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1. How to use this book

I began business life as an entrepreneur in business in Hong Kong. I ran trade
exhibitions, imported coffee from Kenya, and started and operated two restaurants,
one of which (unusually for Hong Kong) served vegetarian food. These businesses
were profitable, but I would have saved myself a great deal of stress, and done better
if I had used some business intelligence informed by statistics to improve my
decision-making. Looking back, I wish I had been able to think through and write
analyses on topics such as these among many others:

a. calculation of optimal restaurant staffing levels
b. analysis of sales over time and seasonality in trends

c. receipts per customer by restaurant type and analyzed strength and type of
any differences

d. predicted sales data for potential exhibitors with visualiza- tions of
various ‘what if’ scenarios

e. gained deeper insights from visualizing my data

f. won over more partners and investors with better visual and written
presentations

I’m sure that there are many more people like me, aware that they ought to be doing
more with the data they collect as part of normal business operations, but uncertain
of how to go about it. There is no shortage of textbooks and manuals, but these
don’t seem to get to the hands-on applications quickly enough. This book is for
people such as me, in two components: the analysis, finding out the underlying story
from the data, and then the presentation of the story.









1.1 This book is a little different

Most books on stats introduce statistical techniques on a chapter by chapter basis.
Instead, I’ve written this book so that it reflects the way many people learn. The
chapters are structured by the type of question you might want to ask. Examples of
the type of questions are summarized below, and at the beginning of each chapter.
The chapters themselves doesn’t include much math and technical details. Instead
these are placed towards the end of the book in a glossary.

Many of the Excel procedures are linked to screen casts prepared by me to illustrate
that particular procedure. The data-sets used in the book are available from my
Dropbox public folder: just click on the hyperlink that appears next to each worked
example. With the data-sets open in Excel, you can follow along at your own pace.
(And then do the same with your own data). I have used Tableau for some
visualizations, and you will find links to my workbooks and screen casts.



1.2 Chapter descriptions

If you’re reading this book, then you are very likely already engaged in business and
would like to know how to take that business to new heights. Take a look through the
chapter descriptions that follow and then go straight to that chapter. If you think you
might need a bit of a statistics refresher, look through the Glossary in Chapter 16

Chapter 2 introduces Tableau Public? which is a free data visu- alization tool. While
Excel does have graphing tools which are easy to use, the results can look a little
clunky. Tableau helps

1https://www.openintro.org/stat/ 2http://www.tableausoftware.com/public/
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us to merge data from different sources and create remarkable visualizations which
can then be easily shared. I’'ll be illustrating results throughout this book with either
Tableau, Excel or both. One caution: if you publish your results to the web using
Tableau Public, your data is also published. If this is a problem, there is an option to
pay for an enhanced version of Tableau. The screenshot below shows work done
changes on land use in the Delta region of British Columbia. By clicking on the link,
you can open the workbook and alter the settings. You can filter the year (see top
right) and also land use type. Thanks to Malcolm Little for his work on this project.

Tableau showing changes in landcover

Tableau has training and demonstration videos available on its website, and there
are plenty of examples out there. The screen casts which Tableau provides
(available at their homepage) are probably enough. Where I have found some
technique (such as boxplots) particularly tricky I have created screen casts for this
book. The image below is data we will use in the regression chapter. You run a

3https://public.tableau.com/views/DeltaCropCategories1996-2011/Sheet1?:embed=y&:
showTabs=y&:display count=yes
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trucking company and from your logbooks extract the distance and duration and
number of deliveries for some delivery jobs. The image shows a trend line, with
distance on the horizontal axis and time taken on the vertical axis. The points on
the scatterplot are sized by number of deliveries. You can see that more deliveries
increases the time, as one would expect. Using regression, Chapter 6, we will work
out a model which can show how much extra you should charge for each delivery.

Tableau showing distances, times, and deliveries

Chapter 3. Writing up your findings. In most cases statistical analysis is done in
order to help a decision-maker decide what to do. I am assuming that it is your job to
think through the problem and assist the decision-maker by assembling and analyzing
the data on his/her behalf. This chapter suggests ways in which you might write up
your report, accompanied by visualizations to get across your message. There are
also links to some helpful websites which

“https://youtu.be/oFACLZLJWZI
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discuss the preparation of slides and how to make presentations.

Chapter 4: Data and how to get it. If you are considering collecting data yourself,
through a survey for example, then you’ll find this chapter useful. So-called big data
is a hot topic, and so I include some discussion. The chapter also includes links to
publicly avail- able data sets which might be helpful.

Chapter 5 deals with tests for whether two or more quantities are the same or
different. For example, you are a franchisee with three coffee-shops. You want to
know whether daily sales are the same or different, and perhaps what factors cause
any difference that you find. You want to know whether there is a statistically
significant common factor or not, to eliminate the possibility that the difference you
see occurred purely by chance. Perhaps the average age of the customers makes a
difference in the sales? ANOVA uses very similar theory to regression, the subject of
the next chapter and perhaps the most important in the book.

Chapter 6: Regression is almost certainly the most important statis- tical tool
covered in this book. In one form or another, regression is behind a great deal of
applied statistics. The example presented in this book imagines you running a
trucking business and wanting to be able to provide quotations for jobs more
quickly. It turns out that if you have some past log-book data to use, such as the
distance of various trips, the time that they took and how many deliveries were
involved, an accurate model can be made. Regression can find the average time taken
for every extra unit of distance, as well as other variables such as the number of
stops. This chapter shows how to create such a model and how to use it for
prediction. With such a model, you can make quotations really quickly. This chapter
also covers more complex regression and how to go about model- building.

Other uses: you want to calculate the beta of a stock, comparing the returns of one
particular stock with the S&P 500.

Chapter 7 is about testing whether the regression models we built



in Chapters 6 and 7 are in fact any good. Regression appears so easy to do that
everybody does it, without checking the validity of the answers. Following the
procedures in this chapter will help to ensure that your work is taken seriously.
This chapter is more of a guide to thinking critically about the results other people
might have. Is there missing variable bias? For example, you notice a strong
correlation between sales of ice-creams and deaths by drowning. Can you therefore
say that reducing ice-cream sales will make the water safer? Err—no. The missing or
lurking variable is temperature. Both drowning deaths and ice cream sales are a
function of temperature, not of each other.

Chapter 8 is about time-series and shows how we can detect trends in data over time,
and make predictions. The smoothing methods, such as moving averages and
exponentially weighted moving aver- ages covered in this chapter are fine for data
which lacks seasonality and when only a relatively short-term forecast is needed.
When you have longer-run data and for making predictions, the following chapter
has the techniques you need.

Chapter 9 describes the regression-based approach to time series analysis and
forecasting. This approach is powerful when there is some seasonality to your data,
for example sales of TV sets show a distinct quarterly pattern (as do umbrellas!).



Sales of TV sets showing a quarterly seasonality

Using regression we can detect peaks and troughs, connect them to seasons and
calculate their strength. The result is a model which we can use to predict sales into
the future.

Chapter 10 is about optimization or making the best use of a limited number of
resources. This is highly useful in many business situations. For example, you need
to staff a factory with workers of different skills and pay-levels. There is a
minimum amount of skills required for each class of worker, and perhaps also a
minimum number of hours for each worker. Using optimization, you can calculate
the number of hours to allocate to each worker.

Chapter 11 Optimization can also be used for more complex ‘blend- ing’ problems.
Example: You run a paper recycling business. You take in papers and other fibers
such as cardboard boxes. How can you mix together the various inputs so that your
output meets minimum quality requirements, minimizes wastage, and generates the
most profit?

Another example: what mix or blend of investments would best suit your
requirements?

Chapter 12 concerns calculating the probability of items you can count one by
one. For example, what is the probability that more



than five people will come to the service desk in the next half-hour? What is the
probability that all of the next three customers will make a purchase? We can solve
these problems using the binomial and the Poisson distributions.

Chapter 13 concerns choice under uncertainty: if you have a choice of different
actions, each of which has an uncertain outcome, which action should you choose to
maximize the expected monetary value? A farmer knows the payoffs he/she will
make from different crops provided the weather is in one state or another
(sunny/wet) but at the time when the crop decision has to be made, he obviously
doesn’t know what the actual state will be. Which crop should he plant? A
manufacturer needs to decide whether to invest in constructing a new factory at a
time of economic uncertainty: what should he do?

Chapter 14 adds the decision-maker’s risk profile to his or her decision process.
Most people are risk averse, and are willing to trade off some risk in exchange for
certainty. This chapter shows how to construct a utility curve which maps risk
attitudes, and then prioritize the decisions in terms of maximum expected utility.

Chapter 15 is a Glossary and contains some basic statistics informa- tion, primarily
definitions of terms that the book uses frequently and which have a particular
meaning in statistics (for example ‘population’). The Glossary also discusses why
the inferential tech- niques used in statistics are so powerful, allowing us to make
inferences about a population based on what appears to be a very small sample.

Under E for Excel in the Glossary, you’ll find some links to screen casts on subjects
not directly covered in this book, but which you might find helpful.






2. Visualization and Tableau:
telling (true) stories withdata

In this book, we’ll work on gaining insights from data by visual- ization and
quantitative analysis, and then presenting the results to others. Recently a powerful
new tool called Tableau has become available. Tableau Public! is a free version. But
be careful with your data because when you publish to the web, as you must do with
Tableau Public, then your data also becomes available to anybody. If you require that
your data be protected, you can pay for the private version. Tableau 9 has just been
made available.

Many of the worked examples in this book are accompanied by a link to a
completed Tableau workbook, showing how you could have used Tableau to
present your findings. Tableau cannot perform easily the more technical
hypothesis-testing aspects of statistics such as regression, but it can help you to get
your point across clearly. Tableau has also provided a useful White Paper? on visual
best practices which is well worth reading

In business intelligence we are generally interesting in detecting patterns and
relationships. This might seem obvious, because as humans we are always looking
for these phenomena. I’d just like to add that the absence of a pattern or relationship
might be just as informative as finding one. An excellent first step is to take a look at
your data with an expository graph before moving on to more formal data analysis.
Below are examples of the types of charts or graphs most commonly used in either
examining data first off,

1http://www.tableausoftware.com/public/
2http://www.tableausoftware.com/whitepapers/visual-analysis-everyone
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just to ‘see how it looks’. Checking an expository graph shows up problems that
might throw you off later: missing data, outliers or, more excitingly, unexpected
and intriguing relationships.

Histograms

Histograms break the data into classes and show the distribution of the data. Which
classes (sometimes known as bins) are most common. The histogram shows us the
‘shape’ of the data. Are there many small measurements, or does the data look as
though it is normally distributed and consequently mound-shaped. See
Distribution in the Glossary for more on this. The plot below is of deaths in car
accidents on a weekly basis in the United States over the period 1973-1978. The
histogram shows only the distribution and not the sequence.
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From the histogram only,
we could say that the most
common number of deaths
in a week is between 8000
and 9000, be- cause the
bars of the histogram are
highest there. They are
high- est because they
count the number of times
in the time-period that
there have been (for
example 8000  deaths
occurred in 15 weeks).




What  the histogram
doesn’t show is that

deaths have actually been decreasing since

Histogram of car deaths, reported weekly



about 1976. There is probably a simple explanation for this: compul- sory seatbelts
perhaps? The take-home from this is that expository graphs are really easy to do,
and that you should try different methods with the same data to tease out the
insights.

Car deaths over time

Scatterplots

The most common and most useful graph is probably the scatter- plot. It is used
when we have two continuous variables, such as two quantities (weight of car and
mileage) and we want to see the relationship between them. The scatterplot is also
useful for plotting time series, where time is one of the variables.

You can use Excel for this, and also Tableau. In Excel, arrange the columns of your
data so that the variable which you want on the horizontal x axis is the one on the
left. This is the independent variable. Put the other variable, the dependent variable,
on the vertical y axis. It is usual practice to put the variable which we think is doing
the explaining on the x axis and the response variable on



the y axis. Here is a scatterplot of European Union Expenditure per student as a
percentage of GDP:

Expenditure per student Primary

EU % of GDP spent on Primary Education

There is a gradual increase over the years 1996 to 2011 as one would expect;
educational expenditures tend to remain a relatively fixed share of the budget.
However, there was a blip in 2006 which is interesting. Because the data is
percentage of GDP, the drop might have been caused by an increase in GDP or
alternatively by an actual educational spending decrease. We’d need to look at GDP
figures for the period. I got European GDP figures per capita and using Tableau put
them on the same plot, with different axes of course. The result is below



European GDP and Primary Expenditures

GDP dropped around 2008/2009 because of the world financial crisis. The blip in
primary expenditures is still unexplained.

Maps

Tableau makes the display of spatial data relatively easy, provided you tell Tableau
which of your dimensions contain the geographical variable. The plot below shows
changes in greenhouse gas emis- sions from agriculture in the European Union. I
linked world bank data by country. The workbook is here3.

3https://public.tableausoftware.com/views/EuropeanGHGfromA griculture2010-
2011/Sheet1?:embed=y&:display count=no
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Unfortunately, not all geographic entities are available for linkage in Tableau.
States and counties in the United States are certainly available and provinces in
Canada, as well as countries in Europe. There are ways to import ArcGIS shapefiles
into Tableau. A shape- file is a list of vertices which delimit the polygons that define
the geographical entity.

i
i,
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GHG emissions from agriculture in the European Union






3. Writing up your findings

In chapter 1, I mentioned some of the questions I wished I had been able to answer
when I was operating a business. Now I want to suggest ways in which you might
structure your response to such questions. The actual answers come when you’ve
done the statistical work (carried out in the following chapters), but it might help to
have at least a structure on which you can begin building your work.

Before you do any work on the problem, get straight in your mind exactly what you
are being asked to do. You need to be clear and so does the decision-maker to whom
you are going to submit your findings. Here is one way to do this:

Copy down the key question that you are being asked in exactly the way that it has
been given to you. For example, let us say that you have been asked to answer this
admittedly tough question: ‘What factors are important for the success of a new
supermarket?’

Now keep rewriting it in your own words so that it becomes as clear as possible.
Make sure that each and every word is clear. What does ‘success’ actually mean? —
in the business context probably ‘most profitable’. What does ‘new’ mean? Is this a
completely new supermarket or a new outlet of an existing brand? You might end
up with: “‘when we are planning a location for a new outlet for our brand, what factors
contribute most to profitability?’ Doing all this helps you to identify the statistical
method most suitable for the task. You also can include here the hypotheses (if any)
that you will be testing.

Here is a suggested section order for your report. However, this probably won’t be
the order of the work. The order in which you do the statistical work is in Section 3,
your plan of attack. So the order
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of doing the actual work is that you carry out the plan of attack, and then write up
your results following the section by section sequence I am giving you now.

Section 1. State the question to be answered clearly and succinctly, as result of the
rewriting you did above. Doing this makes sure that you clearly understand the
problem and what is being asked of you. Writing out the question and stating it
clearly right at the beginning of your report also ensures that the decision-maker
(the person who posed the question in the first place) and you understand each other.
You can also write in the hypothesis which you are testing.

Section 2. Provide an executive summary of the results. This should be perhaps six
lines long and contain the key findings from your work. Don’t put in any technical
words, jargon or complicated results. Just enough so that a busy person can skim
through it and get the general idea of your findings before going more deeply into
your hard work.

Section 3. Outline your plan of attack , describing how you have approached the
problem. You also can include here the hypotheses (if any) that you will be testing.
A typical plan of attack follows later on in this chapter.

Section 4. Data. Provide a brief description of the data that you have used. The source
of the data, how you found it, whether you think it is reliable and whether it is
sufficient for the task. It is a good idea to include summary statistics at this point.
This includes information such as the number of observations, and what the
variables are.

Section 5. Statistical methodology. Describe the statistical method- ology which you
are going to use, for example ANOVAto test whether or not the means are the
same.

Section 6. Carry out the tests, making sure to include a description of whether or not
the hypotheses can be rejected. This is the central part of the report. Just make sure
to focus on answering the question.



Section 7. Write a conclusion which describes the results of the test and how the
results answer the question that was asked. You can also include here any
shortcomings in the data or in your methodology which might affect the validity of
the results. The conclusion is very important because it ties together all the
previous sections. Here you could include a link to a Tableau ‘story’ as an additional
or alternative way of presenting results.

Section 8. References/end notes or further information, especially on sources of
data, should end the document. If you want to make your document look really
good, and you have lots of references, consider using the Zotero plug-in for
Firefox. It is an excellent free way to manage your bibliography.



3.1 Plan of attack. Follow these steps.

a. Identification of the statistical method that you will use and why you
chose those methods

b. What data is required, and where can it be found?
c. Conduct the statistical tests

d. Discuss whether the results are reliable/answer the question. (If not, start
again!)



3.2 Presenting your work

While it is probably best to concentrate on written work because the decision-
maker might want to read your work in detail, and discuss it with colleagues, a
Tableau presentation is an excellent way of making your point over again. See
Chapter 2 for more on visualization and Tableau.

Here is a link to some excellent notes by Professor Andrew Gelman on giving
research_presentations!

thttp://andrewgelman.com/2014/12/01/quick-tips-giving-research-presentations/
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4. Data and how to get it

In this chapter, we’ll look at the data collection process, the prob- lems that might
accompany poorly collected data, discuss so-called big data and provide links to
some useful public sources of data.

As you might expect, this book works through the analysis of numbers —
quantitative data— but it is important to note that the analysis of qualitative data is a
rapidly growing area. Unfortunately the analysis of qualitative data is beyond this
book and the software available to us.

Quantitative data comes from two main sources. Primary data is collected by you
or the company you are working for. For example, the market research you do to find
out the possible market share for your product provides primary data. Primary data
includes both internal company data and data from automated equipment such as
website hits. Collecting data is expensive and highly proprietary. It is therefore
unlikely to be published and available outside the enterprise.

By contrast, Secondary data is plentiful and mostly free. It is collected by
governments of all sizes, and also by many non- government organizations as well.
There is an increasing trend towards the liberation of data under various open
government initiatives. Government data is usually reliable, but be sure to check the
accompanying notes which warn of any problems, such as limited sample size or
change in classification or collection methods over time. There are some links to
secondary data at the end of this chapter.
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Experimental design

Experiments don’t necessarily have to be conducted in laboratories by people in
white coats: a survey in shopping mall is also a form of experiment, as is analyzing
the results of your favorite cricket team. There are two different design
types: experimental and observational . The key difference is the amount of
randomization that is built into the experiment. In general, more randomization is
good, because it helps to remove the influence of fixed effects, such as the quality of
the soil in a particular location.

Here’s an example to make clear the difference. Imagine a re- searcher wanting to
test the effect of a new drug on mice. In an experimental design, the mice are
examined before the drug is administered, and then the drug is applied to a
treatment group of mice and a control group. The control group receives no drugs.
Its jobis to act as a reference group. All the mice are kept in identical conditions apart
from the application of the drug. The allocation of mice to the treatment group and
to the control group is entirely random.

While we can (and do) carry out drug experiments on mice, it would clearly be
very wrong to try to do the same with humans as subjects. Instead we collect data or
observations and then analyze those observations looking for differences.

To compensate for the lack of randomization, we control for ob- served differences
by including as many relevant variables as possi- ble. If we knew that person X had
received a particular drug and had developed a particular condition, we would want
to compare person X with somebody else who had not developed that condition.
Relevant variables that we would want to know might be age, gender and possibly
pre-existing health conditions. Including these variables reduces fixed effects and
allows us to concentrate on the effect of the drug.



Problemswith data

It is obvious that to be credible, your analyses must be based on reliable data.
Problems with data are usually connected to poor sampling and experimental design
techniques, especially:

Sample size too small . The relative size of the sample to the population usually
does not matter. It is the absolute size of the sample that counts. You usually want at
least several hundred observations.

Population of interest not clearly defined. It is clear that we need to take a
sample from a population, but what exactly is the population? Here’s an example.
You want to survey shoppers in a shopping mall regarding your new product. But of
the people inside the mall, who exactly are your population? People just entering,
people just leaving, people having their lunch in the food court? Singles, couples,
elderly people or the teenagers hanging around outside the door? You can see that
picking any one of these groups on its own will lead to a biased sample.

