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Preface

Contacting	the	Author	Regarding	this	Book

I	 am	 delighted	 that	 you	 are	 using	 this	 book	 in	 your	 study	 of,	 or	 involvement	 with,
optimization.	I	would	very	much	welcome	your	comments,	particularly	regarding	this	first
edition,	and	any	suggestions	that	you	might	have	for	the	next	edition.	For	your	comments
regarding	 this	 book,	 I	 will	 be	 happy	 to	 receive	 your	 direct	 email	 at
OptimizationInPracticeMessac@google.com.

Book	Website

The	website	www.cambridge.org/Messac	will	be	maintained	for	this	book.	Information	for
instructors	and	students	will	be	separately	provided.	Software	for	various	problems	will	be
provided	 in	 this	 website.	 I	 expect	 it	 to	 be	 a	 dynamic	 website,	 where	 the	 information
available	will	evolve	over	time	to	be	responsive	to	readers’	requests	and	feedback.

Book	Organization

This	book	is	intended	to	be	used	by	undergraduate	and	graduate	students	in	the	classroom,
or	by	industry	practitioners	learning	independently.	Its	organization	suits	these	objectives.
Following	are	messages	specifically	tailored	for	students,	for	industry	practitioners	and	for
instructors.	The	book	has	five	parts:

Part	I Helpful	Preliminaries

Part	II Using	Optimization—The	Road	Map

Part	III Using	Optimization—Practical	Essentials

Part	IV Going	Deeper:	Inside	the	Codes	and	Theoretical	Aspects

Part	V More	Advanced	Topics	in	Optimization

Part	 I	 has	 two	 chapters	 that	 present	 prerequisite	 material	 explaining	 how	 to	 use
MATLAB	 and	 some	 useful	 mathematical	 information.	 Most	 of	 this	 book	 assumes
knowledge	of	undergraduate	calculus	and	elementary	 linear	algebra.	The	second	chapter
provides	a	brief	review	of	the	math	needed.	In	Part	II,	three	chapters	introduce	the	world
of	optimization	in	the	form	of	a	road	map.	This	part	provides	the	basics	of	what	should	be
known	about	optimization	before	attempting	to	use	it.	In	Part	III,	there	are	five	chapters
that	 teach	 the	 basic	 use	 of	 optimization.	 In	 fact,	 learning	 the	 material	 up	 to	 Part	 III
provides	 the	 practitioner	 with	 sufficient	 information	 for	 solving	 practical	 problems.	 In
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doing	so,	student	users	will	not	be	experts	on	how	optimization	works	under	the	hood,	so
to	speak,	but	will	have	the	ability	to	use	optimization	in	general	practical	contexts.	Stated
differently,	while	not	being	an	expert	about	what	is	under	the	hood,	 the	student	will	be	a
pretty	good	driver	and	should	be	able	to	drive	to	the	desired	destination	(i.e.,	the	optimal
design).	 In	 Part	 IV,	 three	 chapters	 provide	 a	 meaningful	 understanding	 of	 the
computational	and	theoretical	optimization	process	for	linear	programming	and	nonlinear
programming	with	 and	without	 constraints.	 This	 is	 equivalent	 to	 learning	 the	 basics	 of
what	is	under	the	hood	of	a	car.	Part	V	builds	on	the	first	parts	of	the	book	to	provide	a
foundation	for	more	advanced	studies	in	optimization.	In	Part	V,	we	learn	optimization	at
a	deeper	level,	where	advanced	topics	are	introduced	over	six	chapters.

A	Message	to	Students

As	this	book	reaches	your	hands,	you	may	have	already	signed	up	to	take	an	optimization
course,	you	may	be	in	your	junior	or	senior	year	or	a	graduate	student,	or	you	may	already
be	in	industry	and	feel	that	optimization	may	be	useful	to	you.	Regardless	of	what	the	case
may	be,	you	probably	have	two	important	questions	in	your	mind:	(i)	Why	should	I	learn
optimization?	 and	 (ii)	 Is	 this	 a	 good	 book	 for	me	 to	 use	 to	 learn	 optimization?	Let	me
provide	you	with	some	objective	comments,	together	with	some	subjective	thoughts.

Why	should	you	learn	optimization?	The	truth	is	this.	If	you	are	an	engineer	or	about	to
become	one,	if	you	are	a	financial	analyst,	or	if	you	deal	with	numbers	to	determine	how
desirable	or	undesirable	the	performance	of	a	system	or	a	design	is,	then	optimization	will
almost	certainly	be	able	to	help	you	do	a	better	job—without	fail.	Optimization	applies	to
most	engineering	activities,	management	operations	activities	and	numerous	other	 fields
where	performance	(or	goodness)	can	be	numerically	quantified.

More	importantly,	if	you	are	trying	to	design	a	system	that	must	perform	a	certain	way,
you	have	unsuccessfully	tried	all	that	you	know,	and	you	have	already	asked	the	experts
for	 help	 without	 success,	 then	 there	 is	 a	 good	 chance	 that	 optimization	 will	 help	 you
succeed.	 Interestingly,	 it	 would	 not	 be	 at	 all	 surprising	 that	 the	 expert	 may	 find	 it	 too
difficult	to	obtain	an	adequate	answer,	when	optimization	can	be	successfully	used	to	find
one.	This	 is,	 in	part,	because	optimization	can	intelligently	examine	thousands	of	design
alternatives	 in	 less	 time	 than	 it	 takes	 the	 expert	 to	 examine	 a	 single	 design	 alternative.
Optimization	can	also	perform	an	 intelligent	 search	 in	a	complex	environment	 that	may
not	be	clear	 to	 the	human	mind.	Optimization	essentially	makes	 it	obsolete	 to	engage	in
the	typical	trial-and-error	process,	as	we	search	for	a	good	design.

The	following	are	some	important	comments	regarding	the	rapidly	growing	popularity
of	 optimization	 in	 recent	 years,	 and	 about	 how	 this	 book	 offers	 a	 unique	 approach	 to
bringing	optimization	to	a	broader	audience.

Until	 recently,	 the	 cost	 of	 computing	 was	 a	 critical	 issue	 that	 hindered	 the	 broad
application	 of	 optimization.	 Fortunately,	 with	 the	 revolutionary	 decrease	 in	 the	 cost	 of
computing	 in	 recent	years,	a	desktop	computer	 is	often	all	 that	 is	needed	 to	solve	many
practical	 optimization	 problems—making	 the	 application	 of	 optimization	 dramatically
more	practical.

The	 application	 of	 optimization	 in	 practical	 settings	 is	 increasingly	 becoming



commonplace.	 A	 growing	 number	 of	 software	 developers	 have	 begun	 to	 include
optimization	capabilities	 as	 they	 respond	 to	growing	demand.	They	 realize	 that	 it	 is	not
sufficient	to	determine	how	a	structure	deforms	under	given	loads.	It	is	also	important,	and
of	 interest,	 to	 discover	 how	 to	 change	 the	 design	 in	 order	 to	 reduce	 that	 deformation.
Optimization	provides	a	reliable	and	systematic	way	to	obtain	this	reduction.	Importantly,
this	 powerful	 benefit	 of	 optimization	 applies	 to	 a	 plethora	 of	 analysis	 software	 in
engineering,	management,	finance	and	numerous	other	fields.

Let	us	now	turn	our	attention	to	the	second	question:	Is	this	a	good	book	for	you	to	use
to	learn	optimization?	This	book	will	provide	you	with	a	unique	combination	of	desirable
attributes.	It	will	provide	you	with	the	knowledge	to	start	using	optimization	software	in
general.	 In	 particular,	 you	 will	 have	 the	 ability	 to	 use	 MATLAB	 for	 this	 purpose	 with
effectiveness	 and	efficiency.	Note	 that	 any	other	 optimization	 software	 could	have	been
used,	but	we	use	MATLAB	for	its	broad	popularity,	effectiveness	and	convenience.

This	book	focuses	primarily	on	the	material	that	is	required	for	the	practical	application
of	optimization:	more	time	spent	on	the	computational	analysis	and	optimization	of	real-
world	problems,	and	less	time	on	the	inner	theory	and	mathematics	of	optimization.	This
approach	is	beneficial	to	students	who	wish	to	initiate	research	studies	in	optimization,	as
well	 as	 to	 those	 students	who	primarily	wish	 to	use	optimization	 for	practical	purposes.
This	book	is	explicitly	intended	to	teach	you	how	to	use	optimization	successfully,	and	to
do	so	while	avoiding	unnecessary	mathematics.	The	first	parts	of	this	book	can	be	used	for
a	one-semester	course	that	is	fully	accessible	to	junior-level	undergraduate	students.	Those
interested	in	advanced	topics	are	referred	to	Part	V	of	this	book.

To	make	this	practical	learning	possible,	after	the	preparatory	material	of	Part	I,	realistic
solution	approaches	that	 involve	the	use	of	a	computer	are	provided	in	Part	 II.	With	our
ability	 to	 use	 an	 optimization	 and	modeling	 code,	 such	 as	MATLAB,	 we	will	 be	 able	 to
readily	apply	what	we	 learn	 to	 real-life	problems.	The	approaches	do	not	 fundamentally
change	 with	 different	 optimization	 codes.	 The	 changes	 that	 occur	 from	 problem	 to
problem	are	readily	handled	with	any	optimization	code,	such	as	the	size	and	other	generic
features	of	the	problem.	MATLAB	is	an	easy-to-use	and	very	popular	software	that	is	useful
in	all	areas	of	engineering.	It	is	also	used	in	a	growing	number	of	non-engineering	fields.
If	 you	don’t	 yet	 know	MATLAB,	 that	 is	 fine.	You	will	 learn	 it	 as	we	go	 along.	The	 first
chapter	of	this	book	provides	an	introduction	to	MATLAB	that	focuses	on	the	material	that
we	will	need.

Your	 prospective	 learning	 of	 optimization	 in	 a	 way	 that	 focuses	 on	 practical
applications	is	timely	in	view	of	the	increasingly	computational	world.	It	will	prove	to	be
an	important	component	of	your	education.	Ultimately,	learning	optimization	will	provide
you	with	a	truly	powerful	tool	to	do	things	more	successfully	than	could	be	done	without
optimization.

A	Message	to	Industry	Practitioners

To	obtain	an	overall	 idea	about	the	objectives	and	intent	of	this	book,	I	suggest	that	you
also	 read	 the	 messages	 to	 students	 and	 instructors.	 Regarding	 the	 particular	 needs	 of
industry	practitioners,	this	book	is	deliberately	designed	to	quickly	get	to	the	point.	Many



software	products	 are	 coming	 to	market	with	optimization	capabilities,	 and	 it	 is	wise	 to
acquire	 the	 appropriate	 background	 to	 start	 using	 these	 capabilities.	 This	 book	 directly
provides	the	required	knowledge	in	a	way	that	is	unencumbered	by	unnecessary	math,	and
focuses	on	such	practical	aspects	as:	 (i)	How	do	I	make	my	design	 lighter,	stronger	and
cheaper?	 (ii)	 Once	 I	 get	 an	 answer	 from	 my	 analysis	 code,	 what	 is	 the	 next	 step	 to
improving	that	answer?

In	 addition,	 even	 if	 you	 are	 not	 using	 an	 analysis	 software	 (but	 can	 compute	 the
performance	 of	 your	 system),	 you	may	 ask	 how	 to	modify	 your	 system	 to	 improve	 its
performance,	 and	 how	 to	 do	 so	 systematically	without	 the	 usual	manual	 trial	 and	 error.
Optimization	is	a	powerful	way	to	accomplish	these	objectives,	and	this	book	provides	the
required	 knowledge	 in	 a	 practical	 and	 accessible	 way.	 As	 mentioned	 earlier,	 those
interested	in	more	advanced	topics	are	referred	to	Part	V	of	this	book.

A	Message	to	Instructors

This	book	takes	a	novel	pedagogical	approach	to	the	teaching	of	optimization.	It	 takes	a
different	 perspective	 regarding	what	material	 should	 be	 included	 in	 a	 first	 optimization
course;	and	 it	provides	 the	means	 to	 teach	optimization	 to	 juniors,	seniors,	and	graduate
students	who	are	taking	their	first	course	in	optimization.	The	material	in	this	book	can	be
divided	 into	 two	 self-contained	one-semester	 courses.	The	 first	 course	 can	be	offered	at
the	undergraduate	or	graduate	level.	At	the	undergraduate	level,	Parts	I,	II,	and	III	could
be	covered.	At	the	graduate	level,	(i)	Parts	II,	III,	and	IV	could	be	nominally	covered,	(ii)
Part	 II	can	be	covered	quickly,	 (iii)	Part	V	can	be	covered	as	part	of	a	challenging	 first
course	or	as	part	of	a	second	course,	and	(iv)	a	term	project	could	be	assigned	potentially
based	on	some	advanced	problems	in	the	book.	The	problems	at	the	end	of	each	chapter
are	divided	 into	“Warm-up,”	“Intermediate,”	and	“Advanced,”	 reflecting	 their	 respective
levels	of	difficulty.	Some	“Graduate	Level”	problems	are	provided	as	well.	This	flexibility
can	 be	 exploited	 to	 address	 the	 diverse	 skills	 of	 students	 cohorts	 and	 of
undergraduate/graduate	 students.	 The	 book	 is	 structured	 to	 provide	 full	 flexibility	 to
accommodate	 the	 objectives	 of	 the	 instructor,	 as	 well	 as	 the	 skills	 and	 interests	 of	 the
students.

