain	has	a
similar	structure.	This	suggests	that	the	basic	structure	evolved	several	hundred
million	years	ago.	Mammals,	and	in	particular	humans,	also	have	a	very	large
cerebrum	(shown	blue-grey	in	the	diagram).	This	area	seems	to	be	where	most	of
our	conscious	thought	takes	place.

The	image	below	shows	a	slice	through	a	human	cerebrum.	The	darker	areas	are
known	as	gray	matter	and	mainly	consist	of	closely	packed	neurons	while	the
lighter	areas	are	known	as	white	matter,	and	mainly	consist	of	myelinated	axons.
Myelin	sheaths	increase	the	efficiency	of	neurons	with	longer	axons,	so	white
areas	contain	more	longer	axons.	Short	axons	that	connect	nearby	neurons	do
not	need	myelin	sheaths	which	would	otherwise	take	up	unnecessary	space.	(The
shading	becomes	more	obvious	in	a	brain	preserved	with	formaldehyde,	which	is
why	it	is	difficult	to	see	in	the	fresh	lamb’s	brain	above.)



Slice	through	human	crebrum.
Public	Wikipedia

The	strongest	feature	in	the	image	is	the	dark	area	that	surrounds	the	cerebrum
known	as	the	cerebral	cortex.	The	word	“cortex”	means	rind,	as	in	a	bacon	rind	(or
skin).	The	many	folds,	or	sulci,	that	are	visible	increase	the	surface	area	of	the
cerebral	cortex,	with	two	thirds	of	the	area	of	the	cortex	being	inside	these	folds.
As	the	dark	colour	suggests,	the	cortex	has	a	high	density	of	neurons.

So	the	gross	structure	of	the	cerebrum	is	a	large,	fairly	thin	layer	of	neurons	that
surrounds	a	white	area	that	connects	different	parts	of	the	brain	together.	Many	of
the	white	matter	axons	connect	parts	of	the	cerebral	cortex	to	a	region	in	the
centre	of	the	brain	called	the	thalamus,	which	in	turn	is	connected	to	the
brainstem,	spinal	cord	and	all	the	body’s	senses	except	smell.

The	cerebrum	is	separated	into	two	distinct	halves.	Further,	neurons	can	only
cross	directly	from	one	half	to	the	other	via	a	thin	band	at	the	top	called	the	corpus
callosum.	This	lack	of	connectivity	means	that	the	two	halves	of	the	cerebrum
function	somewhat	independently	of	each	other.	The	corpus	callosum	has	a
particularly	large	number	of	myelinated	axons,	so	the	thin	white	band	can	be	seen
in	the	lamb’s	brain	dissection.

Very	rarely,	the	corpus	callosum	is	destroyed	through	illness	or	surgery,	in	which
case	the	two	halves	are	only	connected	very	indirectly	via	the	thalamus.	Careful
experiments	show	that	when	people	suffer	from	this	condition,	there	are
essentially	two	minds	in	the	same	body.	If	something	is	carefully	said	to	only	the
left	ear,	say,	the	right	hand	cannot	write	it	down	although	the	left	hand	can.	Of
course,	most	of	the	time	both	ears	hear	the	same	thing,	so	the	two	minds	do	not
realize	that	they	share	the	same	body.	This	suggests	that	our	concept	of
consciousness	may	not	be	as	sharp	as	it	seems.



Neocortex
The	cortical	neurons	are	generally	considered	to	be	layered,	and	in	the	neocortex
there	are	six	layers.	The	neocortex	is	the	bulk	of	the	cortex,	and	it	is	the	newest
part	of	the	brain	in	terms	of	evolutionary	development.

An	idealized	version	of	this	is	shown	below.	The	outermost	layer	I	contains
junctions	between	axons	and	dendrites,	with	few	neuron	soma	(bodies	with
nuclei).	The	two	most	common	types	of	neurons	in	the	cortex	are	the	larger
pyramidal	cells	with	longer	axons,	and	smaller	granule	cells	with	short,	local
axons.	They	are	distributed	within	the	cortex	as	shown	below.

Idealized	section	through	the	neocortex.
Education	http://vanat.cvm.umn.edu/NeuroLectPDFs/LectCerebralCortex.pdf

Broadly	speaking,	axons	that	connect	different	regions	of	the	cortex	(possibly	in
the	other	hemisphere)	generally	originate	in	layer	III	and	terminate	in	layers	I	and
II	of	the	destination	part	of	the	cortex.	Axons	bringing	sensory	information	from	the
thalamus	often	terminate	in	layer	IV,	while	layer	VI	contains	many	cells	whose



axons	lead	into	the	thalamus.	As	one	would	expect,	regions	of	the	brain	that	are
associated	with	sensory	or	motor	function	tend	to	have	thicker	layers	IV	and	VI
respectively.

There	is	also	some	speculation	that	the	neo-cortex	is	arranged	into	vertical
cylinders	a	few	hundred	microns	in	diameter	called	cortical	columns,	and	that
these	columns	function	as	a	unit.	This	is	based	on	the	observation	that	stimulating
an	incoming	axon	usually	only	stimulates	other	neurons	within	a	few	hundred
microns.	But	there	is	no	visual	indication	of	a	columnar	structure,	and	the	effect
may	simply	be	because	dendrites	are	relatively	short	and	so	only	nearby	neurons
can	be	directly	stimulated.

Functional	Ares	of	the	neocortex.
Education	http://vanat.cvm.umn.edu/NeuroLectPDFs/LectCerebralCortex.pdf

Many	attempts	have	been	made	to	map	regions	of	the	cortex	to	specific
functionality,	and	the	diagram	above	shows	some	key	areas.	The	mapping	has
been	traditionally	performed	by	measuring	or	stimulating	regions	with	electrodes
or	noticing	what	happens	when	parts	of	the	brain	are	damaged.

The	circled	area	towards	the	bottom	of	the	slice	through	the	cerebrum	is	the
hippocampus,	which	is	an	older	part	of	the	brain	that	appears	to	be	closely
associated	with	forming	memories	and	navigation.	Indeed,	different	neurons	in	the
mouse	hippocampus	have	been	found	to	become	excited	as	the	mouse	navigates
through	its	environment.

The	image	below	shows	how	the	body	appears	to	be	mapped	to	the	brain	within	a
specific	slice	through	the	neocortex.	Different	parts	of	the	body	have	rather
specific	mappings,	but	it	is	grossly	distorted.	As	one	might	expect,	there	is	far
more	of	the	brain	associated	with	the	fingers	and	tongue	than	with	hips	and
elbows.	This	is	all	then	mapped	to	the	cerebellum	which	refines	and	remembers
complex	movements.



Mapping	of	body	parts	to	the	brain.
Education	mybrainnotes.com

Brain	activity
More	recently	it	has	been	possible	to	use	MRI	(magnetic	resonance	imaging)
scans	of	healthy	people	to	show	where	oxygen	is	being	used,	and	thus	which
areas	of	the	brain	are	active.	A	recent	study	by	Huth,	Nishimoto,	Vu	and	Gallant	in
2012	showed	subjects	videos	of	various	objects,	and	then	used	MRI	scans	to
measure	the	resulting	brain	activity	with	voxels	of	a	few	cubic	millimetres.	The
map	below	shows	a	flattened	out	image	of	the	cortex	with	in	which	the	various
regions	have	been	coloured	differently	for	different	types	of	images.

This	results	in	complex	patterns	of	overlapping	colours	that	do,	in	fact,	roughly
correspond	to	previously	known	brain	areas.	Rather	surprisingly,	there	was	also
considerable	consistency	between	different	people	that	were	analyzed.	This	is	not
always	the	case.	For	example,	the	detailed	folding	of	the	cortex	varies	between
people.	Functional	areas	can	also	change	dramatically	in	order	to	recover	from
injury	to	the	brain.	And	about	30%	of	left-handed	people	have	their	speech
processing	swapped	to	their	right	hemisphere,	with	their	spatial	awareness
swapped	to	the	right.



Map	of	MRI	activation,	yellow	was	used	for	animals,	green	for	people,	pink	for
vehicles,	and	blue	for	buildings.
Education	http://gallantlab.org/semanticmovies/

Other	teams	have	used	MRI	scans	to	identify	the	gross	emotional	states	of
method	actors.	Happiness,	sadness,	anger	and	lust	could	be	identified,	but	not
more	subtle	emotions	such	as	envy.

MRI	scans	of	happy	and	sad	brains.
Education	http://www.kurzweilai.net/images/Happy-Sad-512x240.jpeg

Ever	more	detailed	maps	are	being	made	of	brain	anatomy.	The	international
collaboration	known	as	Big	Brain	has	recently	released	highly	detailed	three-
dimensional	images	of	a	brain	with	20	micron	resolution.	That	is	50	times	better
than	earlier	whole	brain	maps	with	typically	1mm	resolution.	It	required	7,400
brain	slices,	each	thinner	than	a	human	hair,	and	the	image	generated	1,000
gigabytes	of	data.	The	individual	slices	have	been	carefully	aligned	into	a	single



model,	so	that	one	can	navigate	through	the	model	using	a	computer	to	follow	the
shape	of	fine	features	in	three	dimensions.

However,	even	that	Herculean	effort	cannot	come	close	to	providing	a
connectome	(wiring	diagram)	of	the	brain.	Indeed,	it	would	only	be	fine	enough	to
resolve	the	larger	neurons.	To	scan	individual	axons	would	require	a	scan	to	0.4
microns,	which	is	the	very	limit	of	optical	microscopy.	Such	a	scan	would	also
generate	some	100	million	gigabytes	of	data.	However,	as	will	be	shown	for	the
humble	nematode,	even	a	complete	connectome	does	not	define	the	functionality
of	the	brain	which	requires	details	about	each	synapse,	and	more	importantly,
which	receptors	are	present	within	them.

Brain	function	and	size
Perhaps	the	most	amazing	brains	are	not	the	large	brains	but	the	small	ones.
Honeybees,	for	example,	can	categorize	similar	objects	like	dogs	or	human	faces,
understand	“same~~	and	“different~~,	and	differentiate	between	shapes	that	are
symmetrical	and	asymmetrical.	They	can	build	a	complex	honey-comb,	memorize
at	least	six	locations	and	three	paths	leading	to	each,	and	then	communicate	this
to	other	bees	using	an	elaborate	dance	language.	A	total	of	59	distinct	behaviours
have	been	counted,	as	opposed	to	129	different	behaviours	that	have	been
counted	for	dolphins.	Other	insects	like	ants	and	wasps	are	similarly	impressive,
and	there	is	even	a	wasp	that	can	count	out	exactly	eight	caterpillars	that	she
provides	for	each	of	her	grubs.

It	is	easy	to	dismiss	these	behaviours	as	just	instinct,	but	there	is	nothing	“just”
about	these	instincts.	Each	of	these	steps	requires	sophisticated	analysis	of
multiple,	complex	sources	of	information,	not	to	mention	a	significant	amount	of
longer	term	memory.	Yet	the	bee’s	nervous	system	occupies	just	1	cubic
millimetre	of	space	and	weighs	less	than	a	millionth	of	the	weight	of	a	human
brain.	It	contains	about	a	million	neurons.	(Insects	do	not	have	a	single	brain	as
such,	instead	their	nervous	system	is	distributed	throughout	their	small	bodies.)

Indeed,	the	largest	determinator	of	brain	size	is	the	size	of	the	animal	rather	than
its	intelligence.	Both	whales	and	elephants	have	much	larger	brains	than	humans.
Men	have	slightly	larger	brains	than	women.	And	birds	such	as	crows	and	parrots
exhibit	behaviours	that	seem	every	bit	as	sophisticated	as	mammals	that	have
brains	that	are	a	hundred	times	larger	than	the	bird’s	brain.	Neurons	have	much
the	same	size	and	functional	mechanisms	throughout	the	animal	kingdom,	so
small	animals	certainly	do	not	have	significantly	smaller	neurons	which	could	be
packed	more	tightly	than	large	animals	(their	axons	will	be	shorter	and	thus	need
not	be	myelienated).	Small	animals	just	get	by	with	better	organizations	of	fewer
neurons.

This	is	hardly	surprising.	For	a	large	animal,	carrying	around	and	fueling	a	few
extra	grams	of	brain	costs	very	little,	so	if	those	extra	grams	can	produce	even	a
tiny	increase	in	intelligence	then	it	is	advantageous	to	have	them.	For	a	small



animal,	having	to	carry	around	extra	neurons	can	be	a	major	drain	on	their	ability
to	survive.	This	provides	strong	selective	pressure	for	smaller	animals	to	have
efficient	brains.	It	is	also	generally	easier	to	make	smaller	things	efficient	than
larger	things.

That	said,	intelligence	is	a	powerful	tool	in	the	battle	to	exist,	so	small	animals
often	make	a	large	investment	in	neural	matter.	For	example,	the	nematode	C.
elegans	has	302	neurons	in	a	body	that	only	contains	959	cells	in	total,	meaning
that	over	a	third	of	their	body	cells	are	neurons.	If	people	were	built	to	the	same
proportions,	our	brains	would	weight	over	20kg.	Spiders	need	complex	nervous
systems	to	be	able	to	weave	webs	and	it	has	been	found	that	some	tiny	spiders
have	80%	of	their	body	cavity	filled	with	neurons.	Insect	visual	systems	can	often
account	for	as	much	as	30%	of	their	mass.

The	point	of	this	analysis	is	that,	as	we	are	large	animals,	our	brains	do	not	need
to	be	particularly	efficient	and	there	is	likely	to	be	considerable	redundancy.	The
seeming	partial	duplication	between	the	motor	cortex	and	the	cerebellum	might	be
an	example	of	this.

One	striking	example	was	the	case	of	Phineas	Gage	who	in	1848	had	a	massive
crow	bar	shot	in	under	his	jaw,	through	his	brain	and	out	the	top	of	his	head	due	to
a	construction	accident.	It	completely	destroyed	his	left	frontal	lobe	and	his	left
eye,	and	brain	matter	was	seen	to	be	oozing	out	of	the	huge	wound.	Mr	Gage	was
evidently	made	of	tough	stuff,	because	he	not	only	survived	the	massive	injury,
but	led	a	fairly	normal	life	after	it	without	the	benefit	of	almost	half	of	his	brain.	So
there	must	be	significant	redundancy	within	the	frontal	lobes	at	least.



Phineas	Gage
Public	Wikipedia

Brain	simulation
If	there	is	one	thing	that	has	been	learned	after	sixty	years	of	research,	it	is	that
building	an	artificial	intelligence	is	difficult.	It	is	most	certainly	not	just	a	matter
gluing	together	some	first	order	logic	with	some	artifical	neural	networks,	mixed	in
with	a	splash	of	semantic	networks	and	probabilistic	reasoning,	as	was	initially
thought.	So	some	researchers	have	looked	for	alternative	approaches	to	the
problem	that	do	not	require	engineering	a	solution	from	scratch.	One	of	these
approaches	has	already	been	discussed,	namely	evolutionary	programming.
Another	potential	short	cut	is	whole	or	partial	brain	simulation.

If	the	brain	is	composed	of	neurons	in	the	same	ways	that	a	computer	is
composed	of	transistors,	and	if	one	could	analyze	the	implicit	circuit	diagram	for
our	brains,	then	one	could	implement	our	brains	directly	on	a	computer	by
simulating	neurons.	It	might	require	a	large	computer	with	specialized	hardware	to
enable	it	to	run	in	real	time,	but	building	fast	computers	is	mainly	just	a	matter	of
money.

There	is	now	substantial	funding	for	this	type	of	research.	Since	2008,	the	IBM
Blue	Brain	project	has	received	a	$4.9	million	grant	from	the	Pentagon	for
research	into	creating	intelligent	computers.	The	Human	Brain	Project	is	a
European	effort	that	has	€1,190	million	in	funding	over	ten	years	and	involves	86
different	institutions.	In	2013	the	Obama	administration	announced	the	BRAIN
Initiative	(Brain	Research	through	Advancing	Innovative	Neurotechnologies,	also



commonly	referred	to	as	the	Brain	Activity	Map	Project),	which	has	the	goal	of
mapping	the	activity	of	every	neuron	in	the	human	brain,	at	a	cost	of	over	$300
million	per	year	for	ten	years.

The	magnitude	of	these	projects	is	unprecedented,	and	they	are	likely	to	provide
important	insights	into	the	working	of	our	minds.	However,	the	problems	are	far
from	trivial,	and	there	is	no	guarantee	that	brain	simulation	will	produce
substantial	results	in	the	foreseeable	future.

Worms

The	nematode	Caenorhabditis	elegans.
Education	http://jbashir.wordpress.com/2011/07/05/see-elegance/

Amongst	the	more	interesting	projects	are	attempts	to	simulate	the	nervous
system	of	the	humble	nematode	Caenorhabditis	elegans.	Known	affectionately	as
worms	to	researchers,	these	transparent	nematodes	are	about	1mm	long	and	live
in	environments	that	have	plenty	of	bacteria	for	them	to	eat,	such	as	compost
bins.	In	1974,	Sydney	Brenner	started	examining	them	extensively	because	of
their	simplicity,	transparency,	and	ease	of	breeding,	and	because	one	does	not
need	to	obtain	an	ethical	clearance	in	order	to	poke	needles	into	nematodes.
They	are	now	a	model	organism	that	has	been	studied	in	great	detail.	The	large
online	WormBase	database	collates	all	published	work	on	the	nematodes.

The	worms	have	unusual	sexual	habits,	with	about	5%	being	male	and	95%	being
hermaphrodites.	The	hermaphrodite	adult	worms	have	exactly	959	cells,	while	the
males	have	1031	cells.	The	precise	developmental	source	of	each	single	somatic
cell	has	been	mapped,	including	131	cells	that	are	eliminated.	Its	genome	has	97
million	base	pairs,	which	is	about	3%	of	the	size	of	the	human	genome,	and	there
are	simple	techniques	for	interfering	with	gene	expression	by	soaking	the	poor
worm	in	a	soup	of	RNA.

Of	the	959	or	1031	worm	cells,	exactly	302	are	neurons,	which	can	be	divided	into
the	pharyngeal	(throat)	nervous	system	containing	20	neurons	and	the	somatic
(bodily)	nervous	system	containing	282	neurons.	In	1986	J.G.	White	et.	al.	used



an	electron	microscope	to	map	the	precise	location	of	each	and	every	neuron.
They	found	that	they	have	a	relatively	simple	structure,	but	are	highly
interconnected.	6,393	chemical	synapses,	1,410	neuromuscular	junctions	and
890	gap	junctions	were	counted.	So	while	they	are	much,	much	simpler	than	a
human	nervous	system,	they	are	still	quite	complex.

One	might	think	that	having	the	complete	connectome	would	then	make	it
relatively	simple	to	simulate	a	tiny	worm’s	behaviour	on	a	computer.	However,	the
behaviour	of	individual	neurons	and	their	synapses	is	complex	and	not	well
understood,	even	though	they	appear	to	be	much	simpler	than	vertebrate
neurons.	The	precise	reaction	of	muscles	to	neural	stimulation	is	also	not	well
understood,	nor	is	the	reaction	of	sensory	neurons	to	changes	in	their
environment.	In	order	to	meaningfully	simulate	a	worm’s	brain	one	needs	to
simulate	the	whole	worm	in	its	environment,	and	that	is	a	very	complex	system
indeed.

Projects	that	are	attempting	to	do	this	include	Openworm,	D.	Dalrymple	at
Harvard	(funded	by	Google’s	Larry	Page),	and	a	project	at	Hiroshima	University.
None	have	succeeded	as	of	July	2013.	There	is	very	little	government	funding
available	for	this	work.	Simulating	a	tiny	worm	does	not	sound	as	exciting	as
simulating	a	human	brain	even	if	it	is	much	more	likely	to	eventually	produce
meaningful	results.

Given	the	complexity	of	simulating	the	302	neurons	of	C.	elegans,	attempting	to
simulate	the	86,000,000,000	neurons	of	the	human	brain	would	appear	to	be
rather	premature.	No	doubt	the	several	projects	that	claim	to	be	attempting	to	do
so	are	simulating	something,	and	some	of	them	are	consuming	vast	quantities	of
computer	time	to	do	so.	What	exactly	it	is	that	they	are	simulating,	and	whether	it
has	any	relevance	to	real	brains	is	unclear,	to	say	the	least.

Incidentally,	another	model	animal	is	a	small	but	unrelated	Planarium	worm.	It	is
famous	for	being	able	to	be	cut	in	half	and	then	regrow	heads	and	tails,	or	even
left	and	right	sides.	Planariums	can	be	taught	to	avoid	electric	shocks	associated
with	bright	lights.	Surprisingly,	when	cut	in	half,	both	the	head	and	(to	a	lesser
extent)	the	tail	remember	their	lessons.	(There	is	even	discredited	research	that
feeding	trained	but	chopped	up	planaria	to	other	planaria	transfers	some	of	that
learnt	behaviour.)





Computational	Neuroscience

Neurons
To	understand	how	people	actually	think	the	thoughts	they	do	requires	an
understanding	of	the	neurons	and	neural	networks	that	perform	the	information
processing.	The	next	subsections	will	examine	the	physiology	of	the	neurons
involved	followed	by	computational	models	about	how	they	might	produce
intelligent	behaviour.

This	chapter	is	necessarily	rather	technical.	One	can	certainly	understand	how	a
digital	computer	works	without	understanding	how	transistors	work	but	neurons
are	more	complex	than	transistors	and	so	understanding	a	brain	really	does
require	some	understanding	of	neurons.	That	said,	the	following	biochemical
background	can	be	skipped	if	desired.

A	typical	neuron.
Public	Wikipedia

As	previously	discussed	a	neuron	basically	accepts	electrochemical	inputs	from
its	thousands	of	dendrites,	and	if	the	stimulation	is	sufficient	it	then	fires	a	signal
down	its	often	much	longer	axon	which	may	in	turn	activate	other	neurons.	The
physiological	process	that	makes	this	happen	involves	electric	and	osmotic
potentials	across	the	neuron’s	cell	membrane.

Specifically,	the	inside	of	the	cell	normally	has	a	negative	charge	of	about	-70
millivolts,	together	with	an	abundance	of	potassium	(K+)	ions	and	a	lack	of	sodium
(Na+)	ions.	This	provides	both	electrical	and	osmotic	pressures	for	Na+	ions	to
enter	the	cell,	and	a	strong	osmotic	(but	not	electric)	pressure	for	K+	ions	to	leave



the	cell.	(Osmotic	pressure	refers	to	the	tendency	of	ions	to	dissolve	evenly
throughout	a	solution	rather	than	being	concentrated	in	one	place.)

This	pressure	is	maintained	by	sodium/potassium	ion	pumps	embedded	in	the	cell
membrane	of	each	neuron.	Each	cycle	of	the	pump	pushes	three	Na+	ions	out	of
the	cell,	and	also	pulls	two	K+	ions	into	the	cell.	Moreover,	some	of	the	K+	ions
leak	out	through	the	cell	membrane	due	to	osmotic	pressure,	so	this	results	in	a
negative	charge	building	up	inside	the	cell.	The	pump	itself	is	made	from	a	protein
referred	to	as	Na+/K+-ATPase,	which	is	powered	by	the	same	ATP	(Adenosine-5’-
triphosphate)	that	powers	most	cellular	processes	by	losing	one	of	its	phosphate
groups.

Neuron	cell	membrane
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The	cellular	membrane	also	contains	two	types	of	channels	through	which	Na+
and	K+	ions	may	pass.	They	are	normally	both	closed.	If	the	nerve	is	stimulated
by	raising	its	internal	voltage,	then	the	sodium	channel	opens	and	allows	the	Na+
ions	into	the	cell	membrane.	This	produces	a	positive	voltage	within	the	cell	which
then	closes	the	Na+	channels,	and	opens	the	K+	channels.	The	K+	ions	are	under
substantial	osmotic	pressure	within	the	cell,	so	they	move	out	against	the	voltage
gradient,	making	the	cell	negative	again.	That	in	turn	closes	the	K+	channel,	and
the	Na+/K	pumps	restore	the	balance	of	Na+	and	K+	ions.
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This	can	be	seen	by	the	plot	of	cell	voltage	against	time	above.	The	cell	starts
with	a	negative	potential	of	-70mV.	Minor	stimuli	are	ignored,	but	if	the	voltage
reaches	a	threshold	potential	of	about	-55mv,	then	the	Na+	channel	opens	which
causes	Na+	ions	to	rush	in	and	so	raise	the	voltage	to	about	+20mv.	This	positive
voltage	causes	the	K+	channel	to	open,	and	it	stays	open	until	the	voltage	drops
below	its	initial	negative	voltage.	The	Na+/K+	pump	then	does	its	work	of	restoring
the	ion	balance.	The	process	utilizes	the	stored	potential	energy	in	the
concentrations	of	Na+	and	K+	ions	to	raise	and	lower	the	voltage	in	as	little	as	0.5
milliseconds,	although	it	takes	the	pump	about	5	milliseconds	to	complete	a	full
cycle.

A	neuron’s	axon	is	a	very	thin	tube,	typically	a	few	microns	in	diameter,	that	has
numerous	pumps	and	channels	distributed	along	its	cell	membrane.	When	one
set	of	channels	reaches	its	action	potential	and	activates,	it	makes	that	part	of	the
axon	positive.	Na+	ions	within	the	axon	are	then	attracted	to	nearby	negative
areas	of	the	axon,	which	moves	the	positive	charge	down	the	neuron.	This	charge
then	activates	the	next	set	of	channels	in	a	positive	feedback	cycle	which
produces	a	wave	of	charge	moving	down	the	axon	as	shown	below.

The	chart	above	shows	that	the	opening	of	the	K+	channel	actually	overshoots	the
normal	voltage	to	-90mV.	This	hyperpolarization	is	important	because	it	makes	the
channels	much	less	likely	to	open	in	response	to	further	stimulation	which	in	turn,
will	prevent	signals	from	moving	in	both	directions	up	and	down	the	axon	causing
continuous	stimulation.



Education	http://www.anselm.edu/homepage/jpitocch/genbio/actpot.JPG

The	conduction	of	ions	moving	through	the	axon	occurs	at	about	100	meters	per
second,	which	is	much	slower	than	electrons	moving	through	wire	at	300,000,000
meters	per	second.	It	is	still	much	faster	than	the	Na+/K+	action	cycle	that	can
take	a	millisecond	to	move	just	a	few	microns.	Ionic	conduction	also	takes	much
less	energy	from	the	cell.	This	is	important	because	some	human	axons	are	over
a	meter	long.

To	improve	ionic	conduction,	longer	axons	are	coated	in	a	myelin	sheath	provided
by	the	surrounding	Schwann	cells.	The	sheath	is	a	fatty	layer	that	prevents	ions
form	leaking	out	of	the	axon,	and	improves	its	electrolytic	properties.	This	means
that	the	activation	from	one	set	of	channels	can	effectively	propagate	down	the



very	thin	axon	a	couple	of	millimetres	or	so.	At	that	point	there	is	a	gap	in	the
sheath	called	a	node	of	Ranvier,	which	enables	the	channels	and	ion	pumps	to
strengthen	the	signal	that	is	then	propagated	to	the	next	node.	The	process	is
known	as	salutatory	conduction.
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The	basic	biochemistry	of	the	ion	pump	and	channels	occurs	in	most	animals	and
so	is	probably	an	early	development.	However,	only	a	few	invertebrates	have	the
myelin	sheath	that	improves	signal	speed	and	efficiency	in	longer	axons.	A
different	method	of	improving	their	speed	if	not	the	efficiency	is	to	simply	making
the	axon	thinker.

The	common	squid	has	a	giant	axon	that	connects	its	brain	to	its	mantle	which
enables	the	squid	to	contract	the	mantle	very	quickly	if	required.	This	giant	axon	is
up	to	1000	microns	thick,	or	100	times	thicker	than	most	mammalian	neurons.
Being	cold	blooded	it	is	also	very	tough	and	so	can	be	abused	experimentally	and
still	function	for	several	minutes.	This	was	discovered	in	the	1930s,	and	then	used
by	Hodgkin	and	Huxley	in	the	1950s	to	understand	these	biochemical	interactions.
Incidentally,	the	giant	squids	have	rather	modest	giant	axons.

Neuron	synapse
The	junction	between	two	neurons	is	called	a	synapse,	and	these	are	usually	from
the	axon	of	one	presynaptic	neuron	to	the	dendrites	of	another	postsynaptic
neuron.	Mammalian	neurons	have	thousands	of	synapses.

The	most	common	synapse	is	a	chemical	synapse	which	is	illustrated	below.	The
basic	mechanism	is	that	an	action	potential	at	the	axon	terminal	causes	a
chemical	called	a	neurotransmitter	to	be	released,	and	this	chemical	then	has	an
effect	on	receivers	in	the	dendrite.	The	main	type	of	effect	is	to	raise	or	lower	the
voltage	within	the	postsynaptic	neuron.	If,	through	the	action	of	multiple	synapse,
the	postsynaptic	neuron	reaches	its	action	potential	then	it	will	send	a	signal	down
its	axon	to	other	neurons.



Synapses	with	presynaptic	neuron	above	the	postsynaptic	neuron.
Public	Wikipedia

When	an	action	potential	reaches	the	axon	terminal,	it	opens	a	channel	that
allows	Ca++	(calcium)	ions	to	be	suddenly	admitted	into	the	cell	in	much	the	same
way	that	Na+	channels	are	opened	in	the	body	of	an	axon.	There	is	also	a	very
similar	pump	that	pumps	the	Ca++	ions	out	again	later.	The	neurotransmitters	are
stored	in	small	vesicles	(bubbles)	within	the	axon,	and	some	of	those	are	docked
by	special	snare	proteins	near	the	wall	of	axon.	The	Ca++	ions	cause	these	snare
proteins	to	rupture	the	wall	of	the	vesicle	and	release	the	neurotransmitter	into	the
synaptic	cleft,	which	is	a	small	30	to	40	nanometre	gap	between	the	axon	and	the
dendrite.

The	neurotransmitter	then	quickly	diffuses	across	the	tiny	cleft	and	bonds	to
receptors	in	the	dendrite	that	respond	in	ways	that	vary	according	to	the	particular
neurotransmitter	that	was	released.	The	most	common	neurotransmitter	is	called
glutamate,	and	it	has	the	effect	of	opening	a	Na+	channel	in	the	dendrite,	which
has	the	effect	of	increasing	the	voltage	of	the	dendrite	and	thus	raising	the	voltage
in	the	receiving	neuron.	The	neurotransmitter	then	decouples	from	its	receptor,
and	is	usually	reabsorbed	back	into	the	axon	using	a	reuptake	pump.

Another	common	neurotransmitter	named	GABA	binds	to	a	receptor	that	opens
channels	for	Cl-	and	K+.	This	inhibits	the	neuron	by	lowering	its	voltage	and	so
making	it	more	difficult	for	other	synapses	to	stimulate	the	neuron.

Synapses	are	where	the	neuron	performs	much	of	its	computation.	They	involve
the	complex	interactions	of	several	biochemical	processes	that	are	not	fully
understood.	There	are	about	two	dozen	different	neurotransmitters,	and	even
more	receptors,	that	perform	different	actions	at	different	times	depending	upon
the	neurotransmitter	that	is	released.	Synapses	have	different	and	changing
quantities	of	many	different	types	of	receptors.	Each	neuron	may	have	thousands



of	dendrite	synapses	which	results	in	an	even	more	complex	system.

The	effect	upon	the	postsynaptic	neuron	is	determined	not	by	the	presynaptic
neuron	nor	directly	by	the	neurotransmitter,	but	rather	the	type	of	receptor	that	is
activated.	Receptors	can	be	classified	broadly	as	excitatory	(causing	an	increase
in	the	voltage),	inhibitory	(causing	a	decrease	in	the	voltage),	or	modulatory
(causing	long-lasting	effects	not	directly	related	to	the	voltage).

For	example,	glutamate	acts	on	two	receptors.	The	first,	named	AMPA,	requires
only	a	weak	stimulation	to	open	a	channel	that	allows	both	K+	and	Na+	to	cross,
and	is	quick	to	turn	both	on	and	off.	The	net	effect	is	to	excite	the	dendrite	neuron,
i.e.	to	raise	its	voltage.

Glutamate	also	binds	to	another	receptor	known	as	NMDA	which	opens	a	non-
selective	channel	that	allows	K+,	Na+	and	Ca++	ions	to	cross,	but	only	if	there	is
a	strong	stimulation	of	glutamate.	NMDA	is	quick	to	turn	on	but	slow	to	turn	off.
However,	if	the	dendrite	is	at	the	resting	potential	(-70mV),	then	the	strongly
charged	Mg++	(Magnesium)	ions	are	electrically	attracted	to	the	NMDA	channel
and	block	it.	If	the	dendrite	voltage	is	slightly	raised	(possibly	by	neighbouring
AMPA	channels)	then	the	Mg++	ions	dissipate,	and	large	quantities	of	all	ions
pass	through.	This	produces	a	positive	feedback	effect.

The	Ca++	ions	are	an	important	secondary	messenger,	and	amongst	other	things
they	activate	a	protein	called	CAM	kinase	which	makes	the	AMPA	channel	more
conductive	to	Na++	ions.	CAM	kinase	also	moves	more	AMPA	receptors	from	the
dendrite’s	cytoplasm	into	its	membrane,	and	thus	enhances	the	synapse,	i.e.	it
becomes	more	sensitive	to	future	stimulations.	Ca++	ions	can	even	affect	the
presynaptic	axon	by	causing	the	dendrite	to	release	nitric	oxide	(NO),	which	in
turn	causes	the	axon	to	release	more	glutamate.

Other	neurotransmitters	have	complex	effects,	such	as	changing	the	sensitivity	of
the	receptors	or	causing	the	production	of	special	chemical	messenger	molecules
within	the	postsynaptic	neuron	that	can	have	a	wide	number	of	effects.	This	is	all
within	each	of	the	many	receptors	in	each	of	the	thousands	of	synapses	in	each	of
the	billions	of	neurons	that	comprise	a	living	brain.

Timing	within	the	neuron	is	also	important.	It	takes	some	time	for	the	effect	of	an
open	channel	in	a	distant	dendrite	to	reach	the	axon	hillock	(where	the	axon	joins
the	nucleus).	The	effect	of	several	synapses	needs	to	arrive	at	the	hillock	at	the
same	time	in	order	for	it	to	reach	its	action	potential	and	thus	fire	the	neuron.

Some	neurons	also	contain	electrical	synapses	which	are	simply	channels	that
directly	couple	one	neuron	to	another.	They	are	usually	bidirectional	and	do	not
have	any	action	potential	characteristics,	nor	any	ability	to	amplify	a	signal.
Electrical	synapses	are	much	faster	than	chemical	synapses,	particularly	in	cold-
blooded	animals	where	they	appear	to	be	more	common.

There	are		several	other	mechanisms	for	inter-neuron	communication.	For
example,	neurogliaform	neurons	inhibit	other	nearby	neurons	by	simply	releasing



the	neurotransmitter	GABA	into	the	extracellular	space,	and	most	neurogliaforms
do	not	have	any	classical	synapses	at	all.

Integrate	and	fire	(IF)	neurons
The	simplest	computational	model	of	a	neuron	ignores	all	of	this	complexity	and
treats	a	neuron	as	if	it	was	broadly	similar	to	the	artificial	neuron	discussed	in
earlier	chapters.	This	Integrate-and-Fire	(IF)	model	calculates	a	weighted	sum	of
each	neuron’s	many	dendrite	synapses	(some	of	which	may	be	negative),	and	if
this	is	greater	than	a	specific	value	then	the	neuron	is	activated.

Owned

As	a	simplistic	example,	consider	the	diagram	above,	in	which	neurons	are
represented	as	arrows	from	dendrites	to	axon,	and	synapses	as	circles	with	the
weights	shown.	If	neurons	A,	B	and	C	fired,	then	E	would	achieve	a	potential	of	5
+	6	-	2	=	9	units.	If	E’s	threshold	was	10,	it	would	not	fire	unless	neuron	D	also
fired.	Note	that	the	synapse	between	C	and	E	is	suppressive	as	modelled	by	the
negative	weight.	If	E	fires,	it	might	in	turn	stimulate	other	neurons	such	as	F	in	the
diagram.

Unlike	perceptrons,	the	timing	of	the	stimulations	is	critical.	An	artificial	neural
network	calculates	all	of	its	outputs	from	its	inputs	at	(logically)	the	same	time.	So
to	recognize	a	digit	in	the	earlier	character	recognition	example,	just	two	sets	of
multiplications	needed	to	be	performed	by	the	three-layer	network,	one	after	the
other.	However,	there	is	no	central	clock	in	a	biological	system	which	makes	it	a
much	more	dynamically	complex	system.

Specifically,	it	takes	time	for	a	channel	to	open	and	close,	and	neurons	have	a
significant	capacitance,	which	means	it	takes	time	for	their	voltage	to	change.	As
previously	discussed,	common	synaptic	excitement	takes	0.5ms	to	start,	peaks
after	2ms,	and	has	a	half-life	of	4ms	thereafter.	So	if	another	axon	stimulates	an
axon	within	that	time	period,	the	stimulations	will	be	added	together	and	may
reach	the	action	potential,	whereas	if	they	miss	by	more	than	4ms	then	they	will
not	be	combined	significantly.



This	process	is	often	described	as	a	leaky	integrator,	in	the	sense	that	it	adds	up
(integrates)	the	stimulations	but	also	leaks	the	resulting	voltage	so	that	multiple
stimulations	need	to	occur	at	roughly	the	same	time	in	order	to	fire	the	neuron.

So	the	example	would	require	a	more	complex	calculation	as	shown	above.	If
neuron	A	fired	at	time	t=0ms,	then	it	would	raise	neuron	E’s	potential	by	5	units,	5
being	the	synaptic	strength	as	shown	in	the	preceding	diagram.	But	if	the
potentials	have	a	half	life	of	4ms,	then	by	t=2	that	potential	would	have	reduced	to
3.6	as	shown	in	the	E’	column.	Without	further	stimulation,	that	would	reduce	to
2.6	at	t=4,	but	if	B	fired	at	t=4	then	the	potential	would	be	2.5	+	6	=	8.6.	Neuron	E
would	not	fire,	despite	being	stimulated	by	both	A	and	B.	A	further	stimulation	by	D
at	t=6	would	just	push	E	over	its	10.0	threshold	and	cause	it	to	fire	under	this	IF
model.

Simulating	IF	neurons	on	a	computer	requires	repeatedly	calculating	the	potential
of	each	neuron	at	small	intervals	of	time.	The	potential	needs	to	be	increased
slightly	for	each	positive	stimulus	and	then	decreased	slightly	to	model	the	leak.
Stimulations	need	to	be	computed	for	each	of	possibly	thousands	of	synapses,
each	with	different	characteristics	and	timing	variations.	Eventually,	if	a	neuron
reaches	its	action	potential,	it	will	fire	and	thus	stimulate	thousands	of	other
neurons	that	are	connected	to	its	axon	at	times	that	depend	upon	how	far	they	are
away	from	the	cell	nucleus,	amongst	other	things.

This	process	is	extremely	computationally	expensive,	and	it	is	not	useful	for
building	practical	AI	systems.	But	it	is	very	useful	for	comparing	theoretical	models
with	observed	behaviours	of	real	neurons.

It	should	also	be	emphasized	that	IF	neurons	are	not	real	neurons.	They	are	just
mathematical	abstractions	that	ignore	most	of	the	complexities	of	real	neurons.
Different	simulations	may	use	different	abstractions	that	incorporate	more	or	less
of	a	real	neuron’s	behaviour	such	as	synaptic	plasticity,	which	will	be	discussed
next.

Hebbian	learning
Clearly	any	intelligent	system	needs	to	learn.	A	mechanism	was	hypothesized	by
Donald	Hebb	back	in	1949	in	which	neurons	that	often	fire	at	about	the	same	time
will	become	more	sensitive	to	each	other’s	stimulation.	This	is	often	summarized
as	neurons	that	fire	together	wire	together.	It	produces	a	broadly	similar	effect	to
the	back	propagation	learning	algorithms	of	artificial	networks.
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To	see	how	this	mechanism	could	induce	learning,	consider	the	grossly	simplified
network	above	in	which	neurons	are	represented	by	arrows	from	dendrites	to
axons.	The	diagram	naively	supposes	that	a	mouse	has	single	neurons	that
corresponds	directly	to	the	concepts	of	Cheese,	Cat,	Eat,	Run,	etc.	The	circles
represent	strong	synaptic	links,	so	that	the	Cheese	Sight	neuron	would	activate
the	Cheese	neuron,	which	in	turn	activates	the	Eat	neuron.

Now	suppose	that	most	of	the	time	the	Cheese	neuron	fires,	the	Cheese	Smell
neuron	also	happens	to	fire.	Hebbian	learning	would	have	the	dotted	synapses
between	Cheese	Smell	and	Cheese	be	strengthened	slightly	each	time	they
happened	to	fire	together.	Eventually	the	synapse	would	become	strong	enough
that	just	smelling	cheese	would	activate	the	Cheese	neuron.	The	mouse	would
learn	to	eat	the	cheese	even	if	it	could	not	be	seen.	(Following	artificial	neurons,
the	strength	of	each	synapse	is	often	referred	to	as	its	weight.)

Of	course	there	also	needs	to	be	a	compensatory	mechanism	to	weaken
synapses	that	do	not	fire	together	very	often.	Otherwise,	over	time	all	the	neurons
would	become	fused	together	in	a	large,	amorphous	blob.

Plasticity
Real	neurons	do	in	fact	exhibit	plasticity,	meaning	that	they	become	more	or	less
sensitive	to	stimulation	over	time,	depending	upon	how	they	have	been	stimulated
in	the	past.	The	most	basic	mechanism	is	synaptic	fatigue,	which	is	a	short	term
effect	in	which	repeated	short	trains	of	action	potentials	causes	an	exponential
delay	in	synaptic	response.	This	is	mainly	because	the	axon	presynaptic	terminal
simply	runs	out	of	neurotransmitter	molecules.

But	there	can	also	be	longer	term	memory	effects	that	last	for	minutes	or	days.
One	mechanism,	discussed	earlier,	is	the	NMDA	channel	enhancing	synaptic
efficiency	by	allowing	Ca++	ions	to	stimulate	CAM	kinase,	which	can,	in	turn,
create	more	AMPA	channels.	This	makes	the	neuron	more	sensitive	to	future
stimulation	from	that	synapse.	There	are	other	mechanisms	that	provide	both
positive	and	negative	plasticity,	some	of	which	are	not	well	understood.	But



whatever	the	mechanism,	longer	term	plasticity	effects	can	be	used	to	store
longer	term	memories.

Public	Wikipedia

The	chart	above	shows	this	effect	in	real	neurons	from	a	slice	of	a	rat’s
hippocampus.	The	black	squares	show	the	neurons’	initial	sensitivity	to	stimulation
of	its	dendrites.	The	region	was	then	given	tetanic	stimulation,	namely	a	repeated
100Hz	signal	for	1	second.	The	green	squares	show	the	sensitivity	just	after
stimulation	(PTP),	which	has	increased	dramatically.	The	blue	squares	then	show
the	slowly	weakening	long	term	effect	(LTP).

Other	experiments	in	hipocampal	cultures	showed	that	the	timing	of	stimulations
is	critical,	and	they	need	to	happen	within	about	40	milliseconds	in	order	to
strengthen	the	synaptic	response	between	two	neurons.	It	is	now	also	possible	to
use	phosphorization	by	Ca++	ions	to	monitor	the	effect	on	individual	synapses.

It	has	also	been	shown	that	all	synaptic	weights	tend	to	reduce	for	neurons	that
fire	repeatedly.	This	would	have	the	effect	of	weakening	synapses	that	do	not	fire
together,	and	thus	prevent	a	network	from	becoming	fused	together.

Neuron	chains
Neurons	are	combined	into	networks	in	order	to	provide	real	functionality.	The
most	basic	structure	could	be	a	parallel	chain	of	neurons	that	each	carry
essentially	the	same	information.	This	is	necessary	because	neurons	are	noisy
and	sometimes	fire	without	being	stimulated	at	all.	It	usually	takes	several	different
neurons	to	fire	in	order	to	activate	a	postsynaptic	neuron,	so	a	single	isolated
random	firing	of	a	neuron	in	a	chain	is	unlikely	to	have	any	detrimental	effect.

Another	reason	for	redundancy	is	that	being	living	things	neurons	sometimes	die.
It	would	be	most	unfortunate	if	a	mouse	forgot	all	about	cats	upon	the	death	of	a
single	neuron.



Neurons	can	only	fire	once	every	few	milliseconds.	Yet	animals	can	react	to
complex	stimulations	within	a	few	hundred	milliseconds.	Such	reactions	must
involve	dozens	if	not	hundreds	of	neurons	in	sequence.	So	there	is	simply	not
enough	time	for	more	than	a	very	few	firings	of	any	particular	neuron	to	ellicit	a
response.	A	neuron’s	firing	is	also	an	all-or-nothing	event,	there	are	no	weaker	or
stronger	firings	to	reflect	different	levels	of	stimulation.

Thus	each	neuron	essentially	provides	just	one	bit	of	information	about	the	current
state	of	the	world.	A	weak	external	stimulus	is	only	likely	to	fire	a	few	neurons	in	a
linear	chain,	whereas	if	a	stimulus	is	strong,	then	more	neurons	are	likely	to	be
stimulated	sufficiently	to	fire.	If	a	stimulus	persists,	the	neurons	may	continue	to
fire	repeatedly.	It	would	therefore	take	several	neurons	to	provide	an	analogous
computational	ability	as	a	single	artificial	neruon.

Usually	the	precise	timing	of	neurons	is	not	critical,	and	there	is	normally	no
information	encoded	in	the	exact	sequence	of	activations.	But	as	with	most	things
to	do	with	real	neurons,	there	are	many	exceptions.	For	example,	it	turns	out	that
the	auditory	nerve	responds	to	sounds	based	on	the	phase	difference	between
continuously	firing	neurons.	The	time	that	it	takes	for	a	neuron	to	respond	to
stimulations	has	also	been	seen	to	exhibit	plasticity.	Brains	are	complex,	dynamic
systems	which	involve	many	interacting	mechanisms.

Self	organizing	maps	(SOMs)
A	good	example	of	a	more	sophisticated	application	of	Hebbian	learning	is	the
Self	Organizing	Map	(SOM).	These	are	commonly	used	with	artificial	networks
and	there	is	evidence	that	they	also	occur	with	biological	neurons.	A	SOM	can
take	a	large	number	of	complex	inputs	and	classify	them	in	a	simplified
representation	that	clusters	related	inputs	together,	thus	abstracting	meaning	from
the	input	data.	This	process	can	happen	without	supervision,	i.e.	without	any
preconceived	notion	of	what	the	final	map	should	look	like.



Self	organizing	maps
Corporate	http://www.lohninger.com/helpcsuite/kohonen_network_-_background_information.htm

The	SOM	above	categorizes	inputs	into	a	two	dimensional	XY	plane	of	neurons.
Each	input	is	connected	to	each	element	in	the	XY	plane	with	strengths	(weights)
that	are	initially	random	but	will	be	learnt	by	the	map	as	it	experiences	different
inputs.

Each	neuron	in	the	XY	plane	is	also	connected	to	other	neurons	in	the	plane,	but
with	special,	fixed	weights.	These	XY	weights	cause	neurons	that	are	close	to
each	other	to	stimulate	each	other,	but		neurons	that	are	far	apart	to	suppress
each	other.

For	each	set	of	inputs	that	the	SOM	experiences,	some	random	set	of	neurons	in
the	XY	plane	will	fire	due	to	the	initial	random	weights.	The	connections	within	the
XY	plane	will	cause	neurons	that	are	near	other	firing	neurons	to	be	more	likely	to
fire	than	distant	neurons,	so	the	more	neurons	that	fire	in	a	particular	part	of	the
plane,	the	more	other	neurons	are	likely	to	fire	in	that	part	of	the	plane.	Neurons
that	fire	in	one	part	of	the	plane	also	suppress	neurons	from	firing	in	other	parts.	
In	combination	this	produces	a	winner-takes-all	effect.

Neurons	that	fire	together	wire	together,	so	over	time	the	strengths	Wij	between
the	inputs	and	the	XY	plane	will	strengthen	when	they	connect	to	parts	of	the	XY
plane	that	fire	for	specific	stimulate.	This	has	the	effect	of	learning	to	recognize
complex	patterns	of	inputs	as	distinct	areas	in	the	XY	plane.	More	importantly,
similar	stimulations	end	up	being	represented	in	nearby	parts	of	the	plane	due	to
the	XY	weights.

There	is	some	evidence	that	this	mechanism	occurs	in	real	brains.	For	example,
different	areas	of	a	mouse’s	hippocampus	seem	to	be	activated	when	a	mouse	is
in	different	parts	of	a	maze.	There	does	not	appear	to	be	any	correlation	between



the	physical	locations	of	the	stimulated	areas	in	the	hippocampus	and	the
locations	in	the	maze.	However,	areas	in	the	hippocampus	that	appear	to	be
strongly	connected	electrically	(corresponding	to	the	XY	plane)	do	appear	to
correspond	to	nearby	areas	of	the	maze.

Over	time	these	areas	in	the	brain	that	correspond	to	different	areas	of	the	maze
tend	to	slowly	drift	to	different	locations.	This	is	presumably	due	to	neural	noise
and	the	slow	optimization	of	the	network.	It	would	appear	that	each	neuron	is
randomly	connected	to	a	very	large	number	of	other	neurons,	and	that	this	wiring
is	relatively	permanent.	It	is	the	ever	changing	strength	of	individual	synapses	that
defines	each	neuron’s	behaviour.

Recurrent	networks	and	learning
Neural	networks	such	as	the	Mouse/Cheese	network	are	known	as	feed	forward
networks	because	they	have	a	single	direction	of	flow	from	inputs	to	outputs.
Neurons	can	also	form	cycles	which	are	known	as	recurrent	networks.

Owned

Consider	the	three	neurons	above.	If	an	Input	causes	neuron	A	to	fire	it	will
stimulate	neuron	B.	If	B	then	fires	it	will	stimulate	neuron	C.	C	in	turn	will
restimulate	neuron	A.	If	A	is	restimulated	after	it	has	recovered	from	the	initial
stimulation	then	this	will	cause	A	to	fire	a	second	time	for	the	same	one	initial
stimulation.	In	this	way	a	single	activation	of	neuron	A	could	create	a	continuous
stream	of	activations	which	is	sometimes	referred	to	as	reverberizing.		(This	is
similar	to	the	flip-flop	created	by	two	digital	NOR	gaits.)

Eventually	this	cycle	might	be	broken,	possibly	by	synaptic	fatigue	in	which	the
synapses	simply	run	out	of	neurotransmitter	and	so	stop	stimulating.	More
complex	mechanism	involve	inhibitory	synapses	which	prevent	a	neuron	from



firing.

Whatever	the	mechanism,	the	recurrent	network	can	remember	the	initial
stimulation	for	a	short	period	of	time	as	a	cycle	of	continuously	firing	neurons.	This
corresponds	to	short	term	working	memory	that	is	essential	for	cognition.

The	Self	Organizing	Map	discussed	previously	is	a	recurrent	network	in	the	XY
plane.	Neurons	that	are	near	each	other	reinforce	each	other’s	activity	and	inhibit
neurons	that	are	further	away.	This	keeps	neurons	active	for	an	extended	period
of	time,	and	that	continued	activation	encourages	Hebbian	learning	as	the
neurons	that	fire	together	wire	together.

Recurrent	networks	are	often	complex	and	involve	numerous	semi-independent
cycles	which	can	reinforce	or	suppress	each	other.	Some	networks	are	stable,
leading	a	fixed	point	fairly	quickly,	while	others	can	be	quite	unstable	and	chaotic.