Non-response bias . Many people don’t answer those irritating telephone calls
which come in the evening because they’re busy with dinner. As a result, only
answers from those who do choose to answer the survey are counted. Those
respondents most likely aren’t representative of the population. Perhaps they live
alone or do not have too much to do. I’m not saying that they should not be in the
sample, just that including only those who do respond may bias your sample.

Voluntary response bias . If you feel strongly about an issue, then you are more
likely to respond than if you are indifferent. That’s simply human nature. As a result,
the survey results will be skewed by the views of those who feel most passionately.
This is hardly a representative sample because the strongly-held views drown out the
more moderate voices.






4.1Big data

Primary data frequently comes from automated collection devices, such as scanners,
websites, social media, and the like. The volume of such data is enormous, and is
aptly called big data. Big data is the term used to describe large datasets generated by
traditional busi- ness activities and from new sources such as social media. Typical
big data includes information from store point-of-sale terminals, bank ATMs,
Facebook posts and YouTube videos.

One of the apparently attractive features of big data is simply its size, which
supposedly enables deeper insights and reveals connections which would not appear
in smaller samples. This argu- ment neglects the power of statistics, and in particular
inferential statistics. A small sample, properly collected, can yield superior
insights to a very large poorly collected sample. Think of it this way: which is better:
a very large sample in which all the respondents are in the same age-group and of the
same gender; or a smaller one which more accurately reflects the population?



4.2 Some useful sites

You can of course easily just Google for data, or look at these more focused sites:

employment and_compensation?

Interesting and wide-ranging historical data3 Google
Public Data*

thttp://www.gapminder.org/data/ 2http://www.bls.gov/fls/country/canada.htm

3http://www.historicalstatistics.org/

4http://www.google.com/publicdata/directory
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http://www.google.com/publicdata/directory

International Monetary Fund?®

Food and Agriculture Organisation® United Nations
Data’

The World Bank®8

Shttp://www.imf.org/external/data.htm

Shttp://www.fao.org/statistics/en/

“http://data.un.org/
8http://databank.worldbank.org/data/home.aspx
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5. Testing whether quantities are the
same

This chapter concerns testing whether the population means of two or more
quantities are the same or not: and if they are in fact different, whether any variable
can be identified as being associated with the difference. The test we will use is
ANOVA, (Analysis of Variance). The test was developed by the British statistician
Sir Ronald Fisher, and the F-test which ANOVA uses is named in his honor. Fisher
also developed much of the theoretical work behind experiment design during his
time at the Rothamsted Research Station in England.



5.1 ANOVA Single Factor

The most straightforward application of ANOVA is when we simply want to test
whether or not two or more means are the same. In this worked example, we have
three different types of wheat fertilizer (Wolfe, White and Korosa) and we would like
to know whether their application produces equal or different yields.

As the section on experimental design in Chapter 3 emphasized, the experiment must
be designed to isolate the effect of the fertilizer, and this is achieved by
randomization. To control for differences in site-specific growing qualities, we
select plots of land which are as similar as possible: exposure to sunlight, drainage,
slope and other relevant qualities. We randomly assign fertilizers to plots, and the
yields are measured. The first few lines of a typical data set appear below.
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ek

Variety Yield

2 Wolfe 55
3 Wolfe 54
4 Wolfe 59
5 Wolfe 56
6 White 60
7 White 70
8 |White 61
9  White 65
10 Korosa 50
11 Korosa 54
12 Korosa 49
13 Korosa 51

The fertilizer dataset

There are two columns in the dataset: the factor, which is the name of the
fertilizer, and the yield attributed to each plot. In this case, each fertilizer was tested
on four plots, providing 3 x 4 = 12 observations. Later, when using Excel to run the
ANOVA test, it will be necessary to change the format so that the yields are
grouped under each factor.

A good first step is to visualize the data. Here is a boxplot drawn with Tableau.
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Fertilizer boxplot

The dataset is here: fertilizer dataset!

and here is a Youtube of creating a boxplot in Tableau?.

https://dl.dropboxusercontent.com/u/23281950/fertilizer.xlsx 2http://youtu.be/3QohthWXp1M
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I’ll make a frank admission right now: it took me the best part of a morning to get the
technique of drawing a boxplot in Tableau down, so hopefully this YouTube will
help you to avoid spending so much time on this.

The boxplot reveals these useful measurements: the smallest and largest
observation, or the range. The median, which is the hori- zontal line within the box;
and the 25% quartile (upper line of the box; and 75% quartile, lower line of the box.
Therefore 50% (75-25) of the data are contained within the box. The ‘whiskers’
mark off data which are outliers, meaning that any datapoint which is outside a
whisker is an outlier. This doesn’t mean to say that it is somehow wrong: perhaps
some of the most interesting discoveries come from looking at outliers. However,
an outlier might also be the result of careless data entry and should therefore be
checked. It is clear from the plots that the yields are by no means the same.

In this example, we are measuring only one factor : the effect of the fertilizer on the
mean yield of each plot, and so the test we want to conduct is single factor ANOVA
with a completely randomized design. It is completely randomized because the
allocation of fertil- izer to plot was random. We want any differences to be due to the
fertilizer and the fertilizer alone.

Because our test is whether the means are the same or different, the hypothesis is:

Ho:p1=p2=pu3=..=un

with the alternative hypothesis that not all the means are the same. That isn’t the
same as saying that they are all different; just that at least one is different from the
others.

The rejection rule states that if the p value which comes out of the test is smaller
than 0.05, then we reject the null hypothesis. If we reject the null, then we must
accept the alternative hypothesis.



We test the hypothesis using the ANOVA Single Factor tool within Data Analysis.
First, the two-column structure of the data has to be transformed into columns for
each of the three fertilizers. That is easily accomplished using the PIVOT TABLE
function. This youtube? takes you through the process of changing the structure of
the data and running the ANOVA test. The result are below.

Anova: single Factor

SUMMARY

Groups Count sum Averoge Varlanoe

Korosa 4 204 51 A.666667

White 4 256 64 20.66667T

Wolle o 224 56 4.666667

ANOVA

Sourceof Varigtion S5 df | MS | F__ Pvalue Ferit
Between Groups 344 i 112 172 0.00084:2 4.256d35
within Groups a0 £l 10
i | Total 434 11

ANOVA output for fertilizer test

The key statistic is the p-value. It is much smaller than 0.05 and so we reject the null
hypothesis. The means are not all the same. They are different. The summary output
tells us that White has the largest mean yield and this agrees with the boxplot. In this
case, separation of results into a ranking of yield is relatively easy because they are
so distinct. Unfortunately Excel lacks a way of easily testing whether any other pair
are the same or different. All we can say for sure is that they are not all the same.

Here is a slightly more complicated and realistic example. You are designing an
advertising campaign and you have models with different eye colors: blue, brown,
and green, and also one shot in

3http://youtu.be/weviSWYBI8U
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which the model is looking down. You measure the response to each arrangement.
Does the eye color affect the response? The dataset is called adcolor?. The first few

lines are here:

i T |-

A B C
IGmup ! Subj Score
Blue 1 1.3
Biue 2 1.0
Biue 3 7.0
Blue 4 42
Blue ] 54
Bilue 6 1.0
Bilue T 1.6
| = | PN o SN

The first few lines of the adcolor dataset

The color is the factor, and we’ll need to use PIVOT TABLE to tabulate the data so
that the eye color becomes the columns. I’ve done that here....

The result is

1 Anova: Single Factor
5

SUMMARY
4  Groups Count Sum Average Vanance
5 Blue &7 214 3.19403 3.079055
& Brown r 1378 3724324 2942447
T Down 41 1274 3107317 2 326695
8 |Green 71 2972 3.85974 2775332
8
10
11 ANOVA
12rceof Vana  SS af MS F P-vaiue F ot
13 Between C 24 41966 3 B.139886 2894117 0036184 2646014
14 ‘Within Gro 613 1387 218 2812563
]
16 Total E37 5584 24

47

The eye color results

4https://dl.dropboxusercontent.com/u/23281950/adcolour.xls
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The p value is 0.036184, smaller than 0.05. As a result we can state that different
colors are associated with different responses. Looking at the summary output,
green has the highest average at 3.85974, so we could probably select green.



5.2 ANOVA: with more than one factor

The Fertilizer test above showed how to test the effect of a single factor. The ANOVA
results showed that the means were not the same. By inspecting the boxplot and
also the Excel output, it is clear that the variety WHITE has a higher yield. What
might be interesting is finding whether another factor also has a statistically
significant effect on yields, and whether the two factors interacted together.

The case in question involves preparation for the GMAT, an exam required by some
graduate schools. The GMAT is a test of logical thinking and is therefore not
dependent on specific prior learning. We know the test scores of some applicants,
and whether those students came from Business, Engineering or Arts and Sciences
faculties. The students had also taken preparation courses, ranging from a 3-hour
review to a 10-week course. The question is: did taking the preparation course
matter; and did faculty matter? Here we have two factors: faculty and preparation
course. The data is already arranged in columns and so we can go straight in with a
two-way with replication. Look at the_data®. It is replicated because there are two
sets of observations for each preparation type. The output is here:

Shttps://dl.dropboxusercontent.com/u/23281950/testscores.xlsx
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M O L w C r T
1 Anova Two-Factor Without Replication

3 SUMMARY Counr Sum Average Vaviance

4 3-hour reve 3 1520 506.5667 9333333

5 3 1440 480 2400

6 |1-day prog 3 1440 480 5200

7 3 1640 5466667 4933333

8 10-week c 3 1640 546.6667 3733.333

9 3 1590 530 10900

10

11 Business 6 3240 540 1720

11 Engineerng 6 3360 560 3200

13 Arts and 5S¢ & 2670 445 1510

14

15

16 ANOVA

17 xeof Varia &5 dar M5 F Pyalue | Ferir
18 Rows 14250 5 2850 1244541 0338173 33215835
19 Cobmmis 45300 2 12650 989083 0004268 4102821
20 Error 22900 10 2290

1

22 Total B2450 17
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Test scores ANOVA output

We have the preparation type in the rows, and the relevant p value there is 0.358, so
we fail to reject the null. We cannot say that there is any difference in scores as a
result of preparation course type; in other words, there is no effect on scores
resulting from preparation course type. However, for faculty (in columns) there is
distinct difference, with a p value of 0.004. From the summary output, it looks as
those in the Engineering faculty had the highest score.






6. Regression: Predicting with
continuous variables

This chapter is about discovering the relationships that might or (equally well)
might not exist between the variables in the dataset of interest. Here’s a typical if
rather simplistic example of regression in action: the operator of some delivery
trucks wants to predict the average time taken by a delivery truck to complete a
given route. The operator needs this information because he charges by the hour and
needs to be able to provide quotations rapidly. The customer provides the distance
to be driven, and the number of stops en route. The task is to develop a model so that
the truck operator can predict the time taken given that information. Regression
provides a mathematical ‘model’ or equation from which we can very quickly
predict journey times given relevant information such as the distance, and number
of stops. This is extremely useful when quoting for jobs or for audit purposes.

We know the size of the input variables—the distance and the deliveries, but we
don’t know the rate of change between them and the dependent or response variable:
what is the effect on time of increasing distance by a certain amount? Or adding one
more stop? Using the technique of regression , we make use of a set of historical
records, perhaps the truck’s log-book, to calculate the average time taken by the
truck to cover any given distance. As with any attempt to predict the future based on
the past, the predictions from regression depend on unchanged conditions: no new
road works (which might speed up or delay the journey), no change in the skills of
the driver.
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In the language of regression, the time taken in the truck example is
the response or dependent variable, and the distance to be driven is the
explanatory or independent variable. While we will only ever have just one
response variable, the number of explanatory variables is unlimited. The number
of stops the truck has to make will impact journey time, as will variables such as the
age of the truck, weather conditions, and whether the journey is urban or rural. If we
know these variables, we also can include them in the model and gain deeper
insights into what does (and equally important does not) affect journey time.

Regression models are used primarily for two tasks: to explain events in the past;
and to make predictions. Regression provides coefficients which provide the size
and direction of the change in the response variable for a one unit change in one or
more of the explanatory variables.

Regression makes a prediction for how long a truck will take to make a certain
number of deliveries and also states how accurate the prediction will be. With a
regression model in hand, we can make quotations accurately and quickly. In
addition, we can detect anomalies in records and reports because we can calculate
how long a journey should have taken under various what-if conditions.

Here I have used a straightforward example of calculating a time problem for a
trucking firm, but regression is much more powerful than that. Some form of
regression underlies a great deal of applied research. When you read about increased
risk due to smoking (or whatever else is the latest danger) that risk was calculated
with regression. In this chapter, we’ll calculate the difference between used and
new marioKart sales on ebay, estimate stroke risk factors, and gender inequalities in
pay, all with regression.

Regression is not very difficult to do, but the problem is that everybody does it.
Ordinary Least Squares (OLS), linear regression’s proper name, rests on some
assumptions which should be checked for validity, but often aren’t. We cover the
assumptions, and what



to do if they’re not met, in the following chapter. This chapter is about the hands-on
applications of regression.



6.1 Layout of thechapter

The chapter begins with some background on how regression works. We’ll
illustrate the theory with the trucking example men- tioned above, before going on
to adding more explanatory variables to improve the accuracy of the prediction.

Particularly useful explanatory variables are dummy variables, which take on a
categorical values, typically zero or 1. For example, we could code employees as
male and female, and discover from this whether there is a gender difference in pay,
and calculate the effect. In a worked example in the text, we analyze the sales of
marioKart on ebay, and use dummy variables to find the average difference in cost
between a new and a used version.

Sometimes two variables interact: higher or lower levels in one variable change the
effect of another variable. In the text, we show that the effect of advertising changes
as the list price of the item increases.

Finally, we’ll discuss curvilinearity . The relationship between salary and experience is
non-linear. As people get older and more expe- rienced, their salaries first move
quickly upwards, and then flatten out or plateau. We can capture that non-linear function
to make prediction more accurate.



6.2 Introducing regression

At school you probably learned how to calculate the slope of a line as ‘rise over
run’. Let’s say you want to go to Paris for a vacation. You have up to a week. There
are two main expenses, the airfare and the cost of accommodation per night. The
airfare is fixed and



stays the same no matter whether you go for one night or seven. The hotel (plus your
meal charges etc) is $200 per night. You could write up a small dataset and graph it
like this:

Total Paris trip expenses

The equation for is: Total expenses = 1000 + 200*Nights

Basically, you have just written your first regression model. The model contains
two coefficients of interest:

» the intercept which is the value of the response variable (cost) when the
explanatory variable is zero. Here the intercept is

$1000. That is the expense with zero nights. It is the point on the vertical y
axis where the trend line cuts through it, where x =0. You still have to pay the
airfare regardless of whether you stay zero nights or more.

* the slope of the line which is $200. For every one unit increase in the
explanatory variable (nights) the dependent variable (total cost) increases
by this amount.

In regression, we usually know the dependent variable and the independent
variable, but we don’t know the coefficients. We use regression to extract those
coefficients from the data so that we can make predictions.

How do we know whether the slope of the regression line reflects the data? Try this
thought experiment: if you plotted the data and



the trend line was flat, what would that mean? No relationship. You could stay in
Paris forever, free! A flat line has zero slope, and so an extra night would not cost
any more.

More formally, the hypothesis testing procedure tests the null hypothesis that the
slope is zero. If we can reject the null, then we are required to accept the alternative
hypothesis, which is that the slope is not zero. If it isn’t zero (the trend line could
slope up or down) then we have something to work with. We test the hypothesis
using the data found from the sample, and Excel gives us a p value. If the p value is
smaller than 0.05, we reject the null hypothesis. If we reject the null we can say that
there is a slope and the analysis is worthwhile.

The Paris example had only one independent variable (number of nights) but
regression can include many more, as the trucking example below will show. If
there is more than one variable, we cannot show the relationship with one trend line
in two dimen- sions. Instead, the relationship is a hyperplane or surface. The plot
below shows the effect on taste ratings (the dependent variable) of increasing
amounts of lactic acid and H2S in cheese samples.
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3D hyperplane for responses to cheese

Here is another example. We have the data on the size of the population of some

towns and also pizza sales. How can we predict sales given population. Pizza
YouTube here!



https://www.youtube.com/watch?v=ib1BfdVxcaQ

6.3 Trucking example

The records of some journeys undertaken are available in an Excel file named
‘trucking’2.

Take a look at the data. As I mentioned at the beginning of the book, it is always a
good idea to begin with at least a simple exploratory plot of the variables of interest

in your data. With Excel we can quickly draw a rough plot so that we can see what is
going on. What we want to do is predict time when we know the distance. The

https://www.youtube.com/watch?v=ib1BfdVxcaQ
2https://dl.dropboxusercontent.com/u/23281950/trucking.xlsx
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scatter plot below shows time as a function of distance. YouTube: scatterplot of
trucking data3

lime taken by distance

Trucking scatterplot

Time is the dependent variable and distance is the independent variable. The
independent variable goes on the horizontal x axis, the dependent variable on the
vertical y axis.

From the plot it is clear that there is a positive relationship between the two variables.
As the distance increases, then so does the time. This is hardly a surprise. But we
want more than this: we want to quantify the relationship between the time taken and
the distance traveled. If we can model this relationship that will be useful when
customers ask for quotations.

The data set contains one further variable, which is the number of deliveries on the
route. We’ll use that later on. For now we’ll use just the time and the distance.

To build our model, we want to build an equation which looks like this in symbolic
form

3https://www.youtube.com/watch?v=HSpY 12m[.XoU
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y'=botbixi1t+...bnxnte

yhat (spoken ‘y hat’) is the dependent variable. It is called ‘hat’ because it is an
estimate. b0 is the intercept, or the point where the trend line (also called the
regression line) passes through the vertical y axis. This is the point where the
independent variable is zero. You perhaps remember a similar equation from school:
y =mx

+b.

In the trucking example, the intercept (b0) might be the time taken warming up the
truck and checking documentation. Time is running, but the truck is not moving.
bl is the ‘coefficient’ for the independent variable because it provides the change
in the dependent variable for a one-unit change in the independent variable. x1 is
the independent variable, in this case distance. We want to be able to plug in some
value of the independent variable and get back a predicted time for that distance.

The b and the x both have a subscript of 1 because they are the first (and so far only
independent variable). I have put in more variables just to indicate that we could
have many.

The coefficient, b1, provides the rate of change of the dependent variable for a one
unit change in the independent variable. You can think of this as the slope of the line:
a steeper slope means a greater increase in y for a one-unit increase in x.

We can now find the estimated regression equation using the regression application
in Excel. First, we use the regress function in Excel’s data analysis tool to regress
distance on time. YouTube*

The regression output is as below:

4https://www.youtube.com/watch?v=xKsYfa7YGgE
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The regression output

I have marked some of the key results in red, and I explain them below.



6.4 How good is the model? —r-squared

There is a red circle around the adjusted r-squared value, here 0.622. r-squared is a
measure of how good the model is. r-squared goes from 0 to 1, with a 1 meaning a
perfect model, which is extremely rare in applied work such as this. Zero means
there is no relationship at all. The result here of 0.62 means that 62% of the variance
in the dependent variable is explained by the model. This isn’t bad, but it’s not
great either. Below, we’ll add more independent variables and show how the
accuracy of the model improves. The adjusted r-squared takes into account the
number of variables in the regression equation and also the sample size, which is why
it is slightly smaller than the r-squared value. It doesn’t have quite the same
interpretation as r-squared, but it is very useful when comparing models. Like r-
squared, we want as high a value as possible: higher is better because it means that
the model is doing a more accurate job.

Also circled are the words intercept and distance. These give us the



coefficients we need to write the model. Extracting the coefficients from the Excel
output, we can write the estimated regression model.

y"=1.274+0 . 068 * Dist

where yhat is the estimated or predicted response time. If you took a very large
number of journeys of the same distance, this would be the average of the time taken.