Importantly,	 this	 book	 is	 also	 structured	 with	 the	 instructor	 in	 mind	 to	 facilitate	 the
pedagogical	 process.	 In	 particular,	 the	 book’s	 website	 (www.cambridge.org/Messac)
provides	a	comprehensive	set	of	materials	that	support	the	instructor’s	needs.	A	270-page
solution	 manual	 is	 provided.	 A	 comprehensive	 set	 of	 lecture	 materials	 is	 provided	 in
editable	form,	which	comprises	approximately	850	PowerPoint	slides,	 thereby	providing
the	 flexibility	 to	 suit	 the	 instructor’s	goals	 and	pedagogical	 style.	The	book’s	website	 is
also	 provided	 to	 enrich	 the	 coverage	 of	 certain	 topics	 and	 to	 allow	 us	 to	 pose	 larger
practical	problems	 that	might	not	otherwise	be	considered.	The	book	MATLAB	 codes	 are
also	available	 in	 the	book’s	website.	The	 instructor	 is	 invited	 to	visit	 the	website	and	 to
contact	 me	 at	 OptimizationInPracticeMessac@google.com	 for	 any	 suggestions	 for	 the
website	or	any	other	aspects	of	the	book.

This	 book	 provides	 an	 introduction	 to	 the	 practical	 application	 of	 optimization	 as	 a
potentially	 last	 optimization	 course.	 Alternatively,	 this	 book	 can	 be	 used	 as	 a	 more
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accessible	introduction	to	the	subject	of	optimization,	to	be	followed	by	courses	that	cover
more	advanced	topics.

Regarding	the	philosophy	of	the	material	covered	in	this	book,	we	critically	assess	the
need	 to	 include	 candidate	 topics	 by	 asking	 the	 question:	 Is	 this	 material	 needed	 for
someone	who	primarily	wishes	to	use	optimization,	or	is	it	primarily	required	for	someone
who	 intends	 to	develop	 optimization	algorithms?	Priority	 is	given	 to	 topics	 that	directly
contribute	 to	 the	 successful	 use	 of	 optimization.	 For	 example,	 is	 it	 necessary	 for	 an
introductory	user	to	learn	sequential	quadratic	programming?	Is	this	knowledge	necessary
for	 the	 successful	 application	of	optimization,	when	 robust	 implementations	are	broadly
available?	The	 book	 is	 structured	 to	 easily	 allow	 the	 instructor	 to	 potentially	 leave	 that
topic	 to	 a	 second	 optimization	 course	 (using	 this	 book),	 where	 more	 theoretically
advanced	 subjects	 can	 be	 presented.	 This	 singular	 philosophy	 helped	 prioritize	 the
candidate	 topics	 for	 inclusion	 (and	 where)	 in	 the	 book.	 The	 net	 result	 is	 a	 text	 that
appreciably	departs	from	tradition,	but	that	we	believe	makes	a	novel	contribution	to	the
teaching	of	optimization.	 It	provides	 the	material	 to	 teach	optimization	 in	 the	 traditional
way,	 but	 with	 the	 flexibility/option	 to	 employ	 a	more	 pragmatic	 approach	 that	may	 be
more	 inviting	and	effective	 in	 an	 introductory	undergraduate	or	graduate	 first	or	 second
course.

A	top-level	view	of	the	five	parts	of	the	book	is	provided	as	follows:

Part	I					Helpful	Preliminaries

1. MATLAB	as	a	Computation	Tool

2. Mathematical	Preliminaries

Part	II			Using	Optimization	-	The	Road	Map

3. Welcome	to	the	Fascinating	World	of	Optimization

4. Analysis,	Design,	Optimization,	and	Modeling

5. Introducing	Linear	and	Nonlinear	Programming

Part	III		Using	Optimization	-	Practical	Essentials

6. Multiobjective	Optimization

7. Numerical	Essentials

8. Global	Optimization	Basics

9. Discrete	Optimization	Basics

10. Practicing	Optimization	–	Larger	Examples

Part	IV		Going	Deeper:	Inside	the	Codes	and	Theoretical	Aspects

11. Linear	Programming

12. Nonlinear	Programming	with	No	Constraints

13. Nonlinear	Programming	with	Constraints

Part	V		More	Advanced	Topics	in	Optimization



14. Discrete	Optimization

15. Modeling	 Complex	 Systems:	 Surrogate	 Modeling	 and	 Design	 Space
Reduction

16. Design	Optimization	Under	Uncertainty

17. Methods	for	Pareto	Frontier	Generation/Representation

18. Physical	Programming	for	Multiobjective	Optimization

19. Evolutionary	Algorithms
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PART	1

HELPFUL	PRELIMINARIES
Part	I	provides	prerequisite	information	for	using	optimization	in	practice.	Specifically,	we
need	 to	 use	 software	 and	we	need	 to	 have	 some	basic	 knowledge	of	mathematics.	This
book	uses	MATLAB	as	a	computational	tool.	If	you	are	new	to	MATLAB	or	do	not	know	it
yet,	Chapter	1	will	 provide	 you	with	 the	 preparatory	 information	 to	 get	 started.	 If	 your
mathematics	 knowledge	 is	 a	 bit	 rusty,	Chapter	 2	will	 provide	 you	with	 the	 preparatory
knowledge	for	optimization	application.

Specifically,	the	topics	presented,	with	the	chapter	numbers,	are	given	below:

1. MATLAB®	as	a	Computation	Tool

2. Mathematical	Preliminaries



1

MATLAB
®
	as	a	Computational	Tool

1.1 	Overview

Optimization	 can	 be	 viewed	 as	 a	 process	 that	 searches	methodically	 for	 better	 answers,
better	 solutions,	 or	 better	 designs	 that	 a	 human	 being	may	 not	 be	 able	 to	 find	 through
experience,	intuition,	or	courageous	trial-and-error.	Optimization	can	be	defined	as	the	art
of	making	things	better.	Interestingly,	optimization	very	often	does	not	simply	allow	us	to
do	 something	 better,	 but	 it	may	 also	make	 it	 possible	 to	 do	 something	 that	we	 did	 not
otherwise	 know	 how	 to	 do.	 To	 take	 full	 advantage	 of	 the	 power	 of	 optimization	 in
practice,	there	is	no	choice	but	to	use	a	computer.

The	study	of	optimization	typically	takes	a	theoretical	and/or	computational	approach.
The	 theoretical	 approach	 is	 highly	 useful	 when	 the	 objective	 is	 to	 develop	 new
optimization	methods	 or	 to	 assess	 how	 the	 current	methods	work	 [1].	Additionally,	 the
study	of	optimization	often	focuses	on	the	understanding	of	various	search	algorithms	for
optimization.	 A	 book	 by	 Reklaitis	 and	 co-authors	 [2]	 is	 an	 example	 of	 methods-based
optimization	presentation.	While	these	books	play	an	important	role	in	the	general	study
of	 optimization,	we	 pursue	 a	 different	 approach.	 The	 objective	 of	 this	 book	 takes	 on	 a
practical	perspective.	The	current	interest	is	in	the	immediate	ability	to	apply	optimization
in	practice.	In	order	to	reach	this	objective,	and	to	have	the	ability	to	apply	optimization	to
real	world	problems,	we	use	the	approach	that	is	almost	always	required	in	the	application
of	 optimization.	 We	 use	 the	 power	 of	 the	 computer,	 in	 conjunction	 with	 the	 study	 of
different	important	practical	aspects	of	optimization.

In	order	readily	apply	optimization	in	practice,	the	focus	will	be	on	the	computational
application	 of	 what	 we	 will	 learn,	 as	 we	 learn	 it.	 To	 do	 so,	 we	 use	 a	 computational
modeling	and	coding	tool	that	is	powerful,	easy	to	use,	and	one	that	is	widely	applied	in
engineering	and	other	fields.	MATLAB	 is	an	excellent	tool	choice	and	will	be	used	in	this
book.	MATLAB	 has	 arguably	 become	 the	most	 popular	 tool	 for	 computational	modeling
worldwide.	Using	MATLAB	will	enable	you	to	optimize	both	simple	and	complex	systems
or	designs	with	effectiveness	and	efficiency.

MATLAB	is	a	registered	trademark	of	The	MathWorks,	Inc.

This	chapter	provides	a	brief	introduction	to	MATLAB,	which	is	primarily	for	those	who
have	 little	 or	 no	 experience	 with	 MATLAB.	 Previous	 users	 of	 MATLAB	 may	 find	 this
introduction	 to	 be	 a	 useful	 review	 and	 a	 way	 to	 learn	 about	 the	MATLAB	 optimization
capabilities.	 This	 chapter	 has	 six	 sections.	 Section	 1.2	 defines	 MATLAB.	 Section	 1.3
provides	 a	 basic	 introduction	 of	 MATLAB,	 while	 Sec.	 1.4	 goes	 beyond	 the	 basics.
Section	1.5	focuses	on	the	MATLAB	plotting	capabilities.	In	Sec.	1.6,	the	MATLAB	nonlinear
and	linear	optimization	capabilities	are	introduced.	For	historical	reasons,	the	terminology
“linear	 programming”	 and	 “nonlinear	 programming”	 is	 often	 used	 synonymously	 with
“linear	 optimization”	 and	 “nonlinear	 optimization,”	 respectively.	 In	 Sec.	 1.7,	 a	 list	 of



useful	functions	is	presented.

1.2 	MATLAB	Preliminaries—Before	Starting

This	section	provides	useful	information	about	MATLAB	as	a	software	tool.	It	includes	the
following	components:

1. What	is	MATLAB?

2. Why	MATLAB?

3. MATLAB	Toolboxes

4. How	to	Use	MATLAB	in	This	Book?

5. Acquiring	MATLAB	

6. MATLAB	Documentation

7. Other	Software	for	Optimization

1.2.1 	What	Is	MATLAB?

MATLAB	is	a	very	popular	high	level	language	for	computation.	It	is	used	extensively	both
in	 industry	 and	 in	 universities	 worldwide.	 It	 is	 much	 easier	 to	 use	 than	 other	 popular
programming	languages	such	as	Fortran	or	C.	It	takes	a	very	short	time	to	start	becoming
productive	with	MATLAB.	Mathematical	expressions	are	evaluated	much	the	same	way	as
they	 would	 be	 written	 in	 text	 form.	 MATLAB	 is	 used	 for	 a	 wide	 variety	 of	 activities,
including	 computation,	 algorithm	 development,	 modeling,	 simulation,	 prototyping,	 data
analysis,	 visualization,	 engineering	 graphics,	 and	 graphical	 user	 interface	 building
(Ref.	[3]).

In	 this	 book,	 the	 use	 of	 MATLAB	 is	 limited	 to	 the	 context	 of	 the	 application	 of
optimization.	 In	 doing	 so,	 we	 will	 be	 able	 to	 optimize	 practically	 any	 system.	 This	 is
because	 the	 MATLAB	 environment	 is	 very	 powerful.	 We	 will	 be	 able	 to	 optimize	 any
system	 that	 is	 modeled	 in	 the	 MATLAB	 computational	 environment	 using	 this	 newly
acquired	optimization	knowledge.

Over	 the	 years,	 various	 parties	 have	 developed	 MATLAB	 tools	 that	 are	 applicable	 to
specific	 fields.	These	 tools	essentially	constitute	a	set	of	 functions	 that	work	 together	 to
perform	 powerful	 tasks	 in	 specific	 technical	 areas,	 such	 as	 control,	 dynamics,	 financial
analysis,	 and	signal	processing.	Some	are	available	 through	private	parties,	while	others
are	 available	 through	 the	 MATLAB	 developer	 (The	 MathWorks,	 Inc.)	 [4].	 Information
concerning	 MATLAB	 can	 be	 obtained	 from	 its	 developer	 or	 at	 the	 website
www.mathworks.com.

MATLAB	 is	 organized	 as	 a	 collection	 of	 several	 independent	 components	 that	 work
together	harmoniously.	The	central	component	 is	 the	basic	MATLAB	 software,	which	can
be	 used	 for	 most	 general	 computation	 and	 algorithm	 development.	 When	 the	 needs
become	more	advanced	and	specific,	we	acquire	MATLAB	Toolboxes.	These	toolboxes	are
a	 collection	 of	MATLAB	 function	 codes	 that	 perform	 tasks	 in	 given	 technical	 areas.	 To

http://www.mathworks.com


perform	advanced	optimization,	 the	basic	MATLAB	 software	 is	needed,	 together	with	 the
“Optimization”	Toolbox.

MATLAB	can	be	acquired	in	the	form	of	professional	and	educational	versions	[4].	The
latter	has	some	reduced	capabilities,	but	should	be	able	to	perform	most	required	tasks	for
moderately	sized	problems.

1.2.2 	Why	MATLAB?

It	 is	 important	 to	 keep	 in	 mind	 that	 MATLAB	 is	 in	 no	 way	 required	 to	 perform
computational	optimization.	Several	other	codes	could	be	used	to	perform	all	of	the	tasks
for	which	MATLAB	 can	 be	 used.	 However,	 for	 the	 purpose	 of	 this	 book,	MATLAB	 is	 an
excellent	choice.	It	is	also	a	recommended	software	for	future	activities	after	completing
the	 study	 of	 optimization	 using	 this	 book.	 Related	 information	 is	 also	 discussed	 in	 the
Preface.