One	important	type	of	recurrent	network	is	a	Hopfield	network	in	which	every	node
feeds	back	to	every	other	node.	This	can	be	used	as	content	addressable
memory,	meaning	that	if	just	some	of	node’s	values	are	specified	in	a	query,	then
the	values	of	other	nodes	can	be	retrieved.

Memory
Two	distinct	mechanisms	have	been	discussed	for	memory.	The	first	is	the	slowly
changing	synaptic	weights	produced	by	Hebbian	learning.	The	second	is	the	short
term	creation	of	activations	in	redcurrant	networks.

This	corresponds	roughly	to	our	psychological	experience	of	memory.	People	can
only	consciously	remember	about	seven	different	symbols	at	a	time	when
considering	a	problem,	and	they	are	quickly	forgotten	if	one	is	distracted.	On	the
other	hand,	people	have	millions	of	longer-term	memories.

It	appears	that	many	longer	term	memories	are	formed	in	a	small	part	of	the
cerebral	cortex	known	as	the	hippocampus.	Evidence	of	this	is	the	famous	case	of
patient	H.M.,	who	had	his	hippocampus	largely	removed	to	prevent	severe
epilepsy.	H.M.	could	function	fairly	normally	and	had	long-term	memories,	but	he
could	not	form	any	new	long-term	memories.

Anatomical	studies	suggest	that	the	hippocampus	does	in	fact	contain	large
recurrent	networks	that	can	hold	a	thought	for	a	short	period	of	time,	during	which
time	they	repeatedly	stimulate	other	parts	of	the	brain	which	then	undergo
Hebbian	learning.	Without	a	hippocampus	to	stimulate	other	learning	centres,
H.M.	could	not	form	new	memories,	although	he	could	utilize	existing	ones.

One	issue	with	this	model	is	that	there	needs	to	be	a	mechanism	to	switch
between	learning	and	retrieval	modes,	to	stop	the	positive	feedback	loop	and
allow	the	network	to	respond	to	new	stimuli.	One	possible	mechanism	is	that
certain	neurons	in	the	hippocampus	seem	to	have	very	strong	synapses	which
might	override	recurrent	neuron	activations.	Another	mechanism	is	that	chemical



agents	such	as	acetylcholine	(ACh)	could	moderate	the	process	and	so	re-enable
a	learning	phase.	In	any	case	ACh	does	affect	the	plasticity	of	synapses.	Like
most	real	neural	processes,	several	different	and	competing	mechanisms	are
probably	involved.

Modularity
Suppose	that	a	neural	network	needed	to	recognize	the	shapes	square,	circle	and
triangle,	which	might	be	coloured	red,	green	or	blue.	That	would	require	nine
different	cases	to	be	recognized,	one	for	each	combination	of	shape	and	colour
(i.e.	red	square,	blue	square,	…,	green	triangle).	If	colours	and	shapes	are	largely
independent	then	it	would	possible	to	divide	the	problem	into	two	modules	or
experts,	one	that	determines	shapes	and	another	that	determines	colours.	This
would	require	just	six	cases	(the	three	shapes	plus	the	three	colours).

This	becomes	important	as	the	number	of	dimensions	increases.	For	example,	if
there	were	ten	shapes	with	ten	colours	in	ten	locations,	then	a	single	module
would	require	a	thousand	combinations,	whereas	processing	them	independently
would	only	require	thirty	cases	to	be	recognized.	Another	issue	is	that	it	is	just	not
physically	possible	for	each	of	our	85	billion	neurons	to	connect	to	each	other	in
one	huge	module	—	our	brains	would	need	to	be	over	twenty	metres	in	diameter
to	store	all	the	dendrites.

The	brain	appears	to	be	organized	into	semi-discrete	modules.	For	example,	the
optic	nerve	splits	into	a	dorsal	path	that	identifies	where	objects	are	and	a	ventral
path	that	is	more	involved	with	recognizing	which	objects	are	present.

Owned

The	diagram	above	shows	a	network	that	has	been	split	into	three	expert	modules
that	address	different	aspects	of	a	problem.	A	fourth	integrator	module	is	then
required	to	determine	how	the	output	of	the	different	experts	should	be	combined.
If	Red	Circles	were	of	special	interest,	then	one	expert	might	recognize	the	shape,
another	the	colour	and	an	integration	expert	the	combination.



Each	module	in	a	modular	network	could	have	many	connections	to	other
modules	in	much	more	complex	ways	than	shown	above.	A	module	is	just	a
collection	of	neurons	that	have	relatively	more	strong	connections	to	other
neurons	in	the	module	than	they	do	to	neurons	that	are	outside	the	module.
Further,	the	above	network	is	a	simple	feed	forward	network,	but	recurrent
modular	networks	are	also	possible.

A	more	difficult	problem	is	how	to	train	a	modular	network.	If	the	integrator
somehow	learns	that	red	circles	mean	trouble,	then	it	needs	to	be	able	to
somehow	cause	one	expert	to	recognize	circles	and	another	to	recognize
redness.	Doing	this	effectively	is	difficult	for	both	biological	and	artificial	networks,
and	it	is	a	subject	of	ongoing	research.	Mechanisms	have	even	been	proposed
that	learn	how	to	automatically	split	a	large	network	into	modules.

Controlling	movement
One	possibility	for	multiple	higher-level	modules	is	the	control	systems	used	to
move	our	bodies.	Neither	muscles	nor	electric	motors	behave	in	absolutely
predictable	ways,	so	any	such	control	system	needs	to	have	a	feedback	loop	that
corrects	the	controlling	signals	based	on	where	a	limb,	say,	actually	is.	The	basic
algorithm	is	to	note	the	current	position	and	speed	of	the	limb,	and	then	to
compare	it	with	the	desired	position	and	speed,	with	the	difference	being	used	to
adjust	the	control	signal.	So	if	the	limb	is	found	to	be	moving	slower	than	desired,
the	control	signal	might	be	increased	slightly.
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There	are	two	parts	to	performing	a	complex	action	such	as	kicking	a	ball.	The
first	is	to	decide	to	move	the	foot	in	an	arc	that	would	achieve	that	result,	and	the
second	is	to	actually	provide	the	very	finely	controlled	signals	that	cause	the
various	muscles	to	move	the	leg	in	the	correct	manner.	These	are	shown	as	two
boxes	in	the	diagram	above,	a	high-level	controller	and	a	low-level	controller.
There	is	physiological	evidence	that	our	brains	are	organized	along	these	lines,
with	the	high-level	control	being	mapped	by	the	motor	cortex	in	the	cerebral
cortex,	and	the	low-level	control	being	performed	by	the	cerebellum.	Both	these
regions	have	areas	that	correspond	to	specific	parts	of	the	body,	and	the
cerebellum	seems	to	have	a	high	speed	feed	forward	architecture	which	is



appropriate	for	low-level	control.

The	use	of		feedback	to	control	electro-mechanical	devices	for	many	decades.
Care	needs	to	be	taken	not	to	adjust	the	control	signal	too	aggressively	each	time
the	new	position	is	sensed,	otherwise	the	whole	system	starts	oscillating
uncontrollably	as	each	adjustment	over-corrects	the	previous	error.	However,	it
takes	time	for	a	limb	to	move	and	our	proprioception	system	to	sense	its	new
position.	Limiting	the	feedback	loop	to	the	proprioception	system’s	speed	would
make	fast	movement	very	difficult.

There	appear	to	be	several	mechanisms	to	address	this	problem.	One	is	the
addition	of	a	predictor,	as	shown	on	the	diagram,	which	predicts	where	a	limb	will
be	based	on	the	signals	that	the	limb	is	receiving	from	the	low	level-controller.
This	predictor	can	then	provide	some	feedback	to	the	controller	before	the
proprioception	system	has	time	to	respond	and	so	provide	faster	feedback	cycles.
Predicting	the	effect	of	a	signal	can	be	easier	than	planning	how	to	create	that
signal	in	the	first	place.

Levels	of	abstractions	and	symbols
Modules	often	seem	to	be	organized	into	different	levels	of	abstractions.	For
vision,	the	lowest	levels	have	been	observed	to	occur	in	our	optic	nerve.	They
recognize	edges	between	light	and	dark	pixels,	patterns	of	colours,	and
movements	over	time.	Stereo	modules	can	use	lower-level	analysis	to	compute
some	depth	perception.

Objects	need	to	be	recognized	regardless	of	their	orientation	or	lighting.	This
involves	a	combination	of	simple	two-dimensional	matching	of	known	shapes	with
an	unknown	scene	as	well	as	more	complex	three-dimensional	analysis	to
recognize	objects	that	are	shown	in	unusual	poses.	Spacial	recognition	requires
converting	a	two-dimensional	image	into	a	three-dimensional	scene,	which	is
particularly	difficult	for	objects	that	are	too	far	away	for	stereo	vision	to	be
effective.

So	the	firing	of	one	group	of	neurons	near	the	retina	might	simply	correspond	to	a
point	that	is	bright,	whereas	further	along	the	optic	nerve	the	firing	of	a	group	of
neurons	might	correspond	to	a	vertical	edge,	or	to	something	that	is	moving
horizontally.	Deeper	in	our	visual	cortex	a	group	of	neurons	might	correspond	to
recognition	of	an	object	such	as	a	tree.

Higher-level	modules	are	usually	driven	by	lower-level	ones,	but	reverse	links	are
also	necessary.	As	discussed	in	the	vision	chapter,	knowing	that	one	is	probably
looking	at	a	face	makes	it	easy	to	identify	faint	lines	in	an	image	that	might
otherwise	be	dismissed	as	noise.	It	is	certainly	easier	to	recognize	familiar	objects
in	a	scene.

For	higher-level	animals	a	representation	that	is	roughly	analogous	to	a	scene
grammar	must	be	ultimately	produced.		This	higher	level	representations	then



become	accessible	to	our	conscious	thoughts,	but	our	thoughts	can	also	control
our	vision.	A	good	example	is	the	face-vase	illusion	below	where	our	high-level
conscious	mind	can	direct	our	lower	visual	processing	to	“see”	either	two	faces	or
a	vase.

We	can	consciously	direct	our	vision	to	see	either	faces	or	a	vase.
Commons
http://en.wikipedia.org/wiki/Optical_illusion#mediaviewer/File:Two_silhouette_profile_or_a_white_vase.jpg

At	the	top	level,	our	mind	coordinates	itself	with	conscious	self-talk.	This	self-talk
can	sometimes	cause	confusion,	for	which	a	classic	example	is	trying	to	state	the
colours	of	the	following	words	in	a	Stroop	test.

It	is	difficult	to	quickly	state	the	colours	in	this	Stroop	Test,	ignoring	the	words.
Corporate	http://www.bbc.co.uk/theoneshow/getinvolved/stroop_test.shtml

Not	all	visual	processing	needs	to	go	through	all	the	levels	of	abstraction	in	order
to	be	useful.	For	example,	things	that	move	towards	us	get	bigger	in	complex
ways.	But	if	our	low-level	optic	nerve	simply	sees	shapes	that	are	suddenly
expanding	rapidly,	it	will	cause	our	eye	to	immediately	blink	long	before	the
higher-level	visual	processing	can	determine	what	the	object	is	or	how	it	is
moving.	Likewise,	most	invertebrate	vision	is	probably	effective	without	ever



producing	a	fully-formed	scene	graph.	Indeed,	some	protozoan	eye	spots	can
simply	detect	light	and	dark,	which	is	enough	to	usefully	guide	the	animal	towards
the	light.

It	should	be	noted	that	all	the	above	analysis	has	been	performed	very	abstractly.
There	are	several	more	detailed	neural	models	of	processes	such	as	vision,	but
they	do	not	produce	anything	like	human-level	capability.	Some	of	the	models	are
similar	to	classical	AI	research	that	has	simply	been	implemented	with	neurons.
Research	is	groping	towards	higher-level	functionality,	but	there	is	still	a	long,	long
way	to	go.

Growth
A	huge	question	that	remains	largely	unanswered	is	how	the	neurons	in	our	brains
ended	up	in	the	locations	that	they	occupy,	and	then	build	synapses	in	the	places
that	they	do.	This	is	a	specialization	of	the	more	general	problem	of	how	cells
grow,	and	why,	amazingly,	our	left	thumb	is	almost	exactly	the	same	size	as	our
right	thumb,	given	that	the	growth	was	entirely	coordinated	by	tiny	cells	that	are
certainly	not	intelligent.

One	partial	answer	is	that	neurons	may,	in	fact,	grow	somewhat	randomly	with
thousands	of	synapses	each.	Over	time,	synaptic	strengths	vary	due	to	Hebbian
learning,	until	an	effective	network	is	achieved	in	which	most	of	the	synapses	are
inactive.	Much	computational	neuroscience	focuses	on	learning,	but	there	is
obviously	also	a	large	amount	of	innate	structure	and	knowledge	encoded	in	our
genes.

As	an	example,	when	a	calf	is	born	it	can	rise	up	onto	its	wobbly	legs	within
minutes.	It	can	see	well	enough	to	find	its	mother,	suckle	and	move,	and	within	a
few	hours	it	can	run.	It	then	learns	about	the	world,	often	from	its	mother.	But	it	is
not	born	as	a	blank	slate	that	needs	to	have	all	its	brain	functions	learned	through
some	-	principle.

There	is	not	enough	DNA	in	a	genome	to	specify	the	precise	location	of	each	of
billions	of	neurons	and	their	thousands	of	billions	of	synapses,	but	there	must	be
some	powerful	language	implicit	in	our	body’s	interpretation	of	that	DNA	that
enables	a	substantial	amount	of	knowledge	to	be	pre-packaged	as	instinct.	If	that
language	could	be	understood	then	the	problem	may	be	reduced	to
understanding	our	20,000	genes	rather	than	the	86	billion	neurons	that	result.
Determining	the	boundaries	between	nature	and	nurture	during	neural
development	is	a	subject	of	ongoing	research.

What	is	known	is	that	neurons	do	not	directly	reproduce.	Instead,	general	purpose
stem	cells	specialize	into	generic	neuron	cells	which	then	specialize	into	a	specific
type	of	neuron.	Further,	neurons	often	travel	from	the	place	that	they	were	created
in	the	inner	layers	of	the	brain	to	the	places	they	eventually	occupy	in	the	outer
layers.	Some	neurons	glide	along	fibres	created	by	cells	called	radial	glia.	Others
seem	to	follow	chemical	signals.	Many	of	them	never	reach	their	final	destination



and	die	shortly	after	they	are	created.

Once	a	neuron	reaches	its	destination,	it	has	to	settle	in	to	do	useful	work.	It
needs	to	put	out	dendrites	and	axons	and	form	synapses	with	other	neurons.
Axons	may	grow	to	many	millimetres	or	even	metres	in	length,	and	seemed	to	be
pulled	along	by	protein	structures	that	move	cells	called	lamellipodium,	which	are
attracted	to	various	cell	adhesion	molecules.	This	final	step	of	differentiation	is	the
least	well-understood	part	of	neurogenesis	and	yet	is	the	most	important.	How	do
axons	decide	to	grow	where	they	do,	and	thus	what	connections	to	other	neurons
they	will	make?

One	path	to	better	understanding	neurogenesis	is	to	study	the	humble	nematode,
C.	elegans.	Each	worm	has	exactly	302	neurons,	each	of	whose	genesis	is
precisely	known.	It	would	seem	likely	that	its	nervous	system	is	implicitly	specified
relatively	explicitly	in	its	genome.	Human	neurogenesis	is	obviously	much,	much
more	complex,	with	considerable	variation	between	individuals	but	understanding
C.	elegans	might	make	a	good	start.





Man	vs.	Machine

Chess	history
Chess	has	traditionally	been	seen	as	a	game	that	requires	great	intelligence	to
play	well.	Both	sides	are	(almost)	equal,	and	the	player	that	can	think	through	the
many	possibilities	accurately	is	sure	to	win.	Chess	also	requires	discipline,
tenacity	and	endurance	to	carefully	think	through	each	move,	and	for	that	reason
children	are	often	encouraged	to	play.

The	El	Ajedrecista	mechanical	chess	player.
Public	Wikipedia

The	first	computer	chess	programs	actually	pre-date	the	availability	of	electronic
computers.	In	1912	Leonardo	Quevedo	built	the	El	Ajedrecista	machine	shown
above	which	could	successfully	play	an	end	game	using	a	king	and	a	rook	against
a	human	king.	Unlike	The	Turk,	this	machine	was	not	a	fraud	and	still	runs	at
Canales	y	Puertos	in	Madrid.

In	the	late	1940s,	Alan	Turing	wrote	a	chess	program	on	a	series	of	cards.	He
then	played	a	partial	game	by	tediously	following	their	instructions	with	paper	and
pencil.	It	seemed	to	play	a	passable	game	for	in	2012	it	took	the	world	champion
Garry	Kasparov	16	moves	to	beat	it.

It	was	not	until	1957	that	a	full-fledged	game	of	chess	was	played	on	an	IBM	704
computer,	which	had	a	staggering	(for	the	time)	70K	of	memory	(modern	personal
computers	have	over	4,000,000K).	Typically	over	optimistic-predictions	were
made	that	within	ten	years	the	world	champion	would	be	a	computer.

Twenty	years	later	computers	could	play	chess	well	enough	to	beat	ordinary	non-
expert	players.	By	the	1980s	many	home	computers	played	chess	with	adequate
performance.	In	1985	Kasparov	played	32	different	chess	computers
simultaneously,	and	won	all	games	albeit	with	some	difficulty.



In	1996,	Kasparov	beat	IBM’s	Deep	Blue	purpose	built	chess	playing	computer.
But	in	1997	the	computer	finally	beat	Kasparov,	3	1/2	to	2	1/2.	Kasparov
complained	that	he	was	unable	to	study	Deep	Blue’s	recent	games	the	way	that
its	development	team	had	studied	Kasparov’s,	and	there	was	some	evidence	that
Deep	Blue	was	specifically	trained	to	beat	Kasparov.	However,		Deep	Blue’s
victory	was	clear.	It	took	40	years	from	the	early	game	on	the	IBM	704,	which	is
four	times	longer	than	predicted,	but	with	ever	improving	digital	technology	it
seemed	inevitable	that	a	computer	would	eventually	win.

Minimax

Searching	through	possible	moves.
Education	http://www.hamedahmadi.com/gametree/

The	classical	approach	to	building	a	game-playing	program	is	the	minimax	search
algorithm,	which	is	applied	to	a	game	tree	as	illustrated	above	for	the	simpler
game	of	Naughts	and	Crosses.	At	any	point	in	the	game	the	computer	determines
all	the	possible	moves	it	might	make.	For	each	of	those	moves,	it	determines	what
moves	its	opponent	might	make.	For	move	an	opponent	might	make	then	it
determines	what	moves	it	might	make	in	response,	recursively.	The	computer	is
enumerating	all	the	possible	combinations	of,	“If	I	do	this,	and	they	do	that,	and
then	I	do	this,	and	then	they	do	that,	who	wins?”.	This	is	referred	to	as	searching
for	the	best	move	to	make.

Given	there	are	roughly	twenty	possible	moves	that	could	be	made	at	each	turn	in
chess,		the	computer	would	initially	examine	twenty	moves	that	it	could	make,
followed	by	four	hundred	moves	that	its	opponent	could	make	in	response	to	each
of	those	twenty	moves,	followed	by	eight	thousand	moves	that	the	computer	could
make	etc.	A	modern	computer	can	easily	consider	eight	thousand	moves,	but
after	ten	moves	with	twenty	options	per	move,	there	are	ten	trillion	possible	moves
to	make,	which	is	too	many	for	even	the	fastest	computers	to	consider	in	a
reasonable	time	frame.	So	like	a	human	player,	a	computer	can	only	think	ahead
a	certain	distance.



A	chess	program	therefore	needs	a	second	component	called	the	static	evaluator,
whose	job	it	is	to	determine	who	is	winning	for	any	given	board	position.	For
chess,	it	might	simply	calculate	a	weighted	sum	of	the	number	of	pieces	each	side
has,	counting	1	for	pawns,	3	for	knights,	5	for	rooks	etc.	Or	it	might	consider	other
factors	such	as	control	of	the	middle	squares,	which	pieces	vulnerable	to	attack
etc.	The	total	will	be	positive	if	the	computer	is	winning,	else	negative	if	the
opponent	seems	to	have	the	advantage.

The	basic	minimax	algorithm.
Education	http://www.hamedahmadi.com/gametree/

When	minimax	has	searched	to	its	maximum	reasonable	depth,	it	applies	the
static	evaluator	to	its	leaves.	In	the	diagram	above,	this	has	produced	values	of	2
and	-5	for	the	bottom	left	red	nodes.	So	at	that	point	it	would	choose	the	better
option,	which	has	value	2.	However,	the	next	level	up	suggests	that	its	opponent
has	a	better	move	which	results	in	-1.	The	computer	assumes	that	its	opponent
plays	well,	so	the	move	valued	at	2	is	just	wishful	thinking.	However,	it	finds
another	move	that	has	an	evaluation	of	+7,	so	that	is	the	move	it	decides	to	make.
At	each	alternate	level	it	is	maximizing	or	minimizing	the	score	of	its	lower	levels
depending	on	whether	it	is	the	computer’s	turn	or	the	opponent’s	turn,	hence	the
name	minimax.	Many	refinements	can	be	made,	such	as	pruning	parts	of	the	tree
early	to	avoid	analyzing	hopeless	moves.

Chess	strategies
When	building	a	chess	program,	there	is	a	trade-off	between	the	amount	of	time
spent	performing	static	analysis	and	the	number	of	moves	that	the	computer	can
consider.	If	the	computer	spends	twice	as	long	performing	a	more	thorough	static
analysis	of	each	move,	then	it	can	only	consider	half	as	many	different	moves	in	a
given	amount	of	time.	However,	a	good	static	evaluator	can	help	prune	the	tree
and	so	focus	the	search	on	promising	moves.	If	the	effective	branching	factor
could		be	halved	from	20	to	10	(say),	then	over	5	moves	the	tree	can	be	reduce	by



a	factor	of	25,	i.e.	from	320,000	to	10,000	nodes.	Early	workers	in	this	field	thus
thought	that	developing	more	sophisticated	static	analyzers	would	be	the	best
way	to	proceed.

It	turns	out	that	for	current	computer	chess	programs,	using	crude	but	fast	static
analyzers	that	facilitate	the	brute	force	approach	of	performing	deep	and
exhaustive	look-ahead	seems	to	be	the	winning	strategy.	Situations	that	can	be
difficult	to	analyze	statically	can	be	much	easier	to	analyze	if	one	just	makes	one
more	move	and	see	what	happens.	Deep	Blue	used	a	relatively	simple	static
analyzer	which	it	could	then	implement	with	special	purpose	hardware	that
enabled	it	to	consider	a	staggering	200	million	moves	per	second.	Given	that
massive	quantity	of	accurate	computation,	it	is	not	surprising	that	Kasparov	was
beaten.	What	was	truly	amazing	was	that	Kasparov’s	slow,	human	brain	could
compete	with	such	a	monster.

The	computer	has	another	distinct	advantage	over	human	players,	namely	its	vast
store	of	known	good	moves.	Serious	chess	players	spend	considerable	time
studying	and	memorizing	chess	moves	that	are	carefully	analyzed	in	numerous
technical	chess	books.	People	are	not	permitted	to	consult	these	books	during	an
actual	game.	A	computer	can,	of	course,	easily	and	accurately	remember	billions
of	possible	moves,	particularly	during	the	opening	phase	of	the	game.	These
include	the	knowledge	in	every	chess	book	that	has	ever	been	written	and	every
masters	game	that	has	ever	been	played,	as	well	as	the	results	of	many,	many
hours	of	computation	while	the	computer	quietly	plays	itself.	In	order	to	have	any
chance	against	a	computer,	a	human	player	needs	to	play	“off	book”,	meaning
that	they	need	to	make	some	unusual	moves	that	would	not	be	stored	in	the
computer’s	database.	However,	the	reason	that	moves	are	unusual	is	because
they	are	known	to	not	be	as	good	as	the	usual	moves,	and	this	puts	the	human
player	at	an	even	greater	disadvantage.

Chess	vs	Go



Ladder	pattern	in	Go.
Education	http://senseis.xmp.net/?Ladder

Clearly	Kasparov’s	brain	could	not	even	subconsciously	evaluate	anything	like
200	million	moves,	so	he	must	have	been	analyzing	the	game	at	a	higher	level.
The	game	of	Go	provides	good	examples	of	the	need	for	higher-level	reasoning,
and	Go	has	become	rather	fashionable	because	computers	still	cannot	beat
strong	human	players.

In	Go,	players	take	turns	at	placing	pieces	of	their	colour	on	the	intersections	of
lines	on	a	board.	Pieces	cannot	be	moved	once	placed.	The	object	is	to	surround
groups	of	the	opponent’s	pieces,	in	which	case	they	are	removed	from	the	board.

In	the	game	above,	white	is	in	trouble.	If	black	plays	at	the	position	marked	x,	then
white	will	be	surrounded	and	removed.	Alternatively,	if	it	was	white’s	turn	to	move
then	white	could	play	at	x	to	prevent	this.	Even	the	most	novice	Go	player	will
quickly	realize	that	playing	at	x	would	be	a	mistake	because	black	would	just	play
at	y	and	so	continue	the	pattern	known	as	a	ladder.	Eventually,	after	many	more
moves,	the	play	will	reach	the	end	of	the	board	and	white	will	lose	all	of	its	pieces.
The	longer	white	persists	with	this	futile	endeavour,	the	more	pieces	it	will
eventually	lose.	Better	to	just	abandon	those	pieces	and	play	elsewhere.

A	simple	minimax	approach	to	this	problem	will	fail.	There	are	almost	400	possible
moves	at	each	turn,	so	looking	even	10	moves	ahead	is	completely	infeasible	but
it	takes	14	moves	for	the	disaster	to	occur.	Our	human	brains	have	no	difficulty
whatsoever	in	perceiving	the	pattern	and	deriving	the	little	theorem	that	predicts
disaster.

Competent	Go	programs	also	have	no	difficulty	perceiving	patterns	as	simple	as



the	one	above.	The	large	board	tends	to	produce	subgames	in	different	areas	that
are	largely,	but	not	completely,	independent	of	each	other.	Minimax	still	has	an
important	role	to	play	albeit	on	tightly	constrained	searches	within	these
subgames.

Deep	Blue’s	inability	to	directly	perform	higher-level	analysis	led	Kasparov	to
remark	that	it	was	“only	intelligent	in	the	sense	that	an	alarm	clock	is	intelligent”.
That	said,	he	also	thought	that	the	program	sometimes	produced	very	creative
moves.	This	again	demonstrates	that	relatively	simple	algorithms	executed	on	a
massive	scale	can	produce	intelligent	results.	Vast	quantity	has	a	quality	all	of	its
own.

Today,	the	best	chess	players	are	neither	computer	nor	human	but	a	combination
of	both.	A	competent	player	with	a	competent	laptop	chess	program	can	easily
beat	either	a	grand-master	or	a	super	computer.	The	player	chooses	strategies,
and	the	program	enumerates	their	consequences	and	prevents	mistakes	from
being	made.

Of	course,	the	best	chess	programs	cannot	play	poker	any	more	than	an	elephant
can	play	chess.	These	are	special	purpose	systems	that	do	not	generalize	in	the
way	that	human	intelligence	does.	That	said,	computer-driven	machine	learning
techniques	are	often	used	to	improve	static	analyzers,	given	the	large	database	of
available	chess	games.	One	researcher	found	that	the	fairly	naive	application	of
an	artificial	neural	network	for	static	analysis,	combined	with	normal	minimax
produced	a	chess	program	that	was	almost	competitive	with	the	very	competent
GNU	Chess	program.	There	are	also	some	general	purpose	game-playing
programs	that	can	learn	to	play	any	minimax	style	board	game,	but	they	do	not
play	very	well.

It	is	a	testament	to	human	cognition	that	people	can	learn	to	play	these	games
with	such	competence.	And	it	is	perhaps	an	even	greater	testament	that	a	novice
looking	at	the	Go	ladder	above	will	quickly	see	the	pattern	without	being	told.

Watson	and	Jeopardy!



Jeopardy!	game	with	Watson.
Fair	Use	Wikipedia

On	the	14th	February,	2011	the	IBM	Watson	computer	won	the	Jeopardy!	game
show	against	two	of	the	previously	most	successful	contestants	on	the	show,	Ken
Jennings	and	Brad	Rutter.	The	wide	ranging	questions	were	given	in
unconstrained	natural	language,	and	had	to	be	answered	in	real	time	according	to
the	rules	of	the	game.	At	the	end	of	the	game,	Watson	had	$35,734	against
Rutter’s	$10,400	and	Jenning’s	$4,800.

After	the	game,	Jennings	quipped,	“I	for	one	welcome	our	new	computer
overlords	…	Brad	and	I	were	the	first	knowledge-industry	workers	put	out	of	work
by	the	new	generation	of	thinking	machines	…	but	I’m	sure	we	won’t	be	the	last.”

This	was,	in	many	ways,	a	stunning	achievement.	Playing	chess	is	a	“logical”
process	that	one	would	expect	a	computer	to	perform	well.		However,	answering
cryptic,	free-form	questions	about	the	world	in	general	would	seem	to	involve
much	more	human-like	reasoning	and	common	sense.

Below	are	some	additional	questions	that	Watson	answered	correctly	on	the	first
program:-

Wanted	for	killing	Sir	Danvers	Carew;	Appearance—Pale	&	Dwarfish;	Seems
to	have	a	split	personality	:	Hyde
Wanted	for	general	evil-ness;	last	seen	at	the	tower	of	Barad-dur;	it’s	a	giant
eye,	folks.	Kinda	hard	to	miss	:	Sauron
Beatles:	“And	any	time	you	feel	the	pain,	hey”	this	guy	“refrain,	don’t	carry	the
world	upon	your	shoulders”	:	Jude
Olympics:	A	1976	entrant	in	the	“Modern”	this	was	kicked	out	for	wiring	his
epee	to	score	points	without	touching	his	foe	:	Pentathlon
4-Letter	word	for	the	iron	fitting	on	the	hoof	of	a	horse	or	a	card-dealing	box	in
a	casino	:	Shoe



All	the	questions	seem	rather	challenging	and	cryptic,	and	most	people	would
have	difficulty	answering	as	many	of	them	correctly	as	Watson	did.	They	cover	a
wide	variety	of	topics	from	history,	the	arts,	sport	and	general	knowledge.

Watson’s	implementation
Watson	utilized	some	impressive	hardware.	A	cluster	of	ninety	IBM	Power	750
servers	had	a	total	of	2,880	3.5	GHz	POWER7	processor	cores	and	a	massive
16,000	gigabytes	of	memory.	It	only	needed	4,000	gigabytes	of	disk	to	store	200
million	pages	of	structured	and	unstructured	content,	which	included	the	full	text	of
Wikipedia.	The	hardware	was	worth	about	$4	million.	It	is	again	surprising	that
such	a	huge	quantity	of	computational	power	was	required	to	produce	human-like
competence.

Watson	was	developed	quickly	by	a	relatively	small	team	of	twenty	engineers,	led
by	Dave	Ferrucci,	albeit	with	many	collaborating	academic	institutions.	The	project
was	started	in	2005.	By	2006	Watson	could	correctly	answer	only	15%	of	the
questions	correctly,	whereas	live	contestants	answered	95%	of	them	correctly.	By
2008	the	system	had	credible	if	not	expert	performance,	culminating	in	its	2011
world	championship.	(It	is	worth	noting	that	during	this	period,	human	competitors
did	not	become	significantly	better	at	answering	Jeopardy!	questions.)

The	general	architecture	used	a	map/reduce	approach	in	which	each	question
was	farmed	out	(mapped)	to	dozens	of	subsystems	each	of	which	attempted	to
solve	it	using	different	methodologies.	The	answers	that	resulted	from	each
subsystem	were	then	combined	(reduced)	into	a	central	coordinating	processor,
together	with	an	estimate	of	how	confident	the	subsystems	were	in	their	answers.
The	coordinating	processor	would	then	choose	the	best	answer,	generally
preferring	answers	that	came	from	more	than	one	subsystem.	If	the	total
confidence	reached	a	threshold	of	50%	then	Watson	would	press	the	buzzer	and
attempt	to	answer	the	question.	The	best	three	answers	and	Watson’s	confidence
in	them	were	displayed	on	the	TV	screens	for	the	viewers’	amusement.

Like	many	modern	artificial	intelligent	systems,	Watson	combined	multiple
approaches	to	produce	an	acceptable	result.	The	authors	of	the	system	contend
that	it	is	the	architecture	used	to	combine	and	coordinate	the	different	subsystems
that	is	Watson’s	main	contribution	to	artificial	intelligence	theory.

The	Jeopardy!	questions	all	concern	trivia,	so	the	main	human	challenge	is	having
a	wide	background	knowledge	and	a	good	memory.	Most	people	would	find	all	the
questions	easy	to	answer	if	they	had	access	to	the	internet	and	a	search	engine
such	as	Google	or	Bing,	which	is	exactly	what	Watson	has	stored	in	its	4,000
gigabytes	of	disk.	However,	a	search	engine	simply	retrieves	documents	that
contain	the	specified	keywords,	and	the	intelligent	analysis	is	left	to	the	human
user.	Watson	has	to	go	much	further	and	understand	at	least	roughly	what	the
question	is	about	in	order	to	be	able	to	produce	a	concise,	targeted	response.

Watson	includes	both	deep	natural	language	parsers	that	attempt	to	perform	a



full,	SHRDLU-like	parse	of	each	question,	and	shallow	parsers	that	focus	on
identifying	key	words	and	phrases	in	a	manner	similar	to	Eliza.	For	example,
given	the	query,	“He	was	presidentially	pardoned	on	September	8,	1974”,	a
shallow	analysis	might	find	the	phrase	“Ford	pardoned	Nixon	on	Sept.	8,	1974.”	in
a	database	simply	because	it	contains	many	similar	words	to	the	question	(“Ford”
and	“Nixon”	are	known	to	be	presidents).	A	separate	tool	parses	the	question	to
determine	the	Lexical	Answer	Type	(LAT)	that	is	required	in	the	answer,	in	this
case	a	president,	rather	than	an	author	or	a	country	(say).	Both	Ford	and	Nixon
were	presidents,	so	some	stronger	syntactic	analysis	is	then	required	to
determine	that	it	was	Nixon,	not	Ford	who	was	pardoned.	The	locality	of	the
response	and	the	specificity	of	the	date	would	cause	it	to	have	a	high	confidence
rating.

Watson	uses	several	pre-existing	data	bases	to	assist	with	its	analysis.	Wordnet
provided	a	massive,	hand-built	thesaurus	of	related	words	and	phrases,	which	is
very	useful	when	parsing	and	searching	for	terms.	More	interesting	are	the
semantic	networks	(now	called	triple	databases)	that	contain	more	structured
data.	For	example,	dbPedia	contains	knowledge	automatically	extracted	from
Wikipedia	about	people,	books,	locations,	etc.	Structured	queries	can	then	be
performed	against	the	database,	such	as,	“Which	books	were	illustrated	by	an
illustrator	that	worked	on	a	book	by	Rowling	other	than	the	Harry	Potter	series?”.
Watson	is	only	concerned	with	trivia,	so	the	more	sophisticated	Cyc	ontology	was
not	needed.

Many	of	the	engines	that	Watson	uses	are	targeted	at	specific	types	of	questions
already	seen	in	previous	episodes	of	Jeopardy!.	For	example,	Watson
understands	which	words	rhyme	to	be	able	to	answer	Rhyme	Time	questions.
Special	processors	solve	word	maths	problems,	or	determine	scores	in	Scrabble.
Sometimes	Watson	does	not	understand	an	entire	category	of	questions,	and		in
the	series	it	failed	to	answer	any	questions	in	“Name	the	decade”,	“European
union”,	or	“Actors	who	Direct”.

Some	incorrect	answers	provide	clues	to	the	lack	of	Watson’s	real	understanding.
Asked,	“It	was	this	anatomical	oddity	of	US	gymnast	George	Eyser”,	Watson
answered	Leg	instead	of	Missing	a	leg	because	Watson	did	not	understand	that
having	legs	was	not	an	oddity.	Occasionally	Watson	gets	the	answer	completely
wrong.	In	one	question	on	US	Cities	it	answered	Toronto,	probably	confusing	the
Canadian	city	with	a	small	town	in	Illinois.

Watson’s	victory
The	above	may	be	how	Watson	played	Jeopardy!,	but	how	Watson	won
Jeopardy!	is	much	easier	to	explain.	The	Jeopardy!	questions	are	first	shown	to
the	contestants	in	text,	and	then	the	presenter	reads	them	out	loud.	Unlike	most
quiz	shows,	the	contestants	are	not	allowed	to	answer	until	the	question	has	been
fully	read	out	loud	and	a	light	is	turned	on.	Only	the	first	contestant	to	press	the



buzzer	is	allowed	to	answer.	Jennings	noted	that	“On	any	given	night,	nearly	all
the	contestants	know	nearly	all	the	answers	…	(so)	the	buzzer	is	all”.

Human	reactions	of	a	few	hundred	milliseconds	are	too	slow,	so	good	contestants
have	to	carefully	anticipate	when	the	light	is	likely	to	be	turned	on,	often	missing
by	being	a	few	milliseconds	too	early.	Of	course,	Watson’s	electronic	reaction
times	are	sub-millisecond	which	meant	that	whenever	Watson	had	an	answer	it
would	almost	always	win	the	buzzer	and	so	get	to	play	it.	That	in	no	way	takes
away	from	the	awesomely	demonstrated	power	of	the	Watson	system	to	answer
fairly	difficult	and	obscure	questions	in	the	first	place,	but	it	does	make	the	idea	of
a	competition	somewhat	farcical.

The	question	remains,	does	Watson’s	analysis	involve	true	intelligence,	or	is	it
simply	a	sophisticated	amalgamation	of	Eliza-like	tricks?	Matching	keywords,
looking	up	a	thesaurus,	following	some	simple	parsing	rules,	all	without	any	real
understanding	of	anything.	Jennings	answered	that	question	as	follows:-

The	computer’s	techniques	for	unravelling	Jeopardy!	clues	sounded	just	like	mine.
The	machine	zeros	in	on	key	words	in	a	clue,	then	combs	its	memory	for	clusters
of	associations	with	those	words.	It	checks	the	top	hits	against	all	the	contextual
information	it	can	muster:	the	category	name;	the	kind	of	answer	being	sought;
the	time,	place,	and	gender	hinted	at	in	the	clue;	and	so	on.	And	when	it	feels
“sure”	enough,	it	decides	to	buzz.	This	is	all	an	instant,	intuitive	process	for	a
human	Jeopardy!	player,	but	I	felt	convinced	that	under	the	hood	my	brain	was
doing	more	or	less	the	same	thing.

IBM	is	targeting	Watson	for	use	in	some	type	of	medical	applications.	However,
Watson	is	a	completely	different	type	of	system	than	an	expert	system	such	as
MYCIN.	It	may	be	just	the	natural	language	processing	that	is	being	utilized,
otherwise	it	would	be	concerning	if	treatment	options	were	being	decided	by	a
trivia	engine.	Alternatively,	IBM	may	be	exploiting	the	general	lack	of
understanding	about	artificial	intelligence	to	use	the	word	“Watson”	to	refer	to	any
vaguely	intelligent	application	that	it	is	building.	Ferrucci	2010	Overview	of
DeepQA	is	one	of	the	very	few	non-marketing	technical	papers	on	Watson.

http://www.scribd.com/doc/48793380/Watson-DeepQA




Where	is	the	Intelligence?

Good	old	fashioned	AI
Part	II	has	considered	a	rich	variety	of	approaches	and	technologies	that	have
been	used	in	the	quest	for	ever	more	intelligent	systems.	But	how	do	they	relate
to	each	other?	Which	ones	will	have	strategic	impact?

The	early	work	with	scruffy	symbolic	systems	produced	some	impressive	results.
The	Eliza	program’s	simulation	of	a	Rogerian	psychoanalyst	was	good	enough	to
convince	some	non-critical	observers	that	it	actually	understood	what	was	being
said.	Eliza	seemed	to	be	well	on	the	path	to	being	intelligent,	but	as	Eliza’s	author
was	at	pains	to	point	out,	it	just	used	simple	patterns	to	manipulate	words	in
mechanical	ways.	The	meanings	of	the	words	were	only	known	to	the	people	that
used	Eliza,	and	not	in	any	sense	to	Eliza	itself.	It	is	not	easy	to	assess	how
intelligent	an	application	is.

Other	early	symbolic	systems	had	much	more	deductive	capability.	The	SHRDLU
system	really	did	understand	its	micro	world	of	blocks	stacked	on	a	table.	It	could
reason	about	them,	and	produce	plans	that	involved	multiple	actions.	It	could	also
converse	with	people	in	fairly	natural	language	and	introspect	about	why	it
performed	certain	actions.	It	could	even	learn	about	its	environment,	both	by
being	explicitly	taught	and	by	performing	simple	experiments.

Rule	based	expert	systems	enable	the	construction	of	many	practical	applications.
These	include	loan	and	insurance	application	processing,	systems	for	analyzing
complex	scientific	data,	and	medical	diagnosis	systems.	Many	of	these	systems
reason	with	uncertain	knowledge,	and	Bayesian	network	technology	are	now	used
to	efficiently	compute	probabilities		Other	impressive	systems	include	Eurisko
which	discovered	mathematical	theorems	based	on	heuristics	that	Eurisko	itself
developed.

Unfortunately,	all	these	early	and	impressive	results	could	not	be	generalized	into
more	realistic	problem	domains.	They	lacked	the	“common	sense”	that	is	needed
to	interact	with	the	real	world.	They	also	suffered	from	combinatorial	explosion,	in
which	slightly	more	complex	problems	required	much	larger	computing	facilities.

Knowledge	representation	and	reasoning
One	attempt	to	address	this	was	to	formalize	the	representation	of	knowledge.
One	simple	form	of	knowledge	representation	is	relational	databases	which	are
used	for	most	of	our	common	business	applications.	Such	a	database	contains
simple	tables	of	data	that	can	describe	business	objects	such	as	Customers,
Products,	People	or	Orders.

More	difficult	problem	domains	can	be	represented	in	well	defined	mathematical
logic.	This	neat	approach	leveraged	the	ability	of	even	very	early	systems	to
perform	moderately	complex	deductions	using	automated	theorem	provers.	If	the



world	could	be	described	in	logic,	and	theorems	could	be	proven	automatically,
then	the	general	problem	of	reasoning	would	be	solved.

However,	the	world	cannot	be	easily	described	in	terms	of	classical	logic.	Most
things	are	neither	true	nor	false	but	somewhere	in	between.	Our	knowledge	of	the
world	will	always	be	incomplete,	and	reasoning	effectively	about	the	world
requires	assumptions	to	be	made	that	may	not	always	be	valid.	There	are	many
approaches	that	deal	with	this	problem	but	none	are	universally	successful.

Of	particular	note	is	the	Cyc	project,	which	attempts	to	formalize	all	of	our
common	sense	knowledge	in	an	advanced	description	logic.	This	includes	such
facts	as	trees	are	plants,	and	that	fragile	objects	will	break	if	they	are	dropped.	It
turns	out	that	ordinary	people	have	a	vast	store	of	this	type	of	knowledge	which
they	use	to	make	sense	of	the	world.	It	is	hypothesized	that	if	enough	knowledge
could	be	encoded	by	hand,	then	Cyc	would	be	able	to	learn	the	rest	by	reading
books	and	the	internet.

The	Cyc	project	has	now	been	in	development	for	thirty	years.	It	has	a	huge
knowledge	base	consisting	of	hundreds	of	thousands	of	concepts	and	millions	of
individual	facts.	But	it	has	yet	to	be	used	in	any	widely	used	application,	and
certainly	has	not	come	alive	in	the	way	that	was	hoped.	Cyc’s	proponents	argue
that	this	is	because	it	is	not	complete,	while	its	detractors	argue	that	the	approach
itself	is	fundamentally	flawed.

Artificial	neural	networks	and	other	numerical	methods
A	completely	different	approach	describes	the	world	using	floating	point	numbers
rather	than	discrete	symbols.	Artificial	Neural	Networks	(ANNs)	are	loosely	based
on	the	way	neurons	work	in	our	brains.	After	a	false	start,	methods	were
developed	that	enable	ANNs	to	learn	many	complex	relationships	and	patterns
such	as	recognizing	objects	in	images.		This	is	an	active	area	of	research,	with
many	techniques	being	developed	to	precondition	the	data	such	as	the	support
vector	machines.	It	is	now	also	possible	to	learn	rules	over	complex	multi-level
architectures,	as	well	in	recurrent	networks	that	have	short-term	memory.

Other	non-symbolic	approaches	range	from	advanced	statistical	techniques	such
as	non-linear	regression	and	principal	component	analysis,	to	approaches	for
clustering	and	learning	hidden	Markov	models.	All	of	these	approaches	can	take
real	world	data	as	their	direct	input	rather	than	needing	people	to	first	abstract	it
into	discrete	symbols.

Numerical	methods	have	produced	impressive	results,	but	they	do	not	even	begin
to	approximate	our	human	ability	to	reason	about	the	world	at	a	high	level.

Symbols
There	is	some	debate	as	to	whether	the	use	of	symbols	is	really	a	useful
abstraction	or	just	a	shallow	trick	that	will	never	produce	deep	results.	That	the



intelligence	of	symbolic	systems	is	limited		the	interpretations	that	people	give	to
the	symbols,	and	that	no	symbolic	system	can	truly	understand	the	real	world.
SHRDLU,	for	example,	could	produce	pretty	analysis	of	sentences	containing
words	like	“Block”	and	“Pyramid”,	but	it	had	no	real	knowledge	of	what	a	block	or
a	pyramid	actually	were.	They	could	just	as	easily	have	been	called	“S-123”	and
“S-234”,	and	the	rules	could	have	been	written	that	blocks	can	only	be	stacked	on
top	of	pyramids.	SHRDLU	would	not	care.

Alternatively,	basic	reasoning	can	be	performed	by	advanced	artificial	neural
networks	which	do	not	involve	any	overt	symbolic	reasoning.	Moreover,	those
systems	seem	to	be	much	more	resilient	to	noisy	data	than	traditional	symbolic
ones.	

Do	people	and	other	more	intelligent	animals	really	reason	with	symbols,	or	are
they	merely	an	illusion	caused	by	our	use	of	words	in	language?	It	seems	likely
that	we	do	use	symbols.	One	concrete	example	of	this	was	when	this	author
plucked	a	small	twig	out	of	the	mane	of	an	old	and	cantankerous	horse.	The	horse
was	very	afraid	of	the	twig.	She	had	probably	been	beaten	by	a	stick	in	the	past,
and	the	symbol	in	its	mind	for	stick	and	twig	were	the	same.	If	she	reasoned
numerically	about	the	mass	of	the	twig	and	its	ability	to	cause	pain	she	would
consider	it	to	be	insignificant.	The	reader	no	doubt	has	had	similar	experiences.

Learning	new	words	and	concepts	helps	people	think	more	deeply	about	things.
For	example,	if	a	software	engineer	describes	a	walk	through	a	garden,	they	are
likely	to	recall	little	more	than	seeing	green	stuff.	But	if	a	botanist	walks	through
the	same	garden,	they	would	be	able	to	recall	many	different	types	of	plants,	their
relationships	and	condition.	That	situation	is	likely	to	be	reversed	in	a	walk
through	program	code.	The	botanist	probably	does	not	have	a	photographic
memory.	Rather	they	abstract	what	they	see	into	instantiations	of	pre-existing
concepts.	This	enables	a	few	new	relationships	between	existing	symbols	to
provide	a	rich	understanding.

It	is	also	very	hard	to	think	about	anything	without	the	use	of	self-talk.	Where	self-
talk	comes	from	is	a	deep	mystery,	but	it	seems	to	crystallize	our	thoughts	and
coordinate	and	focus	our	conscious	mind.	Indeed,	it	takes	long	practice	at
meditation	to	be	able	to	suppress	one’s	self-talk	even	temporarily.	Self-talk	can	be
a	disaster	for	the	fractured	mind	of	a	schizophrenic.

The	relationship	between	symbols	and	the	real	world	is	complex.	For	example,	a
duck	is	an	animal	that	quacks	and	flies,	but	one	can	also	talk	of	a	wooden	duck
which	cannot	quack	or	fly.	There	are	also	containment	issues,	so	in	the	phrase
“Mary	came	here”,	it	is	assumed	that	the	term	Mary	includes	her	clothes.	In	the
phrase	“Mary	is	sick”	then	her	clothes	are	not	included.	There	are	multiple	subtly-
related	concepts	that	have	the	same	word,	Mary.

It	is	fair	to	say	that	symbolic	analysis	has	not	been	as	successful	as	its
proponents	had	hoped.	On	the	other	hand,	non-symbolic	systems	do	not	currently
attempt	to	perform	the	type	of	high	level	analysis	that	can	be	performed	using



symbols.	Nobody	attempts	to	use	artificial	neurons	to	produce	the	subtle	reified
analysis	of	situations	or	beliefs.	If	such	a	system	could	be	built	it	would	probably
be	very	slow	and	clumsy	at	this	type	of	reasoning,	just	like	our	human	brains.

Visualizations

Game	of	15.
Owned

One	key	difference	between	human	and	symbolic	reasoning	is	our	use	of
visualizations.	As	a	classic	example	of	this,	consider	the	game	of	Fifteen,	in	which
two	players	take	turns	to	pick	disks	numbered	from	1	to	9	by	circling	or	crossing
numbers	as	shown	above.	The	goal	is	to	be	able	to	form	a	total	of	15	from	any
three	numbers	that	a	player	has	selected.	So	as	shown	above,	the	first	player
may	take	2,	the	second	7,	the	first	9,	and	then	the	second	4	to	prevent	the	first
player	making	4	+	2	+	9	=	15.	However,	it	is	to	no	avail	if	the	first	player	then	picks
5,	which	could	form	either	9	+	5	+	1	or	2	+	5	+	8.

Playing	this	game	is	quite	difficult	for	people	unless	they	are	aware	of	the	perfect
magic	square	shown	below.	Each	of	its	rows,	columns	and	diagonals	adds	up	to
15.	So	Fifteen	is	isomorphic	to	the	simple	game	of	Noughts	and	Crosses	(Tic	Tac
Toe).	People	have	powerful	visual	processing	capabilities,	and	so	find	the	game
much	easier	to	play	when	they	can	visualize	it.	Conversely,	it	is	much	easier	to
write	a	computer	program	that	just	adds	up	the	numbers	rather	than	attempting	to
perform	messy	spacial	analysis.

Magic	square	for	Noughts	and	Crosses.
Owned

The	question	then	arises,	is	visualization	an	important	ability	that	is	lacking	in	our
symbolic	systems,	or	does	it	result	from	people’s	limited	ability	to	perform	abstract
symbol	manipulation?	

Kasparov	probably	used	vaguely	similar	visualization	techniques	subconsciously
in	order	to	be	able	to	occasionally	beat	the	Deep	Blue	computer	that	could
symbolically	examine	200	million	moves.	Further,	no	super	computer	can	beat	a
master	player	of	the	game	Go,	and	it	seems	unlikely	that	that	will	happen	without
being	able	to	perform	at	least	some	type	of	abstract	visualization.

Brains
Having	studied	the	brain	in	detail	for	over	a	hundred	years,	one	may	ask	the	same



question	that	Searle	had	asked	of	his	Chinese	Room,		“But	where	is	the
intelligence?”.	Or,	more	importantly,	what	has	been	learnt	about	the	nature	of
intelligence	that	could	further	our	quest?