The intercept is a constant, it doesn’t change. It is the amount of time taken before a
single kilometer has been driven. The distance coefficient of 0.068 is the piece of
information that we really want. This is the rate of change of time for a one unit
change in the dependent variable, distance. An increase of one kilometer in
distance increases the predicted time by 0.0678 hours, and vice- versa of course.
Do the math and you’ll see that the average speed is 14.7 mph.



6.5 Predicting with the model

A model such as this makes estimating and quoting for jobs much easier. If a
manager wanted to know how long it would take for a truck to make a journey of 2.5
kms for example, all he or she would need to do is to plug 2.5 into distance and get:

predicted time = 1.27391 + 0.06783*2.5 = 1.4435 hours.

multiply this result by the cost per hour of the driver, add the miscellaneous charges
and you’re done.

It is unwise the extrapolate. Only make predictions within the range of the data with
which you calculated your model (see also Chapter 4 on this.






6.6 How it works: Least-squares method

The method we just used to find the coefficients is called the method of least
squares . It works like this: the software tries to find a straight line through the
points that minimizes the vertical distance between the predicted y value for each x
(the value provided by the trend line) and the actual or observed value of each y for
that x. It tries to go as close as it can to all of the points. The vertical distance is
squared so that the amounts are always positive.

The plot below is the same as the one above, except that I have added the trend line.

The black line illustrates the error

The slope of the trend line is the coefficient 0.0678. That is the rate of change of the
dependent variable for a one-unit change in the independent variable. Think “rise
over run”. I extended the trend line backwards to illustrate the meaning of intercept.
The value of the intercept is 1.27391, which is the value of y when x is zero. This is
actually a form of extrapolation, and because we have no observations of zero
distance, this is an unreliable estimate.

Now look at the point where x = 100. There are several y values representing time
taken for this distance. [ have drawn a black line



between one particular y value and the trend line. This vertical distance represents
an error in prediction: if the model was perfect, all the observed points would lie
along the trend line. The method of least squares works by minimizing the vertical
distance. It is possible to do the calculations by hand, but they are tedious and most
people use software for practical use. The gap between predicted and observed is
known as a residual and it is the ‘e’ term in the general form equation above.

The error discussed just above is the vertical distance between the predicted and the
observed values for every x value. The amount of error is indicated by the r-
squared value . r-squared runs from 0 ( a completely useless model) to 1 ( perfect
fit).

In the glossary, under Regression, I have written up the math that underpins these
results.



6.7 Adding another variable

The r-squared of 0.66 we found with one independent variable is reasonable in such
circumstances, indicating that our model explains 66% of the variability in the
response variable. But we might do better by adding another variable to explain
more of the variability.

The trucking dataset also provides the number of deliveries that the driver has to
make. Clearly, these will have an effect on the time taken. Let’s add deliveries to the
regression model.

Note that you’ll need to cut and paste so that the explanatory variables are adjacent
to each other. It doesn’t matter where the response variable is, but the explanatory
variables must be adjacent in one block. The new result is below:
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Now with deliveries

Note that the r-squared has increased to 0.903, so the new model explains about
25% more of the variation in time. The improved model is:

y=-0.869+0.06*Dist+0.92 * Del

A few things to note here: the values of the coefficients have changed. This is
because the interpretation of the coefficients in a multiple model like this is based
on only one variable changing . For example, the coefficient of distance is 0.92,
almost one hour for each delivery assuming that the distance doesn’t also change.
We should interpret the coefficients under the assumption that all the other variables
are ‘held steady’, apart from the coefficient of interest.



6.8 Dummy variables

Above, we saw how adding a further variable has dramatically improve the
accuracy of a model. A dummy variable is an additional variable but one that we
construct ourselves as a result of dividing data into two classes, for example by
gender. Dummy variables are



powerful because they allow us to measure the effect of a binary
variable, known as a dummy or sometimes indicator variable. A
dummy variable takes on a value of zero or one, and thus partitions the
data into two classes. One class is coded with a zero, and is called the
reference group . The other classes are coded with a one and
successive numbers.

There may be more than two groups, but there will always be one
reference group. W eare generating an extra variable, so the
regression equation looks like this:

y=bo+bix1+ba2x>

In the case of observations which have been coded x1=0 (the
reference group), then the bl term will disappear because it is
multiplied by zero. The b2 term remains. For the reference group, the
estimated regression equation then simplifies to

_)’Areference:b 0o+tbox>

while for the non-reference group, it is

yAnonreference:bO"'b 1X1+box>

The size of b1x1 represents the difference between the average size
of the reference level and whatever group is the non-reference group.
Let’s work through an example. Creating a dummy variable®

The dataset [‘gender’] (https://dl.dropboxusercontent.com/u/23281950/gender.x1sx)
contains records of salaries paid, years of experience and gender.

We might want to know whether men and women receive the same
salary given the same years of experience. Load the data, then run a
linear regression of Salary on Years of Experience, using years of
experience as the sole explanatory variable. The result is below:

Shttps://www.youtube.com/watch?v=TBJsEb2UCPs
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The gender regression

The interpretation is that the intercept of $30949 is the aver- age starting salary,
with years of experience zero. The coefficient

$4076 means that every additional year of experience increases the worker’s salary
by this amount.

The r-squared is 0.83, so the simple one-variable model explains about 83% of the
variation in the dependent variable, salary. We have one more variable in the
dataset, gender. Add this as a dummy variable and run the regression again. Note that
you will have to cut and paste the variables so that the explanatory variables are
adjacent.



1 SUMMARY OUTPUT

Ragresson Stahshcs

4 [Muktiple R 0 996585036

5 R Squane 0893382655

6 Adusied R Square 0891912134

T Standard Ermror 1709 480536

i Dbsenatons 12
il AMNOWVA

1 of 35 M3 F gratrcance |
12 Regression 2 395E+09 197E+D9 675531 1.55E-10
13 Residual 9 2300913 297034
1 Total 11 I97E+04

[ Coefficiants  landed Em [ Stal F.aiue  Lower 5%
17 Inbercept F3607 51734 1434 476 1645724 503E.08 HGE2S51
18 Gander (2] t=Famals 1=Mala 14683 GERET  GB6 950 14 BTTS4 1 ME-0T 12450 99
19 Yeaars Expariance (X1) 4076 4908372 121 M35 3361132 9E-11 1302 136

With the gender dummy added

The r-squared has increased to nearly 1, so our new model with the inclusion
of gender is very accurate. The important new variable is gender, coded as
female = 0 and male = 1. Nothing sexist about this, we could equally well
have reversed the coding. If you are female, then the model for your salary
is: 23607.5 +4076*Years

if you are male, then the model for your salary is 23607.5 +
114683.67 + 4076Years

Each extra year of experience provides the same salary increase, but on average
males receive $14683.67 more earnings.

Here is another example, using the maintenance dataset. Dummy variable®

Another dummy variable example and a cautionary
tale

The mariokart dataset came from [OpenIntro Statistics] (www.openintro.org)a
wonderful free textbook for entry level students. The dataset

Shttps://www.youtube.com/watch?v=Yv681upodDI
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contains information on the price of Mario Kart in ebay auctions. First let’s test
whether condition ‘new’ or ‘used’ makes difference. Construct a new column called
CONDUMMY, coded new = 1 and used = 0. Now run a regression with your new
dummy variable against total price. The output is below

SUMBMARY OUTPUT

Regression Stofistics

Multiple R 0.127362357

R Square 0.01622117

Adjusted A Square 0,2 a8 005

Standard Erras X5.56955174

Observations 143

ANOVA

df 55 M3 F
Regression 1 1520022538 1520073 2324858
Residual 141 9218607867 633.802
L Total 147 93706.10127
Coefficients Stondord Error tStot Powvolue

" |Intercept 4714809524 2.783866818 16.85377 1.0ME-33
condummy BEIISERTIE 434335657 1.524761 0.125558

The condition dummy results

This result is tremendously bad. The p value is 0.129, meaning that condition is not a
statistically significant predictor of price. Surely the condition must have some
significant effect? Wait—we forgot to do some visualization. To the right is a
histogram of the total price variable.

Looks like we might have a problem with outliers...some of the observations are
much larger than the others. Take another look with a barchart at the higher prices.



MarioKart Total Prices
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marioKart total prices

We can identify these outliers using z scores (see the Glossary). Or we could just sort
them by size and then make

a value judgement based on the description. That’s what I have done in this YouTube.
Outlier removal and_regres- sion’

Tatal Price BManokart

Ssgiiaii. :
tobalr T

The total prices as a bar chart

It seems that two of the items listed were for grouped items which were quite
different from the others. There is therefore a legitimate reason for excluding them.
Below are the new results:

"https://www.youtube.com/watch?v=ivL. GteHuu3Q
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1 SUMMARY QUTPLUT

E Regression Stotistics
4 'Multiple R 0.592075
5 R Square 0.350553

5 adjusted R Sguar 0.3458E1
' Standard Error 1.3T0507

i Observations 141
0 ANOVA

df 55 M5 F  gnificonce F
Z Regression 1  4076.30160% 4076.302 75.0281E 1.06E-14
3 Residual 135 T551.9083274 54.33028
4 Total 140 11628, 205958
& CoefficientStondord Error ¢ Sfof P-volve Lower 35%LUE
T Intercept 428711 0.813%30554 52.66845 1.02E-93 41.26171 4
E COMNDLUMMY 1089958 1.2583338778 B.661BE1 1.06E-14 B.411621 1

Corrected marioKart output

The estimated regression equation is

y =42 .87+10. 89 * CONDUMMY

The condition dummy was coded as new = 1, used = 0. If a mariokart is used, then its
average price is 42.87, if it new then the average price is 42.87 + 10.89. The average
difference in price between old and new is nearly $11. Makes sense.

Take-home: check your data before doing the regression.



6.9 Several dummy variables

The gender and the marioKart examples above contained just one dummy variable.
But it is possible to have more. For example, your sales territory contains four
distinct regions. If you make one of the four the reference level, and then divide up
the data with dummies



for the remaining three regions, you can compare performance in each of the
regions both to each other and to the reference level.

The dataset maintenance contains two variables which you can convert to dummies,
following this YouTube.

Maintenance Regression?


https://www.youtube.com/watch?v=xWdcT7u9YFE&amp;feature=em-upload_owner

6.10 Curvilinearity

So far, we have assumed that the relationship between the depen- dent variable and
the independent variable was linear. However, in many situations this assumption
does not hold. The plot below shows ethanol production in North America over
time.

Ethanol North America

1557 1998 1999 2000 2001 2002 X 2004 2]

North American ethanol production. Source: BP

The source of the data is BP. It is clear that production of ethanol is increasing yearly
but in a non-linear fashion. Just drawing a straight line through the data will miss the
increasing rate of production. We can capture the increasing rate with a quadratic
term, which is simply the time element squared. I have created a new variable
which indexes the years, which I have called t, and a further variable

8https://www.youtube.com/watch?v=xWdcT7u9YFE&feature=em-upload owner
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which is t squared.

urvilinear regression_YouTube®

5 Renewable energy —fuel ethanol
& Year thtonnes 12
7 1997 2374 1 1
B 15993 2637 2 4
g9 1995 2331.148 3 9
0 2000 21B7.299 4 16
2001 3445481 5 25
2 2002 4172.912 6 36
3 2003 5418.881 7 45
[ 2004 6550.186 8 G4
5 2005 7507.669 9 81
[ 2006 9527401 10 100
7 2007 1275105 11 121
8 2008 1315443 12 144

g 2009 212005 13 169

The dataset with an index for time. Source: BP

A regression of t against output has an r-squared value of 0.797. Inclusion of the t
squared term increases the r-squared markedly to

0.98. The regression output is below.

Cogfficlents  Stondord Eror Sl Pwele Lower S5%LipDer 50w S5 0% nper 55 0%
| inber ot ASMS17  IMITEIEL]  A.EM1Y DO0OEIY J451.8M ASSAIS DAALS0N A554.5TS
at 130008572 NXIF[ENTF 430347 DDIISSE 13747 437434 12T CRITAM

IMATIITIY  JLOBGILME 9JTHIED LISF-O6 BAROSSE M1 14LOSIE 2418558

Regression output with the quadratic term

We would write the estimated regression equation as

y =4504-1301t+194.9 2

Notice that for early smaller values of t, the effect of the quadratic

9https://www.youtube.com/watch?v=igiWSpyPBqgg
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term is negligible. As t gets larger then the quadratic swamps the linear t term.

Making a prediction . Let’s predict ethanol production after 5 years. Then

¥y =4505-1301*%5+194.9%25=2872.5

The plot below shows predicted against observed values. While the fit is clearly
imperfect, it is certainly better than a straight line.

Ethanol: Predicted against Observed

Predicted against observed ethanol production.



6.11 Interactions

Increasing the price of a good usually reduces sales volume (al- though of course
profit might not change if the price increases sufficiently to offset the loss of sales.
Advertising also usually increases sales, otherwise why would we do it?

What about the joint effect of the two variables? How about reducing the price
and increasing the advertising? The joint effect is called an interaction and can
easily be included in the explanatory variables as an extra term. The output below
is the result of



regressing sales on Price and Ads for a luxury toiletries company. The estimated
regression model is

y =864-281 P+4.48 Ads

. - , y ; i H
SUMMARY OUTPUT

Regrorsion 5
+ Minltiphe R
R Square 0850672
& Adpsed B 0BRES
7 Standsd E T1E1032
2 Hhservatios 14

10 ANDVA
aif 55 W3 F gificemce F

1 Pegresston 1 G18900  30B4SG SOEIS0E 211E0R
13 | Reesicheal Il 10EISLY  5156.T3
td | Tomal rx ] LI
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Tleeereepr | RO 1667 1010040 E53E0E ITVE-08 &80T L0T4M0 S407F0 1074 M9
15 Poee IEl 53=0g19 -THMEIT LIVE-OT 335G -20633) 335665 -206331
15 A 443 0388520 TE0TIE 171E-0Y 1160661 5699338 I MEO66L 3699333

Regression output for just price and ads

So far so good. The signs of the coefficients are as we would expect from economic
theory. Sales go down as price rises (negative sign on the coefficient). Sales go up
with advertising (positive sign on the coefficient). Caution: do not pay too much
attention to the absolute size of the coefficients. The fact that price has a much
larger coefficient than advertising is irrelevant. The coefficient is also related to the
choice of units used.

Now create another term which is price multiplied by ads. Call this term PAD. The
first few lines of the dataset are below.



PAD Price Ads Sales

1

2 100 2 50 478
3 125 2.5 50 373
4 150 3 20 33s
5 100 2 50 473
6 125 25 50 358
7 150 3 50 329
2 10 ? &0 456

First few lines with the new interaction variable

Now do the regression again, including the new term.

A 8 [ I F F L H

1 SUMMARY OUTPUT

} | Ragrassioon Stainnics

U hbuiple B 0988004
2 BSque G970
b Adpseed B 0573823
T Somderd B IE1T5BS

B Ot 4

10 ANCVA

L A A

1I Regreison 3} TOeALe IIS43ET 1978581 9.26E-17

13 Peuidual 30 ISETE 33 TR TGET

14 Tousl 23 7251913

16 Cogfficientandarg Err 1 Skat Foiur  Lower PINLpper B5 M icwer P30 pper #5.00
17 Indercept -I7T5 B33 J12E411 144447 0023598 -51121E -404438 -E11.21E -304438
1E PAD -G0E D563477 107801 ESSE-ID -T 15539 -4 RME1 -TI5539 -4 P&l
1# Price 175 4454579 3938453 0.0DOE37 EIO7V0T 267923 EBIOTVOT 26T HI3

20 Ads 1968 1427352 1378777 1 03E-I1  1&7026 226574 DETORS 226574

Inclusion of the interaction term

The new term is statistically significant and the r-squared has increased to
0.978109. The new model does a better job of explaining the variability. How come
price is now positive and the interaction term is negative? We have to look at the
results as a whole remembering that the signs work when all the other terms are
‘held constant’. The explanation: as the price increases, the effect of advertising on
sales is LESS. You might want to lower the price and see if the increased volume
compensates.



Another interaction example

Here’s another example, this one relating to gender and pay. The dataset is called
‘paygender’ and contains information on the gen- der of the employee, his/her
review score (performance), years of experience and pay increase. We want to
know:

* Is there a gender bias in awarding salary increases?

* In there a gender bias in awarding salary increases based on the interaction
between gender and review score?

First, let’s regress salary increases on the dummy variable of gender and also Review.
My results are below (I have created a new variable which I have called G. It is just
the gender variable coded with male

= (0 and female = 1.

EURMMARY OUTPUT

Ragrassion Statkshics

i Multiple F 0.913347
Rigquare 0834001
fudjusted | 010309

T Standard | T1.91991

i Obserdatl 17

AMOVA

i _of 85 2w | F  geficancef
Regrassha 3 35387:4 1B1536.7 3507383 3.47E-06
Residual 14 THM14.E6T 5172473

4 Total 16 436287.1

Coefficwarandand Erf [ Shal Ponaliie Lovedr SR A oeT RTNCweT 95 0Fpper 550%

L - o e
Intercept  204.5081

12204 4731703 0000321 1118075 J97.3045 1118075 197,204
& 33786 3679861 -6.43395 1SEE.05 -310.053 155519 .310083 -155.519
Aewiew 234089 (G737 1471002 000373 DASESI6 3635793 0.858326 36352%

G dummy and Review

Nothing very surprising here: women get paid on average 233.286 less than men.
And—holding gender steady—each point increase in Review gives an increase in
salary of 2.24689.

How do I know that women are paid less than men? The estimated regression
equation is:



y =204 .5061 — 233 . 286 * (x=1ifF )—-233. 286 *( x=0ifM )+2 . 24689 * Review

Remember how we coded men and women? The x = 0 if M term disappears, so we
are left with this equation for men:

y =204 .5061+2. 24689 * Review

and this one for women (I’ve done the subtraction) to give

y=-28.779+2. 24689 * Review

Conclusion: there is a gender bias against women. For the same Review
standard, on average women are paid 233.286 less than men.

How about the second question — possibility that the gender bias
increases with Review level? We can test this with an interaction
variable. Multiply together your gender dummy and the Review score
to create a new variable called Interact. Then do the regression again
with salary regressed against G, Review and Interact. My output is
below.



SLIMMARY OUTPUT

F'EE ression Shafishcs
2 'Muftsple F 0.970032
3 |REgquare 0.940543
& Adjusted | D.927339
T Standad | 2451199
Dbzervat 17

AR

df 55 A F gAaificance F

12 Regressio 3 410%359.9 136B43.3 09.06G6EX 1.00E-DE

1 | Residus 13 25737.13 1I9E1.313

4 | Tota 16 436237.1

Cogfficientandard Err $5fat Powalee [ower 358U nper 95%ower 35 0 pper 95 0%

7 |interospt 59094477 a0.05718 1497227 O0U158216 -26.5503 1446.4359B -DE3503 1454358
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] | Revicw 4.BLE39T D.669335 7.244I76 GIIE-DG 3400541 ET53049 400941 6295049
I0 [int 405458 0.B3533 4.B527 0.000316 -5.85977 214958 -5E3STY  -2.24558

Interaction output

For men, the equation is Salary = 59.94472 + 4.848995 (because the G and Interact
terms go to zero because we coded Male=0. So for every extra increase in Review, a
man’s salary increases by 4.848995.

For women, the equation is Salary = 59.94472 -29.714 - 1*(4.848995- 4.05468) so
for every one increase in Review, a women’s salary increases by only 4.848995-
4.05468=0.79. Notice that the adjusted r- squared for this model is higher (it is
0.927339 compared to 0.810309) than the model with just G and Review. So the
interaction is both statistically significant, p value 0.000316) and has the meaning

that for women, improving the Review score doesn’t increase the salary as much as
for men.

Conclusion The analysis showed that women are being treated unfairly. There is a
gender bias against them in average salaries for the same performance review; and
each increase in review points earn them considerably less in salary than for the
equivalent male. Caution: this conclusion is based solely on the limited evidence
provided by this small dataset.