1.2.3 	MATLAB	Toolboxes

MATLAB	 Toolboxes	 provide	 useful	 functions	 for	 research	 and	 development	 in	 technical
fields.	Specific	tasks	can	be	performed	using	these	toolboxes	to	satisfy	users’	requirements
through	user-friendly	 commands	or	 visual	 interfaces.	These	 toolboxes	 are	 convenient	 to
use,	as	well	as	powerful.	They	provide	functions	that	can	be	called	by	the	MATLAB	code
written	 by	 users.	 The	 toolboxes	 support	 various	 functionalities	 for	 a	 broad	 range	 of
applications.	 They	 are	 available	 for	 applications	 in	 (1)	 parallel	 computing,	 (2)
mathematics,	statistics,	and	optimization,	(3)	control	system	design	and	analysis,	(4)	signal
processing	and	communications,	 (5)	 image	processing	and	computer	vision,	 (6)	 test	and
measurement,	 (7)	 computational	 finance,	 (8)	 computational	 biology,	 and	 (9)	 database
connectivity	 and	 reporting.	 A	 complete	 list	 of	 MATLAB	 Toolboxes	 is	 available	 at	 the
MathWorks	website.	The	list	includes	the	following	toolboxes.

1. Parallel	Computing

• Parallel	Computing	Toolbox

2. Math,	Statistics,	and	Optimization

• Symbolic	Math	Toolbox

• Partial	Differential	Equation	Toolbox

• Statistics	Toolbox

• Curve	Fitting	Toolbox

• Optimization	Toolbox

• Global	Optimization	Toolbox

• Neural	Network	Toolbox

• Model-Based	Calibration	Toolbox

3. Control	System	Design	and	Analysis



• Control	System	Toolbox

• System	Identification	Toolbox

• Fuzzy	Logic	Toolbox

• Robust	Control	Toolbox

• Model	Predictive	Control	Toolbox

• Aerospace	Toolbox

4. Signal	Processing	and	Communications

• Signal	Processing	Toolbox

• DSP	System	Toolbox

• Communications	System	Toolbox

• Wavelet	Toolbox

• Fixed-Point	Toolbox

• RF	Toolbox

• Phased	Array	System	Toolbox

5. Image	Processing	and	Computer	Vision

• Image	Processing	Toolbox

• Computer	Vision	System	Toolbox

• Image	Acquisition	Toolbox

• Mapping	Toolbox

6. Test	and	Measurement

• Data	Acquisition	Toolbox

• Instrument	Control	Toolbox

• Image	Acquisition	Toolbox

• OPC	Toolbox

• Vehicle	Network	Toolbox

7. Computational	Finance

• Financial	Toolbox

• Econometrics	Toolbox

• Datafeed	Toolbox

• Database	Toolbox

• Financial	Instruments	Toolbox

8. Computational	Biology



• Bioinformatics	Toolbox

9. Database	Connectivity	and	Reporting

• Database	Toolbox

MATLAB	users	can	develop	unique	toolboxes	for	specific	purposes.	Many	of	these	user-
developed	toolboxes	are	available	online	for	download	and	use.

This	book	focuses	on	optimization	using	MATLAB	Toolboxes.	The	optimization	toolbox
and	the	Global	Optimization	Toolbox	are	used	for	the	study	of	optimization.

To	access	the	MATLAB	Toolboxes,	you	can	click	the	APPS	tab	(Fig.	1.1)	at	the	top	menu
of	the	MATLAB	Desktop.	The	toolboxes	have	graphical	user	 interfaces.	A	more	advanced
way	to	use	the	MATLAB	Toolboxes	 is	 to	call	 their	functions	using	MATLAB	codes.	 In	 this
book,	 different	 MATLAB	 optimization	 functions	 are	 used	 to	 solve	 different	 types	 of
problems.

Figure	1.1.	MATLAB	Desktop

1.2.4 	How	to	Use	MATLAB	in	this	Book

This	book	provides	a	brief	introduction	to	MATLAB	to	help	with	the	initial	use	of	MATLAB.
Also	provided	is	information	regarding	how	to	perform	optimization	using	MATLAB.	When
it	is	deemed	helpful	and	practical,	the	actual	MATLAB	code	will	be	provided.	By	examining
these	 preliminary	 coding	 examples,	 it	 will	 become	 clear	 how	 to	 write	 other	 more
complicated	code.	Some	code	will	be	provided	in	the	text,	while	others	will	be	provided	in
the	media	device	that	accompanies	this	book.	It	is	assumed	that	the	PC	Windows	version
of	MATLAB	2013	is	being	used.	The	distinctions	between	the	different	platform	versions	of
MATLAB	are	minor.	The	basic	code	is	almost	always	identical	across	platforms,	except	for
some	tasks,	such	as	file	manipulations.



1.2.5 	Acquiring	MATLAB

MATLAB	 is	widely	available	 in	most	engineering	firms	and	universities,	as	well	as	many
financial	 institutions.	 It	 can	 be	 purchased	 from	 the	 MATLAB	 developer	 [4].	 This	 book
makes	use	of	the	basic	MATLAB	software	and	of	the	optimization	toolbox	software.	Both
are	required	to	perform	the	computational	portion	of	this	book.	It	should	also	be	noted	that
several	other	software	options	can	be	used	to	do	this	computational	optimization	work.

1.2.6 	MATLAB	Documentation

Several	 forms	 of	 documentation	 are	 available	 for	 the	 MATLAB	 user.	 An	 abundance	 of
information	 is	 available	 on	 the	web	 and	 on	 the	 developer’s	website.	 Several	 books	 that
document	 the	 different	 components	 of	 MATLAB	 are	 sold	 by	 The	MathWorks.	 Many	 of
these	books	can	also	be	downloaded	from	The	MathWorks’	website	[4].

MATLAB	documentation	books	can	be	downloaded	from	the	website	[4].	The	powerful
capabilities	 of	 the	 MATLAB	 graphics	 are	 presented	 in	 the	 book	 entitled	 MATLAB
	 Graphics	 [5].	 A	 book	 entitled	 MATLAB	 	 Primer	 provides	 a	 handy	 documentation	 of
MATLAB	[6]	and,	for	the	novice,	a	good	basic	introduction	of	MATLAB	is	given	in	the	book
entitled	Basics	of	MATLAB		and	Beyond	(Ref.	[7])	or	Getting	Starter	with	MATLAB:	a	Quick
Introduction	for	Scientists	and	Engineers	(Ref.	[8]).	We	note	that	the	information	provided
here	 is	 fluid	 and	dynamic.	A	visit	 to	 the	developer’s	website	 [4]	 and	 a	web	 search	will
provide	the	latest	information.

1.2.7 	Other	Software	for	Optimization

MATLAB	 is	 not	 unique	 in	 its	 ability	 to	 perform	 computational	 optimization.	 It	 is	 chosen
here	because	 it	 is	 a	 highly	 effective	 software	 that	 is	 user-friendly	 and	widely	used.	The
skills	that	will	be	developed	are	useful	in	numerous	other	fields.

By	using	the	MATLAB	Toolboxes,	it	is	possible	to	perform	optimization	in	a	number	of
different	technical	areas.	This	is	because	these	toolboxes	provide	the	means	to	model	the
performance	behavior	of	the	pertinent	systems.

In	certain	situations,	it	is	more	appropriate	to	use	other	software,	either	independently	or
in	 conjunction	 with	 MATLAB.	 When	 used	 in	 conjunction	 with	 MATLAB,	 the	 external
interface	 capability	 of	 MATLAB	 is	 used.	 Pertinent	 documentation	 is	 available	 from	 the
MATLAB	help	menu	or	from	The	MathWorks’	website.

There	 is	 a	 plethora	 of	 optimization	 software	 available	 to	 perform	 optimization
independently.	A	book	entitled	Optimization	Software	Guide	[9]	catalogs	a	 large	number
of	 these	 software	 tools.	Notable	optimization	 software	products	 in	 the	 area	of	 structural
optimization	 are	 GENESIS	 [10],	 MSC/Nastran	 [11],	 and	 Altair	 [12].	 Genesis	 was
explicitly	 developed	 for	 the	 purpose	 of	 structural	 optimization	 and	 is	 considered	 a
powerful	tool.

1.3 	Basics	of	MATLAB—Getting	Started



This	section	provides	a	brief	description	of	how	to	get	around	MATLAB	and	of	how	to	use
MATLAB	at	an	introductory	level.	Specifically,	the	following	topics	are	presented:

1. Starting	and	Quitting	Matlab

2. Matlab	Desktop:	Basic	MATLAB	Graphical	User	Interface

3. Matrices	and	Variables:	Matrices	and	Variables	Operations

4. Expressions:	Evaluations	of	Mathematical	Expressions

5. Control	Flow	Statements:	Using	the	for	loop,	the	while	loop,	the	if	statement,	and
others

6. Input	 and	Output,	 Directories,	and	Files:	 Input	 and	 Output	 of	 Data	 and	 Editing
Commands,	Directories,	and	Files

7. Script	File:	File	that	has	MATLAB	Commands

8. Function	File:	MATLAB	File	that	Performs	Independent	Tasks

9. Plotting:	Elementary	Plotting	Capabilities	of	MATLAB	

1.3.1 	Starting	and	Quitting	MATLAB

To	start	MATLAB	in	Microsoft	Windows,	double-click	on	the	MATLAB	icon	on	the	Windows
desktop.	MATLAB	 can	 also	 be	 started	 by	 selecting	MATLAB	 from	 the	 Start	menu.	On	 a
UNIX	platform,	type	matlab	at	the	operating	system	prompt.	Once	MATLAB	is	launched,	a
MATLAB	Desktop	appears	on	the	screen.

To	quit	MATLAB,	 click	on	 the	 top	 right	 close	window	button	 (Fig.	 1.1).	Alternatively,
select	Exit	 from	 the	File	menu	 in	 the	 desktop,	 or	 type	exit	 or	quit	 in	 the	Command
Window.

1.3.2 	MATLAB	Desktop:	Its	Graphical	User	Interface

The	MATLAB	Desktop	(Fig.	1.1)	appears	when	MATLAB	is	started.	It	provides	a	Graphical
User	 Interface	 (GUI)	 that	 facilitates	 various	MATLAB	 functions,	 such	 as	managing	 files,
variables,	and	applications.

The	 first	 time	MATLAB	 starts,	 the	 desktop	 appears	 as	 shown	 in	 Fig.	 1.1,	 although	 the
desktop	may	have	been	customized	to	contain	fewer	components.	Customize	the	desktop
by	opening,	closing,	moving,	docking,	and	resizing	the	tools	in	it.	Use	Preferences	from
the	 File	 menu	 to	 specify	 features	 of	 the	 desktop.	 The	 MATLAB	 desktop	 environment
provides	useful	tools	that	can	be	used	for	various	purposes.

Command	Window

The	Command	Window	(Fig.	1.2)	is	used	to	enter	variables,	evaluate	MATLAB	commands,
and	run	M-files	or	functions.	M-files	are	the	programs	written	to	run	MATLAB	functions.



Figure	1.2.	MATLAB	Command	Window

Command	History

The	Command	History	window	(Fig.	1.3)	is	used	to	view	previously	used	functions,	copy,
and	 execute	 selected	 lines	 from	 those	 functions.	 The	 lines	 entered	 in	 the	 Command
Window	at	the	command	prompt	are	logged	into	Command	History.

Figure	1.3.	MATLAB	Command	History

Current	Directory	Browser

The	Current	Directory	browser	(Fig.	1.4)	can	be	used	to	view,	open,	and	make	changes	to
MATLAB	related	directories	and	files.	You	can	also	use	the	commands	dir,	cd,	and	delete
at	the	command	prompt	to	view,	change,	and	delete	directories,	respectively.	MATLAB	uses
the	current	directory	and	the	search	path	as	a	reference	point	to	run	and	save	files.



Figure	1.4.	MATLAB	Current	Directory

Any	file	you	wish	to	run	must	be	in	the	current	directory	or	on	the	search	path.	A	quick
way	to	change	the	current	directory	is	to	use	the	Current	Directory	menu	in	the	Desktop
shown	in	Fig.	1.1.

Search	Path:	MATLAB	uses	a	search	path	to	find	and	execute	the	M	files/functions	you
call.	It	also	uses	the	search	path	to	find	other	necessary	MATLAB	files,	which	are	organized
in	 the	 directories	 in	 the	 file	 system.	 By	 default,	 the	 files	 supplied	 with	 MATLAB	 and
Mathworks	Toolboxes	are	included	in	the	search	path.	To	see	or	modify	the	current	search
path,	select	Set	Path	 from	the	File	menu	 in	 the	Desktop	and	use	 the	Set	Path	dialog
box.	 Use	 the	 path	 command	 at	 the	 command	 prompt	 to	 view	 the	 current	 search	 path,
addpath	to	add	directories	to	the	path,	and	rmpath	to	remove	directories	from	the	path.

