


	

	

Business	statistics	with	Excel	and	Tableau
A	hands-on	guide	with	screencasts	and	data

	

Stephen	Peplow
	

	
©2014	-	2015	Stephen	Peplow



	

	

	

	

	

	

	

	

With	thanks	to	the	students	who	have	helped	me	at	Imperial	College	London,	the
University	of	British	Columbia	and	Kwantlen	Polytechnic	University.



	

	

	

	

	

	

	



Contents

1.			How	to	use	this	book														1

1.1						This	book	is	a	little	different													 2

1.2						Chapter	descriptions													 2

2.			Visualization	and	Tableau:	telling	(true)	stories	with

data														9

3.			Writing	up	your	findings														15

3.1						Plan	of	attack.	Follow	these	steps.													 17

3.2						Presenting	your	work													 17

4.			Data	and	how	to	get	it														18

4.1						Big	data													 21

4.2						Some	useful	sites													 21

5.			Testing	whether	quantities	are	the	same														23

5.1						ANOVA	Single	Factor													 23

5.2						ANOVA:	with	more	than	one	factor													 29

6.			Regression:	Predicting	with	continuous	variables	.		.	.													 31

6.1						Layout	of	the	chapter													 33

6.2						Introducing	regression													 33

6.3						Trucking	example													 36

6.4						How	good	is	the	model?	—r-squared													 39

6.5						Predicting	with	the	model													 40

6.6						How	it	works:	Least-squares	method													 41

6.7						Adding	another	variable													 42

6.8						Dummy	variables													 43

6.9						Several	dummy	variables													 49

6.10	Curvilinearity													 50

6.11	Interactions													 52

6.12	The	multicollinearity	problem													 58

6.13	How	to	pick	the	best	model													 58

6.14	The	key	points													 59

6.15	Worked	examples													 60



7.			Checking	your	regression	model														61

7.1						Statistical	significance													 61

7.2						The	standard	error	of	the	model													 64

7.3						Testing	the	least	squares	assumptions													 66

7.4						Checking	the	residuals													 67

7.5						Constructing	a	standardized	residuals	plot													 68

7.6						Correcting	when	an	assumption	is	violated													 71

7.7						Lack	of	linearity													 71

7.8						What	else	could	possibly	go	wrong?													 73

7.9						Linearity	condition													 73

7.10	Correlation	and	causation													 74

7.11	Omitted	variable	bias													 74

7.12	Multicollinearity													 75

7.13	Don’t	extrapolate													 75

8.			Time	Series	Introduction	and	Smoothing	Methods	.	 .													 76

8.1						Layout	of	the	chapter													 76

8.2						Time	Series	Components													 77

8.3						Which	method	to	use?													 78

8.4						Naive	forecasting	and	measuring	error													 79

8.5						Moving	averages													 81

8.6						Exponentially	weighted	moving	averages													 83

9.			Time	Series	Regression	Methods														87

9.1						Quantifying	a	linear	trend	in	a	time	series	 using	regression
														87

9.2						Measuring	seasonality													 89

9.3						Curvilinear	data													 91

10.																																																																																																																																																																																								
Optimization														95

10.1	How	linear	programming	works													 95

10.2	Setting	up	an	optimization	problem													 96

10.3	Example	of	model	development.													 97

10.4	Writing	the	constraint	equations													 97

10.5	Writing	the	objective	function													 98



10.6	Optimization	in	Excel	(with	the	Solver	add-in)	.	.	.														98

10.7	Sensitivity	analysis													 100

10.8	Infeasibility	and	Unboundedness													 102

10.9	Worked	examples													 102

11.																																																																																																																																																																																									More
complex	optimization														107

11.1	Proportionality													 107

11.2	Supply	chain	problems													 109

11.3	Blending	problems													 110

12.																																																																																																																																																																																								
Predicting	items	you	can	count	one	by	one														114

12.1	Predicting	with	the	binomial	distribution													 115

12.2	Predicting	with	the	Poisson	distribution													 118

13.																																																																																																																																																																																									Choice
under	uncertainty														119

13.1	Influence	diagrams													 119

13.2	Expected	monetary	value													 121

13.3	Value	of	perfect	information													 123

13.4	Risk-return	Ratio													 124

13.5	Minimax	and	maximin													 124

13.6	Worked	examples													 125

14.																																																																																																																																																																																								
Accounting	for	risk-preferences														127

14.1	Outline	of	the	chapter													 128

14.2	Where	do	the	utility	numbers	come	from?													 130

14.3	Converting	an	expected	utility	number	into	a	cer-

tainty	equivalent.													 136

15.																																																																																																																																																																														
Glossary														137

	



	
	



1.		How	to	use	this	book
I	began	 business	 life	 as	 an	 entrepreneur	 in	 business	 in	 Hong	Kong.	 I	 ran	 trade
exhibitions,	imported	coffee	from	Kenya,	and	 started	and	operated	two	restaurants,
one	of	which	(unusually	for	Hong	Kong)	served	vegetarian	food.	These	businesses
were	profitable,	but	I	would	have	saved	myself	a	great	deal	of	stress,	and	done	better
if	 I	 had	 used	 some	 business	 intelligence	 informed	 by	 statistics	 to	 improve	 my
decision-making.	Looking	back,	I	wish	I	had	been	able	 to	think	through	and	write
analyses	on	topics	such	as	these	among	many	others:

	
a.		calculation	of	optimal	restaurant	staffing	levels

b.		analysis	of	sales	over	time	and	seasonality	in	trends

c.		receipts	per	customer	by	restaurant	type	and	analyzed	strength	and	type	of
any	differences

d.		predicted	sales	data	for	potential	exhibitors	with	visualiza-	tions	of
various	‘what	if’	scenarios

e.	gained	deeper	insights	from	visualizing	my	data

f.			won	over	more	partners	and	investors	with	better	visual	and	written
presentations

	
I’m	sure	that	there	are	many	more	people	like	me,	aware	that	they	ought	to	be	doing
more	with	the	data	they	collect	as	part	of	normal	business	operations,	but	uncertain
of	how	to	go	about	it.	There	 is	 no	 shortage	 of	 textbooks	 and	manuals,	 but	 these
don’t	seem	 to	get	 to	 the	hands-on	applications	quickly	enough.	This	book	 is	 for
people	such	as	me,	in	two	components:	the	analysis,	finding	out	the	underlying	story
from	the	data,	and	then	the	presentation	of	the	story.
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1.1	This	book	is	a	little	different
	

Most	books	on	stats	introduce	statistical	techniques	on	a	chapter	by	chapter	basis.
Instead,	I’ve	written	this	book	so	that	it	reflects	 the	way	many	 people	 learn.	 The
chapters	are	structured	by	the	type	of	question	you	might	want	to	ask.	Examples	of
the	 type	of	questions	are	summarized	below,	and	at	the	beginning	of	 each	chapter.
The	chapters	themselves	doesn’t	include	much	math	and	 technical	details.	 Instead
these	are	placed	towards	the	end	of	the	book	in	a	glossary.

Many	of	the	Excel	procedures	are	linked	to	screen	casts	prepared	by	me	to	illustrate
that	 particular	 procedure.	 The	 data-sets	 used	 in	 the	 book	 are	 available	 from	 my
Dropbox	public	folder:	just	click	on	the	hyperlink	that	appears	next	to	each	worked
example.	With	the	data-sets	open	in	Excel,	you	can	follow	along	at	your	own	pace.
(And	 then	 do	 the	 same	 with	 your	 own	 data).	 I	 have	 used	 Tableau	 for	 some
visualizations,	and	you	will	find	links	to	my	 workbooks	and	screen	casts.

	



1.2	Chapter	descriptions
	

If	you’re	reading	this	book,	then	you	are	very	likely	already	engaged	in	business	and
would	like	to	know	how	to	take	that	business	to	new	heights.	Take	a	look	through	the
chapter	descriptions	that	 follow	and	then	go	straight	to	that	chapter.	If	you	think	you
might	need	a	bit	of	a	statistics	refresher,	look	through	the	Glossary	in	Chapter	16
first.	A	very	good	free	statistics	OpenIntro	textbook	is	available	here¹

Chapter	2	introduces	Tableau	Public²	which	is	a	free	data	visu-	alization	tool.	While
Excel	does	have	graphing	tools	which	are	easy	to	use,	the	results	can	look	a	little
clunky.	Tableau	helps

	

¹https://www.openintro.org/stat/	²http://www.tableausoftware.com/public/

https://www.openintro.org/stat/
https://www.openintro.org/stat/
http://www.tableausoftware.com/public/
https://www.openintro.org/stat/
http://www.tableausoftware.com/public/


	
us	to	merge	data	from	different	sources	and	create	remarkable	visualizations	which
can	then	be	easily	shared.	I’ll	be	 illustrating	results	throughout	this	book	with	either
Tableau,	Excel	or	both.	One	 caution:	if	you	publish	your	results	to	the	web	using
Tableau	Public,	your	data	is	also	published.	If	this	is	a	problem,	there	is	an	option	 to
pay	 for	an	enhanced	version	of	Tableau.	The	screenshot	below	shows	work	done
changes	on	land	use	in	the	Delta	region	of	British	Columbia.	By	clicking	on	the	link,
you	can	open	the	workbook	and	alter	the	settings.	You	can	filter	the	year	 (see	 top
right)	and	also	land	use	type.	Thanks	to	Malcolm	Little	for	his	work	on	this	project.
Tableau	workbook	for	Delta	Land	Cover	Changes³

	

Tableau	showing	changes	in	landcover

	

Tableau	has	training	and	demonstration	videos	available	on	 its	website,	 and	 there
are	 plenty	 of	 examples	 out	 there.	 The	 screen	 casts	 which	 Tableau	 provides
(available	 at	 their	 homepage)	 are	 probably	 enough.	Where	 I	 have	 found	 some
technique	(such	as	boxplots)	particularly	tricky	I	have	created	screen	casts	for	this
book.	The	image	below	is	data	we	will	use	in	the	regression	chapter.	You	run	a

	

³https://public.tableau.com/views/DeltaCropCategories1996-2011/Sheet1?:embed=y&:
showTabs=y&:display_count=yes

https://public.tableau.com/views/DeltaCropCategories1996-2011/Sheet1?%3Aembed=y&amp;%3AshowTabs=y&amp;%3Adisplay_count=yes
https://public.tableau.com/views/DeltaCropCategories1996-2011/Sheet1?%3Aembed=y&amp;%3AshowTabs=y&amp;%3Adisplay_count=yes
https://public.tableau.com/views/DeltaCropCategories1996-2011/Sheet1?%3Aembed=y&amp;%3AshowTabs=y&amp;%3Adisplay_count=yes


	
trucking	company	and	from	your	logbooks	extract	the	distance	and	duration	and
number	of	deliveries	for	some	delivery	jobs.	The	image	shows	a	trend	line,	with
distance	on	the	horizontal	axis	and	time	taken	on	the	vertical	axis.	The	points	on
the	scatterplot	are	 sized	by	number	of	deliveries.	You	can	see	that	more	deliveries
increases	the	time,	as	one	would	expect.	Using	regression,	Chapter	6,	we	will	work
out	a	model	which	can	show	how	much	extra	you	should	charge	for	each	delivery.

Here	is	a	YouTube	for	trucking	scatterplot⁴
	

Tableau	showing	distances,	times,	and	deliveries

	

Chapter	3.	Writing	up	your	 findings.	 In	most	cases	 statistical	 analysis	 is	done	 in
order	to	help	a	decision-maker	decide	what	to	do.	I	am	assuming	that	it	is	your	job	to
think	through	the	problem	and	assist	the	decision-maker	by	assembling	and	analyzing
the	data	on	his/her	behalf.	This	chapter	suggests	ways	in	which	you	might	write	up
your	report,	accompanied	by	visualizations	to	get	across	your	message.	There	are
also	links	to	some	helpful	websites	which

	

⁴https://youtu.be/oFACLZLJWZI

https://youtu.be/oFACLZLJWZI
https://youtu.be/oFACLZLJWZI


	
discuss	the	preparation	of	slides	and	how	to	make	presentations.

Chapter	4:	Data	and	how	to	get	it.	If	you	are	considering	collecting	data	yourself,
through	a	survey	for	example,	then	you’ll	find	this	chapter	useful.	So-called	big	data
is	a	hot	topic,	and	so	I	include	some	discussion.	The	chapter	also	includes	links	to
publicly	avail-	able	data	sets	which	might	be	helpful.

Chapter	 5	 deals	 with	 tests	 for	 whether	 two	 or	 more	 quantities	 are	 the	 same	 or
different.	For	example,	you	are	a	franchisee	with	three	 coffee-shops.	You	want	 to
know	whether	daily	sales	are	the	same	or	different,	and	perhaps	what	factors	cause
any	difference	 that	you	 find.	 You	want	 to	 know	 whether	 there	 is	 a	 statistically
significant	common	factor	or	not,	to	eliminate	the	possibility	that	the	difference	you
see	occurred	purely	by	chance.	Perhaps	the	average	age	of	the	customers	makes	a
difference	in	the	sales?	ANOVA	uses	very	similar	theory	to	regression,	the	subject	of
the	next	chapter	and	perhaps	the	most	important	in	the	book.

Chapter	 6:	 Regression	 is	 almost	 certainly	 the	 most	 important	 statis-	 tical	 tool
covered	 in	 this	book.	 In	one	form	or	another,	regression	 is	behind	a	great	deal	of
applied	 statistics.	 The	 example	 presented	 in	 this	 book	 imagines	 you	 running	 a
trucking	 business	 and	 wanting	 to	 be	 able	 to	 provide	 quotations	 for	 jobs	 more
quickly.	 It	 turns	out	 that	if	you	have	some	past	log-book	data	to	use,	such	 as	 the
distance	 of	 various	 trips,	 the	 time	 that	 they	 took	 and	 how	many	 deliveries	were
involved,	an	accurate	model	can	be	made.	Regression	can	find	the	average	time	taken
for	every	extra	unit	of	distance,	as	well	as	 other	 variables	 such	 as	 the	 number	 of
stops.	 This	 chapter	 shows	 how	 to	 create	 such	 a	 model	 and	 how	 to	 use	 it	 for
prediction.	With	such	a	model,	you	can	make	quotations	really	quickly.	This	chapter
also	covers	more	complex	regression	and	how	to	go	about	model-	building.

Other	uses:	you	want	to	calculate	the	beta	of	a	stock,	comparing	the	returns	of	one
particular	stock	with	the	S&P	500.

Chapter	7	is	about	testing	whether	the	regression	models	we	built



	
in	Chapters	6	and	7	are	 in	 fact	 any	good.	Regression	appears	 so	 easy	 to	 do	 that
everybody	 does	 it,	without	 checking	 the	 validity	 of	 the	 answers.	 Following	 the
procedures	 in	 this	 chapter	will	 help	 to	 ensure	 that	 your	work	 is	 taken	 seriously.
This	chapter	is	more	of	a	guide	to	thinking	critically	about	the	results	other	 people
might	 have.	 Is	 there	 missing	 variable	 bias?	 For	 example,	 you	 notice	 a	 strong
correlation	between	sales	of	ice-creams	and	deaths	by	drowning.	Can	you	therefore
say	that	reducing	ice-cream	sales	will	make	the	water	safer?	Err–no.	The	missing	or
lurking	variable	 is	 temperature.	Both	 drowning	 deaths	 and	 ice	 cream	 sales	 are	 a
function	of	temperature,	not	of	each	other.

Chapter	8	is	about	time-series	and	shows	how	we	can	detect	trends	in	data	over	time,
and	 make	 predictions.	 The	 smoothing	 methods,	 such	 as	 moving	 averages	 and
exponentially	weighted	moving	aver-	ages	covered	in	this	chapter	are	fine	for	data
which	lacks	seasonality	 and	when	only	a	relatively	short-term	forecast	 is	 needed.
When	you	have	longer-run	data	and	for	making	predictions,	the	following	 chapter
has	the	techniques	you	need.

Chapter	 9	 describes	 the	 regression-based	 approach	 to	 time	 series	 analysis	 and
forecasting.	This	approach	is	powerful	when	there	is	some	seasonality	to	your	data,
for	example	sales	of	TV	sets	show	a	distinct	quarterly	pattern	(as	do	 umbrellas!).



	

	

Sales	of	TV	sets	showing	a	quarterly	seasonality

	

Using	regression	we	 can	detect	 peaks	 and	 troughs,	 connect	 them	 to	 seasons	and
calculate	their	strength.	The	result	is	a	model	which	we	can	use	to	predict	sales	into
the	future.

Chapter	 10	 is	 about	 optimization	or	making	 the	best	 use	of	 a	 limited	number	of
resources.	This	is	highly	useful	in	many	business	situations.	For	example,	you	need
to	 staff	 a	 factory	 with	 workers	 of	 different	 skills	 and	 pay-levels.	 There	 is	 a
minimum	amount	 of	 skills	 required	for	each	class	of	worker,	and	 perhaps	 also	 a
minimum	number	of	hours	for	each	worker.	Using	optimization,	you	can	calculate
the	number	of	hours	to	allocate	to	each	worker.

Chapter	11	Optimization	can	also	be	used	for	more	complex	‘blend-	 ing’	problems.
Example:	You	run	a	paper	recycling	business.	 You	take	in	papers	and	other	fibers
such	as	cardboard	boxes.	How	can	you	mix	together	the	various	inputs	so	that	your
output	meets	minimum	quality	requirements,	minimizes	wastage,	and	generates	the
most	profit?

Another	 example:	 what	 mix	 or	 blend	 of	 investments	 would	 best	 suit	 your
requirements?

Chapter	 12	 concerns	 calculating	 the	 probability	 of	 items	 you	 can	 count	 one	 by
one.	For	example,	what	is	the	probability	that	more



	
than	five	people	will	come	to	the	service	desk	in	the	next	half-hour?	What	 is	 the
probability	that	all	of	the	next	three	customers	will	make	a	purchase?	We	can	solve
these	problems	using	the	binomial	and	the	Poisson	 distributions.

Chapter	13	concerns	choice	under	 uncertainty:	 if	 you	 have	 a	 choice	 of	 different
actions,	each	of	which	has	an	uncertain	outcome,	which	action	should	you	choose	to
maximize	 the	 expected	monetary	 value?	A	farmer	knows	the	payoffs	he/she	will
make	 from	 different	 crops	 provided	 the	 weather	 is	 in	 one	 state	 or	 another
(sunny/wet)	 but	at	the	time	when	the	crop	decision	has	to	be	made,	he	obviously
doesn’t	 know	 what	 the	 actual	 state	 will	 be.	 Which	 crop	 should	 he	 plant?	 A
manufacturer	needs	to	decide	whether	to	invest	in	constructing	a	new	factory	at	a
time	of	economic	uncertainty:	what	should	he	do?

Chapter	 14	adds	 the	decision-maker’s	 risk	profile	 to	his	or	her	 decision	process.
Most	people	are	risk	averse,	and	are	willing	to	 trade	off	some	risk	 in	exchange	for
certainty.	 This	 chapter	 shows	 how	 to	 construct	 a	 utility	 curve	 which	 maps	 risk
attitudes,	and	then	prioritize	the	decisions	in	terms	of	maximum	expected	utility.

Chapter	15	is	a	Glossary	and	contains	some	basic	statistics	informa-	 tion,	primarily
definitions	 of	 terms	 that	 the	 book	 uses	 frequently	 and	 which	 have	 a	 particular
meaning	in	statistics	(for	example	‘population’).	The	Glossary	also	discusses	why
the	inferential	tech-	niques	used	in	statistics	are	so	powerful,	allowing	us	to	 make
inferences	about	a	population	based	on	what	appears	to	be	a	very	small	sample.

Under	E	for	Excel	in	the	Glossary,	you’ll	find	some	links	to	screen	casts	on	subjects
not	directly	covered	in	this	book,	but	which	you	might	find	helpful.



	

	

	

	

	



2.		Visualization	and	Tableau:
telling	(true)	stories	with	data

In	 this	 book,	 we’ll	 work	 on	 gaining	 insights	 from	 data	 by	 visual-	 ization	 and
quantitative	analysis,	and	then	presenting	the	results	to	others.	Recently	a	powerful
new	tool	called	Tableau	has	become	available.	Tableau	Public¹	is	a	free	version.	But
be	careful	with	your	data	because	when	you	publish	to	the	web,	as	you	must	do	with
Tableau	Public,	then	your	data	also	becomes	available	to	anybody.	If	you	require	that
your	data	be	protected,	you	can	pay	for	the	private	version.	Tableau	9	has	just	been
made	available.

Many	 of	 the	 worked	 examples	 in	 this	 book	 are	 accompanied	 by	 a	 link	 to	 a
completed	 Tableau	 workbook,	 showing	 how	 you	 could	 have	 used	 Tableau	 to
present	 your	 findings.	 Tableau	 cannot	 perform	 easily	 the	 more	 technical
hypothesis-testing	aspects	of	 statistics	such	as	regression,	but	it	can	help	you	to	get
your	point	across	clearly.	Tableau	has	also	provided	a	useful	White	Paper²	on	visual
best	practices	which	is	well	worth	reading

In	 business	 intelligence	 we	 are	 generally	 interesting	 in	 detecting	 patterns	 and
relationships.	This	might	seem	obvious,	because	as	humans	we	are	always	looking
for	these	phenomena.	I’d	just	 like	to	add	that	the	absence	of	a	pattern	or	relationship
might	be	just	as	informative	as	finding	one.	An	excellent	first	step	is	to	take	a	look	at
your	data	with	an	expository	graph	before	moving	on	to	more	formal	data	analysis.
Below	are	examples	of	the	types	of	charts	or	graphs	most	commonly	used	in	either
examining	data	first	off,

	

¹http://www.tableausoftware.com/public/
²http://www.tableausoftware.com/whitepapers/visual-analysis-everyone

	
9

http://www.tableausoftware.com/public/
http://www.tableausoftware.com/whitepapers/visual-analysis-everyone
http://www.tableausoftware.com/public/
http://www.tableausoftware.com/whitepapers/visual-analysis-everyone


	
just	to	‘see	how	it	looks’.	Checking	an	expository	graph	shows	up	 problems	 that
might	throw	you	 off	 later:	missing	 data,	 outliers	 or,	more	 excitingly,	 unexpected
and	intriguing		relationships.

	

Histograms
	

Histograms	break	the	data	into	classes	and	show	the	distribution	of	the	data.	Which
classes	(sometimes	known	as	bins)	are	most	common.	The	histogram	shows	us	the
‘shape’	of	the	data.	Are	there	many	small	measurements,	or	does	the	data	look	as
though	 it	 is	 normally	 distributed	 and	 consequently	 mound-shaped.	 See
Distribution	in	the	Glossary	for	more	on	 this.	The	plot	below	 is	of	 deaths	 in	 car
accidents	on	a	weekly	basis	in	the	United	States	over	 the	period	1973-1978.	The
histogram	shows	only	the	distribution	and	not	the	sequence.

From	 the	 histogram	 only,
we	could	 say	 that	the	most
common	number	of	deaths
in	a	week	is	 between	8000
and	 9000,	 be-	 cause	 the
bars	 of	 the	 histogram	 are
highest	 there.	 They	 are
high-	 est	 because	 they
count	 the	number	of	 times
in	 the	 time-period	 that
there	 have	 been	 (for
example	 8000	 deaths
occurred	in	15	weeks).



What	 the	 histogram
doesn’t	show	is	 that

deaths	have	actually	been		decreasing	since

Histogram	of	car	deaths,	reported	weekly



	

about	1976.	There	is	probably	a	simple	explanation	for	this:	compul-	sory	seatbelts
perhaps?	The	take-home	from	this	is	that	expository	graphs	are	 really	easy	 to	do,
and	 that	 you	 should	 try	 different	 methods	with	 the	 same	 data	 to	 tease	 out	 the
insights.

	

Car	deaths	over	time

	

	

Scatterplots
	

The	most	common	and	most	useful	graph	is	probably	 the	 scatter-	 plot.	 It	 is	used
when	we	have	two	continuous	variables,	such	as	 two	quantities	(weight	of	car	and
mileage)	and	we	want	to	see	the	relationship	between	them.	The	scatterplot	is	also
useful	for	plotting	time	series,	where	time	is	one	of	the	variables.

You	can	use	Excel	for	this,	and	also	Tableau.	In	Excel,	arrange	the	columns	of	your
data	so	that	the	variable	which	you	want	on	the	horizontal	x	axis	 is	 the	one	on	 the
left.	This	is	the	independent	variable.	Put	the	other	variable,	the	dependent	variable,
on	the	vertical	y	axis.	It	is	usual	practice	to	put	the	variable	which	we	think	is	doing
the	explaining	on	the	x	axis	and	the	response	variable	on



	
the	y	axis.	Here	 is	a	scatterplot	of	European	Union	Expenditure	per	 student	 as	 a
percentage	of	GDP:

	

EU	%	of	GDP	spent	on	Primary	Education

	

There	 is	 a	 gradual	 increase	 over	 the	 years	 1996	 to	 2011	 as	 one	 would	 expect;
educational	 expenditures	 tend	 to	 remain	 a	 relatively	 fixed	 share	 of	 the	 budget.
However,	 there	 was	 a	 blip	 in	 2006	 which	 is	 interesting.	 Because	 the	 data	 is
percentage	of	GDP,	 the	drop	might	 have	 been	 caused	 by	 an	 increase	 in	GDP	 or
alternatively	by	an	actual	educational	spending	decrease.	We’d	need	to	look	at	GDP
figures	for	the	period.	I	got	European	GDP	figures	per	capita	and	using	Tableau	put
them	on	the	same	plot,	with	different	axes	of	course.	The	result	is	below



	

	

European	GDP	and	Primary	 Expenditures

	

GDP	dropped	around	2008/2009	because	of	the	world	 financial	crisis.	The	blip	in
primary	expenditures	is	still	unexplained.

	

Maps
	

Tableau	makes	the	display	of	spatial	data	relatively	easy,	provided	you	tell	Tableau
which	of	your	dimensions	contain	the	geographical	variable.	The	plot	below	shows
changes	in	greenhouse	gas	 emis-	sions	from	agriculture	in	the	European	Union.	I
linked	world	bank	data	by	country.	The	workbook	is	here³.

	

³https://public.tableausoftware.com/views/EuropeanGHGfromAgriculture2010-
2011/Sheet1?:embed=y&:display_count=no

https://public.tableausoftware.com/views/EuropeanGHGfromAgriculture2010-2011/Sheet1?%3Aembed=y&amp;%3Adisplay_count=no
https://public.tableausoftware.com/views/EuropeanGHGfromAgriculture2010-2011/Sheet1?%3Aembed=y&amp;%3Adisplay_count=no
https://public.tableausoftware.com/views/EuropeanGHGfromAgriculture2010-2011/Sheet1?%3Aembed=y&amp;%3Adisplay_count=no


	
Unfortunately,	 not	 all	 geographic	 entities	 are	 available	 for	 linkage	 in	 Tableau.
States	 and	 counties	 in	 the	United	 States	 are	 certainly	 available	 and	 provinces	 in
Canada,	as	well	as	countries	in	Europe.	There	are	ways	to	import	ArcGIS	shapefiles
into	Tableau.	A	shape-	file	is	a	list	of	vertices	which	delimit	the	polygons	that	define
the	geographical	entity.

	

GHG	emissions	from	agriculture	in	the	European	Union



	

	

	

	

	



3.		Writing	up	your	findings
In	chapter	1,	I	mentioned	some	of	the	questions	I	wished	I	had	been	able	to	answer
when	I	was	operating	a	business.	Now	I	want	to	suggest	ways	in	which	you	might
structure	your	response	to	 such	questions.	The	actual	answers	come	when	you’ve
done	the	statistical	work	(carried	out	in	the	following	chapters),	but	it	might	help	to
have	at	least	a	structure	on	which	you	can	begin	building	your	work.

Before	you	do	any	work	on	the	problem,	get	straight	in	your	mind	exactly	what	you
are	being	asked	to	do.	You	need	to	be	clear	and	so	does	the	decision-maker	to	whom
you	are	going	to	submit	your	findings.	Here	is	one	way	to	do	this:

Copy	down	the	key	question	that	you	are	being	asked	in	exactly	the	way	that	it	has
been	given	to	you.	For	example,	let	us	say	that	you	have	been	asked	to	answer	this
admittedly	 tough	question:	 ‘What	 factors	are	important	for	 the	 success	 of	 a	 new
supermarket?’

Now	keep	rewriting	it	in	your	own	words	so	that	it	becomes	as	 clear	as	possible.
Make	sure	that	each	and	every	word	is	clear.	What	does	‘success’	actually	mean?	—
in	the	business	context	probably	‘most	profitable’.	What	does	‘new’	mean?	Is	this	a
completely	new	supermarket	or	a	new	outlet	of	an	existing	brand?	You	might	end
up	with:	‘when	we	are	planning	a	location	for	a	new	outlet	for	our	brand,	what	factors
contribute	most	to	profitability?’	Doing	all	this	helps	you	to	identify	the	statistical
method	most	suitable	for	the	task.	You	also	can	include	here	the	hypotheses	(if	any)
that	you	will	be	testing.

Here	is	a	suggested	section	order	for	your	report.	However,	this	probably	won’t	be
the	order	of	the	work.	The	order	in	which	you	do	the	statistical	work	is	in	Section	3,

your	plan	of	attack.	So	the	order
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of	doing	the	actual	work	is	that	you	carry	out	the	plan	of	attack,	and	 then	write	up
your	results	following	the	section	by	section	sequence	I	am	giving	you	now.