6.12 The multicollinearity problem

Multicollinearity refers to way in which two or more variables ‘explain’ the same
aspect of the dependent variable. For example, let’s say that we had a regression
model which was explaining someone’s salary. Employees tend to get paid more as
they get older and also as their years of experience increases. So if we had both age
and years of experience in the list of independent variables we would almost
certainly suffer from multicollinearity.

Multicollinearity can lead to some frustrating and perplexing re- sults. You run a
regression. One of the variables has a p value larger than 0.05, so you decide to take
it out. You run the regression again and—-the sign and/or significance of another
variables changes. This happens because the two variables were explaining the
same aspect of the dependent variable jointly.

How to solve this problem: check the correlation of the independent variables first,
before putting them into your model. Chapter 14 has a section on correlation. If you
find that the correlation of any two variables is higher than 0.7, be suspicious. These
two may bring your some grief!



6.13 How to pick the best model

You will be trying out different formulations, adding and removing variables to try
to capture as much explanatory power as you can. How you do decide if one model
is better than another? There are two approaches:

* Look only at the adjusted r-squared value, even if your model contains
variables with a p value larger than 0.05. If the adjusted r-squared value
goes up, leave such variables in.

* Prune your model so that it contains only variables with a p value <= 0.05.
You still want as high an adjusted r-squared as



you can get, but you also want all your explanatory variables to be
statistically significant.

I take the latter approach. You usually have fewer variables but all of them have a
reason (statistical significance) for being in your model and you can interpret their
meaning intelligently. A parsimonious model is better than a complex model that
fits your data very well. Simple and robust is good. The dataset that you used to fit
your model is only a sample from a population. An overly complex model may not
work well when presented with a different sample from the population.



6.14 The key points

 Think through your model before you start including vari- ables. What
variables do you think will have an effect on the dependent variable and in
which direction (plus or minus). It is tempting to just put in everything and
hope for the best but this rarely works. Some software is able to do
stepwise regression, pulling out insignificant variables for you, but Excel
is not one of them.

* Keep your model as simple as possible. Complicated models rarely work
well.

* Visualise your data first, even with a simple scatter plot as we have done
throughout this chapter.

» Check whether you have all the variables that you might need. If you were
trying to predict whether a shop selling expensive jewellery would make
sufficient sales, you might want to know the average income of residents. If
you don’t have it—get it. There is a huge amount of data lying about which
you can obtain either free or quite cheaply. I’ve included a very brief list
of URLs in Chapter 12.






6.15 Worked examples

1. The estimated regression equation for a model with two independent
variables and 10 observations is as follows:

y™=29+0.59x1+4.9x2

What are the interpretations of b1 and b2 in this estimated regres- sion equation?

Answer: the dependent variable changes by on average 0.59 when x1 change by one
unit, holding x2 constant. Similarly for b2.

Predict the value of the independent variable when x1 is 175 and x2 is290 :

Yy =29+0.59(175)+4 . 9(290) = 1553 . 25






7. Checking your regression model

It isn’t difficult to build a regression model as the previous chapter has shown. But
that is part of the problem: everybody does it. But not everybody takes the trouble
to check the results. Checking the results is an important step for two reasons: first, to
make sure your calculations and predictions are correct; and secondly to show third
parties that your work is solid. In this chapter we’ll work on doing just that. To
decide whether the models we have been working on are any good we need to look
at two areas:

* Is your model statistically significant?

* Are the assumptions behind the least squares method met? In particular,
linearity and residual distribution.

The first area is easier to work through than the second, which is probably why one
doesn’t always see residual analysis discussed when results are presented. This is a
shame because there is a great deal to be learned from picking through residuals. Your
analysis will be greatly improved by a close attention to this area.

Below we’ll work through statistical significance and then test the assumptions.



7.1 Statistical significance

The regression trend line displays a rate of change between two variables. The line
slopes upwards when the dependent variable increases for a one-unit increase in the
independent variable (
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positive relationship) and vice-versa (negative relationship). What we want to
know is this: did that slope upwards or downwards occur by chance; if we took
another sample from the population would we achieve a similar result? Key point:
we are usually working with a sample drawn from a population. The sample in the
trucking example was the firm’s log book.

The null hypothesis is that there is no slope; with the alternative that there is in fact a
slope. The hypotheses (see the Glossary for help on hypotheses) to test whether there
is a statistically significant slope are:

The null:

Ho:p=0
and the alternative:
Hq:[=0
where
B

is the symbol for the coefficients of the population parameter of the independent
variable of interest. In words, the hypothesis is testing whether beta is zero or not. If
it is zero, then we are ‘flatlining’ and there is no point in continuing with the
analysis. If however we can reject the null, then we accept the alternative which is
that beta is not zero. [t might be negative or positive, that doesn’t matter: what matters
is whether it is zero or not. Note that we use a Greek letter when discussing a
population parameter which will probably never be accurately known. We use the
Latin letter ‘b’ when we have estimated it using a sample drawn from the
population.



Excel does all the testing of statistical significance for us in two ways.

First, it tests the individual variables and provides a p value. Below is the result from
the first trucking regression we did. Note that the p value for distance is 0.004. It is
customary to use a cut-off of 0.05. The meaning of this result is that, following the
rejectionrule , we reject the null if the p value is smaller than 0.05. Because 0.004 is
smaller than 0.05, we reject the null we therefore conclude that there is in fact a
statistically significant slope. In summary, we tested the hypothesis that the slope
was zero, and rejected it. Therefore we accept the alternative which is that there is a
slope of some sort.

SUMRART CUTTPLT

Rgrassion Stotieics
{ MuRipleR 0313508

df i3 s i
Regrassion 1 158M5 156713 15.E457EL
Fsadiiarl § 3008696 1.0035ET

Coafficimtandard Bt Titad [ Lorwwr 358 Ligat B5%cnwer 35.0%pper 3508
1373513 L400045 0900458 (LIESEETIS 1956009623 4.504036 155621 4504006
DOGTEDE] QUOLTISG  3.576755] 00030 DOZMESTEE G 10716 DLOIB45SG DLA0715E

The trucking regression output

This test tells us that there is a statistically significant slope. It doesn’t tell us the
sign of the slope (up or down) or its magnitude. But the fact that there is a significant
slope is important information. It is worth carrying on with the analysis because the
variables actually mean something. By the way, ignore the p value for the intercept.
It usually has no substantive meaning.

The second way that Excel tests the validity of the model is to test whether the model
as a whole is significant. The test is called the F test after the statistician RA Fisher.
For the trucking example, look under significance F. The result is a p value, in this
case the same



p value for the variable DISTANCE. We have only one explanatory variable and so
the p value will be the same. We hope that the p value is smaller than 0.05, which
enables us to conclude that at least one of the slopes is non-zero.

The section above examined the first of the tests, which was for the statistical
significance of the model. Now we move on to the second area.



7.2 The standard error of the model

The standard error in Excel is found just under the adjusted r- squared output. It is
the estimated standard deviation of the amount of the dependent variable which is not
explainable by the model. In other words, it is the standard deviation of the residuals.

Under the assumption that the model is correct, it is the lower bound on the standard
deviation of any of the model’s forecast errors. The figure below shows the output of
regression estimating risk of a stroke (multiplied by 100) against blood pressure and
age, with a dummy variable for smoking or not.



e U

SUMMARY QUTPUT

Regression Stabistics

i |Multiple R 0 934605168
5 |R Square 0.87343682
6 |Adusted R Square

7 |Standard Error ‘d@
8 | Obsenations

g

10 ANOVA

1 df

12 |Regression 3
13 |Residual 16
14 (Total 19
15

1€ Coefficienis
17 | Intercept -91.75949844
18 | Smokedummy B.739871056
19 Age 1.076741057

20 |Pressura 0.25181.3473

Excel output for stroke likelihood

The standard error is 6 (rounded up). For a normally-distributed variable, 95% of
the observations will be within two standard deviations of the mean. For our
purposes that means that 2 x 6 = 12 should be added or subtracted to the predicted
value to find a confidence interval for predictions. The estimated regression equation
from the stroke model above is:

y =-91+1.08Age+0.25Pressure+8 .74 Smokedummy

An imaginary person who smokes, is aged 68 and has a blood pressure of 175 will
have a risk of 34 (all figures rounded). We can be 95% confident that this estimate
will fall somewhere between 34 - 12 and 34 + 12 or 22 to 46. These are rather wide
confidence intervals and so we might want to work at improving the model by for
example increasing the sample size or adding more explanatory variables.






7.3 Testing the least squares
assumptions

There are two key assumptions that the least squares method relies on which we need
to check. After checking we’ll work through ways of retrieving the situation should
the assumptions be violated. The assumptions are:

* The relationship between the dependent and the independent variables is
linear. Fortunately this is easy to check and also to fix if it isn’t satisfied.

* The residuals have a non-constant variance. (You’ll some- times see in
other statistics textbooks other stricter require- ments, such as the residuals
being normally distributed and with a mean of zero. For most purposes just
checking for non-constant variance is enough). What does non-constant
variance mean? We’ll work through this by defining a resid- ual and
identifying whether or not the assumption has been met. And finally what to
do about it. But first, checking for linearity.

Checking for linearity

The relationship between the dependent variable and the indepen- dent variable is
assumed to be linear. This is important because the model gives us a rate of change:
the coefficient shows the change in the dependent variable for a one-unit change in
the independent variable. If the relationship is non-linear, that coefficient will not
be valid in some portions of the range of the variables.

We want to see a straight line (either up or down) on a scatter plot. Put the dependent
variable on the vertical y axis, and one of the independent variables on the
horizontal x axis. If you include the trend line, you can observe how closely the
observed values match the predicted.



We can also check for linearity by plotting the predicted values and the observed
values. The plot below does this for risk of stroke:

tisk and Predicted Risk

Predicted against observed risk

This is a reasonable result, indicating that the linearity condition is met. Most of the
points are in a straight line, although I would be concerned about the lower risk

levels, especially around risk = 20. There appears to be considerable variance at this
point.



7.4 Checking the residuals

A residual is the difference between the observed value of y for any given x value,
and the predicted value of y for that same x value. It is therefore a prediction error,
and is given the notation e for the Greek letter ‘epsilon’. It is the vertical distance
between the actual and predicted values of the dependent variable for the same value
of the independent variable. We discussed this in the previous chapter in connection
with the least squares method, where we wrote the estimation equation:

y=bo+bix



The hat on y, the dependent variable, indicates that it is an estimate of the dependent
variable. We know that the estimate cannot be correct unless all the predicted values
and the observed values match up exactly. If they don’t, then there are residuals. If we
call the errors € (epsilon) which is the Greek letter matching our letter e, then we can
rewrite the regression equation as:

y=Bo+tP1x+e¢

The errors have now been absorbed into epsilon and so we can remove the hat from
y. It is the behavior of epsilon that is of interest, because the least-squares method
rests on the assumption that the errors absorbed into epsilon have a non-constant
variance. This means that there no relationship between the size of the error term and
the size of the independent variable. Therefore, if we plotted the errors against the
independent variables, we should see no clear pattern. How to do this is described
below.



7.5 Constructing astandardized
residuals plot

Excel provides what is calls standard residuals as part of its regres- sion output, and
we will use these. Note however that these are not ‘true’ standardized residuals, but
they are probably close enough. Make sure you check the Standardized Residuals
box when setting up your regression.



. Regression 2

Input

oK
Input ¥ Range: sD51:50511| &
| Cancel
N Input X Range: SES1:5EE11 =
e = Help
] Labels | Constant is Zero
[] confidence Levek: 5 %

Output options
! Qutput Range: B
|| (% Mew Worksheet Biy:
| ) New Workbook
| Residuals

[w] Besiduals [ Residual Plats
|+] Standardized Residuals ] Line Fit Plots

Naormal Probability
|#| Hormal Probability Fiots

Check the standardized residuals box

We want to plot the standard residuals against the predicted value yhat. We will
create a new column to the left of the column Standard Residuals, and copy the
column of predicted times into that new column. Then create a scatter plot of
predicted time and standard residuals. You should end up with the image below.
Standardized residual plot!

Ihttps://www.youtube.com/watch?v=1wuyZ{fB39p4
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Standard Residuals

Standard residuals

The Y axis indicates the number of standard deviations that each residual is away
from the mean, plotted against the predicted values on the horizontal axis. None of
the residuals are more that 2 standard deviations away from the mean of zero, so the
results are generally satisfactory, although there is one observation in excess of 1.5.
We still have a worrying fan shape which would seem to indicate non-constant
variance: we can observe a pattern.

Let’s run the regression again, but now including the second vari- able, which is
deliveries. The residuals plot is obtained in the same way, and here is the result.



Standard Residuals with two variables

Standardized residuals with two variables

The fan problem seems to have improved a little. The r-squared of the model with
two variables was higher, meaning that the residuals were smaller (because there is
less unexplained error).



7.6 Correcting when an assumption is violated

Above, we examined possible violations of two of the assumptions underlying linear
regression: linearity and non-constant variance. Now let’s look at what to do when
these assumptions are found to have been violated. First some good news: linear
regression is quite robust to such violations, and even so they are quite easy to correct
for. We’ll deal with the problems in the same order: linearity and non-constant
variance.



7.7 Lack of linearity

The first check is to look at a scatter plot of the dependent variable against the
independent variable. The plot below shows volume of sales and length of time
employed, together with a trend line.



VOLUME

A curvilinear relationship

There are several different ways in which a linear relationship can be achieved so
that we can use the least squares method. A common method is to include a
quadratic term. This means adding the squared value of the independent variable to
the list of independent variables. This is easily done by creating another column,
consisting of squared values of the first variable.

A B C

1 Months MonthSq Sales

i 41 1681 275
3 106 11236 296
4 76 5776 317
5 104 10816 376
6 22 484 162
7 12 144 150

A new column of the independent variable squared

To do this, create a new column and then label it. Click on the first value in the
variable which you want to square, and add “2. Enter. Then drag downwards. The
plot below shows the predicted and observed sales. The model is clearly superior.



PREDICTED AND OBSERVED SALES

& B

Predicted and observed after inclusion of quadratic term

If the dependent variable has a large number of low values, and is heavily skewed to
the right, then a good solution is to transform the dependent variable into its natural
logarithm.



7.8 What else could possibly go wrong?

Regression is a very commonly used analytical tool and you are most likely either
going to use it yourself or examine the work of others who have used regression.
Below is a list of common mistakes to watch for. And if I have made them
somewhere in this book, I’'m sure you’ll be the first to let me know!



7.9 Linearity condition

Regression assumes that the relationship between the variables is linear: the trend
line that the software tries to find to minimize the squared difference between the
observed and predicted values is straight. So if you try to run a regression on non-
linear data, you’ll get a result but it will be meaningless.



Action : always visualize the data before doing any analysis. If you see that the data
is non-linear, you may be able to transform it using the techniques described in the
previous chapter. As an example: the curvilinear example which was transformed
by including a quadratic term as an explanatory variable.



7.10 Correlation and causation

Regression is a special case of correlation, and as we all know correlation doesn’t
mean causation (see the Glossary). In regression, no matter how good the model, all
that we have been able to show is that a change in an explanatory variable is
associated by a change in the dependent variable. For example, you record the hours
you put into studying and your grades. Surprise! More studying = better grades? Or
perhaps not....could have been a better instructor. We cannot say that one caused
the other. So when writing up results or interpreting those of others, be very careful
not to claim more than you are able to.

There is a related problem which is ‘reverse causation’. You study more, your
grades go up. Tempting to think that one possibly caused the other. But perhaps it is
the other way round? Your grades were poor, you studied harder? Or you had good
grades and then led you into taking the course seriously.

Action : try not to include explanatory variables which are affected by the
dependent variable. You could also try to ‘lag’ one variable. Cut and paste the hours
of studying variable so that it is one time- period behind the grades and then run the
regression again.



7.11 Omitted variable bias

Under Correlation in the Glossary I give some examples of lurking variables.
Regression, like correlation, is susceptible to the same problem. Example: you
notice that in hotter weather there are more



deaths by drowning. Did the hotter weather cause the drownings? Well no, the extra
swimming caused by the heat presented more risk scenarios. The lurking variable is
hours spent swimming rather than temperature. Try to get to the real variable if you
can.



7.12 Multicollinearity

When predicting the price of a house, square footage and number of rooms are
likely to be highly correlated because they are both ex- plaining the same thing. This
problem results in unusual behavior in the regression model.

Action : correlate your explanatory variables BEFORE doing any regression.
Watch out if you have a pair which has an r value of

0.7 or higher. This doesn’t mean that you shouldn’t use them, but it’s ared flag.
This is what might happen. You take out on one the variables in a regression, the
one that’s left reverses its sign or suddenly becomes statistically insignificant.

If you do run the regression and you get an unlikely result, choose the variable with
the highest t value (or smallest p value) and ditch the other.



7.13 Don’t extrapolate

The coefficients from the regression are calculated based on the data you provided.
If you try to predict for a value beyond the range of that data, the results will be
unreliable if not totally wrong.

In the years of experience and salary example in Chapter 5, the co- efficient for
years of experience provided the change in salary that an extra year of experience
would give. Would you feel comfortable predicting the salary of someone with 95
years of experience?

Action : before running the numbers, check that the inputs are within the range for
which you calculated the model.






8. Time Series Introduction and
Smoothing Methods

A time series is a set of observations on the same variable measured at consistent
intervals of time. The variable of interest might be monthly sales volume, website
hits or any other data of relevance to the business. Using time series analysis we
can detect patterns and trends and—just possibly—make forecasts. Forecasting is
tricky because (of course!) we only have historical data to go on and there is no
assurance that the same pattern will repeat itself. Despite all this, time series
analysis has developed into a huge topic, fortunately with a large number of freely
available data-sets to use. Links to some of these data-sets are provided at the end of
the data chapter (Chapter 3).

There are two basic approaches: the smoothing approach and the regression
method . Both methods attempt to eliminate the background noise. This chapter
covers smoothing methods, the following chapter the regression approach.



8.1 Layout of thechapter

Here we will

1. identify the four components that make up a time series

2. introduce the naive, moving average methods and exponen- tially
weighted smoothing methods to make a forecast

3. discuss ways in which the accuracy of the forecasts can be calculated
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8.2 Time Series Components

There are four potential components of a time series. One or more of the
components may co-exist. The components are: trend compo- nent; seasonal
component; cyclical component; random component.

* trend component : the overall pattern apparent in a time series. The plot
below shows French military expenditure as a percentage of GDP. The
downward trend is apparent.

French military expenditure as a % of GDP
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French military expenditure as a percentage of GDP

 seasonal component : sales of skis or Christmas decorations are clearly
higher in the winter months, while ice cream and suntan cream move more
quickly in the summer. If we know the seasonal component, then we can
use this information for prediction. The time between the peaks of a
seasonal component is known as the period . Note here that season doesn’t
necessarily mean the season of the year.

The plot below shows sales of TV sets by quarter. Here there is a constant upward
trend because more people are buying TV sets, but there is also a seasonal effect.



TV Sales by quarter

* cyclical component : some time series have periods last- ing longer than
one year. Business cycles such as the 50- year Kondratieff Wave are an
example. These are almost impossible to model, but that doesn’t stop the
hopeful from trying. Kondratieff himself ended up a victim of Joseph Stalin
because his suggestion that capitalist economies went in waves undermined
Stalin’s view that capitalism was doomed, and he was executed in 1938.

* random component : the random component is just that: the noise or bits
left over after we have accounted for everything else. The tell-tale signs of a
random component are: a con- stant mean; no systematic pattern of
observations; constant level of variation.



8.3 Which method to use?

In the next two chapters, we’ll work through the two basic ap- proaches: the
smoothing approach and the regression approach. How to decide which to use?



First step as usual is to make a simple scatter plot of your data, with time on the
horizontal x axis and the variable of interest on the vertical y axis. If the result is
something resembling a straight line, for example the French military expenditure,
then use a smoothing approach. If there is evidence of some seasonality, such as with
the TV sales data, then regression is the way to go. This is especially the case if you
want to calculate the size of the seasonal effect.