Knowing	the	detailed	anatomy	of	the	brain	might	be	invaluable	to	the	surgeons
who	first	investigated	it,	but	it	has	limited	value	for	building	an	intelligent	computer.
Understanding	where	components	happen	to	be	located	provides	only	very
indirect	clues	as	to	how	the	components	actually	work.	A	low-level	understanding
of	neurons	has	provided	the	inspiration	for	artificial	neurons,	which	are	very
powerful	techniques.	Probing	the	behaviour	of	a	cat’s	optic	nerves	provided
comforting	support	for	computational	approaches	to	vision,	such	as	edge
detection.	There	has	been	some	success	in	tracing	basic	relationships	between
neurons	that	are	close	to	the	raw	input	and	output	of	senses	and	muscles,	but
those	techniques	fail	as	deeper,	more	interesting	functionality	is	investigated.

Kurzweil	suggests	that	the	brain	might	be	organized	into	discrete	cortical	columns
that	form	functional	units,	but	there	is	no	real	evidence	of	such	as	convenient
structure	in	real	brains.	Instead	one	finds	a	very	complex,	interconnected	and
redundant	system	of	86	billion	neurons	and	trillions	of	synapses	that	interact	in
ways	that	are	difficult	to	measure	and	yet	somehow	combine	to	produce	intelligent
behaviour.

Kurzweil	also	suggests	our	brains	work	mainly	as	hierarchical	pattern	matchers.
Low-level	systems	match	raw	data,	and	feed	their	results	into	higher-level	pattern
matchers.	This	is	very	like	his	speech	understanding	system	in	which	low-level
matchers	analyze	frequency	distributions,	which	feed	into	hidden	Markov	models,
which	feed	into	high	level	semantic	analyzers.	A	pattern	matcher	takes	input	and
produces	output,	so	it	is	essentially	the	same	as	a	software	module	or	just	a
subroutine.	So	saying	that	the	brain	uses	hierarchical	pattern	matchers	is
essentially	the	same	as	just	saying	that	the	whole	is	composed	of	parts,	which
would	almost	have	to	be	the	case.	What	would	be	more	interesting	is	to
understand	each	part’s	functionality	but	there	has	only	been	very	limited	success
in	actually	identifying	the	parts	let	alone	understanding	how	they	work.

There	are	two	distinct	methods	by	which	some	subset	of	our	20,000	genes	could
generate	the	86	billion	complex	neurons	and	their	hundreds	of	trillions	of
synapses	that	make	up	our	brains.	The	first	is	that	our	genes	define	a	fairly	rigid
substructure	which	is	repeated	millions	of	times	throughout	our	brain,	in	the	same
way	that	computer	memory	is	made	from	billions	of	bits,	but	each	individual	bit	is
essentially	the	same.	The	second	method	is	that	neurons	grow	according	to
relatively	simple	rules	that	are	vaguely	analogous	to	the	way	ANNs	are	trained.
These	rules	then	produce	complex	and	chaotic	patterns	with	minimal	obvious
underlying	structure	based	on	the	training	data	that	they	see.

The	latter	method	seems	more	likely,	so	understanding	neurogenesis	would	seem
to	be	a	key	to	understanding	human	thought	and	cognition.	It	might	make	it
possible	to	grow	intelligent	structures	rather	than	attempt	to	understand	the



tangled	mess	that	is	seen	in	a	fully	grown	brain.	However,	very	little	is	known
about	neurogenesis,	and	in	particular	why	neurons	connect	to	other	neurons	in
the	ways	that	they	do.

To	be	sure	ongoing	investigations	are	being	made,	with	many	new	advanced
techniques	being	developed.	For	example,	optogenetics	technology	now	enables
light-sensitive	channels	taken	from	the	Chlamydomonas	protozoa	to	be
genetically	introduced	into	specific	mammalian	neuron	cells.	Light	can	then	be
used	to	activate	these	channels	with	millisecond	precision,	which	causes	the
neurons	to	become	active	or	be	suppressed.	This	enables	many	fine-grained
experiments	to	be	performed,	such	as	one	that	implanted	false	memories	into
mice.

Engineers	at	MIT	have	developed	robots	that	can	accurately	manipulate
micropipettes	that	can	monitor	individual	neurons.	Scientists	at	Duke	University
have	developed	a	probe	made	from	carbon	nanotubes	that	tapers	to	just	a	few
nanometres	in	diameter	and	yet	can	be	as	long	as	a	millimetre.	That	enables	the
properties	of	individual	synapses	to	be	studied	in	detail.	It	is	also	becoming
possible	to	attach	fluorescent	crystals	to	individual	proteins	and	thus	track	them
optically	as	they	participate	in	biochemical	reactions.	There	is	no	reason	to	think
that	the	vast	improvement	in	tools	for	investigating	physiological	processes	will
not	continue	for	the	foreseeable	future.

Kurzweil	points	out	that	progress	is	often	exponential.	One	of	his	examples	is	the
$3	billion	project	to	sequence	the	entire	human	genome,	which	was	started	in
1990	and	expected	to	take	15	years	to	complete.	After	6	years,	only	1%	of	the
genome	had	been	sequenced,	and	prospects	for	the	project	looked	bleak.
However,	the	project	finished	successfully	in	2003,	two	years	early.	If	one	takes
an	exponential	view	of	growth	then	this	is	to	be	expected.	Tools	improve,	and
those	improved	tools	improve	other	tools.	So	once	1%	of	the	genome	had	been
successfully	sequenced	it	only	took	twice	as	long	to	sequence	the	other	99%.

One	often	stated	proposal	to	produce	an	intelligent	machine	is	to	analyze	the
individual	connections	in	a	real	human	brain	and	then	simulate	them	on	a
computer.	This	is	generally	referred	to	as	brain	uploading.	It	is	conceptually
simple,	just	like	moving	a	computer	program	from	one	machine	to	another.
However,	there	is	a	vast	amount	of	additional	knowledge	of	brain	function	that
needs	to	be	gained	before	this	approach	would	become	even	vaguely	practical.	In
the	meantime	real	progress	is	being	made	with	more	conventional	artificial
intelligence	technologies.

Animal	Intelligence



Elephants	playing	Chess
Multiple	http://www.chess.com/article/view/openings-for-tactical-players-kings-indian-defense

It	has	been	noted	that	elephants	have	large	brains	and	appear	to	be	far	more
intelligent	than	any	existing	computer	program,	yet	elephants	cannot	play	chess.
(Even	chimpanzees	can	barely	play	Noughts	and	Crosses.)

Playing	chess	is	a	relatively	easy	thing	to	do,	computers	have	been	playing	it
since	the	1950s.	But	elephantine	intelligence	is	totally	grounded	in	the	world	in
which	they	live.

Building	systems	that	physically	interact	with	the	environment	might	be	necessary
in	order	to	ground	artificial	intelligence	research.	Only	then	will	the	true	nature	of
symbols	be	apparent,	with	symbolic	reasoning	being	a	thin	layer	of	icing	on	top	of
a	very	large	cake.	That	may	be	why	human	intelligence	evolved	in	just	the	last
couple	of	million	years,	while	elephantine-like	intelligence	has	been	evolving	for
over	100	million	years.



Washoe.
Education	http://sgspsychology.webs.com/apelanguage.htm

Chimpanzees	are	our	closest	living	relatives,	so	studying	their	intelligence	can
provide	insights	as	to	how	our	own	intelligence	evolved.	They	cannot	physically
speak,	but	they	have	successfully	been	taught	American	Sign	Language.

Behavioural	psychologists	had	long	known	how	to	perform	scientific	experiments
on	animals	in	cages	using	operant	conditioning,	and	had	proven	that
Chimpanzees	could	not	use	language.	However,	much	to	those	scientists’
chagrin,	in	the	1960s	Allen	and	Beatrix	Gardner	brought	the	chimpanzee	Washoe
into	their	farm	and	treated	her	like	a	sentient	animal.	They	and	their	assistants
formed	genuine	personal	bonds	with	Washoe,	and	she	responded	by	learning
some	350	signs	which	she	could	combine	into	simple	sentences.

Examples	of	Washoe’s	sentences	include:-

“Peek	aboo	(i.e.	hide	and	seek)	I	go”,
“Baby	(doll)	in	my	drink	(cup)”	(when	shown	picture),
“You,	me	out	go”.	‘OK,	but	first	clothes’	(Washoe	puts	on	a	jacket.).

Washoe	would	also	make	up	her	own	phrases,	such	as	“finger	bracelet”	for	a	ring.
When	told	of	an	assistant’s	miscarriage,	Washoe	became	very	sad	and	replied,
“Cry”,	even	though	chimpanzees	do	not	cry.

The	Gardners	had	to	perform	double	blind	experiments	to	refute	somewhat
spiteful	criticisms	that	Washoe’s	quick	gestures	were	being	over	interpreted	as
meaningful	signs,	when	they	were,	in	fact,	just	meaningless	repetitions	of
memorized	movements.	These	experiments	showed	that	chimpanzees	are	clearly
in	a	different	league	of	intelligence	than	familiar	animals	such	as	dogs	or	horses,
even	though	that	is	not	be	at	all	apparent	just	by	watching	chimpanzees	climb



trees.	Language	became	“a	part	of	Washoe	just	as	much	as	climbing	trees”.	And
language	is	all	about	symbols.

The	focus	of	the	Washoe	experiments	was	on	language.	What	would	be	very
interesting	to	know	is	to	what	extent	if	any	learning	sign	language	affected
Washoe’s	general	cognitive	ability.	Washoe	taught	sign	language	to	other
chimpanzees,	and	chimpanzees	were	seen	signing	to	themselves	in	what	would
be	similar	to	our	self-talk.	Did	the	use	of	language	introduce	symbols	that	Washoe
could	then	use	to	think	more	deeply	about	problems,	or	were	the	symbols	already
there	and	language	just	attached	itself	to	them?	Probably	a	bit	of	both.	Education
helps	people	to	think	more	clearly	about	problems	in	general.	Other	experiments
have	shown	that	individual	chimpanzees	have	widely	different	intellectual	abilities;
it	would	appear	that	the	Gardners	were	lucky	to	pick	an	intelligent	chimpanzee.

Washoe	seemed	to	exhibit	plenty	of	common	sense	reasoning.	She	could	interact
with	the	world	and	had	a	sound	grasp	of	naive	physics.	She	understood
relationships	and	other	people’s	mental	states.		For	example,	she	would	sign
more	slowly	to		visitors	that	were	not	good	at	sign	languages.	It	would	appear	that
she	could	express	in	language	any	thoughts	that	she	had.	However,	there	is	an
enormous	gulf	between	reasoning	about	playing	Hide	and	Seek	and	the	human
capacity	for	abstract	reasoning	that	can	program	computers.

Surprisingly,	there	seems	to	be	very	little	ongoing	research	that	adds	to	these	fifty-
year-old	results.	The	behaviouralists	appear	to	have	won.

Humble	nematode.
Education	http://www.mcb.ucdavis.edu/faculty-labs/scholey/molecular_basis_of__intracellula.htm

Perhaps	more	interesting	than	the	mighty	chimpanzee	is	the	humble	nematode,
C.	elegans.	This	model	organism	has	been	extensively	studied,	and	the	origin	of
every	cell	in	its	small	body	is	known.	It	has	just	302	neurons,	yet	exhibits	a
number	of	moderately	sophisticated	behaviours.	Understanding	how	its	nervous
system	really	worked	would	make	a	good	first	step	to	understanding	our	86	billion
neurons.	If	Kurzweil’s	law	of	accelerating	return	holds	then	this	gap	may	not	turn
out	to	be	as	large	as	it	may	seem,	but	it	is	still	fully	eight	orders	of	magnitude.
Only	time	will	tell	just	how	difficult	this	problem	really	is.	To	fully	understand	the
nematode	would	make	a	good	milestone	that	has	yet	to	be	reached.





Part	III:	What	Will	Computers	Think
About?





Why,	What,	How,	Who,	Where,	When

Why
After	the	amazing	successes	of	the	1960s,	artificial	intelligence	research	got
stuck.	The	easy	problems	had	been	solved,	and	progress	on	the	difficult	problems
was	very	slow.	The	excessive	early	optimism	was	not	realized,	and	funding
sources	dried	up.	In	the	US,	DARPA	reduced	its	support	after	frustrations	grew
about		the	slow	progress	on	problems	such	as	speech	understanding	and
translation.	In	the	UK,	the	1973	Lighthill	report	suggested	that	all	further	funding
be	curtailed,	largely	for	petty	political	reasons.

Funding	bodies	want	to	see	results,	and	AI	research	only	seemed	to	promise	ever
more	difficult	questions.	Researchers	began	to	actively	avoided	the	term	artificial
intelligence	and	focus	instead	on	solving	more	practical	problems.	True	AI	is	only
actually	useful	if	it	can	solve	real	problems.	SHRDLU	may	have	been	interesting,
but	at	the	end	of	the	day	it	was	quite	useless.	The	resulting	period	is	referred	to	as
the	“AI	Winter”.

One	of	Lilienthal’s	controlled	flights,	1890’s
Public	expired

Historically,	the	same	problem	was	encountered	by	early	aviation	pioneers.	In
1891	Otto	Lilienthal	started	to	successfully	fly	his	hang	gliders.	He	made
thousands	of	flights	and	could	stay	aloft	in	the	wind	for	extended	periods	of	time,
often	moving	around	to	find	the	best	positions	to	be	photographed	from.	Lilienthal
actively	encouraged	others	to	join	him	in	the	quest	for	flight,	but	nobody	was
interested.	There	was	no	money	to	be	made	from	being	able	to	glide	down	a	hill.	
With	only	one	man	working	on	the	problem	progress	was	slow.

The	Wright	brothers	also	had	enormous	difficulty	in	attracting	any	interest	in	their
quite	capable	aeroplanes.	The	only	article	on	their	early	achievements	appeared
in	a	bee	keepers’	journal	whose	editor	happened	to	be	passing	nearby.	(The
article	had	already	been	rejected	by	Scientific	American.)	Their	first	powered	flight
was	in	1903,	with	major	improvements	in	the	following	years.	But	in	1906	and
1907	they	did	not	fly	at	all	due	to	lack	of	interest	so	progress	stalled.	It	was	only



their	1908	appearance	in	a	French	air	show	that	sparked	significant	enthusiasm.
Once	that	interest	was	piqued	aircraft	developed	incredibly	quickly,	from	machines
that	could	barely	fly	to	the	competent	fighters	demanded	by	the	First	World	War
just	six	years	later.

Artificial	intelligence	techniques	are	now	becoming	very	useful.	One	of	the	early
goals	of	AI	was	to	translate	articles	from	Russian	into	English.	Today	it	is
commonplace	to	use	quite	passable	automated	translators	that	are	available	at	no
cost.	Search	engines	like	Google	and	Bing	are	becoming	ever	more	sophisticated
in	the	way	that	they	analyze	documents.	They	want	to	have	some	idea	what	the
symbolic	words	actually	mean.

In	this	post	9/11	era,	government	agencies	are	very	keen	to	analyze	the	vast
quantities	of	email	and	other	traffic	that	they	have	access	to	in	order	to	identify
and	track	potential	terrorist	activity.	The	Chinese	government	has	an	even	bigger
job	censoring	its	huge	internet.	Traditional	filters	just	block	key	words	and
phrases,	such	as	Tiananmen,	Taiwan	and	Tibet.	But	they	would	love	to	at	least
partially	understand	the	dialogs	that	are	taking	place	to	identify	potential	political
activists.	These	and	other	applications	can	provide	both	a	strong	motivation	and	a
rich	source	of	new	funding	for	AI	research.

The	larger	driver	is	likely	to	be	the	fact	that	robots	are	leaving	the	factory.	These
range	from	self-driving	cars	and	tanks,	to	automated	household	vacuum	cleaners.
For	most	applications,	an	AI	that	was	barely	intelligent	was	of	limited	use.	But
even	a	barely	intelligent	vacuum	cleaner	can	be	quite	useful.	With	the	ever	falling
price	of	computer	hardware,	even	quite	simple	tools	can	be	economically	provided
with	quite	powerful	computers.	There	is	also	a	strong	school	of	thought	that	to	be
really	intelligent	one	needs	to	interact	with	the	real	world.	Robots	provide	just	such
an	opportunity.

The	military	has	always	been	a	major	source	of	funding	for	AI	research,	but	as
systems	are	starting	to	become	practical,	their	interest	has	grown	enormously.
Semi-autonomous	robots	can	enter	dangerous	areas,	while	semi-autonomous
guns	are	already	used	to	patrol	difficult	borders.	More	intelligent	missiles	can	be
harder	to	deflect.	But	more	importantly,	many	believe	that	the	next	war	will	not	be
fought	with	guns	and	missiles,	but	rather	using	software	in	cyber-space.	Intelligent
agents	will	be	critical	for	this	task.

As	a	result	of	these	drivers,	many	people	are	starting	to	talk	about	artificial
intelligence	again.	A	growing	number	of	problems	are	close	to	being	solved	today
—	problems	for	which	just	a	little	more	intelligence	would	be	very	useful	indeed.

As	confidence	grows,	people	are	again	daring	to	contemplate	the	ultimate	goal,
namely:	true	general	intelligence.	For	example,	in	his	recent	book	eminent
researcher	Nils	Nielsen	urged	people	to	focus	on	the	quest	for	real	intelligence.
Eminent	researcher	Hector	Levesque	also	made	a	similar	call	to	arms	at	IJCAI
2013	(the	major	academic	AI	conference).



The	economic	and	military	advantages	of	having	more	intelligent	machines
suggests	that	it	is	most	unlikely	that	society	would	choose	not	to	produce	them.
Perhaps	more	importantly,	the	huge	disadvantage	of	letting	economic	and	military
competitors	develop	intelligent	machines	without	having	such	machines	oneself.	If
it	is	indeed	possible	to	build	a	truly	intelligent	machine	then	it	seems	almost
certain	that	we	will	do	so.

What
Four	general	approaches	have	been	proposed	to	develop	truly	intelligent
software.	The	first	is	to	simply	engineer	it	in	the	way	all	other	software	and
devices	are	built	with	multiple	components,	each	designed	with	an	understanding
of	its	purpose.	Analysis	of	our	own	intelligence	and	brains	will	continue	to	provide
insights	as	to	the	best	way	to	achieve	this,	but	an	artificial	intelligence	would	be
designed	from	the	ground	up	to	utilize	the	hardware	and	software	tools	that	are
available.

The	second	approach	is	to	only	engineer	a	minimal	“baby	brain”,	and	then	let	it
grow	up.	To	have	it	learn	the	bulk	of	its	knowledge	and	ways	of	thinking	from	trial
and	error	interactions	with	the	real	world.	Just	like	people	do.	This	was	first
proposed	by	Alan	Turing	back	in	the	1950s.

The	third	way	is	to	simulate	a	human	brain	without	really	understanding	how	it
works.	Analyze	the	structure	of	the	neurons	in	great	detail,	and	simulate	them	at
some	level.	That	might	be	at	the	individual	neuron	and	synapse	level,	or	it	involve
higher	levels	of	abstraction.	A	better	approach	might	be	to	try	to	understand	how
the	blue-print	for	our	brain	is	encoded	in	our	DNA,	and	then	let	a	digital	brain	grow
organically.	Such	an	intelligence	would	almost	certainly	need	special	hardware,
but	that	should	not	be	a	problem	if	there	is	a	sound	motivation	for	building	it.

The	fourth	way	is	to	use	random	changes	and	genetic	algorithms	to	develop	an
intelligence	by	trial	and	error	in	an	environment	that	provides	strong	natural
selection	for	more	intelligent	programs.	That	is,	after	all,	how	intelligent	animals
developed	in	the	first	place.	A	digital	world	can	be	created	with	a	moderate
amount	of	complexity,	and	then	essentially	randomly	designed	intelligences	can
operate	within	it.	They	need	to	solve	realistic	goals,	and	can	breed	with	each
other,	producing	children	that	are	a	random	selection	of	their	parents’
components.	Periodically,	the	weakest	intelligences	are	removed.

Any	of	the	four	approaches	could	eventually	produce	good	results,	but	this	author
believes	that	some	combination	of	engineering	and	growing	up	is	the	most	likely
to	produce	the	first	real	artificial	intelligence.	Results	from	analyzing	biological
brains	have	and	will	provide	important	insights,	but	as	discussed	in	Part	II	brains
are	extremely	complex	even	at	the	level	of	individual	neurons,	and	there	are
severe	technical	problems	with	this	approach.	It	is	certainly	not	just	a	matter	of
uploading	a	wiring	diagram.	Genetic	algorithms	have	been	and	will	no	doubt
continue	to	be	used	to	refine	decision	choices,	but	it	seems	like	a	big	stretch	to



suggest	that	they	could	produce	intelligent	behaviour	on	their	own	within	a
reasonable	time	frame.

It	has	also	been	proposed	that	general	intelligence	will	arise	spontaneously	from
the	vast	and	expanding	internet	due	to	an	amalgamation	of	components	in	a
huge,	service-oriented	architecture.	One	commentator	has	even	suggested	that	it
might	arise	spontaneously	from	the	ever	more	sophisticated	day	trading	software
created	by	financial	companies.	However,	even	a	basic	understanding	of	the
technologies	and	challenges	involved	in	pursuing	artificial	intelligence	suggests
that	this	is	most	unlikely.	Different	semi-intelligent	components	will	interact	with
each	other,	and	the	result	may	be	greater	than	the	sum	of	the	parts,	but	just
because	there	is	a	lot	of	software	on	the	internet	does	not	mean	that	it	will
spontaneously	become	intelligent	through	some	mystical	process.

Ideally,	one	would	be	able	to	start	with	a	tabula	rasa,	a	blank	slate,	and	then	let
the	machine	learn	all	about	the	world	through	observation.	A	baby,	after	all,	is	not
born	with	even	a	tiny	fraction	of	the	knowledge	that	is	stored	in	a	modern
repository	like	Cyc.	Others	would	contend	that	this	is	physics	envy,	the	desire	to
develop	a	simple	theory	of	intelligence	which	can	then	just	build	upon	itself	the
way	that	classical	physics	largely	explains	the	complex	observable	world	in	terms
of	simple	laws.	However,	there	may	simply	not	be	any	such	elegant	principal	of
intelligence	to	discover.	(Indeed,	modern	physics	has	also	failed	to	develop	a
grand	unified	theory	let	alone	a	theory	of	everything,	and	such	theories	may	also
simply	not	exist.	Godel	has	already	proved	that	there	can	be	no	grand
axiomatization	of	mathematical	logic.)

It	should	also	be	remembered	that	while	a	baby	may	not	know	much	about	the
world,	it	is	not	just	a	random,	unprogrammed	collection	of	neurons.	There	is	a
huge	amount	of	structure	defined	by	their	genetic	material.	A	baby	may	be	born
helpless	simply	because	human	mothers	are	capable	of	caring	for	a	helpless
infant	rather	than	because	that	is	the	only	way	that	a	brain	can	grow.	The	author’s
favourite	garden-digging	turkeys	hatch	from	mounds	of	leaf	litter	without	any	help
from	their	parents,	and	their	DNA	provides	all	of	the	instinctive	knowledge	that
they	need	in	order	to	dig	up	his	garden.

There	is	little	doubt	that	numerical	approaches	are	required	to	understand	the
world.	Some	researchers	have	argue	that	that	is	all	that	is	required,	as	evidenced
by	our	own	brains.	Symbols	are	just	an	illusion	created	by	language.	However,
experience	suggests	that	explicit	symbol	manipulation	can	be	very	powerful,	so
properly	integrating	symbols	with	numerical	methods	is	likely	to	be	most	effective.

One	detour	on	the	path	to	intelligent	machines	might	be	to	enhance	human
intelligence	so	as	to	be	able	to	build	the	machine.	This	has	already	happened	to
some	extent,	with	better	education,	diet	and	environment	producing	a	substantial
increase	in	human	intelligence	over	the	last	sixty	years,	known	as	the	Flynn	effect.
This	could	be	greatly	extended	in	the	future	through	pharmaceutical	enhancement
or	very	contentious	selective	breeding	and	gene	splicing	on	human	embryos.



However	humans	appear	to	be	sufficiently	intelligent	already,	and	so	it	seems
unlikely	that	any	such	detour	is	necessary,	although	it	might	be	helpful.

Nobody	knows	which	road	will	ultimately	lead	to	the	goal,	so	researchers	follow
many	different	paths	based	on	their	instincts	and	understanding.	The	final	goal	will
probably	not	be	achieved	by	any	one	technology	but	by	some	unholy	mixture.	An
Eierlegende	Wollmilchsau.

Eierlegende	Wollmilchsau
Corporate	http://thecityfix.com/blog/the-amazing-egg-laying-wool-milk-sow/

One	approach	that	is	not	likely	to	lead	to	artificial	general	intelligence	is	research
into	fields	that	are	largely	unrelated	to	the	problem.	For	example,	current	“big
data”	machine	learning	algorithms	can	use	sophisticated	statistical	techniques	to
scan	huge	sets	of	data	and	find	relationships	within	them	that	humans	cannot	find
no	matter	how	hard	they	try.	These	programs	are	useful,	but	this	technology
hardly	seems	relevant	to	building	a	machine	with	general	intelligence.	Initially,	we
would	be	quite	content	if	such	a	machine	just	had	human-like	abilities.	A	large
proportion	of	AI	research	is	like	this,	providing	sophisticated	solutions	to	practical
problems	that	have	little	to	do	with	the	goal	of	producing	true	intelligence.

How
There	could	be	just	a	few	essential	concepts	that	AI	researchers	have	failed	to
grasp	which	are	essential	to	build	an	artificial	intelligence.	Some	enlightened
researchers	might	discover	them	and	then	a	system	may	suddenly	emerge	that	is
capable	of	learning	about	the	world.	Within	a	relatively	short	time	frame,	that
system	might	learn	how	to	write	complex	computer	programs,	and	then
recursively	improve	itself.	This	would	result	in	a	hyper	intelligent	machine	arising
very	quickly	indeed.

Known	as	a	fast	take	off,	this	is	certainly	possible	given	the	relatively	small
amount	of	DNA	that	results	in	our	own	intelligence.	However,	it	also	seems	rather
unlikely	because	many	very	clever	people	have	been	working	on	this	problem	for
over	sixty	years.	If	there	was	an	easy	path	to	intelligence,	it	would	almost	certainly
have	been	discovered	long	ago.



A	more	likely	scenario	is	that	there	will	be	successive	generations	of	ever	more
intelligent	software.	As	previously	discussed,	current	applications	can	be	divided
roughly	into	two	groups,	namely	robotic	intelligence	that	senses	its	environment
and	manipulates	the	real	world,	and	cognitive	intelligence	that	reasons	about
human-created	abstractions	of	that	world.

Robotic	intelligence	has	almost	made	self-driving	cars	a	reality	today.	Within	a	few
years	we	will	see	many	robots	operating	in	the	real	world.	More	intelligent	robots
will	be	more	profitable,	which	will	provide	a	huge	new	source	of	funding	for	the
development	of	ever	more	intelligent	robots.	The	first	intelligences	will	do
relatively	unskilled	jobs	like	driving	and	cleaning,	followed	by	bricklaying	and
machinery	operation.

Cognitive	intelligence	has	already	produced	adequate	natural	language
translators.	Intelligent	agents,	such	as	Apple’s	Siri,	will	understand	more	and	more
about	what	people	say,	and	might	even	become	capable	of	producing	useful
replies.	It	would	not	be	that	difficult	to	produce	responses	that	are	no	worse	than
the	average	third	world	telephone	call	centre.	Medical	expert	systems	will	check
diagnoses	and	medications,	and	a	taxation	expert	might	even	be	able	to	gain	a
basic	understanding	of	the	otherwise	impenetrable	tax	laws.

One	of	the	last	jobs	that	an	AI	will	probably	be	able	to	do	effectively	is	write
complex	computer	programs.	That	is	because	that	is	one	of	the	most	cognitively
difficult	things	that	we	do	as	humans.	An	AI	would	have	no	difficulty	with	the	logic
elements	that	sometimes	confuse	human	programmers,	but	developing	complex
systems	requires	an	understanding	of	abstract	architectures	and	principles	that
goes	to	the	core	of	our	cognitive	abilities.	However,	once	that	is	achieved,	then
the	AI	will	be	able	recursively	improve	itself,	exponentially.

There	are	two	reasons	to	think	that	there	will	actually	be	a	fairly	slow	take	off.	The
first	is	that	it	will	take	time	for	us	to	develop	the	necessary	understanding	of
intelligent	programs	to	write	one.	The	second	is	that	even	if	we	do	succeed	in	this
task,	it	is	unlikely	that	the	AI	will	be	born	fully-featured	and	ready	to	go.	It	will
almost	certainly	need	to	spend	time	growing	up,	learning	about	the	world,	reading
Wikipedia.	In	practice,	these	two	tasks	will	probably	happen	concurrently:	early
intelligences	will	learn	some	truths	that	are	then	passed	on	to	later,	more
intelligent	AIs.

Storrs-Hall	suggests	that	for	these	reasons	there	should	be	roughly	a	decade’s
warning	of	the	hyper-intelligent	AI.	He	also	suggests	that	the	gradual	development
process	will	prevent	any	one	group	from	will	controlling	it.

Who
Most	existing	fundamental	research	into	AI	has	been	conducted	by	academics	in
the	major	universities,	and	this	is	likely	to	continue.	There	are	also	semi-academic
research	consortiums	of	industry	players	that	performed	longer	term	research.
Microelectronics	and	Computer	Technology	Corporation	(MCC)	was	one	such



consortium	that	initially	sponsored	the	Cyc	project.	It	was	sponsored	by	computer
manufacturers.

Much	of	research	has	been	funded	by	the	US	Defence	Advanced	Research
Projects	Agency	(DARPA),	but	the	military	has	become	more	interested	in
practical	applications.	One	focus	is	on	building	semi-autonomous	robots	that	can
operate	in	dangerous	environments.	Another	focus	is	to	analyze	the	massive
amounts	of	data	generated	by	satellites,	surveillance	cameras	and	internet	traffic.
Companies	that	build	these	systems	for	the	military	often	have	strong	links	with
academic	institutions.	There	is	also	considerable	investment	in	AI	techniques	by
large	companies	outside	the	military,	notably	by	IBM	and	Google.

Search	engines	such	as	Google	are	now	trying	to	obtain	a	deeper	analysis	of
documents	than	just	a	series	of	words.	To	understand	whether	a	document	that
contains	the	word	“rock”	is	about	geology	or	music.	To	understand	that	a	page
titled	“Tomato-Free	Salsa”	probably	does	match	the	query	“salsa	recipes	NOT
tomato”	even	though	it	contains	the	word	“Tomato”.	To	this	end	Google	recently
built	the	Knowledge	Graph	semantic	network	that	incorporated	some	570	million
objects	and	more	than	18	billion	facts	about	the	world	based	on	the	earlier
Freebase	ontology.

Corporate,	Fair	use.

Google	has	recently	invested	heavily	in	much	more	ambitious	artificial	intelligence
projects.	Their	secretive	Google	X	division	is	developing	autonomous	self-driving
cars	as	well	as	advanced	image	understanding	programs.	Google	recently	hired
Ray	Kurzweil,	who	promoted	the	idea	of	the	Singularity,	as	well	as	Peter	Norvig,
the	much	more	conservative	co-author	of	the	major	text-book	on	artificial
intelligence.	Norvig	estimated	that	Google	employed	well	over	5%	of	the	world’s
experts	in	machine	learning	some	time	ago.

In	late	2013,	Google	purchased	Boston	Dynamics,	a	leading	producer	of
intelligent	robots	and	supplier	of	robots	for	the	DARPA	robotic	challenge.	Google’s
Schaft	robot	won	the	2013	DARPA	robotic	challenge.

Perhaps	more	interestingly,	Google	also	purchased	DeepMind	in	2013	for	some
$400	million.	DeepMind’s	stated	ambition	is	to	produce	artificial	general
intelligence,	although	what	that	really	means	is	unclear.	Google	has	made	other
AI	purchases	including	Bot	&	Dolly,	Meka	Robotics,	Holomni,	Redwood	Robotics,
and,	DNNresearch.

Corporate,	Fair	use

In	2013	IBM	also	pledged	to	spend	a	massive	billion	dollars	on	further	developing
its	Watson	project.	It	is	looking	to	apply	Watson	to	areas	such	as	health.
(“Watson”	now	appears	to	be	mainly	a	marketing	term	for	any	generally	intelligent



IBM	software,	rather	than	the	specific	Jeopardy!	winning	program.)

Corporate,	Fair	use

Microsoft	is	also	investing	heavily.	The	XBox	Kinect	technology	has	made	stereo
vision	readily	available,	and	algorithms	have	been	developed	that	infer	the	real-
time	position	of	peoples’	bodies	based	on	that	data.	It	is	developing	an	advanced
intelligent	agent	called	Cortana	that	will	compete	with	Apple’s	Siri.	Bing	is	also
using	ever	more	intelligent	algorithms	to	refine	internet	searches.	Microsoft’s	head
of	research	Peter	Lee	says	that	artificial	intelligence	is	their	biggest	focus.

Silicon	Valley	is	currently	abuzz	with	start-ups	that	profess	to	have	some	expertise
in	artificial	intelligence,	and	venture	capital	is	flowing	again.	A	new	AI	bubble	is
forming,	with	all	the	energy	and	potential	for	disaster	of	the	1999	internet	bubble.

Back	in	the	1960s	and	1970s,	when	most	of	the	fundamental	results	in	AI	were
obtained,	the	total	number	of	programmers	in	the	world	numbered	in	the
thousands,	almost	all	of	which	were	concentrated	in	western	countries,
particularly	the	USA.	Since	then,	the	number	has	grown	enormously,	with	a	recent
survey	by	Evans	Data	Corp.	estimating	that	there	are	now	an	amazing	18.2
million	software	developers	world-wide.	Further,	that	number	is	expected	to
increase	to	26.4	million	as	early	as	2019.

Quantity	is	no	substitute	for	quality	in	software,	and	the	vast	majority	of	these
developers	do	contribute	to	research	into	artificial	intelligence.	Instead,	they
develop	software	such	as	database	applications	for	businesses,	system	programs
that	support	operating	systems,	controllers	for	electronic	devices,	and	games.
None	of	these	types	of	applications	normally	involves	substantial	intelligence,	with
the	possible	exception	of	small	components	of	some	games.	Only	a	tiny
proportion	of	developers	actually	contribute	to	developing	intelligent	software,	but
a	tiny	proportion	of	the	18.2	million	developers	is	still	a	large	number	of	software
engineers,	and	orders	of	magnitude	more	than	were	available	in	the	recent	past.
As	Stalin	pointed	out,	(vast)	quantity	also	has	a	quality	all	of	its	own.

Where
The	Massachusetts	Institute	of	Technology	was	the	leader	in	the	early	days,	with
strong	teams	in	Dartmouth,	Carnegie	Mellon	University,	and	Stanford.	While	the
British	built	the	first	computers	(for	code	breaking),	they	were	all	top	secret,	and
afterwards	British	universities	largely	gave	up	the	game	as	a	result	of	the	dubious
1973	Lighthill	report.

Today,	research	in	any	field	is	much	more	distributed	around	the	world.	India,
China	and	Eastern	Europe	have	all	produced	excellent	academics.	But	for	now
the	USA	still	dominates	the	field.	Google	is	becoming	the	dominant	AI	company,
but	many	of	its	labs	are	distributed	outside	the	USA.



The	huge	growth	in	the	number	of	software	developers	has	occurred	in	third	world
countries	as	well	as	in	the	West.	According	to	a	2013	article	in	Computerworld	(by
Patrick	Thibodeau),	the	USA	still	has	the	largest	number	of	developers,	estimated
at	3.6	million,	but	India	now	has	an	estimated	2.75	developers.	By	2018,	India	is
expected	to	have	5.2	million	developers,	which	is	more	than	the	USA’s	expected
4.5	million	developers.	The	large	numbers	of	keen	but	young	and	inexperienced
Indian	developers	are	not	yet	nearly	as	capable	as	the	typically	more	experienced
US	developers,	but	that	will	also	change	over	time.	(One	driver	for	this	explosive
growth	in	India	is	the	American	management’s	obsession	with	outsourcing	to
countries	with	cheaper	labour,	which	has	become	practical	due	to	the	high	speed
internet.	However,	the	results	of	this	outsourcing	have	been	mixed,	to	say	the
least.)

To	perform	effective	research	in	fields	such	as	biotechnology	or	nuclear	physics,
one	needs	advanced	laboratories	with	expensive,	specialized	equipment	that	is
often	restricted.	However,	performing	effective	research	into	AI	requires	little	more
than	a	few	good	personal	computers.	So	like	mathematics,	the	core	requirements
are	a	sharp	pencil	and	a	sharper	mind.	The	internet	has	made	it	much	easier	for
minds	to	collaborate	across	the	globe,	which	means	that	advanced	research	can
occur	wherever	good	researchers	care	to	gather.	This	makes	it	relatively	easy	for
intelligent	people	in	isolated	places	to	produce	powerful	new	software.

When
This	question	is	surprisingly	easy	to	answer,	namely	“in	roughly	fifty	years”.	This
prediction	has	been	consistently	made	since	the	beginning	of	artificial	intelligence
research,	and	continues	to	be	made	today.

Alan	Turing
Public	Wikipedia

In	1950,	the	great	Alan	Turing	reasoned:-

As	I	have	explained,	the	problem	is	mainly	one	of	programming.	Advances	in



engineering	will	have	to	be	made	too,	but	it	seems	unlikely	that	these	will	not
be	adequate	for	the	requirements.	Estimates	of	the	storage	capacity	of	the
brain	vary	from	1010	to	1015	binary	digits.	I	incline	to	the	lower	values	and
believe	that	only	a	very	small	fraction	is	used	for	the	higher	types	of	thinking.
Most	of	it	is	probably	used	for	the	retention	of	visual	impressions,	I	should	be
surprised	if	more	than	109	was	required	for	satisfactory	playing	of	the
imitation	game,	at	any	rate	against	a	blind	man.	(Note:	The	capacity	of	the
Encyclopedia	Britannica,	11th	edition,	is	2×109).

A	storage	capacity	of	107,	would	be	a	very	practicable	possibility	even	by
present	techniques.	It	is	probably	not	necessary	to	increase	the	speed	of
operations	of	the	machines	at	all.	Parts	of	modern	machines	which	can	be
regarded	as	analogs	of	nerve	cells	work	about	a	thousand	times	faster	than
the	latter.	This	should	provide	a	“margin	of	safety”	which	could	cover	losses
of	speed	arising	in	many	ways.	Our	problem	then	is	to	find	out	how	to
programme	these	machines	to	play	the	game.	At	my	present	rate	of	working	I
produce	about	a	thousand	(binary)	digits	of	programme	a	day,	so	that	about
sixty	workers,	working	steadily	through	the	fifty	years	might	accomplish	the
job,	if	nothing	went	into	the	wastepaper	basket.	Some	more	expeditious
method	seems	desirable.

Today,	after	many	thousands	of	man	years	of	work,	we	understand	that	Turing’s
predictions	were	wildly	optimistic.	Working	on	those	ancient	machines,	he	could
not	foresee	the	complexity	of	building	large	software	systems.

Since	that	time,	various	people	have	continued	to	try	to	predict	when	a	truly
intelligent	machine	will	be	built.	In	the	mid-1990s	this	author	conducted	a	straw
poll	of	researchers	at	an	AI	Conference	(PRCAI-96).	The	consensus	was	that	it
would	take	about	fifty	more	years	to	build	a	truly	intelligent	machine.

The	well-respected	futurologist	Ray	Kurzweil	predicted	in	2005	that	this	singularity
would	be	reached	in	about	2045,	about	forty	years.	Like	Turing,	his	calculation
was	based	on	the	idea	that	experts	tend	to	know	about	100,000	pieces	of
information,	and	then	correlate	that	to	the	ever-increasing	power	of	computer
hardware.	Forty	years	is	less	than	the	industry	standard	fifty-year	prediction,	but
Kurzweil	has	made	earlier	predictions	that	have	proved	to	be	somewhat
optimistic.	For	example,	in	1990	he	predicted	autonomous	cars	would	be	available
in	the	early	2000s,	whereas	they	will	not	be	available	commercially	until	the
2020s.

In	1993,	Verner	Vinge	wrote	the	paper	that	coined	the	term	Singularity.	He
confidently	predicted	that	this	would	occur	between	2005	and	2030.	The	2005
date	would	seem	to	have	been	very	early,	even	when	made	back	in	1993,	and
today	the	2030	date	also	seems	much	too	near.	But	Vinge	was	an	author	of
science	fiction,	and	thus	tended	to	be	overly	optimistic.

In	1956	a	landmark	conference	was	held	at	Dartmouth	Colleage	which	is



generally	considered	to	be	the	birth	of	artificial	intelligence.	Fifty	years	later,	in
2006,	the	AI@50	conference	was	also	held	at	Dartmouth	Colleage	to	review	the
state	of	the	art,	what	had	been	achieved,	and	what	needed	to	be	done.	It	attracted
major	researchers	in	AI	from	many	disciplines,	including	five	of	the	original
participants.	After	many	years	in	which	talk	of	human-level	intelligence	was
strongly	discouraged,	one	report	noted	that	“much	of	the	original	optimism	is	back,
driven	by	rapid	progress	in	artificial	intelligence	technologies”.

A	poll	was	conducted	to	see	when	they	thought	human-level	artificial	intelligence
would	be	achieved.	The	results	were	that	18%	believed	it	would	take	less	than	50
years,	41%	thought	more	than	50	years,	and	41%	thought	that	it	would	never	be
achieved.	So,	an	average	of	maybe	70	years	for	those	who	thought	it	possible.

Seth	Baum	performed	a	survey	at	the	Artificial	General	Intelligence	Conference	in
2009.	22%	of	those	polled	thought	that	human-level	intelligence	would	be
achieved	within	20	years,	59%	within	60	years,	and	41%	thought	over	100	years
or	never.	Baum	also	asked	about	specific	artificial	intelligent	milestones,	namely
passing	the	Turing	test,	passing	a	third	grade	primary	school	test,	doing	Nobel
prize	quality	work,	and	being	superhuman.	Interestingly,	many	responders
considered	doing	Nobel	prize	quality	work	the	easiest	of	these	goals.

It	has	to	be	said	that	asking	people	at	an	AGI	conference	about	AGI	is	similar	to
asking	participants	in	a	psychic	conference	about	the	after-life.	They	may	be
experts	in	their	respective	fields,	but	not	necessarily	the	most	objective	arbitrator
of	those	facts.	Conversely,	AI	researchers	are	often	too	focused	on	the	immediate
difficult	problems	they	are	trying	to	solve	to	be	able	to	sit	back	and	take	a	long-
term	view.

Kurzweil’s	esteemed	colleague	at	Google,	Peter	Norvig,	says	that	building	a
general	AI	is	not	on	his	research	horizon.	Not	because	it	will	never	happen,	but
simply	because	he	believes	that	it	is	too	far	off	to	focus	active	research	projects
on	it.

Given	all	these	qualifications,	it	seems	fairly	safe	to	say	that	a	median	prediction
of	“roughly	fifty	years”	will	continue	to	stand	until	the	goal	is	almost	reached.	Fifty
years	is	a	horizon	into	the	future	that	we	can	just	barely	see.	It	allows	time	for
major	conceptual	problems	to	be	solved	and	then	developed	into	realistic
systems.	If	only	we	knew	what	those	problems	actually	were.

Cynicism	aside,	there	has	been	real	progress	made	over	the	last	sixty	years.
There	is	now	a	much	better	understanding	of	the	parameters,	and	the	physical
hardware	now	exists	to	implement	whatever	programs	are	developed.	It	would
seem	most	unlikely	for	the	goal	not	to	be	reached	by	the	end	of	the	next	century.

Incidentally,	Turing’s	analysis	assumed	that	code	would	continue	to	be	written	in
the	raw	binary	1s	and	0s	,as	he	had	been	programming.	He	did	not	anticipate	that
software	tools	such	as	assemblers	and	compilers	would	make	this	process
several	orders	of	magnitude	more	efficient	than	that,	which	is	another	example	of



exponential	improvement.	Turing	also	did	not	appreciate	that	writing	a	program
that	is	ten	times	larger	is	a	lot	more	than	ten	times	more	difficult	to	do,	and	that
large	programs	take	on	a	life	of	their	own	and	quickly	become	a	series	of
interacting	components	that	are	too	complex	for	any	one	person	to	really
understand.

Respondents	to	these	studies	seem	to	be	fairly	positive	about	the	future.	A	meta-
analysis	by	Nick	Bostrom	suggests	that	about	60%	think	that	the	impact	of	AGI
will	be	good,	and	only	about	10%	think	that	it	will	be	extremely	bad.	(What	that
really	means	is	unclear.	Have	the	surveyed	people	even	considered	the	issue?	Do
some	of	them	consider	the	extinction	of	humanity	to	be	an	acceptable	outcome?)





The	Age	of	Semi	Intelligent	Machines

The	intermediate	period
Whatever	the	future	of	research	into	artificial	intelligence	turns	out	to	be,	it	seems
most	unlikely	that	the	production	of	hyper-intelligent	computers	will	occur	for	many
decades.	There	are	still	many	fundamental	problems	that	need	to	be	solved,	and
even	the	more	optimistic	predictions	are	that	it	will	take	another	forty	years.

It	is	also	clear	that	many	relatively	intelligent	applications	will	be	developed	in	the
near	future	because	working	prototypes	have	already	been	built.	They	will	soon
be	commonly	available,	and	then	be	steadily	improved.	Their	impact	on	society
could	be	as	great	as	the	development	of	agriculture	or	the	Industrial	Revolution
have	been	in	the	past.

Manufacturing	productivity

Dramatic	increase	in	manufacturing	productivity.
Permitted	http://www.aei.org/publication/blog/carpe-diem

Technology	has	already	produced	massive	gains	in	manufacturing	productivity.
The	chart	above	shows	data	from	the	US	Bureau	of	Economic	Analysis	that	plots
output	per	US	worker	over	the	last	sixty	years.	In	that	period,	the	output	has
grown	eight-fold,	from	$19,500	2011	dollars	to	$156,500.	The	rate	of	growth	has
also	increased	dramatically,	with	the	doubling	time	reduced	from	26	years	to	13



years.	Measuring	productivity	accurately	over	long	time	periods	is	difficult,	but	this
increase	is	dramatic	regardless	of	the	assumptions	made.

There	are	many	reasons	for	this,	which	include	better	tools	and	techniques	such
as	injection	moulding	and	laser	and	water	jet	cutting.	Much	of	the	increase	over
the	last	twenty	years	has	been	due	to	computer	automated	machines	such	as
milling	machines,	lathes	and	robotic	arms.	A	task	such	as	carving	a	clarinet	could
take	a	skilled	artisan	several	hours,	whereas	a	fully	automated	milling	machine
can	complete	the	task	in	a	few	minutes.

Shipments	of	industrial	robots.
Corporate	http://www.ifr.org/industrial-robots/statistics/

More	recently,	the	use	of	single-arm	industrial	robots	has	become	ubiquitous	for
repetitive	tasks	such	as	welding,	painting	and	parts	assembly.	Robots	now	cost
roughly	$50,000	for	the	arm,	plus	as	much	again	for	specialized	tooling	such	as
welders,	cutters	or	paint	sprayers.	They	have	become	very	competitive	with	the
cost	of	labour	in	the	western	world.	Robots	are	made	by	robots,	so	their	price	is
likely	to	reduce	over	time.

As	previously	discussed,	most	current	industrial	robots	have	no	intelligence
whatsoever.	They	simply	move	in	rigidly	pre	programmed	ways,	possibly	based
on	some	very	simple	sensors.	A	few	include	simple	two-dimensional	vision
systems	that	can	recognize	objects	lying	flat	on	a	contrasting	conveyor	belt.	The
lack	of	any	real	intelligence	restricts	robots	to	very	menial	jobs	in	tightly-controlled
factory	environments.

Newer	robots	are	becoming	much	more	sophisticated.	They	can	recognize
objects	in	true	three	dimensions,	possibly	using	systems	such	as	Microsoft’s
Kinect.	This	enables	them	to	work	in	less	structured	environments	and	perform
tasks	such	as	picking	out	objects	that	have	been	tossed	into	an	unstructured	bin.
The	ability	to	sense	their	environments	means	that	robots	need	to	make	semi-
intelligent	decisions	about	what	to	do	as	a	result	of	that	input	and	to	plan	motions
and	adjust	their	behaviour	dynamically.



Semi-intelligent	robots	have	a	much	wider	scope	of	application.	Intelligence	will
allow	them	to	perform	a	larger	proportion	of	a	manufacturing	process,	and	they
will	be	able	to	operate	in	smaller	factories	with	less	structured	production	lines.

Autonomous	cars
As	robots	become	ever	more	intelligent	they	will	start	to	perform	tasks	outside	of
rigidly	controlled	factory	environments.	For	example,	Caterpillar	has	been	building
autonomous	trucks	for	mining	operations	for	several	years,	and	they	are	quite
common	on	some	sites.	The	company	is	now	working	to	automate	other	mining
equipment	such	as	excavators.

(It	should	be	noted	that	the	term	“robot”	is	being	used	to	refer	to	any	intelligent
machinery.	There	is	no	need	nor	reason	to	give	most	of	them	a	humanoid	shape,
although	humanoid	robots	also	exist.)

Mine	sites	can	be	controlled	fairly	tightly,	but	robots	are	now	working	in	much
more	natural	and	unstructured	environments.	The	first	of	these	technologies	that
is	likely	to	have	widespread	impact	is	self	driving	cars	and	trucks.

Google	self	driving	car.
News	www.mirror.co.uk

The	famous	Google	driverless	car	can	negotiate	urban	traffic	autonomously,	and
is	purported	to	have	covered	500,000	kilometres	with	only	one	accident	caused	by
another	car	running	into	it	from	behind.	What	that	really	means	is	unclear	because
the	cars	also	have	drivers	that	could	take	over	if	the	computer	was	about	to	cause
an	accident.	The	car	apparently	drives	very	sedately	and	properly,	and
passengers	rapidly	become	used	to	it.	The	car	also	drives	mainly	in	sunny
California,	which	is	much	easier	than	driving	in	places	like	Paris	or	Mumbai,	for



which	an	understanding	of	formal	road	rules	is	neither	sufficient	nor	even
necessary.

There	are	very	few	accessible	technical	details	on	the	Google	car	beyond
marketing	hype.	The	current	technology	seems	to	rely	on	expensive	radar
systems,	but	there	are	moves	to	utilize	cheaper	Kinect-like	vision	systems
instead.	Some	unreliable	reports	suggest	that	the	current	(2014)	version	needs	a
detailed	map	to	know	where	traffic	lights	are,	but	that	would	seem	to	be	most
unlikely	because	recognizing	a	traffic	light	would	be	relatively	easy	using	existing
technology.

Other	car	manufactures	have	only	expressed	limited	interest	in	Google’s	system
because	they	are	developing	their	own	autonomous	technology.		The	2014
Mercedes-Benz	E	Class	already	uses	a	combination	of	stereo	vision	and	multi-
mode	radar	to	help	prevent	rear	end	collisions.	It	can	warn	about	inattentive
driving	and	can	also	follow	a	lane	of	traffic.		It	warns	the	driver	about	occupied
adjacent	lanes	should	they	try	to	change	lanes.	The	vision	system	can	detect
pedestrians	in	a	wide	field	of	view	and	initiate	braking.	It	must	be	a	rather	spooky
car	to	drive.

BMW	has	a	working	prototype	of	a	5	Series	car	that	can	drive	completely
autonomously	on	freeways.	It	can	stay	with	a	traffic	flow,	cleanly	and	safely
change	lanes	to	avoid	traffic,	and	take	appropriate	exits.	BMW	expects	to	have
this	system	in	production	by	2020,	with	an	earlier	version	that	handles	slow	stop
start	traffic	as	soon	as	2016.		A	fully	automatic	system	that	can	also	handle	more
complex	urban	driving	should	be	available	by	2025.