Section	1.	State	the	question	to	be	answered	clearly	and	succinctly,	as	result	of	the
rewriting	 you	 did	 above.	Doing	 this	makes	 sure	 that	 you	clearly	understand	 the
problem	and	what	 is	 being	 asked	of	 you.	 Writing	out	 the	question	 and	 stating	 it
clearly	right	at	the	beginning	 of	 your	 report	 also	 ensures	 that	 the	 decision-maker
(the	person	who	posed	the	question	in	the	first	place)	and	you	understand	each	other.
You	can	also	write	in	the	hypothesis	which	you	are	testing.

Section	2.	Provide	an	executive	summary	of	the	results.	This	should	be	perhaps	six
lines	long	and	contain	the	key	findings	from	your	work.	Don’t	put	in	any	technical
words,	 jargon	or	complicated	results.	Just	enough	so	that	a	busy	person	can	skim
through	it	and	get	the	general	idea	of	your	findings	before	going	more	deeply	into
your	hard	work.

Section	3.	Outline	your	plan	of	attack ,	describing	how	you	have	 approached	the
problem.	You	also	can	include	here	the	hypotheses	(if	any)	that	you	will	be	testing.
A	typical	plan	of	attack	follows	later	on	in	this	chapter.

Section	4.	Data.	Provide	a	brief	description	of	the	data	that	you	have	used.	The	source
of	the	data,	 how	you	 found	 it,	whether	 you	 think	 it	 is	 reliable	 and	whether	 it	 is
sufficient	for	the	task.	It	is	a	good	idea	to	 include	summary	statistics	at	 this	point.
This	 includes	 information	 such	 as	 the	 number	 of	 observations,	 and	 what	 the
variables	are.

Section	5.	Statistical	methodology.	Describe	the	statistical	method-	ology	which	you
are	 going	 to	 use,	 for	 example	ANOVA	to	 test	whether	or	not	 the	means	are	 the
same.

Section	6.	Carry	out	the	tests,	making	sure	to	include	a	description	of	whether	or	not
the	hypotheses	can	be	rejected.	This	is	 the	central	part	of	the	report.	Just	make	sure
to	focus	on	answering	the	question.



	
Section	7.	Write	a	conclusion	which	describes	the	results	of	 the	 test	 and	 how	 the
results	 answer	 the	 question	 that	 was	 asked.	 You	 can	 also	 include	 here	 any
shortcomings	in	the	data	or	in	your	methodology	which	might	affect	the	validity	of
the	 results.	 The	 conclusion	 is	 very	 important	 because	 it	 ties	 together	 all	 the
previous	sections.	Here	you	could	include	a	link	to	a	Tableau	‘story’	as	an	additional
or	alternative	way	of	presenting	results.

Section	8.	References/end	 notes	 or	 further	 information,	 especially	 on	 sources	 of
data,	 should	 end	 the	 document.	 If	 you	want	 to	make	 your	 document	 look	 really
good,	 and	 you	 have	 lots	 of	 references,	 consider	 using	 the	 Zotero	 plug-in	 for
Firefox.	It	is	an	excellent	free	way	to	manage	your	bibliography.

	



3.1	Plan	of	attack.	Follow	these	steps.
	

a.		Identification	of	the	statistical	method	that	you	will	use	and	why	you
chose	those	methods

b.		What	data	is	required,	and	where	can	it	be	found?

c.		Conduct	the	statistical	tests

d.		Discuss	whether	the	results	are	reliable/answer	the	question.	(If	not,	start
again!)

	



3.2	Presenting	your	work
	

While	 it	 is	 probably	 best	 to	 concentrate	 on	 written	 work	because	 the	 decision-
maker	might	want	 to	read	your	work	in	detail,	 and	 discuss	 it	 with	 colleagues,	 a
Tableau	 presentation	 is	 an	 excellent	 way	 of	making	 your	 point	 over	 again.	 See
Chapter	2	for	more	on	visualization		and	Tableau.

Here	 is	 a	 link	 to	 some	 excellent	 notes	 by	 Professor	 Andrew	 Gelman	 on	 giving
research	presentations¹

	

¹http://andrewgelman.com/2014/12/01/quick-tips-giving-research-presentations/

http://andrewgelman.com/2014/12/01/quick-tips-giving-research-presentations/
http://andrewgelman.com/2014/12/01/quick-tips-giving-research-presentations/


	

	

	

	

	



4.		Data	and	how	to	get	it
In	this	chapter,	we’ll	look	at	the	data	collection	process,	 the	prob-	 lems	that	might
accompany	poorly	collected	data,	discuss	so-called	big	data	and	provide	 links	 to
some	useful	public	sources	of	data.

As	 you	 might	 expect,	 this	 book	 works	 through	 the	 analysis	 of	 numbers	 —
quantitative	data	—	but	it	is	important	to	note	that	the	analysis	of	qualitative	data	is	a
rapidly	growing	area.	Unfortunately	 the	analysis	of	qualitative	data	is	beyond	this
book	and	the	software	available	to	us.

Quantitative	data	comes	from	two	main	sources. Primary	data	is	collected	by	you
or	the	company	you	are	working	for.	For	example,	the	market	research	you	do	to	find
out	the	possible	market	share	for	your	product	provides	primary	data.	Primary	data
includes	 both	internal	company	data	and	data	from	automated	equipment	such	as
website	hits.	Collecting	data	 is	 expensive	 and	 highly	 proprietary.	 It	 is	 therefore
unlikely	to	be	published	and	available	outside	the	enterprise.

By	 contrast, Secondary	 data is	 plentiful	 and	 mostly	 free.	 It	 is	 collected	 by
governments	of	all	sizes,	and	also	by	many	 non-	government	organizations	as	well.
There	 is	 an	 increasing	 trend	 towards	 the	 liberation	 of	 data	 under	 various	 open
government	initiatives.	Government	data	is	usually	reliable,	but	be	sure	to	check	the
accompanying	notes	which	warn	of	any	problems,	 such	as	 limited	sample	size	or
change	in	classification	or	collection	methods	 over	 time.	There	are	 some	 links	 to
secondary	data	at	the	end	of	this	chapter.
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Experimental	design

	

Experiments	don’t	necessarily	have	 to	be	conducted	 in	 laboratories	 by	people	 in
white	coats:	a	survey	in	shopping	mall	is	also	a	form	of	experiment,	as	is	analyzing
the	 results	 of	 your	 favorite	 cricket	 team.	 There	 are	 two	 different	 design
types: experimental	 and	 observational .	 The	 key	difference	 is	 the	 amount	 of
randomization	 that	is	built	into	the	experiment.	In	general,	more	randomization	is
good,	because	it	helps	to	remove	the	influence	of	fixed	effects,	such	as	the	quality	of
the	soil	in	a	particular	location.

Here’s	an	example	to	make	clear	the	difference.	Imagine	a	 re-	searcher	wanting	to
test	 the	 effect	 of	 a	 new	 drug	 on	mice.	 In	 an	 experimental	 design,	 the	 mice	 are
examined	 before	 the	 drug	 is	 administered,	 and	 then	 the	 drug	 is	 applied	 to	 a
treatment	group	of	mice	and	a	control	group.	The	control	group	receives	no	drugs.
Its	job	is	to	act	as	a	reference	group.	All	the	mice	are	kept	in	identical	conditions	apart
from	the	application	of	the	drug.	The	allocation	of	mice	to	the	treatment	group	and
to	the	control	group	is	entirely	random.

While	we	 can	 (and	do)	 carry	out	 drug	 experiments	 on	mice,	 it	would	clearly	be
very	wrong	to	try	to	do	the	same	with	humans	as	subjects.	Instead	we	collect	data	or
observations	and	then	analyze	those	observations	looking	for	d i ffe rences .

To	compensate	for	the	lack	of	randomization,	we	control	for	ob-	served	differences
by	including	as	many	relevant	variables	as	possi-	ble.	If	we	knew	that	person	X	had
received	a	particular	drug	and	had	developed	a	particular	condition,	we	would	want
to	compare	person	X	with	somebody	else	who	had	not	developed	 that	 condition.
Relevant	variables	that	we	would	want	to	know	might	be	 age,	gender	and	possibly
pre-existing	health	conditions.	Including	these	 variables	 reduces	 fixed	effects	and
allows	us	to	concentrate	on	the	effect	of	the	drug.



	
Problems	with	data

	

It	 is	 obvious	 that	 to	 be	 credible,	 your	 analyses	 must	 be	 based	 on	 reliable	 data.
Problems	with	data	are	usually	connected	to	poor	sampling	and	experimental	design
techniques,		especially:

Sample	size	too	small .	The	relative	size	of	 the	sample	 to	 the	population	usually
does	not	matter.	It	is	the	absolute	size	of	the	sample	that	counts.	You	usually	want	at
least	several	hundred	observations.

Population	 of	 interest	 not	 clearly	 defined.	 It	 is	 clear	 that	 we	 need	 to	 take	 a
sample	from	a	population,	but	what	exactly	is	the	population?	Here’s	an	example.
You	want	to	survey	shoppers	in	a	shopping	mall	regarding	your	new	product.	But	of
the	people	inside	 the	mall,	who	exactly	are	your	population?	People	just	entering,
people	just	leaving,	people	having	their	lunch	in	the	food	court?	 Singles,	 couples,
elderly	people	or	the	teenagers	hanging	 around	outside	the	door?	You	can	see	that
picking	any	one	of	these	groups	on	its	own	will	lead	to	a	biased	sample.

Non-response	 bias .	 Many	 people	 don’t	 answer	 those	 irritating	 telephone	 calls
which	 come	 in	 the	 evening	 because	 they’re	 busy	 with	dinner.	As	 a	 result,	 only
answers	 from	 those	 who	 do	 choose	 to	 answer	 the	 survey	 are	 counted.	 Those
respondents	most	likely	aren’t	representative	of	 the	population.	Perhaps	 they	 live
alone	or	do	not	have	too	much	to	do.	I’m	not	saying	that	they	should	not	be	 in	 the
sample,	just	that	including	only	those	who	do	respond	may	bias	your	sample.

Voluntary	response	bias .	If	you	feel	strongly	about	an	issue,	then	 you	 are	more
likely	to	respond	than	if	you	are	indifferent.	That’s	simply	human	nature.	As	a	result,
the	survey	results	will	be	skewed	by	the	views	of	those	who	feel	most	passionately.
This	is	hardly	a	representative	sample	because	the	strongly-held	views	drown	out	the
more	moderate	 voices.



	



4.1	Big	data
	

Primary	data	frequently	comes	from	automated	collection	devices,	such	as	scanners,
websites,	social	media,	and	the	like.	The	volume	of	such	data	is	enormous,	and	is
aptly	called	big	data.	Big	data	is	the	term	used	to	describe	large	datasets	generated	by
traditional	busi-	ness	activities	and	from	new	sources	such	as	social	media.	Typical
big	 data	 includes	 information	 from	 store	 point-of-sale	 terminals,	 bank	 ATMs,
Facebook	posts	and	YouTube	videos.

One	 of	 the	 apparently	 attractive	 features	 of	 big	 data	 is	 simply	 its	 size,	 which
supposedly	enables	deeper	insights	and	reveals	connections	which	would	not	appear
in	smaller	samples.	This	argu-	ment	neglects	the	power	of	statistics,	and	in	particular
inferential	 statistics.	 A	 small	 sample,	 properly	 collected,	 can	 yield	 superior
insights	to	a	very	large	poorly	collected	sample.	Think	of	it	this	way:	which	is	better:
a	very	large	sample	in	which	all	the	respondents	are	in	the	same	age-group	and	of	the
same	gender;	or	a	smaller	one	which	more	accurately	reflects	the	population?

	



4.2	Some	useful	sites
	

You	can	of	course	easily	just	Google	for	data,	or	look	at	these	more	focused	sites:

Gapminder	data:	free	to	use	but	be	sure	to	attribute¹	Worker	
employment	and	compensation²

Interesting	and	wide-ranging	historical	 data³	Google
Public	Data⁴

¹http://www.gapminder.org/data/	²http://www.bls.gov/fls/country/canada.htm
³http://www.historicalstatistics.org/

⁴http://www.google.com/publicdata/directory

http://www.gapminder.org/data/
http://www.bls.gov/fls/country/canada.htm
http://www.historicalstatistics.org/
http://www.google.com/publicdata/directory
http://www.gapminder.org/data/
http://www.bls.gov/fls/country/canada.htm
http://www.historicalstatistics.org/
http://www.google.com/publicdata/directory


	
International		Monetary	Fund⁵

Food	and	Agriculture	Organisation⁶	United	Nations
Data⁷

The	World	Bank⁸
	

⁵http://www.imf.org/external/data.htm

⁶http://www.fao.org/statistics/en/

⁷http://data.un.org/

⁸http://databank.worldbank.org/data/home.aspx

http://www.imf.org/external/data.htm
http://www.fao.org/statistics/en/
http://data.un.org/
http://databank.worldbank.org/data/home.aspx
http://www.imf.org/external/data.htm
http://www.fao.org/statistics/en/
http://data.un.org/
http://databank.worldbank.org/data/home.aspx


	

	

	

	

	



5.		Testing	whether	quantities	are	the
same

This	 chapter	 concerns	 testing	 whether	 the	 population	 means	 of	 two	 or	 more
quantities	are	the	same	or	not:	and	if	they	are	in	fact	different,	whether	any	variable
can	be	identified	as	being	associated	with	 the	difference.	The	 test	 we	 will	 use	 is
ANOVA,	(Analysis	of	Variance).	The	test	was	developed	by	the	British	statistician
Sir	Ronald	Fisher,	and	the	F-test	which	ANOVA	uses	is	named	in	his	honor.	Fisher
also	developed	much	of	the	theoretical	work	behind	experiment	design	during	his
time	at	the	Rothamsted	Research	Station	in	England.

	



5.1	ANOVA	Single	Factor
	

The	most	straightforward	application	of	ANOVA	is	when	we	simply	 want	 to	 test
whether	or	not	two	or	more	means	are	the	same.	In	this	worked	example,	we	have
three	different	types	of	wheat	fertilizer	(Wolfe,	White	and	Korosa)	and	we	would	like
to	know	whether	their	application	produces	equal	or	different	yields.

As	the	section	on	experimental	design	in	Chapter	3	emphasized,	the	experiment	must
be	 designed	 to	 isolate	 the	 effect	 of	 the	 fertilizer,	 and	 this	 is	 achieved	 by
randomization.	 To	 control	 for	 differences	 in	 site-specific	 growing	 qualities,	 we
select	plots	of	land	which	are	as	similar	as	possible:	exposure	to	sunlight,	drainage,
slope	and	other	 relevant	qualities.	We	randomly	assign	fertilizers	to	plots,	and	the
yields	are	measured.	The	first	few	lines	of	a	typical	data	set	appear	below.
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The	fertilizer	dataset

	

There	 are	 two	 columns	 in	 the	 dataset:	 the factor ,	 which	 is	 the	 name	 of	 the
fertilizer,	and	the	yield	attributed	to	each	plot.	In	this	case,	each	fertilizer	was	tested
on	four	plots,	providing	3	x	4	=	12	observations.	Later,	when	using	Excel	to	run	the
ANOVA	 test,	 it	 will	 be	 necessary	 to	 change	 the	 format	 so	 that	 the	 yields	 are
grouped	under	each	factor.

A	good	first	step	is	to	visualize	the	data.	Here	is	a	boxplot	drawn	with	Tableau.



	

	

Fertilizer	 boxplot

	

The	dataset	is	here:	fertilizer	dataset¹

and	here	is	a	Youtube	of	creating	a	boxplot	in	Tableau².
	

¹https://dl.dropboxusercontent.com/u/23281950/fertilizer.xlsx	 ²http://youtu.be/3QohthWXp1M

https://dl.dropboxusercontent.com/u/23281950/fertilizer.xlsx
http://youtu.be/3QohthWXp1M
https://dl.dropboxusercontent.com/u/23281950/fertilizer.xlsx
http://youtu.be/3QohthWXp1M


	
I’ll	make	a	frank	admission	right	now:	it	took	me	the	best	part	of	a	morning	to	get	the
technique	of	drawing	a	boxplot	in	Tableau	down,	 so	hopefully	 this	YouTube	will
help	you	to	avoid	spending	so	much	time	on	this.

The	 boxplot	 reveals	 these	 useful	 measurements:	 the	 smallest	 and	 largest
observation,	or	the	range.	The	median,	which	is	the	hori-	zontal	line	within	the	box;
and	the	25%	quartile	(upper	line	of	the	box;	and	75%	quartile,	lower	line	of	the	box.
Therefore	50%	(75-25)	of	 the	data	are	contained	within	 the	 box.	 The	 ‘whiskers’
mark	off	data	which	 are	 outliers,	meaning	 that	 any	 datapoint	which	 is	 outside	 a
whisker	is	an	outlier.	This	doesn’t	mean	to	say	that	it	 is	somehow	wrong:	perhaps
some	of	the	most	interesting	discoveries	come	 from	looking	at	outliers.	However,
an	 outlier	might	 also	 be	 the	 result	 of	 careless	data	entry	and	should	therefore	be
checked.	It	is	clear	from	the	plots	that	the	yields	are	by	no	means	the	same.

In	this	example,	we	are	measuring	only	one	factor :	the	effect	of	the	fertilizer	on	the
mean	yield	of	each	plot,	and	so	the	test	we	want	to	conduct	is	single	factor	ANOVA
with	 a	 completely	 randomized	 design.	 It	 is	 completely	 randomized	 because	 the
allocation	of	fertil-	izer	to	plot	was	random.	We	want	any	differences	to	be	due	to	the
fertilizer	and	the	fertilizer	alone.

Because	our	test	is	whether	the	means	are	the	same	or	different,	the	hypothesis	is:

	
Ho : µ 1	= µ 2	= µ 3	= .. =	µ n

	

with	the	alternative	hypothesis	that	not	all	the	means	are	the	same.	 That	 isn’t	 the
same	as	saying	that	they	are	all	different;	just	that	at	 least	one	is	different	from	the
others.

The	rejection	rule	states	that	if	the	p	value	which	comes	out	of	the	 test	is	smaller
than	0.05,	then	we	reject	the	null	hypothesis.	If	we	 reject	 the	 null,	 then	we	must
accept	the	alternative	hypothesis.



	
We	test	the	hypothesis	using	the	ANOVA	Single	Factor	tool	within	Data	Analysis.
First,	the	two-column	structure	of	the	data	 has	to	be	transformed	into	columns	for
each	of	the	three	fertilizers.	That	is	easily	accomplished	using	the	PIVOT	TABLE
function.	This	youtube³	takes	you	through	the	process	of	changing	the	structure	of
the	data	and	running	the	ANOVA	test.	The	result	are	below.

	

ANOVA	output	for	fertilizer	test

	

The	key	statistic	is	the	p-value.	It	is	much	smaller	than	0.05	and	so	we	reject	the	null
hypothesis.	The	means	are	not	all	the	same.	They	are	different.	The	summary	output
tells	us	that	White	has	the	largest	mean	yield	and	this	agrees	with	the	boxplot.	In	this
case,	separation	of	results	into	a	ranking	of	yield	is	relatively	easy	because	they	are
so	distinct.	Unfortunately	Excel	lacks	a	way	of	easily	testing	whether	any	other	pair
are	the	same	or	different.	All	we	can	say	for	sure	is	that	they	are	not	all	the	same.

Here	 is	 a	 slightly	more	 complicated	 and	 realistic	 example.	You	 are	 designing	 an
advertising	campaign	and	you	have	models	with	different	eye	colors:	blue,	brown,
and	green,	and	also	one	shot	 in

	

³http://youtu.be/wevrSWYBl8U

http://youtu.be/wevrSWYBl8U
http://youtu.be/wevrSWYBl8U
http://youtu.be/wevrSWYBl8U


	
which	the	model	is	looking	down.	You	measure	the	response	to	each	 arrangement.
Does	the	eye	color	affect	the	response?	The	dataset	is	called	adcolor⁴.	The	first	few
lines	are	here:

	

The	first	few	lines	of	the	adcolor	dataset

	

The	color	is	the	factor,	and	we’ll	need	to	use	PIVOT	TABLE	to	tabulate	the	data	so
that	the	eye	color	becomes	the	columns.	I’ve	done	that	here….

The	result	is
	

The	eye	color	results

	
	

⁴https://dl.dropboxusercontent.com/u/23281950/adcolour.xls

https://dl.dropboxusercontent.com/u/23281950/adcolour.xls
https://dl.dropboxusercontent.com/u/23281950/adcolour.xls


	
The	p	value	is	0.036184,	smaller	than	0.05.	As	a	result	we	can	state	that	different
colors	 are	 associated	 with	 different	 responses.	 Looking	 at	 the	 summary	 output,
green	has	the	highest	average	at	3.85974,	so	we	could	probably	select	green.

	



5.2	ANOVA:	with	more	than	one	factor
	

The	Fertilizer	test	above	showed	how	to	test	the	effect	of	a	single	factor.	The	ANOVA
results	showed	that	the	means	were	not	 the	 same.	By	 inspecting	 the	 boxplot	 and
also	the	Excel	output,	 it	 is	clear	that	the	variety	WHITE	has	a	higher	yield.	What
might	 be	 interesting	 is	 finding	 whether	 another	 factor	 also	 has	 a	 statistically
significant	effect	on	yields,	and	whether	the	two	factors	interacted	together.

The	case	in	question	involves	preparation	for	the	GMAT,	an	exam	required	by	some
graduate	 schools.	 The	 GMAT	 is	 a	 test	 of	 logical	 thinking	 and	 is	 therefore	 not
dependent	on	specific	prior	learning.	We	know	the	test	scores	of	some	applicants,
and	whether	those	students	came	from	Business,	Engineering	or	Arts	and	 Sciences
faculties.	The	students	had	also	taken	preparation	courses,	ranging	 from	a	 3-hour
review	 to	 a	 10-week	 course.	 The	 question	 is:	 did	 taking	 the	 preparation	 course
matter;	and	did	faculty	matter?	Here	we	have	two	factors:	faculty	and	preparation
course.	The	data	is	already	arranged	in	columns	and	so	we	can	go	straight	in	with	a
two-way	with	replication.	Look	at	the	data⁵.	It	is	replicated	because	 there	 are	 two
sets	of	observations	for	each	preparation	type.	The	output	is	here:

	

⁵https://dl.dropboxusercontent.com/u/23281950/testscores.xlsx

https://dl.dropboxusercontent.com/u/23281950/testscores.xlsx
https://dl.dropboxusercontent.com/u/23281950/testscores.xlsx


	

	

	

Test	scores	ANOVA	output

	

We	have	the	preparation	type	in	the	rows,	and	the	relevant	p	value	there	is	0.358,	so
we	fail	to	reject	the	null.	We	cannot	say	that	there	is	any	difference	in	scores	as	a
result	 of	 preparation	 course	 type;	 in	 other	 words,	 there	 is	 no	 effect	 on	 scores
resulting	from	preparation	course	type.	However,	for	faculty	(in	columns)	 there	 is
distinct	difference,	with	a	p	value	of	0.004.	From	the	summary	 output,	 it	 looks	 as
those	in	the	Engineering	faculty	had	the	highest	score.



	

	

	

	

	



6.		Regression:	Predicting	with
continuous	variables

This	 chapter	 is	 about	 discovering	 the	 relationships	 that	 might	 or	 (equally	well)
might	not	exist	between	the	variables	 in	 the	dataset	 of	interest.	Here’s	a	typical	if
rather	simplistic	example	of	 regression	 in	 action:	 the	 operator	 of	 some	 delivery
trucks	wants	to	predict	the	 average	 time	 taken	 by	 a	 delivery	 truck	 to	 complete	 a
given	route.	The	operator	needs	this	information	because	he	charges	by	the	hour	and
needs	to	be	able	to	provide	quotations	rapidly.	The	customer	provides	the	distance
to	be	driven,	and	the	number	of	stops	en	route.	The	task	is	to	develop	a	model	so	that
the	 truck	 operator	 can	 predict	 the	 time	 taken	given	 that	 information.	Regression
provides	 a	 mathematical	 ‘model’	 or	 equation	 from	 which	 we	 can	 very	 quickly
predict	journey	times	given	relevant	information	such	as	the	distance,	and	number
of	stops.	This	is	extremely	useful	when	quoting	for	jobs	or	for	audit	purposes.

We	know	 the	 size	of	 the	 input	variables—the	distance	 and	the	deliveries,	but	we
don’t	know	the	rate	of	change	between	them	and	the	dependent	or	response	variable:
what	is	the	effect	on	time	of	increasing	distance	by	a	certain	amount?	Or	adding	one
more	stop?	Using	the	technique	of regression ,	we	make	use	of	a	 set	of	historical
records,	perhaps	 the	 truck’s	 log-book,	 to	calculate	 the	 average	 time	 taken	by	 the
truck	to	cover	any	given	distance.	As	with	any	attempt	to	predict	the	future	based	on
the	past,	the	predictions	from	regression	depend	on	unchanged	conditions:	no	new
road	works	(which	might	speed	up	or	delay	the	journey),	no	change	in	the	skills	of
the	driver.
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In	 the	 language	 of	 regression,	 the	 time	 taken	 in	 the	 truck	 example	 is
the response or dependent variable,	 and	 the	 distance	 to	 be	 driven	 is	 the
explanatory	 or	 independent	 variable.	 While	 we	 will	 only	 ever	 have	 just	 one
response	variable,	 the	number	of	 explanatory	variables	is	unlimited.	The	number
of	stops	the	truck	has	to	make	will	impact	journey	time,	as	will	variables	such	as	the
age	of	the	truck,	weather	conditions,	and	whether	the	journey	is	urban	or	rural.	If	we
know	 these	 variables,	 we	 also	 can	 include	 them	 in	 the	model	 and	 gain	 deeper
insights	into	what	does	(and	equally	important	does	not)	affect	journey	time.

Regression	models	are	used	primarily	for	two	tasks:	to	explain	events	 in	 the	past;
and	 to	make	predictions.	Regression	 provides	coefficients	which	provide	the	size
and	direction	of	the	change	in	 the	response	variable	for	a	one	unit	change	in	one	or
more	of	the	explanatory	 variables.

Regression	makes	a	prediction	 for	how	long	a	 truck	will	 take	 to	 make	 a	 certain
number	of	 deliveries	 and	 also	 states	 how	 accurate	 the	prediction	will	be.	With	a
regression	 model	 in	 hand,	 we	 can	 make	 quotations	 accurately	 and	 quickly.	 In
addition,	we	can	detect	 anomalies	in	records	and	reports	because	we	can	calculate
how	long	a	journey	should	have	taken	under	various	what-if	conditions.

Here	 I	 have	 used	 a	 straightforward	 example	 of	 calculating	 a	 time	problem	for	a
trucking	 firm,	 but	 regression	 is	 much	 more	 powerful	 than	 that.	 Some	 form	 of
regression	underlies	a	great	deal	of	applied	research.	When	you	read	about	increased
risk	due	to	smoking	(or	whatever	else	is	the	latest	danger)	that	risk	was	calculated
with	 regression.	 In	 this	 chapter,	we’ll	 calculate	 the	 difference	between	 used	and
new	marioKart	sales	on	ebay,	estimate	stroke	risk	factors,	and	gender	inequalities	in
pay,	all	with	regression.

Regression	 is	not	very	difficult	 to	do,	but	 the	problem	is	 that	everybody	does	 it.
Ordinary	 Least	 Squares	 (OLS),	 linear	 regression’s	 proper	 name,	 rests	 on	 some
assumptions	which	should	be	checked	for	validity,	but	often	 aren’t.	We	 cover	 the
assumptions,	and	what



	
to	do	if	they’re	not	met,	in	the	following	chapter.	This	chapter	is	about	the	hands-on
applications	of	regression.

	



6.1	Layout	of	the	chapter
	

The	 chapter	 begins	 with	 some	 background	 on	 how	 regression	 works.	 We’ll
illustrate	the	theory	with	the	trucking	example	men-	tioned	above,	before	going	on
to	adding	more	explanatory	variables	to	improve	the	accuracy	of	the	prediction.

Particularly	 useful	 explanatory	 variables	 are	 dummy	 variables,	which	 take	 on	 a
categorical	values,	typically	zero	or	1.	For	example,	we	could	code	employees	as
male	and	female,	and	discover	from	this	whether	there	is	a	gender	difference	in	pay,
and	calculate	the	effect.	 In	a	worked	example	 in	 the	 text,	we	analyze	 the	 sales	of
marioKart	on	ebay,	and	use	dummy	variables	to	find	the	average	difference	in	cost
between	a	new	and	a	used	version.

Sometimes	two	variables	interact:	higher	or	lower	levels	in	one	variable	change	the
effect	of	another	variable.	In	the	text,	we	show	that	the	effect	of	advertising	changes
as	the	list	price	of	the	item	increases.

Finally,	we’ll	discuss	curvilinearity .	The	relationship	between	salary	and	experience	is
non-linear.	As	people	get	older	and	more	expe-	rienced,	their	salaries	first	move
quickly	upwards,	and	then	flatten	out	or	plateau.	We	can	capture	that	non-linear	function
to	make	prediction	more	 accurate.