8.4 Naive forecasting and measuring error

Forecasting is just that: an educated guess about what might happen at some point in
the future. Forecasts are based on historical events, and we are hoping that some
pattern of behavior will repeat itself which will make the forecast ‘true’. The best
that we can do is to try out different forecasting methods and work out how well
they predicted data which we already knew about. Then we take a leap into the dark
and hope that the best of those methods will do a good job on data that we don’t
know about. This section concerns the measurement of forecasting accuracy.

We’re going to construct a naive forecast and use that forecast to demonstrate two
common methods of accuracy checking: the Mean Squared Error (MSE)and the
Mean Absolute Deviation (MAD) approaches.

A naive forecast assumes that the value of the variable at t+1 will be the same as at t.
The values are just carried forward by one time period. Here is an example:



1 Week Sales Forecast
2 1 17

2 21 17

4 19 21
5 - 23 19
6 5 18 23
7 6 16 18
8 7 20 16
9 g 18 20
1 23 18
1 10 20 4
2 11 15 20

12 22 15

]

Image Gas prices with naive forecast

The naive approach is sometimes surprisingly effective, perhaps because of its
simplicity. In general simple models perform well perhaps because of their lack of
assumptions about the future. Now we will measure the accuracy of the Naive
Forecast with MAD and MSE. In both methods the error is calculated by subtracting
the forecast or predicted value from the observed value. The methods differ in what
is done with those errors.

MAD measures the absolute size of the errors, sums them and then divides by the
number of forecasts. The absolute value of the error is just its size, without the sign.
In Excel, you can find an absolute value with =ABS(F1 - F3) where FI is the
observed value and FE the predicted value. Use the little corner of the formula box to
drag it down. Then find the sum and divide by the n, which is the number of
observations. In math this is

MAD=

) ( abserror )

In MSE, the error is squared before being summed and divided.



Squaring the error removes the problem of the negative numbers, but creates
another one: large errors are given more weighting because of the squaring. This can
distort the accuracy of the results. The maths for the MSE is below

MSE =

L ( error )?

The plot below shows the errors associated with the naive forecast- ing, the absolute
values of the errors and the MAD. In Excel, use

=abs( ) to convert to an absolute value.

A B C D E

1 'Week Sales Forecast Error Absohite Value
2 1 17
3 2 21 17 1 !

3 19 21 -2 2
5 - 23 19 4 4
6 5 18 23 -5 5
7 & 16 18 -2 2
g T 20 16 i 4
G g 18 20 -2 2
10 9 22 18 4 4
11 10 20 22 -2 2
12 11 15 20 -5 5
13 12 22 15 7 7
i 22
15 sum 4]
L6 MAD 3.73

Image Errors and Mean Absolute Deviation



8.5 Moving averages

Slightly more complex than the naive approach is the moving average approach,
which relies on the fact that the mean has less



variance than individual observations. By focusing on the mean, we can see the
general trend, less distracted by noise.

The analyst decides how far back in time the average will go. The longer back in
time, then the more values of the observation are averaged, resulting in a flatter
more smoothed result. This is good for observing long-term trends, but less
satisfactory if you are interested in more recent history.

The number of observations which are to be averaged is known as k, and this
number is chosen by the analyst based on experience. In Excel’s Data Analysis
Toolpak there is a Moving Average tool which can do all the work. Positioning the
output is slightly tricky. There are k time periods being used for the calculation of
the first forecast; so the first forecast should be at k+1 because k time periods are
being used to find the first value. Where exactly to put the first cell of the output is a
bit fiddly. If there are k time periods being used, place the first cell at k-1. Excel
provides a chart output, example below. There is a YouTube here!

Moving Average K= 3 Gas Prices

45
20 /“W
15

10 e Bt 53]

5

1 2 3 4 5 6 7 B 9 10 11 12
Diata Point

Value

== Forecast

Image Moving average with k=3 for gas prices

The moving average technique is used by investors to detect the ‘golden cross’ and
the ‘death cross’. They examine 50 day and 200 day moving averages. When the 50
day moving average is above

Ihttp://youtu.be/zrioQOWI{xjY
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the 200 day moving average this point is the so-called golden cross and a signal to
buy. By contrast, when the opposite happens this is the ‘death cross’...time to get
out!



8.6 Exponentially weighted moving
averages

The exponential smoothing method (EWMA) is a further step forward from the
naive and the moving average approaches. The moving average forgets data older
than the k time periods specified, while the EWMA incorporates both the most
recent and more historical observations to construct a forecast. In the Glossary you’ll
find more detailed math showing how the EWMA brings forward all past history.
In general the further back in time you get, the less influence the observations have.

Using EWMA we choose a smoothing constant, alpha, which sets the weight given
to the most recent observation against previous forecasts. If we thought that the
forecast (t+1) would be similar to the current observation (t=0) and we thought that
older forecasts were of little value, then we would choose a high value of alpha.
Alpharuns from 0 to 1. The EWMA formula is

Ft+1=0(Yt+(1—0()Ft

where F is the forecast, and Y is the actual value of the variable. alpha is the
smoothing constant, ranging in value between 0 and 1, and chosen by the analyst.

In words, this equation means that the forecast value (at t+1) is the smoothing
constant alpha multiplying the actual value at t=0 plus (1-alpha) times the forecast
at t=0. So if the previous forecast was totally correct, the error would be zero and the
forecast would be exactly what we have today. It turns out that the exponential



smoothing forecast for any period is constructed from a weighted average of all the
previous actual values of the time series.

The equation above shows that the size of alpha, the smoothing constant, controls
the balance between weighting given to the most previous observation and previous
observations. If the alpha is small, then the amount of weight given to Y at t=0 is
small and the weight given to previous observations is large and vice-versa. If alpha
=1, then previous observations are given no weight at all, and we assume that the
future is the same as the past. This achieves the same result as naive forecasting
discussed above. Typically quite small value of alpha are used, such as 0.1.

##Application of Excel’s exponential smoothing tool

An exponential smoothing tool is available in the Analysis ToolPak. We’ll use
Canadian Gross Domestic Product per capita as an example. Here is the data
plotted on its own. Youtube?

GDPPC

Canadian GDP Per Capita

There is a steady upwards trend, but with a dip in 2009 due to the world financial
crisis. Excel asks for a damping factor. This is 1 - alpha. I have done the forecasts
twice, once with an alpha of 0.1

2http://youtu.be/w-GmxjrX1qg



http://youtu.be/w-GmxjrX1qg
http://youtu.be/w-GmxjrX1qg

and again with an alpha of 0.9. Therefore the damping factors were

0.9 and 0.1. The result for alpha = 0.9 is shown below.

alpha = 0.9, damping factor = 0.1

15005

Forecast with alpha=0.9

This is pretty good forecast, with the forecast tracking the actual observations
closely.

The plot below shows sheep numbers as counts by head in Canada from 1961 to
2006. First, let’s plot this using 0.3 as alpha (arbitrarily chosen). The plot is below,
with a damping factor of 1-0.3=0.7.



alpha 0.3
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Sheep numbers with alpha = 0.3






9. Time Series Regression Methods

The smoothing methods we worked in the previous chapter are fine when there is
no evidence of seasonality, for example with the sheep data. However, smoothing
has only limited use for longer term prediction and analysis. Data that is more
interesting for us as analysts may be non-linear in trend, and also have seasonal
peaks and troughs. Using regression, we can measure the quantitative effect of
seasonality and trend, either together or separately. The result is a model which can
be used for prediction.

Below we will:

1. use regression to quantify a trend in a time series
2. introduce a quadratic term to account for non-linearity in the time series

3. use dummy variables to measure seasonality



9.1 Quantifying a linear trend in a time series
using regression

The plot below shows life expectancy at birth for Canadians.
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Canadian life expectancy

This is pretty much a straight line as one might expect in a developed country
with a large per capita expenditure on health care. Note that this is for both sexes:
for women only we might expect to see even better figures. I ran the regression with
Year as the independent variable, explaining life expectancy. The result is below.

A B c D E
I SUMMARY QUTPUT

i Regression Statistics
§  Multiple R 0.9971637%6

i R Square 0994335636

i Adjusted R Square 099422457

I Standard Erros 0.2429756948

1 | Dbserations 53

?

0 LANOVA

1 df 55 MS F q
2 | Regressign 1 528 5452368 528 5452 B952 654
3 Residusd 1 30109276TE 0.059038

4 Total 52 5315561665

B Coefficients  Standard Emor | § Siaf FPvalue L
7 Intercept 58 47245316 0.1905%90134 3067969 5.67E-85
8 Year 0.000565205 5.97351E-06 94 61849 5 66E-59
0

Life expectancy regression results

Notice that the adjusted R-squared value is close to unity, reflecting



the straight line that we see on the graph. The coefficients for the intercept and the
independent variable provide this estimated regression equation

Ny ¢=58.47+0. 000565 * Year

The meaning is that for every year after 1960 that a child was born, his/her life
expectancy increased by 0.000565 years, or about 5 hours.



9.2 Measuring seasonality

The dataset for TV sales (from Modern Business Statistics by Anderson Sweeney
and Williams) contains sales by quarter for four years. There are therefore sixteen
observations.

I created a column which I called index so that we can see sales in a consecutive
fashion. The first quarter is Spring and the last quarter is winter. It is apparent that
quarters which are divisible by four are higher than others, and so forth. Perhaps sales
are higher in winter?

We can use the dummy variable method of Chapter 5 to determine whether this is
true and also the extent of the difference. We will create dummies for Summer, Fall
and Winter, leaving Spring as the reference level. Recall that we have four possible
states of the season variable, and so we will need k-1, or 4-1 = 3 dummies. It usually
doesn’t matter which state you choose as your reference level: just don’t forget
which one you picked. The dataset is below, with a column called Index, which
we’ll use to measure the time trend.



TV Sales with the quarterly dummies

I want to find out two things:

whether sales are increasing over time. I can do this by including the index as an
explanatory variable. Because the regression tool requires that all the independent
variable be in one block, I have copied and pasted the Index column to the right.

The regression output is

TV Sales regression out

Let’s walk through this output line by line. First notice that the p values for all
independent variables are smaller than 0.05. Therefore all are significant.

The reference level is Spring, and therefore there is no coefficient for this quarter.
Summer has a negative sign in front of its coefficient, meaning that sales for
Summer are smaller than those for Spring. Fall is positive, so more TV sales are
sold in the Fall than in the Spring. Not unexpectedly, Winter has the largest
coefficient of all,



reflecting the plot. The index has a positive sign, meaning that average TV sales are
increasing with time.

There are therefore two components in this series: a trend and a seasonal
component. Youtube!

** Making predictions** from these results. Let’s predict the sales for Fall in seven
quarters time. This is

y=4.7+1.05875+7%*0.147=6.78

The observed value was 6.8, so the prediction was reasonable if slightly pessimistic.


http://youtu.be/wyKIHInMbY8

9.3 Curvilinear data

The data above followed a linear trend, which is perfect for ordinary least squares,
which assumes that the relationship between the dependent variable and the
independent variable is linear. But some interesting data does not follow a neat
linear trend. The plot below shows crude oil and gas prices over the period 1949 to
2003.

1http://voutu.be/wyKIHInMbY 8
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Crtude and Gas Prices

Crude and gas prices showing crude price curvilinearity

However, if we show the two series on the same graph, as on the plot I did in Tableau,
with separate y axes for each type of fuel, we can see that the shapes are very close.
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Crude and gas on different axes

The curvilinearity of crude prices is clear. The prices came to a peak



in the 1970s as a result of OPEC’s decision to restrict supply. In any event, crude
prices cannot be described as linear. The solution is to add an extra term to the
regression of price on time, and that is time squared. The first few lines of the
dataset are below. I have added a column called to represent the year, and added tsq
which is just t squared.

A B D E

1 Year t tsq Crude Gas

2 | 1949 1 1 1841940 157086
3| 1950 2 4 1973574 181961
4 1951 3 9 2247711 204754
& | 1952 4 16 2289836 223515
B | 1953 5 25 2357082 23B5T9
T | 1954 6 36 2314988 262133
B | 1955 T 49 2484428 281371
9 | 1956 B B 2617283 292727
10| 1957 9 a1 2616901 294990
11| 1958 10 100 2448987 294749
12| 1959 11 121 2574590 320757
3] 1960 12 144 2574933 340157
14| 1961 13 169 2621758 361689
15| 1962 14 196 2676189 r2rns
16| 1963 15 225 2752723 400886
IT| 1964 16 256 2786822 422411
18| 1965 17 289 2848514 441556
19| 1966 18 324 3027763 468636

Data with timesquared

Now regress crude against time and time squared, and the pleasing result below
appears
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1 [ SUMMARY QOUTPLUT

Regression Slatistics

| Multiple R 0542064

& |R Square 0 BET454

b Adpsted R Square 0 BE3Z3D

T Standard Emor 153922 1

& | Obsenations 56

]

10 | AMOWVA

1 of | S5 | M5 | F __Sinificance F
I?[Regressmn 2 BA0431E+12 4 B5E4+12 2090220804 T 19743E-26

13 Residual 53 1.2556BE+12 2 3TE+10

14 | Totald 55/  1.116E+13

15

6 Coefficients Standard Ermor | Stal Pwvalyg Lower 95% Lippe
IT | Intercept 1821447 6397742731 2847015 BEB43TE-34 1693124 209 19
Bt 9965167 5178.6134D5 19.24292 1.4225BE-25 B9264 68512 11C
19 [tsq -1792.25 BB.OGTOTITE  -20.351 1.035BE-26 -1968 89419 -1E

5|

3

The curvilinear regression for crude

The adjusted r-squared is high at 0.88 and the two time predictors are highly
significant statistically. Notice that the two predictors are quite different in size and
also have opposite signs. When t is small, then the variable t dominates and the trend
is upward. However, as t gets larger, then t-squared gets even larger still. The
negative sign on t-squared pulls the regression line down.






10. Optimization

Linear Programming (LP) is the tool we use to optimize a particular objective
function . For example, a manufacturer of carpets wants to get the most profit out
of his raw materials and labor force. The objective function is the relationship
between the inputs and his costs and thus his profits. Optimization helps the
manufacturer find the most efficient allocation of resources. The objective function
doesn’t necessarily have to be in terms of money; it could very well be to allocate
working hours efficiently so that everyone has more time off. Frequently we want
to maximize the objective function (perhaps make more profit) but we might also
want to minimize an objective function, such as costs.

Optimization is not particularly difficult, and we will use the Solver add-in to Excel
to do the mathematically tricky parts. What is important is the writing up of a
correct model in the first place.

Layout of the chapter

Linear programming is not especially difficult, but the work has to be done in a
logical and orderly fashion. In this chapter, we will

*spend some time working through the basic steps in setting up an optimization
problem * work through the meaning of the Solver output in terms of what the
coefficient values actually mean



10.1 How linear programming works

Linear programming works by solving a set of simultaneous equa- tions. The
problem to be solved—to maximize a stock return for

95



example—is written as a set of simultaneous equations. The equa- tions may be
quite simple, but there may be many of them. Linear Programming finds the best
solution to the equations. The job is to find the coefficients for the variables in the
equation which maximize or minimize the outcome.

We’ll work through an example first on paper, and then put it into Excel’s Solver
add-in to get the solution. The three important steps are:

» Write the simultaneous equations, basically putting into math the wording
of the problem. This is probably the toughest part.

* Run the Optimization in Solver, to find the optimal solution.

 Sensitivity analysis to find out how much effect a unit change in a
constraint would have.



10.2 Setting up an optimization problem

Optimization problems are usually presented as written questions. The best approach
is to determine which are the

* decision variables those variables which you can control. For example, in
the carpet factory example, the number of hours given to each worker is a
decision variable.

It is usually the size of the decision variable that we are trying to optimize. For the
workers, we would want them to have exactly the number of hours which produces
the most profitable output. Too few hours and the factory is working below
capacity. On the other hand, too many and money is being wasted. The decision
variables go into what Solver calls the changing cells. The convention is to color-
code these cells in Excel in red color.



* constraints are constants or givens which we cannot change. The
jurisdiction where the factory is located might have legislation restricting
the maximum number of hours that an employee can work per day. We
would need to add a constraining equation to take account of this fact, even
if the solution was financially sub-optimal.



10.3 Example of model development.

A farmer has 50 acres of land at his/her disposal. He also has up to 150 hours of
labor and up to 200 tonnes of fertilizer. He can plant either cotton or corn or a
mixture. Cotton produces a profit of $400 per acre, corn $200 per acre. Each acre of
cotton requires 5 labor hours and 6 tonnes of fertilizer. For corn the equivalent is 3
and 2. How much land should the farmer allocate to each crop?

Let’s call acres of cotton x and acres of corn y. F for fertilizer and L for labor. These
four variables are his decision variables because he can allocate crops to land and he
can also decide how much labor and fertilizer to deploy. He is searching for the
combination of the four decision variables which maximizes his profit.

We know he has 50 acres, so the total acreage cannot exceed this amount. This is a
constraint, which can be written as an equation, as shown below. Other constraints
are the maximum labor and fertilizer. Obviously he cannot use more than he has.



10.4 Writing the constraint equations
The total acreage devoted to each crop cannot exceed 50:

x+y <50

The labor and fertilizer are also constraints. Refer back to the question to get the
amounts of labor and fertilizer per acre per crop.



For labor, the constraint equation is:

5x+3y<150

This equation comes about because for each acre of cotton, the farmer needs 5
hours of labor, while for corn it is 3. We do not know the values of x and y, but
whatever they are, we know that 5x plus 3 y must be less than or equal to 150,
because we only have 150 hours available.

For fertilizer, the constraint equation is:

6x+2y<200



10.5 Writing the objective function

What do we want to get out of this: what is the objective? Clearly it is the most
efficient mixture of inputs, subject to constraints, producing the largest profit. The
objective function is:

MaxProfit = 400x + 200y

In words, find the combination of x and y that maximizes the profit, subject to the
constraints we have written. The next task is to put all this into Solver.



10.6 Optimization in Excel (with the Solver
add-in)

We will use an Excel spreadsheet and Solver to achieve all three steps.

Optimization YouTube for the farmer problem?

1https:// www.youtube.com/watch?v=WeTgK6wmvSY



https://www.youtube.com/watch?v=WeTgK6wmvSY
https://www.youtube.com/watch?v=WeTgK6wmvSY

Open an Excel spreadsheet so that you can follow along.

Cell coloring conventions

I suggest you follow these conventions for color-coding the cells:

* Input cells. These contain all the numeric data given in the statement of the
problem. Color input cells in BLUE.

* Changing cells. The values in these cells change to optimize the
objective. Code changing cells in RED.

* Objective cell. One cell contains the value of the objective. Color the
objective cell in GREY.

Now I’ll work through the farming problem above step by step.

Make sure you have the Solver add-in loaded. To check, open Excel, then click on
the Data Tab. If Solver is loaded, you will see the Solver name to the right.

lirm Data Analysis

mp Sohver

The Solver tab

Below is the Excel spreadsheet with the information that we know already typed in.
I have put random values in the red-colored changing cells, just as place holders.
These numbers will change when Excel solves for the most profitable allocation.

» Type the address of the objective into the Solver dialogue box, and make
sure the Max radio button is selected.

* Type in the range of the changing cells.



» Work through the constraints. There are three: labor; fertil- izer; and land.
* Select Simplex LP as the Solving method.

* Press solve.

A B & D E F
Cotton Corn

labor

fert

profit

acres  [NSONNNG

Constraints Total

Labor 150 0 150 150
Fert 180 0 180 200
Land 30 0 30 50
Profit 12000 0 12000

The farming solution

Solver will change the values in the changing cells to maximize the objective cell.
found that 30 acres of cotton and none of corn provided a profit of $12000.