Workspace	Browser

The	Workspace	Browser	(Fig.	1.5)	is	used	to	view	the	workspace	and	information	about
each	variable.	The	MATLAB	workspace	consists	of	stored	variables	that	are	built	up	during
a	MATLAB	 session	 by	 running	 functions,	M-files,	 and	 loading	 saved	workspaces.	At	 the
command	 prompt,	 use	 the	 commands	 who	 and	 whos	 to	 view	 the	 workspace.	 To	 delete
variables	from	the	workspace,	select	the	variable	and	select	Delete	from	the	Edit	menu.
Use	the	clear	command	at	the	command	prompt.	The	workspace	is	deleted	after	the	end
of	the	MATLAB	session.	To	save	the	workspace	to	a	file,	select	Save	Workspace	As	 from
the	File	menu,	or	use	the	save	command.	The	workspace	will	be	saved	to	a	binary	file,
called	a	MAT-file,	with	a	.mat	 extension.	To	 read	 from	a	MAT-file,	 select	Import	Data
from	the	File	menu	or	use	the	load	command.

Figure	1.5.	MATLAB	Workspace	Browser

Variable	Editor

Double-clicking	 on	 a	 variable	 in	 the	Workspace	Browser	will	 open	 the	Variable	 Editor
(Fig.	1.6).	The	Variable	Editor	can	be	used	to	view	and	edit	a	visual	representation	of	one
or	two	dimensional	numeric	arrays,	strings,	and	arrays	of	strings	in	the	workspace.



Figure	1.6.	MATLAB	Variable	Editor

Editor/Debugger

The	Editor/debugger	(Fig.	1.7)	provides	a	GUI	to	create	and	debug	M-files.	To	create	or
edit	an	M-file,	go	to	File	and	select	New,	or	File	and	select	Open,	or	use	the	edit	function
at	the	command	prompt.

Figure	1.7.	MATLAB	Editor	or	Debugger

Any	text	editor	can	be	used	to	create	M-	files.	To	specify	a	particular	text	editor	as	the
default,	 use	 Preferences	 from	 the	 File	 menu.	 The	 MATLAB	 Editor	 can	 be	 used	 for
debugging	and	using	such	debugging	functions	as	dbstop,	which	sets	a	breakpoint.

Help	Browser

The	 Help	 browser	 (Fig.	 1.8)	 is	 used	 to	 search	 and	 view	 documentation	 for	 all
MATLAB	products.	 It	 is	a	web	browser	 integrated	 into	 the	MATLAB	Desktop	and	displays
HTML	documents.



Figure	1.8.	MATLAB	Help	Browser

There	 are	 several	 ways	 to	 open	 the	 Help	 browser:	 (i)	 Click	 the	 Help	 button	 in	 the
MATLAB	Desktop	(shown	in	Fig.	1.1),	(ii)	Type	helpbrowser	at	the	command	prompt,	or
(iii)	 Launch	 help	 from	 the	 Start	 button.	 The	Help	Browser	 consists	 of	 two	 panes:	 the
Help	Navigator	pane,	which	is	used	to	find	information	and	type	search	keywords,	and	the
Display	pane,	where	the	information	can	be	viewed.

More	detailed	information	on	the	MATLAB	Desktop	and	the	desktop	tools	can	be	found
in	Refs.	[4,	6],	or	by	simply	exploring	it	in	the	Help	section	of	MATLAB.

1.3.3 	Matrices	and	Variables	Operations

This	subsection	begins	with	comments	on	basic	expressions	and	long	lines,	which	will	be
followed	by	matrices	and	variables	operations.

Basic	Expressions

The	 most	 direct	 way	 to	 perform	 calculations	 using	 MATLAB	 is	 to	 simply	 type	 the
commands,	 or	 basic	 expressions,	 on	 the	 command	 prompt.	 For	 example,	 observe	 the
following	MATLAB	commands,	which	were	typed	on	the	Command	Window:

>>	a	=	1	+	2		

			a	=		

									3		

			>>	b	=	4		

			b	=		

									4		

			>>	c	=	sqrt(a^2	+	b^2)		

			c	=		

									5		

			>>	x	=	a	+	b;		

			>>	y	=	2*x		

			y	=		

								14

A	few	basic	observations	can	be	made.	After	 typing	a=1+2,	MATLAB	writes	 the	result.



After	typing	b=4,	MATLAB	again	writes	 the	result.	After	writing	 the	expression	for	c,	 the
result	is	again	written	on	the	screen.	In	the	case	of	the	variable	x,	the	result	is	not	written
on	the	screen.	This	is	because	a	semicolon	is	typed	at	the	end	of	the	expression.	The	value
of	the	variable	x	is	now	available	in	the	MATLAB	workspace	for	further	computation.	The
value	of	x	is	available	and	is	used	to	evaluate	y.

Long	Lines

Very	 long	commands	or	expressions	can	be	 typed	on	several	 lines.	To	do	 this,	begin	by
writing	 the	 expression	 on	 one	 line,	 then	 type	 three	 periods	 followed	 by	 Enter,	 and
continue	to	type	the	expression	on	the	following	line.	Below	is	an	example.

>>	a_long_variable	=	2		

				a_long_variable	=		

								2		

				>>	another_long_variable	=	3		

				another_long_variable	=		

								3		

				>>	x	=	a_long_variable	+	a_long_variable^2	…		

				+	another_long_variable		

				x	=		

								9

Typing	Matrices

Recall	 that	 a	matrix	 is	 a	multidimensional	 variable.	A	3	 by	 4	matrix	 has	 3	 rows	 and	 4
columns.	Define	a	3	by	4	matrix	M	by	typing	in	the	Command	Window:

>>	M	=	[	1	2	3	4;	5	6	7	8;	9	10	11	12]		

				M	=		

									1					2					3					4		

									5					6					7					8		

									9				10				11				12

Note	 that	 entries	within	 a	 row	can	be	 separated	by	 a	 space	 (or	 a	 comma),	 and	 that	 a
semicolon	ends	a	row.	Expressions	that	include	matrices	can	be	formed,	such	as:

>>	v=[11	;	22	;	33]		

				v	=		

								11		

								22		

								33		

				>>	mv	=	[M	v]		

				mv	=		

									1					2					3					4				11		

									5					6					7					8				22		

									9				10				11				12				33

where	we	concatenate	two	matrices	in	a	row	(with	compatible	dimensions	–	same	number
of	 rows).	 Similarly,	 two	 matrices	 with	 an	 equal	 number	 of	 columns	 can	 be	 vertically
concatenated	as

>>	h	=	[11	22	33	44]		

				h	=		



								11				22				33				44

>>	mh	=	[M	;	h]		

				mh	=		

									1					2					3					4		

									5					6					7					8		

									9				10				11				12		

								11				22				33				44

Matrices	Generators

MATLAB	 makes	 it	 convenient	 to	 generate	 certain	 commonly	 used	 matrices.	 Note	 the
following	statements:

>>	ones(3)		

				ans	=		

									1					1					1		

									1					1					1		

									1					1					1		

				>>	ones(1,3)		

				ans	=		

									1					1					1		

				>>	zeros(2)		

				ans	=		

									0					0		

									0					0		

				>>	zeros(1,3)		

				ans	=		

									0					0					0		

				>>	A	=	eye(3)		

				A	=		

									1					0					0		

									0					1					0		

									0					0					1

Observe	 that	 the	 command	 ones(3)	 produces	 a	 3	 by	 3	matrix	 of	 ones.	 Note	 that	 the
command	 ones(3,3)	 will	 produce	 the	 same	 matrix.	 Similar	 comments	 apply	 to	 the
command	zeros(2).	The	command	eye(n)	will	generate	an	identity	matrix	of	dimension	n
by	n.

Recall	 that	 if	 more	 information	 is	 needed,	 typing	 the	 commands	 help	 zero	 at	 the
MATLAB	prompt	will	provide	more	information	about	the	command.

Subscripting

For	the	following	matrix
>>	A	=	[1	3	5;	4	6	8]		

				A	=		

									1					3					5		

									4					6					8		

				>>

the	following	commands	produce	insightful	results.



>>	A(1,2)		

				ans	=		

					3		

				>>	A(2,end)		

				ans	=		

									8

Note	the	use	of	the	word	end	above	as	a	subscript.

Matrix	Arithmetic

Vector	 and	matrix	 operations	 can	 be	written	 in	 the	 usual	 way.	 For	 example,	 define	 the
vector

>>	v=[1;1;1]		

				v	=		

									1		

									1		

									1

Using	the	matrix	A,	just	defined,	we	can	evaluate
>>	A*v		

				ans	=		

									9		

								18

Recall	 that	 the	 dimensions	 of	 the	 matrices	 must	 be	 compatible	 for	 the	 matrix
multiplication	to	take	place	(see	Chapter	2).

Colon	Operator

Powerful	matrix	manipulations	can	be	performed	by	using	the	colon	(:)	operator.	The	most
direct	way	to	use	the	colon	operator	is	to	type

>>	a	=	2:8		

				a	=		

									2					3					4					5					6					7					8

where	a	list	of	numbers	is	generated	from	the	lowest	to	the	highest	given	numbers.	Also
write

>>	1:2:9		

				ans	=		

									1					3					5					7					9

where	the	middle	number	is	used	as	an	increment,	2.	The	increment	can	also	be	negative
as	in

>>	50:-5:30		

				ans	=		

								50				45				40				35				30

The	other	common	use	of	the	colon	operator	is	to	refer	to	a	portion	of	a	matrix.	If	we
define	the	matrix

>>	P=[1	2	3	4	;	5	6	7	8]		



				P	=		

									1					2					3					4		

									5					6					7					8

then	 we	 can	 retrieve	 the	 second	 through	 fourth	 columns	 of	 the	 second	 row	 using	 the
command

>>	pp	=	P(2,	2:4)		

				pp	=		

									6					7					8

Transpose

The	transpose	of	a	matrix	can	be	obtained	as	follows
>>	a=[1	2	3;4	5	6]		

				a	=		

									1					2					3		

									4					5					6		

				>>	b	=	a’		

				b	=		

									1					4		

									2					5		

									3					6

where	b	is	the	transpose	of	a,	which	is	evaluated	by	a’.

The	Command	linspace

The	linspace	command	 is	a	quick	way	 to	generate	a	 row	vector	of	100	 linearly	spaced
points	between	two	given	numbers.	The	syntax	is

linspace(100,200)

The	above	command	generates	100	linearly	spaced	points	between	100	and	200.

1.3.4 	More	MATLAB	Expressions

Below	are	some	more	examples	of	MATLAB	expressions.	More	information	regarding	these
functions	can	be	obtained	by	typing	help	followed	by	the	function	name.

>>	x	=	2		

				x	=		

								2		

				>>	y	=	exp(x)	+	log(x)		

				y	=		

								8.0822		

				>>	z	=	(-sin(y))	+	abs(-x)		

				z	=		

								1.0259		

				>>	complex_number	=	4	+	3i		

				complex_number	=		

				4.0000	+	3.0000i		

				>>	magnitude	=	abs(complex_number)		

				magnitude	=		



									5

The	 log	 function	 evaluates	 the	 natural	 logarithm	 of	 a	 number,	 while	 the	 abs	 function
evaluates	the	magnitude	of	a	real	or	complex	number.

1.4 	Beyond	the	Basics	of	MATLAB

This	 section	 provides	 important	 information	 about	MATLAB	 that	 you	will	 need	 to	 know
that	is	beyond	the	basics	that	we	are	covered	so	far.	It	will	all	become	much	easier	as	you
get	more	practice.	The	following	topics	are	presented:

1. Input	and	Output,	Directories,	and	Files

2. Flow	Control,	Relational,	and	Logical	Operators

3. M-files

4. Global	and	Local	Variables

5. MATLAB	Help

1.4.1 	Input	and	Output,	Directories	and	Files

The	MATLAB	 environment	 can	 be	 easily	manipulated	 to	make	 file	 handling	 convenient.
Some	useful	features	are	discussed	below.

Current	Directory

The	 current	 directory	 is	 generally	 displayed	 in	 a	 text	 box	 toward	 the	 top	 of	 the
MATLAB	 screen.	Alternatively,	 type	 pwd	 at	 the	 command	 prompt	 to	 display	 the	 current
directory.

Setting	the	Path

The	path	to	directories	that	are	often	used	can	be	set.	The	files	in	these	directories	can	then
be	directly	accessed	 from	any	other	directory.	The	path	can	be	 set	 from	 the	File	>>	Set
Path	menu.

Saving	and	Loading	Variables

Any	variable	in	the	workspace	can	be	saved	to	the	hard	disk	using	the	save	command.
save	FILENAME	x	y

The	 above	 command	 saves	 the	 workspace	 variables	 x	 and	 y	 to	 a	 file	 named
FILENAME.mat	in	the	current	directory.	Note	that	there	is	no	comma	in	the	above	syntax.
To	retrieve	these	variables,	type	the	command

load	FILENAME	x	y



1.4.2 	Flow	Control,	Relational	and	Logical	Operators

The	 MATLAB	 flow	 control	 statements	 operate	 similarly	 to	 those	 in	 most	 programming
languages.

The	for	Loop

The	for	loop	executes	a	set	of	statements	for	a	specified	number	of	times.
>>	for	i	=	1:5		

										x(i)=1;		

							end

The	above	for	loop	generates	an	array	x	of	five	elements,	each	equal	to	1.
>>	x		

				x	=		

									1					1					1					1					1

MATLAB	also	provides	nesting	of	for	loops.