	



6.2	Introducing	regression
	

At	school	you	probably	learned	how	to	 calculate	 the	 slope	of	a	 line	 as	‘rise	over
run’.	Let’s	say	you	want	to	go	to	Paris	for	a	vacation.	You	have	up	to	a	week.	There
are	two	main	expenses,	the	airfare	and	 the	cost	of	accommodation	per	night.	The
airfare	is	fixed	and



	
stays	the	same	no	matter	whether	you	go	for	one	night	or	seven.	The	hotel	(plus	your
meal	charges	etc)	is	$200	per	night.	You	could	write	up	a	small	dataset	and	graph	it
like	this:

	

Total	Paris	trip	expenses

	

The	equation	for	is:	Total	expenses	=	1000	+	200*Nights

Basically,	you	have	 just	written	your	 first	 regression	model.	 The	model	contains
two	coefficients	of	interest:

	
•	 	the	intercept	which	is	the	value	of	the	response	variable	(cost)	when	the
explanatory	variable	is	zero.	Here	the	intercept	is

$1000.	That	is	the	expense	with	zero	nights.	It	is	the	point	on	 the	vertical	y
axis	where	the	trend	line	cuts	through	it,	where	x	=0.	You	still	have	to	pay	the
airfare	regardless	of	whether	you	stay	zero	nights	or	more.

•	 	 the	slope	of	 the	 line	which	 is	$200.	For	every	one	unit	 increase	 in	 the
explanatory	variable	(nights)	the	dependent	 variable	 (total	 cost)	 increases
by	this	amount.

	
In	 regression,	 we	 usually	 know	 the	 dependent	 variable	 and	 the	 independent
variable,	 but	 we	 don’t	 know	 the	 coefficients.	We	use	 regression	to	 extract	 those
coefficients	from	the	data	so	that	we	can	make	predictions.

How	do	we	know	whether	the	slope	of	the	regression	line	reflects	the	data?	Try	this
thought	experiment:	if	you	plotted	the	data	and



	
the	trend	line	was	flat,	what	would	that	mean?	No	relationship.	You	 could	stay	 in
Paris	forever,	free!	A	flat	line	has	zero	slope,	and	so	an	extra	night	would	not	cost
any	more.

More	 formally,	 the	hypothesis	 testing	procedure	 tests	 the	null	hypothesis	that	 the
slope	is	zero.	If	we	can	reject	the	null,	then	we	are	required	to	accept	the	alternative
hypothesis,	which	is	that	the	slope	is	not	zero.	If	it	isn’t	zero	(the	trend	line	could
slope	up	or	down)	then	we	have	something	 to	work	with.	We	 test	 the	 hypothesis
using	the	data	found	from	the	sample,	and	Excel	gives	us	a	p	value.	If	the	p	value	is
smaller	than	0.05,	we	reject	the	null	hypothesis.	If	we	reject	the	null	we	can	say	that
there	is	a	slope	and	the	analysis	is	worthwhile.

The	 Paris	 example	 had	 only	 one	 independent	 variable	 (number	 of	 nights)	 but
regression	 can	 include	many	more,	 as	 the	 trucking	 example	below	will	show.	If
there	is	more	than	one	variable,	we	cannot	show	the	relationship	with	one	trend	line
in	two	dimen-	sions.	Instead,	the	relationship	is	a	hyperplane	or	surface.	The	plot
below	 shows	 the	 effect	 on	 taste	 ratings	 (the	 dependent	 variable)	 of	 increasing
amounts	of	lactic	acid	and	H2S	in	cheese	samples.



	

	

	

3D	hyperplane	for	responses	to	cheese

	

Here	is	another	example.	We	have	the	data	on	the	size	of	 the	population	of	some
towns	 and	 also	 pizza	 sales.	 How	 can	 we	 predict	 sales	 given	 population.	 Pizza
YouTube	here¹

	

https://www.youtube.com/watch?v=ib1BfdVxcaQ


6.3	Trucking	example
	

The	 records	 of	 some	 journeys	 undertaken	 are	 available	 in	 an	 Excel	 file	 named
‘trucking’².

Take	a	look	at	the	data.	As	I	mentioned	at	the	beginning	of	the	book,	 it	is	always	a
good	idea	to	begin	with	at	least	a	simple	exploratory	plot	of	the	variables	of	interest
in	your	data.	With	Excel	we	can	quickly	draw	a	rough	plot	so	that	we	can	see	what	is
going	on.	What	we	want	to	do	is	predict	time	when	we	know	the	distance.	The

	

¹https://www.youtube.com/watch?v=ib1BfdVxcaQ
²https://dl.dropboxusercontent.com/u/23281950/trucking.xlsx

https://dl.dropboxusercontent.com/u/23281950/trucking.xlsx
https://www.youtube.com/watch?v=ib1BfdVxcaQ
https://dl.dropboxusercontent.com/u/23281950/trucking.xlsx


	
scatter	 plot	 below	 shows	 time	 as	 a	 function	 of	 distance.	YouTube:	 scatterplot	 of
trucking	 data³

	

Trucking	 scatterplot

	

Time	 is	 the	 dependent	 variable	 and	 distance	 is	 the	 independent	 variable.	 The
independent	variable	goes	on	the	horizontal	x	 axis,	the	dependent	variable	on	the
vertical	y	axis.

From	the	plot	it	is	clear	that	there	is	a	positive	relationship	between	the	two	variables.
As	the	distance	increases,	then	so	does	the	time.	This	is	hardly	a	surprise.	But	we
want	more	than	this:	we	want	to	quantify	the	relationship	between	the	time	taken	and
the	distance	 traveled.	If	we	can	model	 this	 relationship	 that	will	 be	 useful	when
customers	ask	for	 quotations.

The	data	set	contains	one	further	variable,	which	is	the	number	of	deliveries	on	the
route.	We’ll	use	that	later	on.	For	now	we’ll	use	just	the	time	and	the	distance.

To	build	our	model,	we	want	to	build	an	equation	which	looks	like	this	in	symbolic
form

	

³https://www.youtube.com/watch?v=HSpY12mLXoU

https://www.youtube.com/watch?v=HSpY12mLXoU
https://www.youtube.com/watch?v=HSpY12mLXoU
https://www.youtube.com/watch?v=HSpY12mLXoU


	

	

y 	̂	= b o + b 1 x 1	+…b n x n +	e

	

yhat	(spoken	‘y	hat’)	 is	 the	 dependent	 variable.	 It	 is	 called	 ‘hat’	 because	 it	 is	an
estimate.	 b0	 is	 the	 intercept,	 or	 the	 point	 where	 the	 trend	 line	 (also	 called	 the
regression	 line)	 passes	 through	 the	 vertical	 y	 axis.	 This	 is	 the	 point	 where	 the
independent	variable	is	zero.	You	perhaps	remember	a	similar	equation	from	school:
y	=	mx

+b.

In	the	trucking	example,	the	intercept	(b0)	might	be	the	 time	taken	warming	up	the
truck	and	checking	documentation.	 Time	is	 running,	but	 the	 truck	 is	not	moving.
b1	 is	 the	 ‘coefficient’	for	the	independent	variable	because	it	provides	the	change
in	the	dependent	variable	for	a	one-unit	change	in	the	 independent	variable.	x1	is
the	independent	variable,	in	this	case	distance.	We	want	to	be	able	to	plug	in	some
value	of	the	independent	variable	and	get	back	a	predicted	time	for	that	distance.

The	b	and	the	x	both	have	a	subscript	of	1	because	they	are	the	first	(and	so	far	only
independent	variable).	I	have	put	in	more	variables	 just	 to	 indicate	 that	we	 could
have	many.

The	coefficient,	b1,	provides	the	rate	of	change	of	the	dependent	variable	for	a	one
unit	change	in	the	independent	variable.	You	can	think	of	this	as	the	slope	of	the	line:
a	steeper	slope	means	a	greater	increase	in	y	for	a	one-unit	increase	in	x.

We	can	now	find	the	estimated	regression	equation	using	the	regression	application
in	Excel.	First,	we	use	the	regress	function	in	Excel’s	data	analysis	tool	to	regress
distance	on	time.	YouTube⁴

The	regression	output	is	as	below:
	

⁴https://www.youtube.com/watch?v=xKsYfa7YGgE

https://www.youtube.com/watch?v=xKsYfa7YGgE
https://www.youtube.com/watch?v=xKsYfa7YGgE


	

	

	

The	regression	output

	

I	have	marked	some	of	the	key	results	in	red,	and	I	explain	them	below.

	



6.4	How	good	is	the	model?	—r-squared
	

There	is	a	red	circle	around	the	adjusted	r-squared	value,	here	0.622.	r-squared	is	a
measure	of	how	good	the	model	is.	r-squared	goes	from	0	to	1,	with	a	1	meaning	a
perfect	model,	 which	 is	 extremely	rare	in	applied	work	such	as	this.	Zero	means
there	is	no	relationship	at	all.	The	result	here	of	0.62	means	that	62%	of	the	variance
in	 the	 dependent	 variable	 is	 explained	 by	 the	model.	 This	 isn’t	 bad,	 but	 it’s	 not
great	 either.	 Below,	we’ll	 add	 more	 independent	 variables	 and	 show	 how	 the
accuracy	 of	 the	 model	 improves.	The	adjusted	 r-squared	 takes	 into	 account	 the
number	of	variables	in	the	regression	equation	and	also	the	sample	size,	which	is	why
it	 is	 slightly	 smaller	 than	 the	 r-squared	 value.	 It	 doesn’t	 have	 quite	 the	 same
interpretation	as	r-squared,	but	it	is	very	useful	when	 comparing	 models.	 Like	 r-
squared,	we	want	as	high	a	value	as	possible:	higher	is	better	because	it	means	that
the	model	is	doing	a	more	accurate	job.

Also	circled	are	the	words	intercept	and	distance.	These	give	us	the



	
coefficients	we	need	to	write	the	model.	Extracting	the	coefficients	from	the	Excel
output,	we	can	write	the	estimated	regression	model.

	
y 	̂=	1 . 274	+	0 . 068	∗	Dist

where	yhat	is	the	 estimated	 or	 predicted	 response	 time.	 If	 you	 took	 a	very	 large
number	of	journeys	of	the	same	distance,	this	would	be	the	average	of	the	time	taken.

The	intercept	is	a	constant,	it	doesn’t	change.	It	is	the	amount	of	time	taken	before	a
single	kilometer	has	been	driven.	The	distance	coefficient	of	0.068	 is	 the	piece	of
information	that	we	 really	want.	This	is	the	rate	of	change	of	time	for	a	one	unit
change	 in	 the	 dependent	 variable,	 distance.	 An	 increase	 of	 one	 kilometer	 in
distance	increases	the	predicted	time	by	0.0678	hours,	and	 vice-	versa	of	course.
Do	the	math	and	you’ll	see	that	the	average	speed	is	14.7	mph.

	



6.5	Predicting	with	the	model
	

A	model	 such	 as	 this	 makes	 estimating	 and	 quoting	 for	 jobs	 much	 easier.	 If	 a
manager	wanted	to	know	how	long	it	would	take	for	a	truck	to	make	a	journey	of	2.5
kms	for	example,	all	he	or	she	would	need	to	do	is	to	plug	2.5	into	distance	and	get:

predicted	time	=	1.27391	+	0.06783*2.5	=	1.4435	hours.

multiply	this	result	by	the	cost	per	hour	of	the	driver,	add	the	miscellaneous	charges
and	you’re	done.

It	is	unwise	the	extrapolate.	Only	make	predictions	within	the	range	of	the	data	with
which	you	calculated	your	model	(see	also	Chapter	4	on	this.



	



6.6	How	it	works:	Least-squares	method
	

The	method	 we	 just	 used	 to	 find	 the	 coefficients	 is	 called	 the	method	of	 least
squares .	It	works	 like	 this:	 the	 software	 tries	 to	 find	 a	 straight	 line	 through	 the
points	that	minimizes	the	vertical	distance	between	the	predicted	y	value	for	each	x
(the	value	provided	by	the	trend	line)	and	the	actual	or	observed	value	of	each	y	for
that	x.	It	tries	to	go	as	close	as	 it	can	 to	all	of	 the	points.	The	 vertical	distance	is
squared	so	that	the	amounts	are	always	positive.

The	plot	below	is	the	same	as	the	one	above,	except	that	I	have	added	the	trend	line.
	

The	black	line	illustrates	the	error

	

The	slope	of	the	trend	line	is	the	coefficient	0.0678.	That	is	the	rate	of	change	of	the
dependent	variable	for	a	one-unit	change	in	the	 independent	 variable.	 Think	 “rise
over	run”.	I	extended	the	trend	line	backwards	to	illustrate	the	meaning	of	intercept.
The	value	of	the	intercept	is	1.27391,	which	is	the	value	of	y	when	x	is	zero.	This	is
actually	 a	 form	 of	 extrapolation,	 and	 because	 we	 have	 no	 observations	 of	 zero
distance,	this	is	an	unreliable	estimate.

Now	look	at	the	point	where	x	=	100.	There	are	several	y	values	 representing	time
taken	for	this	distance.	I	have	drawn	a	black	line



	
between	one	particular	y	value	and	the	trend	line.	This	vertical	distance	represents
an	error	in	prediction:	if	the	model	was	perfect,	 all	 the	observed	points	would	 lie
along	the	trend	line.	The	method	of	least	squares	works	by	minimizing	the	vertical
distance.	 It	is	possible	to	do	the	calculations	by	hand,	but	they	are	tedious	and	most
people	use	software	for	practical	use.	The	gap	between	predicted	and	observed	is
known	as	a	residual	and	it	is	the	‘e’	term	in	the	general	form	equation	above.

The	error	discussed	just	above	is	the	vertical	distance	between	the	predicted	and	the
observed	 values	 for	 every	 x	 value.	 The	 amount	 of	 error	 is	 indicated	 by	 the	 r-
squared	value .	r-squared	runs	from	0	(	a	completely	useless	model)	to	1	(	perfect
fit).

In	the	glossary,	under	Regression,	I	have	written	up	the	math	that	underpins	 these
results.

	



6.7	Adding	another	variable
	

The	r-squared	of	0.66	we	found	with	one	independent	variable	is	reasonable	in	such
circumstances,	 indicating	 that	 our	 model	 explains	 66%	 of	 the	 variability	 in	 the
response	variable.	But	we	might	 do	better	 by	 adding	 another	 variable	 to	 explain
more	of	the	variability.

The	trucking	dataset	also	provides	the	number	of	deliveries	 that	 the	 driver	 has	 to
make.	Clearly,	these	will	have	an	effect	on	the	time	taken.	Let’s	add	deliveries	to	the
regression	model.

Note	that	you’ll	need	to	cut	and	paste	so	that	the	explanatory	variables	are	adjacent
to	each	other.	It	doesn’t	matter	where	the	response	variable	 is,	but	 the	explanatory
variables	must	be	 adjacent	in	one	block.	The	new	result	is	below:



	

	

	

Now	with	deliveries

	

Note	that	the	r-squared	has	increased	to	0.903,	 so	 the	 new	model	 explains	 about
25%	more	of	the	variation	in	time.	The	improved	model	is:

	
y 	̂=	− 0 . 869	+	0 . 06	∗	Dist	+	0 . 92	∗	Del

A	 few	 things	 to	 note	 here:	 the	 values	 of	 the	 coefficients	 have	 changed.	 This	 is
because	the	interpretation	of	the	coefficients	in	a	multiple	model	like	this	is	based
on	only	one	variable	changing .	For	example,	 the	coefficient	of	distance	is	0.92,
almost	one	hour	for	each	delivery	assuming	that	the	distance	doesn’t	also	change.
We	should	interpret	the	coefficients	under	the	assumption	that	all	the	other	variables
are	‘held	steady’,	apart	from	the	coefficient	of	interest.

	



6.8	Dummy	variables
	

Above,	 we	 saw	 how	 adding	 a	 further	 variable	 has	 dramatically	 improve	 the
accuracy	of	a	model.	A	dummy	variable	is	an	additional	 variable	but	one	 that	we
construct	ourselves	as	a	 result	of	dividing	 data	 into	 two	 classes,	 for	 example	 by
gender.	Dummy	variables	are



	
powerful	 because	 they	 allow	 us	 to	 measure	 the	 effect	 of	 a	 binary
variable,	 known	 as	 a	 dummy	 or	 sometimes	 indicator	 variable.	 A
dummy	variable	takes	on	a	value	of	zero	or	one,	and	thus	partitions	the
data	into	two	classes.	One	class	is	coded	with	a	zero,	and	is	called	the
reference	 group .	 The	 other	 classes	 are	 coded	 with	 a	 one	 and
successive	 numbers.

There	may	 be	more	 than	 two	 groups,	 but	 there	will	 always	 be	 one
reference	 group.	 W e	are	 generating	 an	 extra	 variable,	 so	 the
regression	equation	looks	like	 this:

	
y 	̂=	b 0	+	b 1 x 1	+	b 2 x 2

	

In	 the	 case	 of	 observations	 which	 have	 been	 coded	 x1=0	 (the
reference	 group),	 then	 the	 b1	 term	 will	 disappear	 because	 it	 is
multiplied	by	zero.	The	b2	term	remains.	For	the	reference	group,	the
estimated	regression	equation	then	simplifies	to

	
y ˆ ref	erence	=	b 0	+	b 2 x 2

	

while	for	the	non-reference	group,	it	is

	
y ˆ nonref	erence	=	b 0	+	b 1 x 1	+	b 2 x 2

	

The	size	of	b1x1	represents	 the	difference	between	the	 average	size
of	the	reference	level	and	whatever	group	is	the	non-reference	group.
Let’s	work	through	an	example.	Creating	a	dummy	variable⁵

The	dataset	[‘gender’]	(https://dl.dropboxusercontent.com/u/23281950/gender.xlsx)
contains	records	of	salaries	paid,	years	of	experience	and	gender.

We	might	want	to	 know	whether	men	 and	women	 receive	 the	 same
salary	given	the	same	years	of	experience.	Load	the	data,	then	 run	 a
linear	 regression	 of	 Salary	 on	 Years	 of	 Experience,	 using	 years	 of
experience	as	the	sole	explanatory	variable.	The	result	is	below:

	

⁵https://www.youtube.com/watch?v=TBJsEb2UCPs

https://www.youtube.com/watch?v=TBJsEb2UCPs
https://www.youtube.com/watch?v=TBJsEb2UCPs


	

	

The	gender	regression

	

The	 interpretation	 is	 that	 the	 intercept	of	$30949	 is	 the	 aver-	 age	 starting	 salary,
with	years	of	experience	zero.	The	coefficient

$4076	means	that	every	additional	year	of	experience	increases	the	worker’s	salary
by	this	amount.

The	r-squared	is	0.83,	so	the	simple	one-variable	model	 explains	about	83%	of	the
variation	 in	 the	 dependent	 variable,	 salary.	 We	 have	 one	 more	 variable	 in	 the
dataset,	gender.	Add	this	as	a	dummy	variable	and	run	the	regression	again.	Note	that
you	will	have	to	cut	and	paste	 the	variables	so	 that	 the	explanatory	variables	 are
adjacent.



	

	

With	the	gender	dummy	added

	

The	r-squared	has	increased	to	nearly	1,	so	our	new	model	with	the	inclusion
of	gender	is	very	accurate.	The	important	new	variable	is	gender,	coded	as
female	=	0	and	male	=	1.	Nothing	sexist	about	this,	we	could	equally	well
have	reversed	the	coding.	If	you	are	female,	then	the	model	for	your	salary
is:	23607.5	+	4076*Years

if	you	are	male,	then	the	model	for	your	salary	is	23607.5	+
114683.67	+	 4076Years

Each	extra	year	of	experience	provides	the	same	salary	increase,	but	on	average
males	receive	$14683.67	more	earnings.

Here	is	another	example,	using	the	maintenance	dataset.	Dummy	variable⁶

	
Another	dummy	variable	example	and	a	cautionary
tale

	

The	mariokart	dataset	came	from	[OpenIntro	Statistics]	(www.openintro.org)	a
wonderful	free	textbook	for	entry	level	students.	The	dataset

	

⁶https://www.youtube.com/watch?v=Yv681upodDI

https://www.youtube.com/watch?v=Yv681upodDI
https://www.youtube.com/watch?v=Yv681upodDI
https://www.youtube.com/watch?v=Yv681upodDI


	
contains	 information	on	 the	price	of	Mario	Kart	 in	 ebay	 auctions.	First	 let’s	 test
whether	condition	‘new’	or	‘used’	makes	difference.	Construct	a	new	column	called
CONDUMMY,	coded	new	=	1	and	used	=	0.	Now	run	a	regression	with	your	new
dummy	variable	against	total	price.	The	output	is	below

	

The	condition	dummy	results

	

This	result	is	tremendously	bad.	The	p	value	is	0.129,	meaning	that	condition	is	not	a
statistically	 significant	 predictor	 of	 price.	 Surely	 the	 condition	must	 have	 some
significant	 effect?	Wait—we	 forgot	 to	 do	 some	 visualization.	 To	 the	 right	 is	 a
histogram	of	the	total	price	variable.

Looks	like	we	might	have	a	problem	with	outliers…some	of	 the	 observations	 are
much	larger	than	the	others.	Take	another	look	with	a	barchart	at	the	higher	prices.



	

	

	

marioKart	total	prices

	

We	can	identify	these	outliers	using	z	scores	(see	the	Glossary).	Or	we	could	just	sort
them	by	size	and	then	make

a	value	judgement	based	on	the	description.	That’s	what	I	have	done	in	this	YouTube.
Outlier	removal	and	 regres-	sion⁷

The	total	prices	as	a	bar	chart

It	 seems	 that	 two	 of	 the	 items	 listed	 were	 for	 grouped	 items	 which	 were	 quite
different	from	the	others.	There	is	therefore	a	legitimate	 reason	for	excluding	them.
Below	are	the	new	results:

	

⁷https://www.youtube.com/watch?v=ivLGteHuu3Q

https://www.youtube.com/watch?v=ivLGteHuu3Q
https://www.youtube.com/watch?v=ivLGteHuu3Q
https://www.youtube.com/watch?v=ivLGteHuu3Q
https://www.youtube.com/watch?v=ivLGteHuu3Q


	

	

	

Corrected	marioKart	 output

	

The	estimated	regression	equation	 is

	
y 	̂=	42 . 87	+	10 . 89	∗	CONDUMMY

The	condition	dummy	was	coded	as	new	=	1,	used	=	0.	If	a	mariokart	is	used,	then	its
average	price	is	42.87,	if	it	new	then	the	average	price	is	42.87	+	10.89.	The	average
difference	in	price	between	old	and	new	is	nearly	$11.	Makes	sense.

Take-home:	check	your	data	before	doing	the	regression.

	



6.9	Several	dummy	variables
	

The	gender	and	the	marioKart	examples	above	contained	just	one	dummy	variable.
But	 it	 is	 possible	 to	 have	more.	 For	 example,	 your	 sales	 territory	 contains	 four
distinct	regions.	If	you	make	one	of	the	four	the	reference	level,	and	then	divide	up
the	data	with	dummies



	
for	 the	 remaining	 three	 regions,	 you	 can	 compare	 performance	 in	 each	 of	 the
regions	both	to	each	other	and	to	the	reference	level.

The	dataset	maintenance	contains	two	variables	which	you	can	convert	to	dummies,
following	this	YouTube.

Maintenance	Regression⁸

	

https://www.youtube.com/watch?v=xWdcT7u9YFE&amp;feature=em-upload_owner


6.10	Curvilinearity
	

So	far,	we	have	assumed	that	the	relationship	between	the	depen-	dent	variable	and
the	independent	variable	was	linear.	 However,	in	many	situations	this	assumption
does	 not	 hold.	 The	 plot	 below	 shows	ethanol	production	 in	North	America	 over
time.

	

North	American	ethanol	production.	Source:	BP

	

The	source	of	the	data	is	BP.	It	is	clear	that	production	of	ethanol	is	increasing	yearly
but	in	a	non-linear	fashion.	Just	drawing	a	straight	line	through	the	data	will	miss	the
increasing	rate	of	 production.	We	can	capture	the	increasing	rate	with	a	quadratic
term,	which	 is	 simply	 the	 time	 element	 squared.	 I	 have	 created	 a	 new	 variable
which	indexes	the	years,	which	I	have	called	t,	and	a	further	variable

	

⁸https://www.youtube.com/watch?v=xWdcT7u9YFE&feature=em-upload_owner

https://www.youtube.com/watch?v=xWdcT7u9YFE&amp;feature=em-upload_owner


	
which	is	t	squared.

urvilinear	regression	YouTube⁹
	

The	dataset	with	an	index	for	time.	Source:	BP

	

A	regression	of	t	against	output	has	an	r-squared	value	of	0.797.	Inclusion	of	the	t
squared	term	increases	the	r-squared	markedly	to

0.98.	The	regression	output	is	below.
	

Regression	output	with	the	quadratic	term

	

We	would	write	the	estimated	regression	equation	as

	
y 	̂=	4504	−	1301 t	+	194 . 9 t 2

Notice	that	for	early	smaller	values	of	t,	the	effect	of	the	quadratic
	

⁹https://www.youtube.com/watch?v=jgjWSpyPBqg

https://www.youtube.com/watch?v=jgjWSpyPBqg
https://www.youtube.com/watch?v=jgjWSpyPBqg


	
term	is	negligible.	As	t	gets	larger	then	the	quadratic	swamps	the	linear	t	term.

Making	a	prediction .	Let’s	predict	ethanol	production	after	5	years.	Then

	
y 	̂=	4505	−	1301	∗	5	+	194 . 9	∗	25	=	2872 . 5

The	plot	below	shows	predicted	against	observed	values.	While	 the	 fit	 is	 clearly
imperfect,	it	is	certainly	better	than	a	straight	line.

	

Predicted	against	observed	ethanol	production.

	

	



6.11	Interactions
	

Increasing	the	price	of	a	good	usually	reduces	sales	volume	(al-	 though	of	 course
profit	might	not	change	if	the	price	increases	sufficiently	to	offset	the	loss	of	sales.
Advertising	also	usually	increases	sales,	otherwise	why	would	we	do	it?

What	 about	 the	 joint	 effect	 of	 the	 two	 variables?	 How	 about	 reducing	the	price
and	increasing	 the	advertising?	The	 joint	effect	 is	 called	 an	 interaction	 and	 can
easily	be	included	in	the	explanatory	variables	as	an	 extra	 term.	The	output	 below
is	the	result	of



	
regressing	sales	on	Price	and	Ads	for	a	luxury	toiletries	company.	The	estimated
regression	model	 is

	
y 	̂=	864	−	281 P	+	4 . 48 Ads

	

Regression	output	for	just	price	and	ads

	

So	far	so	good.	The	signs	of	the	coefficients	are	as	we	would	expect	from	economic
theory.	Sales	go	down	as	price	rises	(negative	sign	on	the	coefficient).	Sales	go	up
with	advertising	(positive	sign	 on	the	coefficient).	Caution:	do	not	pay	too	much
attention	 to	 the	 absolute	 size	 of	 the	 coefficients.	The	 fact	 that	 price	 has	 a	 much
larger	coefficient	than	advertising	is	irrelevant.	The	coefficient	is	also	related	to	the
choice	of	units	used.

Now	create	another	term	which	is	price	multiplied	by	ads.	Call	this	 term	PAD.	The
first	few	lines	of	the	dataset	are	below.



	

	

First	few	lines	with	the	new	interaction	variable

	

Now	do	the	regression	again,	including	the	new	term.
	

Inclusion	of	the	interaction	term

	

The	 new	 term	 is	 statistically	 significant	 and	 the	 r-squared	 has	 increased	 to
0.978109.	The	new	model	does	a	better	job	of	explaining	the	variability.	How	come
price	is	now	positive	and	the	interaction	term	 is	 negative?	We	 have	 to	 look	 at	 the
results	 as	 a	 whole	 remembering	that	the	signs	work	when	all	the	other	terms	are
‘held	constant’.	The	explanation:	as	the	price	increases,	the	effect	of	advertising	on
sales	is	LESS.	You	might	want	to	lower	the	price	 and	see	if	the	increased	volume
compensates.



	
Another		interaction	example

	

Here’s	another	example,	this	one	relating	to	gender	and	pay.	 The	dataset	is	called
‘paygender’	 and	 contains	 information	 on	 the	 gen-	 der	 of	 the	 employee,	 his/her
review	 score	 (performance),	 years	 of	 experience	 and	 pay	 increase.	 We	 want	 to
know:

	

•		Is	there	a	gender	bias	in	awarding	salary	increases?

•		In	there	a	gender	bias	in	awarding	salary	increases	based	on	the	interaction
between	gender	and	review	score?

	

First,	let’s	regress	salary	increases	on	the	dummy	variable	of	gender	and	also	Review.
My	results	are	below	(I	have	created	a	new	variable	which	I	have	called	G.	It	is	just
the	gender	variable	coded	with	male

=	0	and	female	=	1.
	

G	dummy	and	Review

	

Nothing	very	surprising	here:	women	get	paid	on	average	233.286	 less	than	men.
And—holding	gender	steady–each	point	 increase	 in	 Review	gives	 an	 increase	 in
salary	of	2.24689.