10.7 Sensitivity analysis

Constraints can be either binding or slack . If a constraint is binding, that means that
all of that particular resource is being used, and more could be employed if it should
become available. We can find out whether constraints are binding and also their
shadow



price by pressing Sensitivity Analysis after running Solver again. The Sensitivity
analysis will appear as a tab at the bottom of your worksheet. For the farming
problem, it looks like this:

A B [ C E

| ;_T-'I}r.luwl‘l Excel 15.0 Sensitivity Report
Worksheat: [Beokl]Sheet]

i |Regort Created: 2014-05-15 5:24:33 PM

i |veriahle Cells
Final Reduced Objective Allowable Allowable
Cell Mame _\f_a!ul: fu_sl Coefficient  Increase Lh.-?rf.nu
5C58  Acres Cotton 30 ] a0 1E+30 6. GhGGG6GT
5058 Acres Com 0 -40 200 40 1E+30

2 |Constraints _ ] R iy .
Final Shadow Constraint Allowable  Allowable
Cell Mame Value Price R.H. Side Increase Dedrease

SES13 Labor Total 150 &0 150 16.56666667 150
SES14 Fert Total 120 0 200 1E+30 20
SEZLS Land Total 0 0 50 LE+30 20

Farming sensitivity report

Let’s let at the Constraints section. Labor uses 150 hours and has a shadow price of
$80. The shadow prices indicates the per-unit value of the constrained commodity if
the constraint was increased by one unit. If we could have one more hour of labor,
then the profit would increase by $80. Land and fertilizer have a shadow prices of
zero because the constraint is slack or non-binding. We are not completely using
these resources and so we do not need any extra inputs. There are sacks of fertilizer
lying around unused. No need to buy more.

The columns Allowable Increase and Allowable Decrease are rele- vant because
they tell us how much more of a binding constraint we could use before running the
model again. For labor, the amount is 16.67 (rounded). If we eased the constraint by
more than this amount then we would need to run the new model in Solver again.
The same logic for decrease.






10.8 Infeasibility and Unboundedness

Solver is quite robust, but two problems may occur. A solution to an optimization
problem is feasible if it satisfies all the constraints. But it is possible for no feasible
solution to exist. This occurs if you make a mistake in writing the model, or the
model is too tightly constrained.

Unboundedness

Unboundedness occurs when you have missed out a constraint. There is no
maximum (or minimum). Try changing all constraints to >= instead of =<.



10.9 Worked examples

The demanding mother

Most mothers are keen to keep contact with their children. One particular mother is
rather demanding. She requires at least 500 minutes per week of contact with you.
This can be through tele- phone, visiting or letter-writing (yes! Some people still do
that!). Her weekly minimum for phone is 200 minutes, visiting 40 minutes and letters
200 minutes. You assign a cost to these activities. For phone: $5 per minute; visiting
$10 per minute; letter-writing $20 per minute. How do you allocate your time so
that your cost is the minimum?

Write the equations first. What is the objective?

Let x stand for minutes of phone; y minutes of visiting; and z minutes of letters.
You want to minimize the cost of these activities, so the objective is to minimise
200x + 40y + 200z. The constraints are: X +y + z must be more than or equal to 500.



Cost
Phone

Visiting 10
Letters 20
Phone Visiting Letters  Actual tot Total Reqd
Minutes 260 a0 200 500 500
Objective 5700
Actual Reqd
Constraints 500
Phone 260 200
Visiting ) 40

Letters 200 200

Spreadsheet for demanding mother

Notice that we want to minimize the time, so change theradio button to min rather
than max. And when you are typing in the constraints, check that the sign of the
inequality is the right way round.

The theater manager

You are the manager of a theater which is in financial trouble. You have to optimize
the combination of plays that you will put on to make the most profit. You have five
plays in your repertoire, A,B,C,D,E. They have different draw points (appeal to the
public) and therefore ticket prices to match. A draw point is how attractive the play
is to the general public. The data looks like this:

Play Draw Ticket
A 2 20
B 3 20
C 1 20
D 5 35




Play Draw Ticket

E 7 40

You have these constraints: you have only 40 possible slots. And no play can be put
on less than twice or more than ten times (gives the actors a reasonable turn). Each
performance costs $10 per ticket sold, regardless of the ticket price (covers the
electricity etc). The total draw points has to exceed 160 to keep the critics happy.

How do you distribute your performances? Which combination of plays produces
the highest profit and satisfies the constraints?

We are trying to maximize profit, so look for an objective function that does just
that: 20A + 20B + 20C + 35D + 40E. But wait—-we have the $10 cost. So better
take that out first, leaving 10A + 10B + 10C + 25D + 30E.

With these constraints:

The draw points (the attractiveness of the play to critics): 2A + 3B+ 1C+5D + 7 E
>=160

and no play can be put on more than twice or more than ten times. A <=2 and A <=
10B<=2andB<=10C<=2andC<=10D <=2

and D <=10
and we have only 40 slots,so A+ B+ C+D + E <=40



0 & L 18

B 20 in 200 100 100 3]
20 2 & 20 n 2

L] i1 150 g N 0

i ¥ 40 1 A0 100 ] L
wil W Draw Points 124

Frale 150
Constraints sum Perf <=0 &0

Each play o east basce
A A Fone Than 166 Times 10
Total Draw Poirts at ket 160

Under Performances, the combinaticn that produces the most profit is shown

Spreadsheet for theatre problem

More worked examples
19th century farmer

I am a 19th century English farmer. I can grow wheat or barley. Wheat yields 10
bushels an acre, barley 8 bushels an acre. The price of wheat is ten shillings a bushel,
barley 5 shillings a bushel. The labour costs for wheat are 3 shillings an acre, for
barley 2 shillings an acre. The transportation cost to market for wheat is 1 shilling a
bushel, for barley % shilling a bushel. I have 100 acres. (a bushel is a measure of
volume; an acre is a measure of area; a shilling is a currency unit).

Questions: How do I split up my land?

If I could get one more acre of land, how much would that be worth to me?

Yet another farming question (I use these because most people can imagine fields of
land, crops growing and the like. But of course the same techniques are applicable
to other business situations).



A farmer has 100 acres of land. He can plant crops or raise sheep. Each hectare of
crops provides $100 but requires labor of $50 per acre. He can spend a maximum of
$500 on crop labor. Each acre of sheep provides $40 but needs only $10 in labor
charges. The labor budget is unlimited.

Worked solution

Call area in crops X and in sheep Y. Then X + Y =< 100 and 50X <= 500 The
objective is 100X - 50X +40Y - 10Y simplifies to 50X + 30Y. My Excel spreadsheet

is below.

& B C o E F G H
= ¥

Revenue 100 a0

Costs 50 10

Net 50 EL)
Usied Constraint

Changing 10 50 100 100
Used Constraint

Labour 500 GO0 1400 500

Ohjective

Spreadsheet for the above problem






11. More complex
optimization

Optimization using Solver is a powerful method of solving common business
resource-allocation problems. In the previous chapter the problems were relatively
simple concerning the allocation of land or time. But linear programming can be
used to solve more complex and worthwhile problems as we’ll see below. The key
requirement is that the analyst is able to define the problem as a set of equations.
There is no one method except for thinking carefully and writing out the problem
as a set of equations.

To demonstrate, we’ll work through three different types of prob- lem:

*problems concerning proportionality: you need to allocate money to different
investments while minimizing risk and keeping returns above a certain amount.
What proportion do you put in each investment?

*supply chain problems

*blending problems where you need to mix together inputs from different sources



11.1 Proportionality

Investment decisions example

This example shows how we can ‘weight’ the inputs according to some criteria, in
this case their risk. We want to minimize the risk but ensure that the return is above
some minimum level. What is the mixture or blend of investments that can do that?
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The problem: you have an inheritance of $300,000 from an uncle but there are
some restrictions: you must invest all the money in four funds; your annual return
has to be at least 5%. And you must minimize your risk. The four funds your uncle
has specified are:

Fund Risk Return
X1 10.7 4.2

X2 5 4

X3 6 5.6

X4 6.2 4

Let’s deal with the objective function first. That is to minimize the risk. We can
weight the size of the investment in each fund with its risk index. So, weighting
each investment and then dividing by the total investment gives the amount of the
risk: which is exactly what we want to minimize. So we want to minimize R (for
Risk) like this:

R ________
300, 000

If you don’t get this, think about what would happen if all the funds were as risky
as X1: the total risk would increase. Another way to think of this: if we decrease the
number of shares in X1 and instead increase the number of X4, what will happen?
The risk will decrease.

The constraints: the total investment has to add up to $300,000, so this constraint is

X1+X2+X3+X4=300,000

We also have to achieve a return of at least 5% (no easy matter these days). This
constraint is

4.2X1+t4X2+5.6X3+4X4>5



Below is my spreadsheet from this problem:

c D E F G .|

Fundis Risk Retumn
X1 10.7 4.2
X2 5 4
X3 6 5.6
x4 6.2 a li=
X1 X2 x3 x4

Changing 0 0 281250 18750

Constraint 300000 300000

Constraint 5.5 5

Objective 11.4375

Investment blending



11.2 Supply chain problems

Working out how much to ship from production centers to demand locations is a
common problem in supply chain optimization. AsI have been stressing, the key to
solving problems of this type is to write out the equations which define the model.
Here is an example:

You run a company which has bakeries in location A and B. The bakeries ship
cartons of bread to your retail stores at locations X, Y, Z. The bakeries have
different capacities and each retail store has different demands. The costs of
delivery per carton from each bakery to each store is below

Bakery X Y Z | Capacity
A 12 13 11 150
B 9 17 17 200

Demand 50 100 90




Notation: a delivery from bakery A tolocation X is Ax and so forth.

The objective function is to minimize the delivery costs. So we want to minimize:
12Ax+13Ay +11Az+9Bx+17By + 17Bz

Each bakery has a fixed capacity, so Ax + Ay + Az <=150 and Bx + By + Bz <=200

Supply has to exactly match demand
Ax +Bx =50 Ay + By =100 Az + Bz =90

Notice the strict equality sign. My results are below:

Dawasnd
Used Totsl
Changing Cells A& 150 150
B sa.co [ EBEEEN
Constraints Store X demard 30,00 50
Stone ¥ de s 100,00 li i)
Store T demand 90.00 0

Cifjective 1680

Distribution problem



11.3 Blending problems

Above we discussed linear programming models which were simple but effective.
There are other types of Optimization model which are helpful, especially
Blending Models, which can also be solved by linear programming.

Blending models are used in situations where we have two or more inputs which
have to be mixed to some formula. Through Optimization we can find the most
profitable mixture. Wine, metals, oil, sausages, recycled paper—-this is a powerful
technique. You could probably use it for marketing campaigns. We’ll work though
an example which is for oil.



The oil blending problem

The problem: an oil company has 15000 barrels of Crude oil 1 and 20000 barrels of
Crude oil 2 on hand. The company sells gasoline and heating oil. These products
are made by blending together Crude oil 1 and Crude oil 2. Each barrel of Crude oil
1 has a quality level of 10, and each barrel of Crude oil 2 has a quality level of 5. The
gasoline that we produce must have a quality level of at least 8. The heating oil must
have a quality level of at least 6. Gasoline sells for $75 a barrel, heating oil for $60.
How can we blend the oils together in such a way that meets minimum quality
requirements and maximizes profit?

Oil blending solution

First, let’s think through what the decision variables (what goes into the changing
cells) might be. You might very well think (as I did first off) that the decision
variables would be the amounts of the two oils used and the amounts produced. But
this isn’t enough: we have to blend together the two types of oil. They have to be
mixed before they can be sold, and the mixture has to reach some minimum quality
standard. The company needs a blending plan.

Theinputs :

selling prices (here gasoline = $75, heating oil = $60) availability of oil from
suppliers quality level of crude oils: Crude 1is 10 and Crude 2is5

The constraints

Gasoline quality >=8 Heating oil quality >= 6 Quantity of Crude 1
= 15000 Quantity of Crude 2 =20000

The blending plan :

Gasoline has to have a minimum quality of at least 8, and heating oil must have a
minimum quality of at least 6. The Crude oil 1 we



have on hand has a quality level of 10 while Crude oil 2 has a quality level of 5. We
want to blend these two crude oils to both achieve the minimum quality standards
and make the greatest profit.

Let’s attack the problem by creating total ‘quality points’ (QPs) which represent the
quality of oil in a barrel multiplied by the number of barrels of that oil.

Write equations to calculate the quality points:
Total QPs in the gasoline = 10 * amount of Qil 1 + 5 * amount of Oil 2

If for example, we mixed together 50 barrels of Crude oil 1 and 40 barrels of Crude
oil 2, the total QPs would be 50 x 10 + 40 x 5= 700. The average per barrel would be
700/90 = 7.78. This is too low for gasoline (needs 8) but acceptable for heating oil.
Two points:

we could sell the oil as heating oil, but it is exceeding the minimum quality
requirement. We could make more profit by reducing the quality to the minimum,
or charge a premium. But this is prescrip- tive work, and we have to work within the
inputs given to us).

The only way to get the oil up to gasoline standards is to increase the amount of Crude
oil 1 in the mixture.

If you don’t get this, try a thought experiment: for gasoline, if there was no oil at all
from Oil 2, what would be the QP? It would be 10 * the quantity of oil from Oil 1.
Again, how about if we blended together 1000 barrels from each type of oil: how
many QPs would be produced? It would be 10 * 1000 + 5 * 1000 = 15000. Read
this through again...it is important.

The blending plan provides us with the constraints we need to ensure that the
minimum quality levels are achieved. In the example just above, we blended 2000
barrels to provide a QP of 15000. This is an average of 7.5. Good enough for heating
oil, not good enough for gasoline.



Gas Heating
Selling Price
Min Qual

Crudel Crude2

Qual
Quant

Blending Plan

Total Constraint
Crude 1 3000 2000 5000 15000
Crude 2 2000 8000 10000 20000
Total 5000 10000
0Ps reqd 40000 G000
OPs provided 40000  GOOOC
Profit 975000

Oil problem solution

Discussion of the solution: note that gasoline sells for more money than heating oil,
but the optimal solution suggests that we should sell more heating oil than gasoline.
This is because of the constraints on quality.






12. Predicting items you can count one
by one

Why you need to know this . Many business decisions involve counts: either
binary (yes/no) or within time or space. It would be good to know the probability of a
certain number of customers com- ing up to a service desk in a certain length of time;
or the probability of a certain number of car accidents at a given intersection. We are
looking for a discrete probability distribution; discrete because the number of
occurrences is an integer.

Chapter 4 on regression showed how to predict the size of an outcome which was
continuous (money or time perhaps). The dependent variable—what we were trying
to predict—could take on almost any value. Now we want to predict probabilities
for the occurrence of an independent variable which is an integer. Below we’ll
work through some hands-on applications, with the theory available in the
Glossary.

We’ll break this into two parts:

The probability of a binary outcome . The probabilities of two faulty items out of
the next twenty on the production line. Or, the probability of at least five
customers out of the next fifty actually buying something. This is estimated with
the binomial distribution .

The probability of a particular count of occurrences over time or area. The
probability of three or fewer people arriving at your Customer Service Desk within
the next half hour. Or more than two mistakes in the next ten lines of code. This is
estimated with the Poisson distribution .
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12.1 Predicting with the binomial
distribution

After the normal distribution (see the Glossary for a definition), the binomial is the
most important in statistics. The math for the binomial distribution is also defined in
the Glossary.

The binomial distribution provides the probability of a ‘success’ in a certain
number of ‘trials’. For example, you can calculate the probability of more than
seven out of the next twenty people through the door actually buying something.
Here a ‘success’ is somebody buying something; while the number of ‘trials’ is the
number of people coming through the door (here it is twenty).

Some definitions:

What we are looking for is the probability of a pre-defined number of ‘successes’.
Note that the definition of success is up to the analyst. It could be ‘spending more
than $20’ or wearing a hat.

In the example we’ll work through below you run a store. You know that the long-run
probability of somebody buying something is 0.6. You obtained this number by
counting total numbers of customers and, out of those, the numbers who actually
bought something (successes).

Worked example: You want to know the probability of exactly three people through
the door out of the next five buying something. Note that ‘success’ just means that
the defined event happens. Whether or not it is a ‘good thing’ isn’t relevant.

For Excel, the arguments required are: the random variable whose probability we
want to predict; number of trials, the long-run probability, and a true/false
statement. In the example, the number of trials is five. The random variable (X)
whose probability we want to predict is 3. We also need the long-run probability of
a success. In the example, p = 0.6. We also want the probability of exactly 3, so use
the false statement. I’1l go into this in some detail shortly.



Open an Excel spreadsheet, and type in =BINOM.DIST(3,5,0.6,false) and you
should get this: 0.3456. This is the probability of exactly three people out of the
next five buying something (number of suc- cesses out of the next five trials). Notice
the order of the arguments in the Excel function. And especially the last one, which
in the example above is false. (The alternative is true). The difference is important
because the results are quite different.

True and false argument . Defining the argument as false provides the probability
of exactly the random variable. Defining the argu- ment as true provides a
cumulative probability.

Excel adds up probabilities from the left, so changing the argu- ments to
=BINOM.DIST(3,5,0.6,TRUE) = 0.66304 is the sum of the probabilities of X=0 +
X=1 and so on up to an including X=3. The probability of 0.66304 is therefore the
probability of three or fewer customers buying something. The table below shows
the probabilities of various values of X, both ‘false’ and ‘cumulative’. As you can
see, the cumulative is just the continued addition of each successive probability.
There is a further example here!

LoX P{x) P|xj,|:ur'n“|J
0 0.01024 0.01024
1 0.0768 0.08704
2 02304 031744
3 03456 0.66304
4 02532 032224
5 D.07776 1

Probabilities calculated both false and true

How about more than three customers buying something? In math notation, we’re
looking for P(X >=3). We know that probabilities must sum up to 1. We know that
three or fewer is 0.66304. So more than five has to be: 1 - 0.66304 = 0.33696.

Ihttps://www.youtube.com/watch?v=0Z1DmNQ8wW4



https://www.youtube.com/watch?v=oZ1DmNQ8wW4
https://www.youtube.com/watch?v=oZ1DmNQ8wW4

A slightly harder example: the probability that at least four cus- tomers out of the
next ten will buy something? We’re looking for P(X >=4). Look carefully at the
notation. X >= 4 implies that the distribution of the ten customers is split into two
halves: less than four and four or more. It is the latter half whose probability we’re
looking for.

If we can find the probability of 0 + 1 + 2 + 3, that is the probability of less than four
(we only want integers here). So find that probability and then subtract from 1,
making use of the fact that probabilities must sum up to 1.

Let’s do this step by step.
First, find P(X = < 3), that is the probability that X is three or less:

=BINOM.DIST (3,10,0.6,true) = 0.054762. Notice the ‘true’ which gives us the
cumulative probability.

We want four or more, so subtract from 1 like this: 1 - 0.054762 = 0.945238.

Another example. It’s winter and you need to wear a sweater every day. You have
two blue and three red sweaters. Calculate the probability that during the week you
will wear a red sweater:

Exactly twice in the week
Answer: the long-run probability of picking a red sweater is 3/5

= 0.6 because you have five sweaters, and three of them are red. The number of trials
is 7 because there are 7 days in a week. The wording of the question contains the
word ‘exactly’ which means that we don’t want a cumulative answer, so we’ll
include the FALSE argument. Therefore the answer is =binom.dist(2, 7, 0.6,
FALSE) = 0.077414

More than three times. When you see words such as ‘more than’ that’s a clue that
you’re looking for a cumulative probability. In math notation, we’re looking for
P(X>3). So if we find the cumulative probability up to and including two, and
then sub- tract from one, we’re done. The cumulative probability of two



or fewer is P(X=0) + P(X=1) + P(X=2). So the answer is = 1 -
binom.dist(2,7,0.6,true) = 0.903744

The keys:

Write out what you are trying to predict in math notation. This forces you to be clear.
Draw a little sketch (hopefully better than mine!) if you get confused.

If the wording of your problem contains ‘exactly’ or requires the probability of just
one particular outcome (eg P(x=3)) then you want to use false.



12.2 Predicting with the Poisson
distribution

The binomial distribution gave us the probability of a binary outcome (yes/no) out
of a certain number of trials. The Poisson gives us the probability of a certain
number within a specified time-frame or area.

Here’s the example. You run the Customer Service Desk. You want to know the
probability of five or fewer customers arriving in the next half hour. That would be
useful for staffing, wouldn’t it? You know that the on average, 20 customers arrive
every half hour. You know that because have counted them.