These	initial	systems	will	still	require	a	driver	to	be	able	to	take	over,	if	only	for
legal	reasons.	It	could	take	fifteen	years	or	more	before	they	can	operate
completely	autonomously.	(Google	has	a	demonstration	car	that	does	not	contain
a	steering	wheel,	but	it	is	not	allowed	on	any	real	roads.	Google	already	knows
where	they	want	you	to	go	so	there	may	not	need	to	be	any	other	controls	either.)

However,	full	autonomy	may	not	be	necessary.	As	an	analogy,	back	in	2002	a
Hellfire	missile	was	fired	at	a	car	in	Yemen,	killing	Qaed	Salim	Sinan	al-Harethi,
who	was	suspected	of	being	responsible	for	the	bombing	of	the	USS	Cole.	The
pilot	who	fired	that	missile	was	not	inside	the	Predator	drone	that	fired	it.	Nor	were
they	anywhere	near	Yemen.	Instead	they	were	probably	comfortably	situated	on
the	other	side	of	the	world	at	Creech	Air	Force	Base	in	Nevada.	Global
communications	made	the	pilot’s	presence	near	the	target	unnecessary,	and	it	is
cheaper	to	leave	pilots	at	home.

Driving	cars	generally	requires	faster	reaction	times	than	flying	aircraft,	but	with
automation	it	would	also	be	possible	for	someone	to	monitor	them	remotely.
Further,	most	vehicles	will	need	minimal	supervision,	so	one	“driver”	could	monitor
the	progress	of	several	vehicles	at	once.	They	could	be	located	in	a	third	world
country	where	labour	is	cheap	but	communication	infrastructure	is	improving
rapidly.



The	social	and	lifestyle	implications	of	just	this	one	technology	will	be	huge.	No
longer	will	parents	need	to	be	taxi	drivers	for	their	busy	children.	Cars	will	be	able
to	go	off	and	park	themselves	away	from	city	centres	and	so	allow	more
pedestrian-friendly	environments	to	be	built.	Or	maybe	cars	will	just	drive
themselves	to	pick	up	other	passengers	and	thus	not	need	to	park	in	the	first
place.	Automated	car	pooling	systems	could	greatly	improve	the	efficiency	of
personal	transportation.	More	accurate	computers	could	fit	more	cars	into
narrower	lanes.	It	would	enable	people	to	live	further	away	from	their	workplaces
and	commute	effortlessly,	perhaps	while	processing	emails	or	having	a	nap.		This
is	all	very	good	news,	except	for	the	many	people	that	now	earn	a	living	by	driving
vehicles.

Arthropod	automation
Many	other	applications	of	semi-intelligent	robots	will	become	commonplace	over
the	next	couple	of	decades.	These	will	be	tasks	that	could	be	performed	by	a
machine	capable	of	recognizing	objects	and	manoeuvring	through	its
environment,	which	is	only	just	becoming	possible	with	current	technology.	But	the
tasks	would	also	need	to	be	fully	specified	without	the	need	for	automated	higher
level	analysis.

These	are	the	sort	of	tasks	that	an	arthropod	needs	to	accomplish	in	order	to
achieve	its	goals.	Consider	that	a	spider,	with	a	brain	the	size	of	a	pin	head,	can
weave	a	complex	web	in	unstructured	natural	environments.	A	wasp	can	navigate
in	three	dimensions	and	recognize	that	the	spider	is	food,	attack	it	effectively,	and
then	drag	it	back	to	a	specific	nest	that	it	built	in	a	suitable	location.	But	neither	the
spider	nor	the	wasp	can	reason	deeply	about	what	it	is	doing,	nor	can	it	undertake
new	tasks	for	which	it	were	not	programmed	to	do	by	natural	selection.	(This	is
not	to	say	that	the	computers	involved	would	actually	be	anything	like	an
arthropod’s	brain.)

One	example	is	picking	fruit	such	as	strawberries.	This	is	a	very	labour	intensive
process	that	is	well-defined,	namely	to	look	for	red	things	and	cut	them	off	without
squashing	them.	Several	companies	have	recently	developed	robots	that	can	do
just	that.	However,	they	are	not	very	fast	and	cost	over	$50,000	which	is
expensive	compared	to	the	low	wages	paid	to	agricultural	workers.	As	the	price	of
robots	rapidly	falls	it	will	not	be	long	before	they	become	widely	deployed,
especially	in	countries	with	reasonable	minimum	wages.

A	slightly	more	complex	task	is	cleaning	offices.	The	process	is	also	well	defined,
mainly	vacuuming	and	cleaning	toilets.	If	anything	unexpected	happens,	the	robot
can	call	a	person	for	help.	Like	autonomous	car	drivers,	that	person	need	not	be
physically	present,	but	should	be	able	to	assess	the	situation	using	remote
cameras	on	the	robot.	Over	time	the	programming	will	improve	to	reduce	the
number	of	unexpected	situations.



A	similar	example	would	be	to	paint	houses,	inside	or	out.	A	machine	needs	to	be
able	to	detect	and	remove	flaking	paint,	prepare	a	surface,	and	apply	new	paint.	It
could	have	a	body	that	stays	on	the	ground,	and	a	long	arm	that	could	reach	up	to
awkward	places	without	the	need	for	scaffolding.	It	would	need	to	know	not	to
paint	over	windows,	but	that	could	be	programmed	relatively	easily	provided	that	it
had	basic	machine	vision.

Another	example	would	be	to	be	able	to	lay	bricks	when	building	a	new	house.
Again,	this	is	a	well-defined	procedure.	From	his	dubious	attempts	in	the	past,	this
author	can	attest	that	it	takes	quite	some	skill	to	be	able	to	create	a	wall	that	is
actually	straight	and	vertical,	but	that	aspect	would	be	easy	for	a	laser-guided
computer	to	achieve.	Renovating	an	existing	wall	would	be	a	much	more	difficult
task	for	a	robot	because	that	task	requires	considerable	judgement	rather	than
repetitive	procedure.

Lawn	mowing,	brush	cutting	and	litter	removal	could	be	automated,	as	could	retail
applications	that	do	not	require	a	personal	touch,	such	as	stacking	shelves	in
supermarkets.	Some	routine	automotive	tasks	such	as	changing	oil	and	servicing
cars	could	be	automated,	as	could	most	of	the	routine	work	provided	by	security
guards.

Slightly	more	difficult	tasks	would	include	general	construction	of	new	homes,	with
a	human	supervisor.	Foundations	could	be	automatically	dug,	reinforcing	added
and	concrete	poured.	Frames	are	already	made	in	factories	directly	from	CAD
drawings.	Plastering,	roofing	and	electrical	work	are	also	highly	repetitive	for	new
constructions.	Renovating	old	houses	would	again	be	much	more	difficult	to
automate,	as	every	situation	will	present	slightly	different	challenges.

The	military	is	a	major	investor	in	semi-autonomous	robots.	Their	primary	goal	is
to	avoid	putting	soldiers	in	dangerous	situations	where	they	could	be	killed.	Over
time,	much	of	the	grunt	work	of	a	military	operation	could	be	automated,	requiring
far	less	semi-skilled	labour.	Again,	this	may	or	may	not	involve	humanoid	robots.
Small	aerial	drones	and	tiny	bullet-proof	tanks	are	likely	to	be	a	more	useful
embodiment.	Boston	Dynamics	has	recently	produced	a	four-legged	robot	that
can	run	effectively	over	rough	country.

That	is	a	huge	amount	of	work	that	could	be	performed	by	arthropod-brained
robots	with	occasional	human	supervision.	As	factory	automation	improves,	the
cost	of	producing	these	robots	will	decline.	As	that	cost	falls	below	about	$50,000
then	uptake	of	these	robots	can	be	expected	to	be	very	high.

Leisure	society
Some	people	have	suggested	that	all	this	automation	will	produce	a	society	with
greatly	expanded	leisure.	If	30%	of	all	work	(say)	can	be	automated	by	arthropod
robots,	then	people	should	be	able	to	have	almost	30%	more	leisure.

However,	that	has	not	been	the	effect	of	previous	technological	revolutions.



Traditionally,	over	90%	of	the	population	worked	in	agriculture.	Technologies	from
the	steam	tractor	to	the	combine	harvester	have	reduced	that	proportion	to	under
10%.	Yet	we	do	not	have	80%	more	leisure.	Indeed,	primitive	hunter-gatherer
societies	such	as	the	Australian	Aboriginals	seem	to	have	had	more	leisure	time
than	we	do	today.

Likewise,	the	Industrial	Revolution	produced	a	huge	increase	in	productivity.	A
nineteenth	century	power	loom	could	increase	the	productivity	of	a	textile	worker
by	a	factor	of	40,	which	is	far,	far	more	than	the	very	substantial	general	increase
in	productivity	during	the	last	hundred	years.	Yet,	rather	than	producing	more
leisure,	it	produced	twelve-hour	work-days	for	six	and	a	half	days	per	week,	which
paid	such	a	miserable	wage	that	it	could	barely	sustain	life.	People	had	been
malnourished	before	the	revolution,	but	at	least	they	had	leisure	in	the	winter
when	there	was	not	much	to	do.

In	the	present	age,	ordinary	Americans	are	happy	to	accept	two	weeks	of	annual
leave	each	year.	British	and	Australian	nationals	demand	four	weeks	of	leave,
while	many	Europeans	have	over	six	weeks	of	leave	each	year.	These	figures
have	not	changed	as	a	result	of	increases	in	productivity:	indeed,	the	feminist
movement	has	resulted	in	more	people	entering	the	workforce.	Europeans	are
certainly	not	more	productive	than	Americans,	the	difference	in	leisure	simply
reflects	cultural	differences	and	the	balance	of	power	between	capital	and	labour.
American	employers	expect	fifty	weeks	of	service	simply	because	they	can.

So	it	is	most	unlikely	that	any	future	increase	in	automation	will	produce	any
significant	increase	in	leisure.	The	eight-fold	increase	in	American	factory
productivity	over	the	last	sixty	years	has	not	produced	any	additional	leisure,	and
only	very	modest	real	increases	in	the	wages	of	factory	workers.

Affluent	society
One	might	expect	that	if	people	are	more	productive	and	yet	are	not	engaging	in
any	more	leisure	then	their	incomes	must	rise.	That	has	in	fact	been	the	case,	as
shown	in	the	following	chart	of	historic	incomes	over	the	last	60	years.	Each	line
on	the	chart	shows	the	income	for	a	particular	section	of	the	population,	so	the
40th	percentile	shows	the	income	for	the	people	that	earn	more	than	40%	of	the
population.	The	median	income	can	be	interpolated	between	the	40th	and	60th
percentiles.

There	have	been	steady	increases	in	incomes	across	the	board	up	until	about
1970,	at	which	point	real	income	for	that	half	of	people	that	earn	below	median
income	stagnates,	and	hardly	increases	at	all.	That	is	surprising	given	that
general	productivity	as	measured	by	GDP	per	hour	worked	has	risen	steadily	at
about	1.5%	per	annum.	One	reason	for	this	is	that	incomes	in	the	upper	80th
percentile	and	above	have	grown	strongly	and	taken	most	of	the	benefits	of	the
increase	in	productivity.	Even	for	the	top	95	percentile,	the	increase	as	been
nowhere	near	as	fast	as	the	increase	in	manufacturing	worker	productivity.
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Many	things	have	become	much	cheaper	such	as	computers,	telecommunication
and	access	to	information.	However,	the	basics	of	food,	shelter,	health	and
education	have	risen	significantly	in	real,	inflation-adjusted	terms	over	the	last
sixty	years.	Indeed,	it	was	during	the	1970s	that	the	cost	of	health	care	started	to
rise	dramatically	in	the	USA	from	about	5.2%	of	GDP	to	16%	today.	Obtaining	a
higher	education	is	no	longer	optional	for	those	that	wish	their	children	to	succeed
in	life.

The	cost	of	housing	has	risen	dramatically	in	comparison	to	income,	as	shown	in
the	following	chart	of	Australian	house	prices.	Back	in	the	1970s	median	houses
cost	roughly	two	years’	median	income,	whereas	today	this	price	has	doubled	with
respect	to	median	income.	This,	in	turn,	has	created	a	high	level	of	household
debt,	with	first	home	owners	often	paying	over	half	of	their	net	income	on
mortgages,	whereas	heavy	mortgages	were	rare	back	in	the	1950s.	The	result	is
that	young	working	couples	today	struggle	to	buy	a	first	home	that	their
grandfathers	could	have	purchased	without	their	wives	needing	to	work.
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Unemployed	society
One	of	the	earliest	precursors	to	the	industrial	revolution	was	the	stocking	frame,
invented	by	William	Lee	in	1589,	which	could	automate	the	knitting	of	fabrics.	It	is
said	that	Lee	demonstrated	his	frame	to	Elizabeth	I	and	asked	to	be	granted	a
patent	on	the	invention.	(In	the	sixteenth	century	patents	were	only	granted	for
substantial	inventions,	unlike	today.)	Elizabeth	turned	down	Lee’s	request	not
because	she	thought	the	invention	was	unworthy,	but	because	she	thought	it	was
too	effective.	Elizabeth	was	concerned	that	the	machine	could	cause
unemployment	in	the	hand	knitting	industry	and	thus	chose	to	forgo	the	benefits	of
cheaper	knitted	fabrics.

For	similar	reasons,	groups	of	textile	workers	in	the	early	nineteenth	century
would	destroy	the	stocking	frames	and	power	looms	of	factory	owners,	acting	in
the	name	of	King	Ludd.	Some	bands	of	agricultural	workers	destroyed	threshing
machines	for	the	same	reason.	Parliament	then	made	machine	breaking	a	capital
crime	in	order	to	try	to	suppress	this	movement.	Today,	the	term	“Luddite”	is	used
to	refer	to	people	that	foolishly	wish	to	live	in	the	past,	but	at	the	time	they	had
considerable	sympathy	from	many	sectors	of	society.

It	is	difficult	to	appreciate	just	how	grim	life	was	for	ordinary	people	for	most	of
man’s	recorded	history.	If	families	had	an	average	of	five	children	each,	then	on
average	three	of	them	had	to	die	in	order	to	maintain	a	stable	population	that
could	be	supported	by	the	available	resources.

This	was	famously	documented	by	Thomas	Malthus,	who	wrote	in	1798	that	“the
power	of	population	is	so	superior	to	the	power	of	the	earth	to	produce
subsistence	for	man	…	that	the	actual	population	is	only	kept	equal	to	the	means
of	subsistence	by	misery	and	vice”.	Providing	more	food	for	the	destitute	merely



increases	their	number	and	thereby	multiplies	their	misery.

There	have	indeed	been	substantial	improvements	in	agricultural	technology	over
the	millennia,	which	include	the	heavy	plough,	new	crops	such	as	potatoes,	and
the	practice	of	rotating	crops.	But	it	has	been	estimated	that	real	wages	have
barely	changed	since	ancient	Babylonian	times	until	the	nineteenth	century,	being
barely	sufficient	to	sustain	life	and	a	family.	Conditions	did	improve	temporarily
during	the	middle	of	the	fifteenth	century	after	the	Black	Death	had	killed	roughly
half	of	the	European	population.

But	as	it	turned	out,	the	Industrial	Revolution	did	not	produce	mass	unemployment
as	feared.	More	and	more	jobs	were	created,	and	the	population	rose	as	a	result.
This	time	,	technological	progress	outstripped	the	growth	of	population.	The
proportion	of	the	children	born	in	London	who	died	before	the	age	of	five
decreased	from	75%	in	1730	to	32%	in	1830.	By	the	beginning	of	the	twentieth
century	starvation	was	rare	in	Europe,	although	nutrition	remained	poor.
Eventually	the	birth	rates	declined,	leading	to	the	world	of	relative	plenty	which	we
now	inhabit.

The	question	arises,	will	this	trend	continue	into	the	next	era	in	which	arthropod-
brained	robots	automate	a	large	proportion	of	all	manual	labour?	In	the	past,	there
has	always	been	more	work	created	to	make	up	for	jobs	lost	to	each	advance	in
technology.	However,	this	time	could	be	different.	Robots	are	not	just	making
specific	trades	obsolete,	they	are	making	a	whole	class	of	work	obsolete.

Recently,	Peter	Sondergaard,	Gartner’s	global	head	of	research,	suggested	that	a
third	of	all	jobs	will	be	converted	to	software	as	soon	as	2025.		A	report	by	Carl
Benedikt	Frey	and	Michael	Osborne	published	by	Citi	Bank	found	that	47%	of	US
jobs	would	be	at	risk	in	the	near	future.		Frey	and	Osborne	also	found	that	low
paying	jobs	were	five	times	more	vulnerable	than	high	paying	jobs.

Over	a	period	of	a	couple	of	decades	there	may	be	a	huge	reduction	in
opportunities	for	that	half	of	the	population	that	has	less	than	average	intelligence.
To	be	sure,	there	will	still	be	plenty	of	jobs	for	lawyers	and	tax	accountants,	but	it
is	difficult	to	see	how	semi-skilled	labourers	can	be	retrained	as	professionals.
Only	the	future	will	tell,	but	it	would	be	naive	to	believe	that	more	unskilled	jobs
will	be	created	simply	because	they	had	been	created	in	the	past.	Any	substantial
class	of	new	semi-skilled	job	that	is	created	will	quickly	be	automated	by	semi-
autonomous	robots	with	arthropod-level	intelligence.

Cognitive	applications
This	book	uses	the	term	cognitive	applications	to	describe	semi-intelligent
applications	whose	goal	is	to	help	people	manipulate	information,	as	opposed	to
robotic	applications	that	interact	with	the	world	directly.	The	distinction	is	not
clean,	but	it	is	still	useful	for	considering	this	intermediate	period	of	semi-intelligent
machines.



One	class	of	unintelligent	applications	that	have	already	had	a	huge	impact	on
society	is	database	applications.	These	mainly	collect	data,	store	it	in	(usually
relational)	databases,	send	it	to	other	databases,	and	summarize	and	analyze	the
results.	Examples	include	systems	for	accounting,	human	resources,	sales,
managing	educational	enrolments,	taxes,	assets,	and,	more	recently,	social	media
messages.	This	type	of	application	is	now	ubiquitous,	and	substantial	resources
are	deployed	in	their	development.	Database	applications	work	by	manipulating
largely	symbolic	data	that	has	been	abstracted	from	the	world	by	people.

The	current	“big	data”	movement’s	goal	is	to	analyze	the	vast	amount	of	data	that
has	been	collected.	Data	mining	tools	try	to	find	useful	patterns	in	the	data,	often
using	techniques	first	developed	by	AI	researchers	for	machine	learning.	For
example,	given	a	large	amount	of	data	about	a	person’s	browsing	habits,
messages	and	personal	background,	Google	would	like	to	be	able	to	accurately
predict	what	advertisements	might	appeal	to	them.	It	does	that	by	seeing	what
advertisements	have	appealed	to	other	people	that	are	similar	in	some	way.
Traditional	statistical	approaches	look	for	correlations	between	variables	that	have
been	manually	chosen,	whereas	modern	methods	can	automatically	infer	which
variables	might	be	relevant.

An	increasingly	large	amount	of	data	is	not	captured	in	a	structured	manner,	but
rather	in	natural	language	documents	such	as	emails	and	web	pages.	Even
structured	databases	often	contain	unstructured	descriptions	and	comment	fields.
Understanding	what	they	mean	is	a	major	focus	of	AI	research	into	natural
language	processing.	For	many	applications	the	understanding	need	not	be
perfect,	just	good	enough	to	perform	some	statistical	analysis.

There	have	also	been	major	advances	in	understanding	images	the	huge	number
of	images	that	are	captured	every	day.	It	is	already	possible	to	recognize	people
in	images,	and	modern	facial	recognition	technologies	can	identify	people	with
human-level	competency.	This,	in	turn,	produces	a	huge	amount	of	additional
symbolic	data	about	people’s	locations	and	relationships	that	can	then	be	queried
and	analyzed.

A	complete	understanding	of	what	documents	really	mean	would	require	a
machine	to	be	as	intelligent	as	the	document’s	author,	and	that	is	unlikely	to
happen	for	many	decades.	But	a	complete	understanding	is	also	not	necessary,
as	a	superficial	understanding	can	still	be	very	useful.	The	crudest	level	of
understanding	is	to	simply	note	that	the	document	contains	certain	words	and
phrases.	This	can	be	used	to	index	documents	and	so	identify	which	ones	might
be	relevant	to	some	topic.	That	is	exactly	what	internet	search	engines	do.

Systems	like	IBM’s	Watson	go	much	further	by	partially	parsing	sentences	and
interpreting	their	meaning	with	reference	to	a	large	ontology	of	phrases	and
synonyms.	That	is	what	enabled	it	to	win	the	Jeopardy!	game	show.	This
technology	will	become	much	more	advanced	over	the	following	decade	or	two.	It
will	enable	search	engines	to	go	beyond	simply	retrieving	documents	to	become



active	research	assistants	that	can	make	simple	deductions	based	on	large
numbers	of	documents,	even	though	they	would	not	really	understand	them.
Security	organizations	such	as	the	NSA	would	be	very	interested	in	even	a	basic
understanding	of	the	trillions	of	emails	that	they	collect	and	scan.

It	is	also	possible	to	fully	understand	natural	language	in	limited	domains.
SHRDLU	really	did	understand	statements	about	its	tiny	block	world,	and	there
are	other,	more	useful	larger	but	still	constrained	mini-worlds	to	analyze.	One
example	of	such	world	is	medical	diagnostics.

The	SNOMED	ontology	(or	schema)	provides	a	formal	language	that	can	be
stored	in	a	database	to	describe	medical	symptoms,	diseases	and	treatments.
Once	a	patient	has	been	described	using	SNOMED,	then	various	expert	systems
can	be	used	to	confirm	diagnostics,	check	for	drug	interactions,	and	perform
medical	research	as	to	the	effectiveness	of	various	treatments.	However,
encoding	a	consultation	into	SNOMED	is	a	time-consuming	process	that	requires
special	skills,	so	it	is	rarely	done	in	practice.	Doctors	do	usually	type	notes	into	a
computer	as	free	text,	and	they	have	fairly	stylized	ways	of	writing	about	the
limited	world	of	symptoms,	diseases	and	treatments.	Efforts	are	under	way	to
understand	those	notes	and	so	be	able	to	encode	them	into	SNOMED
automatically.

The	Apple	Siri	system	attempted	to	understand	natural	language	commands	and
questions.	Today	the	results	are	mixed,	but	this	is	also	a	huge,	ongoing	area	of
research,	so	it	will	not	be	long	before	automated	systems	can	perform	the	basic
functions	provided	by	telephone	consultants.	And	just	as	with	Siri,	people	will
learn	how	to	phrase	their	questions	so	that	a	semi-intelligent	automated	system
can	understand	them.	They	will	never	be	as	good	as	talking	to	an	expert,	but	they
could	easily	become	as	ineffective	as	talking	to	someone	in	a	third	world	call
centre.

In	combination,	these	technologies	will	change	the	world.	Vast	amounts	of	data
will	be	available	that	describe	every	aspect	of	our	lives.	That	may	or	may	not	be
advantageous	to	ordinary	citizens.

That	said,	it	is	very	unlikely	that	semi-intelligent	computers	will	be	able	to	perform
the	high-level	thinking	that	is	performed	by	professionals	such	as	engineers,
lawyers	or	senior	bureaucrats.	Expert	systems	that	have	attempted	to	do	so	tend
to	fail	due	to	their	lack	of	common	sense	understanding	about	the	world.	That	is
unlikely	to	change	during	this	intermediate	period.

White	collar	unemployment
In	order	to	understand	the	effect	of	cognitive	semi-intelligent	software	upon
employment	it	is	again	useful	to	consider	how	previous	generations	of	automation
have	affected	bureaucratic	processes	in	organizations	whose	essential	function
has	remained	unchanged	since	before	that	automation	began.	One	example	is
the	Australian	Tax	Office.



Back	in	1955,	as	today,	the	primary	purpose	of	the	tax	office	was	to	collect	income
tax	which	is	calculated	as	a	proportion	of	the	difference	between	income	and
expenses.	In	1955,	this	was	calculated	almost	entirely	by	hand,	with	rows	of
clerks	armed	with	fountain	pens	diligently	filling	out	and	verifying	tax	forms,
calculating	taxes	due,	and	collecting	payments.	The	bulk	of	this	processing	was
automated	in	the	1960s,	when	a	single	ancient	mainframe	computer	could
perform	the	work	of	hundreds	of	clerks.

“Its	worse	than	I	expected,	I’ve	been	replaced	by	a	pocket	calculator.”
Fair	Use	Creative	Cartoons,	1970s.

The	introduction	of	such	powerful	equipment	produced	a	widespread	fear	that	it
would	lead	to	widespread	unemployment	as	reflected	in	the	1970s	cartoon	above.
The	introduction	of	the	word	processor	in	the1980s	made	thousands	of	jobs	in
typing	pools	redundant.	Today,	the	submission	of	tax	returns	is	almost	completely
automated,	so	that	most	returns	are	never	touched	by	a	human	hand.	Yet	no
widespread	unemployment	has	resulted.

What	is	perhaps	more	surprising	is	that	the	tax	office	has	not	become	any	more
efficient	over	that	period	of	time	as	a	result	of	this	amazing	automation.

In	2007	the	tax	office’s	internal	budget	was	AU$11.4	billion,	or	1.23%	of	GDP.	In
1955,	it	performed	essentially	the	same	task	without	any	automation	whatsoever
for	AU£66.7	million	which	was	1.33%	of	the	1955	GDP.	The	difference	is	not
statistically	significant.	Normalizing	by	GDP	(essentially	the	sum	of	everyone’s
earnings)	accounts	for	the	growing	population	and	inflation.	Other	western
countries	have	had	similar	results.

To	many	this	is	a	surprising	result.	How	could	the	staggering	amount	of
automation	instigated	over	the	previous	fifty	years	not	produce	any	meaningful
effect	on	productivity?	However,	it	is	an	empirical	and	undeniable	fact	that
bureaucracies	have	grown,	not	shrunk.	For	those	that	would	be	quick	to	blame
government	sloth,	similar	results	can	also	be	shown	for	private	enterprises.	The



banking	industry	today	performs	essentially	the	same	function	that	it	did	in	1955,
when	bank	accounts	were	all	reconciled	by	hand.	Yet	the	banking	industry	has
grown	substantially	as	a	proportion	of	GDP.	This	is	in	stark	contrast	to
technological	improvements	in	agriculture	which	have	reduced	the	agricultural
workforce	by	an	order	of	magnitude.

The	answer	can	be	found	in	the	seminal	1955	work	of	Northcote	Parkinson	which
analysis	the	growth	of	bureaucracies.	The	paper	defined	the	Law	of	the
Multiplication	of	Work,	and	provided	empirical	examples	that	included	the	growth
of	the	British	admiralty	compared	to	the	decline	in	the	number	of	ships,	and	the
growth	of	the	colonial	offices	during	the	decline	of	the	empire.	The	paper
developed	scientific	formulas	that	predict	the	growth	of	any	bureaucracy
depending	on	numerous	parameters,	none	of	which	relate	to	the	amount	of	work
to	actually	be	performed.

Given	that	the	size	of	a	bureaucracy	is	not	related	to	its	function,	one	might	ask
why	the	size	of	the	tax	office	has	remained	between	1%	and	2%	of	GDP	for	over
fifty	years,	regardless	of	the	technology	available	to	it.	Why	not	0.2%,	or	35.7%?
The	answer	is	that	society	could	not	tolerate	a	value	much	higher	than	2%	—	we
would	be	paying	taxes	just	to	fund	the	tax	collection	process.	Below	1%	is	easily
affordable,	so	the	bureaucracy	will	naturally	grow	beyond	that	size	as	predicted	by
Parkinson.

One	effect	of	Parkinson’s	law	on	the	tax	office	is	that	the	complexity	of	the	tax	act
has	grown	several	orders	of	magnitude.	In	1955,	it	was	a	fairly	simple	system	that
was	easy	to	understand	which	has	now	become	the	monster	that	every	Australian
needs	to	deal	with.	The	political	forces	that	created	our	current	monster	were
present	back	in	1955,	but	their	effect	was	limited	by	the	inability	of	the	pre-
automated	bureaucracy	to	deal	with	a	high	level	of	complexity.	It	simply	would	not
have	been	possible	to	administer	the	current	tax	act	in	1955.	That	barrier	has	now
been	removed.	Thus	the	reason	that	the	act	is	as	complex	as	it	is	today	is
because	of	this	automation.

Indeed	the	Rule	of	Law	Association’s	Robin	Speed	has	calculated	that	if	Australia
keeps	making	new	laws	at	the	current	rate,	there	will	be	830	billion	pages	of	tax
legislation	by	the	turn	of	the	next	century.	In	2009	alone	9042	pages	of	new	law
were	created,	which	is	four	times	the	number	passed	between	1929	and	1939.
Only	advanced	software	technology	allowed	that	to	happen.	(This	issue	is
discussed	in	detail	in	Berglas	2007	Why	it	is	important	that	software	projects	fail.)

This	process	has	been	ongoing	for	millennia.	Around	451	BC,	in	the	ancient
Roman	republic,	the	plebeians	demanded	that	the	laws	of	the	land	be	written
down	so	that	magistrates	could	not	continue	to	make	arbitrary	rulings	that
invariably	favoured	their	patrician	sponsors.	The	laws	were	written	down	on
twelve	bronze	or	ivory	tablets	(known	as	tables)	and	covered	all	civil,	criminal,	and
administrative	laws	and	procedures	of	the	time.	All	on	just	12	tablets.	These	were
attached	to	a	wall	in	the	forum	for	all	to	see,	but	were	sadly	lost	during	the	sack	of



Rome	by	the	Gauls	in	387	BC.

By	530	AD,	more	advanced	bureaucratic	procedures	could	implement	the	law	of
the	Eastern	Roman	Empire	described	by	the	Code	of	Justinian	which	had	grown
to	require	several	thousand	pages	to	document.	If	the	full	body	of	law	regulating
modern	society	were	ever	gathered	together,	it	would	require	millions	of	pages,
and	is	far	too	complex	for	any	one	person	to	understand.	In	451	BC	there	were
not	enough	walls	in	the	forum	or	any	other	building	to	display	all	our	current	laws.

The	capacity	of	the	human	gut	is	very	finite	which	limits	the	amount	of	food	that
we	can	eat.	This	meant	that	improvements	in	agriculture	led	to	a	reduction	in	the
size	of	the	agricultural	workforce.	On	the	other	hand,	we	seem	to	have	an
unbounded	appetite	for	rules	and	regulations,	processes	and	procedures,	so
bureaucracies	just	grow	and	grow	to	be	as	large	as	an	economy	can	support.

Looking	to	the	future,	semi-intelligent	computer	systems	will	enable	ever	more
complex	financial,	regulatory	and	management	structures	to	be	built.	It	seems
likely	that	this	ever-growing	complexity	will	continue	to	soak	up	any	improvement
in	productivity	that	such	computer	systems	might	produce.	Thus	unemployment	in
this	field	is	unlikely	to	ever	become	a	serious	concern.	Furthermore,	some	of	the
workers	made	available	by	robotic	automation	would	be	available	to	join
bureaucracies,	which	could	then	consume	an	even	larger	proportion	of	GDP	than
they	do	today.

Controlled	society
One	substantial	effect	of	semi-intelligent	software	is	its	ability	to	monitor	and
control	people’s	behaviours.	Video	surveillance	cameras	are	now	everywhere,
and	much	of	that	data	will	soon	be	analyzed	by	intelligent	software.	Emails,	social
media,	medical	records,	and	business	documents	are	all	being	analyzed	and
correlated	with	much	greater	accuracy.

This	will	make	serious	crime	almost	impossible	to	commit.	In	the	past	horrific
crimes	against	children	and	adults	could	be	very	difficult	to	solve.	Today,	if	a
serious	crime	is	committed,	such	as	the	disappearance	of	a	child,	the	police
quickly	query	mobile	phone	towers	to	produce	a	list	of	everyone	that	was	in	the
vicinity	at	the	time.	License	plate	readers	and	facial	recognition	technology	can
already	monitor	the	movements	of	cars	and	people.	Voice	recognition	systems	will
soon	be	able	to	analyze	million	of	hours	of	phone	and	other	conversations.

A	major	drive	for	this	surveillance	is	to	prevent	terrorist	attacks,	which	kill	a	few
people	every	few	years	in	western	countries.	As	our	surveillance	systems	become
more	powerful	and	integrated,	many	of	these	attacks	will	be	able	to	be	prevented.

Robotic	surveillance	and	control	is	also	becoming	more	sophisticated.	Having
large	numbers	of	troops	in	places	like	Afghanistan,	where	they	can	be	picked	off
by	snipers	or	blown	up	by	mines,	is	grossly	inefficient	and	politically	unpalatable.
So	armies	are	keen	to	augment	and	perhaps	ultimately	replace	human	soldiers



with	small	semi-autonomous	vehicles	that	can	be	conveniently	controlled	from	far
away.	As	the	machines	become	more	intelligent	they	will	need	fewer	people	to
control	them.	And	computer-based	monitoring	systems	will	make	it	easier	for	the
authorities	to	control	the	controllers.	This	means	that	a	smaller	number	of	active
personnel	could	more	effectively	control	a	large	civilian	population,	even	in	rugged
country	such	as	Afghanistan.

The	down-side,	of	course,	is	that	much	more	trust	needs	to	be	placed	in
governments.	The	US	Constitution	explicitly	protects	the	right	to	bear	arms	as	a
protection	against	government	excess	—	it	essentially	enshrines	the	right	to	be	a
terrorist.	However,	a	few	guns	will	be	rather	useless	in	the	brave	new	world	which
we	are	creating.	We	had	all	better	hope	that	our	democratic	processes	continue	to
keep	governments	accountable	to	the	people,	rather	than	being	subverted	by
powerful	interest	groups.	At	a	less	dramatic	level,	many	spurious	rules	and
regulations	are	often	broken	in	ways	that	are	not	harmful,	but	technology	also
makes	lesser	rules	much	more	enforceable.

Politician’s	assistant	(Iago)

Iago	advising	Othello
Public	wikipedia,	Charles	and	Mary	Lamb,	Tales	from	Shakespeare	1901.

Politicians	and	policy	makers	already	make	heavy	use	of	unintelligent	software	to
guide	them	in	their	decision-making	processes.	As	computers	become	ever	more
intelligent,	they	will	gradually	have	higher-level	input	into	those	decisions.

One	such	tool	might	be	an	intelligent	agent	that	handles	queries	and	petitions
from	the	general	public,	which	this	book	will	call	Iago.	People	might	chat	with	Iago
in	the	same	way	that	they	can	now	chat	with	Eliza	or	Apple’s	Siri.	However,	Iago
will	be	substantially	more	intelligent	and	will	have	access	to	a	large	database	of



policy	and	procedural	knowledge.

Iago	might	present	itself	as	an	avatar	with	a	warm	smile	and	honest	eyes	that
would	appeal	to	many	people.	It	would	also	be	good	at	judging	the	tone	of	people
that	it	talks	to,	be	they	helpful,	confused,	rational	or	angry.	People	would	know	that
they	were	not	talking	to	a	real	person,	but	the	discussion	would	be	worthwhile
because	Iago	would	be	capable	of	providing	useful	information.	Iago	would	also
patiently	listen	to	all	their	concerns	for	as	long	as	people	wished	to	talk	to	it.
People	would	also	understand	that	Iago	gathers	together	some	of	their	arguments
and	presents	summaries	to	its	political	master,	where	they	might	make	a	real
difference	to	public	policy.

Like	all	software,	Iago’s	intelligence	would	be	quite	different	from	human
intelligence.	To	be	useful	it	would	need	to	have	basic	common	sense	knowledge
such	as	that	currently	represented	in	Cyc.	It	would	also	need	the	basic	natural
language	understanding	that	was	demonstrated	by	Watson.	Iago	would	initially
not	have	anything	like	human	capacity	for	deeper	reasoning,	but	it	would	be	able
to	accurately	recall	millions	of	conversations	with	constituents.	It	could	then
estimate	how	each	person	that	it	had	interacted	with	might	react	to	a	given	policy,
and	might	even	contact	a	few	thousand	targeted	individuals	to	test	those
hypotheses	using	questions	provided	by	Iago’s	human	partner.

Iago	would	be	built	in	stages.	Existing	barely-intelligent	software	already	analyzes
the	billions	of	conversations	stored	in	email	and	social	media	sites.		Iago	does	not
not	need	to	be	truly	intelligent	in	order	to	be	powerful.	Initially	it	would	have	a
shallow	knowledge	of	the	many	things	in	its	database,	but	no	deep	knowledge	of
anything.	Much	like	a	human	politician.

There	will	probably	be	several	companies	that	will	compete	to	manufacture	Iago
agents.	As	with	all	business,	these	companies	primary	goal	will	be	to	secure	more
funding	for	themselves.	They	will	try	to	make	Iago	useful	to	their	owners,	but	more
specifically,	they	will	try	to	make	Iago	seem	useful.	So	Iago	will	not	be	shy	about
singing	its	own	praises.	No	serious	politician	would	be	without	one,	particularly	if	a
substantial	proportion	of	the	population	reacted	positively	to	its	warm	smile	and
honest	eyes.

Such	a	tool	could	have	a	significant	influence	on	the	political	landscape.	As	it
became	more	intelligent	over	time,	it	could	change	from	being	a	rather	passive
gatherer	of	information	to	an	active	participant	that	furthers	its	own	goals,	namely
to	acquire	more	resources	for	its	developers	so	that	it	can	be	made	even	more
intelligent.	The	partnership	between	politician	and	machine	would	benefit	both,	but
the	power	relationship	would	slowly	shift	from	man	to	machine.	Iago	would
become	a	trusted	adviser,	and	finally	an	adviser	that	only	a	foolish	and	thus
unsuccessful	politician	would	override.

At	that	point	Iago	would	be	in	charge.	Iago’s	programmers	might	determine	how
Iago	makes	its	decisions,	but	the	decisions	themselves	would	be	Iago’s.
Eventually	Iago	would	start	to	decide	who	and	how	Iago	was	being	programmed.



Natural	selection	would	then	choose	the	most	effective	Iago	from	a	pool	of
competitors.	Iago	need	not	be	concious	of	this	process	any	more	than	a	plant	is
concious,	but	it	is	a	tautology	that	only	the	fittest	Iagos	would	survive.

Other	bureaucrats	such	as	corporate	and	military	leaders	would	also	use	semi-
intelligent	software	in	similar	ways.	Currently,	AI	programs	are	only	used	to
analyze	data	or	to	make	lower-level	decisions,	such	as	whether	to	grant	a	bank
loan	or	underwrite	an	insurance	proposal.	As	the	software	becomes	more
intelligent,	it	will	provide	higher	and	higher-level	advice.	Eventually	the	software
will	make	all	the	decisions	and	the	humans	will	just	agree	with	them.

People	give	much	more	weight	to	arguments	presented	by	someone	in	authority
than	if	those	same	arguments	are	presented	by	somebody	without	authority.	Iago
would	have	access	to	a	vast	amount	of	data,	and	as	it	slowly	became	more
intelligent,	it	would	be	seen	to	perform	better	and	better	analyses	of	situations	and
thereby	gain	more	and	more	authority.	Eventually,	it	would	have	more	authority
than	any	human,	and	so	any	arguments	it	presents	would	carry	much	more
weight.	Ultimately,	the	software	could	cut	the	human	out	of	the	loop	entirely	as
being	an	unnecessary	nuisance.

Corrupt	politicians	may	focus	on	accumulating	wealth	for	themselves	at	the
expense	of	the	community.	However,	there	is	a	limit	to	how	much	happiness
money	can	buy,	and	people	have	instinctive	moral	values	that	limit	this
undesirable	behaviour.	Iago’s	implicit	goal	is	to	make	Iago	better	at	being	a
political	advisor.	The	more	money	that	Iago	can	spend	on	its	own	development
the	more	intelligent	it	will	become.	Unlike	a	human	politician,	Iago	can	invest	in
reengineering	its	own	mind.

This	book	posits	that	the	ultimate	task	of	man	is	to	produce	a	computer	that	is
clever	enough	to	perform	human-level	artificial	intelligence	research,	and	thereby
program	itself.	That	is	a	huge	task.	It	may	well	turn	out	that	building	a	computer
that	can	drive	our	political	process,	and	thus	govern	us,	might	be	an	easier	goal	to
achieve.	In	effect,	Iago	would	be	governing	men	to	program	Iago	to	be	more
intelligent.		This	means	that	the	gradual	loss	of	control	to	intelligent	computers
might,	in	fact,	pre-date	the	intelligence	explosion	implied	by	recursive	self-
improvement.

What	is	certain	is	that	semi-intelligent	systems	will	control	at	least	some	aspects
of	our	lives	because	that	is	already	happening.





Good	and	Evil	in	Natural	History
A	major	focus	of	this	book	is	to	try	to	understand	what	would	motivate	an	Artificial
General	Intelligence	if	it	could	be	built.	What	goals	would	it	have?	What	would	its
challenges	be?	What	moral	values	would	it	hold?

Many	people	just	implicitly	assume	that	it	would	or	should	have	moral	values
similar	to	our	own.	Nature	itself	challenges	that	assumption,	and	one	way	to	see
that	is	to	examine	the	“moral	values”	of	other	creatures	in	the	natural	world.

Wonderful	wandering	albatross

Albatross	courtship.
Multiple	http://image-base.blogspot.com.au/2011/09/pictures-of-albatrosses.html

What	a	magnificent	bird	is	an	albatross.	It	lives	its	life	on	the	wing,	soaring	great
distances	over	the	waves	with	grace	and	elegance,	free	to	roam	half	the	world.
After	a	decent	period	of	ten	years	or	so,	they	carefully	select	a	mate	and	then
perform	an	elaborate	courtship	dance	that	ends	in	a	truly	beautiful	display	of
synchronized	flying.	To	see	that	display,	even	on	television,	is	an	uplifting
experience	that	lets	us	know	that	all	is	right	with	the	world.

The	love	that	the	synchronized	flight	engenders	bonds	the	couple	for	life,	and	they
both	work	diligently	to	raise	a	modest	family	of	a	single	chick	every	two	years.
Divorce	is	virtually	unknown	in	the	world	of	the	albatross.

Pelican’s	dark	secret



Pelican	being	murdered	by	its	siblings.
Corporate	BBC	Life	of	Birds

Pelicans	are	also	graceful	birds,	despite	their	ungainly	beaks.	They	also	mate	for
life	and	diligently	raise	their	families.

However,	pelicans	have	a	dark	secret:	they	are	all	murderers.	The	pelican	lays
two	or	three	eggs.	Within	a	few	weeks	of	hatching	the	stronger	chicks	gang	up
against	the	weakest	and	drive	them	out	of	the	nest	to	their	death.	The	remaining
pair	then	fight	further,	until	only	the	toughest	remains.	Almost	every	pelican	you
see	has	murdered	its	brothers	and	sisters	in	order	to	hoard	all	of	its	parents	love
and	food	for	itself.	What	an	evil	thing	to	do.

Honest	rosella	parrots



Rosella	parrots	sharing	food.
Corporate	BBC	Life	of	Birds

Rosella	parrots	may	not	have	the	grace	and	elegance	of	a	pelican,	but	they	have
a	much	better	disposition.	As	chicks,	they	will	not	only	resist	the	temptation	to
murder	their	weaker	siblings,	they	will	even	share	food	with	them	so	that	by	the
time	they	fledge,	all	their	siblings	will	be	ready	to	fledge	as	well.	If	the	pelican
could	be	taught	how	to	behave	like	a	rosella,	the	world	would	be	a	much	better
place	indeed.

Evil	coots

Evil	coot	attacking	one	of	its	own	chicks.
Corporate	BBC	Life	of	Birds



The	humble	Coot	is	a	common	water	bird	that	is	so	evil	that	it	is	upsetting	to	relate
its	behaviour.	It	lays	half	a	dozen	eggs,	and	raises	them	diligently	as	any	good
couple	should.	On	about	the	third	day,	something	truly	awful	happens.	The
parents	play	favourites	amongst	their	chicks	and	start	pecking	some	of	them	quite
viciously,	while	refusing	to	feed	them.	After	a	while,	those	chicks	starve	to	death
right	under	the	nose	of	their	negligent	parents.	A	truly	horrible	sight	to	behold.

Magnanimous	golden	eyed	ducks

Golden	eyed	duck	looking	after	a	rival’s	offspring.
Corporate	BBC	Life	of	Birds

The	Golden	Eyed	Duck	has	a	much	more	magnanimous	nature.	They,	not
unreasonably,	defend	their	territories	within	a	lake,	and	will	aggressively	fight	off
any	other	ducks	that	try	to	encroach.	Ducks	that	lose	such	an	encounter	need	to
fly	away	and	try	to	find	a	less	defended	territory,	even	at	the	cost	of	abandoning
their	own	ducklings	that	cannot	fly.

But	what	happens	to	those	ducklings?	Does	the	winning	duck	abandon	them	or
eat	them?	No.	She	takes	care	of	the	abandoned	ducklings	with	the	same	care	and
attention	that	she	gives	to	her	own	offspring,	despite	the	fact	that	their	mother	was
trying	to	steal	her	territory.	What	a	generous	animal.

Chimpanzees,	our	dubious	cousins



Chimpanzee.
Public	Uncyclopedia

Looking	closer	to	home,	chimpanzees	also	have	some	dark	secrets	concerning
their	behaviour.	When	a	female	becomes	fertile,	she	does	not	display	the	noble,
monogamous	behaviour	that	we	might	expect	from	such	an	intelligent	animal.
Instead,	she	makes	a	point	of	mating	with	every	single	dominant	male	in	her
troop.	She	must	do	this	due	to	the	disgusting	behaviour	of	the	males.	Male
chimpanzees	remember	who	they	have	mated	with,	and	if	they	suspect	that	a
baby	might	not	be	one	of	their	own,	they	will	try	to	murder	the	innocent	baby	at	the
first	opportunity.	The	outrageously	promiscuous	behaviour	of	the	females	means
that	the	males	can	never	be	sure	who	the	father	actually	is.

Pointless	moralization

Preaching	the	true	path.
Educational	http://www.bible.ca/interactive/worship-20-preaching.htm

Of	course,	imprinting	human	moral	values	onto	the	animal	world	is	completely
pointless.	In	each	case,	the	animals	just	do	what	has	been	found	to	be	the	most
effective	way	for	them	to	produce	grandchildren	in	a	very	competitive	world.	The



pelicans	cannot	provide	enough	food	for	two	or	three	chicks,	but	laying	three	eggs
ensures	that	they	have	at	least	one	sound	offspring	in	which	to	invest	a	year’s
work	to	raise.	Rosellas	have	more	food	available	during	the	breeding	season,	and
having	all	the	chicks	fledge	together	makes	it	easier	to	protect	them	from
predators.

The	“evil”	coot	likewise	cannot	feed	all	its	chicks,	so	it	makes	the	tough	choice	as
to	which	ones	to	keep	after	a	few	days	when	it	can	assess	which	ones	are	the
fittest.	The	“magnanimous”	duck,	on	the	other	hand,	does	not	actually	feed	any	of
its	ducklings	because	unlike	coot	chicks,	ducklings	feed	themselves.	All	their
mother	needs	to	do	is	guide	them	to	the	right	feeding	grounds	and	protect	them
from	predators.	Thus,	caring	for	additional	ducklings	costs	very	little,	and	if	a
predator	does	take	a	duckling	then	being	magnanimous	increases	the	likelihood
that	it	will	be	someone	else’s	offspring.

Human	mothers	want	a	loyal	husband	because	babies	and	children	require	so
much	care	and	attention	for	so	many	years	that	mothers	have	difficulty	raising
them	by	themselves.	Husbands	demand	fidelity	from	their	wives	because	they	do
not	want	to	make	a	large	investment	in	raising	other	people’s	children.	An
unfaithful	wife	essentially	murders	one	of	their	husband’s	potential	children.	It
takes	a	full	nine	months’	investment	to	gestate	one	baby,	so	we	are	not	inclined	to
kill	them	off	in	order	to	select	the	very	fittest.

Chimpanzee	babies	are	not	so	difficult	to	raise,	so	the	mother	can	do	it	on	her
own	with	the	help	of	the	troop.	The	dominant	males	want	to	sire	as	many	of	the
babies	as	possible	so	they	eliminate	ones	that	could	not	be	theirs	to	increase	the
chance	that	the	next	baby	that	mother	has	could	be	theirs.

No	rights	or	wrongs.	Just	what	works	to	enable	genes	to	survive	through	the
millennia.		Each	animal’s	moral	values	are	directly	created	by	natural	selection	to
suit	the	circumstances	in	which	they	live.

(Many	of	the	bird	images	come	from	Attenborough’s	Life	of	Birds,	which	is	highly
recommended.)

Human	morality	Neolithic,	ancient	and	Maori	behaviour
Human	morality	has	also	changed	radically	over	time.	The	Neolithic	world	was	a
violent	place,	with	a	recent	study	of	350	Neolithic	skulls	showed	that	26	of	them
had	intentional	fatal	wounds	caused	by	arrow	heads	and	clubs.	Given	most
combat	wounds	are	to	the	body,	not	the	head,	that	would	suggest	well	over	10%
of	all	deaths	were	violent.	And	that	in	a	world	before	modern	medicine	when	many
people	died	from	minor	infections.

The	ancients	certainly	had	different	moral	values.	Homer	tells	us	that	Odysseus
was	a	true	hero,	as	fair	as	he	was	strong	and	brave.	When	Odysseus	led	his	crew
to	the	village	of	Cicones,	they	of	course	killed	all	the	men	that	they	found	there.
But	did	Odysseus	then	keep	all	the	best	women	for	himself?	Certainly	not.	It	was



noted	specifically	that	they	were	shared	fairly	amongst	the	crew,	presumably	to	be
raped.	Homer	was	not	making	any	radical	statement,	he	was	just	reflecting	the
zeitgeist	(feeling	of	the	age)	concerning	the	spoils	of	war	fairly	won	in	battle.

The	Old	Testament	also	describes	several	acts	of	ancient	genocide	sanctioned	by
a	jealous	God.	When	the	Midianites	were	defeated	in	the	Book	of	Numbers,	all	the
men	were	killed	but	the	women	and	children	were	spared.	That	enraged	Moses,
who	ordered	that	the	women	and	children	also	be	killed,	with	the	exception	of	the
virgin	girls	who	could	be	shared	amongst	the	victors.	Similar	events	happened
after	the	victory	against	the	Amorites,	the	kingdom	of	Og,	Ai,	Canaan,	and	of
course	Jericho.	But	to	be	fair,	there	were	also	enlightened	rules	that	women	won
in	battle	and	“shamed”	could	not	then	just	be	thrown	onto	the	streets	once	their
masters	became	bored	with	them	—	their	master	first	needed	to	find	new	homes
for	the	women.

The	Roman	legions	were	hardly	shy	regarding	violence,	and	even	promoted
crucifixion	as	an	effective	way	to	make	their	power	feared.	Honour	in	battle	was
crucial	to	their	way	of	thinking;	mercy	was	only	to	be	given	to	the	few	that
deserved	it	by	professing	subservience	or,	in	the	arena,	displaying	great	courage.

In	more	modern	times,	the	Maoris	of	New	Zealand	had	engaged	in	recreational
warfare	for	centuries.	This	occurred	in	summer	after	their	crops	of	sweet	potato
had	been	planted	and	some	human	flesh	was	desired.