How	 do	 I	 know	 that	women	 are	 paid	 less	 than	 men?	 The	 estimated	 regression
equation	is:



	

	

	

y 	̂=	204 . 5061 − 233 . 286 ∗ ( x	=	1 ifF )	−	233 . 286	∗	( x	=	0ifM )	+	2 . 24689	∗	Review
	

Remember	how	we	coded	men	and	women?	The	x	=	0	if	M	term	disappears,	so	we
are	left	with	this	equation	for	men:

	
y 	̂=	204 . 5061	+	2 . 24689	∗	Review

and	this	one	for	women	(I’ve	done	the	subtraction)	to	give

	
y 	̂=	− 28 . 779	+	2 . 24689	∗	Review

Conclusion:	there	is	a	gender	bias	against	women.	For	the	same	Review
standard,	on	average	women	are	paid	233.286	less	than	men.

How	 about	 the	 second	 question	 —	 possibility	 that	 the	 gender	 bias
increases	 with	 Review	 level?	 We	can	 test	 this	 with	 an	 interaction
variable.	Multiply	together	your	gender	dummy	and	the	Review	score
to	create	a	new	variable	called	Interact.	Then	do	the	 regression	 again
with	 salary	 regressed	 against	 G,	 Review	 and	 Interact.	 My	 output	 is
below.



	

	

Interaction	output

	

For	men,	the	equation	is	Salary	=	59.94472	+	4.848995	(because	the	G	and	Interact
terms	go	to	zero	because	we	coded	Male=0.	So	for	every	extra	increase	in	Review,	a
man’s	salary	increases	by	4.848995.

For	women,	the	equation	is	Salary	=	59.94472	-29.714	-	1*(4.848995-	4.05468)	so
for	every	one	 increase	 in	Review,	a	women’s	salary	 increases	by	only	 4.848995-
4.05468=0.79.	 Notice	 that	 the	 adjusted	 r-	 squared	 for	 this	model	 is	 higher	 (it	 is
0.927339	compared	to	0.810309)	 than	the	model	with	just	G	and	Review.	So	 the
interaction	is	both	statistically	significant,	p	value	0.000316)	and	has	the	meaning
that	for	women,	improving	the	Review	score	doesn’t	increase	the	salary	as	much	as
for	men.

Conclusion	The	analysis	showed	that	women	are	being	treated	unfairly.	There	is	a
gender	bias	against	them	in	average	salaries	for	 the	same	performance	review;	and
each	 increase	 in	 review	points	 earn	 them	considerably	 less	 in	salary	 than	for	 the
equivalent	male.	Caution:	 this	conclusion	 is	based	solely	on	 the	 limited	evidence
provided	by	this	small	dataset.



	



6.12	The	multicollinearity	problem
	

Multicollinearity	refers	to	way	in	which	two	or	more	variables	 ‘explain’	 the	same
aspect	of	 the	dependent	variable.	For	example,	 let’s	say	that	we	had	 a	 regression
model	which	was	explaining	someone’s	salary.	Employees	tend	to	get	paid	more	as
they	get	older	and	also	as	their	years	of	experience	increases.	So	if	we	had	both	age
and	 years	 of	 experience	 in	 the	 list	 of	 independent	 variables	 we	 would	 almost
certainly	suffer	from	multicollinearity.

Multicollinearity	can	lead	to	some	frustrating	and	perplexing	 re-	sults.	You	run	a
regression.	One	of	the	variables	has	a	p	value	larger	than	0.05,	so	you	decide	to	take
it	out.	You	run	the	regression	again	and—-the	sign	and/or	 significance	of	another
variables	 changes.	 This	 happens	 because	 the	 two	 variables	 were	 explaining	 the
same	aspect	of	the	dependent	variable	jointly.

How	to	solve	this	problem:	check	the	correlation	of	the	independent	variables	first,
before	putting	them	into	your	model.	Chapter	14	has	a	section	on	correlation.	If	you
find	that	the	correlation	of	any	two	variables	is	higher	than	0.7,	be	suspicious.	These
two	may	bring	your	some	grief!

	



6.13	How	to	pick	the	best	model
	

You	will	be	trying	out	different	formulations,	adding	and	removing	variables	to	try
to	capture	as	much	explanatory	power	as	you	can.	How	you	do	decide	if	one	model
is	better	than	another?	There	are	two	approaches:

	
•	 	Look	only	at	the	adjusted	r-squared	value,	even	if	 your	model	 contains
variables	with	 a	 p	 value	 larger	 than	 0.05.	 If	 the	 adjusted	r-squared	value
goes	up,	leave	such	variables	in.

•		Prune	your	model	so	that	it	contains	only	variables	with	a	p	value	<=	0.05.
You	still	want	as	high	an	adjusted	r-squared	as



	
you	can	get,	but	you	also	want	all	your	explanatory	variables	to	be
statistically	significant.

	
I	take	the	latter	approach.	You	usually	have	fewer	variables	but	all	of	 them	have	a
reason	(statistical	significance)	for	being	in	your	model	and	you	can	interpret	their
meaning	intelligently.	A	parsimonious	model	is	better	 than	a	complex	model	 that
fits	your	data	very	well.	Simple	and	robust	is	good.	The	dataset	that	you	used	to	fit
your	model	is	only	a	sample	from	a	population.	An	overly	complex	model	may	not
work	well	when	presented	with	a	different	sample	from	the	population.

	



6.14	The	key	points
	

•	 	Think	 through	your	model	before	you	start	 including	 vari-	ables.	What
variables	do	you	think	will	have	an	effect	on	the	dependent	variable	and	in
which	direction	(plus	or	minus).	It	is	tempting	to	just	put	in	everything	and
hope	 for	 the	 best	 but	 this	 rarely	 works.	 Some	 software	 is	 able	 to	 do
stepwise	regression,	pulling	out	insignificant	variables	for	you,	 but	Excel
is	not	one	of	them.

•	 	Keep	your	model	as	simple	as	possible.	Complicated	models	 rarely	work
well.

•	 	Visualise	your	data	first,	even	with	a	simple	scatter	plot	as	we	have	done
throughout	this	chapter.

•		Check	whether	you	have	all	the	variables	that	you	might	need.	If	you	were
trying	 to	predict	whether	a	shop	selling	 expensive	 jewellery	would	make
sufficient	sales,	you	might	want	to	know	the	average	income	of	residents.	If
you	don’t	have	it—get	it.	There	is	a	huge	amount	of	data	lying	about	which
you	can	obtain	 either	 free	 or	 quite	 cheaply.	 I’ve	included	a	very	brief	list
of	URLs	in	Chapter	12.



	



6.15	Worked	examples
	

1.	The	estimated	regression	equation	for	a	model	with	two	independent
variables	and	10	observations	is	as	follows:

	

	
y 	̂=	29	+	0 . 59 x 1	+	4 . 9 x 2

	

What	are	the	interpretations	of	b1	and	b2	in	this	estimated	regres-	sion	 equation?

Answer:	the	dependent	variable	changes	by	on	average	0.59	when	x1	change	by	one
unit,	holding	x2	constant.	Similarly	for	b2.

Predict	the	value	of	the	independent	variable	when	x1	is	175	and	x2	is290	:

	
y 	̂=	29	+	0 . 59(175)	+	4 . 9(290)	=	1553 . 25



	

	

	

	



7.		Checking	your	 regression	model
It	isn’t	difficult	to	build	a	regression	model	as	the	previous	chapter	has	shown.	But
that	is	part	of	the	problem:	everybody	does	it.	But	not	everybody	takes	the	trouble
to	check	the	results.	Checking	the	results	is	an	important	step	for	two	reasons:	first,	to
make	sure	your	calculations	and	predictions	are	correct;	and	secondly	to	show	 third
parties	 that	your	work	 is	 solid.	 In	 this	 chapter	we’ll	work	on	doing	 just	 that.	 To
decide	whether	the	models	we	have	been	working	on	are	any	good	we	need	to	look
at	two	areas:

	
•		Is	your	model	statistically	significant?

•		Are	the	assumptions	behind	the	least	squares	method	met?	In	particular,
linearity	and	residual	distribution.

	
The	first	area	is	easier	to	work	through	than	the	second,	which	is	probably	why	one
doesn’t	always	see	residual	analysis	discussed	when	results	are	presented.	This	is	a
shame	because	there	is	a	great	deal	to	be	learned	from	picking	through	residuals.	Your
analysis	will	be	greatly	improved	by	a	close	attention	to	this	area.

Below	we’ll	work	through	statistical	significance	and	then	test	the	assumptions.

	



7.1	Statistical	significance
	

The	regression	trend	line	displays	a	rate	of	change	between	 two	variables.	The	line
slopes	upwards	when	the	dependent	 variable	increases	for	a	one-unit	increase	in	the

independent	variable	(
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positive	 relationship)	 and	 vice-versa	 (negative	 relationship).	 What	 we	 want	 to
know	is	 this:	did	 that	slope	upwards	or	downwards	 occur	 by	 chance;	 if	we	 took
another	sample	from	the	population	would	we	achieve	a	similar	result?	Key	point:
we	are	 usually	working	with	a	sample	drawn	from	a	population.	The	sample	in	 the
trucking	example	was	the	firm’s	log	book.

The	null	hypothesis	is	that	there	is	no	slope;	with	the	alternative	that	there	is	in	fact	a
slope.	The	hypotheses	(see	the	Glossary	for	help	on	hypotheses)	to	test	whether	there
is	a	statistically	significant	slope	are:

The	null:

	
H o : β =	0

	

and	the	 alternative:

	

H a : β̸ =	 0

where

	

β

	

is	the	symbol	for	the	coefficients	of	the	population	parameter	 of	 the	 independent
variable	of	interest.	In	words,	the	hypothesis	is	testing	whether	beta	is	zero	or	not.	If
it	 is	 zero,	 then	 we	 are	 ‘flatlining’	 and	 there	 is	 no	 point	 in	 continuing	 with	 the
analysis.	If	however	we	can	reject	the	null,	then	we	accept	the	alternative	which	is
that	beta	is	not	zero.	It	might	be	negative	or	positive,	that	doesn’t	matter:	what	matters
is	whether	 it	 is	 zero	 or	 not.	 Note	 that	 we	 use	 a	 Greek	 letter	when	discussing	a
population	parameter	which	will	probably	never	be	accurately	known.	We	use	 the
Latin	 letter	 ‘b’	 when	 we	 have	 estimated	 it	 using	 a	 sample	 drawn	 from	 the
population.



	
Excel	does	all	the	testing	of	statistical	significance	for	us	in	two	ways.

First,	it	tests	the	individual	variables	and	provides	a	p	value.	Below	is	the	result	from
the	first	trucking	regression	we	did.	Note	that	the	p	value	for	distance	is	0.004.	It	is
customary	to	use	a	cut-off	of	0.05.	The	meaning	of	this	result	is	that,	following	the
rejection	rule ,	we	reject	the	null	if	the	p	value	is	smaller	than	0.05.	Because	0.004	is
smaller	than	0.05,	we	reject	the	null	we	 therefore	 conclude	 that	 there	 is	 in	 fact	a
statistically	significant	slope.	In	summary,	we	tested	the	hypothesis	 that	 the	 slope
was	zero,	and	rejected	it.	Therefore	we	accept	the	alternative	which	is	that	there	is	a
slope	of	some	sort.

	

The	trucking	regression	output

	

This	test	 tells	us	that	 there	is	a	statistically	significant	slope.	It	doesn’t	tell	us	the
sign	of	the	slope	(up	or	down)	or	its	magnitude.	But	the	fact	that	there	is	a	significant
slope	is	important	information.	It	is	worth	carrying	on	with	the	analysis	because	the
variables	actually	mean	something.	By	the	way,	ignore	the	p	value	for	the	intercept.
It	usually	has	no	substantive	meaning.

The	second	way	that	Excel	tests	the	validity	of	the	model	is	to	test	whether	the	model
as	a	whole	is	significant.	The	test	is	called	the	F	test	after	the	statistician	RA	Fisher.
For	the	trucking	example,	look	under	significance	F.	The	result	is	a	p	value,	in	this
case	the	same



	
p	value	for	the	variable	DISTANCE.	We	have	only	one	explanatory	variable	and	so
the	p	value	will	be	the	same.	We	hope	that	the	p	value	is	smaller	than	0.05,	which
enables	us	to	conclude	that	at	least	one	of	the	slopes	is	non-zero.

The	 section	 above	 examined	 the	 first	 of	 the	 tests,	 which	 was	 for	 the	 statistical
significance	of	the	model.	Now	we	move	on	to	the	second	area.

	



7.2	The	standard	error	of	the	model
	

The	standard	error	in	Excel	is	found	just	under	the	adjusted	r-	squared	output.	It	is
the	estimated	standard	deviation	of	the	amount	of	the	dependent	variable	which	is	not
explainable	by	the	model.	In	other	words,	it	is	the	standard	deviation	of	the	residuals.

Under	the	assumption	that	the	model	is	correct,	it	is	the	lower	bound	on	the	standard
deviation	of	any	of	the	model’s	forecast	errors.	The	figure	below	shows	the	output	of
regression	estimating	risk	of	a	stroke	(multiplied	by	100)	against	blood	pressure	and
age,	with	a	dummy	variable	for	smoking	or	not.



	

	

Excel	output	for	stroke	likelihood

	

The	standard	error	is	6	(rounded	up).	For	a	normally-distributed	variable,	95%	of
the	 observations	 will	 be	 within	 two	 standard	 deviations	 of	 the	 mean.	 For	 our
purposes	that	means	that	2	x	6	=	12	should	be	added	or	subtracted	to	the	predicted
value	to	find	a	confidence	interval	for	predictions.	The	estimated	regression	equation
from	the	stroke	model	above	is:

	

	

y 	̂=	− 91	+	1 . 08 Age	+	0 . 25	Pr	essure	+	8 . 74 Smokedummy

	

An	imaginary	person	who	smokes,	is	aged	68	and	has	a	 blood	pressure	of	175	will
have	a	risk	of	34	(all	figures	rounded).	We	can	be	95%	confident	that	this	estimate
will	fall	somewhere	between	34	-	12	and	34	+	12	or	22	to	46.	These	are	rather	wide
confidence	intervals	and	so	we	might	want	to	work	at	improving	the	model	by	for
example	increasing	the	sample	size	or	adding	more	explanatory	variables.



	



7.3	Testing	the	least	squares
assumptions

	

There	are	two	key	assumptions	that	the	least	squares	method	relies	on	which	we	need
to	check.	After	checking	we’ll	work	through	ways	of	retrieving	the	situation	should
the	assumptions	be	violated.	The	assumptions	are:

	
•	 	The	relationship	between	the	dependent	and	the	independent	variables	is
linear.	Fortunately	this	is	easy	to	check	and	also	to	fix	if	it	isn’t	satisfied.

•	 	The	 residuals	have	a	non-constant	variance.	 (You’ll	 some-	 times	see	in
other	statistics	textbooks	other	stricter	require-	ments,	such	as	the	residuals
being	normally	distributed	and	with	a	mean	of	zero.	For	most	purposes	just
checking	 for	 non-constant	 variance	 is	 enough).	 What	 does	non-constant
variance	 mean?	 We’ll	 work	 through	 this	 by	 defining	 a	 resid-	 ual	 and
identifying	whether	or	not	the	assumption	has	been	met.	And	finally	what	to
do	about	it.	But	first,	checking	for	linearity.

	

Checking	for	 linearity
	

The	relationship	between	the	dependent	variable	and	the	indepen-	 dent	variable	is
assumed	to	be	linear.	This	is	important	because	the	model	gives	us	a	rate	of	change:
the	coefficient	shows	the	change	in	the	dependent	variable	for	a	one-unit	change	in
the	independent	variable.	If	the	relationship	is	non-linear,	that	coefficient	will	 not
be	valid	in	some	portions	of	the	range	of	the	variables.

We	want	to	see	a	straight	line	(either	up	or	down)	on	a	scatter	plot.	Put	the	dependent
variable	 on	 the	 vertical	 y	 axis,	 and	 one	 of	 the	 independent	 variables	 on	 the
horizontal	 x	 axis.	 If	 you	 include	 the	 trend	line,	you	can	observe	how	closely	 the
observed	values	match	the	predicted.



	
We	can	also	check	for	linearity	by	plotting	the	predicted	values	and	 the	observed
values.	The	plot	below	does	this	for	risk	of	stroke:

	

Predicted	against	observed	risk

	

This	is	a	reasonable	result,	indicating	that	the	linearity	condition	is	met.	Most	of	the
points	are	in	a	straight	line,	although	I	would	 be	 concerned	 about	 the	 lower	 risk
levels,	especially	around	risk	=	20.	There	appears	to	be	considerable	variance	at	this
point.

	



7.4	Checking	the	residuals
	

A	residual	is	the	difference	between	the	observed	value	of	y	for	any	given	x	value,
and	the	predicted	value	of	y	for	that	same	x	value.	It	is	therefore	a	prediction	error,
and	is	given	the	notation	e	for	the	Greek	letter	‘epsilon’.	It	is	the	vertical	distance
between	the	actual	and	predicted	values	of	the	dependent	variable	for	the	same	value
of	the	independent	variable.	We	discussed	this	in	the	previous	chapter	 in	connection
with	the	least	squares	method,	where	we	wrote	the	estimation	equation:

	
y 	̂= b 0	+	b 1 x



	

The	hat	on	y,	the	dependent	variable,	indicates	that	it	is	an	estimate	of	the	dependent
variable.	We	know	that	the	estimate	cannot	be	correct	unless	all	the	predicted	values
and	the	observed	values	match	up	exactly.	If	they	don’t,	then	there	are	residuals.	If	we
call	the	errors	ε	(epsilon)	which	is	the	Greek	letter	matching	our	letter	e,	then	we	can
rewrite	the	regression	equation	as:

	
y	=	β o	+	β 1x	+	ε

	

The	errors	have	now	been	absorbed	into	epsilon	and	so	we	can	remove	the	hat	from
y.	It	is	the	behavior	of	epsilon	that	is	of	interest,	 because	the	least-squares	method
rests	on	the	assumption	that	the	 errors	 absorbed	 into	 epsilon	 have	 a	 non-constant
variance.	 This	means	that	there	no	relationship	between	the	size	of	the	error	term	and
the	size	of	the	independent	variable.	Therefore,	if	we	plotted	the	errors	against	the
independent	variables,	we	should	see	no	clear	pattern.	How	to	do	 this	 is	described
below.

	



7.5	Constructing	a	standardized
residuals	plot

	

Excel	provides	what	is	calls	standard	residuals	as	part	of	its	regres-	sion	output,	and
we	will	use	these.	Note	however	that	these	are	not	‘true’	standardized	residuals,	but
they	are	probably	close	enough.	Make	sure	you	check	the	Standardized	Residuals
box	when	setting	up	your	regression.



	

	

Check	the	standardized	residuals	box

	

We	want	 to	plot	 the	standard	residuals	 against	 the	 predicted	 value	 yhat.	We	will
create	a	new	column	 to	 the	 left	 of	 the	 column	Standard	 Residuals,	 and	 copy	 the
column	of	predicted	 times	 into	 that	 new	 column.	 Then	 create	 a	 scatter	 plot	 of
predicted	time	and	standard	 residuals.	You	should	 end	 up	with	 the	 image	 below.
Standardized	residual	plot¹

	

¹https://www.youtube.com/watch?v=1wuyZfB39p4

https://www.youtube.com/watch?v=1wuyZfB39p4
https://www.youtube.com/watch?v=1wuyZfB39p4
https://www.youtube.com/watch?v=1wuyZfB39p4


	

	

	

Standard	residuals

	

The	Y	axis	indicates	the	number	of	standard	deviations	that	each	residual	is	away
from	the	mean,	plotted	against	the	predicted	values	on	the	horizontal	axis.	None	of
the	residuals	are	more	that	2	standard	deviations	away	from	the	mean	of	zero,	so	the
results	are	generally	satisfactory,	although	there	is	one	observation	in	excess	of	1.5.
We	still	 have	 a	 worrying	 fan	 shape	 which	 would	 seem	 to	 indicate	 non-constant
variance:	we	can	observe	a	pattern.

Let’s	run	the	regression	again,	but	now	including	 the	 second	 vari-	 able,	which	 is
deliveries.	The	residuals	plot	is	obtained	in	the	same	way,	and	here	is	the	result.



	

	

Standardized	residuals	with	two	variables

	

The	fan	problem	seems	to	have	improved	a	little.	The	r-squared	of	 the	model	with
two	variables	was	higher,	meaning	that	the	residuals	were	smaller	 (because	 there	 is
less	unexplained	error).

	



7.6	Correcting	when	an	assumption	is	violated
	

Above,	we	examined	possible	violations	of	two	of	the	assumptions	underlying	linear
regression:	linearity	and	non-constant	variance.	Now	let’s	look	at	what	to	do	when
these	 assumptions	 are	 found	 to	 have	been	violated.	First	some	good	news:	 linear
regression	is	quite	robust	to	such	violations,	and	even	so	they	are	quite	easy	to	correct
for.	We’ll	 deal	 with	 the	 problems	 in	 the	 same	 order:	 linearity	 and	 non-constant
variance.

	



7.7	Lack	of	linearity
	

The	 first	check	 is	 to	 look	at	 a	 scatter	 plot	 of	 the	 dependent	 variable	 against	 the
independent	variable.	The	plot	below	shows	 volume	 of	 sales	 and	 length	 of	 time
employed,	together	with	a	trend	line.



	

	

A	curvilinear	relationship

	

There	are	several	different	ways	in	which	a	linear	relationship	can	be	achieved	so
that	 we	 can	 use	 the	 least	 squares	 method.	 A	 common	 method	 is	 to	 include	 a
quadratic	term.	This	means	adding	 the	squared	value	of	the	independent	variable	to
the	list	of	independent	 variables.	This	 is	easily	done	by	creating	another	column,
consisting	of	squared	values	of	the	first	variable.

	

A	new	column	of	the	independent	variable	squared

	

To	do	this,	create	a	 new	column	and	 then	 label	 it.	Click	on	 the	 first	 value	 in	 the
variable	which	you	want	to	square,	and	add	ˆ2.	Enter.	 Then	 drag	 downwards.	 The
plot	below	shows	the	predicted	 and	observed	sales.	The	model	is	clearly	superior.



	

	

Predicted	and	observed	after	inclusion	of	quadratic	term

	

If	the	dependent	variable	has	a	large	number	of	low	values,	and	is	heavily	skewed	to
the	right,	then	a	good	solution	is	to	transform	the	dependent	variable	into	its	natural
logarithm.

	



7.8	What	else	could	possibly	go	wrong?
	

Regression	is	a	very	commonly	used	analytical	tool	and	you	are	most	likely	either
going	to	use	it	yourself	or	examine	the	work	of	others	who	have	used	regression.
Below	 is	 a	 list	 of	 common	 mistakes	 to	 watch	 for.	 And	 if	 I	 have	 made	 them
somewhere	in	this	book,	I’m	sure	you’ll	be	the	first	to	let	me	know!

	



7.9	Linearity	condition
	

Regression	assumes	that	the	relationship	between	the	variables	is	 linear:	 the	 trend
line	that	the	software	tries	to	find	to	minimize	the	squared	difference	between	the
observed	and	predicted	values	is	straight.	So	if	you	try	to	run	a	regression	on	non-
linear	data,	you’ll	get	a	result	but	it	will	be	meaningless.



	
Action :	always	visualize	the	data	before	doing	any	analysis.	If	you	see	that	the	data
is	non-linear,	you	may	be	able	to	transform	it	using	 the	 techniques	described	 in	 the
previous	chapter.	As	an	example:	 the	curvilinear	example	which	was	transformed
by	including	a	quadratic	term	as	an	explanatory	variable.

	



7.10	Correlation	and	causation
	

Regression	is	a	special	case	of	correlation,	and	as	we	all	know	correlation	doesn’t
mean	causation	(see	the	Glossary).	In	regression,	no	matter	how	good	the	model,	all
that	 we	 have	 been	 able	 to	 show	 is	 that	 a	 change	 in	 an	 explanatory	 variable	 is
associated	by	a	change	in	the	dependent	variable.	For	example,	you	record	the	hours
you	put	into	studying	and	your	grades.	Surprise!	More	studying	=	better	grades?	Or
perhaps	not….could	have	been	a	better	 instructor.	We	cannot	say	that	one	caused
the	other.	So	when	writing	up	results	or	interpreting	those	of	others,	be	very	careful
not	to	claim	more	than	you	are	able	to.

There	 is	 a	 related	 problem	 which	 is	 ‘reverse	 causation’.	 You	 study	 more,	 your
grades	go	up.	Tempting	to	think	that	one	possibly	caused	the	other.	But	perhaps	it	is
the	other	way	round?	Your	grades	were	poor,	you	studied	harder?	Or	you	had	good
grades	and	then	led	you	into	taking	the	course	seriously.

Action :	 try	 not	 to	 include	 explanatory	 variables	 which	 are	 affected	 by	 the
dependent	variable.	You	could	also	try	to	‘lag’	one	variable.	Cut	and	paste	the	hours
of	studying	variable	so	that	it	is	one	time-	period	behind	the	grades	and	then	run	the
regression	again.

	



7.11	Omitted	variable	bias
	

Under	 Correlation	 in	 the	 Glossary	 I	 give	 some	 examples	 of	 lurking	 variables.
Regression,	 like	 correlation,	 is	 susceptible	 to	 the	 same	 problem.	Example:	 you
notice	that	in	hotter	weather	there	are	more



	
deaths	by	drowning.	Did	the	hotter	weather	cause	the	drownings?	Well	no,	the	extra
swimming	caused	by	the	heat	presented	more	risk	scenarios.	The	lurking	variable	is
hours	spent	swimming	rather	than	temperature.	Try	to	get	to	the	real	variable	if	you
can.

	



7.12	Multicollinearity
	

When	predicting	 the	 price	 of	 a	 house,	 square	 footage	 and	 number	 of	 rooms	are
likely	to	be	highly	correlated	because	they	are	both	ex-	plaining	the	same	thing.	This
problem	results	in	unusual	behavior	in	the	regression	model.

Action :	 correlate	 your	 explanatory	 variables	 BEFORE	 doing	 any	 regression.
Watch	out	if	you	have	a	pair	which	has	an	r	value	of

0.7	or	higher.	This	doesn’t	mean	 that	you	 shouldn’t	use	 them,	 but	 it’s	 a	red	 flag.
This	is	what	might	happen.	You	take	out	on	one	the	variables	in	a	 regression,	 the
one	that’s	left	reverses	its	sign	or	suddenly	becomes	statistically	insignificant.

If	you	do	run	the	regression	and	you	get	an	unlikely	result,	choose	the	variable	with
the	highest	t	value	(or	smallest	p	value)	and	ditch	the	other.

	



7.13	Don’t	extrapolate
	

The	coefficients	from	the	regression	are	calculated	based	on	the	data	you	provided.
If	you	try	to	predict	for	a	value	beyond	the	range	of	 that	data,	 the	 results	 will	 be
unreliable	if	not	totally	wrong.

In	 the	years	of	experience	and	salary	example	 in	Chapter	5,	 the	co-	 efficient	 for
years	of	experience	provided	the	change	in	salary	that	an	extra	year	of	experience
would	give.	Would	you	feel	comfortable	predicting	the	salary	of	someone	with	95
years	of	experience?

Action :	before	running	the	numbers,	check	that	the	inputs	are	within	the	range	for
which	you	calculated	the	model.



	

	

	

	

	



8.		Time	Series	 Introduction	and
Smoothing	Methods

A	time	series	is	a	set	of	observations	on	the	same	variable	measured	 at	consistent
intervals	of	time.	The	variable	of	interest	might	be	monthly	sales	volume,	website
hits	or	any	other	data	of	relevance	 to	 the	business.	Using	 time	series	analysis	we
can	 detect	 patterns	 and	 trends	 and–just	 possibly–make	 forecasts.	 Forecasting	 is
tricky	because	 (of	course!)	we	only	have	historical	data	 to	go	on	and	 there	 is	no
assurance	 that	 the	 same	 pattern	 will	 repeat	 itself.	 Despite	 all	 this,	 time	 series
analysis	has	developed	into	a	huge	topic,	 fortunately	with	a	large	number	of	freely
available	data-sets	to	use.	Links	to	some	of	these	data-sets	are	provided	at	the	end	of
the	data	chapter	(Chapter	3).

There	 are	 two	 basic	 approaches:	 the smoothing approach	 and	 the	 regression
method .	Both	methods	attempt	 to	 eliminate	 the	 background	 noise.	 This	 chapter
covers	smoothing	methods,	 the	following	chapter	the	regression	approach.

	



8.1	Layout	of	the	chapter
	

Here	we	will

	
1.		identify	the	four	components	that	make	up	a	time	series

2.		introduce	the	naive,	moving	average	methods	and	exponen-	tially
weighted	smoothing	methods	to	make	a	forecast

3.		discuss	ways	in	which	the	accuracy	of	the	forecasts	can	be	calculated
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8.2	Time	Series	Components
	

There	 are	 four	 potential	 components	 of	 a	 time	 series.	 One	 or	 more	 of	 the
components	 may	 co-exist.	 The	 components	 are:	 trend	 compo-	 nent;	 seasonal
component;	cyclical	component;	random	component.

	

•		trend	component :	the	overall	pattern	apparent	in	a	time	series.	The	plot
below	 shows	 French	 military	 expenditure	 as	 a	 percentage	 of	 GDP.	 The
downward	trend	is	apparent.