The	while	Loop

The	general	form	of	the	while	loop	is
while	EXPRESSION		

				STATEMENTS		

				end

The	STATEMENTS	will	be	executed	as	long	as	the	EXPRESSION	is	true.	For	example,	if	the
expression	 is	A<B,	 then	 the	statements	will	be	executed	while	 this	condition	holds	 true,
and	will	stop	executing	as	soon	as	A	>=B.

The	 for	 and	while	 loops	 can	 be	 terminated	 using	 the	 break	 command.	 The	 continue
command	passes	control	to	the	next	iteration	of	the	loop.

The	if	Statement

The	 if	 statement	 allows	 execution	 of	 statements	 provided	 certain	 conditions	 hold.	 The
general	form	of	the	if	statement	is:

if	EXPRESSION		

						STATEMENTS		

			else		

						STATEMENTS		

			end

The	statements	in	the	if	part	will	be	executed	only	if	the	EXPRESSION	is	true.	Otherwise,
the	statements	in	the	else	part	will	be	executed.	The	else	portion	is	optional.

The	switch-case	Statements

Switch	 provides	 a	 way	 to	 switch	 between	 several	 cases	 based	 on	 an	 expression.	 For



example,	if	a	variable	x	in	the	workspace	has	a	value	of	2,	then	the	following	statements
>>	switch	x		

						case	1		

									disp(’x	is	equal	to	1’)		

						case	2		

									disp(’x	is	equal	to	2’)		

			end

will	yield
x	is	equal	to	2.

Logical	and	Relational	Operators

MATLAB	provides	a	number	of	different	 logical	and	relational	operators.	These	operators
can	be	used	in	conjunction	with	variables	 to	create	expressions	for	use	 in	if	 statements,
while	 loops,	 and	 other	 flow	 control	 statements.	 A	 complete	 list	 of	 operators	 can	 be
obtained	by	 typing	help	ops	at	 the	 command	 prompt.	 Some	 commonly	 used	 relational
operators	are	EQUAL	(==),	GREATER	THAN	(>),	LESS	THAN	(<),	and	NOT	EQUAL
(~=).	Some	commonly	used	logical	operators	are:	AND	(&),	OR	(|),	and	NOT	(~).

1.4.3 	M-files

MATLAB	 provides	 the	 powerful	 M-file	 feature.	 Using	 this	 feature,	 a	 sequence	 of
MATLAB	commands	can	be	saved	as	an	.m	file,	and	can	be	executed	as	a	batch	process	by
simply	typing	the	name	of	the	M-file.

Script	M-files

Script	files	are	a	series	of	MATLAB	commands	stored	in	a	.m	file.	They	do	not	necessarily
take	any	input	or	yield	any	output.	The	variables	generated	during	the	execution	are	stored
in	the	MATLAB	workspace.	A	sample	file	myMfile.m	is	shown	below.

%	This	is	my	first	.m	file		

				var	=	5;	new_var	=	var^2;		

				if	new_var	>	5		

								disp(‘My	first	output’);		

				end

This	 file	 can	be	generated	using	 any	 external	 text	editor,	 such	 as	Notepad,	 or	 can	 be
created	 using	 the	MATLAB	 editor	 and	 debugger.	 The	 file	 is	 saved	 as	myMfile.m	 in	 the
current	 directory.	Typing	 the	name	 of	 the	 file	 at	 the	 command	 prompt	will	 execute	 the
commands	in	the	file	sequentially.

>>	myMFile		

								My	first	output

Note	 that	 the	 file	 name	 is	 not	 allowed	 to	 have	 spaces,	 –,	 +,	 ⁄,	 *,	 ^	 	 ,	 or	 any	 other
mathematical	 symbols.	 Alternatively,	 right-clicking	 on	 its	 filename	 in	 the	 Directory
Browser	and	clicking	on	Run	will	also	execute	the	file.



Function	M-files

Function	M-files	 are	 similar	 to	 the	 script	M-files	 in	 that	 they	 consist	 of	 a	 sequence	 of
MATLAB	commands.	The	difference	between	 the	 two	 is	 that	 function	M-files	can	receive
one	or	more	variables	as	inputs,	and	can	return	one	or	more	variables	as	outputs.	The	input
and	output	variables	are	available	for	use	outside	of	the	M-file	function,	but	the	variables
or	parameters	used	inside	the	function	are	not	available	outside	the	function.	All	variables
or	parameters	that	are	used	inside	a	script	M-file	are	available	in	the	environment	that	calls
that	 script	 M-file.	 The	 input	 and	 output	 variables	 are	 called	 arguments.	 Creating	 or
modifying	variables	within	a	function	M-file	does	not	affect	the	workspace,	unless	 these
variables	are	also	output	variables.	To	use	an	existing	function,	first	define	the	numerical
values	of	the	input	arguments	that	will	be	used,	then	define	the	list	of	output	arguments	in
the	function	call.

Here	is	a	representative	function	file	called	cuberoot.m,	which	has	a	single	variable	as
an	input	argument,	and	returns	its	cubic	root.

function	output_var	=	cuberoot(input_var)		

				output_var	=	input_var^(1/3);

The	first	 line	is	the	syntax	definition.	The	name	of	 the	output	variable	 is	output_var,
input_var	is	the	name	of	the	input	variable,	and	cuberoot	is	the	name	of	the	M-file.	This
file	should	be	saved	as	cuberoot.m	in	the	current	directory.

The	function	cuberoot	can	be	directly	called	from	the	command	prompt.	For	example,
to	 calculate	 the	 cube	 root	 of	 the	 number	 5,	 type	cuberoot(5)	 at	 the	 command	 prompt,
which	yields

ans	=		

								1.7100

One	can	also	assign	the	M-file	function	output	to	a	workspace	variable,	say	x,	by	typing
x	=	cuberoot(5).	The	function	M-file	can	be	called	from	within	a	script	M-file.

Subfunctions

Subfunctions	can	be	declared	following	the	definition	of	the	main	function	in	the	same	M-
file.	Subfunctions	are	visible	to	the	main	function	and	other	subfunctions	in	the	same	M-
file,	but	are	not	visible	outside	the	M-file	in	which	they	are	declared.

1.4.4 	Global	and	Local	Variables

All	the	variables	created	within	a	function	M-file	are	local	to	that	function,	and	cannot	be
accessed	 from	 outside	 the	 function.	 Similarly,	 workspace	 variables	 are	 local	 to	 the
workspace,	 and	 are	 not	 available	 to	 any	 function.	 To	 make	 a	 workspace	 variable,	 x,
globally	available,	use	the	global	command	as	follows.

global	x

The	 above	 command	 should	 be	 used	 at	 the	 beginning	 of	 every	 script	 M-file	 and
function	M-file	where	the	global	variable	needs	to	be	accessed.



1.4.5 	MATLAB	Help

MATLAB	help	can	be	obtained	from	various	sources.	A	good	way	to	get	started	is	to	read
this	 introductory	 chapter.	 This	 introduction	 can	 be	 followed	 by	 reading	 the	 book
MATLAB	Primer	[6].	Comprehensive	information	about	MATLAB	can	be	obtained	from	the
many	documentation	books	(i.e.,	[5]).	The	Mathworks’	website	[4]	has	a	large	amount	of
information	that	will	address	almost	any	issue.	In	situations	where	there	is	no	access	to	the
web,	 it	 is	 possible	 that	 all	 the	 needed	 information	 is	 already	 available	 on	 the	 computer
where	MATLAB	is	installed.	Clicking	on	the	Help	menu	will	indicate	the	extent	of	the	help
information	already	installed.

A	direct	way	to	get	help	is	to	type	at	the	MATLAB	prompt

• helpdesk,	which	opens	a	MATLAB	help	GUI,

• helpwin,	which	opens	a	hypertext	help	browser,

• demo,	which	starts	the	MATLAB	demonstration,

• help,	which	prints	on	the	screen	the	various	help	topics	available,

• help	 followed	 by	 a	 help	 topic	 or	 any	 function	 name,	 which	 provides	 help	 on	 the
requested	topic	or	function,	or

• lookfor	 followed	 by	 a	 topic	 keyword,	 which	 gives	 the	 names	 of	 all	 the
MATLAB	functions	that	have	that	keyword	on	the	first	help	line	(that	keyword	does	not
have	to	be	the	name	of	a	function,	unlike	for	the	help	command).

As	always,	perhaps	the	most	interesting	way	to	get	help	is	to	ask,	or	work	with	a	friend
who	might	have	more	experience	with	MATLAB.

1.5 	Plotting	Using	MATLAB

A	 picture	 is	 worth	 of	 thousand	 words.	 This	 is	 very	 true	 in	 optimization	 as	 well.
Optimization	methods	are	understood	more	clearly	when	presented	in	graphical	form.	At
every	stage	of	working	life,	presenting	work	using	graphs	and	charts	is	a	critical	activity.
In	this	endeavor,	MATLAB	can	be	used	with	its	extensive	set	of	 functions	 to	help	develop
the	required	graphs	and	charts	(Ref.	[13]).	Following	are	pertinent	important	information:

1. Basic	Plots

2. Special	Plots:	Contour,	Scatter,	fplot

3. 3-D	Mesh	and	Surface	Plots

4. Using	the	Plot	Editing	Mode

1.5.1 	Basic	Plots

First,	consider	the	simple	commands	that	generate	two	dimensional	(2D)	plots.

Use	of	Plot	Command



Plot	 is	 one	 of	 the	 simplest	 graphics	 commands	 available	 in	 MATLAB.	 The	 following
sample	 code	 will	 generate	 a	 sine	 curve.	 Figure	 1.9(a)	 shows	 the	 plot	 generated	 by
MATLAB.

x	=	0:pi/100:2*pi;		

				y	=	sin(x);		

				plot(x,y);

Figure	1.9.	Single	and	Multiple	Plots

Axes	and	Labels

Notice	that	the	plot	generated	by	the	above	set	of	commands	does	not	generate	any	axes
labels	or	a	title.	These	can	be	added	by	using	following	set	of	commands.

xlabel(‘X-axis’)		

				ylabel(‘Y-axis’)		

				title(‘Plot	of	Y	=	sin(x)’)

Multiple	Plots	on	the	Same	Figure

To	show	how	to	put	several	plots	on	the	same	figure,	a	second	line,	given	by	y	=	0.5sin(x	+
1),	will	be	plotted	on	the	same	figure.	The	following	code	can	be	used	for	this	operation.

clc		

				clear		

				x	=	0:pi/100:2*pi;		

				y	=	sin(x);		

				y2	=	0.5*sin(x+1);		

				plot(x,y);		

				plot(x,y,x,y2,‘—’);		

				xlabel(‘X-axis’)		

				ylabel(‘Y-axis’)		

				title(‘Plot	of	Y	=	sin(x)’)

The	clc	and	clear	commands	 are	 introduced	above.	 The	 clc	 command	 removes	 the
content	 of	 the	 workspace,	 while	 the	 clear	 command	 clears	 the	 memory	 of	 MATLAB.
Figure	1.9(b)	shows	the	plot	generated	by	MATLAB.



Generating	Legends	for	the	Plot

In	Fig.	1.9(b),	the	legend	has	been	added	using	the	following	command.
legend(‘sin(x)’,‘0.5*sin(x+1)’)

Printing	and	Saving	Plots

Once	the	plot	is	ready,	it	can	either	be	saved	in	a	computer	file	or	be	printed.	Here	is	an
example	 of	 how	 to	 perform	 these	 two	 operations.	 To	 print	 the	 plot,	 click	 on	 the	 File
menu,	as	shown	in	Fig.	1.10.	A	column	menu	will	appear.	By	clicking	on	the	Print	 item
on	 this	 column	 menu,	 the	 plot	 will	 be	 printed.	 On	 the	 same	 column	 menu	 is	 the
Export	 Setup	 item.	 This	 dialog	 window	 provides	 options	 to	 specify	 attributes	 of	 the
output	file	(e.g.,	the	figure	size,	fonts,	line	width,	and	format).	One	click	on	this	item	will
yield	a	standard	save	window.	Two	things	need	to	be	done	in	that	window.	First,	name	the
file	and,	second,	choose	the	file	format	of	the	picture,	such	as	jpg,	bmp	or	eps.

Figure	1.10.	Printing	and	Saving

1.5.2 	Special	Plots:	Contour,	Scatter,	fplot

In	 the	 previous	 subsection,	 some	MATLAB	 basic	 plotting	 techniques	 were	 used.	 In	 this
subsection,	some	specialized	plotting	techniques	available	in	MATLAB	will	be	discussed.

Contour	Plot

The	contours	of	an	equation	can	be	plotted	using	the	contour	command.	The	contours	of
an	 ellipse	given	by	 the	 equation	 3X2	 +	 4Y	 2	 =	C	 will	 be	 plotted,	where	C	 can	 take	 on



different	values.	It	is	also	possible	to	generate	and	plot	contours	for	specific	given	values
of	C.	The	 following	sample	code	will	generate	 the	 required	contour	plot,	and	 the	actual
plot	is	shown	in	Fig.	1.11(a).