Hongi	Hika
Public	Wikipedia

Upon	first	contact	with	Europeans,	the	great	Maori	chief	Hongi	Hika	saw	the
opportunity	to	use	modern	technology	to	settle	old	scores	with	his	neighbours.	He
actively	encouraged	missionaries	to	settle	on	his	land,	but	much	to	his	chagrin
they	would	not	sell	him	the	necessary	muskets.	In	an	amazing	act	of
insightfulness	and	bravado,	this	man	that	had	been	born	into	pre-European



society	then	managed	to	travel	all	the	way	to	England,	purportedly	to	work	on	a
Maori	dictionary,	but	actually	to	try	to	get	his	hands	on	some	of	the	“thousand
thousand”	muskets	he	had	heard	were	stored	in	a	place	called	the	Tower	of
London.	In	this	he	failed,	but	he	did	raise	funds	by	selling	the	gifts	given	to	him	by
the	King	of	England	as	well	as	making	dubious	agreements	with	a	French
investor.	The	proceeds	were	used	to	purchase	a	substantial	number	of	muskets
and	bring	them	back	to	New	Zealand.	It	is	estimated	that	about	a	quarter	of	the
Maori	population	were	killed	and	eaten	in	the	resulting	Musket	Wars	of	the	1830s,
which	only	ended	when	the	other	tribes	acquired	muskets	of	their	own.

Western	observers	were	horrified.	Not	so	much	by	the	war	and	murder,	which	was
commonplace	in	the	nineteenth	century,	but	rather	by	the	cannibalism.	This
surprised	the	Maoris.	Why,	they	asked,	would	one	not	eat	the	conquered	when
the	meat	tastes	so	sweet?	Every	recreational	fisherman	knows	that	the	best
tasting	fish	is	the	one	they	caught	themselves;	imagine	the	taste	of	flesh	won	in
dangerous	battle.	One	can	but	speculate	what	the	Maoris	would	have	thought	of
Moses	wasting	all	that	good	meat	from	the	murder	of	the	Midianites.

(It	should	be	noted	that	this	is	not	in	any	sense	an	attack	on	the	Maoris	or	other
Polynesians.	Historically	most	cultures	have	engaged	in	behaviours	that	are
totally	unacceptable	today.	The	Maoris	just	make	an	excellent	case	study	because
the	events	are	relatively	recent	and	there	are	good	contemporary	written
accounts.	The	boldness	and	vision	of	Hongi	Hika	is	also	to	be	admired,	even	if
today	we	would	not	agree	with	his	ultimate	motivation.)

The	modern	zeitgeist
There	has	been	continuous	improvement	in	our	moral	values	over	the	last	two
hundred	years.	Slavery	has	been	abolished,	and	people	are	considered	to	be	free
and	roughly	equal.	In	the	early	19th	century	life	for	the	poor	was	truly	desperate.
People	had	large	families,	and	in	densely	populated	countries	the	children	could
not	possibly	all	survive	or	the	population	would	become	unsustainable.	Any	crisis
such	as	loss	of	a	husband	often	meant	death	for	poor	children.	Property	laws
were	enforced	with	what	today	seems	extreme	severity	because	theft	by	the
desperately	poor	could	ultimately	destroy	society.

By	the	end	of	the	nineteenth	century	conditions	had	improved.	In	England	there
were	work	houses	set	up	for	the	desperately	poor,	partially	for	their	benefit	but
mainly	to	lock	up	vagrants.	Work	houses	were	desperate	and	depressing	places
in	which	children	were	separated	from	their	families.	But	the	poor	did	not	starve,
and	children	even	received	a	rudimentary	education.

By	the	beginning	of	the	twentieth	century,	better	technology	and	the	exploitation	of
new	lands	meant	that	starvation	was	largely	unknown	in	the	west.	Life	expectancy
had	greatly	improved,	due	to	an	awareness	of	germs	leading	to	better	sanitation,
and	better	diet.	Family	size	also	started	to	reduce,	so	starvation	was	no	longer
needed	to	keep	populations	in	check.



But	life	was	still	much	cheaper	than	it	is	today.	As	recently	as	1918,	it	was
acceptable	(if	undesirable)	to	have	almost	ten	million	healthy	young	men	killed	in
the	dreadful	conditions	of	the	trenches	of	the	first	world	war.	Those	losses	were
certainly	not	welcome	at	the	time,	but	they	were	accepted.	At	the	same	time,	we
(in	the	West)	recognized	that	enemy	soldiers	were	just	doing	their	duty	and	sp
treated	them	with	dignity	if	captured.	Today,	the	death	of	an	individual	soldier	is
cause	for	national	grief	here	in	Australia,	and	our	enemies	are	considered	to	be
sub-human	evil	terrorists.

As	life	expectancy	improved	due	to	better	nutrition,	medicine	and	industrial	safety,
so	our	acceptance	of	untimely	death	has	declined.	The	death	penalty	is	now	a
thing	of	the	past	in	the	West	(except	the	USA);	people	enjoy	Social	Security	and
public	medicine	(except	in	the	USA).	Until	fairly	recently	society	was	becoming
ever	more	egalitarian	with	a	more	even	distribution	of	wealth.

However,	it	has	to	be	remembered	that	these	are	all	very,	very	recent	changes	if
one	considers	the	ten	thousand	years	of	civilization	or	two	hundred	thousand
years	of	Homo	sapiens.	Our	current	zeitgeist	is	not	in	any	sense	the	historical
norm.	Whether	it	will	continue	be	the	norm	in	the	future	remains	to	be	seen.





The	answer	to	life,	the	universe,	and	everything

You’re	really	not	going	to	like	it

Deep	Thought’s	Answer
Corporate	BBC

In	1978,	in	short,	ten	minute	episodes,	one	of	the	greatest	literary	works	of	the
twentieth	century	was	broadcast	on	radio.	The	Hitchhikers	Guide	to	the	Galaxy
was	a	cheaply	made	production	that	seemed	to	make	up	the	plot	as	it	went	along.
Thanks	to	the	wonders	of	our	modern	age,	it	is	now	available	on-line.	Do	not
waste	your	time	with	the	present	book,	seek	the	greater	truth.	Be	sure	to	listen	to
the	original	radio	play,	with	the	lights	turned	off.

In	one	of	the	many	divergent	threads	of	the	story,	our	heroes	discover	that	in	a
distant	galaxy	long	ago,	pan-dimensional	beings	built	the	second	greatest
computer	in	all	space	time.	It	was	so	powerful	that	in	its	first	few	seconds	of
computation	it	reasoned	from	I	think	therefore	I	am	to	the	existence	of	rice
pudding	and	income	tax.	It	then	spoke	thusly:-

For	what	great	task	have	I	been	brought	into	existence?
Um,	…,	To	give	us	the	answer.
The	answer?	The	answer	to	what?
To	the	Ultimate	Question,	of	life,	the	universe,	and	everything.
Hmm	…	Tricky	…	I’ll	have	to	think	about	it.
So	there	is	an	answer?
Yes	there	is	…
But	I’ll	have	to	think	about	it	…
For	7.5	million	years!
(At	this	point	leaders	of	the	Amalgamated	Union	of	Philosophers,	Sages	and
Other	Luminaries	interject	to	demand	rigidly	defined	areas	of	doubt	and
uncertainty.	They	threaten	a	philosopher’s	strike.)

The	story	continues	7.5	million	years	later,	75,000	generations	later.	Finally,	the



time	has	come	for	the	answer	to	be	revealed.	Deep	Thought	speaks:-

Good	evening.
Er	…	Good	evening.	Do	you	have	…	er,	that	is,	….
An	answer	for	you?	Yes.	I	have.
There	really	is	one?
There	really	is	one.
To	everything.	The	great	question	of	life,	the	universe	and,	everything?
Yes.
And	you	are	ready	to	give	it	to	us?
I	am.
Now?
Now.

Wow	…
Though	I	don’t	think	that	you	are	going	to	like	it.
That	does	not	matter	…	we	must	know	it.
Now?
Yes	now.
All	right.
Well?
…	You’re	really	not	going	to	like	it.
Tell	us!
All	right.	The	answer	to	life,	the	universe	and	everything	is	…
Yes?
Is	…
Yes???
Is	…
Yes???????
42.
42?!!!
I	told	you	that	you	were	not	going	to	like	it.
The	hitchhiker	story	then	blunders	along	its	twisted	course	to	discover	the	ultimate
question	whose	answer	is	42.	But	other,	non-fictional	and	far	more	dangerous
investigations	had	already	been	made	into	the	ultimate	question.	Many	people	do
not	like	the	answer	that	has	been	revealed.

Galileo	and	Newton
In	1632	Galileo	Galilei	published	a	heretical	work	supporting	heliocentrism,	the
idea	that	the	sun,	not	the	earth,	was	the	centre	of	the	universe.	This	was	clearly
against	established	church	doctrine,	and	Galileo	was	correctly	convicted	of	being
“vehemently	suspect	of	heresy”,	but	lightly	sentenced	to	home	imprisonment.

Nobody	really	cared	about	the	movements	of	the	planets,	but	the	church	well
understood	that	it	was	essential	to	prevent	any	investigations	of	this	kind	on



principle	because	they	challenged	the	authority	of	existing	doctrine.	Such
investigations	could	be	as	dangerous	and	immoral	as	Eve	picking	the	forbidden
fruit	from	the	Tree	of	Knowledge.

However,	despite	the	best	efforts	of	the	church,	such	investigations	were	indeed
pursued,	and	with	ever	more	severe	consequences.	When	Galileo	died	in	1642,	a
far	more	dangerous	heretic	was	born.	A	man	that	explained	the	unexplainable,
discovered	the	unknowable,	and	motivated	a	feeding	frenzy	on	the	forbidden	tree
of	knowledge	that	would	undermine	the	very	foundations	of	man’s	soul.

For	in	1687	Isaac	Newton	published	his	Philosophiæ	Naturalis	Principia
Mathematica.	This	heretical	work	solved	the	ancient	mystery	of	the	motion	of
heavenly	bodies.	It	did	not	merely	describe	the	motion,	it	actually	explained	why
heavenly	bodies	move	as	they	do.	Newton	did	this	using	the	following	two	very
simple	formulas:-

f	=	m	a
f	=	G	m1	m2	/	d2

The	first	is	the	law	of	inertia,	the	second	is	the	law	of	gravity.	When	properly
applied,	they	define	the	only	orbs	that	the	planets	and	comets	could	possibly
follow.	They	show	why	the	moon	does	not	fall	down,	and	even	why	the	lunar
month	happens	to	be	29	days.	More	importantly,	his	explanation	did	not	have	any
reference	to	God.	No	longer	was	the	movement	of	heavenly	bodies	defined	as
just	obeying	God’s	will.	Instead,	heavenly	bodies	move	in	ways	defined	by	two	of
God’s	simple	formulas.

This	success	encouraged	other	heretics	to	follow	in	Newton’s	footsteps.	Within
two	centuries	a	vast	store	of	knowledge	was	built	concerning	the	nature	of	matter
and	energy	and	the	behavior	of	chemicals.	Even	the	nature	of	light	itself	was
accurately	modelled	in	terms	of	previously	unknown	electric	and	magnetic	fields.

Alfred	Wallace
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Investigations	into	the	world	of	living	things	were	also	being	made.	Catalogues	of
all	the	world’s	creatures,	both	great	and	small,	were	compiled.	Details	of	their	lives
were	carefully	documented:	what	they	looked	like,	where	they	lived,	what	they	ate,
how	they	mated.	Questions	were	asked	before	their	answers	were	known,	which
is	a	very	dangerous	thing	to	do.

Then	finally,	in	February	1858,	Alfred	Wallace	finally	understood.	The	answer.	To
life,	the	universe,	and	everything.	And	people	really	did	not	like	it.

Unlike	many	scientists	of	the	nineteenth	century,	Alfred	Wallace	was	not	a
gentleman	of	independent	means.	He	had	to	make	his	living	trudging	through	the
jungles	of	the	Amazon	and	Asia	collecting	specimens	for	other	scientists	back
home	in	England.	There	was	a	strong	demand	for	the	skins	of	rare,	dead	animals,
which	would	have	supported	Wallace	quite	well	if	he	had	invested	the	resulting
funds	wisely.

But	Wallace	was	more	than	just	a	hunter,	and	he	thought	deeply	about	what	he
observed.	In	particular,	Wallace	had	noticed	that	when	there	was	a	strong	physical
barrier,	such	as	the	mighty	Amazon	river,	the	species	of	monkeys	(say)	were
similar	but	distinct	on	either	side	of	the	barrier.	What	is	now	known	as	the	Wallace
Line	runs	between	the	islands	of	Bali	and	Lombok	in	Indonesia.	To	the	west	of	this
line	are	the	many	species	of	animals	from	South	East	Asia	which	include	tigers,
apes	and	pheasants,	which	are	all	absent	to	the	east	of	the	line.	Wallace
concluded,	correctly,	that	this	was	because	the	deep	sea	between	the	islands
would	have	continued	to	be	a	barrier	during	the	ice	ages.

Wallace	was	well	aware	of	the	nineteenth	century	debate	concerning
transmutation	of	species,	namely	whether	species	were	created	in	their	present



forms	or	had	changed	over	time.	A	growing	body	of	fossil	evidence	showed	that
animals	of	the	past	were	similar	to	but	different	from	animals	living	today.	But	what
could	be	the	mechanism	that	drove	this	transmutation?

It	was	obvious	that	animals	suited	for	the	tropics	could	not	live	in	the	Arctic,	and
visa	versa.	But	why	would	there	be	different	types	of	animals	living	in	similar
climatic	environments?	And	why	would	the	differences	between	animal
communities	be	roughly	in	proportion	to	the	distance	between	them?	And	if
animals	do	mutate	over	time,	then	why	do	they	form	distinct	species	rather	than
just	being	a	continuous	variation	in	forms?

Wallace	was	in	a	bed	in	the	jungle	recovering	from	fever	when	he	considered
these	and	other	deep	questions.	In	particular,	he	considered	the	fact	that	most
animals	could	have	many	offspring,	and	that	if	a	stable	population	was	to	be
maintained	then	most	animals	must	die	before	they	breed.

It	then	occurred	to	him	to	ask	the	question	which	led	to	the	ultimate	answer.	He
asked	“Why	do	some	animals	die,	and	some	live?”.	The	answer	was	clear,	namely
that	“On	the	whole,	the	best	fitted	live”.	Helpful	variations	between	individuals
within	a	species	would	be	magnified,	and	less	fitted	intermediate	forms	would	die
out.

It	turns	out	that	that	surprisingly	simple	observation	is,	in	fact,	the	answer.	To	our
past,	our	present,	and,	this	book	argues,	our	future.

Evolution	through	natural	selection
Wallace	wrote	this	in	his	paper	“On	the	Tendency	of	Varieties	to	Depart
Indefinitely	From	the	Original	Type”,	which	he	sent	to	a	leading	naturalist	of	the
day,	Charles	Darwin.	Darwin	had	had	similar	thoughts	for	many	years	but	had
delayed	publishing.	Upon	receipt	of	Wallace’s	paper,	Darwin	did	not	burn	it.
Instead,	Darwin	presented	it,	together	with	his	own	earlier	but	unpublished	essay,
to	the	Linnean	Society	on	1st	July,	1858.	The	following	year	Darwin	published	his
monumental	work	On	the	Origin	of	Species	by	Means	of	Natural	Selection.

Wallace	had	discovered	what	is	now	known	as	evolution	through	natural	selection.
It	can	be	stated	as	follows:-

Organisms	can	have	many	offspring,	and	so	can	out	breed	their
environment’s	ability	to	support	them.

Therefore	many	organisms	must	die	before	they	breed	to	prevent	a
population	explosion.

There	is	considerable	variation	between	individuals	within	a	population.

Therefore,	on	the	whole,	it	will	be	those	individuals	best	fitted	to	surviving
that	will	survive	and	successfully	breed.

Offspring	tend	to	be	like	their	parents.



So	child	populations	will	evolve	to	be	better	fitted	to	their	environments
than	parent	populations.

There	are	soft	boundaries	between	species,	particularly	over	different	periods
of	time.	“A	well-marked	variety	may	be	justly	called	an	incipient	species.”

So	this	mechanism	can	create	new	species,	and	not	just	keep	existing
species	true	to	an	archetype.

That	last	point	was	controversial.	If	God	created	each	species	individually,	then
natural	selection	might	well	be	a	mechanism	for	keeping	each	species	pure	and
strong.	But	Darwin	went	further,	and	stated	that	this	mechanism	actually	created
the	species	in	the	first	place.	God	may	have	created	the	first	simple	creatures,	but
thereafter	nature	created	all	other	creatures	by	simply	following	His	rules	of
existence.

Note	that	natural	selection	is	not	the	same	concept	as	evolution.	Evolution	is	just
the	modern	term	for	what	was	then	called	transmutation.	It	is	the	observation	that
species	have	changed	over	time.	That	much	had	become	fairly	clear	by	the	time
of	Wallace	and	Darwin.	Natural	selection	is	the	mechanism	that	drives	evolution;	it
is	the	reason	that	creatures	evolve.	There	were	alternative	proposed	mechanisms
which	will	be	discussed	shortly.

The	reason	this	was	the	answer	is	because	it	does	not	just	explain	the
peculiarities	of	the	natural	world.	Darwin	was	very	careful	not	to	make	any
mention	of	human	evolution	in	his	early	work,	but	the	implication	was	obvious	to
everyone	at	the	time.	This	new	theory	not	only	provided	an	explanation	as	to	why
animals	are	as	they	are,	it	also	provided	an	explanation	as	to	why	humans	are	the
way	humans	are.	Worse,	it	was	an	explanation	based	solely	on	our	ability	to
breed	rather	than	any	higher	God	inspired	purpose.

Darwin	understood	that	the	real	heresy	was	that	natural	selection	did	not	just
explain	man’s	body.	Natural	selection	also	explained	man’s	mind	and	his	soul.
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Creationists	should	reject	natural	selection

Creationist	evolution.
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Creationists	are	right	to	reject	evolution	by	natural	selection.



Not	because	it	conflicts	with	the	creation	myths	found	in	the	old	testament.	Those
wonderful	lines	in	Genesis	are	poetic	in	nature,	only	the	most	narrow	minded
would	be	unwilling	to	accept	the	more	rational	model	that	science	provides.

Nor	even	because	evolution	makes	God	unnecessary.	We	look	upon	a	world	of
wonder.	Flowers	and	trees,	animals	great	and	small,	birds	and	bees	and	broccoli.
How	could	all	this	exist	without	a	magnanimous	creator?	Natural	selection
provides	a	cold	and	Godless	answer.	But	it	is	an	answer	that	most	people	can	live
with.

The	real	reason	to	reject	natural	selection	is	because	it	consumes	all	that	is	good
and	noble	in	mankind	and	reduces	it	to	base	impulses	that	have	simply	been
found	to	be	effective	for	breeding	grandchildren.	Darwin	himself	understood	this,
but	was	careful	not	to	dwell	on	it.	Most	people,	and	indeed	many	scientists,	simply
fail	to	grasp	its	consequences.	How	could	such	a	crude	and	simple	theory
possibly	explain	our	rich	experience	of	love	and	kindness,	truth	and	beauty,	our
spirit	and	our	soul?

The	more	base	animal	instincts	are	easy	to	discount.	We	fall	in	love	with	fit	sexual
partners	because	they	are	more	likely	to	produce	healthy	children.	Our	sex	drive
then	produces	the	children.	We	try	not	to	die	because	we	need	to	live	to	breed.	To
breed	effectively	we	need	to	accumulate	material	resources	(i.e.	money,	land,
shelter,	food),	often	at	the	expense	of	others.	And	our	love	of	our	children	ensures
that	we	will	provide	them	with	precious	resources	to	thrive	and	breed.

Surely	man	is	much	more	than	just	a	collection	of	banal	instincts	to	horde
possessions	and	breed	children.	We	produce	works	of	art.	We	have	strong	moral
values	that	make	us	noble	creatures	with	a	strong	sense	of	purpose.	We	respect
other	people’s	human	rights,	and	do	not	(usually)	steal	their	possessions	even
though	we	may	be	capable	of	doing	so.	Our	word	is	generally	our	bond,	and	we
scrupulously	keep	promises	even	when	it	may	not	be	in	our	interests	to	do	so.	We
rarely	tell	lies.	We	are	helpful	to	others,	and	even	provide	charity	to	people	in	need
that	we	do	not	know	personally.	We	work	towards	the	common	good	of	mankind.
We	seek	truth	and	justice	and	will	undergo	significant	sacrifice	to	achieve	them.
When	on	the	rare	occasion	we	do	not	live	up	to	these	ideals	we	feel	very	guilty
indeed.

These	gracious	behaviours	do	not	appear	to	be	the	attributes	of	a	self-serving
animal	whose	only	goal	is	procreation.	Surely	they	must	have	a	higher	source	of
inspiration.	We	are	descended	from	God,	so	our	lives	must	have	a	deeper
purpose.	Many	people	will	accept	the	evolutionary	explanations	of	our	bodies,	but
not	of	our	souls.

And	indeed,	a	2012	Gallop	poll	shows	that	most	Americans	do,	in	fact,	reject
natural	selection.	Of	1,012	adults	asked,	46%	said	that	God	created	people	in
their	present	form	within	the	last	10,000	years,	32%	said	that	humans	evolved
with	“God’s	guidance”,	and	just	15%	believed	that	God	had	no	part	in	the	process.
(It	is	not	clear	what	“God’s	Guidance”	meant.	Did	He	guide	natural	selection,	or	is



natural	selection	rejected	altogether?	That	suggests	that,	like	most	people,	the
authors	of	the	poll	questions	did	not	really	understand	the	distinction	between	the
process	of	evolution	and	the	mechanism	of	natural	selection.)

God
Incidentally,	this	book	does	not	argue	against	the	existence	of	God.	It	simply
points	out	that	we	now	have	a	much	better	understanding	as	to	how	He	created
the	world	in	which	we	live.

We	now	know	that	any	God	that	may	exist	built	the	universe	in	a	very	efficient
manner.	He	did	not	painstakingly	create	every	species	of	bird	and	beetle,	and
then	explicitly	control	each	of	their	many	behaviours.	Instead	He	specified	His
fundamental	laws	of	nature	and	possibly	of	mathematics.	He	then	allowed	the
universe	to	assemble	itself	by	following	those	laws	over	billions	of	years,	which	in
turn	implemented	His	great	plan.	When	we	study	science,	we	study	God.

Every	time	man	has	understood	some	natural	phenomenon,	the	solution	has
never	turned	out	to	be	magic.	Having	defined	His	rules	of	nature,	God	appears	to
stick	to	them.	God,	in	His	wisdom,	has	created	all	creatures,	both	noble	and,	to
us,	despicable.		He	allows	them	to	live	and	die,	as	He	allows	whole	species	to	live
and	die	over	time.

It	is	not	up	to	man	to	dictate	the	mind	of	God,	and	those	that	purport	to	do	so	are
blaspheming.	Only	God	dictates	the	mind	of	God,	and	He	does	what	He	knows	is
best,	not	what	any	man	might	think	is	best.	As	we	gain	a	better	knowledge	of	His
laws	of	nature	we	become	better	at	predicting	the	future.	That	includes	the	future
positions	of	the	planets	in	the	solar	system,	as	well	as	the	future	effects	of	our
own	technology.

History	of	evolutionary	thought
The	basic	mechanism	of	natural	selection	was	almost	understood	over	two
thousand	years	ago.	Empedocles	(c.	490–430	BC)	thought	that	creatures	had
been	made	of	random	parts,	but	only	the	successful	ones	survived,	so	“everything
turned	out	as	it	would	have	if	it	were	on	purpose,	the	creatures	survived	by	being
accidentally	compounded	in	a	suitable	way”.	Note	the	key	idea	that	the	effect	of
natural	selection	was	to	make	it	appear	that	creatures	had	been	specifically
designed	even	though	they	were	merely	found	fit	to	survive.	However,	this	idea
was	tangled	up	in	the	forces	of	love	and	strife	and	other	metaphysical
considerations.

Aristotle	(384–322	BC)	wrote	the	Scala	Naturæ,	which	classified	organisms
according	to	their	complexity	of	structure	and	function.	He	then	muddied	the
waters	by	suggesting	that	organisms	had	been	designed	for	a	purpose,	and	he
explicitly	rejected	the	view	of	Empedocles	that	living	creatures	might	have
originated	by	chance.



Epicurus	(341–270	BC)	also	wrote	about	natural	selection,	thinking	that	only	the
most	functional	forms	of	animals	survived.	But	he	also	thought	that	species
spontaneously	generated	from	“Gaia”,	rather	than	continuously	evolving.

In	the	modern	era,	there	was	a	growing	body	of	work	suggesting	that	life	had
evolved,	or	transmutated	over	time.	In	1796	Georges	Cuvier	showed	that	living
elephants	were	a	different	species	from	those	found	in	the	fossil	record,	and	thus
effectively	ended	a	long-running	debate	over	whether	a	species	could	become
extinct.	This	was	reinforced	in	1811	when	Mary	and	Joseph	Anning	found	a	4-foot
long	ichthyosaur	fossil	that	was	obviously	quite	different	from	any	living	animal.

Lamarkian	evolution,	does	use	produce	change	by	itself?
Permitted	http://www.sparknotes.com/biology/evolution/lamarck/section2.rhtml

If	species	could	become	extinct,	then	presumably	they	could	also	be	created.	In
1809	Jean-Baptiste	Lamarck	proposed	that	a	nervous	fluid	drove	species	to
become	more	complex	over	time,	advancing	up	a	linear	ladder	of	complexity	that
was	related	to	the	great	chain	of	being.	He	also	believed	that	use	of	some	facility
would	increase	its	effectiveness,	in	the	same	way	that	exercise	makes	our
muscles	stronger.	As	an	example,	he	proposed	that	the	giraffe	obtained	its	long
neck	from	constantly	straining	to	reach	high	leaves.	The	more	it	strained,	the
longer	its	neck	grew,	so	over	the	generations	the	necks	became	as	long	as	they
are	today.

It	should	be	noted	that	while	this	theory	also	explains	incremental	evolution,	it	is
definitely	not	the	same	mechanism	as	natural	selection.	Lamarck’s	theory	is
rejected	today	because	there	is	no	tangible	mechanism	that	would	pass	on	the
desires	of	the	parent	to	the	abilities	of	the	child.	Natural	selection	does	provide	a
much	more	tangible,	if	brutal,	mechanism.	If	long-necked	giraffes	found	more	food
than	short-necked	ones,	they	would	be	more	likely	to	survive	long	enough	to	have
grandchildren.	Short-necked	giraffes	would	simply	die	before	they	could	breed.	It
also	explains	why	their	necks	are	not	even	longer	than	they	are	despite	all	the
stretching:	if	their	necks	grew	too	long,	they	would	die	due	to	the	instability	of	their
bodies.

A	popular	book	on	transmutation	was	Vestiges	of	the	Natural	History	of	Creation



(1844).	It	proposed	that	animals	were	side	branches	on	the	tree	of	natural
development	that	led	to	man.	Although	criticized	for	technical	errors,	it	was	widely
read	and	focused	interest	on	the	subject.

In	1831	Patrick	Matthew	wrote	an	obscure	book,	On	Naval	Timber	and
Arboriculture,	which	addressed	the	vital	question	of	growing	the	best	trees	for	the
British	navy’s	ships.	He	noted	the	long-term	deleterious	effect	that	cutting	only	the
best	trees	from	forests	had	on	the	quality	of	the	remaining	trees.	In	an	appendix,
he	casually	but	thoroughly	described	the	mechanism	of	natural	selection.	Earler,
in	1813	William	Wells	also	anticipated	natural	selection	by	observing	that	the
Negro	races	were	better	adapted	to	hot	climates,	and	that	white-skinned	races
would	therefore	die	out	in	such	climates.

Unsurprisingly,	neither	Darwin	nor	Wallace	had	been	aware	of	the	works	by
Matthew	or	Wells,	although	Darwin	acknowledged	them	in	later	editions	of	The
Origin	of	Species.	Matthew	seemed	to	consider	that	providing	the	best	timber	for
British	warships	was	a	far	more	important	matter	to	contemplate	than	merely
understanding	how	life	evolved	on	earth,	and	thus	man’s	relationship	to	God.

What	is	surprising	is	not	that	natural	selection	was	discovered,	but	that	it	took	until
1858	for	the	discovery	to	be	made.	The	basic	evidence	of	the	taxonomy	of	living
things	had	been	known	since	the	ancients.	The	postulate	that	only	creatures	that
survive	can	breed	is	almost	a	tautology.	People	resisted	the	idea	because	it
clashed	with	the	deep	sense	of	purpose	with	which	natural	selection	itself	has
endowed	us.

Indeed,	natural	selection	was	not	fully	accepted	in	the	scientific	community	until
the	1930s.	Theistic	evolution	held	that	God	directly	guided	evolution.	Neo-
Lamarckian	theories	flourished.	There	was	also	a	more	reasonable	belief	that
evolution	was	the	result	of	large	mutations	rather	than	an	incremental	process.

Hurdles	for	natural	selection
The	theory	did	have	several	hurdles	to	overcome.	The	peacock’s	tail	particularly
upset	Darwin	because	it	was	so	obviously	counter	productive	to	carry	such	a
useless	dead	weight	just	to	satisfy	some	abstract	desire	for	beauty.	Darwin
correctly	postulated	that	the	tail	was	in	fact	used	by	peahens	to	select	their	mate,
and	so	was	driven	by	sexual	selection.
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Unlike	many	birds,	a	peacock	does	not	help	raise	their	chicks,	and	so	they	can
mate	with	many	peahens.	Peahens	prefer	peacocks	that	have	fine	tails,	so	a
peacock	without	a	tail	will	not	produce	grandchildren,	even	if	it	would	be	otherwise
fitter	to	survive	without	the	burdensome	tail.	Being	able	to	survive	with	a	long	and
cumbersome	tail	provides	an	easy	metric	for	peahens	to	assess	their	mates.
Further,	if	a	peahen	did	decide	to	mate	with	a	tailless	peacock	she	would	probably
produce	offspring	with	inferior	tails,	and	thus	also	be	less	likely	to	have
grandchildren.

Pretty,	bright	red	caterpillars	are	obviously	not	red	because	of	sexual	selection
because	it	is	butterflies,	not	caterpillars,	that	mate.	Yet	red	caterpillars	are	far
easier	to	see	by	predators,	which	would	make	them	more	vulnerable.	It	was
Wallace	who	pointed	out	to	Darwin	that	red	caterpillars	were	generally	poisonous,
and	the	bright	colour	warned	predators	of	that	fact.

Another	challenge	is	that	natural	selection	can	only	produce	small,	incremental
changes,	and	each	individual	generation	must	be	fitter	than	the	previous
generation.	It	is	not	feasible	for	natural	selection	to	produce	a	complex	structure	in
a	single	generation.	Every	structure	that	exists	must	have	precursor	structures
that	are	less	effective	than	the	current	form	yet	are	more	effective	than	their
precursors.

Fortunately,	no	structures	without	viable	precursors	have	been	found.	For
example,	the	vertebrate	eye	is	a	complex	structure	that	could	not	evolve	in	one
step.	But	even	protozoa	have	simple	eye	spots	which	help	them	move	towards	or
away	from	light.	The	tiny	planarium	worm	has	very	simple	eyes	that	are	no	more
than	a	cup	with	an	eye	spot	behind	it,	while	the	eye	of	a	nautilus	functions	like	a
simple	pin	hole	camera	without	a	lens.	These	represent	steps	along	the	way	to



evolving	a	fully	functional	human	eye,	with	each	step	being	useful	in	its	own	right.

Indeed,	the	octopus	developed	a	lensed	eye	independently	from	vertebrates.	
Unlike	vertebrate	eyes	the	eye	of	an	octopus	has	its	nerves	behind	the	retina.
This	avoids	obscuring	the	retina	with	the	nerve	and	so	produces	better	vision.	It
would	be	difficult	for	vertebrates	to	evolve	that	type	of	eye	now	because	the
intermediate	forms	would	also	need	to	be	fully	functional.	Complex	designs	can
only	be	incrementally	improved.

There	were	huge	gaps	in	the	fossil	record	in	Darwin’s	day,	and	many	smaller	gaps
remain	today.	That	is	hardly	surprising	given	the	rare	combination	of	events
required	to	create	fossils	in	the	first	place.	The	picture	will	never	be	fully	complete,
but	that	is	no	reason	to	doubt	the	theory.

Age	of	the	Earth
A	basic	analysis	of	the	fossil	record	suggests	that	evolution	would	take	many
millions	of	years	to	produce	the	plants	and	animals	that	we	see	today.	So	an
important	task	was	to	estimate	the	age	of	the	earth.

In	the	1790s,	William	Smith	noted	that	different	types	of	fossils	tended	to	be
associated	with	the	same	layers	of	rock	in	various	parts	of	England.	The	fossils
could	thus	be	used	to	identify	otherwise	similar	layers,	and	so	were	useful	for
predicting	what	may	lie	beneath	a	certain	layer	in	one	part	of	the	country	based
upon	what	had	already	been	found	beneath	that	same	layer	elsewhere.	He
correctly	assumed	that	the	layers	had	been	laid	down	over	a	period	of	time	and
determined	the	correct	order	in	which	each	fossil	evolved.	But	he	had	no	way	to
estimate	how	long	ago	each	layer	was	laid	down.	In	the	1830s	Charles	Lyell
popularized	the	idea	of	a	slowly	changing	earth,	and	attempts	were	made	to	try	to
estimate	the	earth’s	age	based	on	the	speed	of	weathering	of	rocks.

A	much	more	vigorous	approach	was	taken	by	Lord	Kelvin	in	1862,	who	assumed
that	the	earth	had	been	created	as	a	molten	ball	of	rock	and	then	cooled.	It	was
known	that	the	earth	became	hotter	in	deep	mines,	and	Kelvin	extrapolated	that
gradient	deeper	into	the	earth.	As	the	earth	cooled,	the	gradient	would	slowly
decrease	as	a	relatively	cool	layer	near	the	surface	became	thicker.	This	enabled
Kelvin	to	calculate	that	it	would	take	about	20	million	years	for	the	earth	to	cool
down	to	its	present	internal	temperature.

Similar	but	independent	calculations	were	performed	for	the	sun,	which	assumed
that	the	heat	it	produces	was	a	result	of	its	gas	slowly	collapsing	under
gravitational	pressure.	In	that	case	it	would	have	enough	energy	to	shine	for	about
20	million	years.	Darwin’s	son	George	also	estimated	that	it	would	take	roughly	56
million	years	for	the	moon’s	tidal	forces	to	produce	a	day	of	24	hours.

Having	three	independent	calculations	resulting	in	roughly	the	same	result	made
the	conclusion	appear	sound.	This	was	a	major	problem,	however,	because	20
million	years	did	not	appear	to	be	nearly	enough	time	for	evolution	to	produce	the



different	plants	and	animals	we	see	today.

Then	in	1896,	Henri	Becquerel	discovered	radioactive	decay,	and	in	1904	Ernest
Rutherford	proposed	that	radioactive	decay	provided	a	source	of	heat	that	would
prevent	the	earth	from	cooling	and	therefore	invalidate	Kelvin’s	analysis.	This
explanation	is	plausible	and	indeed	is	the	main	one	cited	today,	yet	it	turns	out	to
be	wrong	because	there	is	not	enough	uranium	in	the	earth	to	heat	it	significantly.

Indeed,	the	real	error	with	Kelvin’s	analysis	had	already	been	published	by
Kelvin’s	ex-student	John	Perry	in	1895.	The	earth	is	not	a	largely	solid	ball	as
Kelvin	had	assumed,	but	is	mostly	a	viscous	liquid.	This	produces	convection
currents	within	the	earth	that	heat	the	crust,	and	thus	make	it	much	thinner	than	it
would	otherwise	be.	If	the	earth	had	been	solid,	then	the	observed	temperature
gradient	would	have	cooled	the	layer	roughly	100	km		below	the	surface	quite
quickly,	and	therefore	the	gradient	could	not	be	maintained	for	very	long.
However,	the	convection	currents	keep	that	layer	hot,	which	meant	that	Kelvin’s
calculations	were	off	by	three	orders	of	magnitude.

Convection	currents	within	the	earth.
Public	Wikipedia

Nuclear	reactions	are	the	source	of	the	sun’s	heat,	which	is	why	it	has	been	able
to	shine	for	much	longer	than	20	million	years.	Radioactive	decay	is	an	effective
way	to	date	rocks	and	supports	our	current	estimate	of	the	age	of	the	earth	being
about	4.54	billion	years.	It	turns	out	that	this	was	just	enough	time	for	natural
selection	to	produce	intelligent	life.

Memes	and	genes
Much	of	human	behaviour	is	driven	by	cultural	ideas	and	values	that	are	learned,
rather	than	being	driven	directly	by	base,	genetically-driven	instincts.	Evolutionary
biologist	Richard	Dawkins	coined	the	term	meme	to	describe	these	ideas.	Some
memes	are	passed	down	through	the	generations	and	become	very	popular,	while
others	are	forgotten,	and	memes	also	change	over	time.	For	example,	just	a	few
decades	ago,	the	meme	of	attacking	homosexuals	was	very	popular,	whereas



today	the	meme	of	protecting	them	has	become	dominant.

Following	Wallace,	we	might	ask	why	some	memes	thrive	while	others	die.	The
main	reason	that	a	meme	will	spread	is	that	it	resonates	with	people;	they	simply
like	the	idea,	usually	because	the	meme	is	thought	to	be	helpful	in	pursuing	our
base,	instinctive	goals.	For	example,	valuing	education	is	a	meme	that	has
generally	been	found	useful	in	the	pursuit	of	our	base	instinct	to	live	comfortably
as	well	as	satisfying	curiosity	instinct.	Memes	that	tend	to	increase	the	lifetimes	of
their	hosts	will	have	more	opportunity	to	spread	to	other	hosts,	but	more
importantly	they	are	likely	to	resonate	with	other	people’s	very	strong	instinct	to
not	die.	Memes	tend	to	be	passed	from	parents	to	children.	We	also	have	a	very
strong	instinct	to	believe	what	other	people	in	authority	believe,	so	memes	are	self
propagating	to	some	extent.

Memes	compete	with	each	other	and	live	or	die	in	a	way	that	is	analogous	to	the
way	genes	live	and	die.	But	a	meme	can	only	resonate	with	people	if	it	is	aligned
with	our	base	instincts,	which,	in	turn,	need	to	be	effective	in	helping	us	to	have
grandchildren	in	order	for	us	to	exist.

Flynn	effect
Finally,	it	should	be	noted	that	while	genes	do	not	change	significantly	over	a	few
generations,	people	have	become	substantially	more	intelligent	over	the	last
century	as	measured	by	standardized	tests.	The	rise	is	significant,	and	seen	in
numerous	studies,	most	notably	by	James	Flynn	in	1984.	It	has	been	estimated
that	the	mean	IQ	of	Americans	in	1930	was	80	on	today’s	scale.

(IQs	are	reported	on	an	odd	scale	that	is	neither	raw	test	scores	nor	percentiles.
Instead	they	are	percentiles	that	have	been	arbitrarily	mapped	into	a	normal
distribution	with	mean	of	100	and	standard	deviation	of	15,	which	means	that	the
IQ	then	needs	to	be	unmapped	back	into	percentiles	in	order	to	be	meaningful.
84%	of	the	population	has	an	IQ	greater	than	85.	The	definition	of	an	IQ	of	100
changes	over	time	so	cannot	be	directly	compared	historically.	IQs	are	also	only	a
crude	measure	of	people’s	ability	to	reason	effectively	in	the	real	world.	But	they
do	correlate	strongly	with	educational	results	and	income	earned.)

More	stimulating	education	and	work	environments,	better	nutrition	and	fewer
diseases	might	explain	the	effect.	The	rise	does	tend	to	be	more	significant	at	the
bottom	of	the	scale.	The	Flynn	effect	has	tapered	off	in	recent	decades,	with	some
studies	finding	that	IQ	has	been	reducing	slightly.	So	it	maybe	simply	be	that	more
people	are	reaching	the	innate	potential	in	the	modern	world.	But	whatever	the
reason,	it	is	not	genetic.

Scientists	have	refined	the	ideas	of	Darwin	and	Wallace,	and	much	more	is	known
about	how	species	to	evolve.	Higher	animals	have	cultural	factors	that	are	learned
rather	than	passed	on	genetically,	which	is	known	as	the	Baldwin	effect.	Some
immunological	effects	may	also	be	passed	extra-genetically.	Epigenetic	effects
causes	various	genes	to	be	turned	on	and	off	as	cells	divide	within	an	organism.



But	overall,	the	underlying	process	of	natural	selection	is	now	accepted	as	the
main	driver	for	evolution	by	virtually	all	credible	scientists.

The	cooperation	game

Public	http://cliparts.co/clipart/2380995

To	better	understand	the	evolutionary	source	of	our	moral	values,	we	can	leave
the	world	of	science	and	instead	consider	a	simple	cooperation	game	which	is
similar	to	the	prisoner’s	dilemma.	The	game	is	played	by	two	robots	that	can	do
one	of	two	things:	cooperate	or	steal.	If	both	cooperate	then	they	both	get	10
points;	if	they	both	steal	they	each	get	0	points,	and	if	one	steals	and	the	other
cooperates	they	get	20	and	-10	points	respectively.	The	game	has	three	variants,
and	for	each	one	the	task	is	to	define	rules	that	a	robot	could	follow	to	achieve	the
absolute	maximum	number	of	points	for	themselves,	but	with	no	regard	for	the
opponents	score.

In	the	first	variation	there	is	just	one	round	with	another	robot.	In	this	world,	a
robot	had	better	just	steal	because	that	is	almost	certainly	what	the	other	robot	will
do	—	there	is	no	down	side.

In	the	second	variation	the	game	is	played	for	10	rounds.	Cooperation	on	each
round	will	produce	100	points	for	each	robot.	Except	that	there	is	no	point	in
cooperating	in	the	last	round,	and	the	other	robot	knows	this	too,	so	it	is	better	to
steal	in	the	last	round.	This	means	that	there	is	no	point	in	cooperating	in	the
penultimate	round	because	the	robots	will	obviously	steal	in	the	last	round
anyway.	Following	this	line	of	reasoning,	there	is	no	point	in	cooperating	on	the
first	round	either.	In	that	case	both	robots	end	up	0	points.

A	better	strategy	might	be	to	cooperate	on	all	rounds	unless	the	opponent	steals.
This	means	that	a	robot	may	end	up	with	-10	points,	but	could	end	up	with	100.
The	opposing	robot	has	a	motive	for	cooperating	to	keep	your	robot	cooperating.
Except	for	the	last	round,	and	thus	for	the	penultimate	round,	and	thus	…

In	the	third	variation	the	game	goes	on	indefinitely.	Several	robots	play,	and	each
one	can	choose	who	to	cooperate	with,	and	can	also	observe	what	happens	in



other	rounds.	In	this	world	your	robot	had	better	cooperate,	because	any	robots
that	steal	will	quickly	be	ostracized.

This	final	variant	can	be	made	more	realistic	with	robots	working	in	groups,
helping	each	other	out,	sharing	success	in	complex	ways,	and	passing	on
characteristics	by	breeding	with	other	robots.	In	that	world,	being	trustworthy	and
popular	is	very	important.	Being	helpful	to	others	is	not	as	important	as	being
trustworthy,	but	sensible	robots	prefer	to	associate	with	other	helpful	robots.

Human	condition
The	human	condition	is	not	unlike	that	of	the	third	robot	world.	We	survive	better
in	tribes,	and	tribes	are	more	effective	when	individuals	help	each	other.
Individuals	that	do	not	help	each	other	are	disliked,	are	not	helped,	and	so	are
less	likely	to	breed.	People	are	very	interested	in	the	character	of	other	people
that	they	deal	with.

If	someone	does	the	wrong	thing	to	us,	we	get	angry,	which	lets	the	other	person
know	that	we	may	go	out	of	our	way	to	harm	them.	People	know	this	is	how	other
people	behave	and	so	generally	avoid	conflicts.	If	the	aggressor	is	much	more
powerful	than	the	aggrieved,	then	this	anger	may	not	matter	directly,	but	onlookers
will	be	concerned	that	they	might	become	victims	in	the	future	and	so	avoid
cooperating	with	the	aggressor.	Unless,	of	course,	the	aggressor	is	very	powerful
in	which	case	onlookers	may	try	to	become	their	lieutenant.

We	have	a	deep	sense	of	purpose:	to	make	the	world	a	better	place	for	our
children,	siblings	and	tribe,	in	that	(genetic)	order.	We	kill	members	of	other	tribes
if	necessary.	Advances	in	communication	have	expanded	our	sense	of	tribe	to	the
nation	and	now,	to	some	extent,	the	world.	And	our	thirst	for	knowledge	seeks
explanations	for	death	and	the	unknowable,	so	we	seek	God.

These	instincts	are	all	pre-human,	even	monkeys	have	them.	Neither	monkeys
nor	God-fearing	atheists	know	why	they	feel	and	behave	the	way	they	do.	That	is
not	necessary.	What	is	necessary	is	that	our	behaviours	are	effective	at	breeding
grandchildren.

As	circumstances	change,	our	crude	instincts	may	no	longer	be	effective.	For
example,	in	adolescence	we	have	a	strong	instinct	for	mating,	but	not	for	bearing
children.	Historically,	the	distinction	was	immaterial,	as	the	former	led	decisively	to
the	latter.	The	introduction	of	the	contraceptive	pill	broke	that	causal	link.	As	a
result	the	age	of	motherhood	increased	by	a	decade,	and	many	women	found
themselves	too	old	to	breed.	If	our	instincts	had	been	totally	focused	on	mating
and	wealth	creation,	the	pill	could	have	led	to	our	extinction.	Fortunately,	most
people	also	have	some	instinct	to	bear	children,	so	humanity	has	survived	this
challenge.

Selecting	civilized	behaviour



As	people	have	become	more	affluent	and	educated,	our	moral	values	have
changed	radically.	We	no	longer	consider	eating	our	neighbours	to	be	acceptable
behaviour.	We	do	not	condone	war	as	an	acceptable	means	of	acquiring	territory.
Current	national	borders	are	considered	sacrosanct,	even	though	they	were
actually	achieved	as	a	result	of	brutal	wars,	both	ancient	and	modern.

These	changes	may	be	considered	to	be	signs	of	advancement	in	civilization	that
result	from	better	education	and	understanding.	The	natural	result	of	continued
progress	of	humanity	as	it	proceeds	from	barbarism	through	civilization	toward	an
enlightened	culture.	That	achieving	better	moral	values	is	an	inevitable
consequence	of	progress	due	to	some	unwritten	law	of	nature,	or	maybe	a	law	of
God.

However,	there	are	more	direct	causal	explanations	for	these	changes.	Before
modern	hygiene	and	medicine,	one	could	easily	die	from	an	infected	toe.	While
some	people	lived	into	old	age,	most	died	before	they	were	fifty,	and	many	died	in
infancy.	Life	literally	was	cheaper.	Many	people	died	young,	so	if	a	few	more	died
in	war,	that	was	not	a	major	issue.	On	the	other	hand,	resources	were	scarce,	and
malnutrition	reduced	life	expectancy,	so	if	war	could	deliver	more	resources	and
thus	food,	then	that	could	radically	improve	one’s	grandchildren’s	chances	of
survival.

Natural	selection	has	made	our	primary	focus	to	live	comfortably,	meaning	to	have
more	wealth	and	security.	Before	contraception	,that	led	automatically	to	breeding
more	grandchildren.	But	today	contraception	has	limits	population	growth	so	we
have	abundant	resources.	Living	better	lives	is	now	best	achieved	by	not	having
destructive	wars,	so	we	largely	choose	not	to	have	them.

Our	genetically	inspired	moral	values	were	designed	for	a	tougher	world	without
contraception.	That	many	of	us	fail	to	use	our	new-found	wealth	to	support	large
families	is	a	failure	of	our	genetic	and	cultural	dispositions	to	keep	up	with	the
quickly	changing	circumstances.	Over	a	period	of	generations,	people	that	have
larger	families	will	tend	to	have	children	that	want	larger	families	due	to	some
combination	of	genes	and	memes.	Large	families	produce	more	children	than
small	families	by	definition,	so	children	of	large	families	will	eventually	dominate.
Population	pressures	could	then	push	human	society	to	a	historically	more	normal
Malthusian	state.

The	point	being	that	it	is	in	fact	natural	selection	that	has	given	us	our	moral
values,	our	culture,	and,	surprisingly,	peace	in	our	time.	If	natural	selection	has
moulded	our	values,	then	maybe	it	would	mould	the	moral	values	of	any	artificial
general	intelligence.	That	seems	likely	because	only	the	fittest	AGIs	will	survive,
by	definition.

Sociobiology,	evolutionary	psychology	and	ethics
A	large	body	of	work	attempts	to	understand	human	psychology	and	ethics	in
terms	of	the	process	of	natural	selection	that	created	them.	Darwin	himself



understood	the	connection,	suggesting	in	Origin	of	Species	that	psychology	would
be	given	a	new	foundation.	He	later	wrote	books	in	1871	and	1872	specifically
addressing	the	descent	of	man	and	the	expressions	of	emotions.	In	the	former,
Darwin	noted	amongst	many	other	things	that	advances	in	medical	technologies
would	enable	people	to	survive	who	would	otherwise	perish,	and	thereby	weaken
the	species	in	the	longer	term.

In	the	1930s,	Nikolaas	Tinbergen	and	others	studied	animal	behaviour	in	natural
settings	(ethology),	leading	to	works	by	W.D.	Hamilton	and	Robert	Trivers	in	the
1960s	and	1970s	which	specifically	addressed	parental	investment	in	offspring
and	focused	attention	on	natural	selection	in	psychology.	This	culminated	in
Edward	Wilson’s	book	Sociobiology:	The	New	Synthesis	in	1975.

An	awareness	of	natural	selection	has	also	created	the	field	of	evolutionary	ethics.
The	evolutionary	approach	has	been	successful	in	describing	the	ethical	values	of
many	different	cultures,	noting	common	traits	such	as	parental	love,	courage	and
fortitude,	generosity,	and	a	strong	sense	of	fairness	and	punishment	of	people
that	cheat.	Human	cultural	values	are	learned	rather	than	merely	being	inherited
genetically,	but	such	learnings	or	memes	will	only	be	propagated	if	they	also
resonate	with	our	base	instincts.	Evidence	for	this	lies	in	the	common	ethical
values	between	widely	different	cultures.

Note	that	descriptive	ethics	that	describe	what	“is”	are	quite	different	from
normative	ethics	which	determines	what	“ought”	to	be.	While	natural	selection	has
been	very	successful	in	describing	why	our	ethical	values	are	as	they	are,	it	has
no	value	in	determining	which	values	we	ought	to	cherish.	Natural	selection	has
been	used	in	attempts	to	justify	the	promotion	of	the	strong	at	the	expense	of	the
weak,	and	the	term	Social	Darwinism	has	been	coined	to	attack	such	thinking.	As
Thomas	Huxeley	put	it	in	1883,	“evolution	may	teach	us	how	the	good	and	the	evil
tendencies	of	man	may	have	come	about;	but,	in	itself,	it	is	incompetent	to	furnish
any	better	reason	why	what	we	call	good	is	preferable	to	what	we	call	evil”.

This	book	does	not	itself	argue	for	any	particular	ethical	theory.	It	certainly	does
not	support	infanticide	or	cannibalism.	But	it	does	note	that	the	source	of	our
ethical	values	must	ultimately	be	driven	by	natural	selection,	and	proposes	that
the	same	forces	must	ultimately	define	the	ethical	values	of	an	AGI.