	
	

French	military	expenditure	as	a	percentage	of	GDP

	

•	 	seasonal	component :	sales	of	skis	or	Christmas	decorations	are	clearly
higher	in	the	winter	months,	while	ice	cream	and	suntan	cream	move	more
quickly	in	the	summer.	If	we	know	 the	 seasonal	 component,	 then	we	 can
use	 this	 information	 for	 prediction.	 The	 time	 between	 the	 peaks	 of	 a
seasonal	component	is	known	as	the	period .	Note	here	that	season	doesn’t
necessarily	mean	the	season	of	the	year.

	

The	plot	below	shows	sales	of	TV	sets	by	quarter.	Here	there	is	a	constant	upward
trend	because	more	people	are	buying	TV	 sets,	but	there	is	also	a	seasonal	effect.



	

	

TV	Sales	by	quarter

	

	

•		cyclical	component :	some	time	series	have	periods	 last-	ing	longer	than
one	 year.	Business	 cycles	 such	 as	 the	50-	 year	 Kondratieff	Wave	 are	 an
example.	These	are	almost	 impossible	to	model,	but	 that	 doesn’t	 stop	 the
hopeful	from	trying.	Kondratieff	himself	ended	up	a	victim	of	Joseph	Stalin
because	his	suggestion	that	capitalist	economies	went	in	waves	undermined
Stalin’s	view	that	capitalism	was	doomed,	and	he	was	executed	in	1938.

•		random	component :	the	random	component	is	just	that:	the	noise	or	bits
left	over	after	we	have	accounted	for	everything	else.	The	tell-tale	signs	of	a
random	 component	 are:	 a	 con-	 stant	 mean;	 no	 systematic	 pattern	 of
observations;	constant	level	of	variation.

	



8.3	Which	method	to	use?
	

In	 the	 next	 two	 chapters,	 we’ll	 work	 through	 the	 two	 basic	 ap-	 proaches:	 the
smoothing	approach	and	the	regression	 approach.	How	to	decide	which	to	use?



	
First	step	as	usual	is	 to	make	a	simple	scatter	plot	of	your	data,	with	 time	on	 the
horizontal	x	axis	and	the	variable	of	interest	on	the	vertical	y	axis.	If	the	 result	 is
something	resembling	a	straight	line,	 for	example	the	French	military	expenditure,
then	use	a	smoothing	approach.	If	there	is	evidence	of	some	seasonality,	such	as	with
the	TV	sales	data,	then	regression	is	the	way	to	go.	This	is	especially	the	case	if	you
want	to	calculate	the	size	of	the	seasonal	effect.

	



8.4	Naive	forecasting	and	measuring	error
	

Forecasting	is	just	that:	an	educated	guess	about	what	might	happen	at	some	point	in
the	future.	Forecasts	are	based	on	historical	events,	 and	we	 are	 hoping	 that	 some
pattern	of	behavior	will	repeat	itself	which	will	make	the	forecast	‘true’.	The	best
that	we	can	do	is	to	 try	out	different	forecasting	methods	and	work	out	 how	well
they	predicted	data	which	we	already	knew	about.	Then	we	take	a	leap	into	the	dark
and	hope	that	the	best	of	those	methods	will	do	a	good	job	on	data	that	we	don’t
know	about.	This	section	concerns	the	measurement	of	forecasting	a c c u r a c y .

We’re	going	to	construct	a	naive	forecast	and	use	that	forecast	to	 demonstrate	two
common	methods	of	accuracy	checking:	the	Mean	 Squared	Error	(MSE)and	 the
Mean	Absolute	Deviation	(MAD)	approaches.

A	naive	forecast	assumes	that	the	value	of	the	variable	at	t+1	will	be	the	same	as	at	t.
The	values	are	just	carried	forward	by	one	time	period.	Here	is	an	example:



	

	

Image	Gas	prices	with	naive	forecast

	

The	 naive	 approach	 is	 sometimes	 surprisingly	 effective,	 perhaps	 because	 of	 its
simplicity.	In	general	simple	models	perform	well	perhaps	because	of	their	lack	of
assumptions	 about	 the	 future.	Now	 we	 will	 measure	 the	 accuracy	 of	 the	 Naive
Forecast	with	MAD	and	MSE.	In	both	methods	the	error	is	calculated	by	subtracting
the	forecast	or	predicted	value	from	the	observed	value.	The	methods	differ	in	what
is	done	with	those	errors.

MAD	measures	the	absolute	size	of	the	errors,	sums	them	and	then	divides	by	the
number	of	forecasts.	The	absolute	value	of	the	error	is	just	its	size,	without	the	sign.
In	Excel,	 you	 can	 find	 an	 absolute	 value	 with	 =ABS(F1	 -	 F3)	 where	 FI	 is	 the
observed	value	and	FE	the	predicted	value.	Use	the	little	corner	of	the	formula	box	to
drag	 it	 down.	 Then	 find	 the	 sum	 and	 divide	 by	 the	 n,	 which	 is	 the	 number	 of
observations.	In	math	this	is

	

	

MAD	=

∑	( abserror )
	

n

	

In	MSE,	the	error	is	squared	before	being	summed	and	divided.



	
Squaring	 the	 error	 removes	 the	 problem	 of	 the	 negative	 numbers,	 but	 creates
another	one:	large	errors	are	given	more	weighting	because	of	the	squaring.	This	can
distort	the	accuracy	of	the	results.	The	maths	for	the	MSE	is	below

	

	

MSE	=

∑	( error )2
	

n

The	plot	below	shows	the	errors	associated	with	the	naive	forecast-	ing,	the	absolute
values	of	the	errors	and	the	MAD.	In	Excel,	use

=abs(	)	to	convert	to	an	absolute	value.
	

Image	Errors	and	Mean	Absolute	Deviation

	



8.5	Moving	averages
	

Slightly	more	complex	than	the	naive	approach	is	the	moving	average	approach,
which	relies	on	the	fact	that	the	mean	has	less



	
variance	 than	 individual	observations.	By	 focusing	on	 the	mean,	we	 can	 see	 the
general	trend,	less	distracted	by	noise.

The	analyst	decides	how	far	back	in	time	the	average	will	go.	The	longer	back	in
time,	then	the	more	values	of	the	observation	 are	 averaged,	 resulting	 in	 a	 flatter
more	 smoothed	 result.	 This	 is	 good	 for	 observing	 long-term	 trends,	 but	 less
satisfactory	if	you	are	interested	in	more	recent	history.

The	 number	 of	 observations	 which	 are	 to	 be	 averaged	 is	 known	 as	 k,	 and	 this
number	 is	 chosen	by	 the	analyst	 based	on	experience.	 In	 Excel’s	 Data	 Analysis
Toolpak	there	is	a	Moving	Average	tool	which	can	do	all	the	work.	Positioning	the
output	is	slightly	tricky.	There	are	k	time	periods	being	used	for	the	calculation	of
the	 first	 forecast;	so	the	first	forecast	should	be	at	k+1	because	k	time	periods	 are
being	used	to	find	the	first	value.	Where	exactly	to	put	the	first	cell	of	the	output	is	a
bit	fiddly.	If	there	are	k	time	periods	being	used,	 place	the	first	cell	 at	 k-1.	Excel
provides	a	chart	output,	example	below.	There	is	a	YouTube	here¹

	

Image	Moving	average	with	k=3	for	gas	prices

	

The	moving	average	technique	is	used	by	investors	to	detect	the	‘golden	cross’	and
the	‘death	cross’.	They	examine	50	day	and	200	day	moving	averages.	When	the	50
day	moving	average	is	 above

	

¹http://youtu.be/zrioQOWfxjY

http://youtu.be/zrioQOWfxjY
http://youtu.be/zrioQOWfxjY


	
the	200	day	moving	average	this	point	is	the	so-called	golden	cross	and	a	signal	to
buy.	By	contrast,	when	the	opposite	happens	this	is	 the	‘death	cross’…time	to	get
out!

	



8.6	Exponentially	weighted	moving
averages

	

The	 exponential	 smoothing	method	 (EWMA)	 is	 a	 further	 step	 forward	 from	 the
naive	and	the	moving	average	approaches.	The	moving	average	forgets	data	older
than	the	k	 time	periods	specified,	 while	 the	 EWMA	 incorporates	 both	 the	 most
recent	and	more	historical	observations	to	construct	a	forecast.	In	the	Glossary	you’ll
find	more	detailed	math	showing	how	the	EWMA	brings	forward	all	past	history.
In	general	the	further	back	in	time	you	get,	the	less	influence	the	observations	have.

Using	EWMA	we	choose	a	smoothing	constant,	alpha,	which	sets	the	weight	given
to	 the	most	 recent	 observation	 against	previous	 forecasts.	 If	we	 thought	 that	 the
forecast	(t+1)	would	be	similar	to	the	current	observation	(t=0)	and	we	thought	that
older	forecasts	were	of	 little	value,	 then	we	would	choose	a	high	value	of	alpha.
Alpha	runs	from	0	to	1.	The	EWMA	formula	is

	

F t +1	=	αY t	+	(1	−	α ) F t

where	 F	 is	 the	 forecast,	 and	Y	 is	 the	 actual	 value	 of	 the	 variable.	 alpha	 is	 the
smoothing	constant,	ranging	in	value	between	0	and	1,	and	chosen	by	the	analyst.

In	words,	 this	 equation	means	 that	 the	 forecast	 value	 (at	 t+1)	 is	 the	 smoothing
constant	alpha	multiplying	the	actual	value	at	 t=0	plus	(1-alpha)	times	the	forecast
at	t=0.	So	if	the	previous	forecast	was	totally	correct,	the	error	would	be	zero	and	the
forecast	would	be	exactly	what	we	have	today.	It	turns	out	that	the	exponential



	
smoothing	forecast	for	any	period	is	constructed	from	a	weighted	average	of	all	the
previous	actual	values	of	the	time	series.

The	equation	above	shows	that	the	size	of	alpha,	the	smoothing	 constant,	controls
the	balance	between	weighting	given	to	the	most	previous	observation	and	previous
observations.	If	the	alpha	 is	small,	then	the	amount	of	weight	given	to	Y	at	 t=0	is
small	and	the	weight	given	to	previous	observations	is	large	and	vice-versa.	If	alpha
=	1,	then	previous	observations	are	given	no	weight	at	all,	and	we	assume	that	 the
future	is	the	same	as	the	past.	This	achieves	the	 same	 result	 as	 naive	 forecasting
discussed	above.	Typically	 quite	small	value	of	alpha	are	used,	such	as	0.1.

##Application	of	Excel’s	exponential	smoothing	tool

An	 exponential	 smoothing	 tool	 is	 available	 in	 the	 Analysis	 ToolPak.	 We’ll	use
Canadian	 Gross	 Domestic	 Product	 per	 capita	 as	 an	 example.	 Here	 is	 the	 data
plotted	on	its	own.	Youtube²

	

Canadian	GDP	Per	Capita

	

There	is	a	steady	upwards	trend,	but	with	a	dip	in	2009	due	to	the	world	financial
crisis.	Excel	asks	for	a	damping	factor.	This	is	1	-	alpha.	I	have	done	the	forecasts
twice,	once	with	an	alpha	of	0.1

	

²http://youtu.be/w-GmxjrX1qg

http://youtu.be/w-GmxjrX1qg
http://youtu.be/w-GmxjrX1qg


	
and	again	with	an	alpha	of	0.9.	Therefore	the	damping	factors	were

0.9	and	0.1.	The	result	for	alpha	=	0.9	is	shown	below.
	

Forecast	with	alpha	=	0.9

	

This	 is	 pretty	 good	 forecast,	 with	 the	 forecast	 tracking	 the	 actual	 observations
closely.

The	plot	below	shows	sheep	numbers	as	counts	by	head	 in	Canada	 from	1961	to
2006.	First,	let’s	plot	this	using	0.3	as	alpha	(arbitrarily	chosen).	The	plot	is	below,
with	a	damping	factor	of	1-0.3	=	0.7.



	

	

Sheep	numbers	with	alpha	=	0.3



	

	

	

	

	



9.		Time	Series	Regression	Methods
The	smoothing	methods	we	worked	in	the	previous	chapter	are	fine	when	there	is
no	evidence	of	seasonality,	for	example	with	 the	 sheep	data.	However,	smoothing
has	 only	 limited	 use	 for	 longer	 term	 prediction	 and	 analysis.	 Data	 that	 is	 more
interesting	for	us	as	 analysts	may	be	non-linear	 in	 trend,	 and	also	 have	 seasonal
peaks	 and	 troughs.	 Using	 regression,	 we	 can	measure	 the	 quantitative	 effect	 of
seasonality	and	trend,	either	together	or	separately.	The	result	is	a	model	which	can
be	used	for	prediction.

Below	we	will:

	
1.		use	regression	to	quantify	a	trend	in	a	time	series

2.		introduce	a	quadratic	term	to	account	for	non-linearity	in	the	time	series

3.		use	dummy	variables	to	measure	seasonality

	



9.1	Quantifying	a	linear	trend	in	a	time	series
using	regression

	

The	plot	below	shows	life	expectancy	at	birth	for	Canadians.
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Canadian	life	expectancy

	

This	 is	 pretty	 much	 a	 straight	 line	 as	 one	 might	 expect	 in	 a	developed	country
with	a	large	per	capita	expenditure	on	 health	care.	Note	that	this	is	for	both	sexes:
for	women	only	we	might	expect	to	see	even	better	figures.	I	ran	the	regression	with
Year	as	the	independent	variable,	explaining	life	expectancy.	The	result	is	below.

	

Life	expectancy	regression	results

	

Notice	that	the	adjusted	R-squared	value	is	close	to	unity,	reflecting



	
the	straight	line	that	we	see	on	the	graph.	The	coefficients	 for	the	intercept	and	the
independent	variable	provide	this	estimated	regression	equation

	

ŷ t										=	58 . 47	+	0 . 000565	∗	Year
The	meaning	 is	 that	 for	 every	year	 after	 1960	 that	 a	 child	was	 born,	 his/her	 life
expectancy	increased	by	0.000565	years,	or	about	5	hours.

	



9.2	Measuring	seasonality
	

The	dataset	for	TV	sales	(from	Modern	Business	Statistics	 by	Anderson	Sweeney
and	Williams)	contains	sales	by	quarter	for	four	years.	There	 are	 therefore	 sixteen
observations.

I	created	a	column	which	I	called	index	so	that	we	can	see	sales	 in	a	 consecutive
fashion.	The	first	quarter	is	Spring	and	the	last	quarter	 is	winter.	It	is	apparent	that
quarters	which	are	divisible	by	four	are	higher	than	others,	and	so	forth.	Perhaps	sales
are	higher	in	winter?

We	can	use	the	dummy	variable	method	of	Chapter	5	to	determine	whether	this	is
true	and	also	the	extent	of	the	difference.	We	will	create	dummies	for	Summer,	Fall
and	Winter,	leaving	Spring	as	the	reference	level.	Recall	that	we	have	four	possible
states	of	the	season	variable,	and	so	we	will	need	k-1,	or	4-1	=	3	dummies.	It	usually
doesn’t	matter	which	 state	 you	 choose	 as	 your	 reference	 level:	 just	 don’t	 forget
which	one	you	picked.	The	dataset	 is	 below,	with	 a	 column	called	 Index,	 which
we’ll	use	to	measure	the	time	trend.



	

	

TV	Sales	with	the	quarterly	dummies

	

I	want	to	find	out	two	things:

whether	sales	are	increasing	over	time.	I	can	do	this	by	including	the	index	as	an
explanatory	variable.	Because	the	regression	tool	 requires	that	all	the	independent
variable	be	in	one	block,	I	have	copied	and	pasted	the	Index	column	to	the	right.

The	regression	output	 is
	

TV	Sales	regression	out

	

Let’s	walk	through	 this	 output	 line	 by	 line.	 First	 notice	 that	 the	 p	 values	 for	 all
independent	variables	are	smaller	than	0.05.	Therefore	all	are	significant.

The	reference	level	is	Spring,	and	therefore	there	is	no	coefficient	for	 this	 quarter.
Summer	 has	 a	 negative	 sign	 in	 front	 of	 its	 coefficient,	 meaning	 that	 sales	 for
Summer	are	 smaller	 than	 those	 for	Spring.	Fall	is	positive,	so	more	TV	 sales	 are
sold	 in	 the	 Fall	 than	 in	 the	 Spring.	 Not	 unexpectedly,	 Winter	 has	 the	 largest
coefficient	of	all,



	
reflecting	the	plot.	The	index	has	a	positive	sign,	meaning	that	average	TV	sales	are
increasing	with	time.

There	are	therefore	two	components	in	this	series:	a	trend	and	a	seasonal
component.	Youtube¹

**	Making	predictions**	from	these	results.	Let’s	predict	the	sales	for	Fall	in	seven
quarters	time.	This	is

	
y 	̂=	4 . 7	+	1 . 05875	+	7	∗	0 . 147	=	6 . 78

The	observed	value	was	6.8,	so	the	prediction	was	reasonable	if	slightly	 pessimistic.

	

http://youtu.be/wyKIHInMbY8


9.3	Curvilinear	data
	

The	data	above	followed	a	linear	trend,	which	is	perfect	for	ordinary	 least	 squares,
which	 assumes	 that	 the	 relationship	 between	 the	 dependent	 variable	 and	 the
independent	 variable	 is	 linear.	 But	 some	 interesting	 data	 does	 not	 follow	 a	 neat
linear	trend.	The	plot	below	shows	crude	oil	and	gas	prices	over	the	period	1949	to
2003.

	

¹http://youtu.be/wyKIHInMbY8

http://youtu.be/wyKIHInMbY8


	

	

Crude	and	gas	prices	showing	crude	price	curvilinearity

	

However,	if	we	show	the	two	series	on	the	same	graph,	as	on	the	plot	I	did	in	Tableau,
with	separate	y	axes	for	each	type	of	fuel,	we	can	see	that	the	shapes	are	very	close.

	

Crude	and	gas	on	different	axes

	

The	curvilinearity	of	crude	prices	is	clear.	The	prices	came	to	a	peak



	
in	the	1970s	as	a	result	of	OPEC’s	decision	to	restrict	supply.	 In	any	 event,	crude
prices	cannot	 be	 described	 as	 linear.	 The	 solution	 is	 to	 add	 an	 extra	 term	 to	 the
regression	of	 price	 on	 time,	 and	 that	 is	 time	 squared.	 The	 first	 few	 lines	 of	 the
dataset	are	below.	I	have	added	a	column	called	to	represent	the	year,	and	added	tsq
which	is	just	t	squared.

	

Data	with	time	squared

	

Now	regress	crude	against	time	 and	 time	 squared,	 and	 the	 pleasing	 result	 below
appears



	

	

The	curvilinear	regression	for	crude

	

The	 adjusted	 r-squared	 is	 high	 at	 0.88	 and	 the	 two	 time	 predictors	 are	 highly
significant	statistically.	Notice	that	the	two	predictors	are	quite	different	in	size	and
also	have	opposite	signs.	When	t	is	small,	then	the	variable	t	dominates	and	the	trend
is	 upward.	 However,	 as	 t	 gets	 larger,	 then	 t-squared	 gets	 even	 larger	 still.	 The
negative	sign	on	t-squared	pulls	the	regression	line	down.



	

	

	

	

	



10.		Optimization
Linear	Programming	 (LP)	 is	 the	 tool	 we	 use	 to	 optimize	 a	 particular	 objective
function .	For	example,	a	manufacturer	of	carpets	wants	to	get	the	most	profit	out
of	 his	 raw	materials	 and	 labor	 force.	 The	 objective	 function	 is	 the	 relationship
between	 the	 inputs	 and	 his	 costs	 and	 thus	 his	 profits.	 Optimization	 helps	 the
manufacturer	find	the	most	efficient	allocation	of	resources.	The	objective	function
doesn’t	necessarily	have	to	be	in	terms	of	money;	it	could	very	well	be	to	allocate
working	hours	efficiently	so	that	everyone	has	more	 time	off.	Frequently	we	want
to	maximize	 the	objective	 function	(perhaps	make	more	profit)	but	we	might	also
want	to	minimize	an	objective	function,	such	as	costs.

Optimization	is	not	particularly	difficult,	and	we	will	use	the	Solver	add-in	to	Excel
to	 do	 the	mathematically	 tricky	 parts.	What	 is	 important	 is	 the	writing	 up	 of	 a
correct	model	in	the	first	place.

	

Layout	of	the	chapter
	

Linear	programming	 is	not	especially	difficult,	but	 the	work	has	 to	 be	done	 in	 a
logical	and	orderly	fashion.	In	this	chapter,	we	will

*spend	some	time	working	 through	the	basic	steps	 in	 setting	 up	 an	 optimization
problem	 *	work	 through	 the	meaning	 of	 the	 Solver	 output	 in	 terms	of	what	 the
coefficient	values	actually	mean

	



10.1	How	linear	programming	works
	

Linear	programming	works	by	solving	a	set	of	simultaneous	equa-	tions.	The
problem	to	be	solved—to	maximize	a	stock	return	for
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example—is	written	as	a	set	of	simultaneous	equations.	The	equa-	 tions	 may	 be
quite	simple,	but	there	may	be	many	of	them.	Linear	Programming	finds	the	best
solution	to	the	equations.	The	job	is	to	find	the	coefficients	for	the	variables	in	the
equation	which	maximize	or	minimize	the	outcome.

We’ll	work	through	an	example	first	on	paper,	and	then	put	it	 into	Excel’s	Solver
add-in	to	get	the	solution.	The	three	important	steps	are:

	
•		Write	the	simultaneous	equations,	basically	putting	into	math	the	wording
of	the	problem.	This	is	probably	the	toughest	part.

•		Run	the	Optimization	in	Solver,	to	find	the	optimal	solution.

•	 	 Sensitivity	 analysis	 to	 find	 out	 how	 much	 effect	 a	 unit	 change	 in	 a
constraint	would	have.

	



10.2	Setting	up	an	optimization	problem
	

Optimization	problems	are	usually	presented	as	written	questions.	The	best	approach
is	to	determine	which	are	the

	
•		decision	variables	those	variables	which	you	can	control.	For	example,	in
the	carpet	factory	example,	the	number	of	hours	given	to	each	worker	is	 a
decision	variable.

	
It	is	usually	the	size	of	the	decision	variable	that	we	are	trying	to	optimize.	For	the
workers,	we	would	want	them	to	have	exactly	the	number	of	hours	which	produces
the	 most	 profitable	 output.	 Too	 few	 hours	 and	 the	 factory	 is	 working	 below
capacity.	On	 the	other	 hand,	 too	many	and	money	is	being	wasted.	The	 decision
variables	go	into	what	Solver	calls	the	changing	cells.	The	convention	is	to	 color-
code	these	cells	in	Excel	in	red	color.



	
•	 	 constraints	 are	 constants	 or	 givens	 which	 we	 cannot	 change.	 The
jurisdiction	where	 the	factory	 is	 located	might	have	 legislation	 restricting
the	maximum	number	 of	 hours	 that	 an	 employee	 can	work	 per	 day.	We
would	need	to	add	 a	constraining	equation	to	take	account	of	this	fact,	even
if	the	solution	was	financially	sub-optimal.

	



10.3	Example	of	model	development.
	

A	farmer	has	50	acres	of	land	at	his/her	disposal.	He	also	has	up	 to	 150	hours	 of
labor	 and	 up	 to	 200	 tonnes	 of	 fertilizer.	He	 can	 plant	 either	 cotton	 or	 corn	 or	 a
mixture.	Cotton	produces	a	profit	of	$400	per	acre,	corn	$200	per	acre.	Each	acre	of
cotton	requires	5	labor	hours	and	6	tonnes	of	fertilizer.	For	corn	the	equivalent	is	3
and	2.	How	much	land	should	the	farmer	allocate	to	each	crop?

Let’s	call	acres	of	cotton	x	and	acres	of	corn	y.	F	for	fertilizer	and	L	for	labor.	These
four	variables	are	his	decision	variables	because	he	can	allocate	crops	to	land	and	he
can	also	decide	how	much	labor	 and	 fertilizer	 to	 deploy.	He	 is	 searching	 for	 the
combination	of	the	four	decision	variables	which	maximizes	his	profit.

We	know	he	has	50	acres,	so	the	total	acreage	cannot	exceed	this	amount.	This	is	a
constraint,	which	can	be	written	as	an	equation,	as	shown	below.	Other	constraints
are	the	maximum	labor	and	fertilizer.	Obviously	he	cannot	use	more	than	he	has.

	



10.4	Writing	the	constraint	equations
	

The	total	acreage	devoted	to	each	crop	cannot	exceed	50:

	

x	+	y	≤	50

The	labor	and	fertilizer	are	also	constraints.	Refer	back	to	 the	question	to	get	the
amounts	of	labor	and	fertilizer	per	acre	per	crop.



	
For	labor,	the	constraint	equation	is:

	

5 x	+	3 y	≤	150

This	equation	comes	about	because	 for	 each	 acre	 of	 cotton,	 the	 farmer	 needs	 5
hours	 of	 labor,	while	 for	 corn	 it	 is	 3.	We	do	not	know	the	values	of	x	and	y,	but
whatever	they	are,	we	know	that	 5x	plus	3	y	must	 be	 less	 than	 or	 equal	 to	 150,
because	we	only	have	150	hours	available.

For	fertilizer,	the	constraint	equation	is:

	

6 x	+	2 y	≤	200



10.5	Writing	the	objective	function
	

What	do	we	want	to	get	out	of	this:	what	is	the	objective?	Clearly	 it	 is	 the	 most
efficient	mixture	of	inputs,	subject	to	constraints,	producing	the	largest	profit.	The
objective	function	is:

	
MaxProfit	=	400x	+	200y

	

In	words,	find	the	combination	of	x	and	y	that	maximizes	the	profit,	 subject	 to	the
constraints	we	have	written.	The	next	task	is	to	put	all	this	into	Solver.

	



10.6	Optimization	in	Excel	(with	the	Solver
add-in)

	

We	will	use	an	Excel	spreadsheet	and	Solver	to	achieve	all	three	steps.

Optimization	YouTube	for	the	farmer	problem¹
	

¹https://www.youtube.com/watch?v=WeTgK6wmvSY

https://www.youtube.com/watch?v=WeTgK6wmvSY
https://www.youtube.com/watch?v=WeTgK6wmvSY


	
Open	an	Excel	spreadsheet	so	that	you	can	follow	along.

	

Cell	coloring	conventions
	

I	suggest	you	follow	these	conventions	for	color-coding	the	cells:

	
•		Input	cells.	These	contain	all	the	numeric	data	given	in	the	statement	of	the
problem.	Color	input	cells	in	BLUE.

•		Changing	cells.	The	values	in	these	cells	change	to	optimize	the
objective.	Code	changing	cells	in	RED.

•		Objective	cell.	One	cell	contains	the	value	of	the	objective.	Color	the
objective	cell	in	GREY.

	
Now	I’ll	work	through	the	farming	problem	above	step	by	step.

Make	sure	you	have	the	Solver	add-in	loaded.	To	check,	open	Excel,	 then	click	on
the	Data	Tab.	If	Solver	is	loaded,	you	will	see	the	Solver	name	to	the	right.

	

The	Solver	tab

	

Below	is	the	Excel	spreadsheet	with	the	information	that	we	know	already	typed	in.
I	have	put	random	values	in	the	 red-colored	changing	cells,	just	as	place	holders.
These	numbers	will	 change	when	Excel	solves	for	the	most	profitable	allocation.

	
•		Type	the	address	of	the	objective	into	the	Solver	dialogue	box,	and	make
sure	the	Max	radio	button	is	selected.

•		Type	in	the	range	of	the	changing	cells.



	
•		Work	through	the	constraints.	There	are	three:	labor;	fertil-	izer;	and	land.

•		Select	Simplex	LP	as	the	Solving	method.

•		Press	solve.
	

	

The	farming	solution

	

Solver	will	change	the	values	in	the	changing	cells	to	maximize	the	objective	cell.	I
found	that	30	acres	of	cotton	and	none	of	corn	provided	a	profit	of	$12000.

	



10.7	Sensitivity	analysis
	

Constraints	can	be	either	binding	or	slack .	If	a	constraint	is	binding,	that	means	that
all	of	that	particular	resource	is	being	used,	and	more	could	be	employed	if	it	should
become	available.	We	can	find	out	whether	constraints	are	binding	and	also	 their
shadow



	
price	by	pressing	Sensitivity	Analysis	after	running	Solver	 again.	The	Sensitivity
analysis	will	 appear	 as	 a	 tab	 at	 the	 bottom	 of	 your	 worksheet.	 For	 the	 farming
problem,	it	looks	like	this:

	

Farming	sensitivity	report

	

Let’s	let	at	the	Constraints	section.	Labor	uses	150	hours	and	has	a	shadow	price	of
$80.	The	shadow	prices	indicates	the	per-unit	value	of	the	constrained	commodity	if
the	constraint	was	increased	by	one	unit.	If	we	could	have	one	more	hour	of	labor,
then	the	profit	would	increase	by	$80.	Land	and	fertilizer	have	a	shadow	prices	of
zero	because	the	constraint	 is	slack	or	non-binding.	We	 are	 not	 completely	using
these	resources	and	so	we	do	not	need	any	extra	inputs.	There	are	sacks	of	fertilizer
lying	around	unused.	No	need	to	buy	more.

The	 columns	Allowable	Increase	 and	Allowable	Decrease	 are	 rele-	 vant	because
they	tell	us	how	much	more	of	a	binding	constraint	we	could	use	before	running	the
model	again.	For	labor,	the	amount	is	16.67	(rounded).	If	we	eased	the	constraint	by
more	than	this	amount	then	we	would	need	to	run	the	new	model	in	Solver	again.
The	same	logic	for	decrease.