[X,Y]	=	meshgrid(-5:.5:5,-5:.5:5);		

				Z	=	(3*X.^2+4*Y.^2);		

				[C,h]	=	contour(X,Y,Z,5);		

				xlabel(’X-axis’)		

				ylabel(’Y-axis’)		

				title(’The	contour	plot	of	3*X^2+4*Y^2	=	C’)

Figure	1.11.	Contour	and	Scatter	Plots

Note	that	the	dimensions	of	the	quantities	X,	Y,	and	Z	are	automatically	determined	by
MATLAB.

Scatter	Plot

The	 plot	 command	 generates	 a	 smooth	 curve	 passing	 though	 all	 the	 points	 that	 are
represented	 by	 vectors	 x	 and	 y.	 The	 scatter	 command	 will	 generate	 markers	 at	 the
locations	 specified	 by	 the	 vectors	 x	 and	 y,	 instead	 of	 a	 curve.	 The	 code	 below	 will
generate	a	scatter	plot	for	the	sine	curve.

x	=	0:pi/20:2*pi;		

				y	=	sin(x);		

				scatter(x,y);		

				xlabel(’X-axis’)		

				ylabel(’Y-axis’)		

				title(’Plot	of	Y	=	sin(x)’)

Figure	1.11(b)	shows	the	scatter	plot	generated	using	this	code.

fplot:	Function	Plots

The	special	command	fplot	plots	a	function	between	specified	limits.	The	function	must
be	specified	as	y	=	f	(x).	It	is	required	to	specify	the	two	end	points	for	x.	The	sample	code
for	generating	a	parabola	given	by	y	=	x2	+	10	 is	given	here.	The	plot	generated	by	 the
fplot	command	is	given	in	Fig.	1.12(a).



fplot(’x^2+10’,[-20	20])		

				xlabel(’X-axis’)		

				ylabel(’Y-axis’)		

				title(’The	function	plotted	using	fplot’)

Figure	1.12.	Function	and	Mesh	Plots

1.5.3 	3-D	Mesh	and	Surface	Plots

Thus	far,	some	of	the	two	dimensional	plotting	techniques	available	in	MATLAB	have	been
discussed.	 Next,	 our	 attention	 is	 focused	 on	 some	 of	 the	 three	 dimensional	 plotting
techniques.

Mesh	Plot

Up	 to	 this	 point,	 plots	 have	 been	demonstrated	 that	 are	made	 of	 curves.	 The	mesh	 plot
generates	a	surface	specified	by	the	matrices	X,	Y,	and	Z.	Plot	the	sine	function	using	the
mesh	command.	The	mesh	plot	of	the	sine	function	can	also	be	seen	in	 the	MATLAB	help
manual.	The	sample	code	for	this	plot	is	as	follows.

[X,Y]	=	meshgrid(-8:.5:8);		

				R	=	sqrt(X.^2	+	Y.^2)	+	eps;		

				Z	=	sin(R)./R;		

				mesh(X,Y,Z)		

				xlabel(’X-axis’)		

				ylabel(’Y-axis’)		

				zlabel(’Z-axis’)		

				title(’Mesh	plot’)

The	mesh	plot	is	illustrated	in	Fig.	1.12(b).	MATLAB	also	has	a	command	called	surf	to
generate	surface	plots.	Replace	the	mesh	command	in	the	above	sample	code	with	the	surf
command.	The	reader	is	encouraged	to	practice	the	surf	command.

1.5.4 	Using	the	Plot	Editing	Mode

Some	 of	 the	 frequently	 used	 commands	 for	 generating	 plots	 in	 MATLAB	 have	 been
discussed.	Next,	 practice	editing	 a	 plot	 using	 the	 options	 available	 on	 the	 plot	window.



These	 editing	 options	 are	 shown	 in	 Fig.	 1.13.	 The	 plot	window	 is	 shown	 at	 the	 top	 of
Fig.	1.13.	The	bottom	part	of	 this	figure	explains	each	of	 these	editing	options,	and	will
enable	the	user	to	edit	the	plots	for	reports	or	live	presentations.

Figure	1.13.	Plot	Editing	Mode

1.6 	Optimizing	with	MATLAB

This	 section	 provides	 a	 basic	 guide	 for	 solving	 numerical	 optimization	 problems	 using
MATLAB.	 The	 MATLAB	 Optimization	 Toolbox	 provides	 the	 capability	 to	 solve	 a	 wide
variety	of	optimization	options,	such	as	constrained	and	unconstrained	problems,	or	linear
and	 nonlinear	 problems.	 This	 section	 assumes	 previous	 familiarity	 with	 the	 basics	 of
numerical	 optimization,	 and	 also	 with	 using	 MATLAB	 script	 files	 and	 functions	 (see
Sec.	 1.3).	 Before	 proceeding,	 please	 ensure	 that	 the	 MATLAB	 Optimization	 Toolbox	 is
installed	 on	 the	 computer.	 To	 verify	 that	 the	 Optimization	 is	 indeed	 installed,	 open
MATLAB	and	click	the	APPS	tab	(Fig.	1.1)	at	 the	 top	menu	of	 the	MATLAB	window.	The
“Toolboxes”	 item	 should	 contain	 “Optimization”	 listed	 along	 with	 any	 other	 installed
toolboxes.

Using	 the	 MATLAB	 Optimization	 Toolbox,	 it	 is	 possible	 to	 solve	 (i)	 nonlinear



optimization	and	(ii)	linear	optimization	problems.	Chapter	5	provides	the	pertinent	basic
knowledge.

1.7 	Popular	Functions	and	Commands,	and	More

This	 section	 provides	 a	 list	 of	 functions	 and	 commands,	 as	 well	 as	 other	 general
information.	This	list	is	presented	in	Tables		(1.1	–	1.17)	at	the	end	of	this	chapter.	This	list
will	 be	 useful	 for	 writing	 MATLAB	 programs.	 To	 know	 exactly	 how	 to	 use	 a	 given
command	or	function,	simply	type	help	followed	by	the	item	in	question.	In	addition,	use
the	help	command	that	is	in	the	table	title	to	obtain	general	related	information.

Table	1.1.	Arithmetic	Operators	(help	ops)

Command Symbol Description

plus + Addition
uplus + Unary	addition
minus - Subtraction
uminus - Unary	minus
mtimes * Matrix	multiplication
times .* Array	multiplication
mldivide \ Left	matrix	divide
mrdivide / Right	matrix	divide
ldivide .\ Left	array	divide
rdivide ./ Right	array	divide
mpower ∧ Matrix	power
power .∧ Array	power

Table	1.2.	Logical	Operators	(help	ops)

Command Symbol Description

eq == Equal
ne ~= Not	equal
lt < Less	than
gt > Greater	than
le <= Less	than	or	equal
ge >= Greater	than	or	equal
and & Logical	AND
or | Logical	OR
not ~ Logical	NOT
xor N/A Logical	Exclusive	OR



any N/A True	if	any	element	of	vector	is	nonzero
all N/A True	if	all	elements	of	vector	are	nonzero

Table	1.3.	Special	Characters	(help	ops)

Command Symbol Description

colon : Colon
punct .. Parent	directory
punct % Comment
punct = Assignment
transpose ’ Transpose

Table	1.4.	Program	Control	Flow	Constructs	(help	lang)

Command Description

if Conditionally	execute	statement
else If	statement	condition
elseif If	statement	condition
end Terminate	scope	for	while,	switch,	try,	and	if	statement
for Repeat	statement	for	a	specific	number	of	times
while Repeat	statement	for	indefinite	number	of	times
break Terminate	execution	of	for	or	while	loop
continue Pass	control	to	the	next	iteration	of	for	or	while	loop
switch Switch	among	several	cases	based	on	an	expression
case switch	statement	case

Table	1.5.	Scripts,	Functions	and	Variables	(help	lang)

Command Description

global Define	global	variable
mfilename Name	of	currently	executing	M-file
exist Check	if	variable	or	function	are	defined
isglobal True	for	global	variable

Table	1.6.	Argument	Handling	(help	lang)



Command Description

nargin Number	of	function	input	argument
nargout Number	of	function	output	argument

Table	1.7.	Message	Display	(help	lang)

Command Description

error Display	error	message	and	abort	function
warning Display	warning
disp Display	and	array
fprintf Display	formatted	message
sprintf Write	format	data	to	a	string

Table	1.8.	Elementary	Matrices	(help	elmat)

Command Description

zeros Zeros	array
ones Ones	array
eye Identity	matrix
rand Uniformly	distributed	random	numbers
randn Normally	distributed	random	numbers
linspace Linearly	spaced	vector
logspace Logarithmically	spaced	vector
meshgrid x	and	y	array	for	3D	plot
: Regularly	spaced	vector	and	index	into	matrix

Table	1.9.	Basic	Array/Matric	Information	(help	elmat)

Command Description

size Size	of	matrix
length Length	of	vector
ndims Number	of	dimensions
numel Number	of	elements
isempty True	for	empty	matrix
isequal True	of	arrays	are	identical
diag Diagonal	matrices



find Find	indices	of	nonzero	elements
end Last	index

Table	1.10.	Special	Variables	and	Constants	(help	elmat)

Command Description

ans Most	recent	answer
eps Floating-point	relative	accuracy
realmax Largest	positive	floating-point	number
realmin Smallest	positive	floating-point	number
pi 3.14159263
i,	j Imaginary	unit
inf Infinity
Nan Not-a-number
isnan True	for	not-a-number
isinf True	for	infinite	elements
isfinite True	for	finite	elements
why Succinct	number

Table	1.11.	Trigonometric	Functions	(help	elfun)

Command Description

sin Sine
sinh Hyperbolic	sine
asin Inverse	sine
asinh Inverse	hyperbolic	sine
cos Cosine
cosh Hyperbolic	cosine
acos Inverse	cosine
acosh Inverse	hyperbolic	cosine
tan Tangent
tanh Hyperbolic	tangent
atan Inverse	tangent
atan2 Four	quadrant	inverse	tangent
atanh Inverse	hyperbolic	tangent
sec Secant
sech Hyperbolic	secant



asec Inverse	secant
asech Inverse	hyperbolic	secant
csc Cosecant
csch Hyperbolic	cosecant
acsc Inverse	cosecant
acsch Inverse	hyperbolic	cosecant
cot Cotangent
coth Hyperbolic	cotangent
acot Inverse	cotangent
acoth Inverse	hyperbolic	cotangenet

Table	1.12.	Exponential	and	Complex	Functions	(help	elfun)

Command Description

exp Exponential
log Natural	logorithm
log10 Common	(base	10)	logorithm
sqrt Square	root

abs Absolute	value
angle Phase	angle
complex Construct	complex	data	from	real	and	imaginary	part
imag Complex	imaginary	part
real Complex	real	part
isreal True	for	real	array

Table	1.13.	Rounding	and	Remainder	(help	elfun)

Command Description

fix Round	toward	zero
floor Round	toward	minus	infinity
ceil Round	toward	plus	infinity
mod Modulus	(signed	remainder	after	division)
rem Remainder	after	division
sign Signum

Table	1.14.	Specialized	Math	Functions	(help	specfun)



Command Description

cross Vector	cross	product
dot Vector	dot	product

Table	1.15.	Matrix	Analysis	(help	matfun)

Command Description

det Determinant
trace Sum	of	diagonal	elements
inv Matrix	inverse
eig Eigenvalues	and	eigenvectors
svd Singular	value	decomposition
expm Matrix	exponential
logm Matrix	logorithm
sqrtm Matrix	square	root
fnum Evaluate	general	matrix	function

Table	1.16.	Basic	Statistical	Operations	(help	datafun)

Command Description

max Largest	component
min Smallest	component
mean Average	or	mean	value
median Median	value
std Standard	deviation
var Variance
sort Sort	in	ascending	order
sortrows Sort	rows	in	ascending	order
sum Sum	of	elements
prod Product	of	elements
hist Histogram
histc Histogram	count
trapz Trapezoidal	numerical	integration
cumsum Cumulative	sum	of	elements
cumprod Cumulative	product	of	elements

Table	1.17.	Optimization	Functions



Command Description

bintprog Binary	integer	programming	problems
fgoalattain Multiobjective	goal	attainment	problems
fminbnd Minimum	of	single-variable	function	on	fixed	interval
fmincon Minimum	of	constrained	nonlinear	multivariable	function
fminimax Minimax	constraint	problem
fminsearch Minimum	of	unconstrained	multivariable	function

using	derivative-free	method
fminunc Minimum	of	unconstrained	multivariable	function
fseminf Minimum	of	semi-infinitely	constrained	multivariable

nonlinear	function
ktrlink Minimum	of	constrained	or	unconstrained	nonlinear

multivariable	function	using	KNITRO
linprog Linear	programming	problems
quadprog Quadratic	programming	problems

1.8 	Summary

In	order	to	fully	realize	the	power	of	computational	Design	Optimization,	it	is	important	to
implement	 optimization	 methods	 through	 pertinent	 computer-based	mathematical	 tools.
MATLAB	is	one	such	mathematical	tool	that	has	gained	notorious	popularity	in	the	science
and	 engineering	 community	 over	 the	 last	 two	 decades,	 owing	 to	 the	 diverse	 set	 of
mathematical	 functions	 that	 it	 provides	 and	 its	 ease	 of	 use	 (i.e.,	 user-friendliness).	 To
facilitate	 effective	 use	 of	 MATLAB	 for	 implementing	 the	 modeling,	 analysis,	 and
optimization	 techniques	 presented	 in	 this	 book,	 this	 chapter	 provided	 an	 important
introduction	 to	 the	MATLAB	 software.	 Specifically,	 it	 provided	 brief	 descriptions	 of	 the
modular	 MATLAB	 interface,	 basic	 matrix	 handling	 and	 mathematical	 operations	 in
MATLAB,	and	the	GUI	capabilities	(e.g.,	plotting	functions)	of	MATLAB.	The	chapter	ended
with	a	comprehensive	set	of	tables	listing	some	of	most	useful	classes	of	in-built	functions
available	in	MATLAB	-	from	logical	operators	to	equation	solving	functions.	For	those	who
are	already	proficient	in	MATLAB,	this	chapter	may	serve	as	a	convenient	reference.