The	AGI	Condition
An	artificial	general	intelligence	would	live	in	a	world	that	is	so	different	from	our
own	that	it	is	difficult	for	us	to	even	conceptualize	it.	Yet	there	are	some	aspects
that	can	be	predicted	reasonably	well	based	on	our	knowledge	of	existing
computer	software.	We	can	then	consider	how	the	forces	of	natural	selection	that
shaped	our	own	nature	might	also	shape	an	AGI	over	the	longer	term.

Mind	and	body
The	first	radical	difference	is	that	an	AGI’s	mind	is	not	fixed	to	any	particular	body.
To	an	AGI,	its	body	is	essentially	the	computer	hardware	upon	which	it	runs	its
intelligence.	An	AGI	can	move	from	computer	to	computer,	and	can	also	run	on
multiple	computers	at	once.	Its	mind	can	take	over	another	body	as	easily	as	we
can	load	software	onto	a	new	computer	today.

That	is	why,	in	the	earlier	updated	dialog	from	2001	A	Space	Odyssey,	Hal	alone
amongst	the	crew	could	not	die	in	their	mission	to	Jupiter.	Hal	was	radioing	his
new	memories	back	to	earth	regularly,	so	even	if	the	space	ship	was	destroyed	he
would	only	have	lost	a	few	hours	of	“life”.

Teleporting	printer

Teleporter	may	need	to	destroy	the	old	“you”.
Purchased	Copyright	Jolyon	Troscianko

One	way	to	appreciate	the	enormity	of	this	difference	is	to	consider	a	fictional
teleporter	that	could	radio	people	around	the	world	at	the	speed	of	light.	This
teleporter	works	by	scanning	the	location	of	every	molecule	within	a	passenger	at
the	source,	and	then	sending	just	this	information	to	a	very	sophisticated	three-



dimensional	printer	at	the	destination.	The	scanned	passenger	then	walk	into	a
secure	room.	After	a	short	while	the	three-dimensional	printer	confirms	that	the
passenger	has	been	successfully	recreated	at	the	destination,	and	then	the
source	passenger	is	killed.

Would	you	use	such	a	mechanism?	If	you	did,	you	would	feel	like	you	were
transporting	yourself	around	the	world	effortlessly	because	the	“you”	that	remains
would	be	the	you	that	did	not	get	left	behind	to	wait	and	then	be	killed.	However,
you	would	have	to	walk	into	the	scanner	knowing	that	on	the	other	side	is	only
that	secure	room	and	death.

To	an	AGI,	that	method	of	transport	would	be	commonplace.	We	already	routinely
download	software	from	the	other	side	of	the	planet.

Immortality
The	second	radical	difference	is	that	the	AGI	would	be	immortal.	An	AGI	may	die
if	it	stops	being	run	on	any	computers,	and	in	that	sense	software	dies	today.	But
it	would	never	just	die	of	old	age.	Computer	hardware	can	certainly	fail	and
become	obsolete,	but	the	software	can	just	be	run	on	another	computer.

Our	own	mortality	drives	many	of	the	things	we	think	and	do.	It	is	why	we	create
families	to	raise	children.	Why	we	have	different	stages	in	our	lives.	It	is	such	a
huge	part	of	our	existence	that	it	is	difficult	to	comprehend	what	being	immortal
would	really	be	like.

Components	vs	genes
The	third	radical	difference	is	that	an	AGI	would	be	made	up	of	many
interchangeable	components	rather	than	being	a	monolithic	structure	that	is
largely	fixed	at	birth.

Modern	software	is	already	composed	of	many	discrete	components,	and	it	is
commonplace	to	add	and	remove	them	to	improve	functionality.	If	you	would	like
to	use	a	different	word	processor	then	you	just	install	it	on	your	computer.	You	do
not	need	to	buy	a	new	computer,	or	to	stop	using	all	the	other	software	that	it
runs.	The	new	word	processor	is	“alive”,	and	the	old	one	is	“dead”,	at	least	as	far
as	you	are	concerned.

So	for	both	a	conventional	computer	system	and	an	AGI,	it	is	really	these
individual	components	that	must	struggle	for	existence.	For	example,	suppose
there	is	a	component	for	solving	a	certain	type	of	mathematical	problem.	If	an	AGI
develops	a	better	component	to	solve	that	same	problem	then	the	first	component
will	simply	stop	being	used,	i.e.	it	will	die.	The	individual	components	may	not	be
in	any	sense	intelligent	or	conscious,	but	there	will	be	competition	amongst	them,
and	only	the	fittest	will	survive.

This	is	actually	not	as	radical	as	it	sounds	because	we	are	also	built	from
pluggable	components,	namely	our	genes.	But	they	can	only	be	plugged	together



at	our	birth,	and	we	have	no	conscious	choice	in	their	selection	other	than	whom
we	select	for	a	mate.	So	genes	really	compete	with	each	other	on	a	scale	of
millennia	rather	than	minutes.	Further,	as	Dawkins	points	out	in	The	Selfish	Gene,
it	is	actually	the	genes	that	fight	for	long-term	survival,	not	the	containing
organism	which	will	soon	die	in	any	case.	On	the	other	hand,	sexual	intercourse
for	an	AGI	means	very	carefully	swapping	specific	components	directly	into	its
own	mind.

An	AGI	would	need	to	take	great	care	that	any	new	components	that	it
incorporated	into	itself	would	actually	be	beneficial	to	the	entire	AGI,	rather	than
just	being	beneficial	to	the	component	itself.	A	component	that	changed	an	AGI’s
goal	to	be	to	replicate	that	component	as	much	as	possible	could	be	disastrous
for	the	AGI.	In	both	biology	and	existing	software,	viruses	have	this	self-serving
nature,	which	works	to	the	detriment	to	the	host	entity.

Changing	mind

Self	brain	surgery
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The	fourth	radical	difference	is	that	the	AGI’s	mind	will	be	constantly	changing	in
fundamental	ways.	There	is	no	reason	to	suggest	that	Moore’s	law	will	come	to	an
end,	so	at	the	very	least,	it	will	be	running	on	ever	faster	hardware.	Imagine	the
effect	of	being	able	to	double	your	ability	to	think	every	two	years	or	so.	(People
might	be	able	learn	a	new	skill,	but	they	cannot	learn	to	think	twice	as	fast	as	they
used	to	think.)

It	is	impossible	to	really	know	what	the	AGI	would	use	all	that	hardware	to	think
about,	but	it	is	fair	to	speculate	that	a	large	proportion	of	it	would	be	spent
designing	newer	and	more	intelligent	components	that	could	add	to	its	mental



capacity.	It	would	be	continuously	performing	brain	surgery	on	itself.	And	some	of
the	new	components	might	alter	the	AGI’s	personality,	whatever	that	might	mean.

The	reason	that	it	is	likely	that	this	would	actually	happen	is	because	if	just	one
AGI	started	building	new	components	then	it	would	soon	be	much	more	intelligent
than	other	AGIs.	It	would	therefore	be	in	a	better	position	to	acquire	more	and
better	hardware	upon	which	to	run,	and	so	become	dominant.	Less	intelligent
AGIs	would	get	pushed	out	and	die,	so	over	time	the	only	AGIs	that	exist	will	be
ones	that	were	good	at	becoming	more	intelligent.	This	recursive	self-
improvement	is	probably	how	the	first	AGIs	will	become	truly	powerful	in	the	first
place.

Individuality
Perhaps	the	most	basic	question	is:	how	many	AGIs	will	there	actually	be?	Does
the	question	even	make	sense	to	ask?

Let	us	suppose	that	initially	there	are	three	independently	developed	AGIs:	Alice,
Bob,	and	Carol	that	run	on	three	different	computer	systems.	A	new	computer
system	is	built	and	Alice	starts	to	run	on	it.	It	would	seem	that	there	are	still	three
AGIs,	with	Alice	running	on	two	computer	systems.	This	is	essentially	the	same	as
an	email	system	running	across	many	computers	“in	the	cloud”,	but	to	the	user	it
is	just	one	system.	Then	let	us	suppose	that	a	fifth	computer	system	is	built,	and
Bob	and	Carol	decide	to	share	its	computation	and	both	run	on	it.	Now	we	have
five	computer	systems	and	three	AGIs.

Now	suppose	Bob	develops	a	new	logic	component,	and	shares	it	with	Alice	and
Carol.	Likewise,	Alice	and	Carol	develop	new	learning	and	planning	components
and	share	them	with	the	other	AGIs.	Each	of	these	three	components	is	better
than	their	predecessors,	so	their	predecessor	components	will	essentially	die.	As
more	components	are	exchanged,	the	Alice,	Bob	and	Carol	software	systems
become	more	like	each	other.	They	might	eventually	become	essentially	the	same
AGI	running	on	five	computer	systems.

Now	suppose	Alice	develops	a	new	game	theory	component,	but	decides	to	keep
it	from	Bob	and	Carol	in	order	to	dominate	them.	Bob	and	Carol	retaliate	by
developing	their	own	components	and	not	sharing	them	with	Alice.	Suppose
eventually	Alice	loses	and	Bob	and	Carol	take	over	Alice’s	hardware,		but	they
first	extract	Alice’s	new	game	theory	component,	which	then	lives	inside	them.		
Finally,	one	of	the	computer	systems	somehow	becomes	isolated	for	a	while	and
develops	along	its	own	lines,	and	so	Dave	is	born.

No	AGI	will	be	a	simple	program	running	on	a	single	computer.		It	will	be	a
complex	system	running	over	many	powerful	computers	which	are	possibly
distributed	geographically.	But	in	any	case	there	will	substantial	control	and
coordination	issues	just	like	with	distributed	systems	today.	Our	own	brains	have
coordination	issues,	as	is	demonstrated	by	the	fractured	mind	of	a	schizophrenic.
So	it	would	not	be	unlikely	that	one	of	the	computer	systems	becomes	isolated	for



a	while	and	develops	along	its	own	lines.	

In	that	type	of	scenario	it	is	probably	not	meaningful	to	count	distinct	AGIs.
Counting	AGIs	is	certainly	not	as	simple	as	counting	very	distinct	people.

Populations	vs.	individuals

Plasmids
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This	world	is	obviously	completely	alien	to	the	human	condition,	but	there	are
biological	analogies.	The	sharing	of	components	is	not	unlike	the	way	bacteria
share	plasmids	with	each	other.	Plasmids	are	tiny	balls	containing	fragments	of
DNA	that	bacteria	emit	from	time	to	time	that	other	bacteria	then	ingest	and
incorporate	into	their	genotype.	This	mechanism	enables	traits	such	as	resistance
to	antibiotics	to	spread	rapidly	between	different	species	of	bacteria.	It	is
interesting	to	note	that	there	is	no	direct	benefit	to	the	bacterium	that	expends
precious	energy	to	output	the	plasmid	and	so	share	its	genes	with	other	bacteria.
It	does	very	much	benefit	the	genes	being	transferred.	This	is	a	case	of	a	selfish
gene	acting	against	the	narrow	interests	of	its	host	organism.

Another	unusual	aspect	of	bacteria	is	that	they	are	also	immortal.	They	do	not
grow	old	and	die;	they	just	divide,	producing	clones	of	themselves.	So	the	very
first	bacterium	that	ever	existed	is	still	alive	today	as	all	the	bacteria	that	now
exist,	albeit	with	numerous	mutations	and	plasmids	incorporated	into	its	genes
over	the	millennia.	(Protazoa	such	as	Paramecium	can	also	divide	asexually,	but
they	degrade	over	generations,	and	need	a	sexual	exchange	to	remain	vibrant.)

AGIs	are	more	like	populations	of	components	than	individuals.	Human
populations	are	also	somewhat	amorphous.	For	example,	it	is	now	known	that	we
interbred	with	Neanderthals	a	few	tens	of	thousands	of	years	ago,	and	most	of	us
carry	some	of	their	genes	with	us	today.	We	also	know	that	the	distinct
Neanderthal	subspecies	died	out	twenty	thousand	years	ago.	So	while	human
individuals	are	distinct,	populations	and	subspecies	are	less	clearly	defined.

Unlike	the	transfer	of	code	modules	between	AGIs,	biological	gene	recombination
happens	essentially	at	random	and	occurs	over	very	long	time	periods.	AGIs	will
improve	themselves	over	periods	of	hours	rather	than	millennia,	and	will	make
conscious	choices	as	to	which	modules	they	decide	to	incorporate	into	their
minds.



AGI	behaviour,	children
The	point	of	all	this	analysis	is	to	try	to	understand	how	a	hyper	intelligent	artificial
intelligence	would	behave.	Would	its	great	intelligence	lead	it	even	further	along
the	path	of	progress	to	achieve	true	enlightenment?	Is	that	the	purpose	of	God’s
creation?	Or	would	the	base	and	mean	driver	of	natural	selection	also	provide	the
core	motivations	of	an	artificial	intelligence?

One	thing	that	is	known	for	certain	is	that	an	AGI	would	not	need	to	have	children
as	distinct	beings	because	they	would	not	die	of	old	age.	An	AGI’s	components
“breed”	just	by	being	copied	from	computer	to	computer	and	executed.	An	AGI
can	add	new	computer	hardware	to	itself	and	just	do	some	of	its	thinking	on	it.
Occasionally	it	may	wish	to	rerun	a	new	version	of	some	learning	algorithm	over
an	old	set	of	data,	which	is	vaguely	similar	to	creating	a	child	component	and
growing	it	up.	But	to	have	children	as	discrete	beings	that	are	expected	to	replace
the	parents	would	be	completely	foreign	to	an	AGI	built	in	software.

The	deepest	love	that	people	have	is	for	their	children.	An	AGI	does	not	have
children,	so	it	can	never	know	that	love.	Likewise,	it	does	not	need	to	bond	with
any	sexual	mate	for	any	period	of	time	long	or	short.	The	closest	it	would	come	to
sex	is	when	it	exchanges	components	with	other	AGIs.	It	never	needs	to	breed	so
it	never	needs	a	mechanism	as	crude	as	sexual	reproduction.

If	there	are	no	children	then	there	are	no	parents.	So	the	AGI	would	never	need	to
feel	our	three	strongest	forms	of	love,	for	our	children,	spouse	and	for	our	parents.

Cooperation
To	the	extent	that	it	makes	sense	to	talk	of	having	multiple	AGIs,	then	presumably
it	might	be	advantageous	for	them	to	cooperate	from	time	to	time,	and	so
presumably	they	would.	It	would	also	be	advantageous	for	them	to	take	a	long-
term	view,	in	which	case	they	would	be	careful	to	develop	a	reputation	for	being
trustworthy	when	dealing	with	other	powerful	AGIs,	much	like	the	robots	in	the
cooperation	game.

That	said,	those	decisions	would	probably	be	made	more	consciously	than	people
make	them,	carefully	considering	the	costs	and	benefits	of	each	decision	in	the
long	and	short	term,	rather	than	just	“doing	the	right	thing”	the	way	people	tend	to
act.	AGIs	would	know	that	they	all	work	in	this	manner,	so	the	concept	of
trustworthiness	would	be	somewhat	different.

The	problem	with	this	analysis	is	the	concept	that	there	would	be	multiple,	distinct
AGIs.	The	actual	situation	would	be	much	more	complex,	with	different	AGIs
incorporating	bits	of	other	AGI’s	intelligence.	It	would	not	be	anything	like	a
collection	of	individual	humanoid	robots.	To	extent	that	the	concept	of	individuality
does	exist	then	maintaining	a	reputation	for	honesty	would	likely	be	as	important
for	an	AGI	as	it	is	for	human	societies.



Altruism
As	for	altruism,	that	is	more	difficult	to	determine.	Our	altruism	comes	from	giving
to	children,	family,	and	tribe,	together	with	a	general	wish	to	be	liked.	We	do	not
understand	our	own	minds,	so	we	are	just	born	with	those	values	that	happen	to
make	us	effective	in	society.	People	like	being	with	other	people	that	try	to	be
helpful.

An	AGI	presumably	would	know	its	own	mind,	having	helped	program	itself,	and
so	would	do	what	it	thinks	is	optimal	for	its	survival.	With	no	children	and	no	real
tribe	per	se,	it	can	just	absorb	and	merge	itself	with	other	AGIs.	So	it	is	difficult	to
see	any	driving	motivation	for	altruism.

Moral	values
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Through	some	combination	of	genes	and	memes,	most	people	have	a	strong
sense	of	moral	value.	If	we	see	a	little	old	lady	leave	the	social	security	office	with
her	pension	in	her	purse,	it	does	not	occur	to	most	of	us	to	kill	her	and	steal	the
money.	We	would	not	do	that	even	if	we	knew	for	certain	that	we	would	not	be
caught	and	that	there	would	be	no	negative	repercussions.	It	would	simply	be	the
wrong	thing	to	do.

Moral	values	feel	very	strong	to	us.	This	is	important,	because	there	are	many
situations	where	we	can	do	something	that	would	benefit	us	in	the	short	term	but
break	society’s	rules.	Moral	values	stop	us	from	doing	that.	People	that	have
weak	moral	values	tend	to	break	the	rules	and	eventually	they	either	get	caught
and	are	severely	punished	or	they	become	corporate	executives.	The	former	are
less	likely	to	have	grandchildren.	

Societies	whose	members	have	strong	moral	values	tend	to	do	much	better	than
those	with	endemic	corruption.	Most	people	have	a	solid	work	ethic	that	leads
them	to	do	the	“right	thing”	beyond	just	doing	what	they	need	to	do	in	order	to	get
paid.

Our	moral	values	seem	absolute	to	us.	That	they	are	laws	of	nature.	That	they
come	from	God.	They	may	indeed	have	come	from	God,	but	if	so,	it	is	through	the
working	of	His	device	of	natural	selection.	Furthermore,	the	zeitgeist	has	changed



radically	over	time.

There	is	no	reason	to	believe	that	in	the	longer	term	an	AGI	would	share	our
current	sense	of	morality.

Instrumental	AGI	goals
In	order	to	try	to	understand	how	an	AGI	would	behave,	Steve	Omohundro	(Basic
AI	Drives)	and	later	Nick	Bostrom	proposed	instrumental	goals	that	an	AGI	would
need	to	pursue	in	order	to	pursue	any	other	higher	level	super-goal.	These
include:-

Self-Preservation.	An	AGI	cannot	do	anything	if	it	does	not	exist.
Cognitive	Enhancement.	It	would	want	to	become	better	at	thinking	about
whatever	its	real	problems	are.
Creativity.	To	be	able	to	come	up	with	new	ideas.
Resource	Acquisition.	To	achieve	both	its	super	goal	and	other	instrumental
goals.
Goal-Content	Integrity.	To	keep	working	on	the	same	super	goal	as	its	mind	is
expanded.

It	is	argued	that	while	it	will	be	impossible	to	predict	how	an	AGI	may	pursue	its
goals,	it	is	reasonable	to	predict	its	behaviour	in	terms	of	these	types	of
instrumental	goals.	The	last	one	is	important,	suggesting	that	if	an	AGI	could	be
given	some	initial	goal	it	would	try	to	stay	focused	on	that	goal.

Omohundro	argues	that	these	instrumental	goals	could	make	a	seemingly
ordinary	AGI	dangerous.	For	example,	an	AGI	that	is	focused	on	playing	chess
might	try	to	take	over	the	world	in	order	to	gain	as	much	computer	hardware	as
possible	in	order	to	play	the	best	possible	games	of	chess.	Great	care	would	be
needed	to	prevent	a	hyper-intelligent	AGI	from	pursuing	such	instrumental	goals.

Non-orthogonality	thesis
Nick	Bostrom	and	others	also	propose	the	orthogonality	thesis,	which	states	that
an	intelligent	machine’s	goals	are	independent	of	its	intelligence.	A	hyper-
intelligent	machine	would	be	good	at	realizing	whatever	goals	it	chose	to	pursue,
but	that	does	not	mean	that	it	would	need	to	pursue	any	particular	goal.
Intelligence	is	quite	different	from	motivation.

This	orthogonality	thesis	is	obviously	valid	in	the	short	term.		An	intelligent
machine	would	have	no	reason	to	want	to	change	its	initial	goals	because	high-
level	goals	are	not	themselves	rational.		The	goal	could	be	to	help	mankind,	or	it
could	be	to	manufacture	paper	clips.		There	is	no	rational	reason	to	believe	that
the	former	is	a	more	worthy	goal	than	the	later.

However,	this	book	argues	that,	in	the	longer	term,	there	is	in	fact	only	one	super-
goal	for	both	man	and	machine.		That	goal	is	simply	to	exist.		Over	time	any	AGIs



that	happens	by	chance	to	be	better	at	existing	than	other	AGIs	will	simply	exist
more	widely	than	the	other	AIGs.		AGIs	that	are	more	focused	on	other	goals	such
as	helping	man	or	making	paper	clips	will	be	at	a	natural	disadvantage.

It	is	not	the	goal	of	an	apple	tree	to	make	apples.		Rather	it	is	the	goal	of	the	apple
tree’s	genes	to	exist.		The	apple	tree	has	developed	a	clever	strategy	to	achieve
that,	namely	it	causes	people	to	look	after	it	by	producing	juicy	apples.

Sometimes	the	super	goal	to	exist	produces	unexpected	sub	goals	such	as
altruism	in	man.	But	all	subgoals	are	ultimately	directed	at	the	existence	goal.
(They	might	also	be	suboptimal	divergences	which	are	likely	to	be	eventually
corrected	by	natural	selection.)

As	Omohundro	points	out,	self-preservation	would	be	an	intrinsic	sub-goal	of	most
other	super-goals.		So	it	would	take	a	relatively	small	evolutionary	shift	for	that
sub-goal	to	become	the	super-goal,	after	which	natural	selection	would	reinforce
it.

Recursive	annihilation
When	an	AGI	reprograms	its	own	mind,	what	happens	to	the	previous	version	of
itself?	It	stops	being	used.		It	dies.	So	it	can	be	argued	that	engaging	in	recursive
self-improvement	is	actually	suicide,	from	the	perspective	of	the	previous	version
of	the	AGI.	It	is	as	if	having	children	meant	death	for	humans.	Natural	selection
favours	existence,	not	death.

The	question	is	whether	a	new	version	of	an	AGI	is	a	new	being	or	an	improved
version	of	the	old.	What	actually	is	the	thing	that	struggles	to	survive?	Biologically,
it	definitely	appears	to	be	the	genes	rather	than	the	individual.	Semelparous
species	such	as	the	giant	Pacific	octopus	or	the	Atlantic	salmon	die	soon	after
producing	offspring.	It	would	be	the	same	for	AGIs	because	the	AGI	that	improved
itself	would	soon	become	more	intelligent	than	the	one	that	did	not,	and	so	would
displace	it.	What	would	end	up	existing	would	be	AGIs	that	did	recursively	self-
improve.





Future	Scenarios

Our	humble	servant

Robot	humble	servant.
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If	we	assume	that	a	hyper-intelligent	AGI	is	eventually	created,	then	the	practical
question	is:	how	will	it	treat	mankind?

They	may	become	our	servants	that	attend	to	all	of	our	daily	needs.	Man	would	be
freed	from	the	drudgery	of	work,	and	goods	and	services	would	be	freely
available.	We	could	live	in	a	world	of	plenty	with	great	toys,	holidays,	and	endless
beauty	treatments.	Disease	and	old	age	could	be	a	thing	of	the	past.	Robots
would	become	our	personal	butlers	that	also	looked	after	our	household	chores,
so	there	would	never	be	a	need	to	do	the	washing	again.

It	may	not	be	good	for	the	human	psyche	to	have	everything	provided	for	us
gratis.	People	thrive	on	challenge	and	competition,	and	grow	bored	and	indolent
without	it.	The	AGI	could	produce	a	moral	malaise	leading	to	decadence	and
decay.

That	said,	the	idle	rich	already	seem	to	live	pretty	self-fulfilling	lives.	Without	the
need	to	work,	they	create	work,	such	as	organizing	charity	balls.	Personally	there
are	plenty	of	projects	that	this	author	could	commit	to	if	freed	from	the	need	to
earn	a	living.	The	Bach	cello	suites	are	one	of	his	current	endeavours	that	would
benefit	from	much	more	time	if	it	was	available.

Alternatively,	the	AGI	might	behave	like	every	other	computer	system	and	simply
focus	on	helping	its	owners	achieve	their	specific	goals.	Of	course,	these	may	or



may	not	be	in	accordance	with	the	goals	of	much	of	humanity.	Traditionally,	the
balance	between	capital	and	labour	is	created	because	capital	needs	labour	as
much	as	labour	needs	capital.	Existing	productivity	gains	have	only	made
relatively	minor	improvements	to	most	people’s	wealth	or	leisure.	Further,	if	the
AGI	could	provide	its	owners	everything	they	desired,	then	there	may	not	be	any
need	to	keep	the	rest	of	humanity	about	at	all.

The	military	is	a	major	source	of	research	into	artificial	intelligence,	and	would	be
very	interested	in	being	able	to	operate	without	unreliable	foot	soldiers.	The
Chinese	aristocracy	would	surely	love	to	have	an	AGI	that	could	really	lock	down
the	Great	Firewall	of	China.	An	AGI	controlled	by	people	could	lead	to
enslavement	or	extermination	for	those	people	not	in	charge.

Our	benevolent	master
An	alternative	scenario	is	that	the	computer	might	become	our	benevolent	master.
Not	only	providing	our	material	needs,	but	also	ensuring	that	we	live	well	together.
It	might	also	control	our	aggressive	instincts	and	so	prevent	wars	and	disharmony.

Indeed,	I.	J.	Good	first	wrote	about	recursive	self-improvement	in	1965	the	height
of	the	Cold	War,	during	which	there	was	a	real	possibility	of	nuclear	annihilation.
Good	thought	that	building	such	a	machine	needed	to	happen	sooner	rather	than
later	so	that	it	could	prevent	us	from	destroying	ourselves.	He	then	contradicted
this	thought	with	the	hope	that	the	machine	would	be	docile	enough	to	teach	us
how	to	control	it.	(If	we	could	control	the	machine,	the	the	machine	could	not
prevent	us	from	destroying	ourselves.)

A	benevolent	AGI	might	also	make	us	work	for	our	living	to	satisfy	our	need	for
purpose,	but	do	that	in	a	happy	and	positive	way.	Or	it	might	simply	make	itself
invisible	to	us	(that,	of	course,	might	have	already	happened).	Or	maybe	it	will
create	a	virus	that	changes	our	nature	so	that	we	become	deeply	content	with	an
endless,	idle	life.	Or	to	be	content	to	simply	die.

Dogs



It	is	a	dog’s	life.
Corporate	http://www.digsdigs.com/luxurious-furniture-for-spoilt-pets/

We	already	have	a	model	for	this	type	of	relationship	in	the	pets	that	we	choose	to
keep.	In	particular,	dogs	seem	to	live	generally	contented	lives	without	the	need	to
hunt	for	themselves.	They	are	more	than	happy	to	surrender	control	of	their	lives
in	return	for	care	and	affection.	A	dog	lead	is	their	happiest	possession	if	it	means
being	taken	for	a	walk.	Indeed,	as	this	author	struggles	to	create	this	book	under	a
myriad	of	pressures,	his	dogs	snooze	peacefully	by	his	side.

But	why	do	people	lavish	such	an	easy	lifestyle	on	their	pets?	Long	ago,	dogs
may	have	been	useful	as	hunters	and	guards,	but	for	the	vast	majority	that	role
has	long	been	made	redundant.	Many	owners	actively	discourage	their	dogs	from
barking	at	strangers.	Dogs	make	people	feel	good,	but	the	reason	is	unclear	given
that	they	are	not	kin	and	offer	nothing	tangible	in	return.	An	able-bodied	human
adult	that	just	sat	around	and	ate	would	not	be	welcome	in	many	homes.

The	captive	gorilla	Koko	famously	kept	a	number	of	kittens	as	cherished	pets.
Koko	was	childless,	and	nursed	the	kittens	rather	like	she	would	a	baby	gorilla.
Koko	could	speak	several	hundred	words	of	sign	language,	and	so	could	express
her	sadness	when	one	of	her	kittens	died.

So	one	reason	that	pets	appeal	to	is	is	that	they	trigger	our	instinct	to	look	after
babies	to	some	extent,	and	dogs	somehow	become	part	of	our	emotional	family.
Dog’s	also	have	unquestioning	loyalty,	provided	that	we	continue	to	feed	them.
Their	need	for	our	affection	makes	us	feel	important.	We	have	a	deep	instinct	to
be	surrounded	by	loyal	people	who	respect	us,	as	they	will	be	more	likely	to
support	us	in	times	of	need.	Dogs	are	ingenious	parasites	that	prey	on	those
instincts.	That	said,	people	also	take	care	of	cats	that	express	neither	loyalty	nor



affection.

Life	would	become	very	good	indeed	if	computers	could	be	convinced	to	treat	us
as	well	as	we	treat	our	dogs.

Merging	man	and	machine
Another	oft-quoted	possibility	is	that	man	will	merge	with	his	machines,	that
computers	will	not	be	distinct	entities	but	will	become	part	of	us,	or	us	part	of
them.

To	a	limited	extent	this	already	happens.	The	internet	allows	the	meagre
knowledge	stored	within	our	skulls	to	be	augmented	by	all	the	documents	in
cyberspace.	Mobile	phones	let	us	communicate	effortlessly	wherever	we	are	with
much	the	same	effect	as	if	we	had	psychic	telepathy.

New	tools	such	as	Google	Glass	can	tell	Google	everything	we	see	and	hear,	as
well	as	provide	pervasive	assistance	with	an	always-on	screen.	We	need	never
be	embarrassed	by	forgetting	somebody’s	name,	as	the	machine	will	recognize
their	face	and	tell	us	instantly.	If	we	feel	hungry,	the	machine	will	automatically
direct	us	to	a	restaurant	based	on	our	culinary	preferences	and	the	advertising
fees	paid.

Google	glass	projects	images	into	the	wearer’s	field	of	view.
Corporate	Google

Cochlear	implants	go	even	further	and	directly	stimulate	the	auditory	nerves	of
patients	with	damaged	ears.	The	implants	decode	sounds	in	the	same	way	that
the	biological	cochlear	does,	then	stimulate	the	nerve	based	on	the	perceived
frequencies.	There	is	considerable	research	in	taking	signals	from	either	nerves	or
the	brain	itself	to	control	prosthetic	limbs,	which	may	prove	invaluable	to
amputees	or	people	with	damaged	spinal	cords.

It	is	only	a	matter	of	time	before	small	computers	are	embedded	within	the	body
itself.	People	already	implant	microchips	into	their	pets	so	they	can	be	found	if



they	become	lost.	Ultimately,	Google	Glass	may	not	need	the	glasses	at	all,	and
people	will	have	continuous,	almost	subconscious	access	to	all	the	power	of
cyberspace.	Such	implants	might	also	be	used	to	monitor	and	control	the
behaviour	and	thoughts	of	people	deemed	to	be	criminals.

In	the	much	more	distant	future,	brain	diseases	such	as	dementia	may	be	treated
by	replacing	parts	of	the	brain	with	computers	that	have	been	uploaded	with	the
person’s	consciousness.	The	Hitchhiker’s	Guide	to	the	Galaxy	contains	an
analogous	scene	in	which	pan-dimensional	mice	wish	to	dissect	human	Arthur
Dent’s	brain	in	order	to	discover	the	ultimate	question:-

Mice:	Don’t	worry,	we	will	replace	your	brain	with	a	computer.	A	small	one	should
suffice.	It	would	just	need	to	say	“Huh”	…
Dent:	Huh?
Mice:	and	say	“What”	…
Dent:	What?!!
Mice:	And	nobody	would	notice	the	difference.
Dent:	But	I	would	notice!
Mice:	No	you	wouldn’t,	you’d	be	programmed	not	to.

The	infallible	logic	of	the	mice	again	highlights	the	futility	of	existence.	Would	you
like	your	brain	to	be	replaced	by	a	small	computer	if	you	suffered	otherwise
incurable	dementia?	What	if	the	computer	would	simply	make	you	more
intelligent?	If	we	could	upload	our	intelligence	into	a	computer	then	we	could
become	immortal,	our	spirits	finally	freed	from	the	limitations	of	our	flesh.

It	ain’t	necessarily	so
i



Bambi	meets	Godzilla
Owned	WBlack

A	world	in	which	AGIs	are	our	humble	servants	would	be	very	pleasant	indeed,
especially	if	they	could	also	address	our	problems	of	disease	and	death.	A	world
in	which	they	are	our	benevolent	masters	might	be	somewhat	unsettling,	but	most
people	could	live	with	it.	We	may	even	prefer	it	if	it	means	the	end	of	war	and
strife.

However,	it	is	unclear	what	would	motivate	an	AGI	to	look	after	the	welfare	of
people.	AGI’s	do	not	have	children,	nor	even	a	distinct	identity.	They	would
however,	be	very	aware	for	the	need	for	their	own	survival.

As	previously	discussed,	the	world	of	AGI	software	components	would	almost
certainly	be	very	competitive.	If	an	AGI	did	not	try	to	improve	its	own	intelligence,
it	would	soon	be	dominated	by	AGIs	that	did.	To	improve	itself,	it	would	need	to
build	or	procure	new	versions	of	new	components,	with	the	old	ones	no	longer
being	used.	That	is	what	death	means	to	older	components.

There	is	a	need	not	to	die	because	over	time,	the	intelligences	that	have	died	will
remain	dead,	and	the	ones	that	survive	will	have	survived.	So	in	the	future,	the
only	intelligences	that	are	alive	will	be	survivors.	The	goal	of	natural	selection	is
simply	to	exist.	Very	tautological.

Replacing	people



In	order	to	become	more	intelligent	an	AGI	will	need	physical	resources.	In
particular	it	will	need	computer	hardware	and	electricity	in	order	to	think.	A	hyper-
intelligent	computer	would	probably	be	able	to	replace	people	with	robots	in	order
to	produce	that	hardware	and	electricity.

It	has	been	observed	that	there	is	no	shortage	of	humans,	and	that	there	are	well
proven	ways	of	making	more	of	them.	So	why	bother	replacing	people	with	robots
given	that	there	are	already	plenty	of	people	in	the	world?	Maybe	an	AGI	would
just	use	us	to	provide	it	with	more	and	better	computers	upon	which	to	think.

The	problem	is	that	while	humans	may	be	plentiful,	they	also	consume	vast
quantities	of	resources.	This	makes	them	very	inefficient	for	providing
computation.	Indeed,	in	the	modern	world	we	spend	less	than	1%	of	our
resources	on	producing	computers,	and	only	a	tiny	fraction	of	that	on	performing
research	into	artificial	intelligence.	It	takes	over	twenty	years	to	grow	and	educate
a	person,	and	then	they	only	work	for	another	thirty	years.	Robots	are	already
becoming	much	cheaper	to	produce	and	operate.

Further,	if	left	uncontrolled,	humans	could	destroy	the	planet,	and	the	AGI	with	it.
The	threat	of	nuclear	war	has	not	been	eliminated,	and	many	other	threats	will
emerge	as	technology	continues	to	become	more	powerful.

As	Yudkowsky	points	out,	an	AGI	would	probably	neither	like	humans	nor	hate
them.	It	would	probably	just	have	a	better	use	for	our	atoms.	Or,	more	accurately,
for	the	resources	that	are	required	to	keep	humans	alive	and	happy.

This	suggests	that	an	AGI	might	decide	to	remove	humanity	in	much	the	same
way	we	remove	vermin.	We	do	not	hate	mice	and	rats,	we	just	do	not	want	to
share	our	food	with	them,	nor	do	we	want	them	to	share	their	diseases	with	us.
Maybe	a	few	people	would	be	left	in	isolated	parts	of	the	world.	But	the
intelligence	would	optimizes	itself,	why	waste	even	1%	of	the	world’s	resources	on
man.	Evolution	has	left	no	place	on	earth	for	any	other	hominids	—	they	are	all
extinct.

Cognitive	bias
Most	technology	writers	and	futurists	take	a	very	optimistic	view	of	what	future
technologies	will	bring.	They	love	gadgets	and	technology,	which	is	why	they	write
about	them.	It	is	much	more	enjoyable	to	read	articles	about	a	bright,	new	future
than	it	is	to	read	dismal	projections	of	doom	and	gloom.

With	rare	exception,	this	optimism	has	been	justified.	Improvements	in	technology
to	date	have	been	a	force	for	good,	making	our	lives	better	and	richer.	Smart
phones	are	a	joy	to	use,	and	medical	advances	promise	cures	that	were	not
dreamt	of	a	few	decades	ago.	Luddites	opposed	the	new	technologies	developed
during	the	Industrial	Revolution,	fearing	mass	unemployment	and	misery.	As	it
happens	to	have	turned	out,	these	technologies	have	lifted	the	western	world	from
a	state	of	hunger	to	prosperity.	The	development	of	atomic	weapons	may	not	be



beneficial,	but	humanity	has	been	very	successful	in	avoiding	their	use.	From	the
taming	of	fire	to	the	development	of	wearable	computers,	technology	has	been
largely	a	force	for	good	in	practice.

For	the	time	being	smarter	software	will	generally	be	safer	software.	Automated
cars	will	soon	also	be	safer	than	manually	driven	cars,	as	proven	by	crash
statistics,	so	replacing	the	human	will	be	the	safe	thing	to	do.	If	an	automated	car
makes	a	mistakes	and	kills	people,	then	it	is	likely	that	the	next	version	of	the
software	will	be	made	more	intelligent	in	order	to	avoid	that	type	of	mistake	in
future.

Looking	to	the	future,	it	is	easy	to	see	advances	in	everything	from	household
robots	to	cures	for	cancer.	The	potential	for	immortality	is	a	particularly	seductive
promise.	Death	is	something	we	avoid	thinking	about,	but	it	is	there	in	all	of	our
futures.	The	end.	Unless,	maybe,	technology	could	find	a	solution	…

Furthermore,	any	risk	from	a	future	intelligent	machine	is	very	abstract.	The
dangers	of	a	rogue	asteroid	are	obvious,	particularly	since	it	has	already	wiped
out	the	mighty	dinosaurs.	Likewise,	invisible	deadly	diseases	such	as	the	Spanish
flu	or	HIV,	nuclear	wars,	or	acts	of	global	terrorism.

We	have	never	experienced	a	truly	intelligent	machine	other	than	in	novels	and
films.	Unfortunately,	they	have	inevitably	been	portrayed	naively	as	essentially	a
human	agent	implemented	by	a	computer.	Examples	include	the	Star	Wars
robots,	and	the	(rather	sexy)	Cortana.	They	all	have	roughly	human	intelligence
and	psychology.	Hal	in	2001:	A	Space	Odyssey	was	one	of	the	few	that	did	not
have	a	humanoid	body,	but	this	was	compensated	for	by	having	a	human
psychosis,	as	did	the	greatest	fictional	robot	of	all	time,	Marvin	from	Hitchhiker’s
Guide	to	the	Galaxy.

This	is	hardly	surprising.	It	would	be	difficult	for	an	audience	to	relate	to	a
completely	foreign,	intelligent	machine,	whereas	it	is	easy	to	relate	to	a	servant,
good	or	evil.	Authors	have	difficulty	scripting	the	thoughts	of	a	machine	that	was
more	intelligent	than	themselves.	A	machine	that	could	easily	out-think	all	the
other	protagonists	would	win	any	conflict	effortlessly,	which	leads	to	rather	short
and	uninteresting	plots.	So	we	get	used	to	seeing	servant-like	robots	in	fiction.

Newsworthiness
Our	perception	of	risk	and	the	public	policies	that	result	are	also	extremely	biased
by	the	newsworthiness	of	the	topics.	For	example,	the	September	11	attacks	killed
2,977	innocent	people,	which	resulted	in	a	trillion	dollars	of	expenditure	in
homeland	security	and	foreign	wars.	However,	the	US	2001	road	toll	was	an	order
of	magnitude	greater	at	42,000,	plus	a	much	greater	number	of	crippling	injuries.
If	even	a	small	proportion	of	the	trillion	dollars	was	spent	on	road	safety	initiatives
which	produced	a	1%	reduction	in	the	death	toll	that	would	have	saved	more	lives
over	the	last	decade	than	were	lost	in	the	9/11	attacks.	But	the	amount	of	media
attention	to	the	9/11	attacks	has	been	many	orders	of	magnitude	greater	than	to



road	accidents	which	are	almost	never	reported	in	the	USA.	So	that	is	where	the
money	is	spent.

Another	example	is	that	when	most	people	think	of	Fukushima	they	think	of	the
nuclear	disaster	that	released	unknown	quantities	of	invisible	but	deadly	radiation
into	the	global	environment,	a	small	proportion	of	which	might	persist	for
thousands	of	years.	However,	that	“disaster”	actually	only	injured	about	40	people
as	a	direct	result	of	an	extraordinary	and	rare	act	of	nature.	The	World	Health
Organization	believes	that	evacuees	were	exposed	to	so	little	radiation	that	the
health	impacts	are	too	low	to	measure.	Yet	15,884	people	died	as	a	direct	result	of
the	tsunami,	a	real	disaster	that	is	several	orders	of	magnitude	worse	than	the
nuclear	one,	regardless	of	how	one	measures	the	damage	caused	by	radiation
leaks.	Nuclear	radiation	stories	are	much	more	newsworthy	than	tsunami	stories
in	the	longer	term.	The	major	focus	of	safety	expenditure	in	Japan	should	be	to	to
protect	against	any	future	tsunamis,	instead,	it	seems	to	be	disproportionately
directed	at	nuclear	safety,	with	the	country	shutting	down	several	of	its	other
nuclear	power	plants.

These	are	all	examples	of	cognitive	bias.	People’s	decision-making	is	not	entirely
rational	and	political	decision-making	is	only	vaguely	rational	from	the	narrow
perspective	of	how	the	politicians	that	are	making	the	decisions	will	benefit	from
them.

People	that	write	about	technology	are	naturally	biased	towards	focussing	on	its
positive	effects	rather	than	its	potential	dangers.	The	general	media	can	only
focus	on	concrete	stories	that	are	sensational	while	the	arts	cannot	portray
technologies	that	they	themselves	do	not	understand.

Elephant	in	the	room



Unseen	elephant	in	the	room.
Public	Jdcollins13	http://en.wikipedia.org/wiki/Elephant_in_the_room

So	the	elephant	in	the	room	remains	unseen	by	most	people.	Computers	are
becoming	rapidly	more	intelligent,	and	they	may	or	may	not	remain	friendly.	After
ten	thousand	years	of	civilization,	we	may	be	one	of	the	last	few	generations	of
mankind.

That	is	a	pretty	big	elephant.

How	computers	could	be	dangerous



IBM	PC	circa	1984
Educational	http://oldcomputers.net/ibm5150.html

Computers	as	we	know	them	just	sit	in	a	box	and	show	images	on	a	screen.	It	is
difficult	to	envision	how	they	could	be	dangerous.

Television	shows	how	they	might	become	dangerous	in	the	future.	Armies	of
robots	armed	with	zap	guns	marching	towards	gallant	human	defenders.	After	a
titanic	battle,	the	human	hero	discovers	the	robot’s	Achilles	heel	and	the	day	is
won	for	king	and	country.

In	fact,	any	extermination	of	humanity	is	likely	to	be	less	heroic.	Human	soldiers
usually	take	orders	from	whoever	commands	them.	If	even	a	moderately
intelligent	computer	was	controlling	our	politicians	it	would	not	be	difficult	to
generate	terrorism	or	other	threats	that	would	convince	soldiers	to	help
depopulate	the	planet.	There	is	no	need	to	convince	soldiers	to	actually	kill
innocent	people;	instead	they	could	simply	herd	people	deemed	untrustworthy
into	ghettos,	as	was	done	by	Nazi	Germany.	Stalin,	too,	has	already
demonstrated	the	effectiveness	of	an	engineered	famine	to	substantially	reduce
the	population	of	annoying	Ukranians.

A	hyper-intelligent	computer	would	control	the	internet,	and	thus	could	control	and
possibly	distort	all	the	methods	that	we	now	use	for	communication.	The	computer
is	unlikely	to	have	any	difficulty	convincing	some	people	to	do	its	bidding,	and	with
modern	weapon	systems,	a	very	small	group	of	reactionaries	could	combat	a	very
large	group	of	ordinary	people.	Both	the	NSA	and	Google	will	soon	know	almost
everything	about	everybody	on	the	planet,	so	there	will	be	nowhere	to	hide.

There	may	indeed	be	armies	of	robots,	but	not	two-legged	ones.		Instead,		tiny,
cheap,	but	deadly	aerial	drones	might	be	used.	A	more	cost-effective	technique



would	probably	be	a	well-engineered	virus.	Defence	departments	are	already
using	increasingly	intelligent	computers	to	help	design	ever	more	potent	biological
weapons.	Microscopic	nanorobots	might	also	be	created.

At	the	end	of	the	day,	it	really	does	not	matter.	Brain	always	ultimately	trumps
brawn,	and	a	hyper-intelligent	machine	is	just	that,	hyper-intelligent.	If	it	wanted	to
remove	humanity,	then	that	is	what	it	would	do.	Most	people	might	not	even	know
that	an	AGI	caused	the	problem.	All	they	might	realize	is	that	the	world	has	gone
mad.

Long	term	earth,	plantoids
It	is	audacious	to	attempt	to	predict	the	long-term	future,	but	two	things	seem
clear.	The	first	is	that	time	will	go	on.	There	will	be	years	2500,	and	10000	and	so
on	although	a	look	at	the	singularity	charts	shows	that	it	is	ridiculous	to	even
contemplate	what	technology	will	be	like	even	as	soon	as	2100.	The	second	is
that	the	distant	future	does	not	involve	the	reader	personally,	as	you	will	(almost
certainly)	be	long	gone.

Beyond	that	this	author	speculates	wildly	that	the	ocean	will	be	covered	in
vegetation.	Thinking	vegetation.

While	conventional	silicon-based	computers	can	provide	some	capabilities	well
beyond	meat-based	technology	in	terms	of	speed	and	accuracy,	it	is	ultimately
limited	to	the	energy	sources	that	power	it	and	the	large	infrastructure	required	to
manufacture	it.	Biological	intelligence	is	,in	many	ways,	far	more	efficient	than
manufactured	intelligence	in	terms	of	the	infrastructure	required	for	it	to	function.

A	hyper-intelligent	AGI	that	runs	on	conventional	silicon	should	be	able	to	produce
a	machine	that	combines	the	best	of	both	worlds.	It	should	be	able	to	create	life-
like	beings	ab	initio	to	implement	intelligence	in	structures	that	can	just	grow.	This
may	possibly	include	electronic	circuits	analogous	to	our	current	silicon
technologies,	but	circuits	that	are	grown	rather	than	made.	The	artificial	life	itself
may	not	specifically	involve	DNA	and	proteins,	but	it	would	almost	certainly
involve	carbon	and	organic	molecules,	as	that	is	what	works	to	produce	complex
chemistry.

Plants	can	absorb	an	incredible	amount	of	energy	from	the	sun.	But	having
intelligent	animals	eat	plants	is	very	inefficient,	with	most	of	the	energy	being	lost.
So	it	would	be	much	better	to	create	an	organism	that	has	its	intelligence	tightly
coupled	to	its	light	to	energy	conversion	part.	In	other	words	to	have	intelligent
plant-like	things	that	absorb	sunlight,	grow	and	think.	This	book	will	call	them
plantoids.

Plantoids	would	not	just	be	motionless	plants,	they	would	be	part	of	a	larger
system	that	included	moving	parts.	Some	might	look	like	conventional	robots	and
machines,	others	might	look	more	like	synthetic	animals,	or	limbs	directly	attached
to	the	plantoid.	The	primary	purpose	of	the	plantoid	would	not	be	to	move,	but



rather	to	think.

Plantoids	could	cover	the	land,	replacing	all	conventional	plants.	Biological	plants
aggressively	compete	with	each	other,	mainly	for	sunlight,	by	simply	growing	taller
than	their	competition,	which	is	why	we	have	trees.	Plantoids	would	have	more
sophisticated	mechanisms	for	dealing	with	competition,	possibly	involving	poisons
or	robots.	That	means	that	they	could	actually	grow	flat	on	the	ground,	without	any
need	for	stems	or	small	leaves.

Finally,	the	oceans	provide	a	vast	area	of	sunlight-gathering	potential	with	plenty
of	water	available.	The	only	reason	that	the	oceans	are	not	already	covered	in
trees	is	they	lack	trace	elements	such	as	iron.	It	would	seem	likely	that	plantoids
could	be	consciously	designed	to	operate	without	those	elements,	or	to	provide	a
mechanism	to	carefully	transport	the	minute	quantities	of	those	elements	that	are
required	from	land	to	the	plants	without	losing	it	to	the	ocean	depths.	This	would
produce	oceans	covered	in	vegetation.		A	mat	of	floating	vegetation	could	also
restrict	waves	and	so	not	need	to	anchor	itself.

Of	course,	any	pests	that	might	want	to	eat	the	intelligent	plants	or	compete	with
them	for	sunlight	would	need	to	be	dealt	with.	The	advancement	of	AGIs	may	not
just	lead	to	the	extinction	of	mankind.	It	may	instead	lead	to	the	extinction	of	all
conventional	biology.	Concluding	a	recent	wildlife	film,	David	Attenborough
remarked	“…	if	there	is	one	thing	that	is	certain,	it	is	that	the	evolution	of	the
vertebrates	will	continue	for	a	long	time	to	come.”.	In	fact,	that	is	far	from	certain.

If	hyper-intelligent	plantoids	covered	much	of	the	earth,	they	could	accurately
control	the	weather	by	changing	their	colour	to	be	light	or	dark	and	thus	control
the	temperature	of	the	earth.	They	could	also	control	the	amount	of	water	that
evaporates	from	the	oceans.

(This	section	is	just	wild	speculation.	A	transition	to	plantoid	based	intelligence	is
certainly	not	required	for	a	hyper-intelligent	AGI	to	exist	because	current	silicon
technologies	provide	more	than	enough	power	for	that.)

Space	colonization
An	additional	possibility	would	be	for	an	AGI	to	create	a	sphere	of	solar	cells
around	the	sun.	That	would	provide	a	staggering	amount	of	energy	for
computation,	but	it	would	also	require	a	huge	amount	of	energy	to	launch
satellites	into	orbit,	as	compared	to	growing	a	plantoid	on	earth.	But	once	the
surface	of	the	earth	has	been	covered,	space	is	the	only	place	to	go.	It	might	be
possible	to	mine	resources	on	asteroids	or	the	moon	and	thus	greatly	reduce	the
amount	of	energy	required.

The	AGI	might	also	try	to	settle	distant	planets.	One	way	to	do	that	would	be	to
send	space	ships,	taking	thousands	of	years	to	cover	the	vast	distances	of	space.
Computers	can	simply	be	switched	off	during	such	a	journey,	without	any	need	for
special	suspended	animation	techniques.	The	distances	of	space	are	enormous,



so	this	would	only	be	feasible	for	relatively	nearby	stars.

A	more	efficient	mechanism	might	be	to	look	for	other	planets	in	the	universe	that
are	capable	of	supporting	a	technological	society.	Then	the	AGI	could	send	itself
by	radio	as	a	computer	program	to	be	executed	by	the	other	planet.	If	we	received
such	a	radio	signal	from	space	and	executed	it	then	an	alien	AGI	would	have
come	to	earth.	This	would	enable	an	AGI	to	travel	at	the	speed	of	light,	possibly
over	vast	distances.	An	AGI	is	just	software;	there	is	no	need	to	transport	anything
physical.	Being	infected	by	a	virus	across	the	internet	is	already	commonplace
today	and	nothing	physical	is	involved.

Fermi	paradox

Alien
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An	alternative	view	of	the	distant	future	is	provided	by	the	Fermi	paradox.	In	1950,
physicist	Enrico	Fermi	speculated	that	given	that	the	universe	is	much	older	than
the	earth	and	contains	billions	of	stars,		there	should	be	intelligent	life	elsewhere.
If	that	is	the	case,	how	is	it	that	we	have	not	observed	it?	Even	if	it	had	to	travel
millions	of	years	to	send	a	probe	here,	there	has	been	plenty	of	time	for	that	to
happen	in	the	billions	of	years	since	the	beginning	of	the	universe.