We want: P(X>=5). Like the binomial above, the Poisson has a true/false argument
for whether we want cumulative probabilities or ‘exact’. The notation include a >
sign, which implies cumulative, so we use TRUE. In Excel:
=POISSON.DIST(5,20,true). The answer is 7.19088E-05. This looks a bit weird,
but it is just math notation. The E-05 means that you should move the decimal point
5 places to the left. So there are four zeroes in front of the leading 7. In other words,
an extremely small probability. Perhaps send some staff out for lunch? It is very
small because 5 is a long way from your long run average of 20.






13. Choice under
uncertainty

Virtually all business decisions involve at least some degree of uncertainty. For
example, you don’t know (and presumably can never know) some future ‘state of
nature’ which might be an exchange rate or business rental. A farmer does not know
the price of wheat at harvest time, but has to decide how much to plant many
months ahead. His decision is relatively simple compared to a decision-maker
confronted with an opponent who will react to take advantage of whatever decision
you do make. The first situation is called ‘non-strategic’ and is easily handled by
the expected monetary value method which we’ll work through in the chapter. The
second ‘strategic’ situation is more complicated but can be solved by an application
of game theory. We’ll cover the EMV method in some detail below. Game theory is
an enormous subject and we don’t cover it here, but I’ll give an example at the end of
the chapter along with some recommended reading.



13.1 Influence diagrams

An influence diagram is a sketch of the influences and outcomes of a decision. The
influence diagram allows us to think through and depict the forces that influence
our choices without having to assign probabilities. It is customary to use oval shapes
for variables which are uncertain, a box for a decision node; and lozenges for the
outcome.
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weather
condition

Vacation
activity

Vacation Influence diagram

You are an outdoors-type and so the choice of activity is affected by the weather. The
weather forecast is affected by the weather condition (one hopes!). But you don’t
know the actual weather condition, just the forecast (which is why it is a forecast).
You choose your activity (box) based on the forecast. The amount of satisfaction you
get (lozenge) depends on the activity you chose AND the actual weather
condition: observe the two lines leading to the lozenge. There is a standard format:

1. Decision Nodes are presented in rectangles. In the example on the slides,
the decision is what activity to pursue when on vacation (climb a mountain?
read a book?). Which choice we make may to some extent be determined by
the weather forecast.

2. Uncertainty Nodes are presented in ovals. The weather fore- cast is
uncertain and so is the actual weather itself.

3. Outcome Nodes are presented in lozenges. The outcome in the vacation
example is how much satisfaction you took from the choice you made for
vacation activity. This is a utility.



4. Arcs display the flow of the influence. The actual weather condition
affects the weather forecast, which affects your planning. Notice that you
are taking a decision on activity in advance of knowing what the actual
weather will be. That is why there is no arc between weather condition and
vacation activity.

You can draw influence diagrams quite easily in Excel using the shapes drop-down
tool.

There are different outcomes here, which we can be represented as payoffs. The
highest payoff comes from matching your choice of activity to the weather forecast
and then finding that the forecast matched reality.



13.2 Expected monetary value

the expected monetary value, or EMYV, is just the value of some out- come given a
particular state of nature, multiplied by the probability of that state of nature. Here, I
am using the customary expression ‘state of nature’ not necessarily to refer to
anything in the natural world, but to a particular set of conditions.

The state of nature has to be mutually exclusive for the probabilities to work. For
example, if we have separate probabilities for rain and sunshine, then cannot
calculate for rain AND sunshine. The payoffs which result from each state of nature
are different, depending on the state of nature.

Let’s motivate this with an example using a friendly farmer as the decision-maker.
He has the choice of planting wheat, raising cattle, or some mixture of both. Those
three potential decisions represent his range of choices. From experience, he knows
how much he can expect to receive depending on the weather at the time of harvest.
That amount is called the payoff .



He faces three states of nature, representing different weather conditions at harvest.
These are rain, clear, and sunny. For each choice and for each state of nature he
knows the payoffs which are represented in the cells below.

States of Mature

Raining Clear Sunmy

m Mixed 10 10 10
02 Cattle 10 0 4
o3 Wheat -3 30 Ly

The payoff table for the farmer

There are three decisions and three outcomes, making a total of 9 possible payoffs.
Payoffs can be negative, and are not always in terms of money. They could be time,
or any other appropriate metric. In the rows we put the choices available to the
decision- maker. In the columns we put the ‘states of nature’ which are the future
events not under the control of the decision-maker.

The farmer calculates the probability of each of the three outcomes by working
through old weather records. He finds:

probability of raining is 0.4 probability of clear is 0.3 probability of sunny is 0.3 (of
course these probabilities must all add up to 1. There could be many more ‘states of
nature’ but I have kept them to three for clarity.

The Expected Value is the sum of each probability multiplied by the outcome. In
math notation this is:

EMV:ZPX*X

which in words is: the expected monetary value is the sum of all the outcomes
multiplied by their probability. In Excel, use the formula

=sumproduct(arrayl, array2). This is a mean, or average, with each outcome
weighted by its probability. In decisions involving money,



we usually call the Expected Value the Expected Monetary Value (EMV). For the
farmer, the EMVs are as below:

The EM Vs for the farmer

I multiplied (horizontally by decision) the payoff by the probability of that payoff
and then summed. Usually we choose the decision with the highest EMV, so the
farmer should choose wheat. Expected value_Youtube!

Note that a ‘good’ decision is making the best decision at the time with the
information to hand at that time. There may be unlucky consequences but provided
the analyst has done a thorough job in selecting the optimal outcome at the time,
then she should not be blamed!

It will be highly unusual for an outcome of 30 to actually occur. The EMYV is just a
weighted average and not a prediction.


https://www.youtube.com/watch?v=fR7cBts1C1w
https://www.youtube.com/watch?v=fR7cBts1C1w

13.3 Value of perfect information

The farmer might be tempted to ask for advice from a consultant. What is the
maximum he or she should pay for the advice? It is the difference between the best
case that the farmer calculates and how much he would receive with perfect
information. We calculate the value of perfect information by comparing the EMV
of the best choice in each state of nature with the EMV without information. If you
knew that the weather would be poor, you would select Cattle; clear wheat; sunny
wheat again. Then find the EMV with perfect information by multiplying these best
options by their probabilities.

1https://www.youtube.com/watch?v=fR7cBts1Clw



https://www.youtube.com/watch?v=fR7cBts1C1w

The working is: 100.4 + 300.3 + 70*0.3 = 4+9+21 = 34. The best we could come up
without perfect information was 30, so the value of perfect information is 34 - 30 =
4. So if someone offered you perfect information for a price, the highest that you
would pay for the perfect information would be not more than 4.



13.4Risk-return Ratio

There are other ways of choosing the optimal outcome other than the EMYV,
although the EMV remains the most commonly used. One common measure is the
Return to Risk Ratio , which provides the dollars returned per dollar put at risk.
For each decision, we divide the Expected Value of the decision by the Standard
Deviation of the outcome for that decision. We usually choose the decision with the
highest RRR, because then the dollar return for each dollar put at risk is highest.
The farmer’s worksheet is below.

Mixed has a zero because the payoffs are all the same. There is no risk. Cattle has the
highest at 0.715. This is higher than the RRR for wheat although wheat has the
highest EMV. The farmer might want to think more deeply about the probability of
sunny weather at harvest time, because this makes a huge difference.



13.5Minimax and maximin

A non-probabilistic approach to making choices is the use of maximin and
maximax. You can see that your choice depends on whether you are pessimistic
(maximin) or optimistic (maximax). If we can somehow obtain probabilities, then a
probabilistic approach works best.






13.6 Worked examples

Youare planning to market a new coffee-flavored drink. You have a choice
between packing the drink in a returnable or non- returnable packaging. Your local
government is debating whether non-returnable bottles should be prohibited. The
table below shows your profits. If the non-returnable law is passed, you will still get
some sales from exports.

Decision Lawpassed |Law notpassed
Returnable 80 40
Nonreturnable |25 60

Example 1

1. What would be the best decision based on maximin and maximax
criteria?

2. A lobbyist tells you that the probability of the government banning non-
returnables is 0.7. Assuming the lobbyist is right, what is the best decision
based on the EMV?

3. At what level of probability would your decision change?

4. How much would you pay for perfect information?

Answers:

1. Maximin: the worst are 25 and 40. The best is 40, meaning package with
returnables. Maximax: the best are 80 and 60. Again returnables.

1. The EMYV for returnable is 800.7 + 400.3 = 68. For nonreturn- able it is
250.7 + 600.3 = 35.5. Under EMYV, you should use returnable bottles.

2. Set this up as equation, with p the unknown which has to balance both
sides 80p + 40(1-p) = 25p + 60(1-p). Solve for



p and get 0.267. So if you hear rumours that suggest the probability is
coming down, think again?

3. If we had perfect information, the EVPI is 800.7 + 600.3 = 74. So you
should not pay more than 74 - 68 = 6

Example 2

You run a bank. A customer wants to borrow $15,000 for 1 year at 10% interest.
You believe that there is a 5% chance that the customer will default on the loan, in
which case you will lose all the money. If you don’t lend the money, you will instead
place the $15,000 in bonds which return 6% but are risk-free.

1. What are the EMVs of loan and not loan?

2. You have a credit investigation department which can help you with
more accuracy in the probability of default. What is the most you should be
willing to pay for their advice?

3. Calculate the level of probability of default at which lending the money
and investing in bonds have equal EMV.






14. Accounting for risk-
preferences

What this chapter is about: the previous chapter showed how we could pick the
most attractive choice given payoffs and probabil- ities. But it might have struck
you that there was little discussion of the risks involved and how different people
relate to risk. In this chapter we are going to work through picking optimal
decisions, taking into account the risk preferences of the decision makers.

Here is a question for you: you are given a lottery ticket which has a 0.5 probability
of winning $10,000 and a 0.5 probability of zero. The EMV is therefore 10,0000.5
+ 00.5 = $5000. Someone comes along and offers you $3000 for the ticket
guaranteed. Would take the sure thing? Or would you hope that you win the
$10,000? Most people are ‘risk averse’ and would prefer to give up some of the
EMYV in exchange for certainty. The $3000 (or however much it is) is called your
Certainty Equivalent (CE) in this particular gamble. The difference between the
EMYV and the CE is called the Risk Premium. So

RP =EMYV - CE

You can think of the certainty equivalent as a selling price. It is usually small when
the size of the gamble is small, but increases as the gamble gets larger. Here I am
using the term ‘gamble’ because there are probabilities involved. The certainty
equivalent is a useful concept which, amongst other qualities, allows us to categorize
approaches to risk.

* Risk-averse . If your CE is less than the EMV of a gamble, then you are
risk-averse (and most people are, so nothing to worry about. You're
‘normal’)
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* Risk-neutral . Your CE matches the EMV. You play the aver- ages.

* Risk-seeking . You enjoy the gamble inherent in the EMV and need to
have a very high CE before you’ll give it up. Most people in business who
are risk-seeking usually don’t last very long. Although we sometimes see
risk-seeking decisions when your business is in trouble and a huge gamble is
the only possible solution

Business decisions are all about risk, and the probabilities them- selves are often
unreliable and hard to find. The farmer whose crop- ping decision we studied in
Chapter 2 doesn’t know tomorrow’s weather, let alone the weather in six months.
We generally prefer to give up some of the EMV in return for more certainty because
we are risk averse. That’s why we buy insurance. I know that I will be covered if I
smash my car, and I can even put up with the knowledge that people in Zurich are
getting richer because of my aversion to risk.



14.1 Outline of thechapter

Here’s what we’re going to do:

* Describe utility and calculate utilities

» Show how to use the exponential utility function to calculate utilities based
on risk tolerance

* Convert those utilities to certainty equivalents which we can rank and
compare with the EMVs of the same decision

Torank choices in terms of their certainty equivalent rather than their EMV, we
need the concept of utility, which is a numerical measure of how well a good or
service satisfies a need or want. Do you prefer to be reading this book, outside
eating an ice-cream, or



talking with a friend? You can rank these choices quickly in your head. You can
subconsciously allocate utility numbers to the choices and then pick whichever has
the highest utility.

Utility numbers help us to rank our preferences, but there are no units and the
ranking is individual-specific. In other words, given a set of alternatives, different
people may well have different rankings for them. For the moment, let’s assume
that it is just you whose utilities we are interested in. If we can somehow figure out
your utilities for the different outcomes of a business decision, we can use those
utilities to help you make a more psychologically satisfying choice.

Utility

The plot below shows a hypothetical utility curve. The utility value is on the vertical
y axis and the outcome of a gamble is on the horizontal x axis. Notice two things:

Utility

A typical utility curve

*The slope of the line is upwards. This reflects the fact that everyone prefers more
money to less



* The rate of increase of the line is decreasing or slowing down. It was
steep early on, but towards the end it is almost a plateau. This is because the
value of each extra dollar is slightly less than that of the previous dollar.
This is the marginal utility of money.



14.2 Where do the utility numbers come from?

There are two approaches.
The first involves asking the decision-maker his/her choice between two gambles.

The second uses a utility function, a mathematical function which converts two
input variables (risk tolerance and the size of the outcome) into one utility number.

With a utility number in hand we can begin the process of ranking the decisions in
terms of utility rather than EMV.

The intuitive model

We’ll work through the intuitive model first and then apply the same thinking to the
equation model. Once you get the hang of it, the equation model is quicker and
probably more accurate. We’ll use the payoff table from the farmer example,
repeated below.

The payoff table for the farmer

We’ll assign a utility number of 1 to the highest payoff and then zero to the lowest.
The beginnings of the utility table looks like this:



Payoff Utility

70 1
40

30

20

10

-10

-30 0

Now we need to fill in the gaps. What we’ll do is to use each payoff as a certainty
equivalent, and ask this question:

What value of p would make you indifferent between either receiv- ing a guaranteed
payoff of the certainty equivalent (in the first case

40) or accepting a gamble of receiving the highest payoff (70) with probability p or
losing 30 (the lowest payoff) with probability 1-p. Let’s say that you answer p = 0.9.
The expected value of the gamble is 70 * 0.9 + 0.1(-30) = 60.

This is higher than your certainty equivalent of 40, indicating that you are risk
averse. The difference between the expected value and the certainty equivalent is the
risk premium, and is the amount the individual is willing to give up to forgo risk.

Continue downwards, certainty equivalent by certainty equivalent and complete the
table. I’'ve made up the numbers just for illustra- tion. A plot of the utility values is
also shown.

Payoff Utility
70 1

40 0.9

30 0.8

20 0.65
10 0.4
-10 0.35
-30 0







Farmer's wtility curve

Farmer’s utility curve

If you were risk-neutral, you would prefer to take the gamble and so would be an
EMYV maximizer. The choice of the risk-neutral person is indicated by the straight
line.

Now, let’s replace the payoff values in the farmer table with utilities. We can calculate
the expected utilities in the same way as we found the EMVs. The table shows both
for comparison. We multiply the utility of each outcome with its probability.

Decision Poor oK Good EU

Cattle 0.4 0.4 0.4 0.48

Mixed 0.35 0.65 0.9 0.58

Wheat o 0.8 1 0.52
Expected utilities

The famer’s EMV decision would have been wheat (EMV=14) but taking into
account his risk preferences, mixed gives the highest expected utility. It makes
senses to spread the risk between two completely different crops.

##The exponential utility curve method

It is rather tedious asking so many questions, plus people get tired and confused
rather quickly. An attractive alternative is to use a



mathematical function, the exponential utility curve. This requires only one input
variable, R, the tolerance for risk. The equation is below:

szl_e_X/R

Here x is the payoff; Ux is the utility of the payoff x; and R is the individuals
risk tolerance. A person with a large value of R is more likely to take risks than
someone with a smaller R value. As the R value increases, the behavior approaches
that of the EMV maximizer. The plot for someone with a risk tolerance of R = 1000 is

Litilities with R = 1000

below.

Actually performing
the calculations to find utility at each level of payoff is easy using Excel, as we’ll see
below. But first we have to determine R, the individual’s tolerance for risk.

Finding risk tolerance

There are two approaches

By asking this question: consider a gamble which had equal chances of making a
profit of X or a loss of X/2. What is the value of x for which you wouldn’t care
whether you had the gamble. In other words, what is the value of x for which the
certainty equivalent is



zero? The expected value of the alternative is 0.5 x X - 0.5 * (X/2) = 0.25X. As long
as X >0 then the decision-maker is displaying risk- averse behavior, because
his/her certainty equivalent is less than the expected value of the gamble. The greater
the R, the more tolerant of risk. In his book, Thinking Fast, Thinking Slow, Daniel
Kahneman notes that the ‘2’ in the denominator can vary a tad. It isn’t a precise
formula, but apparently it comes close: In diagram form:

Winning X

Indifferent
between

Losing X/2 . .
An al- ternative approach, more used in

business and finance, is to employ guideline numbers calculated by Professor Ron
Howard!, a pioneer of decision-analysis. Based on his years of experience, Howard
suggests that the R value for a company is:

* 6.4% of new sales
* 124% of net income

* 15.7% of equity

##Example decision using utility maximisation

What we’ll do here is to examine a decision from both the EMV and Expected
Utility angles, using the exponential utility function. The calculation of expected
values is the same: the difference is that instead of multiplying each monetary payoff
by its probability and then adding up, we multiply the utility.

1https://profiles.stanford.edu/ronald-howard



https://profiles.stanford.edu/ronald-howard
https://profiles.stanford.edu/ronald-howard

The decision set-up. All money figures in millions. I run a coffee importing
business. I need a special import license to bring in a particular type of coffee. The
equity of my company is 12.74. So, my R value is 15.74% of 12.74 = 2.

I have a choice between ‘rush’ and ‘wait’ for the permit.

If I rush, I have to pay a special fee of 5, and there is a 50/50 chance of the permit
being granted. If it is granted, I will have sales of 8, giving me a net profit of 8-5 = 3.
Ifitisn’t granted, I still have to pay the 5, but will have sales of only 6, giving me a net
profit of 2. First, find the EMV and EU of rushing. The EMV is 0.5x3 + 0.5(2) = 2.5.

Using the exponential curve formula, the utility of 3 is = 1 - exp(- 3/2) = 0.77687.
And the utility of 2is =1 - exp(-2/2) = 0.632121. The EU for rushing is 0.5(0.77687)
+0.5(0.632121) = 0.704496. All figures are in millions.

Now for the alternative, which is to wait. In this scenario the probabilities are the
same at 50/50, but the cost is only 3 if it is issued, nothing if it isn’t. The sales are the
same at 8 and 4. The net profitsare 8- 3 =5 and 4. The EMV is 0.55 + 0.54 = 4.5. The
utilities are U(5) =1 - exp(-5/2) = 0.918 and U(4) = 1 - exp(-4/2) = 0.865. The EU is
0.50.918 + 0.50.865 = 0.892.

The table below shows the EMVs and EUs.

A -] i o E F G H
Action  Status Const Sales Net EMY umility  EW
Hush Granted 0.7788T

Wat Granted 1 0E32121 07048896
Wotrush Granted 0918
Mat granfed 4.5 OLB6S gz

P T
e

Spreadsheet for the rush decision

But we can go further using certainty equivalents, subject of the next section.






14.3 Converting an expected utility numberintoa
certainty equivalent.

Fortunately there is an easy way to convert expected utilities back to certainty
equivalents. It is then straightforward to rank the decisions by certainty
equivalents. Remember the concept of the certainty equivalent? The amount of
money which it would take for you to sell your gamble? It turns out that we can
convert an expected utility number into a certainty equivalent using an equation:

CE =-R*In(1 -EU)

where In is the natural logarithm. We use this equation where we are talking profits
and want more. In the case of costs, take off the negative sign in front of R.

Above we found EU = 0.704496 for the rush decision branch. That is a CE of
= - 2*LN(1-0.704496) = 2.43814

using Excel’s In function. For the wait decision, the EU was 0.892, giving a
certainty equivalent of = - 2*LIN(1-0.892) = 4.451248

Larger CEs are preferred when the outcomes are profits, and smaller CEs when the
outcomes are costs. So I’d wait! This confirms the decision made with the Expected
Utilities.