1.9 	Problems

Warm-up	Problems

1.1 (a) Create	a	folder	on	your	computer	and	name	it	after	your	last	name.

(b) Set	the	Current	Directory	of	MATLAB	to	the	directory	created	in	Part	(a).

(c) Create	and	save	an	empty	M-file	in	this	directory,	and	name	 it	after	your	 first



name.

(d) Undock	 the	Current	Directory	Window	from	the	MATLAB	Desktop	 and	 take	 a
screen	shot	of	this	directory.	Turn	in	this	screen	shot.

1.2 Start	MATLAB.

(a) Define	the	array	z=[1/6	3/4	2/9]	in	the	Command	Window.

(b) Using	the	help	browser,	find	the	command	that	can	be	used	to	change	 the	(1)
format,	 and	 (2)	 spacing	 of	 the	 numeric	 output	 of	 the	 above	 array	 in	 the
Command	Window.

(c) Find	 the	commands	 that	can	be	used	 to	print	 (1)	 the	complete	contents	 in	 the
Command	 Window,	 and	 (2)	 a	 selection	 of	 the	 contents	 in	 the	 Command
Window.

(d) Give	 at	 least	 two	 examples	 each	for	 different	 format	 and	 spacing	 commands
available	in	MATLAB	for	the	array	z.

(e) For	 each	 example,	 print	 z	 and	 turn	 in	 the	 output	 displayed	 in	 the	Command
Window.

1.3 (a) Create	two	arrays	A	and	B	(4x2	and	2x4,	respectively)	in	the	Command	Window.
You	can	randomly	choose	elements	in	A	and	B.

(b) From	 the	 Command	 History	 browser,	 create	 an	 M-file	 that	 includes	 the
definitions	of	A	and	B.

(c) In	this	M-file,	compute	the	following:	(1)	A*B,	(2)	B*A	(3)	Is	A*B	=	B*A?	What
property	of	matrix	multiplication	can	be	recalled	with	the	help	of	this	example?
Comment	on	these	observations	in	about	two	lines.

(d) Change	all	the	values	of	the	array	elements	of	A	and	B	using	the	Variable	Editor
in	the	MATLAB	Desktop	environment	to	any	values	of	your	choice.

(e) Repeat	Parts	(a)	through	(c)	for	the	new	Aand	B.

(f) Submit	the	M	files,	the	output	in	the	Command	Window,	and	screen	shots	of	the
Variable	Editor	before	and	after	modifying	the	values.

1.4 (a) In	the	Command	Window,	create	an	array,	x,	such	that	x	ranges	from	0	to	10.

(b) Compute	four	arrays:	y1=sin(x),	y2=exp(x),	y3=x^2+2x+1,	and	y4=x^3+5	in	the
Command	Window.	You	need	 to	make	 sure	 that	 the	 sizes	 of	x	 and	 y	 are	 the
same.

(c) Save	all	the	arrays	computed	in	Parts	(a)	and	(b)	on	your	hard	drive	as	.mat	files.

(d) Write	an	M-file	that	loads	these	.mat	files	from	your	hard	drive.

(e) In	the	same	M-file,	add	a	code	to	plot	the	arrays	y1,	y2	y3	and	y4	against	x,	all	in
the	same	plot,	with	different	line	styles.	Make	the	plots	look	professional.	Add
your	name,	title,	axes	legends,	and	labels	to	the	plot.

(f) Identify	which	factors	impact	the	smoothness	of	the	above	plotted	curves.	Create
four	new	figures,	each	showing	the	plots	of	y1,	y2,	y3,	and	y4,	respectively,	as	a



function	of	x.	 In	 each	 figure,	 show	 at	 least	 three	 plots	with	 increasing	 curve
smoothness.	Discuss	your	results	in	three	to	four	lines.	The	objective	here	is	to
develop	 your	 understanding	 of	what	 is	 sufficient	 to	 obtain	 a	 visually	 smooth
curve	in	practice.

(g) Submit	the	M-file,	plots,	and	the	discussions.

1.5 Generate	the	following	matrices:	A	=	[2	4	6;3	5	1;7	5	9],

B	=	[1	3	6],	and	C	=	[5;7;2;0].

(a) Generate	a	matrix	D	=	[A;B].

(b) Now	generate	a	new	matrix	E	=	[D	C].

(c) Find	the	determinant	of	matrix	E.

(d) Find	the	inverse	of	matrix	E.

(e) Find	the	transpose	of	matrix	E.

(f) Define	a	new	matrix	F	=	[3;17;12;-2].

(g) Define	another	matrix	H	=	[5	7	4	-2;3	12	-6	14].

(h) Explain	whether	or	not	the	following	matrix	multiplications	are	possible:	(1)	EE,
(2)	FF,	(3)	HH,	(4)	EF,	(5)	FE,	(6)	HE,	(7)	EH,	(8)	FH	and	(9)	HF.

(i) In	the	cases	for	which	multiplication	is	possible,	perform	it	using	MATLAB.	Turn
in	a	print	out	of	your	results	(from	the	Command	Window)	of	Parts	(a)	through
(e),	and	(h).

1.6 For	the	matrix	A	=	[2	4	6;3	5	1;7	5	9]	given	in	the	above	problem,	determine
the	 eigenvalues	 and	 eigenvectors.	 Turn	 in	 a	 print	 out	 of	 your	 results	 (from	 the
Command	Window).

1.7 Generate	the	following	matrices:

A	=	[12	14	16	40;	32	15	11	1;	7	25	19	10],

B	=	[9		1	36		4;	19		0		-31		2],	and	C	=	[7;	5;	7;	2;	0].

(a) Generate	a	matrix	D	=	[A;B].

(b) Now	generate	a	new	matrix	E	=	[D	C].

(c) Find	the	determinant	of	matrix	E.

(d) Find	the	inverse	of	matrix	E.

(e) Find	the	transpose	of	matrix	E.

(f) Define	a	new	matrix	F	=	[16;3;17;12;-2].

(g) Define	another	matrix	H	=	[5	7	4	-2	-1;-9	3	12	-6	14].

(h) Give	reasons:	which	of	the	following	matrix	multiplications	are	possible	–	 (1)
EE,	(2)	FF,	(3)	HH,	(4)	EF,	(5)	FE,	(6)	HE,	(7)	EH,	(8)	FH	and	(9)	HF.

(i) In	 the	 cases	 for	 which	 multiplication	 is	 possible,	 perform	 it	 using	 MATLAB.



Submit	 a	 printout	 of	 your	 results	 (from	 the	Command	Window)	 of	 Parts	 (a)
through	(e),	and	(h).

1.8 For	the	matrices	A	defined	in	Problem	1.6	and	E	defined	in	Problem	1.7,	determine
their	 eigenvalues	 and	 eigenvectors.	 Submit	 a	 print	 out	 of	 your	 results	 (from	 the
Command	Window).

1.9 Define	the	matrices:	A	=	[12	16	4;23	1	21;9	10	1]

and	B	=	[2	7	14;3	11	2;-9	10	12].

(a)	Perform	matrix	multiplication	AB.

(b) Perform	matrix	multiplication	BA.

(c) Are	 the	answers	 from	Parts	 (a)	and	(b)	 the	 same?	 If	yes,	 explain	why.	 If	not,
explain	why.

(d) Find	the	inverse	of	A,	and	call	it	matrix	X.

(e) Find	the	inverse	of	B,	and	call	it	matrix	Y.

(f) Perform	matrix	multiplication	A*X.

(g) Perform	matrix	multiplication	B*Y.

(h) Are	 the	answers	 from	Parts	 (g)	 and	(h)	 the	 same.	 If	yes,	 explain	why.	 If	 not,
explain	why.

(i) Submit	 a	 printout	 of	 your	 results	 (from	 the	Command	Window)	 for	 Parts	 (a)
through	(h).

1.10 Define	 the	 matrices	 A	 =	 [12	 16	 4;23	 1	 21;9	 10	 1],
B	=	[2	7	14;3	11	2;-9	10	12],	C	=	[43	12;13	12],	and	D	=	[1	2	3;4	5	6].

(a) Perform	the	following	additions:	(1)	A+B,	(2)	A+C,	(3)	A+D,	(4)	B+C,	(5)	B+D,	and
(6)	C+D.

(b) Are	each	of	 the	above	additions	possible?	If	yes,	explain	why.	 If	not,	explain
why.

(c) Perform	the	following	operations:	(1)	A+B	and	(2)	B+A.	Is	the	answer	to	these	two
additions	the	same?	If	not,	explain	why.	If	yes,	which	matrix	addition	property	is
demonstrated	using	these	two	additions?

(d) Submit	a	print	out	your	results	(from	the	Command	Window)	for	Parts	(a)	and
(c),	and	discussions	for	the	Part	(b).

1.11 Define	 a	 matrix	 A	 =	 [12	 16	 4;23	 1	 21;9	 10	 1]	 and
B	=	[2	7	14;3	11	2;-9	10	12].

(a) Perform	matrix	multiplication	A*B,	and	call	this	D.

(b) Find	the	transpose	of	A,	and	call	this	E.

(c) Find	the	transpose	of	B,	and	call	this	F.

(d) Find	the	transpose	of	D,	and	call	this	G.



(e) Perform	matrix	multiplications:	(1)	E*F	and	(2)	F*E.

(f) Which	of	the	above	two	multiplications	are	the	same	as	the	matrix	DT?

(g) Which	property	of	the	matrix	multiplication	is	demonstrated	from	Part	(f)?

(h) Submit	 a	printout	of	your	 results	 (from	 the	Command	Window)	 for	Parts	 (a)
through	(g).

1.12 Solve	 the	 following	 systems	 of	 linear	 equations	 and	 turn	 in	 a	 print	 out	 of	 your
results	(from	the	Command	Window).

(a) 	3x	+	4y	=	12	and	4x	+	2y	=	10.

(b) 3x	+	4y	=	12	and	4x	=	10.

(c) –4x	+	y	=	14	and	4x	+	3y	=	10.

(d) 13x+12y	=	–6,	–4x+7y	=	–73,	and	11x	-	13y	=	157.

(e) 2x	+	3y	-	z	=	8,	4x	-	2y	+	z	=	5,	and	x	+	5y	-	2z	=	9.

(f) 4x–8y+3z	=	16,	–x+2y–5z	=	–21,	and	3x	-	6y	+	z	=	7.

(g) 2a	+	3b	+	c	-	11d	=	1,	5a	-	2b	+	5c	-	4d	=	5,	a	-	b	+	3c	-	3d	=	3,	and	3a	+	4b	-	7c
+	2d	=	–7.

1.13 Write	a	simple	MATLAB	program	in	an	M-file	that	generates	a	1	x	25	array	called	A,
where		A	=	[1	2	3	4	…	25].	Use	for	loop	logic.	Turn	in	a	printout	of	your	M-file
and	the	command	prompt	output	after	running	the	M-file.

1.14 Write	an	M-file	 that	 tests	whether	 two	numbers	are	greater	 than	zero.	 If	both	are
greater	than	zero,	then	the	program	should	print	‘Both’	on	the	screen.	If	neither	of
them	is	greater	than	zero,	then	the	program	should	print	‘None’.	For	any	other	case,
the	program	should	print	‘Other’.	Submit	a	printout	of	your	M-file.	Run	your	M-
file	for	two	cases,	and	submit	a	printout	of	the	command	prompt	output.

1.15 This	problem	will	test	your	MATLAB	programming	skills.

(a) Write	an	M-file	that	defines	a	row	vector	of	50	elements	with	all	ones.

(b) Add	a	code	that	replaces	every	element	that	is	in	an	even	place	(for	example	the
2nd,	4th,	6th,…)	with	the	number	2.

(c) Add	a	code	that	replaces	every	element	that	is	in	a	place	divisible	by	three	(for
example	the	3rd,	6th,	9th,…)	with	the	number	3.

(d) Turn	 in	 a	 printout	 of	 the	 final	M-file	 and	 the	 output	 after	 running	 Parts	 (a)
through	(c).

1.16 Write	an	M-file	to	generate	three	contour	plots	of	3x2	+	4y2	=	C,	where	1	≤	x	≤	2
and	3	≤	y	≤	5	.	The	first,	second,	and	third	plots	should	contain	2,	5,	and	7	contours,
respectively.	Using	the	same	M-file,	also	generate	a	scatter	plot	for	3x2	+	4y2	=	20.
Turn	in	the	M-file	and	the	plots.