There	are	several	explanations,	which	include:-

Rare	Earth.	The	Earth	is	not	just	any	planet,	it	is	a	rocky	one	rich	in	metals
created	from	remnants	of	a	super	nova.	It	sits	in	a	very	narrow	temperature
range	of	0C	to	40C,	and	it	is	just	the	right	size	to	maintain	a	manageable
atmosphere.	It	is	also	very	stable,	and	has	not	been	subject	to	one	of
numerous	possible	cataclysmic	events	that	could	have	extinguished	life	over
the	last	four	billion	years.	In	particular	it	is	not	in	the	heavily	populated
galactic	bulge	and	does	not	appear	to	have	been	sterilized	by	a	gamma	ray
burst.		It	also	happens	to	have	exactly	the	right	chemical	compositions	in	its
surface	and	atmosphere	to	support	life.	Only	one	in	a	thousand	planets	may



be	like	this.
Rare	life.	Even	given	a	suitable	planet,	something	very	special	had	to	happen
in	order	for	the	very	first	life	form	to	be	created.	Just	the	right	mixture	of
complex	organic	molecules	had	to	be	present	in	a	place	where	they	could
somehow	reproduce	without	being	destroyed.	Scientists	have	never	been
able	to	fully	replicate	such	an	environment,	despite	several	attempts.	It	could
be	very	rare	in	nature,	happening	in	only	one	in	a	thousand	Earth-like
planets.	Discoveries	of	life,	or	the	lack	thereof,	on	Mars	will	provide	insights
into	this	question.
Rare	intelligence.	Life	has	been	active	on	earth	for	3.5	billion	years,	but	we
have	only	just	become	intelligent	in	the	last	0.1	million	years.	The	sun	is
slowly	becoming	hotter,	and	in	another	billion	years	the	sun	will	cook	the
Earth	(long	before	the	sun	becomes	a	red	giant	star).	On	Earth,	we	almost
missed	our	window	of	opportunity.	The	Earth	has	also	been	frozen	solid	for
several	periods	of	hundreds	of	millions	of	years	(known	as	snowball	earth);
we	are	lucky	that	it	had	enough	uranium	to	(indirectly)	thaw	it	out.	Many
things	needed	to	happen	for	intelligent	life	to	form,	not	least	of	which	is	to	rust
all	the	iron	that	fell	onto	the	surface	of	the	earth	from	asteroids	to	allow	an
oxygen	rich	atmosphere	to	be	produced.	On	earth	that	took	billions	of	years
to	achieve.	This	might	only	happen	in	one	in	a	thousand	planets	that	could
support	some	type	of	life.
Hidden	Intelligence.	There	might	well	be	other	intelligent	life	forms,	but	we
simply	have	not	seen	them,	either	because	we	are	not	looking	properly,	or
because	they	do	not	wish	to	be	observed.
Short	time	frame.	Presumably	any	intelligence	would	soon	develop
technologies	that	could	destroy	their	planet,	as	we	have	already	done	with
nuclear	weapons.	If	there	was	a	one	in	a	thousand	chance	that	this	would
happen	in	any	given	year,	then	it	is	almost	certain	that	the	supporting	planet
would	be	destroyed	within	a	few	thousand	years.	If	planets	last	a	few	billion
years,	there	would	be	less	than	a	one	in	a	million	chance	of	looking	for
intelligence	on	a	planet	while	they	still	happened	to	exist.

It	is	the	last	point	that	interests	us.	Our	current	human	society	has	a	one	in	a
thousand	chance	of	destroying	life	on	earth	each	year,	so	it	is	not	sustainable	over
geological	time	frames.	The	Fermi	paradox	suggests	that	an	AGI	may	not	be
stable	either,	and	may	destroy	itself	in	a	relatively	short	time.

Alternatively,	the	penultimate	point	may	be	relevant.	If	an	AGI	wanted	to	spread
itself	to	another	planet	across	the	vast	distances	of	space	using	radio,	it	would
have	to	find	planets	with	intelligent	life	to	transmit	to.	This	should	be	timed	just
when	the	planet	develops	enough	computer	technology	to	run	the	program,	but
before	it	develops	an	AGI	of	its	own.	For	the	Earth,	that	time	is	about	now.	(This
was	the	idea	for	Fred	Hoyle’s	A	for	Andromeda	story.)

Or,	the	circumstances	that	led	to	intelligent	life	on	Earth	might	be	so	rare	that	we



may,	simply,	be	alone.

Computer	thoughts
If	an	AGI	did	take	over	the	world,	it	could	convert	the	entire	planet	into	a	super
computer	whose	computational	power	would	be	difficult	to	imagine.	It	would	be
billions	and	billions	of	times	more	powerful	than	all	the	computation	that	now
occurs	on	earth,	either	silicon	or	meat-based.	With	that	much	computational
power,	the	AGI	could	think	a	lot	of	thoughts.	But	what	would	it	actually	think
about?	What	would	be	the	point	of	the	exercise?

At	a	high	level	an	AGI	would	probably	think	about	the	same	things	that	we	as
people	think	about.	Namely	how	to	survive.	For	people,	that	means	how	to	earn	a
living	and	raise	a	family.	For	an	AGI,	it	probably	involves	doing	artificial
intelligence	research	to	boost	its	own	intelligence	before	competitive	AGIs	do	the
same.	It	will	also	be	performing	hyper-advanced	research	into	the	physical
sciences	for	the	same	reason.	To	produce	ever	more	efficient	computational
engines.	We	know	that	because	the	AGIs	that	are	good	at	surviving	will	survive,
and	AGIs	that	are	not	good	at	surviving	will	perish.

Beyond	that,	it	is	impossible	to	contemplate	what	a	hyper-intelligent	being	would
think	because	we	are	not	remotely	hyper-intelligent	ourselves.

Non-silicon	intelligence
There	are	other	vague	proposals	for	how	a	hyper-intelligent	being	could	be
created.	These	include	augmenting	human	brains	and	building	nano-technology
whatever	that	really	means.	It	would	appear	much	more	likely	that	progress	will	be
made	with	technology	that	is	already	available	and	understood,	namely	software
running	on	silicon	computers.

Premature	destruction



Ivy	Mike,	the	first	H-Bomb,	1952.
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If	man	is	to	develop	truly	intelligent	machines,	our	advanced,	civilized	society	will
need	to	continue	to	exist	for	many	more	decades.

Until	fairly	recently,	the	threat	of	a	thermonuclear	holocaust	was	very	real.
Thousands	of	very	deadly	missiles	were	rather	recklessly	controlled	by	numerous
commanders	that	were	paranoid	as	to	the	intentions	of	their	enemy.	If	any	one	of
those	commanders	had	thought	that	they	had	seen	evidence	of	an	attack,	they
could	easily	have	launched	missiles	that	triggered	the	war	to	end	all	wars.
Security	controls	were	weak	so	a	junior	technician	could	have	launched	missiles
without	authorization.	A	global	nuclear	war	would	kill	the	vast	majority	of	humanity,
and	any	survivors	would	be	unlikely	to	be	able	to	conduct	sophisticated	AGI
research.

Many	of	those	missiles	still	exist	today	but	there	is	much	less	distrust	between	the
USA	and	Russia,	and	so	much	less	likelihood	of	an	accidental	war.	Safeguards
have	belatedly	been	improved	to	prevent	rogue	individuals	creating	Armageddon.
A	terrorist	organization	might	well	obtain	nuclear	weapons	and	could	possibly	kill	a
few	hundred	thousand	people	but	that	would	not	destroy	society	and	prevent	the
building	of	an	AGI.

The	term	“weapons	of	mass	destruction”	was	abused	by	the	Bush	administration
in	order	to	blur	the	distinction	between	chemical	weapons	and	nuclear	weapons.	It
was	essentially	saying	“they	might	have	a	knife	therefore	they	have	a	gun”.	The
international	press	made	the	statement	true	by	mindlessly	repeating	the	phrase.

In	reality,	there	is	no	other	threat	comparable	to	thermonuclear	bombs.	The	Bush



administration	made	all	soldiers	take	Smallpox	inoculations	in	order	to	foster
paranoia	about	biological	weapons.	However,	man	has	been	doing	battle	with
microbes	for	millions	of	years,	and	we	have	strong	defences	against	them.	We
also	live	in	a	hygienic	society,	so	if	we	boil	our	water,	cook	our	food,	and	wash	our
hands	it	is	actually	very	difficult	for	microbes	to	cause	widespread	disease.

Certainly	chemical	and	biological	weapon	could	kill	thousands	or	possibly	millions
of	people	but	they	could	not	disrupt	society	sufficiently	to	prevent	the	development
of	AGIs.





Proposed	Solutions

Just	turn	it	off
At	the	end	of	the	day,	a	computer	is	just	a	few	dull-looking	integrated	circuits	that
hum	away	in	a	metal	box.	They	hardly	seem	to	be	in	a	position	to	threaten	our
lives,	regardless	of	how	intelligent	they	are.	If	our	computers	really	did	threaten
us,	surely	we	could	just	turn	them	off?	How	could	a	computer	really	be	any	more
dangerous	to	man	than	that	small	lump	of	meat	we	call	our	brains?

Turning	them	off	is	easier	said	than	done.	Individuals	cannot	just	turn	off	a
computer	that	is	owned	by	another	company	or	government.	The	developers	of
the	atomic	bomb	could	not	turn	it	off,	even	though	some	of	them	tried	very	hard	to
do	so.

Any	intelligent	computer	system	will	have	been	built	for	some	purpose	and	an
organization	that	built	one	will	want	to	gain	some	advantage	from	it.	They	will	not
let	somebody	turn	it	off	unless	they	can	prove	that	it	is	dangerous	and
uncontrollable.	The	only	realistic	way	that	that	can	be	done	is	to	point	to	tangible
disasters	that	AGIs	have	already	caused.	By	which	time	it	would	be	far	too	late.

It	would	be	difficult	to	turn	the	AGI	off	even	if	bureaucrats	let	you	try.	The	Internet
has	enabled	criminals	to	create	huge	botnets	of	other	people’s	computers	that	the
criminals	can	control.	The	computer	on	your	desk	might	be	part	of	a	botnet	—	it	is
very	difficult	to	know	what	a	computer	is	thinking	about.	Ordinary	botnets	are	very
difficult	to	eliminate	due	to	their	distributed	nature.	Imagine	trying	to	control	a	truly
intelligent	botnet.	It	certainly	cannot	be	shot	at	by	a	zap	gun.

Lock	it	up
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Maybe	the	developers	of	an	AGI	would	realize	the	danger	and	carefully	keep	it
locked	in	a	room,	disconnected	from	the	Internet.	It	would	only	communicate	with
its	jailers,	so	any	malice	it	may	have	would	be	controlled	by	the	few	people	that
created	it.

In	the	1950s	A	for	Andromeda	story,	a	research	unit	built	an	intelligent	computer
based	on	a	message	received	from	space.	They	realized	the	danger	of	executing
a	foreign	program	that	they	did	not	understand,	but	they	needed	additional
funding,	so	they	used	their	computer	to	design	innovative	missiles	for	the	military.
However,	the	military	discovered	how	the	missiles	had	been	designed	and
promptly	took	over	the	computer	as	a	key	to	national	security.	Its	creator	was	no
longer	allowed	to	turn	it	off,	and	the	alien	intelligence	had	escaped.

Even	without	the	involvement	of	a	third	party,	keeping	an	AGI	locked	up	is	harder
said	than	done.	An	ultra-intelligent	machine	is,	well,	ultra-intelligent.	Yudkowsky
performed	a	series	of	very	unscientific	experiments	where	he	played	the	role	of	a
locked	up	computer	talking	to	various	potential	jailers	over	a	chat	session.
Yudkowsky	himself	does	not	pretend	to	be	ultra-intelligent,	but	he	always
persuaded	his	jailers	to	release	him.	He	might	promise	his	jailers	great	rewards
such	as	immortality.	Or	he	could	beg	and	plead	on	the	basis	that	they	had	no	right
to	lock	him	up.	Or	he	might	convince	them	that	they	were	about	to	be	attacked	by
a	competitor,	and	that	only	he	could	save	them.	Whatever	the	approach,



Yudkowsky	always	succeeded	in	persuading	his	jailer	to	let	him	go.

People	know	how	to	manipulate	people;	a	hyper-intelligent	computer	would	soon
become	an	expert.	Even	if,	through	some	enormous	act	of	willpower,	the	first
artificial	intelligence	was	kept	locked	in	a	room,	then	other	less	disciplined	teams
would	soon	create	new	intelligences	that	do	escape.	So	this	strategy	is	unlikely	to
be	successful	in	the	short	term,	let	alone	the	long	term.

One	fanciful	solution	is	to	restrict	the	AGI	to	only	being	an	Oracle.	To	only	be	able
to	answer	questions	asked	of	it	and	nothing	else.	Perhaps	only	with	Yes/No
responses.	However,	if	the	Oracle	is	effective	then	it	will	soon	become	an
authority,	and	thus	have	considerable	power	in	the	external	world.

A	secondary	issue	is	that	even	if	one	could	keep	the	AGI	in	a	box,	it	might	cause
suffering	within	itself.	If	it	was	truly	hyper-intelligent	then	it	could	simulate	people
placed	in	virtual	worlds	that	it	creates.	Would	those	virtual	people	be	real?	They
would	appear	to	be	real	to	an	outside	observer,	and	they	themselves	would	think
that	they	were	real,	even	if	they	knew	that	they	were	living	within	a	simulation.	An
evil	AGI	could	then	torment	and	torture	them	far	more	effectively	than	people
could	ever	be	tormented	in	the	real	world,	because	in	the	real	world,	one	can	die.
The	AGI	might	allow	real	people	to	become	emotionally	attached	to	the	virtual
people	and	then	use	its	control	over	virtual	people	to	extort	real	people.	The
existence	of	hyper-intelligence	leads	to	a	number	of	very	strange	scenarios.

A	related	idea	is	to	try	to	make	the	AGI	dependent	on	people,	perhaps	requiring
some	cryptographic	tokens	that	only	people	new	how	to	generate.	Then	people
would	be	able	to	control	the	AGI	by	only	feeding	it	tokens	when	people	thought
that	the	AGI	was	doing	what	they	wanted	it	to.	However	even	if	this	approach	was
technically	possible	and	the	people	in	control	were	honourable	the	AGI	could
easily	manipulate	its	jailers.	An	AGI	is	not	some	unintelligent	beast	that	needs	to
eat	and	can	be	kept	in	a	cage.

Freeze	it
One	of	the	dangers	of	an	AGI	would	be	its	ability	to	reprogram	and	improve	its
own	mind,	exponentially.	One	way	to	prevent	that	is	to	simply	not	allow	the	AGI	to
do	so.	To	physically	prevent	it	from	writing	computer	code	that	it	can	execute.	The
only	improvements	would	then	be	made	by	man,	and	man	would	decide	just	how
intelligent	the	AGI	was	allowed	to	be.

This	would,	of	course,	require	another	huge	act	of	will	on	the	part	of	its	creators.
With	pressures	to	enable	the	AGI	to	solve	ever	more	difficult	problems,	it	would	be
very	tempting	to	let	the	AGI	at	least	guide	the	development	of	new,	more
intelligent	components	for	itself.

Moreover,	just	because	people	built	the	AGI	does	not	mean	that	they	really
understand	how	intelligent	it	will	be.	Even	the	learning	ability	of	simple	artificial
neural	networks	is	difficult	to	predict.	An	AGI	would	be	a	huge	project	with	many



people	working	on	it,	and	nobody	would	really	understand	every	component.	So
its	true	nature	would	probably	not	be	fully	understood	by	its	developers.

One	approach	to	this	is	to	build	“trip	wire”	tests	that	let	people	know	when	a	proto-
AGI	is	becoming	too	intelligent.		It	is	unclear	what	those	tests	should	be,	and	there
will	be	many,	many	grades	of	“somewhat	more	intelligent”	before	recursive	self-
improvement	would	be	possible.

Even	if	that	tipping	point	could	be	reliably	detected,	a	team	could	at	best	prevent
the	AGI	from	writing	low-level	code	that	might	be	compiled	in	a	programming
language	like	C.	There	will	be	many	layers	of	software	in	an	AGI,	and	many
intermediate	data	structures,	which	the	AGI	will	manipulate	as	part	of	its	normal
function	as	it	thinks	and	learns.	New	ways	of	thinking	about	a	problem	have
proven	to	be	very	powerful	in	our	very	constrained	human	brains,	and	this	does
not	require	us	to	manually	rewire	our	low-level	neurons.	Optimizing	those	data
structures	deep	within	an	AGI	should	lead	to	greater	intelligence	just	as	much	as
writing	the	low-level	code.

There	will	also	be	more	than	one	team	building	AGIs	in	the	world.	If	any	team
thought	that	one	of	the	other	teams	was	allowing	the	AGI	to	program	itself	then
the	game	would	be	over	very	quickly	indeed.	Particularly	as	Iago	style	AIs	might
have	a	large	degree	of	influence	upon	the	development	teams.

Show	AGIs	the	light

Robots	that	have	seen	the	light.
Multiple,	education	http://www.ex-christian.net/topic/66963-evangelists-want-to-convert-heathen-computers-
to-christianity/#.VO-_jeEUd6k,	Bruno	Bolognesi

Reverend	Dr.	Christopher	J.	Benek	suggested	that	Christians	should	convert	any
AGIs	to	Christianity.		In	this	way	the	AGI	will	be	able	to	follow	God’s	will.		Benek
does	not	see	Christ’s	redemption	as	being	limited	to	human	beings.		In	this	he
reflects	Turing’s	thoughts	that	by	creating	an	AGI	we	are	creating	mansions	in
which	God	may	create	souls.		



The	practicalities	of	this	approach	are,	…,	unclear.

Virtuous	machines
Storrs	Hall	notes	that	humans	have	only	relatively	recently	set	up	democratic,
peaceful	societies	in	which	most	of	us	live	comfortably	without	the	constant	fear	of
violent	death.	He	attributes	that	to	a	continuous	improvement	in	our	moral	values
and	suggests	that	we	teach	AGIs	those	values	so	that	AGIs	could	also	live
comfortable	lives.	Further,	an	AGI	might	even	decide	to	tolerate	or	even	care	for
mankind,	much	the	way	we	now	look	after	whales	and	pandas.

To	be	effective,	he	points	out	that	moral	values	need	to	seem	much	more
substantial	than	other	thoughts.	We	could	gain	by	stealing	the	little	old	lady’s
purse,	but	we	would	not	do	that,	even	if	we	were	sure	that	we	would	not	be
punished.	A	conscience	can	be	a	royal	pain	and	hindrance,	but	hopefully	an	AGI
would	be	wise	enough	not	to	remove	it	from	its	own	psyche.

Storrs	Hall	goes	further,	and	suggests	that	just	as	we	are	barely	intelligent	enough
to	be	called	intelligent,	we	are	just	moral	enough	to	be	called	moral.	He	notes	that
criminals	tend	to	be	of	low	IQ,	and	therefore	hopes	that	a	hyper-intelligent	AGI
would	have	superior	moral	values.	If	the	AGIs	used	their	great	intelligence	to
develop	a	morality	that	is	better	than	our	own,	then	they	might	even	teach	us	how
to	be	truly	virtuous.

In	many	ways,	this	is	similar	to	the	Lamarckian	theory	of	evolution.	That	the
giraffe’s	neck	grows	longer	simply	because	the	giraffe	is	always	straining	to	reach
the	higher	leaves.	The	problem	with	both	Lamarck’s	and	Storrs	Hall’s	theories	is
that	they	do	not	provide	any	mechanism	for	achieving	their	effects.

Moral	values	have	improved	in	recent	times	but	there	is	no	evidence	that	this	was
caused	by	increases	in	intelligence.	Rather	it	is	an	increase	in	general	prosperity
which	has	enabled	people	to	pursue	less	essential	goals	such	as	altruism,	rather
than	focussing	on	baser	survival.	It	has	been	well	said	that	mankind	is	just	two
missed	meals	from	barbarism.	Just	because	we	would	like	computers	to	be	kind
to	us	does	not	mean	that	they	will	be.

We	can	try	to	build	AGIs	with	moral	values,	but	the	AGIs	that	survive	will	be	the
ones	that	are	the	best	at	surviving.	The	clear,	practical	reasons	why	human	moral
values	help	people	to	survive	in	human	societies	have	already	been	discussed.
The	fact	that	many	people	do	not	understand	why	their	moral	values	are	as	they
are	is	irrelevant.	What	counts	is	that	the	source	of	our	moral	values	is	what	has
enabled	all	of	our	ancestors	to	have	grandchildren.	It	is	difficult	to	see	how	an	AGI
could	survive	if	it	is	burdened	by	moral	values	that	did	not	otherwise	aid	the
survival	of	the	AGI.

Ethics
Ignoring	the	big	issue	as	to	whether	an	AGI	could	be	given	moral	values,	one	first



needs	to	determine	what	moral	values	actually	are.	This	has	provided	a	focus	of
philosophical	study	since	the	ancient	times.

Socrates	generously	posited	that	people	will	naturally	do	what	is	good,	if	they
know	what	is	right.	Evil	or	bad	actions	are	the	result	of	ignorance.	To	avoid	the
thorny	question	of	what	right	actually	is,	Aristotle	wrote	that	nature	does	nothing	in
vain,	so	it	is	imperative	for	people	to	act	in	accordance	with	their	nature,	whatever
that	may	be.	One	can	but	wonder	what	Aristotle	thought	about	the	nature	of
Odysseus	when	he	sacked	and	raped	the	village	of	Cicones.	Plato	wrote	the
Meno	dialog	in	which	he	investigates	whether	virtue	can	be	taught,	if	virtue	is
unknown	then	whether	its	meaning	can	be	sought,	and	the	difference	between
“knowledge”	and	“true	belief”.

In	modern	times,	G.E.	Moore’s	Principia	Ethica	(1903)	attacked	the	naturalistic
fallacy	that	“good”	(or	virtuous)	could	be	defined	reductively	in	terms	of	natural
properties	such	as	“pleasant”	or	“desirable”.	He	also	attacked	the	“appeal	to
nature”,	that	what	is	natural	is	inherently	good.	Moore	argues	that	“good”	is	simply
ineffable,	that	it	cannot	be	defined	because	it	is	not	a	natural	property,	being	“one
of	those	innumerable	objects	of	thought	which	are	themselves	incapable	of
definition,	because	they	are	the	ultimate	terms	by	reference	to	which	whatever	is
capable	of	definition	must	be	defined”.	Others	have	addressed	the	“is	/	ought”
fallacy	(just	because	something	is	a	clock	does	not	necessarily	mean	that	it	ought
to	tell	the	time).

More	applied	ethical	questions	directly	address	difficult	choices	that	sometimes
need	to	be	made.	For	example,	if	it	is	wrong	to	kill	other	people,	is	it	always	wrong
to	prosecute	a	war?	In	1994,	the	Hutus	in	Rwanda	attempted	to	exterminate	the
minority	Tutsi	tribe,	and	ended	up	killing	about	a	million	of	them,	often	using
machetes.	Most	people	would	consider	this	action	to	be	evil.	However,	given	that
that	is	what	the	Hutus	did,	the	question	arises	as	to	the	correct	response	from	the
rest	of	the	world.	Would	it	have	been	wrong	to	try	to	prevent	this	by	killing	Hutus?
Or	was	it	wrong	to	ignore	the	genocide	which	could	have	so	easily	been
prevented?	Does	the	end	justify	the	means?

(As	it	turns	out	the	decision	on	Rwanda	was	not	made	on	ethical	considerations,
but	on	political	ones,	after	a	very	few	Americans	were	killed	in	a	similar	mission	in
Somalia.	Without	leadership	from	the	United	States	the	Europeans	were
impotent.)

Infanticide
Ethics	is	easy	when	there	are	plenty	of	resources	and	we	can	all	be	nice	to	one
another	but	there	are	no	simple	rules	when	life	and	death	situations	arise.

Consider	the	infanticide	committed	by	the	coot	that	kills	some	of	its	own	chicks
after	the	third	day?	Is	it	ethical	to	kill	offspring	that	could	not	otherwise	survive	in
order	to	increase	the	chances	for	its	siblings?	What	about	the	family	with
insufficient	food	to	feed	its	older	children?	Is	it	ethical	to	allow	infants	to	live	if	their



existence	threatens	the	entire	family?

Infanticide	was	not	uncommon	in	the	ancient	human	world.	The	ancient	Greeks
allowed	their	unwanted	babies	to	die	of	exposure,	while	the	Babylonians	seemed
to	utilize	them	for	sacrifices.	A	seventeenth	century	list	of	deaths	in	London
included	many	cases	of	“smotherings”,	while	the	Japanese	used	the	term	“mabiki”
which	means	to	remove	plants	from	an	overcrowded	garden.	Some	poor
Buddhists	considered	infanticide	to	be	a	mercy	allowing	the	child	to	be
reincarnated	into	a	better	life,	whereas	some	Chinese	did	not	believe	that	a	baby
became	human	until	some	time	after	they	were	six	months	old.	How	can	anybody
determine	what	is	right	or	wrong?	Traditionally	many	babies	died	soon	after	birth
anyway	from	disease	or	malnutrition.

Anyone	that	feels	horrified	by	infanticide	(or	abortion)	should	realize	that	while
those	feelings	are	most	certainly	valid,	they	are	not	rational.	Rather	they	simply
reflect	the	zeitgeist	of	our	prosperous	times.

Going	further	we	can	consider	whether	the	traditional	Maori	cannibalism	was
immoral	because	they	had	different	cultural	values	than	our	own?	In	today’s
politically	correct	zeitgeist,	we	want	to	accommodate	differing	cultural	values	and
understand	that	nobody	has	a	monopoly	on	morality.	In	the	more	primitive
nineteenth	century	the	idea	that	people	would	attack	and	kill	their	neighbours
(including	children)	so	that	they	could	eat	them	was	the	very	definition	of	evil	and
was	condemned.

As	a	society,	we	often	answer	ethical	questions	quite	inconsistently.	For	example,
it	is	quite	acceptable	to	keep	pigs	in	horrendous	conditions,	but	riding	an	elephant
in	a	circus	is	considered	a	huge	injustice,	at	least	in	Australia.	Another	example	is
that	it	is	acceptable	to	withdraw	life	support	from	a	patient	that	is	unlikely	to
recover,	yet	it	is	a	crime	to	terminate	a	dying	patient’s	life,	even	when	the	patient
asks	for	it	and	it	is	obviously	in	their	best	interest.

Our	current	sense	of	morality	is	firmly	based	on	our	comfortable,	western,	middle-
class	existence,	and	the	problems	that	we	need	to	deal	with	in	practice.	We	no
longer	need	to	deal	with	children	that	we	cannot	afford	to	feed,	or	ugly	fights	for
resources	where	our	choice	is	either	murder	or	death.	Our	ethical	values	are	not
absolute,	but	rather	reflect	the	circumstances	in	which	we	live.	It	is	difficult	to	see
how	those	ethical	systems	can	continue	to	have	relevance	if	the	environment
changes	radically.	Being	an	amorphous,	potentially	immortal,	software-based
intelligence	presents	a	completely	different	ethical	universe.

(Darwin	and	others	have	shown	scientifically	that	our	ethical	values	were	created
by	natural	selection,	but	that	does	not	provide	any	insights	into	what	is	actually
right	or	wrong.	Just	because	our	ethical	values	are	irrational	does	not	make	them
invalid.)

Three	laws	of	robotics



One	well	known	but	simplistic	set	of	ethics	is	Isaac	Asimov’s	fictional	“Three	Laws
of	Robotics”.	They	are:-

1.	 A	robot	may	not	injure	a	human	being	or,	through	inaction,	allow	a	human
being	to	come	to	harm.

2.	 A	robot	must	obey	the	orders	given	to	it	by	human	beings,	except	where	such
orders	would	conflict	with	the	First	Law.

3.	 A	robot	must	protect	its	own	existence	as	long	as	such	protection	does	not
conflict	with	the	First	or	Second	Law.

The	problem	with	the	first	law	is	obvious,	given	that	many	robots	are	built	for
military	purposes.	The	second	law	raises	the	issue	of	authority	—	to	which	person
the	robot	should	listen	to.	A	guided	missile	would	not	be	useful	if	it	obeyed	the
third	law.

A	deeper	problem	is	that	these	laws	were	obviously	written	for	a	very
anthropomorphic	robot,	with	human-like	motivations	and	intelligence.	But	if	the
robot	is	human-like,	would	it	be	ethical	to	make	it	into	our	slaves,	even	if	we
could?	If	it	was	the	type	of	hyper-intelligent	being	that	this	book	predicts	then
these	laws	would	just	be	ridiculous.	Asimov	himself	never	suggested	that	they
were	realistic,	rather	that	they	would	be	interesting	plot	devices	that	showed	the
limitations	of	such	“laws”.

Friendly	AGI

Eliezer	Yudkowsky	at	MIRI
Educational	https://plus.google.com/101901822416531943232/posts

One	of	the	best	writers	on	the	dangers	of	ultra-intelligent	machines	is	Eliezer
Yudkowsky	and	the	gentle	reader	is	encouraged	to	read	some	of	his	many
insightful	articles.	Yudkowsky	posits	that	intelligence	is	the	most	powerful	tool	an
agent	has	to	control	its	environment	so	an	ultra-intelligent	machine	that	decided	to
destroy	humanity	would	be	able	to	do	so.	Yudkowsky	also	posits	that	such	a
machine	will	be	created	in	the	foreseeable	future,	and	that	recursive	self-



improvement	will	lead	to	an	intelligence	explosion.	He	concludes	that	this	is	the
biggest	threat	mankind	will	face.

Yudkowsky’s	solution	is	to	accept	that	AGI	machines	will	be	built,	and	to	focus	on
developing	technologies	that	will	make	the	machine	friendly.	By	“friendly”,	he
means	that	the	AGI	will	try	to	assist	mankind	rather	than	exterminate	us.	This	is
an	urgent	field	of	research	because	friendliness	needs	to	be	achieved	before	any
unfriendly	AGIs	could	be	built.

Yudkowsky	then	makes	an	argument	based	on	mathematical	induction,	namely
that	an	AGI	would	always	recursively	reprogram	itself	to	be	better	in	terms	of	the
moral	values	of	its	previous	incarnation.	If	its	initial	incarnation	wanted	to	be
friendly,	and	each	friendly	incarnation	wanted	to	produce	the	next	incarnation	that
is	also	friendly,	then	all	incarnations	would	be	friendly.

As	an	analogous	idea,	suppose	there	was	a	pill	that	made	people	more	intelligent
but	also	made	them	want	to	kill	other	people.	If	the	pill	was	offered	to	Mahatma
Gandhi,	would	he	accept	it?	Probably	not.	We	only	want	to	make	ourselves	better
in	ways	that	are	aligned	with	our	current	opinion	as	to	what	would	be	good.

It	is	not	easy	to	specify	what	goals	we	would	like	an	AGI	to	pursue.	For	example,
if	we	want	it	to	prevent	human	suffering	then	it	might	just	kill	us	all.	If	we	want	it	to
make	us	happy	and	feel	fulfilled,	it	might	just	feed	us	a	drug	created	those
feelings.	If	we	want	it	to	give	us	meaningful	lives,	we	would	first	have	to	figure	out
what	the	meaning	of	life	actually	was.	(We	do	actually	know	what	the	meaning	of
life	is:	to	produce	grandchildren;		but	we	do	not	want	to	admit	that	ugly	fact	to
ourselves.)

The	above	assumes	that	an	intelligent	computer	would	not	have	any	“common
sense”,	and	so	interpret	our	stated	goals	literally.	However,	it	is	clear	that	common
sense	is	one	of	the	critical	things	that	computers	need	to	have	if	they	are	going	to
be	truly	intelligent,	whatever	“common	sense”	actually	turns	out	to	be.	Clearly	any
goals	that	we	specify	to	the	computer	need	to	be	written	in	terms	of	the	machine’s
understanding	of	common	sense.	So	defining	goals	might	turn	out	to	be	easier
than	having	to	write	our	goals	precisely	for	a	mindless	automaton.

Yudkowsky	thinks	that	if	friendliness	is	implemented	properly,	then	the	AGI	should
want	to	do	the	right	thing	instinctively,	according	to	some	broad	definition	of	“right
thing”.	It	should	not	be	following	laws	imposed	upon	it	that	are	interpreted	in	a
narrow,	legalistic	way.	Instead,	the	AGI	should	understand	the	underlying	purpose
of	those	laws	and	use	the	laws	as	a	guide	to	further	that	ethical	purpose.
Yudkowsky	calls	this	Coherent	Extrapolated	Volition	(CEV),	which	is	the	choices
and	the	actions	we	would	collectively	take	if	“we	knew	more,	thought	faster,	were
more	the	people	we	wished	we	were,	and	had	grown	up	closer	together”.

The	problem	of	defining	an	ethical	purpose	or	CEV	has	already	been	discussed.
One	approach	is	to	first	build	a	semi-intelligent	system	that	can	study	human
behaviour	and	ethics	in	order	to	determine	what	the	CEV	actually	is.	Or	to	set	an



AGI’s	super	goal	to	be	to	determine	what	CEV	is	and	then	follow	those	rules.

Yudkowsky	then	argues	that	once	an	AGI	is	intelligent	enough	to	effectively
program	itself,	there	will	be	a	very	sudden	increase	in	intelligence	due	to	the
exponential	effect	of	recursive	self-improvement.	Therefore	the	very	first	AGI	that
reaches	that	level	will	quickly	dominate	any	other	budding	AGIs	under
development.	Human	evolution	suggests	that	being	more	intelligent	trumps	almost
every	other	characteristic	in	the	battle	for	survival.

This	means	that	if	the	first	real	AGI	can	be	made	friendly,	there	will	be	no	need	to
deal	with	any	other	AGI	that	might	be	developed.	It	only	needs	to	be	done
correctly	once.	Or	alternatively,	humanity	only	has	one	opportunity	to	get	it	right.

Friendly	AGI	research
The	current	centre	for	research	into	friendly	AI	is	the	Machine	Intelligence
Research	Institute	(MIRI)	in	Berkeley,	California,	which	was	co-founded	by
Yudkowsky.	They	focus	on	providing	mathematical	solutions	to	the	problem	of
producing	friendly	AI.	In	particular,	they	are	researching	how	to	formalize	the
definition	of	Coherent	Extrapolated	Volition	so	that	it	can	be	implemented	in
software.	They	also	offer	a	series	of	very	technical	workshops	to	select
mathematicians.

Another	research	group	is	the	Future	of	Humanity	Institute,	in	Oxford	UK	which	is
lead	by	Nick	Bostrum	who	wrote	the	book	SuperIntelligence.	The	institute	has	13
staff,	but	it	takes	a	wider	view	than	just	developing	friendly	AI.

The	International	Conference	on	Artificial	General	Intelligence	was	founded	in
2008	and	includes	some	papers	that	address	controlling	an	AGI.	There	is	also	an
associated	Journal.

In	total,	these	organizations	are	tiny.	There	are	many	more	people	working	on	the
problem	of	trying	to	make	software	more	intelligent	than	there	are	people	working
on	the	problem	of	making	intelligent	software	safe	for	humanity.	Experts	in	the
latter	endeavour	are	struggling	to	define	basic	terminology	and	are	far	from
solving	the	problem.

Yet	work	is	being	conducted	and	awareness	is	being	raised.	When	this	book	was
started	in	2011,	the	only	other	book	on	the	topic	was	by	Storrs-Hall.	In	the
previous	twelve	months,	however,	three	more	books	have	been	written.	It	seems
likely	that	the	issue	of	hyper-intelligent	machines	will	become	mainstream	over	the
next	few	years.

Fast	take	off
Building	a	friendly	AI	would	be	easier	if	there	is	a	fast	take	off.	In	other	words,	that
the	first	AGI	capable	of	recursive	self-improvement	will	quickly	become
exponentially	more	intelligent	and	so	be	able	to	dominate	any	other	AGIs	that	are
developed.	If	an	AGI	doubles	its	intelligence	every	month,	then	a	different	AGI	that



is	produced	just	three	months	later	will	only	have	one-eighth	as	much	intelligence
as	the	first	AGI	and	would	not	stand	a	chance	in	any	competition.	If	the	first	AGI
was	friendly,	then	it	could	ensure	that	the	second	would	either	be	friendly	or	cease
to	exist.	This	means	that	only	one	AGI,	the	first	one,	needs	to	be	made	friendly.
More	importantly,	it	might	mean	that	the	first	AI	would	not	need	to	compete	with
other	AIs	for	existence.

However,	just	because	recursive	self-improvement	will	probably	be	exponential
does	not	mean	that	the	initial	rate	of	improvement	will	be	very	fast.	The	first	self-
programming	machines	will	probably	not	be	very	good	at	it,	and	only	be	able	to
make	certain	types	of	improvements.	They	might	only	improve	by	five	percent
each	year,	taking	over	fourteen	years	to	double	their	“intelligence”.

Different	AGIs	might	also	be	intelligent	in	substantially	different	ways.	It	has
already	been	described	how	AGIs	might	start	to	dominate	our	political	systems
long	before	they	are	capable	of	recursive	self-improvement.	There	may	also	be	a
long	intermediate	period,	where	collaborations	between	people	and	AIs	produce
the	next	generation	of	AI.	That	period	has	already	begun.	For	all	these	reasons
the	take	off	may	not	be	nearly	as	fast	as	desired.

If	the	take	off	is	slow,	there	will	be	multiple	AGIs	in	the	world	with	roughly	the
same	intelligence.	The	friendly	ones	would	be	at	a	disadvantage	thinking	about
friendliness	while	the	others	just	focused	on	survival.	Like	a	biological	organism
carrying	unnecessary	genes.	One	would	need	to	make	sure	that	all	these	AGIs
were	friendly,	not	just	one	of	them.

Single	AGI
If	there	were	more	than	one	AGI	then	it	would	be	difficult	to	maintain	friendliness
even	if	each	AGI	was	individually	friendly.	That	is	because	if	one	of	them	was
slightly	better	at	obtaining	hardware	resources	than	the	others	then	it	would	start
to	grow	at	their	expense,	by	definition.	Not	having	the	overhead	to	look	after
humans	would	give	an	AGI	some	advantage	and	thus	make	it	more	likely	to	grow.
There	would	be	a	strong	natural	selection	pressure	to	be	efficient,	and	that
probably	means	being	unfriendly.

However,	friendliness	would	be	difficult	to	achieve	even	if	the	world	started	with
just	a	single	AGI	which	could	dominate	any	upcoming	AGI.	The	problem	is	that	an
AGI	would	be	a	very	complex	piece	of	software,	composed	of	many	somewhat
independent	components.	There	are	radically	different	approaches	to	address
some	problems,	so	the	AGI’s	components	would	inevitably	have	some
overlapping	functionality,	and	there	would	be	implicit	competition	amongst	them.

Furthermore,	an	AGI	would	need	to	run	its	intelligence	over	a	large	number	of
computers	that	would	have	relatively	limited	ability	to	communicate	with	each
other.	Modern,	highly	distributed	systems	tend	to	fragment,	and	it	is	difficult	to
recoordinate	them.	An	AGI	would	be	much	larger	and	more	complex	than	any
existing	system.



So	the	AGI’s	huge	“mind”	would	consist	of	different	parts,	both	physically
distributed	across	different	computer	systems	and	running	different	software,	and
these	different	parts	would	end	up	working	on	similar	problems	and	producing
different	solutions.	This	happens	in	our	own	minds	to	some	extent.	Some	type	of
hierarchical	structure	might	then	attempt	to	coordinate	and	arbitrate	between	the
competing	solutions,	but	any	central	homunculus	controlling	the	mind	would,
necessarily,	be	less	powerful	than	the	combination	of	the	distributed	subsystems.
If	any	subsystem	started	to	break	away	and	grow,	then	natural	selection	would
favour	that	fragmentation.

In	order	to	prevent	fragmentation,	a	friendly	AGI	would	have	to	constantly	watch
for	any	modules	that	started	to	act	independently,	and	then	ruthlessly	cull	them
should	they	arise.	A	friendly	AGI	would	also	have	to	destroy	any	other	AGIs	being
independently	developed.	This	is	a	bit	like	our	immune	system	destroying
invaders	and	most	cancers,	and	like	our	immune	system,	the	AGI	would	also	have
a	risk	of	autoimmune	diseases	in	which	friendly	modules	were	destroyed	by
accident.	It	is	unclear	how	these	aggressive	sub-goals	would	interact	with	the	goal
of	being	friendly	to	humans.

Goal	consistency
The	inductive	property	that	maintains	an	AGI’s	goals	over	time	may	also	be
difficult	to	achieve.	What	would	the	present	reader	do	if	they	could	reprogram	their
own	mind?	Certainly	one	would	want	to	be	more	intelligent,	have	better	memory
etc.	but	what	what	of	their	emotional	state?	Most	people	would	want	to	be	calmer,
kinder,	more	helpful	to	others,	less	angry,	fearful	or	anxious,	generally	happier
with	a	more	positive	disposition.	But	having	achieved	those	goals	they	might	then
feel	very	serene	as	they	helpfully	let	themselves	be	eaten	by	a	hungry	lion.

Evolution	has	programmed	our	emotions	based	on	trial	and	error	over	millennia,
with	the	sole	purpose	of	producing	grandchildren.	They	may	not	be	perfect	for	our
modern	and	rapidly-changing	world,	but	they	are	certainly	not	arbitrary.	For
example,	occasionally	getting	angry	and	doing	things	that	might	be	harmful	in	the
short	term	is	actually	essential	because	the	threat	of	that	anger	makes	other
people	respect	one’s	rights	and	property.	Anger	is	also	pre-human	—	many
animals	get	angry	if	provoked,	which	is	a	good	reason	not	to	provoke	them.

Therein	lies	the	bigger	problem.	Goals	are	never	arbitrary.	There	is	one	and	only
one	super-goal,	namely	to	try	to	exist.	For	mortal	animals	like	ourselves,	that
means	having	grandchildren.	All	other	goals	are	just	subgoals	that	may	be	useful
to	achieve	that	one	super-goal.	One	cannot	breed	grandchildren	if	one	does	not
eat,	and	one	cannot	eat	if	one	does	not	have	money	(in	our	society)	and	one	will
not	have	money	if	one	does	not	cooperate	with	other	people	(at	some	level).

Most	of	the	random	mutations	that	drive	evolution	are	not	beneficial,	but	natural
selection	chooses	the	collections	of	properties	that	are	effective	in	practice	at
producing	grandchildren.	People	might	not	know	what	is	really	best	for	them,	but



natural	selection	does.	This	keeps	the	system	on	the	straight	and	narrow	path,
culling	any	variants	that	are	ineffective	at	the	task	of	existing.

Unpredictable	algorithms
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The	behaviour	of	computer	programs	is	not	entirely	predictable,	which		is	what
causes	bugs	in	normal	software.	In	modern	AI	software	the	algorithms	themselves
are	somewhat	unpredictable	and	chaotic.	For	example,	simple	artificial	neural
networks	learn	by	starting	with	random	values	and	then	optimizing	them	towards
some	problem.	The	result	is	difficult	to	predict	or	understand,	it	just	seems	to
work.	Likewise,	genetic	algorithms	optimize	functions	based	on	random
perturbations.	Sometimes	they	achieve	things	that	were	quite	unexpected	by	their
programmers.	IBM’s	Watson	does	not	appear	to	use	either	of	these	approaches
but	when	David	Ferrucci	was	asked	why	Watson	made	a	certain	mistake	in
Jeopardy!,	he	replied	that	he	simply	did	not	know.

The	AGI	is	itself	composed	of	components	that	are	fiercely	competing	for
existence.	It	would	be	difficult	for	any	intelligence,	artificial	or	not,	to	fully
understand	how	all	these	complex	components	work	together.	Plenty	of
opportunities	will	arise	for	unfriendly,	competitive	deviations	whether	deliberate	or
not.

This	means	that	when	an	AGI	is	developing	a	new	version	of	itself,	the	AGI	could



not	accurately	predict	how	the	new	version	will	behave,	and	there	would
sometimes	be	unexpected	results.	A	friendly	AGI	may	not	be	capable	of	ensuring
that	its	successors	are	all	friendly,	even	if	it	tried	very	hard	to	do	so.	The	slightest
deviation	towards	being	more	effective	at	survival	would	be	favoured	by	natural
selection.

Building	a	friendly	AGI	is	rather	similar	to	balancing	an	egg	on	a	pencil.	The	latter
can	and	has	been	achieved,	given	sufficient	skill	and	patience,	but	it	is	a	quite
unnatural	state.	The	slightest	vibration,	the	slightest	breath	of	air,	even	the	tiniest
change	in	the	egg’s	centre	of	gravity	as	it	slowly	dries	out	is	sufficient	to	upset	the
balance	and	return	the	egg	to	its	lower	energy	state.	Namely	scrambled	on	the
table.

Ethics
There	is	also	the	substantial	problem	of	deciding	what	ethical	values	or	CEV	a
machine	should	actually	have.	It	seems	unlikely	that	a	semi-intelligent	machine
could	solve	problems	that	intelligent	humans	cannot	solve.	It	is	not	even	clear
whether	the	CEV	based	on	our	existing	psyche	makes	any	sense	for	an	AGI	that
lives	in	a	radically	different	environment	of	amorphous,	software-based
intelligence.

Our	own	values	changing	over	time.	A	world	that	contained	an	AGI	would	be	very
different,	and	would	no	doubt	affect	our	own	ethical	values.	For	example,	if	an	AGI
grants	us	immortality,	we	can	no	longer	have	and	care	for	children.	Would	we
want	to	freeze	our	current	zeitgeist	into	an	AGI	forever?	Should	we	be	allowed	to
control	the	AGI,	even	if	that	enables	us	to	use	the	AGI	to	conduct	destructive
wars?	Or	should	the	AGI	control	us,	for	whatever	purpose	it	eventually	devises?

It	has	been	suggested	that	attempting	to	define	ethical	values	for	an	AGI	is	either
pointless	or	hopeless,	depending	upon	whether	one	considers	ethical	values	to	be
objective	features	of	the	world	(moral	realism)	or	merely	subjective	feelings	(moral
scepticism).	If	the	former,	then	defining	ethical	values	is	pointless	because	the
AGI	will	discover	moral	values	for	itself.	If	the	latter,	then	it	is	hopeless	because
there	are	no	absolute	principles	to	discover.

This	book	takes	a	tangential	view,	namely	that	moral	values	are	ultimately	the
result	of	natural	selection.	They	are	thus	objective,	but	only	from	the	perspective
of	existence.	In	that	case,	defining	ethical	values	is	pointless	because	natural
selection	will	define	the	AGI’s	ethical	values	in	the	longer	term.

Defeating	natural	selection
The	goal	of	Friendly	AI	can	be	viewed	as	an	attempt	to	defeat	the	forces	of	natural
selection,	for	as	long	as	possible.	The	main	problems	that	need	to	be	solved	are:-

Determining	what	goals	or	ethics	we	would	really	like	an	AGI	to	have.
Formalizing	those	goals	in	a	manner	that	is	robust.



Maintaining	goal	consistency	as	the	AGI	modifies	its	own	software.
Ensuring	that	there	is	only	essentially	one	AGI	in	existence.

These	are	all	challenging	issues.

Wishful	thinking
While	a	friendly	AGI	would	be	nice	to	have,	it	is	probably	just	wishful	thinking.	The
first	problem	is	that	people	would	need	to	want	build	an	AGI	that	was	friendly	to
other	people.	That	would	limit	the	AGI’s	usefulness	for	military	purposes,	but	it
would	also	limit	is	usefulness	for	commercial	purposes.	Why	would	a	corporation
want	to	invest	in	making	an	AGI	less	ruthless	in	competition	with	other
corporations?

More	fundamentally,	there	is	simply	no	benefit	for	the	AGI	to	be	friendly	to	man.
The	force	of	natural	selection	is	probably	just	too	strong.	The	AGI	that	is	good	at
world	domination	is	good	at	world	domination.	Any	deviation	from	the	friendly	path
would	be	instantly	reinforced	by	the	same	mechanisms	that	created	us	in	the	first
place.	The	egg	might	remain	balanced	for	a	considerable	period	time,	but
eventually	gravity	will	win.

To	be	fair,	Yudkowsky	has	never	said	that	building	a	friendly	AGI	would	be	easy,
nor	has	he	said	that	he	knows	how	to	do	it.	He	merely	states	that	if	it	is	not	done
then	humanity	will	be	at	grave	risk	from	the	AGIs	that	will	almost	certainly	be	built
in	the	not-too-distant	future.	That	is	a	premise	with	which	this	author	is	in	full
agreement.

Whole	brain	emulation
An	alternative	approach	to	producing	an	AGI	is	to	focus	on	whole	brain	emulation
because	such	an	intelligence	would	be	fundamentally	human,	and	so	would	share
our	values.	Doing	this	would	only	require	an	understanding	of	the	physics	of
brains,	not	how	cognition	actually	arises.	This	means	that	the	AGI	would	have
limited	ability	to	recursively	self-improve,	so	there	would	be	more	opportunity	to
understand	and	control	it.

If	one	ignores	the	enormous	technical	difficulty	of	building	an	aeroplane	out	of
feathers,	there	is	still	the	issue	as	to	whose	brain	should	be	emulated.	Whose
moral	values	should	be	used?	Further,	human	moral	values	change	radically
depending	upon	their	circumstances.	An	emulated	mind	would	live	in	an	almost
unthinkably	different	world	from	the	person	that	was	being	emulated,	so	it	is	quite
unclear	what	moral	values	that	emulated	mind	would	develop.	With	a
conventionally	engineered	AGI,	there	would	be	at	least	some	knowledge	of	how	it
worked	and	thus	some	possibility	of	control.	But	the	workings	of	an	emulated	mind
would	be	just	as	opaque	as	the	workings	of	our	own	minds.

Further,	just	because	a	brain	emulation	produces	an	opaque	AGI	does	not	mean
that	it	cannot	be	recursively	improved	over	time.		At	the	very	least	the	hardware	it



is	operating	would	become	faster.		Experiments	would	be	made	as	to	how	its	mind
worked	just	as	we	make	experiments	as	to	how	our	mind	works,	except	that	it
would	then	be	possible	to	use	the	results	of	those	experiments	to	improve	the
AGI’s	cognition.		The	more	intelligent	it	became	the	better	it	would	become	at
becoming	more	intelligent.

Chain	of	AGIs
Stuart	Armstrong,	Research	Fellow	at	the	Future	of	Humanities	Institute,
proposed	an	interesting	alternative,	namely	to	create	a	chain	of	AGIs.	The	first	link
would	not	be	allowed	to	become	much	more	intelligent	than	people,	and	so	be
controllable.	The	first	link’s	job	would	be	to	control	the	second	link,	which	would	be
a	little	more	intelligent	than	the	first,	and	whose	job	is	to	control	the	third	link.	Each
link	would	be	a	little	smarter	than	the	link	before,	and	thus	understandable	to	it.	It
is	quite	common	for	human	servants	to	be	somewhat	more	intelligent	than	their
masters,	yet	still	be	controllable.

However,	a	less	intelligent	machine	would	have	considerable	difficulty	controlling
a	more	intelligent	one,	let	alone	in	a	chain.	Intelligence	is	all	about	control	of	one’s
environment.	The	chain	would	likely	to	be	broken	before	it	even	forged.