15. Glossary

This is a hands-on guide to doing some basic analytic work with data. However,
statistics has its own set of vocabulary and tech- niques. When you are presenting
your results to other people, you may wish to follow established techniques and
terminology. Also, here you’ll find more of the underlying theory if you are
interested in how Excel gets the results it does.

Binomial distribution

The binomial distribution is used to find the probability of the occurrence of a
certain number of events (called successes, although they could be anything clearly
defined) within a number of trials. The binomial distribution will give, for example,
the probability of at least ten parts being defective out of the next hundred, provided
the long-term defective rate is known. The binomial requires some conditions to
work properly. These are:

a sequence of n identical trials there are two outcomes for each trial, denoted success
and failure the probability of success doesn’t change the trials are independent.

It is quite easy to calculate the probabilities with Excel but for illustration here is
the equation which Excel uses:

f(x)=

(,)

p*(1-p)

(n-x)

where x is the number of successes; p the probability of success on one trial; n the
number of trials, and f(x) the probability of x successes in n trials. This notation
points up the fact that the result is a function of x.

137



Central limit theorem (CLT)

The central limit theorem is fundamental in statistics. What the theorem states is
this: let’s say you have a large population and you keep taking samples from the
population and measuring the mean of each sample. Then you draw a histogram of
the means so that each mean is a variable in the distribution. In other words, instead
of plotting each observation independently, we plot them by the means of each
sample. The histogram which appears will be approximately normally distributed, or
in the shape of the well- known bell curve. This is wonderful news because the
normal distribution is well behaved, and so we can calculate the area under any part
of it.

Correlation

You have a pair of variables: for example: website hits and actual sales. You want
to know whether there is a relationship between the variables. And whether it is
‘statistically significant’, or perhaps what you thought was a relationship occurred
just by chance.

Correlation is the study of the linear relationship between two or more random
variables. Correlation analysis provides both the direction and the strength of the
relationship between the variables. For example, there is a relationship between the
height and weight of individuals. There is apparently also a relationship between
consumption of sugar and obesity rates at the national level. Cor- relation analysis
can test whether the relationships are spurious or real.

It’s true and worth repeating: correlation does not imply cau- sation . It does not
necessarily follow that one variable causes the other even though they might be
highly correlated. There are many examples of such spurious correlations, for
example national consumption of chocolate and number of Nobel prizes won. If
you do find a correlation, first think about whether you have a lurking variable
discussed below. The two examples given above for height/weight and sugar
consumption might very well include



causal effects, but this is not something that correlation analysis can establish on its
own. Indeed, some philosophers (such as David Hume) claim that causation can
never be decisively established.

Now we will:

* Visualize a correlation with a scatter plot
« explain why the coefficient of correlation works
« interpret the value of the coefficient of correlation

* test for the statistical significance of the coefficient of corre- lation

Scatterplots and correlation

A canning factory has data on number of workers employed and output of cans. The
dataset is ‘canning’. The factory is interested in the relationship between the number
of workers and output. Load the data into Excel.

A B
1 Workers Cans

2 40

21 45

2.7 52

3 57

3.1 65

3.6 75

First few line of the canning data

The columns of data represents numbers of workers and cans manufactured. For
the notation we’ll call these X and Y. When I mean the name of the variable, I’ll use
the upper case. For individual observations, such as x = 23, I’ll use lower case. We
want to see the relationship between X and Y. To do this we need to have the data laid
out in columns so that each observation of X and Y are on the same line. It’s always a
good thing to visualise the relationship with a scatter plot and the scatter plot is
below.



Cans

The cans scatter plot

I’ve drawn a vertical and horizontal line which goes through the means of the two
variables. We can divide the observations into quadrants, with quadrant one being
top right and so forth. If the relationship is positive then we would expect to see most
of the observations in quadrant one and quadrant three. If the relationship was
negative then most of the observations would be in quadrants two and four.

The relationship between X and Y is not perfectly linear. If it was all the pairs of
points would line up along a straight line. We need some way of measuring how
far off being in a straight line these observations are. There are two measures,
covariance and coefficient of correlation. There is some maths in what follows but
we’ll walk through it slowly.

Covariance: Try this thought experiment: if all the Y points were on a vertical line,
then the subtraction of the mean from each Y value would give us zero:

(yi=y )=0
I’ve put in a little i for the y values to show that it could be any



of the values in the Y variable. Similarly for the X values, if all the points were on a
vertical line then

(xi—x )=0
We can see that we don’t have vertical lines and there is some dif- ference between
each observed value and the mean. If we multiply together the differences and then
find the average by dividing by n-1 we can find the covariance. We divide by n-1

because we are in most cases dealing with a sample. Subtracting 1 adjusts for this
fact. The sample covariance of X and Y is therefore:

Sxy=

(x=x )y=y_)
n-1

The big problem with covariance is that the result is very dependent on the units. We
can get round this problem by standardizing the differences between each
observation and its mean. We do that by dividing the difference by the standard
deviation of the variable. You can think of this technique as providing the
difference in units of standard deviations, so

and the same for the Y variable. Now we no longer need to worry about the units. The
coefficient of correlation is the covariance now between the standardised
differences, not the differences them- selves. The equation for the coefficient of
correlation of a sample is

rxy=

(x=x Ny=-y )(n-1)SxSy

Performing this calculation is extremely tedious and we usually let the computer do



the work. Type in =correl(array1,array2) and hit



enter. For the cans data the result is 0.991083. This is the Pearson Product Moment
or ‘r’ value.

Correlation_Youtube!

Values of r: values of r are restricted to the range -1 to +1. A negative value means
that the slope is negative: as one variable increases then the other decreases. A
positive value means that both variables increase together. The larger the absolute
value of 1, then the closer the correlation. A correlation of zero means that all the
points are scattered about with no pattern whatsoever. The r value of 0.991083 for
cans means that the points are lined up along a straight line, which is what we would
expect from looking at the scatter plot.

Testing r: the observations that we have used to calculate r consist of a sample from
a population. Because it is only a sample, we don’t know whether the correlation
would hold up if we were somehow able to gain access to the population. r is the
notation for the coefficient of correlation for a sample. For a population we use the
Greek letter p “rho”. Generally, Greek letters are used for population parameters.
This distinguishes them from the Roman letters used for estimates.

The hypothesis we’re testing is:

against the null

Ho:p<0
Haq: p/: 0
We find the test statistic using this equation
rvn—Z
t=V
1-p2

1https://www.youtube.com/watch?v=QDj8aY fvccQ
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We’ll first work out the value of the test statistic using the r value we found above.
Then we’ll find the p value from this.

The r value found from the correlation was 0.99 and there were 24 observations
(n=24). Plugging in the numbers, we find that t = 32.86. This is a one tailed test, so use
= t.dist(your value for t, n-1, and false) to find a p value of 2.67343E-21. The -21
means move the decimal place 21 places to the left, so this number is effectively
zero. The r value we found is statistically significant. It is much smaller than 0.05,
so we can reject the null hypothesis. There is a correlation.

Descriptive statistics uses graphs and tables to present what we know about the
data. This is a powerful method of gaining insights into the data, and also for
making presentations. However, descriptive statistics limits itself to the data available
does not make any inferences beyond what we have from the data to hand.

Distribution of the observations within a dataset describes the density of the
observations: are they spread about evenly, or peaked in the middle and then spread
out on either side of their mean?

One of the most common and useful distributions is the normal distribution,
sometimes known as the bell curve. Many things in the natural world follow this
distribution. For example, if you were able to measure the heights of a large number
of men or women, you’d find that they followed a normal distribution.

The plot to the right shows the distribution of records of heights of parents collected
by Francis Galton in the 19th century. Galton was trying to find out the relationship
between the height of parents and their children. Along the way, he discovered the
phenomenon known as ‘regression to the mean’.

I have plotted the heights as a histogram and added a normal curve with the same
mean and standard deviation as the original data. This clearly follows the bell curve.

The normal distribution is very important in statistics for several reasons



-the normal distribu- tion is “‘well-behaved’ in the sense that it al- ways follows the same
mathematical function. The equation is a lit- tle complex, but we can draw any normal

distribution provided we know its mean and variance. The mean is the average of the
ob-

Galton: Parent Meight with Mormal Curve

Galton’s height observations

servations, and in a normal distribution occurs right in the middle. The variance is a
measure of the average distance of each observa- tion from the mean. The larger the
variance, the more ‘spread out’ or dispersed the data.

The graphs here show two datasets, with identical means but different variances.
In most of this book we won’t use the term variance, but instead standard
deviation . The standard deviation is just the square root of the variance. We use the
standard deviation primarily so that we can use the same units as the mean. The first
plot has a standard deviation of 5, and the second one a standard deviation of 2. The
plots were created by generating a random set of 1000 numbers, with a mean of ten
and the standard deviations just described.

-the second reason is connected with the most important result in statistics,
the Central Limit Theorem , or CLT. This states that if you keep drawing samples
with replacement from a large population, the means of the samples will follow
a normal distribution . The important thing is that the distribution of the original
population doesn’t matter as long as we draw at least 30 samples. In fact, it gets
better than that: if the original population is not normally distributed, then we don’t
need as many as 30 in our sample. As few as 10 will do the trick.
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Because the normal distribution follows an equation so well, we can find the area
under any part of it very easily.

sD=2
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Standard deviation =2

The mean splits the area under the curve into halves, meaning that 50 % of the
observations are smaller than the mean, and 50% larger. A common practice is to
mark off the horizontal axis in units of standard deviation. The further from the
mean, the greater the standard deviation. This helps both in visualizing the shape of
the data, but also in using the empirical rule .



Empirical rule: a ‘rule of thumb’ which states that when data are normally
distributed,

-64% of the data are within one standard deviation of the mean -95% of the data are
within two standard deviations of the mean -99.7% of the data are within three
standard deviations of the mean

This makes intuitive sense: only 100 - 99.7 = 0.3 % of the data are more than three
standard deviations from the mean. They would therefore be in either of the
extreme ends or tails of the distribution. The probability of their occurrence would
be very small. By contrast, observations closer to the mean, those located only a
small number of standard deviations from the mean, are much more likely to occur.
That is why the histogram is highest on at the mean. Thought experiment: very short
or very tall people are unusual (which is why you stare at them). By contrast, people
around the mean height are not at all unusual and you just pass them by.

Estimation : The statistical process is circular: we start off by choosing the
characteristic of the population that interests us. That characteristic is called a
parameter. We draw a random sample from that population. We use the statistic to
infer information about the same quantifiable feature in the population. The
statistic (for ex- ample an average or a proportion) is an estimate of the population
parameter. The process of finding how close the estimate to the parameter, and
building a confidence interval around the estimate, is inference . We test claims
about the parameter using hypothesis- testing, which is closely related to inference.
Hypothesis-testing is the final part of this chapter.

Excel —-more screencasts

Inserting the data analysis toolpak add-in? The normal

distribution3
2https://www.youtube.com/watch?v=0ds1Z5BLD9g&list=UUVZFhqXDgJgIRg- ljotClgQ
3https://il.ytimg.com/vi/1gnOEIm5-PQ/mqdefault.jpg
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Exponential Smoothing

Hypotheses and p values A hypothesis is a claim someone makes about a
population. For example, a coffee importer (me!) is told by the supplier that the
mean weight of the sacks of coffee beans is 40 kg. That is the claim. I want to test
that claim because I am paying for the coffee. All the sacks of coffee in the
shipment are the ‘population’. I take a random sample of sacks to check. I find that
the mean weight of the sample is 38 kgs. Do I reject the whole shipment, or say I
must have got a low sample, let’s take them? The hypotheses here are: the null
hypothesis: the population mean weight is 40 kg. Meanwhile the alternative o the
population mean weight is not 40 kgs. Hypothesis testing provides an answer to the
test in the form of a p value, defined below.

A p value is the probability of finding a sample with the measured characteristics IF
the null hypothesis was true. In the case of the coffee above, let’s say that we
calculated the p value (See Chapter

9) and it was 0.1. That means that there is a 10% chance of finding a sample with a
mean weight of 38 kgs if the real true mean weight of the shipment was 40 kgs. The
most frequently used cut-off point is 0.05 or 5%. If the p value was smaller than 0.05
then we would say that there is a less than 5% chance that this sample came from a
population with the claimed weight. Therefore the shipment isn’t of the claimed
weight and should be rejected.

Hypothesis writing and testing

A hypothesis is a statement or claim. For example, ‘the mean weight of the coffee
packs is 3 kg’ is a hypothesis or claim. The hypothesis needs to be tested so that we
know whether the claim stands or is shown to be false.

Hypotheses are written so that the claim, and the counter-claim, are distinct. There
are two hypotheses, one for the claim and the other for the counterclaim. Ho, the
‘null hypothesis’, contains the claim. Ha, the ‘alternative hypothesis’, contains the
counterclaim. We write hypotheses by assuming that the null hypothesis is true.



The null hypotheses for the coffee example above would be

Ho:u=3kg

This is read as: The null hypothesis is that the population mean weight (mu) of the
coffee is equal to 3 kg.

The alternative hypothesis (Ha) is that the population mean weight is not 3 kg,
written:

Ha: /=3 kg

We test the hypotheses using information (statistics) from the sam- ple (the mean
weight, the sample size, and the standard deviation). Note that the counterclaim says
nothing about the mean weight in the population being more than or less than 3 kg,
it simply says that it not equal to 3 kg. Also, important, the equality sign appears in
the null. This is always the case, whether the inequality is ‘strict’ or ‘weak’.

We can also test whether the population mean is smaller than or larger than some
constant. The shipper claims that the weight is ‘at least’ 3 kg. We write this as:

Ho:p>3kg

Note that the equality remains with the null. The alternative is then the negation of
the null, and this must be that the weight is ‘less than 3 kg’.

Hq:pu<3kg

Convince yourself that the only possible way to negate Ho is with the alternative
hypothesis. If the claim was that that the average weight is less than or equal to 3 kg,
we simply switch over the



inequality signs. There are other forms of hypothesis writing which we will work
through in this book. However, they all share the rule that the equality sign goes in
the null; and the alternative negates the null.

Inference is the key statistical process. It is the way in which information about
populations can be gleaned from surprisingly small samples. An example is polling
before an election. Provided the sample is drawn randomly and is representative of
the pop- ulation, a sample of perhaps only 1,000 people can provide quite accurate
estimates of the proportion of the population predicted to vote for a particular
political party. The estimates are used to make inferences about the population. We
won’t know until election day whether or not the inferences were correct or not.

Inferential statistics is a very powerful technique which allows us to make the jump
from a sample to a population. We can use a small sample to make inferences about
the characteristics of a population about which we perhaps know very little. The key
is to obtain a sample which represents the population as accurately as possible. For
this, both randomization and good survey design are essential. We will discuss
these two important issues later in the chapter. Recently, a third class of statistical
methodologies has arisen. This is machine learning , which takes advantage of new
analytic techniques and greater computing power. We won’t be able to go into these
techniques in this book, unfortunately.

Lurking variables : It happens that there is close monthly cor- relation between
the consumption of ice cream and deaths by drowning. Is it that people eat an ice
cream, go swimming and then drown? The correlation misses the lurking variable
which is temperature. In hot weather, people both go swimming more often and buy
ice creams. The ice cream and the drowning variables are both correlated with
temperature and so are correlated with each other. Another example: it seems that
there is a correlation between kids needing reading glasses and sleeping with the
light on. So you



should switch the light off? Not so fast. The lurking wvariable is the short-
sightedness of the parents, not the kids. The parents leave the light on so they can see
the kid. The kids inherit bad eyesight from their parents.

Parameter : a quantifiable characteristic of interest in the popula- tion. The
average weight of all of the fish in the Fraser River is a parameter. The same
characteristic in the sample is known as a statistic. We can easily find this statistic
because the sample is only a subset, and therefore smaller, than the population. We
usually never know the actual value of a parameter, but that doesn’t matter because
we can estimate from the sample.

Point estimate : a statistic, such as the mean or average. It is called a point because it
is an exact number such as 4.21. It is not a range, it is a point. It is called an estimate
because it is an estimate of the population parameter. Therefore 4.21 is an estimate
of what the same quantifiable feature would be in the population. You can think of a
point estimate as being the ‘best guess’ for the population parameter.

If we selected a different sample from the population, then almost certainly the
point estimate would be different, giving a new best guess. If we continue to take
samples, then we are going to get as many best guesses as we have samples. The
range of best guesses is the sampling variation .

Poisson distribution

The Poisson probability distribution is, as with the Binomial, a dis- crete probability
tool. We can use it for calculating the probability of events which occur over time or
space. For example, number of mistakes in a given number of lines of code. The
formula is:

f(x)=

pxe—xX!

where f(x) is the probability of x occurrences in a given interval. mu



is the expected value or mean number of occurrences in the given interval (or area).
e is a constant, value 2.71828.

Population : the group of individuals about whom we want some information.
Each individual in the population is called an element or sometimes a case.
Examples of populations are all the fish in the Fraser River, Toyota cars made in
2012, or indeed the population of a country. It is usually not possible to deal with data
at the population level because it is either expensive or impossible to obtain. As a
result we draw a sample, or subset, from the population.

Randomisation is the technique of selecting elements from the population to build
a sample so that each element has the same known probability of being selected.
This technique greatly reduces bias, described in more detail in the following
chapter.

Regression

Sampling frame : a list of the items to be sampled. Imagine that you wish to survey
100 students from a University. The University provides you with a list of students
and their ID numbers. The students form the population, and the list is the sampling
frame. You would use a random sampling method, covered below, to randomly select
100 students from the University. The 100 students form the sample.

Standard error : Try this thought experiment. Let’s say that there are 1000 jelly
babies in a bowl and for some reason you’d like to known the mean weight of a jelly
baby without having to weigh all of them. You have a choice of taking a random
sample of eithern

= 100 or n = 500. Which sample would produce the most accurate estimate:
obviously the sample size of 500 because it is ‘closer’ to the population size.

Yet it still won’t be completely accurate because it could happen that the sample you
select is biased in some way: perhaps you selected all the heavy ones? We can
measure the amount of error with the standard error, which helps us to determine how
‘close’ we are to the



unknown parameter. Below I show how to calculate the standard error (SE). Here is
the standard error for a statistic such as a mean:

o SE =

In words, the standard error is the population standard deviation divided by the
square root of the sample size, denoted by n. Note that as the sample size increases,
then the standard error decreases.

This is in line with your earlier intuition that the larger the sample size then the
more accurate the estimate. Usually we don’t know ‘sigma’, o, so we replace it with
‘s’ which is the standard deviation of the sample.

Transformations : this is a technique sometimes used in regression. The object is
usually to transform the distribution of the dependent variables so that it more
closely resembles a normal distribution. We do this because the theoretical
underpinning of linear regression is based on an assumption of normality in the
dependent variable. The dependent variable is typically transformed by taking its
natural logarithm and then using the transformed variable in the regression. This is
often used when the dependent variable has only positive values and is highly
skewed to the right. Independent variables can also be transformed such as by
adding a squared version of the variable in the regression. Independent variables
can also be transformed by

Z scores : A z score is a measure of how far an observation contained within a
variable is from the mean of that variable, in terms of standard deviations. It is
quite easy to calculate within Excel, and this Youtube shows you how

z scores_Youtube#.

Why do this? By dividing the difference between the value of the

4https://www.youtube.com/watch?v=FSZpynSBev8
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observation and the mean of the variable by the standard deviation of the variable,
like this:

the differences are in units of standard deviations. We can use this for:

» Comparing the distributions of two completely different variables

* Detecting outliers. An outlier is an observation which is very far from the
rest of the distribution. Usually, 99.7% of the observations will be within
three standard deviations of the mean. So an observation which is more than
three standard deviations from the mean is likely to be questionable. This
can be good or bad:

» Bad because perhaps someone made a data entry error which we can catch.

* Good because perhaps there is something anomalous and interesting
about that “‘weird’ observation.