	



10.8	Infeasibility	and	Unboundedness
	

Solver	is	quite	robust,	but	two	problems	may	occur.	A	solution	to	 an	optimization
problem	is	feasible	if	it	satisfies	all	the	constraints.	But	it	is	possible	for	no	feasible
solution	to	exist.	This	occurs	 if	you	make	a	mistake	 in	writing	 the	model,	or	 the
model	is	too	tightly	constrained.

	

Unboundedness
	

Unboundedness	 occurs	 when	 you	 have	 missed	 out	 a	 constraint.	 There	 is	 no
maximum	(or	minimum).	Try	changing	all	constraints	to	>=	instead	of	=<	.

	



10.9	Worked	examples
	

The	demanding	mother
	

Most	mothers	are	keen	to	keep	contact	with	their	children.	One	particular	mother	is
rather	demanding.	She	requires	at	least	 500	minutes	per	week	of	contact	with	you.
This	can	be	through	tele-	phone,	visiting	or	letter-writing	(yes!	Some	people	still	do
that!).	Her	weekly	minimum	for	phone	is	200	minutes,	visiting	40	minutes	and	letters
200	minutes.	You	assign	a	cost	to	these	activities.	For	phone:	$5	per	minute;	visiting
$10	per	minute;	 letter-writing	$20	per	minute.	How	do	you	allocate	your	 time	 so
that	your	cost	is	the	minimum?

Write	the	equations	first.	What	is	the	objective?

Let	x	stand	for	minutes	of	phone;	y	minutes	of	visiting;	and	 z	minutes	of	letters.
You	want	to	minimize	the	cost	of	these	activities,	 so	 the	objective	 is	 to	minimise
200x	+	40y	+	200z.	The	constraints	are:	x	+	y	+	z	must	be	more	than	or	equal	to	500.



	

	

Spreadsheet	for	demanding	mother

	

Notice	that	we	want	to	minimize	the	time,	so	change	the	radio	button	to	min	rather
than	max.	And	when	you	are	 typing	 in	 the	 constraints,	check	that	the	sign	of	the
inequality	is	the	right	way	round.

	

The	theater	manager
	

You	are	the	manager	of	a	theater	which	is	in	financial	trouble.	You	have	to	optimize
the	combination	of	plays	that	you	will	put	on	to	make	the	most	profit.	You	have	five
plays	in	your	repertoire,	A,B,C,D,E.	They	have	different	draw	points	(appeal	to	the
public)	and	therefore	ticket	prices	to	match.	A	draw	point	is	how	attractive	 the	play
is	to	the	general	public.	The	data	looks	like	this:

	

Play Draw Ticket

A 2 20

B 3 20

C 1 20

D 5 35



	

Play Draw Ticket

E 7 40

	

You	have	these	constraints:	you	have	only	40	possible	slots.	And	no	play	can	be	put
on	less	than	twice	or	more	than	ten	times	(gives	the	actors	a	reasonable	turn).	Each
performance	 costs	 $10	 per	 ticket	 sold,	 regardless	 of	 the	 ticket	 price	 (covers	 the
electricity	etc).	The	total	draw	points	has	to	exceed	160	to	keep	the	critics	happy.

How	do	you	distribute	your	performances?	Which	combination	of	plays	produces
the	highest	profit	and	satisfies	the	constraints?

We	are	trying	to	maximize	profit,	so	look	for	an	objective	 function	 that	does	just
that:	20A	+	20B	+	20C	+	35D	+	40E.	But	wait—-we	have	the	$10	cost.	So	better
take	that	out	first,	leaving	10A	+	10B	+	10C	+	25D	+	30E.

With	these	 constraints:

The	draw	points	(the	attractiveness	of	the	play	to	critics):	2A	+	3B	+	1C	+	5D	+	7	E
>=	160

and	no	play	can	be	put	on	more	than	twice	or	more	than	ten	times.	A	<=2	and	A	<=
10	B	<=	2	and	B	<=10	C	<=	2	and	C	<=	10	D	<=	2

and	D	<=10

and	we	have	only	40	slots,	so	A	+	B	+	C	+	D	+	E	<=	40



	

	

Spreadsheet	for	theatre	problem

	

More	worked	 examples
	

19th	century	farmer
	

I	am	a	19th	century	English	farmer.	I	 can	grow	wheat	or	barley.	Wheat	yields	10
bushels	an	acre,	barley	8	bushels	an	acre.	The	price	of	wheat	is	ten	shillings	a	bushel,
barley	5	shillings	a	bushel.	The	 labour	costs	for	wheat	are	3	 shillings	an	acre,	 for
barley	2	shillings	an	acre.	The	transportation	cost	to	market	for	wheat	is	1	shilling	a
bushel,	for	barley	½	shilling	a	bushel.	I	have	100	acres.	(a	bushel	is	a	measure	of
volume;	an	acre	is	a	measure	of	area;	a	shilling	is	a	currency	unit).

Questions:	How	do	I	split	up	my	land?

If	I	could	get	one	more	acre	of	land,	how	much	would	that	be	worth	to	me?

	

	

	

Yet	another	farming	question	(I	use	these	because	most	people	can	imagine	fields	of
land,	crops	growing	and	the	like.	But	of	course	the	same	 techniques	are	applicable
to	other	business	situations).



	
A	farmer	has	100	acres	of	land.	He	can	plant	crops	or	raise	sheep.	 Each	hectare	of
crops	provides	$100	but	requires	labor	of	$50	per	acre.	He	can	spend	a	maximum	of
$500	on	crop	labor.	Each	acre	of	sheep	provides	$40	but	needs	only	$10	 in	 labor
charges.	The	labor	budget	is	unlimited.

Worked	 solution

Call	area	in	crops	X	and	in	 sheep	Y.	Then	X	+	Y	=<	100	 and	50X	<=	 500	The
objective	is	100X	-	50X	+	40Y	-	10Y	simplifies	to	50X	+	30Y.	My	Excel	spreadsheet
is	below.

	

Spreadsheet	for	the	above	problem



	

	

	

	

	



11.		More	complex
optimization

Optimization	 using	 Solver	 is	 a	 powerful	 method	 of	 solving	 common	 business
resource-allocation	problems.	In	the	previous	chapter	 the	problems	were	relatively
simple	concerning	 the	allocation	of	 land	 or	time.	But	linear	programming	can	be
used	to	solve	more	complex	and	worthwhile	problems	as	we’ll	see	below.	The	key
requirement	 is	that	the	analyst	is	able	to	define	the	problem	as	a	set	of	equations.
There	is	no	one	method	except	for	thinking	carefully	and	writing	out	the	problem
as	a	set	of	equations.

To	demonstrate,	we’ll	work	through	three	different	types	of	prob-	lem:

*problems	 concerning	 proportionality:	 you	 need	 to	 allocate	 money	 to	 different
investments	while	minimizing	 risk	and	keeping	 returns	 above	 a	 certain	 amount.
What	proportion	do	you	put	in	each	investment?

*supply	chain	 problems

*blending	problems	where	you	need	to	mix	together	inputs	from	different	sources

	



11.1	Proportionality
	

Investment	decisions	 example

This	example	shows	how	we	can	‘weight’	the	inputs	according	to	some	criteria,	in
this	case	their	risk.	We	want	to	minimize	the	risk	but	ensure	that	the	return	is	above
some	minimum	level.	What	is	the	mixture	or	blend	of	investments	that	can	do	that?
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The	 problem:	 you	 have	 an	 inheritance	 of	 $300,000	 from	 an	 uncle	 but	 there	 are
some	restrictions:	you	must	invest	all	the	money	in	four	funds;	your	annual	return
has	to	be	at	least	5%.	And	you	must	minimize	your	risk.	The	four	funds	your	uncle
has	specified	are:

	

Fund Risk Return

X1 10.7 4.2

X2 5 4

X3 6 5.6

X4 6.2 4

	

Let’s	deal	with	the	objective	 function	 first.	That	 is	 to	minimize	 the	 risk.	We	can
weight	the	size	of	 the	 investment	 in	each	 fund	with	 its	 risk	 index.	So,	weighting
each	investment	and	then	dividing	by	the	 total	investment	gives	the	amount	of	the
risk:	which	is	exactly	what	we	want	to	minimize.	So	we	want	to	minimize	R	(for
Risk)	like	this:

	

R	=	10 . 7 X 1	+	5 X 2	+	6 X 3	+	6 . 2 X 4

300 ,	000
	

If	you	don’t	get	this,	think	about	what	would	happen	if	all	 the	funds	were	as	risky
as	X1:	the	total	risk	would	increase.	Another	way	to	think	of	this:	if	we	decrease	the
number	of	shares	in	X1	and	instead	increase	the	number	of	X4,	what	will	happen?
The	risk	will	decrease.

The	constraints:	the	total	investment	has	to	add	up	to	$300,000,	so	this	constraint	is

	
X 1	+	X 2	+	X 3	+	X 4	=	300 ,	000

	

We	also	have	to	achieve	a	return	of	at	least	5%	(no	easy	matter	 these	 days).	This
constraint	is

	

4 . 2 X 1	+	4 X 2	+	5 . 6 X 3	+	4 X 4 ≥	5



	
Below	is	my	spreadsheet	from	this	problem:

	

Investment	blending

	

	



11.2	Supply	chain	problems
	

Working	out	how	much	to	ship	from	production	centers	to	demand	 locations	 is	 a
common	problem	in	supply	chain	optimization.	As	I	have	been	stressing,	the	key	to
solving	problems	of	this	type	is	to	write	out	the	equations	which	define	the	model.
Here	is	an	example:

You	 run	a	company	which	has	 bakeries	 in	 location	A	 and	 B.	 The	 bakeries	 ship
cartons	 of	 bread	 to	 your	 retail	 stores	 at	 locations	 X,	 Y,	 Z.	 The	 bakeries	 have
different	 capacities	 and	 each	 retail	 store	 has	 different	 demands.	 The	 costs	 of
delivery	per	carton	from	each	bakery	to	each	store	is	below

	

Bakery X Y Z Capacity

A 12 13 11 150

B 9 17 17 200

Demand 50 100 90 	



	
Notation:	a	delivery	from	bakery	A	to	location	X	is	Ax	and	so	forth.

The	objective	function	is	to	minimize	the	delivery	costs.	So	we	want	 to	minimize:
12Ax	+	13Ay	+	11Az	+	9Bx	+	17By	+	17Bz

Each	bakery	has	a	fixed	capacity,	so	Ax	+	Ay	+	Az	<=150	and	Bx	+	By	+	Bz	<=	200

Supply	has	to	exactly	match	demand

Ax	+	Bx	=	50	Ay	+	By	=	100	Az	+	Bz	=	90

Notice	the	strict	equality	sign.	My	results	are	below:
	

Distribution	problem

	



11.3	Blending	problems
	

Above	we	discussed	linear	programming	models	which	were	 simple	but	effective.
There	 are	 other	 types	 of	 Optimization	 model	 which	 are	 helpful,	 especially
Blending	Models,	which	can	also	be	solved	by	linear	programming.

Blending	models	are	used	in	situations	where	we	have	two	or	more	inputs	which
have	 to	be	mixed	 to	 some	 formula.	 Through	 Optimization	we	can	find	 the	most
profitable	mixture.	Wine,	metals,	oil,	sausages,	recycled	paper—-this	is	a	powerful
technique.	 You	could	probably	use	it	for	marketing	campaigns.	We’ll	work	though
an	example	which	is	for	oil.



	
The	oil	blending	problem

	

The	problem:	an	oil	company	has	15000	barrels	of	Crude	oil	1	and	20000	barrels	of
Crude	oil	2	on	hand.	The	company	sells	gasoline	and	heating	oil.	These	products
are	made	by	blending	together	Crude	oil	1	and	Crude	oil	2.	Each	barrel	of	Crude	oil
1	has	a	quality	level	of	10,	and	each	barrel	of	Crude	oil	2	has	a	quality	level	of	5.	The
gasoline	that	we	produce	must	have	a	quality	level	of	at	least	8.	The	heating	oil	must
have	a	quality	level	of	at	least	6.	Gasoline	sells	for	$75	a	barrel,	heating	oil	for	$60.
How	can	we	blend	 the	oils	 together	 in	 such	 a	 way	 that	 meets	 minimum	 quality
requirements	and	maximizes	profit?

	

Oil	blending	solution
	

First,	let’s	think	through	what	the	decision	variables	(what	goes	into	the	changing
cells)	might	be.	You	might	 very	 well	 think	 (as	 I	 did	 first	 off)	 that	 the	 decision
variables	would	be	the	amounts	of	the	two	oils	used	and	the	amounts	produced.	But
this	isn’t	enough:	we	have	to	blend	together	the	two	types	of	oil.	They	have	to	be
mixed	before	they	can	be	sold,	and	the	mixture	has	to	reach	some	minimum	quality
standard.	The	company	needs	a	blending	plan.

The	inputs :

selling	 prices	 (here	 gasoline	 =	 $75,	 heating	 oil	 =	 $60)	 availability	 of	 oil	 from
suppliers	quality	level	of	crude	oils:	Crude	1	is	10	and	Crude	2	is	5

The	constraints

Gasoline	quality	>=8	Heating	oil	quality	>=	6	Quantity	of	Crude	1

=	15000	Quantity	of	Crude	2	=	20000

The	blending	plan :

Gasoline	has	to	have	a	minimum	quality	of	at	least	8,	and	heating	 oil	must	have	a
minimum	quality	of	at	least	6.	The	Crude	oil	1	we



	
have	on	hand	has	a	quality	level	of	10	while	Crude	oil	2	has	a	quality	level	of	5.	We
want	to	blend	these	two	crude	oils	to	both	achieve	the	minimum	quality	standards
and	make	the	greatest	profit.

Let’s	attack	the	problem	by	creating	total	‘quality	points’	(QPs)	which	represent	the
quality	of	oil	in	a	barrel	multiplied	by	the	number	of	barrels	of	that	oil.

Write	equations	to	calculate	the	quality	points:

Total	QPs	in	the	gasoline	=	10	*	amount	of	Oil	1	+	5	*	amount	of	Oil	2

If	for	example,	we	mixed	together	50	barrels	of	Crude	oil	1	and	40	barrels	of	Crude
oil	2,	the	total	QPs	would	be	50	x	10	+	40	x	5	=	700.	The	average	per	barrel	would	be
700/90	=	7.78.	This	is	too	low	for	gasoline	(needs	8)	but	acceptable	for	heating	oil.
Two	points:

we	 could	 sell	 the	 oil	 as	 heating	 oil,	 but	 it	 is	 exceeding	 the	 minimum	 quality
requirement.	We	could	make	more	profit	by	reducing	 the	quality	to	the	minimum,
or	charge	a	premium.	But	this	is	prescrip-	tive	work,	and	we	have	to	work	within	the
inputs	given	to	us).

The	only	way	to	get	the	oil	up	to	gasoline	standards	is	to	increase	the	amount	of	Crude
oil	1	in	the	mixture.

If	you	don’t	get	this,	try	a	thought	experiment:	for	gasoline,	if	there	was	no	oil	at	all
from	Oil	2,	what	would	be	the	QP?	It	would	be	10	*	the	quantity	of	oil	from	Oil	1.
Again,	how	about	if	we	blended	 together	1000	barrels	from	each	type	of	oil:	 how
many	QPs	would	be	produced?	It	would	be	10	*	1000	+	5	*	1000	=	15000.	Read
this	through	again…it	is	important.

The	 blending	 plan	 provides	 us	 with	 the	 constraints	 we	 need	 to	 ensure	 that	 the
minimum	quality	levels	are	achieved.	In	the	example	 just	above,	we	blended	2000
barrels	to	provide	a	QP	of	15000.	This	is	an	average	of	7.5.	Good	enough	for	heating
oil,	not	good	enough	for	gasoline.



	

	

Oil	problem	solution

	

Discussion	of	the	solution:	note	that	gasoline	sells	for	more	money	than	heating	oil,
but	the	optimal	solution	suggests	that	we	should	sell	more	heating	oil	than	gasoline.
This	is	because	of	the	constraints	on	quality.



	

	

	

	

	



12.		Predicting	items	you	can	count	one
by	one

Why	 you	 need	 to	 know	 this .	 Many	 business	 decisions	 involve	 counts:	 either
binary	(yes/no)	or	within	time	or	space.	It	would	be	good	to	know	the	probability	of	a
certain	number	of	customers	com-	ing	up	to	a	service	desk	in	a	certain	length	of	time;
or	the	probability	of	a	certain	number	of	car	accidents	at	a	given	intersection.	We	are
looking	 for	 a	 discrete	 probability	 distribution;	 discrete	 because	 the	 number	 of
occurrences	is	an	integer.

Chapter	4	on	regression	showed	how	to	predict	the	size	of	 an	outcome	which	was
continuous	(money	or	time	perhaps).	The	dependent	variable—what	we	were	trying
to	predict—could	take	on	almost	any	value.	Now	we	want	to	predict	probabilities
for	 the	 occurrence	 of	 an	 independent	 variable	 which	 is	 an	 integer.	 Below	 we’ll
work	 through	 some	 hands-on	 applications,	 with	 the	 theory	 available	 in	 the
Glossary.

We’ll	break	this	into	two	parts:

The	probability	of	a binary	outcome .	The	probabilities	of	two	faulty	items	out	of
the	 next	 twenty	 on	 the	 production	 line.	 Or,	 the	 probability	 of	 at	 least	 five
customers	out	of	 the	next	 fifty	actually	buying	something.	This	is	estimated	with
the	binomial	distribution .

The	 probability	 of	 a	 particular	 count	 of	 occurrences	 over	 time	 or	 area.	 The
probability	of	three	or	fewer	people	arriving	at	your	Customer	Service	Desk	within
the	next	half	hour.	Or	more	than	 two	mistakes	in	the	next	ten	lines	of	code.	This	is
estimated	with	the	Poisson	distribution .
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12.1	Predicting	with	the	binomial
distribution

	

After	the	normal	distribution	(see	the	Glossary	for	a	definition),	 the	binomial	is	the
most	important	in	statistics.	The	math	for	the	binomial	distribution	is	also	defined	in
the	Glossary.

The	 binomial	 distribution	 provides	 the	 probability	 of	 a	 ‘success’	 in	 a	 certain
number	 of	 ‘trials’.	 For	 example,	 you	 can	 calculate	 the	probability	of	more	 than
seven	out	of	the	next	twenty	people	 through	 the	door	actually	buying	 something.
Here	a	‘success’	is	somebody	buying	something;	while	the	number	of	‘trials’	is	the
number	of	people	coming	through	the	door	(here	it	is	twenty).

Some	definitions:

What	we	are	looking	for	is	the	probability	of	a	pre-defined	number	of	‘successes’.
Note	that	the	definition	of	success	is	up	to	the	analyst.	 It	could	be	 ‘spending	more
than	$20’	or	wearing	a	hat.

In	the	example	we’ll	work	through	below	you	run	a	store.	You	know	that	the	long-run
probability	 of	 somebody	buying	 something	 is	 0.6.	 You	 obtained	 this	 number	 by
counting	total	numbers	of	customers	and,	out	of	those,	 the	numbers	who	 actually
bought	something	(successes).

Worked	example:	You	want	to	know	the	probability	of	exactly	three	people	through
the	door	out	of	the	next	five	buying	something.	Note	 that	‘success’	just	means	that
the	defined	event	happens.	Whether	or	not	it	is	a	‘good	thing’	isn’t	relevant.

For	Excel,	the	arguments	required	are:	 the	random	variable	whose	 probability	we
want	 to	 predict;	 number	 of	 trials,	 the	 long-run	 probability,	 and	 a	 true/false
statement.	In	the	example,	 the	number	 of	 trials	 is	 five.	The	 random	variable	 (X)
whose	probability	we	want	to	predict	is	3.	We	also	need	the	long-run	probability	of
a	success.	In	the	example,	p	=	0.6.	We	also	want	the	probability	of	exactly	3,	so	use
the	false	statement.	I’ll	go	into	this	in	some	detail	shortly.



	
Open	 an	 Excel	 spreadsheet,	 and	 type	 in	 =BINOM.DIST(3,5,0.6,false)	 and	 you
should	get	 this:	0.3456.	This	 is	 the	probability	of	 exactly	 three	people	out	of	 the
next	five	buying	something	(number	of	suc-	cesses	out	of	the	next	five	trials).	Notice
the	order	of	the	arguments	in	the	Excel	function.	And	especially	the	last	one,	which
in	the	example	above	is	false.	(The	alternative	is	true).	The	difference	is	important
because	the	results	are	quite	different.

True	and	false	argument .	Defining	the	argument	as	false	provides	the	probability
of	 exactly	 the	 random	 variable.	 Defining	 the	 argu-	 ment	 as	 true	 provides	 a
cumulative	probability.

Excel	 adds	 up	 probabilities	 from	 the	 left,	 so	 changing	 the	 argu-	 ments	 to
=BINOM.DIST(3,5,0.6,TRUE)	=	0.66304	is	the	sum	of	the	probabilities	of	X=0	+
X=1	and	so	on	up	to	an	including	X=3.	The	probability	of	0.66304	is	therefore	the
probability	of	three	or	fewer	customers	buying	something.	The	table	below	shows
the	probabilities	of	various	values	of	X,	both	‘false’	and	‘cumulative’.	As	you	can
see,	 the	cumulative	 is	 just	 the	continued	addition	 of	 each	successive	probability.
There	is	a	further	example	here¹

	

Probabilities	calculated	both	false	and	true

	

How	about	more	than	three	customers	buying	something?	In	math	notation,	we’re
looking	for	P(X	>=3).	We	know	that	 probabilities	must	sum	up	to	1.	We	know	that
three	or	fewer	is	0.66304.	So	more	than	five	has	to	be:	1	-	0.66304	=	0.33696.

	

¹https://www.youtube.com/watch?v=oZ1DmNQ8wW4

https://www.youtube.com/watch?v=oZ1DmNQ8wW4
https://www.youtube.com/watch?v=oZ1DmNQ8wW4


	
A	slightly	harder	example:	the	probability	that	at	least	four	cus-	 tomers	out	of	the
next	ten	will	buy	something?	We’re	looking	for	 P(X	 >=4).	 Look	 carefully	 at	 the
notation.	X	>=	4	implies	that	the	distribution	of	the	ten	customers	is	split	into	two
halves:	less	than	four	and	four	or	more.	It	is	the	latter	half	whose	probability	we’re
looking	for.

If	we	can	find	the	probability	of	0	+	1	+	2	+	3,	that	is	the	probability	of	less	than	four
(we	only	want	 integers	 here).	 So	 find	 that	 probability	 and	 then	 subtract	 from	 1,
making	use	of	the	fact	that	probabilities	must	sum	up	to	1.

Let’s	do	this	step	by	step.

First,	find	P(X	=	<	3),	that	is	the	probability	that	X	is	three	or	less:

=BINOM.DIST	 (3,10,0.6,true)	 =	 0.054762.	Notice	 the	 ‘true’	 which	 gives	us	the
cumulative	probability.

We	want	four	or	more,	so	subtract	from	1	like	this:	1	-	0.054762	=	0.945238.

Another	example.	It’s	winter	and	you	need	to	wear	a	sweater	every	day.	You	have
two	blue	and	three	red	sweaters.	Calculate	the	probability	that	during	the	week	you
will	wear	a	red	sweater:

Exactly twice	in	the	week

Answer:	the	long-run	probability	of	picking	a	red	sweater	is	3/5

=	0.6	because	you	have	five	sweaters,	and	three	of	them	are	red.	The	number	of	trials
is	7	because	there	are	7	days	in	a	week.	The	wording	of	 the	question	contains	 the
word	 ‘exactly’	 which	means	 that	we	 don’t	 want	 a	 cumulative	 answer,	 so	 we’ll
include	 the	 FALSE	 argument.	 Therefore	 the	 answer	 is	 =binom.dist(2,	 7,	 0.6,
FALSE)	=	0.077414

More	than	three	times.	When	you	see	words	such	as	‘more	than’	 that’s	a	clue	 that
you’re	looking	for	a	cumulative	 probability.	In	 math	 notation,	 we’re	 looking	 for
P(X>3).	 So	 if	 we	 find	 the	 cumulative	 probability	 up	 to	 and	 including	 two,	 and
then	sub-	tract	from	one,	we’re	done.	The	cumulative	probability	of	two



	
or	 fewer	 is	 P(X=0)	 +	 P(X=1)	 +	 P(X=2).	 So	 the	 answer	 is	 =	 1	 -
binom.dist(2,7,0.6,true)		=	0.903744

The	keys:

Write	out	what	you	are	trying	to	predict	in	math	notation.	This	forces	you	to	be	clear.
Draw	a	little	sketch	(hopefully	better	than	mine!)	if	you	get	confused.

If	the	wording	of	your	problem	contains	‘exactly’	or	requires	the	probability	of	just
one	particular	outcome	(eg	P(x=3))	then	you	want	to	use	false.

	



12.2	Predicting	with	the	Poisson
distribution

	

The	binomial	distribution	gave	us	the	probability	of	a	binary	outcome	(yes/no)	out
of	 a	 certain	 number	 of	 trials.	 The	 Poisson	 gives	 us	 the	 probability	 of	 a	 certain
number	within	a	specified	time-frame	or	area.

Here’s	the	example.	You	 run	 the	Customer	Service	Desk.	You	want	 to	 know	 the
probability	of	five	or	fewer	customers	arriving	in	the	next	half	hour.	That	would	be
useful	for	staffing,	wouldn’t	it?	You	know	that	the	on	average,	20	customers	arrive
every	half	hour.	You	know	that	because	have	counted	them.

We	want:	P(X>=5).	Like	the	binomial	above,	the	Poisson	has	a	true/false	argument
for	whether	we	want	cumulative	probabilities	or	‘exact’.	The	notation	 include	 a	>
sign,	 which	 implies	 cumulative,	 so	 we	 use	 TRUE.	 In	 Excel:
=POISSON.DIST(5,20,true).	The	answer	 is	7.19088E-05.	This	 looks	 a	 bit	weird,
but	it	is	just	math	notation.	The	E-05	means	that	you	should	move	the	decimal	point
5	places	to	the	left.	So	there	are	four	zeroes	in	front	of	the	leading	7.	In	other	words,
an	extremely	small	probability.	Perhaps	send	some	 staff	 out	 for	 lunch?	 It	 is	 very
small	because	5	is	a	long	way	from	your	long	run	average	of	20.



	

	

	

	

	



13.		Choice	under
uncertainty

Virtually	 all	 business	 decisions	 involve	 at	 least	 some	 degree	 of	 uncertainty.	 For
example,	you	don’t	know	(and	presumably	 can	never	know)	some	future	‘state	of
nature’	which	might	be	an	exchange	rate	or	business	rental.	A	farmer	does	not	know
the	price	 of	 wheat	 at	 harvest	 time,	 but	 has	 to	 decide	 how	much	 to	 plant	 many
months	 ahead.	 His	 decision	 is	 relatively	 simple	 compared	 to	 a	 decision-maker
confronted	with	an	opponent	who	will	 react	to	take	advantage	of	whatever	decision
you	do	make.	The	first	situation	 is	called	‘non-strategic’	and	 is	easily	handled	by
the	expected	monetary	value	method	which	we’ll	work	through	in	the	chapter.	The
second	‘strategic’	situation	is	more	complicated	but	can	be	solved	by	an	application
of	game	theory.	We’ll	cover	the	EMV	method	in	some	detail	below.	Game	theory	is
an	enormous	subject	and	we	don’t	cover	it	here,	but	I’ll	give	an	example	at	the	end	of
the	chapter	along	with	some	recommended	reading.

	



13.1	Influence	diagrams
	

An	influence	diagram	is	a	sketch	of	the	influences	and	outcomes	of	a	decision.	The
influence	diagram	allows	us	to	think	through	 and	depict	 the	 forces	 that	 influence
our	choices	without	having	to	assign	probabilities.	It	is	customary	to	use	oval	shapes
for	variables	which	are	uncertain,	a	box	for	a	decision	node;	and	lozenges	for	the
outcome.
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Vacation	Influence	diagram

	

You	are	an	outdoors-type	and	so	the	choice	of	activity	is	affected	by	the	weather.	The
weather	forecast	is	affected	by	the	weather	condition	 (one	hopes!).	But	you	don’t
know	the	actual	weather	condition,	just	the	forecast	(which	is	why	it	is	a	forecast).
You	choose	your	activity	(box)	based	on	the	forecast.	The	amount	of	satisfaction	you
get	 (lozenge)	 depends	 on	 the	 activity	 you	 chose	 AND	 the	 actual	 weather
condition:	observe	the	two	lines	 leading	to	the	lozenge.	There	is	a	standard	format:

	
1.		Decision	Nodes	are	presented	in	rectangles.	In	the	example	on	the	slides,
the	decision	is	what	activity	to	pursue	when	on	vacation	(climb	a	mountain?
read	a	book?).	Which	choice	we	make	may	to	some	extent	be	determined	by
the	weather	forecast.

2.	 	 Uncertainty	Nodes	 are	 presented	 in	 ovals.	 The	 weather	 fore-	 cast	 is
uncertain	and	so	is	the	actual	weather	itself.