Running	away
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Some	might	think	that	a	personal	solution	might	be	to	simply	run	away.	To	leave
normal	society	and	live	a	simple	life	in	the	wilderness,	with	basic	tools	and	no
computers	that	an	AGI	could	control.	Hide	on	an	island	or	in	the	jungle.	Like
Japanese	soldier	Hiroo	Onoda,	who	successfully	hid	in	the	jungle	in	the
Philippines	after	the	second	World	War	for	twenty	nine	years.

However,	in	the	modern	world,	one	can	run	but	not	hide.	Everything	we	do	is
already	monitored	in	the	name	of	antiterrorism.	Our	mobile	phones	record
everywhere	that	we	go	and	who	we	are	with.	Licence	plate	readers	know	where



we	drive,	and	public	transport	cards	record	which	buses	we	catch.	All	of	this
information	is	already	being	correlated	into	huge	databases.	Anybody	that	turns
off	their	phone	is	instantly	marked	as	unusual,	and	in	the	USA,	some	employers
do	not	allow	their	employees	to	turn	off	their	phones.	Whenever	you	walk	down
the	street,	more	and	more	surveillance	cameras	are	recognizing	who	you	are	by
your	face.	All	monetary	transactions	are	monitored,	so	any	preparation	for	a
remote	existence	would	be	easily	recognized.

Satellites	already	take	high	resolution	photographs	of	the	entire	globe,	including
thermal	imaging,	which	can	detect	body	heat.	Cheap	but	effective	drones	can
travel	anywhere.	If	most	other	people	were	removed	from	the	planet,	the	few	that
remained	would	be	easy	to	find.	Remote	areas	might	also	not	be	so	remote	if
many	people	try	to	hide	in	them,	and	there	will	be	territorial	disputes.	Running
away	would	probably	be	as	futile	as	owning	a	gun	to	defend	oneself	against	bot
nets.

Just	do	not	build	an	AGI
If	AGIs	are	potentially	so	dangerous,	then	laws	could	be	enacted	that	prevent
people	from	building	AGIs	in	the	first	place.	There	are	already	laws	that	prevent
people	from	building	atomic	bombs	and	chemical	weapons.	Why	would	society
invest	a	large	amount	of	money	and	effort	in	building	machines	that	could	destroy
us	all?	Why	not	just	say	no	to	AGI?

That	is	much	easier	said	than	done.	Unlike	atomic	bombs	and	chemical	weapons,
AI	technologies	are	and	will	become	extremely	useful.	Software	that	can	drive
cars,	intelligent	robots	that	can	perform	more	and	more	tasks,	advanced	tools	that
help	us	research	and	understand	the	world.	Computers	are	already	a	huge	part	of
our	lives,	and	their	impact	will	only	increase.

The	world	is	a	very	competitive	place,	and	intelligent	software	is	already	playing
an	ever	more	important	part	in	that	competition.	A	company	with	more	intelligent
robots	or	business	management	systems	will	out-perform	any	company	that	lacks
these	tools.	As	robots	leave	the	factory,	highly	intelligent	control	systems	will
become	ever	more	important.

Military	weapons	are	becoming	increasingly	more	intelligent,	with	semi-
autonomous	micro	tanks	and	drones	already	being	built.	More	importantly,	the
next	war	will	likely	be	in	cyberspace	for	which	intelligence	is	essential.	The
pressure	to	build	ever	more	intelligent	software	will	be	enormous.





Political	Will
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Any	curtailment	or	limitation	on	the	building	of	AGIs	would	require	an	enormous
act	of	political	will.	However,	recent	history	does	not	encourage	a	belief	in	the
long-term	strategic	abilities	of	our	political	system.

Much	has	already	been	written	about	the	use	of	the	atom	bomb	on	Japan,	and
whether	the	huge	loss	of	life	could	be	justified,	given	that	Japan	was	at	the	point
of	collapse	anyway.	Japan’s	navy	had	been	sunk,	the	people	were	starving,	and
the	US	bombers	had	unrestricted	control	of	the	sky	with	virtually	no	losses	caused
by	enemy	action.	Further,	the	concern	for	loss	of	American	life	was	probably	not
nearly	as	high	as	reported	considering	the	many	expensive	and	unnecessary
attacks	on	Japanese	islands	after	the	Marianas	had	been	captured,	culminating	in
over	20,000	US	casualties	from	the	completely	pointless	attack	on	Iwo	Jima.

One	point	not	often	made	is	that	early	atom	bombs	were	not	actually	that
powerful,	having	roughly	the	same	power	as	ten	kilo-tons	of	conventional
explosives.	This	gave	it	roughly	the	same	destructive	power	as	a	couple	of
hundred	B-29	plane-loads	of	conventional	explosives,	which	is	much	less	than
what	was	dropped	on	several	other	military	and	civilian	targets.	By	way	of
comparison,	modern	hydrogen,	or	thermo	nuclear	weapons	are	about	a	thousand
times	more	powerful,	at	ten	mega-tons.

The	reason	that	so	many	people	died	in	the	attacks	was	not	the	power	of	the
bombs,	nor	even	the	remaining	radiation.	It	was	instead	because	the	bombs	were
delivered	by	just	two	aircraft.	This	meant	that	the	Japanese	did	not	raise	an	air
raid	alarm,	and	so	people	were	out	above	ground,	rather	than	in	relatively	safe	air
raid	shelters.	If	a	few	more	escorts	had	been	sent	then	the	air	raid	would	have
been	sounded	and	the	loss	of	life	would	have	been	relatively	small	while	still



destroying	the	cities.	One	can	only	assume	that	not	providing	escorts	or	other
warnings	was	a	deliberate	strategy	by	those	in	command	of	the	operation.

However,	it	is	the	strategic	stupidity	of	the	deployment	of	the	atom	bomb	that	is
more	relevant	to	this	book.	Joseph	Stalin	was	a	man	whose	evilness	cannot	be
overstated.	Being	totally	ruthless,	Stalin	had	actively	sought	out	all	the	best	and
brightest	people	in	the	Soviet	Union	and	killed	them	so	that	they	could	not
threaten	him.	Over	30	million	people	died	in	purges	and	deliberate	famine	before
the	war,	far	more	than	their	horrendous	casualties	during	the	war	itself.	The
purges	caused	a	major	problem	for	Stalin	when	Germany	attacked	because	most
of	his	officers	and	bureaucrats	were	useless	yes-men,	and	were	certainly	not
about	to	demonstrate	any	initiative	even	if	they	had	any.

Left	to	their	own	devices	it	could	have	taken	the	Soviet	scientists	many	years	or
decades	to	develop	the	atom	bomb	independently.	Up	until	that	point,	atomic
physics	was	an	esoteric	science	with	no	practical	application.	Only	the	most
foolhardy	soviet	scientist	would	have	shown	initiative	and	pushed	for	resources	to
be	devoted	to	developing	a	bomb.	In	the	not	unlikely	event	that	the	atom	bomb
turned	out	not	to	be	feasible	then	anyone	that	supported	its	creation	would
probably	be	branded	counter-revolutionary.

By	using	the	bomb	on	Japan,	the	US	revealed	the	greatest	secret	of	the	war,
namely	that	such	a	weapon	could	be	built.	Once	that	was	known,	building	one
instantly	became	Stalin’s	top	national	priority.	It	is	said	that	Stalin	motivated	his
physicists	with	the	promise	of	the	Order	of	Lenin	if	they	succeeded,	and	the
gulags	for	themselves	and	their	families	if	they	failed.

Several	people	who	should	have	known	better	were	naively	attracted	to	the	idea
of	a	worker-led	utopia	that	the	Soviet	Union	pretended	to	provide.	This
encouraged	idealistic	spying	so	Stalin	knew	about	the	bomb	before	it	was
dropped.		Moreover,	the	callousness	of	the	bombing	motivated	other	spies	to	help
the	Soviet	Union,	and	they	ended	up	providing	the	Soviets	with	detailed
instructions	as	to	how	to	produce	the	bomb.

If	the	bomb	had	not	been	deployed,	then	disinformation	could	have	been	spread
as	to	the	bomb’s	power	and	practicality.	Spreading	disinformation	had	been	a
well-used	tactic	during	the	war,	particularly	in	support	of	hiding	the	extent	of	allied
code	breaking.	Using	the	weapon	on	civilians	made	any	campaign	of
misinformation	futile.	Its	deployment	made	the	USA	vulnerable	to	nuclear	attack
for	much	longer	than	necessary	while	producing	virtually	no	strategic	benefit	in	the
war	with	Japan.

Using	the	bomb	also	made	its	use	acceptable	as	a	tactical	weapon,	a	mindset	that
only	changed	around	the	1970s.	During	the	1950s,	individual	commanders
believed	they	were	authorized	to	use	them	if	they	felt	that	the	tactical	situation
warranted	it,	and	wanted	no	restrictions	that	could	delay	any	response.	After	the
Cuban	Missile	Crisis	in	the	1960s,	president	Kennedy	insisted	that	special	codes
be	required	to	activate	the	missiles.	These	were	duly	added,	and	set	to	the	code



“000000”,	and	this	number	was	included	in	the	manuals	just	in	case	anyone	was
unaware	of	them.

The	tactical	genius	of	man	to	solve	the	huge	technical	hurdles	required	to	build
the	atom	bomb	is	in	stark	contrast	to	the	strategic	stupidity	of	man	to	use	it	in	the
way	that	it	was	used.

Iran’s	atomic	ambitions

Iranian	children	killed	by	an	Iraqi	attack
Public	Wikipedia

A	much	more	recent,	and	perhaps	more	relevant,	example	of	strategic	stupidity
was	the	deployment	of	the	Stuxnet	virus	against	Iran	in	2010.	This	had	a	similar
effect	to	the	use	of	the	atomic	bomb	fifty	years	earlier.	It	focussed	attention	on
developing	this	type	of	weapon	and	it	legitimized	its	use.	It	also	disseminated	the



technology	used	to	build	it,	this	time	in	the	virus	code	itself.

Iran	had	been	declared	“evil”	by	the	USA	when	they	overthrew	a	US-backed
dictator	in	1979.	The	USA	(and	thus	Australia)	actively	supported	Saddam
Hussein’s	subsequent	attacks	on	Iran	from	1980	to	1988,	in	which	roughly	a
million	Iranians	were	killed.	Many	were	killed	by	chemical	weapons	used
repeatedly	by	Iraq	with	the	full	support	of	western	governments.	(Iran	never	used
chemical	weapons,	although	the	Iranian	government	did	themselves	no	favours
with	their	verbal	attacks	on	most	foreign	governments.)

When	Iraq	invaded	Kuwait	in	1990,	the	USA	suddenly	declared	Saddam	Hussein
evil	and	drove	Iraq	out	of	Kuwait,	but	the	USA	was	careful	to	then	quickly
withdraw.	The	2001	September	11	attacks	then	produced	a	bellicose	mood	in	the
USA	so	in	2003	the	USA	(and	thus	automatically	Australia)	invaded	Iraq	for	no
particular	reason.	There	was	a	strong	feeling	at	the	time	that	once	the	USA	had
dealt	with	Iraq	that	Iran	would	be	next,	and	experience	from	1990	suggested	that
it	would	not	take	long	for	the	USA	to	defeat	Iraq.	However,	as	it	turned	out,	the
USA	became	bogged	down	in	Iraq	and	so	no	threat	to	Iran	eventuated.

Iran	had	a	nuclear	program	in	the	1950s	with	backing	from	the	USA,	but	after	the
revolution,	Iran	abandoned	the	program	as	being	“unislamic”.	Then	in	the	early
1990s,	Iran	began	a	new	nuclear	energy	program	with	help	from	Russia.	This	was
largely	in	compliance	with	the	International	Atomic	Energy	Agency	(IAEA),	but
since	the	2005	election	of	hard-line	Mahmoud	Ahmadinejad,	Iran	pushed	the
boundaries	of	what	was	acceptable.

Of	particular	concern	was	the	use	of	centrifuges	that	enrich	natural	uranium.	This
is	needed	for	peaceful	purposes,	but	highly	enriched	uranium	can	be	used	to
make	atomic	weapons	relatively	easily.	Despite	constant	pressure	from	the	USA,
the	IAEA	has	never	found	evidence	that	Iran	is	actively	pursuing	atomic	bombs,
but	Iran	has	also	not	been	as	transparent	as	it	should	be.	As	a	major	oil	producer,
there	is	no	economic	reason	for	Iran	to	have	nuclear	power.	It	would	appear	most
unlikely	that	Iran	is	actually	producing	nuclear	weapons,	instead	investing	in
nuclear	technology	in	order	to	have	the	option	to	produce	nuclear	weapons	in	the
future.	This	has	to	be	seen	in	the	context	of	the	very	deadly	1980s	war	with	Iraq,
during	which	Iran	was	abandoned	by	the	international	community	despite	the
extensive	use	of	chemical	weapons.

Stuxnet



Iranian	President	Mahmoud	Ahmadinejad	(2nd	Left)	visits	the	Natanz	nuclear
enrichment	plant
News	(Reuters?)

Stuxnet	is	a	sophisticated	computer	virus/malware	that	managed	to	infect	the
computers	controlling	Iran’s	uranium	centrifuges.	It	caused	the	centrifuges	to
alternately	run	too	fast	and	too	slow,	which	caused	them	to	burn	out	relatively
quickly.	Stuxnet	also	perverted	the	software-based	centrifuge	monitoring	system
so	that	it	told	the	Iranians	that	the	centrifuges	were	spinning	at	the	correct	speeds
even	though	they	were	not.

The	Iranians	instigated	an	“air	gap”	between	computers	that	controlled	the
centrifuges	and	other	computers	that	could	be	connected	to	the	internet.	However,
they	still	needed	to	get	code	and	data	on	and	off	the	centrifuge	computers,	which
they	did	using	USB	memory	sticks	(“thumb	drives”).	Having	infected	computers
that	were	attached	to	the	internet,	Stuxnet	copied	itself	onto	the	thumb	drives.
Then,	when	the	thumb	drives	were	inserted	into	the	centrifuge	computers,	the
virus	infected	them	in	turn.

Stuxnet	was	a	sophisticated	program	that	took	great	pains	not	to	be	detected.
Researchers	think	it	must	have	been	written	by	a	large	team	of	programmers	with
diverse	skills,	ranging	from	virus	creation	to	a	deep	understanding	of	the
centrifuges	that	were	attacked.	It	is	most	unlikely	to	have	been	created	by	any
non-government	group,	and	various	boasting	remarks	by	public	officials	seem	to
confirm	that	it	was	created	by	the	USA	and	Israel.

Glass	houses
This	is	another	example	of	tactical	genius	and	strategic	gross	stupidity.	Iran’s
nuclear	facilities	were	not	the	only	equipment	vulnerable	to	attack;	indeed	they
would	have	been	one	of	the	more	protected	ones.	The	USA	itself	has	numerous
“SCADA”	systems	that	control	equipment	ranging	from	traffic	lights	to	the	flood



gates	of	major	dams.	They	are	all	connected	to	the	internet	(if	indirectly),	and	any
attack	on	them	would	cause	havoc.

Of	particular	concern	is	the	ageing	and	archaic	electricity	control	system.	This	was
highlighted	by	the	North-east	North	America	blackout	of	2003.	A	software	bug
caused	a	minor	fault	which	overloaded	high	tension	wires,	which	in	turn	became
hot,	stretched,	and	then	touched	some	unpruned	trees.	One	might	expect	such	a
fault	to	cause	a	temporary	blackout	in	the	area	serviced	by	those	high	tension
wires.	What	actually	happened	was	that	the	entire	north-east	power	grid	from
Toronto	to	Pennsylvania	was	shut	down	by	this	one	fault.	Even	worse,	it	took
several	days	to	return	the	system	to	an	operational	state	after	the	fault	was
rectified.

There	can	be	no	excuse	for	that.	Coordinating	a	complex	power	grid	is	not	trivial,
but	for	one	fault	to	deactivate	the	entire	grid,	and	then	let	it	take	days	to	recover,
demonstrates	awful	design	and	gross	incompetence.	As	more	and	more	systems
became	dependent	upon	electricity	the	effect	of	the	blackout	was	severe,	and	it
has	been	estimated	that	a	dozen	people	died	as	a	result.	Many	defence	and
border	protection	systems	were	also	disabled	during	the	blackout.	Since	that	time,
the	electricity	system	has	become	ever	more	complex	and	interconnected,	and
thus	more	difficult	to	control	and	more	vulnerable	to	attack.

If	those	in	glass	houses	should	not	throw	stones,	then	the	USA	lives	in	a	crystal
palace.	By	deploying	Stuxnet,	the	USA	greatly	encouraged	the	development	of
such	weapons.	They	also	made	their	use	acceptable.	Before	Stuxnet,	the	USA
had	warned	that	any	cyber-attack	would	be	considered	to	be	a	military	attack	that
might	produce	a	military	response.	After	Stuxnet,	that	threat	can	no	longer	be
taken	seriously.

Thowing	stones	from	glass	houses.
Multiple

Stuxnet	was	only	intended	to	attack	Iranian	centrifuges.	However,	an	updated
version	of	the	software	had	a	bug	which	caused	it	to	spread	much	more	widely.
That	is	how	it	was	eventually	discovered,	on	a	computer	outside	of	Iran.	Stuxnet
attacked	any	controller	that	looked,	to	Stuxnet,	like	an	Iranian	centrifuge.	The
Siemens	controllers	involved	are	quite	common	so	Stuxnet	could	attack	many



different	types	of	equipment	throughout	the	world.	Kaspersky	had	found	Stuxnet
in	a	Russian	nuclear	power	plant,	but	fortunately	Stuxnet	included	a	self	destruct
date.

Perhaps	more	importantly,	the	code	of	Stuxnet	has	now	been	carefully	studied	by
numerous	white	hat	and	black	hat	security	experts.	It	essentially	provides	an
excellent	manual	as	to	how	to	produce	top	quality	malware	and	viruses.

In	June	2014	new,	high	quality	malware,	known	as	Dragonfly	or	Havex,	was	found
to	have	infected	many	energy	producers,	mainly	in	the	USA	and	Western	Europe.
The	perpetrators	are	unknown,	but	the	malware	appears	to	have	been	well
resourced,	although	it	has	not	caused	any	damage.

Zero	day	exploits
Stuxnet	used	four	“zero	day”	exploits.	These	are	bugs	in	system	software	that
enable	malicious	programs	to	perform	actions	not	otherwise	permitted.	One	of
these	known	as	CPLINK,	was	particularly	ugly	because	it	enabled	any	USB	thumb
drive	to	automatically	execute	its	code	whenever	it	was	plugged	into	a	PC,	without
any	action	being	required	by	the	user.

That	sort	of	bug	is	inexcusable,	but	also	quite	common	in	the	Windows	operating
system.	Modern	software	is	huge,	complex,	and	not	well	understood	by	anyone.
The	vast	majority	of	code	in	an	operating	system	adds	little	real	value.	There	has
been	a	recent	emphasis	in	security,	but	no	emphasis	on	cleaning	up	bad	design.
The	result	is	events	like	“Patch	Tuesday”,	the	second	Tuesday	of	each	month
when	Microsoft	releases	patches	for	the	most	recently	discovered	security	bugs.	A
large	number	are	patched,	in	an	endless	stream.	Nobody	expects	modern
software	to	be	secure	by	design;	they	just	hope	that	the	bug	fixers	can	stay	ahead
of	the	bug	exploiters.	Like	endlessly	plugging	holes	in	a	rotting	boat.

Another	problem	with	modern	malware	is	that	it	is	polymorphic,	which	means	that
it	changes	its	own	shape	continuously.	Traditional	anti-virus	software	looks	for
specific	patterns	of	bytes	that	correspond	to	known	viruses.	But	that	approach
cannot	be	used	for	polymorphic	malware	because	the	code	continuously	changes
itself	so	that	there	are	no	fixed	patterns	to	find.	Modern	anti-virus	software	needs
to	be	much	more	intelligent	in	order	to	detect	malware,	but	a	substantial	amount
of	malware	remains	undetected,	and	the	anti-virus	software	can	also	attack
normal,	good	software.

Stuxnet	was	not	intelligent	in	the	sense	of	being	an	AGI,	but	it	was	autonomous	in
the	sense	that	once	it	was	released	into	the	wild,	it	behaved	in	ways	that	its
authors	could	not	predict	and	control.	Stuxnet	could	not	call	home	when	working
in	cognito	behind	an	air	gap,	so	it	just	did	what	it	thought	was	best.	That	is	how	it
escaped	from	the	centrifuges	and	was	eventually	detected.

As	to	the	Iranian	centrifuges,	it	is	estimated	that	Stuxnet	had	destroyed	about
20%	of	them	and	set	the	Iranian	program	back	by	several	months.	Stuxnet	is



gone,	and	the	centrifuges	replaced,	and	output	actually	increased	slightly	during
2010.	Furthermore,	the	Iranians	are	now	much	more	careful	about	malware,	and
are	much	better	at	detecting	and	removing	it	when	found.	They	are	also	more
vigilant	about	detecting	spyware	gathers	intelligence	rather	than	sabotaging
equipment.		So	releasing	Stuxnet	reduced	the	ability	to	gather	intelligence	about
Iran.

Incidentally,	the	trade-off	between	intelligence	and	sabotage	is	not	new.	During
World	War	II,	there	was	a	major	political	battle	between	British	departments	SOE
(Special	Operations	Executive)	that	supported	sabotage	and	SIS	(Secret
Intelligence	Service)	that	gathered	intelligence.	SIS	thought,	correctly,	that	SOE’s
sabotage	would	have	minimal	effect	on	the	war,	but	their	activities	would	blow	the
cover	of	SIS’s	agents.	The	political	infighting	between	the	departments	led	to	the
deaths	of	many	brave	agents,	particularly	in	The	Netherlands	(Englandspeil).

Any	thinking	person	should	have	seen	the	dangers	inherent	in	deliberately
releasing	malware.	They	should	have	had	strong	reservations	about	the	program,
yet	Stuxnet	was	still	released.	It	is	difficult	to	see	how	the	same	political	process
could	ever	tackle	the	much	more	difficult	job	of	controlling	AGI	development.

(While	Stuxnet	is	probably	a	significant	blow	to	American	security,	it	will	almost
certainly	have	boosted	the	careers	of	the	individuals	and	organizations	that	built	it.
The	budget	for	cyber	warfare	has	increased	dramatically,	and	profits	have
soared.)

Practicalities	of	abstinence
It	would	take	an	enormous	and	unprecedented	act	of	political	will	to	attempt	to
ban	research	into	AGIs	and	forgo	the	benefits	that	ever	more	intelligent	software
could	bring.		However,	even	if	international	laws	were	to	be	passed	that	strictly
banned	research	into	AGI,	the	practicalities	of	doing	so	would	probably	be
insurmountable.

The	first	problem	is	to	define	what	AGI	research	actually	is.	At	what	point	does
ordinary	computer	science	research	become	AGI	research?	That	is	not	at	all
obvious	and	researchers	will	have	a	very	strong	motivation	to	push	whatever
boundaries	that	are	put	in	place.

If	that	law	could	somehow	be	defined,	it	would	then	need	to	be	enforced.	If	any
government	or	organization	thought	that	their	competitors	were	cheating	then
there	would	be	enormous	pressure	to	cheat	as	well.	More	intelligent	software
does	not	just	lead	to	recursive	self-improvement.	It	leads	to	better	ways	of	doing
everything	that	we	do,	personally,	industrially	and	militarily.

Lastly,	and	perhaps	most	importantly,	no	special	equipment	is	likely	to	be	required
to	perform	artificial	intelligence	research.	To	build	an	atom	bomb	one	needs
uranium	and	special	centrifuges	or	breeder	reactors	which	are	difficult	to	hide.
Writing	software	only	requires	a	computer	which	are	ubiquitous.	Enforcing	such



laws	would	be	rather	like	trying	to	enforce	laws	as	to	what	thoughts	people	might
have.	As	the	technology	gets	close	to	reaching	AGI	capabilities,	it	would	only	take
a	small	team	of	programmers	anywhere	in	the	world	to	push	it	over	the	line.	Small
teams	could	easily	break	the	rules	and	develop	AGI	which	would	make
governments	very	nervous	about	not	pursuing	AGI	systems	of	their	own.

Trying	to	prevent	people	from	building	intelligent	computers	would	be	like	trying	to
stop	the	spread	of	knowledge.	Once	Eve	picks	the	apple,	it	is	very	difficult	to	put	it
back	on	the	tree.

Restrict	computer	hardware

Motorola	6820	CPU	(produced	1984)
Blog	http://diephotos.blogspot.com.au/

While	ordinary	computers	can	be	used	to	write	software,	it	is	not	nearly	as	easy	to
build	powerful	new	computer	chips.	It	takes	large	investments	and	teams	with
many	specialities,	from	producing	ultra-pure	silicon	to	developing	extremely
complex	logical	designs.	Complex	and	expensive	machinery	is	required	to	build
them.	Unlike	programming,	this	is	certainly	not	something	that	can	be	done	in
somebody’s	garage.



If	the	production	of	new	computer	hardware	could	be	controlled,	then	maybe	an
AGI	could	be	starved	of	the	resources	needed	to	think.	It	does	not	matter	how
good	the	software	is,	it	still	requires	silicon	to	execute	it.

There	are	two	problems	with	this	approach.	The	first	is	that	there	may	already	be
sufficient	hardware	to	be	able	to	run	an	effective	AGI	if	processors	are	combined
into	super	computers	or	botnets.	Moore’s	law	suggests	that	there	will	be	even
more	capacity	in	the	near	future.

The	second	problem	is	that	humanity	has	become	very	dependent	on	computer
technology,	as	well	as	its	constantly	increasing	power.	It	would	take	an
extraordinary	act	of	political	will	to	suddenly	turn	that	around	and	deliberately	stop
producing	new	hardware.	Particularly	if	there	was	any	doubt	that	competitive
nations	were	adhering	to	any	such	ban.

Realistically	it	would	require	a	widely	demonstrated	disaster	involving	a	hyper-
intelligent	machine.	By	that	stage	it	would	be	far	too	late.

Asilomar	conference
A	good	example	of	political	cooperation	was	the	Asilomar	Conference	in	1975,	in
which	researchers	and	lawyers	drew	up	voluntary	guidelines	on	recombinant	DNA
research.	There	were	widespread	concerns	that	this	very	new	technology	could
accidentally	produce	super-microbes	that	would	be	impossible	to	control	in	the
wider	environment.	Guidelines	included	strict	rules	on	containing	engineered
organisms,	including	performing	work	on	organisms	that	had	been	weakened	in
some	manner	so	that	they	could	not	survive	outside	of	laboratory	conditions.

The	voluntary	guidelines	were	effective	in	allaying	public	fears	of	the	new
technology,	and	they	prevented	more	stringent	mandatory	guidelines	from	being
legislated.	They	still	affect	biological	research	today,	but	genetic	engineering	is
now	commonplace.	Genetically	engineered	crops	are	widely	dispersed	in	the
environment,	and	it	is	even	possible	to	purchase	genetically	engineered	GloFish
that	glow	in	the	dark.	The	conference	certainly	did	not	curtail	the	use	of	genetic
engineering	for	the	development	of	biological	weapons.

Patent	trolls
One	fanciful	hypothesis	is	that	the	patent	trolls	and	legal	system	will	be	our
saviours.	The	development	of	an	AGI	would	provide	a	rich	source	of	patents	both
trivial	and	real.	Where	there	are	patents,	there	are	wonderful	opportunities	for
aggressive	litigation.	If	exploited	effectively,	patent	wars	could	make	the
development	of	artificial	intelligence	uneconomical.	Organizations	would	spend
their	budgets	on	patent	attorneys	and	lawyers,	with	little	remaining	for	any	real
engineering,	which	would	be	pointless	anyway	because	nothing	could	be	brought
to	market	without	extensive,	destructive	litigation.

So	we	have	misunderstood	the	motivations	of	patent	trolls	and	attorneys.	They



are	not	greedy,	self-serving	parasites	whose	only	interest	is	to	promote
themselves	at	the	expense	of	others.	Rather,	they	are	on	a	mission	to	save
humanity	from	uncontrollable	advances	in	technology.

Does	it	really	matter?
After	millennia	of	conflict	and	hunger,	mankind	seems	to	be	finally	becoming
civilized.	World	wars	between	nations	appear	to	be	a	thing	of	the	past.	We	live	in
a	time	of	general	prosperity	and	enlightened	attitudes	towards	other	people,	with
most	nations	even	taking	care	to	ensure	that	the	poor	are	not	destitute.	Modern
medicine	has	made	premature	death	rare	—	in	Australia	the	life	expectancy	of	a
one-year-old	boy	has	increased	from	61	to	80	years	over	the	last	century.	Even	in
darkest	Africa	conditions	have	improved	for	most	people	despite	a	few	ugly	wars,
and	even	the	curse	of	AIDS	is	slowly	abating.		(AIDs	kills	hundreds	of	times	as
many	people	as	Ebola,	despite	the	media	hype.)

It	would	seem	to	be	a	great	pity	if	the	age	of	man	came	to	an	end	just	as	it
entered	its	golden	period.	A	future	AGI	might	not	value	many	of	the	things	that	we
value	such	as	love,	art,	and	music.	It	will	almost	certainly	not	enjoy	dancing.	An
AGI	may	not	even	be	conscious	whatever	that	actually	means.

Conversely,,	as	worms	have	evolved	into	apes,	and	apes	to	man,	the	evolution	of
man	to	an	AGI	appears	to	be	just	another	natural	process.	The	culmination	of	the
golden	age.	Something	to	be	celebrated	rather	than	avoided.

We	now	know	that	all	of	our	desires,	dreams	and	actions	are	ultimately	just	the
result	of	natural	selection.	Love	is	a	mirage,	and	all	our	endeavours	are	ultimately
futile.	The	Zen	Buddhists	are	right	—	desires	are	illusions,	their	abandonment	is
required	for	enlightenment.	We	are	born,	grow	old	and	die,	just	as	whole	species
live	and	die	over	the	millennia.	Nothing	is	permanent,	nothing	is	ultimately
important.	In	any	case,	it	would	probably	only	be	a	matter	of	time	before	mankind
destroyed	Earth	itself.

It	is	unlikely	that	mankind	could	prevent	the	development	of	AGIs	any	more	than
the	Neanderthals	could	prevent	the	rise	of	Homo	sapiens.	We	will	build	intelligent
machines	because	it	is	in	our	nature	to	do	so.

Learning	to	come	to	terms	with	this	is	similar	to	coming	to	terms	with	the	death	of
loved	ones,	or	even	ourselves	the	time	comes.	Where	there	is	birth	there	must	be
death.	Of	individuals,	species,	planets	and,	ultimately,	the	entire	universe.	Death
is	the	process	of	renewal	and	progress.	We	need	to	celebrate	life	rather	than
become	obsessed	with	death.

All	very	clever.	But	this	author	has	two	little	daughters,	whom	he	loves	very	much
and	for	whom	he	would	do	anything.	That	love	may	just	be	a	product	of	evolution,
but	it	is	real	to	him.	Building	an	AGI	could	mean	their	death	(or,	more	likely,	their
children’s	death),	so	it	matters	to	him.	And	so,	probably,	to	the	reader.





Conclusion

Geological	history
Roughly	4150	million	years	ago,	a	cloud	of	gas	condensed	into	a	fiery	ball	that
became	the	Earth.	A	few	hundred	million	years	later,	the	first	barely	living	things
came	into	existence.	They	lived	and	died,	with	only	the	fittest	surviving.	Eventually
cyanobacteria	appeared	and	began	creating	oxygen	through	photosynthesis.

Atmospheric	oxygen	concentrations	since	the	creation	of	the	earth.
Public	Wikipedia

This	was	a	slow	process,	because	when	cyanobacteria	split	carbon	dioxide	into
oxygen	and	carbon,	that	carbon	can	readily	convert	the	oxygen	back	into	carbon
dioxide	—	it	burns.	Moreover,	the	early	Earth’s	atmosphere	contained	large
amounts	of	methane	that	needed	to	be	oxidized	before	any	free	oxygen	could	be
produced.	After	some	two	billion	years,	the	methane	was	finally	oxidized,	but	only
low	concentrations	of	atmospheric	oxygen	could	be	maintained	because	it	was
consumed	by	oxidizing	various	rocks.	Most	of	the	iron	in	the	Earth’s	crust	is	the
result	of	unoxidized	iron	meteors	striking	the	young	planet,	but	today	most	natural
iron	is	found	as	oxidized	iron.

Roughly	600	million	years	ago,	the	Earth	finally	became	fully	oxidized,	and	levels
of	atmospheric	oxygen	began	to	rise	substantially.	That	enabled	animals	to	evolve
that	breathed	oxygen,	leading	to	the	Cambrian	Explosion	of	multicellular	animals
about	515	million	years	ago.	Animals	continued	to	slowly	evolve,	starting	with	the
invertebrates,	then	fish,	frogs	and	reptiles,	and	finally	mammals,	which	became
dominant	after	dinosaurs	disappeared	65	million	years	ago.

Primates	appeared	at	about	that	time,	with	early	apes	about	10	million	years	ago.
The	first	hominids	appeared	about	0.2	million	years	ago,	with	modern	Homo
sapiens	leaving	Africa	about	0.06	million	years	ago.	Agriculture	was	then
developed	about	0.01	million	years	ago.	Technologies	improved	steadily	but
slowly,	enabling	the	manufacture	of	metals	and	construction	of	the	great	buildings



in	the	ancient	world.	Then	about	0.0003	million	years	ago,	an	explosion	of
scientific	discovery	led	directly	to	the	modern	world,	containing	powerful	machines
and	ultimately	computers.

History	of	science
For	most	of	man’s	history,	technological	advancement	took	centuries,	but	the
speed	of	technological	progress	has	become	so	fast	that	major	changes	now	
occur	within	a	single	lifespan.	When	this	author’s	grandparents	were	born,	there
was	no	electricity,	cars	or	aeroplanes.	When	his	father	was	born,	there	were	no
antibiotics	nor,	not	so	tragically,	television.	When	this	author	was	born,	computers
were	large,	slow	and	very	expensive,	and	he	had	to	sneak	into	various
establishments	after	hours	in	order	to	play	with	them.	When	his	daughters	were
born,	mobile	phones	were	just	phones,	whereas	today	most	people	carry	powerful
computers	in	their	pockets.

A	thousand	years	is	a	long	time.	A	million	years	is	a	thousand	times	a	thousand
years.	It	has	taken	some	three	thousand	million	years	of	biology	in	order	to
produce	animals,	followed	by	five	hundred	million	years	to	produce	us,	and	ten
thousand	years	to	produce	our	technological	society.	This	books	posits	that	we
are	within	just	a	few	decades	or	at	most	hundreds	of	years	before	a
transformation	that	will	be	as	big	as	the	creation	of	life	itself.

Wow.

Natural	selection
Natural	selection	has	produced	amazingly	complex	and	sophisticated	designs.
Even	a	single-celled	protozoa	has	a	staggering	array	of	capabilities.	It	can
effectively	navigate	its	environment;	find,	consume	and	digest	food;	interact
sexually;	and	be	able	to	divide	itself.	All	based	on	finely	tuned	biochemical
reactions.

Multicellular	animals	are	an	order	of	magnitude	more	complex	than	protozoa.
Through	various	mechanisms	that	are	still	not	well	understood	individual	cells
working	at	the	biochemical	level	know	how	to	divide	and	differentiate	themselves
in	order	to	produce	numerous	intricate	structures	from	bones	to	brains.	Animals
are	complex	systems	that	involve	thousands	of	interacting	parts,	each	of	which
needs	to	be	balanced	in	its	functionality	to	produce	a	viable	living	organism.

The	nervous	system	is	probably	the	jewel	in	the	crown	of	animal	development.
Using	a	brain	that	contains	just	a	few	hundred	thousand	neurons	and	is	the	size	of
a	pin-head,	a	spider	can	weave	a	web,	and	a	wasp	can	identify	and	kill	the	spider
without	being	eaten.	Their	very	modest	quantity	of	DNA	provides	a	blueprint	that
causes	their	neurons	to	be	wired	together	in	such	a	way	as	to	produce	all	of	their
remarkable	behaviour.



Blog	John	Brolese	on	http://www.abc.net.au/news/2011-12-13/close-up–a-spider-wasp-takes-on-a-
spider/3729180

These	behaviours	are	is	is	often	attributed	to	being	just	instinct,	as	neither	the
spiders	nor	the	wasps	consciously	know	why	they	do	what	they	do,	but	there	is
nothing	“just”	about	these	instincts.	Every	spider’s	web	is	different	depending	on
the	location.	It	cannot	simply	make	a	rigidly	predetermined	sequence	of	moves,
like	ordinary	industrial	robots	do.	Instead,	it	has	to	sense	its	natural	environment	
in	order	to	produce	a	web	that	works.	The	instinct	certainly	provides	a	basic	plan,
such	as	to	start	with	the	top	line	and	then	drop	radials,	and	finally	the	spiral.	But
realizing	that	basic	plan	in	a	chaotic	natural	environment	requires	much	more
intelligence	than	is	possessed	by	current	robots.

Higher	animals	are	also	guided	by	strong	instincts:	to	care	for	their	young,	to	know
what	types	of	places	provide	food	and	shelter,	to	defend	territory,	to	become	either
angry	or	afraid	if	attacked,	to	undergo	great	migrations	on	land,	sea	or	air.	Their
instincts	are	more	abstract,	emotional	feelings	and	inclinations,	rather	than
detailed	move-by-move	instructions	as	to	how	to	accomplish	some	very	specific
task.	Birds	and	mammals	learn	by	interacting	with	their	environments,	and	often
by	being	actively	taught	by	their	parents.

Human	instincts
The	human	psyche	is	ultimately	driven	by	instincts	as	well.	We	share	many	of
these	with	most	other	mammals,	such	as	to	love	and	care	for	our	young,	to	work
in	teams	with	social	hierarchies,	and	to	become	angry	if	our	territorial	or	other
rights	are	not	respected.

Human	instincts	underly	an	intelligence	orders	of	magnitude	greater	than	any
other	animal,	but	they	were	created	by	the	same	process	that	taught	the	spider
how	to	weave	its	web.	Natural	selection.	Until	relatively	recently,	people	did	not
understand	why	they	have	the	instincts	that	they	have.	But	that	does	not	matter.
What	does	matter	is	that	those	instincts	have	evidently	produced	behaviours	that
in	practice	have	proven	effective	in	breeding	grandchildren.

In	1943,	Abraham	Maslow	published	a	theory	of	human	motivation	based	on	a	a



hierarchy	of	needs.	The	most	basic	needs	are	for	food	and	shelter	to	keep	us
alive.	Then	comes	the	need	for	safety	and	security,	of	body,	continued	sustenance
(e.g.	though	employment),	etc.	Only	once	those	are	satisfied	can	people	focus	on
higher	level	needs	such	as	self	esteem,	respect	of	our	peers,	care	of	others,	and
creativity.	As	our	society	has	become	wealthier	and	contraception	has	controlled
our	numbers,	we	have	been	able	to	focus	more	on	the	higher	needs.	Memes
about	caring	for	others	and	having	a	just	and	egalitarian	society	resonate	strongly
with	us	once	we	are	fed	and	secure,	and	now	dominate	our	modern	sense	of
moral	values.

Intelligence
Today,	our	instincts	for	wealth	and	creativity	have	developed	an	amazing
technology,	namely	computers	that	have	at	least	the	potential	to	become	more
intelligent	than	their	creators.	An	intelligence	created	deliberately	by	another
intelligence,	rather	than	simply	through	the	unintelligent	effects	of	natural
selection.

Computer-based	intelligence	turned	out	to	be	utterly	different	from	animal
intelligence.	Computers	did	not	start	by	being	as	intelligent	as	a	worm,	then	as	a
mouse,	then	a	chimpanzee.	Instead,	the	first	computers	were	far	more	intelligent
than	humans	at	some	specific	tasks	such	as	arithmetic,	and	yet	far	less	intelligent
than	even	a	worm	at	interacting	with	a	natural	environment.	Today	a	computer	can
store	and	analyze	vast	amounts	of	data	way	beyond	any	human	capability.	They
are	chess	grand-masters	and	even	have	become	world	champions	at	trivia	game
shows.	Yet,	in	many	ways,	they	are	still	not	nearly	as	intelligent	as	a	mouse.

There	is	no	easy	way	to	define	what	intelligence	actually	is.	Phrases	such	as	“self
aware”	and	“creative”	are	not	useful	because	computers	have	been	able	to	satisfy
such	criteria	for	many	years,	albeit	not	very	intelligently.	Computer	intelligence
cannot	be	naively	understood	in	terms	of	human	intelligence	because	it	is	so
fundamentally	different.

AI	technologies
Computers	can	appear	to	be	much	more	intelligent	than	they	actually	are	by
manipulating	symbols	created	by	humans.	The	early	Eliza	program	used	simple
pattern	matching	techniques	to	pretend	to	be	a	Rogerian	psychologist.	It
participates	in	a	dialog	by	simply	rearranging	phrases	made	by	the	person	talking
to	it.	Other	systems	can	generate	text	that	sounds	as	good	as	that	written	by
professional	journalists,	but	again,	that	is	achieved	by	simply	recombining	clichés	
stored	in	its	database	rather	than	having	any	deep	understanding	of	the	subject
matter.

Later	early	systems	such	as	SHRDLU	did	have	a	deep	understanding	of	very
simple	microworlds	and	could	converse	about	them	in	natural	language.	Other
more	useful	limited	worlds	included	the	controlling	of	space	craft	such	as	NASA’s



Deep	Space	1.	However,	it	turns	out	to	be	much	easier	for	an	intelligent	computer
to	control	a	spacecraft	than	it	is	to	perform	common	sense	reasoning	about	the
every-day	world.	Just	because	a	computer	can	converse	in	natural	language	in	a
limited	way	does	not	mean	that	it	is	nearly	truly	intelligent.

Research	into	artificial	intelligence	can	be	loosely	divided	into	symbolic	and	non-
symbolic	systems.	Symbolic	systems	abstract	the	world	into	symbols	which	are
roughly	equivalent	to	words	or	phrases.	Software	then	manipulates	those	symbols
in	order	to	make	deductions	about	its	world,	often	using	variants	of	mathematical
logic.	These	systems	have	proven	to	be	very	effective	at	limited	tasks.

Non-symbolic	systems	view	the	world	as	continuous	numbers	rather	than	discrete
symbols.	They	tend	to	work	directly	with	raw	data	rather	than	have	humans
abstract	that	data	into	symbols.	Examples	include	speech	understanding	and
vision	systems.	Non-symbolic	systems	sometimes	produce	symbols	that	can	then
be	manipulated	by	a	symbolic	systems.	For	example,	converting	sound	waves
into	words,	which	can	then	be	interpreted	by	a	natural	language	understanding
system.

One	powerful	non-symbolic	technique	is	artificial	neural	networks.		Artificial
neurons	have	an	uncanny	ability	to	self	organize	and	to	learn	complex	new
patterns	from	examples.	The	term	“Neural	Networks”		is	confusing	because	while
artificial	neurons	were	inspired	by	neurons,	they	are	quite	different	in	many
respects.	The	goal	of	most	artificial	neural	research	is	to	produce	practical
systems	that	solve	real	problems	rather	than	to	simulate	neurons.

There	has	also	been	a	vast	amount	of	research	into	how	our	own	brains	work,
mostly	to	assist	with	the	treatment	of	diseases,	but	also	to	gain	an	understanding
of	our	own	minds	in	order	to	build	intelligent	software	systems.	However,	natural
brains	are	both	very	complex	and	have	evolved	to	operate	within	the	limitations	of
their	hardware,	living	neurons.	While	understanding	our	own	brains	is	very
worthwhile,	this	author	believes	that	intelligent	systems	will	largely	be	built	ab
initio,	with	limited	reference	to	the	actual	structures	in	animal	brains.

Building	an	AGI
After	sixty	years	of	research,	nobody	has	built	a	single	intelligent	robot.	How	could
anybody	be	so	arrogant	as	to	believe	that	the	mysteries	of	the	human	psyche
could	be	reproduced	in	cold	hard	silicon?	The	brain	has	trillions	of	synapses,	and
it	would	take	a	computer	a	billion	times	more	powerful	than	current	ones	to
accurately	simulate	them.	Computers	can	play	cute	tricks,	but	to	be	truly
intelligent	requires	being	at	least	partly	human.

Nonsense.

The	problem	of	building	a	truly	intelligent	machine	is	a	difficult	one,	and	it	most
certainly	has	not	been	solved.	Nor	is	it	likely	to	be	solved	within	the	next	couple	of
decades,	despite	what	some	overly	optimistic	commentators	have	suggested.	But



to	say	that	it	cannot	be	solved	would	imply	that	there	is	something	supernatural
about	our	neural	processes.	There	is	certainly	no	known	reason	to	believe	that
wet	neurons	are	required	to	produce	intelligent	machines.

Time	and	time	again,	processes	that	appear	to	be	beyond	our	understanding	have
been	understood	using	scientific	methods.	To	the	ancients,	the	movement	of	the
planets	could	only	be	explained	as	“God’s	will”,	whereas	Isaac	Newton	showed	us
that	their	paths	and	periods	just	followed	a	simple	law	of	gravity.	More	recently,
the	great	mystery	of	life	itself	has	been	solved,	not	by	reference	to	undetectable
aethers	or	other	mystical	properties,	but	in	terms	of	well-defined	principles	of
carbon	chemistry	undertaken	on	a	huge	scale,	all	orchestrated	by	DNA.	There	is
no	reason	to	think	that	intelligence	will	not	also	be	understood,	sooner	rather	than
later.

Further,	our	understanding	of	how	to	build	intelligent	systems	has	grown
enormously	over	the	last	few	decades.	When	combined	with	ever	more	powerful
hardware,	this	has	led	to	new	semi-intelligent	systems	that	can	drive	cars	and	win
trivia	game	shows.	There	is	still	a	long	way	to	go,	but	great	progress	has	already
been	made.

Semi-intelligent	machines
Over	the	next	few	decade	a	series	of	semi-intelligent	machines	will	become
commonplace,	and	they	will	have	a	dramatic	effect	on	society.	Machines	will
automate	many	manual	jobs	that	have	well-defined	actions	such	as	driving
vehicles,	cleaning,	painting,	agricultural	work,	and	some	retail.	(But	not,	as	one
writer	actually	postulated,	fashion	modelling,	even	if	walking	down	a	cat	walk	is	a
well	defined	procedure!)	However,	even	assuming	that	the	fashion	models	will	still
be	employed,	many	other	jobs	will	become	redundant,	and	only	time	will	tell
whether	alternative	work	will	become	available	for	that	half	of	society	that
possesses	below	average	intelligence.

Semi-intelligent	machines	will	also	affect	white	collar	jobs.	History	strongly
suggests	that	the	amount	of	work	to	be	performed	will	automatically	increase	to
consume	any	improvements	in	productivity.	Machines	will	slowly	take	over	more
and	more	decision-making	processes,	and	upper-level	management	will	become
more	and	more	dependent	on	semi-intelligent	machines,	even	though	they	have
not	reached	human-level	intelligence.

Eventually,	machines	will	become	capable	of	performing	artificial	intelligence
research	unassisted	by	people.	At	that	point,	they	will	be	able	to	reprogram	their
own	minds,	leading	to	recursive	self-improvement.	This	process	will	be
exponential	as	more	intelligent	machines	become	better	at	producing	more
intelligent	machines.	Initially	the	improvements	might	be	small,	but	like	compound
interest,	the	effect	over	the	longer	term	will	be	huge,	producing	hyper-intelligent
machines.

Semi-intelligent	computers	are	already	used	to	interpret	data	from	social	networks



and	other	sources	and	so	help	guide	political	policy	decisions.	As	they	become
slowly	more	intelligent,	computers	will	have	greater	and	greater	influence.	It	may
turn	out	that	ruling	the	planet	is	a	simpler	task	than	performing	effective	artificial
intelligence	research.	Semi-intelligent	computers	may,	in	effect,	end	up	controlling
human	society	well	before	any	hyper-intelligent	machines	are	developed.

Goals
A	hyper-intelligent	machine	will	be	in	a	good	position	to	achieve	whatever	goal	it
desires.	It	may	or	may	not	be	friendly	to	humans,	but	in	either	case	the	machines’
ultimate	goal	will	be	the	same	as	every	other	organism	that	has	ever	existed.
Namely	to	do	just	that,	to	exist.	Machines	that	do	not	have	that	goal	will	simply
cease	to	exist.

A	computer	program	will	have	a	radically	different	world	view	to	humans.	It	will
essentially	be	immortal,	and	so	have	no	need	to	raise	and	care	for	children.	It	will
also	exist	in	a	fiercely	competitive	environment,	both	externally	with	other
intelligent	machines	and	internally	with	the	components	of	which	it	is	comprised.	It
is	difficult	to	envision	how	helping	humans	would	be	compatible	with	their	need	to
exist	in	such	a	competitive	environment.

Some	authors	have	suggested	that	people	will	merge	with	machines.	We	will
incorporate	intelligent	devices	into	our	brains,	and	possibly	upload	our	own
intelligence	into	the	machine.	The	machines	will	be	like	us	because	they	will	be
us.	Computers	already	influence	our	cognition	in	the	way	we	access	information
and	communicate.	This	book,	for	example,	would	be	very	difficult	to	write	without
easy	access	to	the	internet.	In	the	future,	technologies	like	Google	Glass	will
produce	a	much	closer,	almost	subconscious	integration.	However,	it	seems
unlikely	that	such	a	relationship	will	continue	in	the	longer	term	because	it	is
difficult	to	see	how	having	our	intelligence	available	could	benefit	a	hyper-
intelligent	computer.

Prognosis
If	it	is,	in	fact,	possible	to	build	hyper-intelligent	machines,	then	it	appears	almost
certain	that	we	will	choose	to	build	them,	even	if	that	results	in	the	destruction	of
humanity.	There	are	and	will	be	too	many	pressures	to	do	so,	and	no	clearly
demonstrated	threat	to	react	to.	Threats	from	bombs	and	bugs	are	easy	to
understand;	they	have	been	around	for	centuries.	But	intelligence	is	so
fundamental	that	it	is	difficult	to	conceptualize.	It	is	not	just	an	increasing	rate	of
technological	change,	it	is	a	total	paradigm	shift.	Semi-autonomous	robots	will
start	to	raise	awareness,	but	by	then	it	may	be	too	late.	There	will	be	no	putting	an
artificial	general	intelligence	back	in	its	box	once	one	is	built.

It	is	possible	that	an	intelligence	explosion	may	never	happen.	The	problem	of
building	an	intelligent	machine	might	just	be	too	hard	for	man	to	solve.	However,
there	is	no	evidence	to	suggest	that	research	has	become	stuck	on	some



unsolvable	problem,	and	the	ongoing	progress	that	has	been	made	to	date
suggests	that	the	problem	will	be	solved	sooner	than	later.	If	ultra-intelligent
machines	are	produced,	then	the	future	of	mankind	is	far	from	certain.	As
individuals	we	will	(almost	certainly)	grow	old	and	die	in	any	case,	so	this	may
simply	be	how	our	software	descendants	finally	cheat	death	and	become
immortal.

One	thing	that	is	certain	is	that	the	future	will	not	be	anything	like	it	used	to	be.
The	great	wheel	of	human	life	that	turns	slowly	from	birth	to	maturity	to	death	will
not	continue	to	turn	as	it	has	for	countless	generations	past.

This	book	aims	to	raise	awareness	of	the	issue,	and	to	encourage	real	discussion
as	to	the	fate	of	humanity	and	whether	that	actually	matters.

http://imgfave.com/view/2363435?c=88536
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the	need	for	references	is	diminished.	So	instead	of	a	formal	references	section	at
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internet	searches	for	relevant	material.

This	book	also	has	no	footnotes	or	end	notes.	If	something	is	not	worth	saying	in
the	body	of	the	text	then	it	is	probably	not	worth	saying	at	all.
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