3.		Outcome	Nodes	are	presented	in	lozenges.	The	outcome	in	the	vacation
example	is	how	much	satisfaction	you	took	from	 the	choice	you	made	for
vacation	activity.	This	is	a	utility.



	
4.	 	Arcs	 display	 the	 flow	 of	 the	 influence.	 The	 actual	weather	 condition
affects	the	weather	forecast,	which	affects	 your	planning.	Notice	that	you
are	 taking	a	decision	on	activity	 in	 advance	 of	 knowing	 what	 the	 actual
weather	will	be.	That	is	why	there	is	no	arc	between	weather	condition	and
vacation	activity.

	
You	can	draw	influence	diagrams	quite	easily	in	Excel	using	the	shapes	drop-down
tool.

There	are	different	outcomes	here,	which	we	can	be	 represented	 as	 payoffs.	The
highest	payoff	comes	from	matching	your	choice	of	activity	to	the	weather	forecast
and	then	finding	that	the	forecast	matched	 reality.

	



13.2	Expected	monetary	value
	

the	expected	monetary	value,	or	EMV,	is	just	the	value	of	some	out-	come	given	a
particular	state	of	nature,	multiplied	by	the	probability	of	that	state	of	nature.	Here,	I
am	 using	 the	 customary	 expression	 ‘state	 of	 nature’	 not	 necessarily	 to	 refer	 to
anything	in	the	natural	world,	but	to	a	particular	set	of	conditions.

The	state	of	nature	has	to	be	mutually	exclusive	for	the	probabilities	 to	work.	For
example,	 if	 we	 have	 separate	 probabilities	 for	 rain	 and	 sunshine,	 then	 cannot
calculate	for	rain	AND	sunshine.	The	payoffs	which	result	from	each	state	of	nature
are	different,	depending	on	the	state	of	nature.

Let’s	motivate	this	with	an	example	using	a	friendly	farmer	as	the	decision-maker.
He	has	the	choice	of	planting	wheat,	raising	cattle,	or	some	mixture	of	both.	Those
three	potential	decisions	represent	his	range	of	choices.	From	experience,	he	knows
how	much	he	can	expect	to	receive	depending	on	the	weather	at	the	time	of	harvest.
That	amount	is	called	the	payoff .



	
He	faces	three	states	of	nature,	representing	different	weather	conditions	at	harvest.
These	are	 rain,	clear,	and	sunny.	For	each	 choice	and	 for	each	state	of	 nature	 he
knows	the	payoffs	which	are	represented	in	the	cells	below.

	

The	payoff	table	for	the	farmer

	

There	are	three	decisions	and	three	outcomes,	making	a	total	of	9	possible	payoffs.
Payoffs	can	be	negative,	and	are	not	always	in	terms	of	money.	They	could	be	time,
or	any	other	 appropriate	 metric.	 In	 the	 rows	we	 put	 the	 choices	 available	 to	 the
decision-	maker.	In	the	columns	we	put	the	‘states	of	nature’	which	are	the	 future
events	not	under	the	control	of	the	decision-maker.

The	 farmer	 calculates	 the	 probability	 of	 each	 of	 the	 three	 outcomes	 by	 working
through	old	weather	records.	He	finds:

probability	of	raining	is	0.4	probability	of	clear	is	0.3	probability	of	sunny	is	0.3	(of
course	these	probabilities	must	all	add	up	to	1.	There	could	be	many	more	‘states	of
nature’	but	I	have	kept	them	to	three	for	clarity.

The	Expected	Value	is	the	sum	of	each	probability	multiplied	by	 the	outcome.	 In
math	notation	this	is:

EMV	=	
∑	
p x	∗	x

which	 in	words	 is:	 the	 expected	monetary	 value	 is	 the	 sum	of	 all	 the	 outcomes
multiplied	by	their	probability.	In	Excel,	use	the	formula

=sumproduct(array1,	 array2).	 This	 is	 a	 mean,	 or	 average,	 with	 each	 outcome
weighted	by	its	probability.	In	decisions	involving	money,



	
we	usually	call	the	Expected	Value	the	Expected	Monetary	 Value	(EMV).	For	the
farmer,	the	EMVs	are	as	below:

	

The	EMVs	for	the	farmer

	

I	multiplied	(horizontally	by	decision)	the	payoff	by	the	probability	 of	that	payoff
and	then	summed.	Usually	we	choose	the	decision	 with	 the	highest	EMV,	 so	 the
farmer	should	choose	wheat.	Expected	value	Youtube¹

Note	 that	 a	 ‘good’	 decision	 is	 making	 the	 best	 decision	 at	 the	 time	 with	 the
information	to	hand	at	that	time.	There	may	be	unlucky	consequences	but	provided
the	analyst	has	done	a	thorough	job	in	selecting	 the	optimal	outcome	at	 the	 time,
then	she	should	not	be	blamed!

It	will	be	highly	unusual	for	an	outcome	of	30	to	actually	occur.	The	EMV	is	just	a
weighted	average	and	not	a	prediction.

	

https://www.youtube.com/watch?v=fR7cBts1C1w
https://www.youtube.com/watch?v=fR7cBts1C1w


13.3	Value	of	perfect	information
	

The	 farmer	might	 be	 tempted	 to	 ask	 for	 advice	 from	 a	 consultant.	 What	 is	 the
maximum	he	or	she	should	pay	for	the	advice?	It	is	the	difference	between	the	best
case	 that	 the	 farmer	 calculates	 and	 how	 much	 he	 would	 receive	 with	 perfect
information.	We	calculate	the	value	of	perfect	information	by	comparing	the	EMV
of	the	best	choice	in	each	state	of	nature	with	the	EMV	without	information.	If	you
knew	that	the	weather	would	be	poor,	you	would	select	Cattle;	clear	wheat;	sunny
wheat	again.	Then	find	the	EMV	with	perfect	information	by	multiplying	these	best
options	by	their	 probabilities.

	

¹https://www.youtube.com/watch?v=fR7cBts1C1w

https://www.youtube.com/watch?v=fR7cBts1C1w


	
The	working	is:	100.4	+	300.3	+	70*0.3	=	4+9+21	=	34.	The	best	we	could	come	up
without	perfect	information	was	30,	so	the	value	of	perfect	information	is	34	-	30	=
4.	So	if	someone	offered	you	perfect	information	for	a	price,	the	highest	that	you
would	pay	for	the	perfect	information	would	be	not	more	than	4.

	



13.4	Risk-return	Ratio
	

There	 are	 other	 ways	 of	 choosing	 the	 optimal	 outcome	 other	 than	 the	 EMV,
although	the	EMV	remains	the	most	commonly	used.	One	common	measure	is	the
Return	to	Risk	Ratio ,	which	provides	the	dollars	returned	per	dollar	put	at	risk.
For	each	decision,	we	divide	 the	Expected	Value	of	 the	decision	by	the	Standard
Deviation	of	the	outcome	for	that	decision.	We	usually	choose	the	decision	with	the
highest	RRR,	because	 then	 the	dollar	 return	for	each	dollar	put	at	 risk	is	highest.
The	farmer’s	worksheet	is	below.

Mixed	has	a	zero	because	the	payoffs	are	all	the	same.	There	is	no	risk.	Cattle	has	the
highest	at	0.715.	This	 is	higher	 than	 the	RRR	 for	 wheat	 although	wheat	 has	 the
highest	EMV.	The	farmer	might	want	to	think	more	deeply	about	the	probability	of
sunny	weather	at	harvest	time,	because	this	makes	a	huge	difference.

	



13.5	Minimax	and	maximin
	

A	 non-probabilistic	 approach	 to	 making	 choices	 is	 the	 use	 of	 maximin	 and
maximax.	You	can	 see	 that	your	 choice	depends	on	 whether	 you	 are	 pessimistic
(maximin)	or	optimistic	(maximax).	If	we	can	somehow	obtain	probabilities,	then	a
probabilistic	 approach	works	best.



	



13.6	Worked	examples
	

You	are	 planning	 to	 market	 a	 new	 coffee-flavored	 drink.	 You	 have	 a	 choice
between	packing	the	drink	in	a	returnable	or	non-	 returnable	packaging.	Your	local
government	is	debating	whether	non-returnable	bottles	 should	be	prohibited.	The
table	below	shows	your	profits.	If	the	non-returnable	law	is	passed,	you	will	still	get
some	sales	from	exports.

	

Decision Law	passed Law	not	passed

Returnable 80 40

Nonreturnable 25 60

	

Example	1

	
1.	 	What	 would	 be	 the	 best	 decision	 based	 on	 maximin	 and	 maximax
criteria?

2.	 	A	lobbyist	tells	you	that	the	probability	of	the	government	banning	non-
returnables	is	0.7.	Assuming	the	lobbyist	is	right,	what	is	the	best	decision
based	on	the	EMV?

3.		At	what	level	of	probability	would	your	decision	change?

4.		How	much	would	you	pay	for	perfect	information?

	
Answers:

1.	 	 	 	 	 	 	 	 	Maximin:	 the	worst	are	25	and	40.	The	best	 is	40,	meaning	package	with
returnables.	Maximax:	the	best	are	80	and	60.	Again	returnables.

	
1.	 	The	EMV	for	returnable	is	800.7	+	400.3	=	68.	For	nonreturn-	able	it	is
250.7	+	600.3	=	35.5.	Under	EMV,	you	should	use	returnable	bottles.

2.	 	Set	this	up	as	equation,	with	p	the	unknown	which	has	to	balance	both
sides	80p	+	40(1-p)	=	25p	+	60(1-p).	Solve	for



	
p	and	get	0.267.	So	if	you	hear	rumours	that	suggest	the	probability	is
coming	down,	think	again?

3.	 	If	we	had	perfect	information,	the	EVPI	is	800.7	+	600.3	=	74.	So	you
should	not	pay	more	than	74	-	68	=	6

	
Example	2

You	run	a	bank.	A	customer	wants	to	borrow	$15,000	for	1	year	 at	 10%	 interest.
You	believe	that	there	is	a	5%	chance	that	the	customer	will	default	on	the	loan,	in
which	case	you	will	lose	all	the	money.	If	you	don’t	lend	the	money,	you	will	instead
place	the	$15,000	in	bonds	which	return	6%	but	are	risk-free.

	
1.		What	are	the	EMVs	of	loan	and	not	loan?

2.	 	You	have	 a	 credit	 investigation	 department	 which	 can	 help	 you	 with
more	accuracy	in	the	probability	of	default.	What	is	the	most	you	should	be
willing	to	pay	for	their	advice?

3.	 	Calculate	the	level	of	probability	of	default	at	which	lending	 the	money
and	investing	in	bonds	have	equal	EMV.



	

	

	

	



14.		Accounting	for	risk-
preferences

What	 this	 chapter	 is	 about:	 the	 previous	 chapter	 showed	 how	we	 could	 pick	 the
most	attractive	choice	given	payoffs	and	probabil-	 ities.	But	 it	might	have	struck
you	that	 there	was	little	discussion	of	the	risks	involved	and	how	different	people
relate	 to	 risk.	 In	 this	 chapter	 we	 are	 going	 to	 work	 through	 picking	 optimal
decisions,	taking	into	account	the	risk	preferences	of	the	decision	makers.

Here	is	a	question	for	you:	you	are	given	a	lottery	ticket	which	has	a	0.5	probability
of	winning	$10,000	and	a	0.5	probability	of	zero.	The	EMV	is	therefore	10,0000.5
+	 00.5	 =	 $5000.	 Someone	 comes	 along	 and	 offers	 you	 $3000	 for	 the	 ticket
guaranteed.	 Would	 take	 the	 sure	 thing?	 Or	 would	 you	 hope	 that	 you	 win	 the
$10,000?	Most	 people	are	‘risk	averse’	and	would	prefer	 to	give	up	some	of	 the
EMV	in	exchange	for	certainty.	The	$3000	(or	however	much	it	is)	is	 called	your
Certainty	Equivalent	 (CE)	 in	 this	particular	gamble.	The	 difference	 between	 the
EMV	and	the	CE	is	called	the	Risk	Premium.	So

RP	=	EMV	-	CE

You	can	think	of	the	certainty	equivalent	as	a	selling	price.	It	is	usually	small	when
the	size	of	the	gamble	is	small,	but	increases	as	 the	gamble	gets	larger.	Here	I	am
using	 the	 term	 ‘gamble’	 because	 there	 are	 probabilities	 involved.	 The	 certainty
equivalent	is	a	useful	concept	which,	amongst	other	qualities,	allows	us	to	categorize
approaches	to	risk.

	

•		Risk-averse .	If	your	CE	is	less	than	the	EMV	of	a	gamble,	then	you	are
risk-averse	 (and	 most	 people	 are,	 so	 nothing	 to	 worry	 about.	 You’re
‘normal’)
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•		Risk-neutral .	Your	CE	matches	the	EMV.	You	play	the	aver-	ages.

•	 	Risk-seeking .	You	enjoy	the	gamble	 inherent	 in	 the	EMV	and	 need	 to
have	a	very	high	CE	before	you’ll	give	it	up.	Most	people	in	business	who
are	 risk-seeking	 usually	 don’t	 last	 very	long.	Although	we	sometimes	see
risk-seeking	decisions	when	your	business	is	in	trouble	and	a	huge	gamble	is
the	only	possible	solution

	
Business	decisions	are	all	about	 risk,	and	 the	probabilities	 them-	selves	are	often
unreliable	and	hard	to	find.	The	farmer	whose	crop-	 ping	 decision	 we	 studied	 in
Chapter	2	doesn’t	know	 tomorrow’s	weather,	let	alone	the	weather	in	six	months.
We	generally	prefer	to	give	up	some	of	the	EMV	in	return	for	more	certainty	because
we	are	risk	averse.	That’s	why	we	buy	insurance.	I	know	that	I	will	be	covered	if	I
smash	my	car,	and	I	can	even	put	up	with	the	knowledge	 that	people	in	Zurich	are
getting	richer	because	of	my	aversion	to	risk.

	



14.1	Outline	of	the	chapter
	

Here’s	what	we’re	going	to	do:

	
•		Describe	utility	and	calculate	utilities

•		Show	how	to	use	the	exponential	utility	function	to	calculate	utilities	based
on	risk	tolerance

•	 	Convert	those	utilities	 to	 certainty	 equivalents	which	we	 can	 rank	 and
compare	with	the	EMVs	of	the	same	decision

	
To	rank	 choices	 in	 terms	 of	 their	 certainty	 equivalent	 rather	than	 their	 EMV,	we
need	the	concept	of	utility,	which	is	a	 numerical	measure	of	how	well	a	good	or
service	 satisfies	a	need	or	want.	Do	 you	 prefer	 to	 be	 reading	 this	 book,	 outside
eating	an	ice-cream,	or



	
talking	with	a	friend?	You	can	 rank	 these	 choices	 quickly	 in	 your	 head.	You	can
subconsciously	allocate	utility	numbers	to	the	choices	and	then	pick	whichever	has
the	highest	utility.

Utility	 numbers	 help	 us	 to	 rank	 our	 preferences,	 but	 there	 are	 no	 units	 and	 the
ranking	is	individual-specific.	In	other	words,	given	a	set	of	alternatives,	different
people	may	well	 have	different	rankings	for	 them.	For	 the	moment,	 let’s	assume
that	it	is	just	you	whose	utilities	we	are	interested	in.	If	we	can	somehow	figure	out
your	 utilities	for	 the	different	outcomes	of	a	business	decision,	we	can	use	 those
utilities	to	help	you	make	a	more	psychologically	satisfying	choice.

	

Utility
	

The	plot	below	shows	a	hypothetical	utility	curve.	The	utility	value	is	on	the	vertical
y	axis	and	the	outcome	of	a	gamble	is	on	 the	horizontal	x	axis.	Notice	two	things:

	

A	typical	utility	curve

	

*The	slope	of	the	line	is	upwards.	This	reflects	the	fact	that	everyone	 prefers	more
money	to	less



	
•	 	The	 rate	 of	 increase	 of	 the	 line	 is	 decreasing	 or	 slowing	 down.	 It	was
steep	early	on,	but	towards	the	end	it	is	almost	a	plateau.	This	is	because	the
value	of	each	extra	 dollar	 is	slightly	less	than	that	of	 the	 previous	dollar.
This	is	the	marginal	utility	of	money.

	



14.2	Where	do	the	utility	numbers	come	from?
	

There	are	two	approaches.

The	first	involves	asking	the	decision-maker	his/her	choice	between	two	gambles.

The	 second	uses	 a	 utility	 function,	 a	mathematical	 function	 which	 converts	 two
input	variables	(risk	tolerance	and	the	size	of	the	outcome)	into	one	utility	number.

With	a	utility	number	in	hand	we	can	begin	the	process	of	ranking	the	decisions	in
terms	of	utility	rather	than	EMV.

	

The	intuitive	model
	

We’ll	work	through	the	intuitive	model	first	and	then	apply	the	same	thinking	to	the
equation	model.	Once	you	get	 the	hang	of	 it,	 the	equation	model	 is	 quicker	 and
probably	 more	 accurate.	 We’ll	 use	 the	 payoff	 table	 from	 the	 farmer	 example,
repeated	below.

	

The	payoff	table	for	the	farmer

	

We’ll	assign	a	utility	number	of	1	to	the	highest	payoff	and	then	zero	to	the	lowest.
The	beginnings	of	the	utility	table	looks	like	this:



	
Payoff														Utility

	

70														1

40

30

20

10

-10

-30														0

	
Now	we	need	to	fill	in	the	gaps.	What	we’ll	do	is	to	use	each	payoff	 as	a	certainty
equivalent,	and	ask	this	question:

What	value	of	p	would	make	you	indifferent	between	either	receiv-	ing	a	guaranteed
payoff	of	the	certainty	equivalent	(in	the	first	case

40)			or	accepting	a	gamble	of	receiving	the	highest	payoff	(70)	with	probability	p	or
losing	30	(the	lowest	payoff)	with	probability	1-p.	Let’s	say	that	you	answer	p	=	0.9.
The	expected	value	of	the	gamble	is	70	*	0.9	+	0.1(-30)	=	60.

This	 is	 higher	 than	 your	 certainty	 equivalent	 of	 40,	 indicating	 that	 you	 are	 risk
averse.	The	difference	between	the	expected	value	and	the	certainty	equivalent	is	the
risk	premium,	and	is	the	amount	the	individual	is	willing	to	give	up	to	forgo	risk.

Continue	downwards,	certainty	equivalent	by	certainty	equivalent	and	complete	the
table.	I’ve	made	up	the	numbers	just	for	illustra-	tion.	A	plot	of	the	utility	values	is
also	shown.

	

Payoff Utility

70 1

40 0.9

30 0.8

20 0.65

10 0.4

-10 0.35

-30 0





	

	

Farmer’s	utility	curve

	

If	you	were	risk-neutral,	you	would	prefer	to	take	the	gamble	and	so	would	be	an
EMV	maximizer.	The	choice	of	the	risk-neutral	person	 is	indicated	by	the	straight
line.

Now,	let’s	replace	the	payoff	values	in	the	farmer	table	with	utilities.	We	can	calculate
the	expected	utilities	in	the	same	way	as	we	found	the	EMVs.	The	table	shows	both
for	comparison.	We	multiply	the	utility	of	each	outcome	with	its	probability.

	

Expected	utilities

	

The	 famer’s	 EMV	 decision	 would	 have	 been	 wheat	 (EMV=14)	but	 taking	 into
account	 his	 risk	 preferences,	 mixed	 gives	 the	 highest	 expected	 utility.	 It	 makes
senses	to	spread	the	risk	between	 two	completely	different	 crops.

##The	exponential	utility	curve	method

It	 is	 rather	 tedious	asking	so	many	questions,	plus	people	get	 tired	 and	confused
rather	quickly.	An	attractive	alternative	is	to	use	a



	
mathematical	function,	 the	exponential	utility	curve.	This	requires	 only	one	input
variable,	R,	the	tolerance	for	risk.	The	equation	is	below:

	

U x	=	1	−	e− x / R

Here	x	 is	 the	 payoff;	 Ux	 is	 the	 utility	 of	 the	 payoff	 x;	 and	 R	 is	 the	individuals
risk	tolerance.	A	person	with	a	 large	 value	 of	R	 is	more	likely	to	take	risks	than
someone	with	a	smaller	R	value.	As	the	R	value	increases,	the	behavior	approaches
that	of	the	EMV	maximizer.	The	plot	for	someone	with	a	risk	tolerance	of	R	=	1000	is

below.	
																																																																																																 Actually	performing
the	calculations	to	find	utility	at	each	level	of	payoff	is	easy	using	Excel,	as	we’ll	see
below.	But	first	we	have	to	determine	R,	the	individual’s	tolerance	for	risk.

	

Finding	risk	tolerance
	

There	are	two	approaches

By	asking	this	question:	consider	a	gamble	which	had	equal	chances	 of	making	a
profit	of	X	or	a	loss	of	X/2.	What	is	the	value	of	x	 for	which	you	wouldn’t	care
whether	you	had	the	gamble.	In	other	words,	what	is	the	value	of	x	for	which	the
certainty	equivalent	is



	
zero?	The	expected	value	of	the	alternative	is	0.5	x	X	-	0.5	*	(X/2)	=	0.25X.	As	long
as	 X >	0	 then	 the	 decision-maker	 is	 displaying	 risk-	 averse	 behavior,	 because
his/her	certainty	equivalent	is	less	than	the	expected	value	of	the	gamble.	The	greater
the	R,	the	more	tolerant	of	risk.	In	his	book,	Thinking	Fast,	Thinking	Slow,	Daniel
Kahneman	notes	 that	 the	 ‘2’	 in	 the	denominator	can	vary	a	 tad.	 It	 isn’t	a	precise
formula,	but	apparently	it	comes	close:	In	diagram	form:

	An	al-	 ternative	approach,	more	used	in
business	and	finance,	is	to	employ	 guideline	numbers	calculated	by	Professor	Ron
Howard¹	,	a	pioneer	of	decision-analysis.	Based	on	his	years	of	experience,	Howard
suggests	that	the	R	value	for	a	company	is:

	
•		6.4%	of	new	sales

•		124%	of	net	income

•		15.7%	of	equity

	
##Example	decision	using	utility	maximisation

What	we’ll	 do	here	 is	 to	 examine	 a	decision	 from	 both	 the	 EMV	 and	 Expected
Utility	angles,	using	 the	exponential	utility	 function.	 The	calculation	of	expected
values	is	the	same:	the	difference	is	that	instead	of	multiplying	each	monetary	payoff
by	its	probability	and	then	adding	up,	we	multiply	the	utility.

	

¹https://profiles.stanford.edu/ronald-howard

https://profiles.stanford.edu/ronald-howard
https://profiles.stanford.edu/ronald-howard


	
The	 decision	 set-up.	 All	 money	 figures	 in	 millions.	 I	 run	 a	 coffee	 importing
business.	I	need	a	special	import	license	to	bring	in	a	particular	type	of	coffee.	The
equity	of	my	company	is	12.74.	So,	my	R	value	is	15.74%	of	12.74	=	2.

I	have	a	choice	between	‘rush’	and	‘wait’	for	the	permit.

If	I	rush,	I	have	to	pay	a	special	fee	of	5,	and	there	is	a	50/50	chance	of	the	permit
being	granted.	If	it	is	granted,	I	will	have	sales	of	8,	giving	me	a	net	profit	of	8-5	=	3.
If	it	isn’t	granted,	I	still	have	to	pay	the	5,	but	will	have	sales	of	only	6,	giving	me	a	net
profit	of	2.	First,	find	the	EMV	and	EU	of	rushing.	The	EMV	is	0.5x3	+	0.5(2)	=	2.5.

Using	the	exponential	curve	formula,	the	utility	of	3	is	=	1	-	exp(-	 3/2)	=	0.77687.
And	the	utility	of	2	is	=	1	-	exp(-2/2)	=	0.632121.	The	EU	for	rushing	is	0.5(0.77687)
+	0.5(0.632121)	=	0.704496.	All	figures	are	in	millions.

Now	for	the	alternative,	which	is	to	wait.	In	this	scenario	 the	probabilities	are	the
same	at	50/50,	but	the	cost	is	only	3	if	it	is	issued,	nothing	if	it	isn’t.	The	sales	are	the
same	at	8	and	4.	The	net	profits	are	8	-	3	=	5	and	4.	The	EMV	is	0.55	+	0.54	=	4.5.	The
utilities	are	U(5)	=	1	-	exp(-5/2)	=	0.918	and	U(4)	=	1	-	exp(-4/2)	=	0.865.	The	EU	is
0.50.918	+	0.50.865	=	0.892.

The	table	below	shows	the	EMVs	and	EUs.
	

Spreadsheet	for	the	rush	decision

	

But	we	can	go	further	using	certainty	equivalents,	subject	of	the	next	 section.



	



14.3	Converting	an	expected	utility	number	into	a
certainty	equivalent.

	

Fortunately	 there	 is	 an	 easy	way	 to	 convert	 expected	 utilities	 back	 to	 certainty
equivalents.	 It	 is	 then	 straightforward	 to	 rank	 the	 decisions	 by	 certainty
equivalents.	 Remember	 the	 concept	 of	 the	 certainty	 equivalent?	 The	 amount	 of
money	which	it	would	 take	for	you	 to	 sell	your	gamble?	 It	 turns	out	 that	we	can
convert	an	expected	utility	number	into	a	certainty	equivalent	using	an	equation:

	

CE	=	− R	∗	ln (1	−	EU	)
where	ln	is	the	natural	logarithm.	We	use	this	equation	where	we	are	talking	profits
and	want	more.	In	the	case	of	costs,	take	off	the	negative	sign	in	front	of	R.

Above	we	found	EU	=	0.704496	for	the	rush	decision	branch.	That	is	a	CE	of

=	-	2*LN(1-0.704496)	=	 2.43814

using	 Excel’s	 ln	 function.	 For	 the	 wait	 decision,	 the	 EU	 was	 0.892,	 giving	 a
certainty	equivalent	of	=	-	2*LN(1-0.892)	=	4.451248

Larger	CEs	are	preferred	when	the	outcomes	are	profits,	and	smaller	CEs	when	the
outcomes	are	costs.	So	I’d	wait!	This	confirms	the	decision	made	with	the	Expected
Utilities.



	

	

	

	

	



15.		Glossary
This	is	a	hands-on	guide	to	doing	some	basic	 analytic	work	with	 data.	However,
statistics	has	its	own	set	of	vocabulary	and	tech-	niques.	When	you	are	presenting
your	 results	 to	other	people,	you	may	wish	 to	 follow	established	 techniques	 and
terminology.	 Also,	 here	 you’ll	 find	 more	 of	 the	 underlying	 theory	 if	 you	 are
interested	in	how	Excel	gets	the	results	it	does.

Binomial	distribution

The	 binomial	 distribution	 is	 used	 to	 find	 the	 probability	 of	 the	 occurrence	 of	 a
certain	number	of	events	(called	successes,	although	they	could	be	anything	clearly
defined)	within	a	number	of	trials.	The	binomial	distribution	will	give,	for	example,
the	probability	of	at	least	ten	parts	being	defective	out	of	the	next	hundred,	provided
the	long-term	defective	rate	is	known.	The	binomial	 requires	 some	 conditions	 to
work	properly.	These	 are:

a	sequence	of	n	identical	trials	there	are	two	outcomes	for	each	trial,	denoted	success
and	failure	the	probability	of	success	doesn’t	change	the	trials	are	independent.

It	 is	quite	easy	to	calculate	the	probabilities	with	Excel	but	for	 illustration	here	is
the	equation	which	Excel	uses:

	

	

f	( x )	=

(	n	)

x

p x (1 −	p )

( n − x )

	

where	x	is	the	number	of	successes;	p	the	probability	of	success	on	one	trial;	n	the
number	of	trials,	and	f(x)	 the	probability	of	x	 successes	 in	n	 trials.	This	notation
points	up	the	fact	that	the	result	is	a	function	of	x.
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Central	limit	theorem	(CLT)

The	central	 limit	 theorem	is	fundamental	 in	statistics.	What	 the	 theorem	states	 is
this:	let’s	say	you	have	a	large	population	and	 you	 keep	 taking	 samples	 from	 the
population	and	measuring	 the	mean	of	each	sample.	Then	you	draw	a	histogram	of
the	means	so	that	each	mean	is	a	variable	in	the	distribution.	In	other	words,	instead
of	 plotting	 each	 observation	 independently,	 we	 plot	 them	 by	 the	means	 of	 each
sample.	The	histogram	which	appears	will	be	approximately	normally	distributed,	or
in	the	shape	of	the	well-	 known	 bell	 curve.	 This	 is	 wonderful	 news	 because	 the
normal	distribution	is	well	behaved,	and	so	we	can	calculate	the	area	under	any	part
of	it.

Correlation

You	have	a	pair	of	variables:	for	example:	website	hits	and	 actual	sales.	You	want
to	 know	whether	 there	 is	 a	 relationship	 between	 the	variables.	And	whether	it	is
‘statistically	significant’,	or	perhaps	what	you	thought	was	a	relationship	occurred
just	by	chance.

Correlation	 is	 the	 study	 of	 the	 linear	 relationship	 between	 two	 or	 more	 random
variables.	Correlation	analysis	provides	both	the	direction	and	 the	strength	of	 the
relationship	between	the	variables.	For	example,	there	is	a	relationship	between	the
height	and	weight	of	individuals.	There	 is	 apparently	 also	 a	 relationship	between
consumption	of	sugar	and	obesity	rates	at	the	national	level.	Cor-	relation	analysis
can	test	whether	the	relationships	are	spurious	or	real.

It’s	true	and	worth	repeating: correlation	does	not	imply	cau-	sation .	It	does	not
necessarily	 follow	 that	 one	variable	 causes	 the	 other	 even	 though	 they	might	 be
highly	 correlated.	 There	 are	 many	 examples	 of	 such	 spurious	 correlations,	 for
example	national	 consumption	of	 chocolate	 and	number	 of	Nobel	 prizes	won.	 If
you	 do	 find	 a	 correlation,	 first	 think	 about	 whether	 you	 have	 a	 lurking	 variable
discussed	 below.	 The	 two	 examples	 given	 above	 for	 height/weight	 and	 sugar
consumption	might	very	well	include



	
causal	effects,	but	this	is	not	something	that	correlation	analysis	can	establish	on	its
own.	Indeed,	some	philosophers	(such	 as	David	 Hume)	 claim	 that	 causation	 can
never	be	decisively	established.

Now	we	will:

	
•		Visualize	a	correlation	with	a	scatter	plot

•		explain	why	the	coefficient	of	correlation	works

•		interpret	the	value	of	the	coefficient	of	correlation

•		test	for	the	statistical	significance	of	the	coefficient	of	corre-	lation

	
Scatterplots	and	correlation

A	canning	factory	has	data	on	number	of	workers	employed	and	output	of	cans.	The
dataset	is	‘canning’.	The	factory	is	interested	in	the	relationship	between	the	number
of	workers	and	output.	Load	the	data	into	Excel.

	

First	few	line	of	the	canning	data

	

The	columns	of	data	 represents	numbers	of	workers	 and	cans	manufactured.	For
the	notation	we’ll	call	these	X	and	Y.	When	I	mean	the	name	of	the	variable,	I’ll	use
the	upper	case.	For	individual	observations,	such	as	x	=	23,	I’ll	use	lower	case.	We
want	to	see	the	relationship	between	X	and	Y.	To	do	this	we	need	to	have	the	data	laid
out	in	columns	so	that	each	observation	of	X	and	Y	are	on	the	same	line.	It’s	always	a
good	thing	to	visualise	the	relationship	with	 a	 scatter	 plot	 and	 the	 scatter	 plot	 is
below.



	

	

The	cans	scatter	plot

	

I’ve	drawn	a	vertical	and	horizontal	line	which	goes	through	the	means	of	the	two
variables.	We	can	divide	the	observations	into	 quadrants,	with	quadrant	one	being
top	right	and	so	forth.	If	the	relationship	is	positive	then	we	would	expect	to	see	most
of	 the	 observations	 in	 quadrant	 one	 and	 quadrant	 three.	 If	 the	 relationship	 was
negative	then	most	of	the	observations	would	be	in	quadrants	two	and	four.

The	relationship	between	X	and	Y	is	not	perfectly	linear.	If	it	was	 all	 the	 pairs	 of
points	would	 line	up	along	a	 straight	 line.	We	need	some	way	of	measuring	how
far	 off	 being	 in	 a	 straight	 line	 these	 observations	 are.	 There	 are	 two	 measures,
covariance	and	coefficient	of	correlation.	There	is	some	maths	in	what	follows	but
we’ll	walk	through	it	slowly.

Covariance:	Try	this	thought	experiment:	if	all	the	Y	points	were	on	a	vertical	line,
then	the	subtraction	of	the	mean	from	each	Y	value	would	give	us	zero:

	

( y i	− y )̄	=	0

I’ve	put	in	a	little	i	for	the	y	values	to	show	that	it	could	be	any



	
of	the	values	in	the	Y	variable.	Similarly	for	the	X	values,	if	all	the	points	were	on	a
vertical	line	then

	

( x i	−	x )̄	=	0

We	can	see	that	we	don’t	have	vertical	lines	and	there	is	some	dif-	 ference	between
each	observed	value	and	the	mean.	If	we	multiply	together	the	differences	and	then
find	 the	average	by	dividing	by	n-1	we	can	find	the	covariance.	We	divide	by	n-1
because	we	are	in	most	cases	dealing	with	a	sample.	Subtracting	1	adjusts	for	this
fact.	The	sample	covariance	of	X	and	Y	is	therefore:

	

S XY	=

( x	−	x )̄( y	−	y )̄

n	−	1

The	big	problem	with	covariance	is	that	the	result	is	very	dependent	on	the	units.	We
can	 get	 round	 this	 problem	 by	 standardizing	 the	 differences	 between	 each
observation	and	 its	mean.	We	do	 that	by	 dividing	 the	 difference	 by	 the	 standard
deviation	 of	 the	 variable.	 You	 can	 think	 of	 this	 technique	 as	 providing	 the
difference	in	units	of	standard	deviations,	so

( x	−	x ¯

s x
and	the	same	for	the	Y	variable.	Now	we	no	longer	need	to	worry	about	the	units.	The
coefficient	 of	 correlation	 is	 the	 covariance	 now	 between	 the	 standardised
differences,	not	 the	differences	 them-	 selves.	The	 equation	 for	 the	 coefficient	 of
correlation	of	a	sample	is

	

r XY	=	
∑

( x	−	x )̄( y	−	y )̄	( n	−	1) S XS Y

Performing	this	calculation	is	extremely	tedious	and	we	usually	let	the	computer	do



the	work.	Type	in	=correl(array1,array2)	and	hit



	
enter.	For	the	cans	data	the	result	is	0.991083.	This	is	the	Pearson	Product	Moment
or	‘r’	value.

Correlation	Youtube¹

Values	of	r:	values	of	r	are	restricted	to	the	range	-1	to	+1.	A	negative	value	means
that	 the	 slope	 is	 negative:	 as	 one	 variable	 increases	 then	the	other	decreases.	A
positive	value	means	that	both	variables	 increase	together.	The	larger	the	absolute
value	of	r,	then	the	closer	 the	correlation.	A	correlation	of	zero	means	that	 all	 the
points	are	scattered	about	with	no	pattern	whatsoever.	The	r	value	of	0.991083	for
cans	means	that	the	points	are	lined	up	along	a	straight	line,	which	is	what	we	would
expect	from	looking	at	the	scatter	plot.

Testing	r:	the	observations	that	we	have	used	to	calculate	r	consist	of	a	sample	from
a	population.	Because	it	is	only	a	sample,	we	don’t	know	whether	the	correlation
would	hold	up	 if	we	were	somehow	able	to	gain	access	to	the	population.	r	is	 the
notation	for	the	coefficient	of	correlation	for	a	sample.	For	a	population	we	use	the
Greek	letter	ρ	“rho”.	Generally,	Greek	letters	are	used	for	 population	 parameters.
This	distinguishes	them	from	the	Roman	letters	used	for	estimates.

The	hypothesis	we’re	testing	is:

	

	

	
against	the	null

H 0		:	ρ ≤	0

	
H a :	ρ̸ =	0

We	find	the	test	statistic	using	this	equation

r √ n −	2

t =	√

−	r 2
	

¹https://www.youtube.com/watch?v=QDj8aYfvccQ

https://www.youtube.com/watch?v=QDj8aYfvccQ
https://www.youtube.com/watch?v=QDj8aYfvccQ


	
We’ll	first	work	out	the	value	of	the	test	statistic	using	the	r	value	we	found	above.
Then	we’ll	find	the	p	value	from	this.

The	r	value	found	from	the	correlation	was	0.99	and	 there	were	 24	 observations
(n=24).	Plugging	in	the	numbers,	we	find	that	t	=	32.86.	This	is	a	one	tailed	test,	so	use
=	t.dist(your	value	for	t,	n-1,	and	false)	 to	find	a	p	value	of	2.67343E-21.	The	 -21
means	move	the	decimal	place	21	places	to	the	left,	so	this	number	is	 effectively
zero.	The	r	value	we	found	is	statistically	significant.	It	is	much	smaller	 than	0.05,
so	we	can	reject	the	null	hypothesis.	There	is	a	correlation.

Descriptive	statistics uses	graphs	and	 tables	 to	present	 what	we	know	about	 the
data.	 This	 is	 a	 powerful	 method	 of	 gaining	 insights	 into	 the	 data,	 and	 also	 for
making	presentations.	However,	descriptive	statistics	limits	itself	to	the	data	available
does	not	make	any	inferences	beyond	what	we	have	from	the	data	to	hand.

Distribution	 of	 the	 observations	 within	 a	 dataset	 describes	 the	 density	 of	 the
observations:	are	they	spread	about	evenly,	or	peaked	in	the	middle	and	then	spread
out	on	either	side	of	their	mean?

One	 of	 the	 most	 common	 and	 useful	 distributions	 is	 the	 normal	 distribution,
sometimes	known	as	 the	bell	curve.	Many	things	 in	 the	natural	world	follow	this
distribution.	For	example,	if	you	were	able	to	measure	the	heights	of	a	large	number
of	men	or	women,	you’d	find	that	they	followed	a	normal	distribution.

The	plot	to	the	right	shows	the	distribution	of	records	of	heights	of	parents	collected
by	Francis	Galton	in	the	19th	century.	Galton	was	trying	to	find	out	the	relationship
between	the	height	of	parents	and	their	children.	Along	the	way,	he	discovered	the
phenomenon	known	as	‘regression	to	the	mean’.

I	have	plotted	the	heights	as	a	histogram	and	added	a	normal	curve	with	the	same
mean	and	standard	deviation	as	the	original	data.	This	clearly	follows	the	bell	curve.

The	normal	distribution	is	very	important	in	statistics	for	several	reasons



	

-the	normal	distribu-	tion	is	‘well-behaved’	in	the	sense	that	it	al-	ways	follows	the	same
mathematical	function.	The	equation	is	a	lit-	tle	complex,	but	we	can	draw	any	normal
distribution	provided	we	know	its	mean	and	variance.	The	mean	is	the	average	of	the
ob-

	

Galton’s	height	observations

servations,	and	in	a	normal	distribution	occurs	right	in	the	middle.	The	variance	is	a
measure	of	the	average	distance	of	each	observa-	tion	from	the	mean.	The	larger	the
variance,	the	more	‘spread	out’	or	dispersed	the	data.

The	graphs	here	show	two	datasets,	with	identical	means	 but	different	variances.
In	 most	 of	 this	 book	 we	 won’t	 use	 the	 term	 variance,	 but	 instead	 standard
deviation .	The	standard	deviation	is	just	the	square	root	of	the	variance.	We	use	the
standard	deviation	primarily	so	that	we	can	use	the	same	units	as	the	mean.	The	first
plot	has	a	standard	deviation	of	5,	and	the	second	one	a	standard	deviation	of	2.	The
plots	were	created	by	generating	a	random	set	of	1000	numbers,	with	a	mean	of	ten
and	the	standard	deviations	just	described.

-the	 second	 reason	 is	 connected	 with	 the	 most	 important	 result	 in	 statistics,
the Central	Limit	Theorem ,	or	CLT.	This	 states	that	if	you	keep	drawing	samples
with	replacement	from	a	large	population,	 the	means	 of	 the	 samples	 will	 follow
a	 normal	distribution .	The	important	thing	is	that	the	distribution	of	the	original
population	doesn’t	matter	as	 long	as	we	draw	at	 least	30	samples.	In	fact,	 it	gets
better	than	that:	if	the	original	population	is	not	normally	distributed,	then	we	don’t
need	as	many	as	30	in	our	sample.	As	few	as	10	will	do	the	trick.



	

	

Standard	deviation	=	5

	

Because	the	normal	distribution	follows	an	equation	so	well,	we	can	 find	 the	 area
under	any	part	of	it	very	easily.

	

Standard	deviation	=	2

	

The	mean	 splits	 the	 area	 under	 the	 curve	 into	 halves,	meaning	 that	50	%	of	 the
observations	are	smaller	than	the	mean,	and	50%	larger.	A	common	practice	is	 to
mark	off	 the	horizontal	axis	 in	units	 of	 standard	 deviation.	 The	 further	 from	 the
mean,	the	greater	the	standard	deviation.	This	helps	both	in	visualizing	the	shape	of
the	data,	but	also	in	using	the	empirical	rule .



	
Empirical	 rule :	 a	 ‘rule	 of	 thumb’	 which	 states	 that	 when	 data	 are	 normally
distributed,

-64%	of	the	data	are	within	one	standard	deviation	of	the	mean	-95%	of	the	data	are
within	 two	standard	deviations	 of	 the	mean	 -99.7%	 of	 the	 data	 are	within	 three
standard	deviations	of	the	mean

This	makes	intuitive	sense:	only	100	-	99.7	=	0.3	%	of	the	data	are	more	than	three
standard	 deviations	 from	 the	 mean.	 They	 would	 therefore	 be	 in	 either	 of	 the
extreme	ends	or	tails	of	the	distribution.	The	probability	of	their	occurrence	would
be	very	small.	By	contrast,	observations	closer	to	the	mean,	 those	 located	 only	a
small	number	of	standard	deviations	from	the	mean,	are	much	more	likely	to	occur.
That	is	why	the	histogram	is	highest	on	at	the	mean.	Thought	experiment:	very	short
or	very	tall	people	are	unusual	(which	is	why	you	stare	at	them).	By	contrast,	people
around	the	mean	height	are	not	at	all	unusual	and	you	just	pass	them	by.

Estimation :	 The	 statistical	 process	 is	 circular:	 we	 start	 off	 by	 choosing	 the
characteristic	 of	 the	 population	 that	 interests	 us.	 That	 characteristic	 is	 called	 a
parameter.	We	draw	a	random	sample	from	that	population.	We	use	 the	statistic	 to
infer	 information	 about	 the	 same	 quantifiable	 feature	 in	 the	 population.	 The
statistic	(for	 ex-	ample	an	average	or	a	proportion)	is	an	estimate	of	the	population
parameter.	 The	 process	 of	 finding	 how	 close	 the	 estimate	 to	 the	 parameter,	 and
building	a	confidence	 interval	 around	 the	 estimate,	 is	 inference .	We	 test	 claims
about	the	parameter	using	hypothesis-	testing,	which	is	closely	related	to	inference.
Hypothesis-testing	is	the	final	part	of	this	chapter.

Excel –more		screencasts

Inserting	the	data	analysis	toolpak	add-in²	The	normal
distribution³

²https://www.youtube.com/watch?v=Ods1Z5BLD9g&list=UUVZFhqXDgJgIRq-	ljotClgQ

³https://i1.ytimg.com/vi/1qn0EIm5-PQ/mqdefault.jpg

https://www.youtube.com/watch?v=Ods1Z5BLD9g&amp;list=UUVZFhqXDgJgIRq-ljotClgQ
https://i1.ytimg.com/vi/1qn0EIm5-PQ/mqdefault.jpg
https://www.youtube.com/watch?v=Ods1Z5BLD9g&amp;list=UUVZFhqXDgJgIRq-ljotClgQ
https://www.youtube.com/watch?v=Ods1Z5BLD9g&amp;list=UUVZFhqXDgJgIRq-ljotClgQ
https://i1.ytimg.com/vi/1qn0EIm5-PQ/mqdefault.jpg


	
Exponential	Smoothing

Hypotheses	 and	 p	 values	 A	 hypothesis	 is	 a	 claim	 someone	 makes	 about	 a
population.	For	example,	a	coffee	 importer	 (me!)	 is	 told	by	 the	 supplier	 that	 the
mean	weight	of	the	sacks	of	coffee	beans	is	40	kg.	That	is	the	claim.	I	want	to	test
that	 claim	 because	 I	 am	 paying	 for	 the	 coffee.	 All	 the	 sacks	 of	 coffee	 in	 the
shipment	are	the	‘population’.	I	take	a	random	sample	of	sacks	to	check.	I	find	 that
the	mean	weight	of	the	sample	is	38	kgs.	Do	I	reject	the	whole	shipment,	or	say	I
must	have	got	 a	 low	 sample,	 let’s	 take	 them?	 The	 hypotheses	 here	 are:	 the	null
hypothesis:	the	population	mean	weight	is	40	kg.	Meanwhile	the	alternative	o	the
population	mean	weight	is	not	40	kgs.	Hypothesis	testing	provides	an	answer	to	the
test	in	the	form	of	a	p	value,	defined	below.

A	p	value	is	the	probability	of	finding	a	sample	with	the	measured	characteristics	IF
the	 null	 hypothesis	was	 true.	 In	 the	 case	 of	 the	 coffee	 above,	 let’s	 say	 that	 we
calculated	the	p	value	(See	Chapter

9)	and	it	was	0.1.	That	means	that	there	is	a	10%	chance	of	finding	a	sample	with	a
mean	weight	of	38	kgs	if	the	real	true	mean	weight	of	the	shipment	was	40	kgs.	The
most	frequently	used	cut-off	point	is	0.05	or	5%.	If	the	p	value	was	smaller	than	0.05
then	we	would	say	that	there	is	a	less	than	5%	chance	that	this	sample	came	from	a
population	with	the	claimed	weight.	Therefore	 the	 shipment	 isn’t	 of	 the	 claimed
weight	and	should	be	rejected.

Hypothesis	writing	and	testing

A	hypothesis	is	a	statement	or	claim.	For	example,	‘the	mean	weight	 of	 the	coffee
packs	is	3	kg’	is	a	hypothesis	or	claim.	The	hypothesis	needs	to	be	tested	so	that	we
know	whether	the	claim	stands	or	is	shown	to	be	false.

Hypotheses	are	written	so	that	the	claim,	and	the	counter-claim,	are	distinct.	There
are	two	hypotheses,	one	for	the	claim	and	the	 other	 for	 the	 counterclaim.	Ho,	 the
‘null	hypothesis’,	contains	the	claim.	Ha,	the	‘alternative	hypothesis’,	contains	the
counterclaim.	We	write	hypotheses	by	assuming	that	the	null	hypothesis	is	true.



	
The	null	hypotheses	for	the	coffee	example	above	would	be

	
Ho :	µ =	3 kg

	

This	is	read	as:	The	null	hypothesis	is	that	the	population	mean	weight	(mu)	of	the
coffee	is	equal	to	3	kg.

The	alternative	hypothesis	 (Ha)	 is	 that	 the	population	mean	 weight	 is	 not	 3	 kg,
written:

	

Ha :	µ̸ =	3 kg

We	test	the	hypotheses	using	information	(statistics)	from	the	sam-	 ple	 (the	mean
weight,	the	sample	size,	and	the	standard	deviation).	Note	that	the	counterclaim	says
nothing	about	the	mean	weight	in	the	population	being	more	than	or	less	than	3	kg,
it	simply	says	that	it	not	equal	to	3	kg.	Also,	important,	the	equality	sign	appears	in
the	null.	This	is	always	the	case,	whether	the	inequality	is	‘strict’	or	‘weak’.

We	can	also	test	whether	the	population	mean	is	smaller	than	or	 larger	than	some
constant.	The	shipper	claims	that	the	weight	is	‘at	least’	3	kg.	We	write	this	as:

	

H 0		:	µ ≥	3 kg

Note	that	the	equality	remains	with	the	null.	The	alternative	is	then	 the	negation	of
the	null,	and	this	must	be	that	the	weight	is	‘less	than	3	kg’.

	
H a	 :	µ	<	3 kg

	

Convince	yourself	 that	 the	only	possible	way	to	negate	Ho	is	with	 the	alternative
hypothesis.	If	the	claim	was	that	that	the	average	weight	is	less	than	or	equal	to	3	kg,
we	simply	switch	over	the



	
inequality	signs.	There	are	other	forms	of	hypothesis	writing	which	we	will	work
through	in	this	book.	However,	they	all	share	the	rule	that	the	equality	sign	goes	in
the	null;	and	the	alternative	negates	the	null.

Inference is	 the	key	statistical	process.	 It	 is	 the	way	 in	 which	 information	 about
populations	can	be	gleaned	from	surprisingly	small	samples.	An	example	is	polling
before	an	election.	Provided	the	sample	is	drawn	randomly	and	is	representative	of
the	pop-	ulation,	a	sample	of	perhaps	only	1,000	people	can	provide	quite	accurate
estimates	 of	 the	 proportion	 of	 the	 population	 predicted	 to	 vote	 for	 a	 particular
political	party.	The	estimates	are	used	to	make	inferences	about	the	population.	We
won’t	know	until	election	day	whether	or	not	the	inferences	were	correct	or	not.

Inferential	statistics	is	a	very	powerful	technique	which	allows	us	to	make	the	jump
from	a	sample	to	a	population.	We	can	use	a	small	sample	to	make	inferences	about
the	characteristics	of	a	population	about	which	we	perhaps	know	very	little.	The	key
is	to	obtain	a	sample	which	represents	the	population	as	accurately	as	possible.	For
this,	 both	 randomization	 and	 good	 survey	design	 are	 essential.	 We	will	 discuss
these	two	important	issues	later	in	the	chapter.	Recently,	a	third	class	of	statistical
methodologies	has	arisen.	This	is	machine	learning ,	which	takes	advantage	of	new
analytic	techniques	and	greater	computing	power.	We	won’t	be	able	 to	go	into	these
techniques	in	this	book,	unfortunately.

Lurking	variables :	 It	happens	 that	 there	 is	close	monthly	cor-	 relation	between
the	consumption	of	ice	cream	and	deaths	by	drowning.	Is	it	that	people	eat	an	ice
cream,	go	swimming	and	then	drown?	The	correlation	misses	the	lurking	variable
which	is	temperature.	In	hot	weather,	people	both	go	swimming	more	often	and	buy
ice	 creams.	 The	 ice	 cream	 and	 the	 drowning	 variables	 are	 both	 correlated	 with
temperature	and	so	are	correlated	with	each	other.	Another	example:	it	seems	that
there	is	a	correlation	between	 kids	needing	 reading	glasses	and	sleeping	with	 the
light	on.	So	you



	
should	 switch	 the	 light	 off?	 Not	 so	 fast.	 The	 lurking	 variable	 is	 the	 short-
sightedness	of	the	parents,	not	the	kids.	The	parents	leave	the	light	on	so	they	can	see
the	kid.	The	kids	inherit	bad	eyesight	from	their	parents.

Parameter :	 a	 quantifiable	 characteristic	 of	 interest	 in	 the	 popula-	 tion.	 The
average	 weight	 of	 all	 of	 the	 fish	 in	 the	 Fraser	 River	is	 a	 parameter.	 The	 same
characteristic	in	the	sample	is	known	as	a	statistic.	We	can	easily	find	this	statistic
because	the	sample	is	only	a	subset,	and	therefore	smaller,	than	the	population.	We
usually	never	know	the	actual	value	of	a	parameter,	but	that	doesn’t	matter	because
we	can	estimate	from	the	sample.

Point	estimate :	a	statistic,	such	as	the	mean	or	average.	It	is	called	a	point	because	it
is	an	exact	number	such	as	4.21.	It	is	not	a	range,	it	is	a	point.	It	is	called	an	estimate
because	it	is	an	estimate	of	the	population	parameter.	Therefore	4.21	is	an	estimate
of	what	the	same	quantifiable	feature	would	be	in	the	population.	You	can	think	of	a
point	estimate	as	being	the	‘best	guess’	for	the	population	parameter.

If	we	 selected	a	different	 sample	 from	 the	 population,	 then	 almost	 certainly	 the
point	estimate	would	be	different,	giving	a	new	best	guess.	If	we	continue	to	take
samples,	then	we	are	going	to	get	as	many	best	guesses	as	we	have	samples.	The
range	of	best	guesses	is	the	sampling	variation .

Poisson	distribution

The	Poisson	probability	distribution	is,	as	with	the	Binomial,	a	dis-	crete	probability
tool.	We	can	use	it	for	calculating	the	probability	of	events	which	occur	over	time	or
space.	For	example,	number	of	mistakes	in	a	given	number	of	 lines	of	 code.	The
formula	is:

	

	

f	( x )	=

µ x e− x	x !

where	f(x)	is	the	probability	of	x	occurrences	in	a	given	interval.	mu



	
is	the	expected	value	or	mean	number	of	occurrences	in	the	given	interval	(or	area).
e	is	a	constant,	value	2.71828.

Population :	 the	 group	 of	 individuals	 about	 whom	 we	 want	 some	 information.
Each	 individual	 in	 the	 population	 is	 called	 an	 element	 or	 sometimes	 a	 case .
Examples	of	populations	are	all	 the	 fish	 in	 the	 Fraser	River,	Toyota	cars	made	in
2012,	or	indeed	the	population	of	a	country.	It	is	usually	not	possible	to	deal	with	data
at	the	population	 level	because	it	is	either	expensive	or	impossible	to	obtain.	As	a
result	we	draw	a	sample,	or	subset,	from	the	population.

Randomisation	is	the	technique	of	selecting	elements	from	the	population	to	build
a	sample	so	that	each	element	has	the	same	 known	 probability	 of	 being	 selected.
This	 technique	 greatly	 reduces	 bias,	 described	 in	 more	 detail	 in	 the	 following
chapter.

Regression

Sampling	frame :	a	list	of	the	items	to	be	sampled.	Imagine	that	you	wish	to	survey
100	students	from	a	University.	The	University	provides	you	with	a	list	of	students
and	their	ID	numbers.	The	students	form	the	population,	and	the	list	is	the	sampling
frame.	You	would	use	a	random	sampling	method,	covered	below,	to	randomly	select
100	students	from	the	University.	The	100	students	form	the	sample.

Standard	error :	Try	this	 thought	experiment.	Let’s	say	 that	 there	are	1000	jelly
babies	in	a	bowl	and	for	some	reason	you’d	like	to	known	the	mean	weight	of	a	jelly
baby	without	having	to	weigh	all	 of	them.	You	have	a	choice	of	taking	a	random
sample	of	either	n

=	 100	 or	 n	 =	 500.	 Which	 sample	 would	 produce	 the	 most	 accurate	 estimate:
obviously	the	sample	size	of	500	because	it	is	‘closer’	to	the	population	 size.

Yet	it	still	won’t	be	completely	accurate	because	it	could	happen	that	the	sample	you
select	 is	 biased	 in	 some	way:	 perhaps	 you	 selected	 all	 the	heavy	ones?	We	 can
measure	the	amount	of	error	with	the	standard	error,	which	helps	us	to	determine	how
‘close’	we	are	to	the



	
unknown	parameter.	Below	I	show	how	to	calculate	the	standard	error	(SE).	Here	is
the	standard	error	for	a	statistic	such	as	a	mean:

	

σ	SE =
√ n

	
In	words,	 the	 standard	 error	 is	 the	 population	 standard	 deviation	 divided	by	 the
square	root	of	the	sample	size,	denoted	by	n.	Note	that	as	the	sample	size	increases,
then	the	standard	error	decreases.

This	is	 in	 line	with	your	earlier	 intuition	 that	 the	 larger	 the	 sample	 size	 then	 the
more	accurate	the	estimate.	Usually	we	don’t	 know	‘sigma’,	σ ,	so	we	replace	it	with
‘s’	which	is	the	standard	deviation	of	the	sample.

Transformations :	this	is	a	technique	sometimes	used	in	regression.	 The	object	is
usually	 to	 transform	 the	distribution	of	 the	 dependent	 variables	 so	 that	 it	 more
closely	 resembles	 a	 normal	 distribution.	 We	 do	 this	 because	 the	 theoretical
underpinning	 of	 linear	 regression	 is	 based	on	an	assumption	 of	 normality	 in	 the
dependent	variable.	The	dependent	variable	 is	 typically	 transformed	by	 taking	 its
natural	logarithm	and	then	using	the	transformed	variable	in	the	regression.	This	is
often	 used	 when	 the	 dependent	 variable	 has	 only	 positive	 values	 and	 is	 highly
skewed	 to	 the	 right.	 Independent	 variables	 can	 also	 be	 transformed	 such	 as	 by
adding	a	squared	version	of	 the	 variable	 in	 the	 regression.	 Independent	 variables
can	also	 be	transformed	by

z	scores :	A	 z	 score	 is	 a	measure	 of	 how	 far	 an	 observation	 contained	 within	 a
variable	 is	 from	 the	mean	 of	 that	 variable,	 in	 terms	of	 standard	 deviations.	 It	 is
quite	easy	to	calculate	within	Excel,	and	this	Youtube	shows	you	how

z	scores	Youtube⁴.

Why	do	this?	By	dividing	the	difference	between	the	value	of	the
	

⁴https://www.youtube.com/watch?v=FSZpynSBev8

https://www.youtube.com/watch?v=FSZpynSBev8
https://www.youtube.com/watch?v=FSZpynSBev8


	
observation	and	the	mean	of	the	variable	by	the	standard	deviation	of	the	variable,
like	this:

	

z i	=

x i	−	x ¯

s

	

the	differences	are	in	units	of	standard	deviations.	We	can	use	this	for:

	
•		Comparing	the	distributions	of	two	completely	different	variables

•	 	Detecting	outliers.	An	outlier	is	an	observation	which	is	very	far	from	the
rest	of	the	distribution.	Usually,	99.7%	of	 the	 observations	will	be	within
three	standard	deviations	of	the	mean.	So	an	observation	which	is	more	than
three	standard	deviations	from	the	mean	is	likely	to	be	questionable.	 This
can	be	good	or	bad:

•		Bad	because	perhaps	someone	made	a	data	entry	error	which	we	can	catch.

•	 	Good	 because	 perhaps	 there	 is	 something	 anomalous	 and	 interesting
about	that	‘weird’	observation.