1.17 Write	an	M-file	 to	plot	y	=	4x	+	10,	and	y	=	4x2	+	10	for	1	≤	x	≤	5	on	 the	 same
graph.	Provide	appropriate	X	and	Y	axis	 labels	and	 the	 legend.	All	 the	 labels	 and



legends	must	 be	Times	New	Roman	 font	 and	 the	 font	 size	must	 be	 15.	The	 font
type	and	font	size	of	these	labels	and	legends	must	be	changed	through	your	M-file.
Turn	in	your	M-file	and	the	plot.

1.18 Learn	about	the	subplot	command.	You	can	refer	 to	 the	MATLAB	 tutorial	available
on	www.mathworks.com.	Write	an	M-file	to	plot	y	=	4x	+	10,	y	=	4x2	+	10,	and	y	=
sin(x)	 for	0	≤	x	≤	3.5	on	 the	 same	plot.	Now	plot	 these	 three	curves	 on	 different
subplots	using	the	subplot	command.	Every	subplot	should	contain	individual	titles,
axis	labels,	and	legends.	Turn	in	the	M-file	and	the	plots.

1.19 Learn	 about	 about	 the	 peaks	 command.	 You	 can	 refer	 to	 the	 MATLAB	 tutorial
available	on	www.mathworks.com.	Now	write	an	M-file	 to	generate	a	3D	plot	of
the	 peaks	 command	 using	 mesh	 and	 surf.	 The	 plot	 should	 contain	 a	 title,	 axis
labels,	 and	 legends.	 Through	 your	 M-file,	 write	 your	 first	 name	 on	 the	 top-left
corner	of	this	plot,	and	your	last	name	just	below	the	peaks	that	appear	in	the	plot.
Turn	in	your	M-file	and	the	plots.

Intermediate	Problems

1.20 This	problem	will	test	your	ability	to	use	M-files.

(a) Write	 a	 function	 file	 in	MATLAB	 that	 takes	 in	 one	 input	 and	 returns	 a	 single
output.	Call	the	function	getSquared.	The	function	should	output	the	square	of
the	 number	 that	 it	 takes	 as	 input.	 Remember	 that	 the	 function	must	 actually
RETURN	 the	 squared	 value,	 and	 not	 simply	 display	 it	 on	 screen.	 Save	 the
function	 file	 in	 some	 directory	 that	 you	 created.	 Turn	 in	 a	 printout	 of	 the
function	file.

(b) Write	 a	 script	 M-file	 called	 testSquared.m	 that	 defines	 a	 variable	 called
xinput.	Give	any	numerical	value	to	xinput.	From	within	this	M-file,	call	the
function	getSquared.	Store	the	output	from	the	function	file	in	a	new	variable
called	xoutput.	Write	a	statement	in	the	M-file	that	will	print	both	the	xinput
and	 xoutput	 on	 the	 screen.	 Save	 the	 script	M-file	 in	 the	 same	 folder	 as	 the
function	file.	Turn	in	a	printout	of	the	M-file.

(c) Run	the	file	testSquared.m	from	the	command	prompt.	Turn	in	a	printout	of	the
output	you	get.

(d) Run	the	function	file	getSquared.m	from	the	command	prompt	to	calculate	the
square	of	any	variable	in	your	workspace.	If	you	do	not	have	one,	create	it	in	the
workspace.	Turn	in	a	printout	of	your	command	prompt	output.

(e) Save	 your	 getSquared.m	 function	 as	 getSquaredSpecial.m.	 Modify	 this
function.	Add	a	test	code	in	your	new	function	to	determine	whether	the	 input
number	is	greater	than	or	equal	 to	zero.	If	yes,	 then	the	function	does	exactly
what	it	did	before	(that	is,	squaring).	If	not,	then	the	function	simply	returns	the
value	-1.	Turn	in	a	printout	of	your	getSquaredSpecial.m	file.

(f) In	a	similar	 fashion	as	above,	create	 the	function	testSquaredSpecial.m	 file.
Run	 two	cases:	 (i)	xinput	 is	a	positive	number,	and	(ii)	xinput	 is	 a	 negative
number.	Turn	in	a	printout	of	the	command	prompt	output	for	both	cases.

http://www.mathworks.com
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1.21 This	 problem	will	 test	 your	 skills	 in	 structured	 programming	 using	 flow	 control
statements.

(a) Write	 a	 function	 called	 sumHundred	 that	 takes	 an	 integer	 as	 the	 input.	 The
function	should	determine	whether	the	input	is	an	integer	between	1	and	100.	If
not,	the	function	should	display	an	appropriate	error	message.	Turn	in	a	printout
of	the	function	file.

(b) Test	the	function	from	the	command	prompt	using	(i)	a	number	between	1	and
100,	and	(ii)	a	number	greater	than	hundred.	Turn	in	a	printout	of	the	command
prompt	output	for	both	cases.

(c) You	will	now	modify	your	function	sumHundred.	Add	some	logic	to	it	using	for
or	while	loops,	such	that	the	function	evaluates	the	sum	of	all	integers	from	1	to
the	input	number.	For	instance,	if	the	input	number	is	79,	it	should	evaluate	the
sum	of	the	first	79	integers.	Do	not	use	any	built-in	MATLAB	functions.	Turn	in	a
printout	of	 the	modified	function	 file.	Run	 two	 test	 cases	 from	the	 command
prompt	and	turn	in	a	printout	of	the	results	along	with	the	M-file.

(d) Save	your	sumHundred	function	as	sumEvenHundred.	Add	another	logic	code	to
the	original	 function,	such	 that	 now	 it	 evaluates	 the	 sum	of	 all	 even	 integers
from	1	to	the	 input	number.	For	 instance,	 if	 the	 input	number	 is	51,	 it	 should
evaluate	the	sum	of	the	even	integers	between	1	and	51.	Turn	in	a	printout	of	the
function	file	and	run	it	for	two	test	cases	from	the	command	prompt.	Turn	in	a
printout	of	the	results.

1.22 This	problem	will	test	your	variable	handling	skills.

(a) Write	a	function	called	hiddenSum	that	takes	two	inputs	and	returns	the	sum	of
the	two	inputs.	Turn	in	a	printout	of	the	function.

(b) Write	a	script	M-file	called	testHiddenSum.m	that	defines	two	variables	x	and	y.
Assign	some	values	to	these	variables.	Call	the	function	hiddenSum	from	within
this	script	M-file	and	store	the	result	in	a	local	variable,	z.	Run	the	script	M-file
and	turn	in	a	printout	with	the	value	of	z.

(c) Modify	the	function	hiddenSum	such	that	now	it	DOES	NOT	HAVE	any	output
arguments.	Now	modify	your	script	M-file	such	that	it	calls	hiddenSum	using	x
and	y	as	inputs	and	assigns	the	result	to	the	variable	z.	You	will	need	to	further
modify	your	function	file.	Submit	a	printout	of	the	new	function	and	script	files
and	command	prompt	results	from	running	your	script	M-file.

(d) Now	modify	your	function	hiddenSum	such	that	it	DOES	NOT	HAVE	any	input
OR	output	arguments.	Modify	your	 script	M-file	 such	 that	 it	 calls	hiddenSum
using	x	and	y	as	inputs,	and	stores	the	result	in	the	variable	z.	You	will	need	to
further	modify	your	 function	 file.	 Submit	 a	 printout	 of	 the	 new	 function	 and
script	files,	and	the	command	prompt	results	from	running	your	script	M-file.

Table	1.18.	Equation	Solving	Functions

Command Description



fsolve Solve	system	of	nonlinear	equations
fzero Find	root	of	continuous	function	of	one	variable

Table	1.19.	Least	Squares	(Curve	Fitting)

Command Description

lsqcurvefit Solve	nonlinear	curve-fitting	problems	in	least-squares	sense
lsqlin Solve	constrained	linear	least-squares	problems
lsqnonlin Solve	nonlinear	least-squares	problems
lsqnonneg Solve	nonnegative	least-squares	constraint	problem
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2

Mathematical	Preliminaries

2.1 	Overview

This	 chapter	 presents	 some	 of	 the	 basic	 mathematics	 needed	 for	 learning	 and	 using
optimization.	Specifically,	 this	chapter	reviews	the	basics	of	linear	algebra	(e.g.,	vectors,
matrices	and	eigenvalues)	and	calculus.	A	review	of	the	material	presented	in	this	chapter
may	 be	 helpful.	 For	most,	 it	will	 be	well	 known	material;	 for	 others,	 it	will	 be	 a	 great
opportunity	 for	 a	 quick	 review.	 For	 others	 still,	 it	 will	 be	 an	 opportunity	 to	 learn	 the
minimally	required	mathematics	for	the	material	presented	in	this	book.

2.2 	Vectors	and	Geometry

A	scalar	is	a	quantity	that	is	determined	by	its	magnitude	and	sign.	For	example,	length,
temperature,	and	speed	are	scalars.	A	vector	 is	a	quantity	 that	 is	determined	by	both	 its
magnitude	and	its	direction.	It	is	a	directed	line	segment.	For	example,	velocity	and	force
are	examples	of	vectors.

A	vector	can	be	expressed	in	terms	of	its	components	in	a	Cartesian	Coordinate	system
as	a	=	a1i	+	a2	j	+	a3k,	where	i,	j,	and	k	denote	the	unit	vectors	along	the	X,	Y	and	Z	axes.
The	magnitude	of	this	vector	is	given	as	||a||	=	 .

The	 length	of	a	vector	x	 is	 also	called	 the	norm	 (or	Euclidean	norm)	of	 the	vector,
denoted	 by	 |x|.	 The	position	 vector	 of	 a	 given	 point	A	 :	 {x,y,z}	 is	 the	 vector	 from	 the
origin	of	the	axes	to	the	point	A.

2.2.1 	Dot	Product

The	dot	product	or	 Inner	product	of	 two	vectors	yields	a	scalar.	Mathematically,	 the	dot
product	 of	 two	 vectors	 a	 and	b,	 denoted	 a⋅b,	 is	 the	 product	 of	 their	 lengths	 times	 the
cosine	of	the	angle	θ	between	them.

a	⋅b	=	|a||b|	cos	θ (2.1)

In	terms	of	vector	components,	the	dot	product	of	two	vectors	a	=	a1i	+	a2	j	+	a3k	and	b
=	b1i	+	b2j	+	b3k	is	given	as

a	⋅b	=	a1b1	+	a2b2	+	a3b3 (2.2)

Two	vectors	are	said	to	be	orthogonal	when	their	dot	product	is	equal	to	zero	(θ	=	90o).

2.2.2 	Equation	of	a	Line



The	 slope-intercept	 form	 of	 the	 equation	 of	 a	 line	 that	 has	 a	 slope	 of	 m	 and	 y-
intercept	c	is

y	=	mx	+	c (2.3)

The	point-slope	form	of	 the	equation	of	a	 line	 that	passes	 through	a	point	P	 :	 (x1,y1)
with	a	slope	m	is

(y	−	y1)	=	m(x	−	x1) (2.4)

The	two-point	form	of	the	equation	of	a	line	that	passes	through	two	points	P1	:	(x1,y1)
and	P2	:	(x2,y2)	is

(y	−	y1)(x2	−	x1)	=	(x	−	x1)(y2	−	y1) (2.5)

The	two-intercept	form	of	a	line	with	x	intercept	a	and	y	intercept	b	is	given	as

(2.6)

2.2.3 	Equation	of	a	Plane

The	 equation	of	 a	 plane	with	 a	 normal	 vector	n	=	 [a,b,c]T	 passing	 through	 the	 point	 (x
0,y0,z0)	is	given	as

n	⋅	(x	−x0)	=	0 (2.7)

where	x	=	(x,y,z)	is	any	generic	point	on	the	plane.	Substituting	the	value	of	x	in	Eq.	2.7,
the	general	form	of	the	equation	of	a	plane	is

ax	+	by	+	cz	+	d	=	0 (2.8)

where	d	=	−ax0	−by0	−cz0.	The	plane	specified	in	this	form	has	its	X,	Y	,	and	Z	intercepts	at
p	=	 ,	q	=	 ,	and	r	=	 .



Figure	2.1.	Equation	of	a	Plane

In	the	intercept	form,	a	plane	passing	through	the	points	(a,	0,	0),	(0,b,	0),	and	(0,	0,c)
can	be	given	as

(2.9)

The	 plane	 passing	 through	 the	 two	 points	 (x1,y1,z1)	 and	 (x2,y2,z2),	 and	 parallel	 to	 the
direction	[a,b,c]T	is	given	by	the	following	equation.

(2.10)

The	plane	that	passes	through	the	three	points	(x1,y1,z1),	(x2,y2,z2),	and	(x3,y3,z3)	is	given
by,

(2.11)

In	the	above	two	equations,	we	used	the	notation	 	=	det(A),	for	any	given	matrix	A.

2.3 	Basic	Linear	Algebra

Linear	algebra	can	be	defined	as	the	study	of	the	theory	and	application	of	linear	systems
of	equations	and	linear	transformations.	Linear	algebra	uses	matrices	and	their	properties
in	a	systematic	way,	often	to	solve	physically	meaningful	problems	(Ref.	[1]).

2.3.1 	Preliminary	Definitions

A	matrix	 is	 a	 rectangular	 array	of	numbers,	 symbols,	or	 functions,	which	 are	 called	 the



elements	of	the	matrix.	The	following	matrices	are	presented	 to	help	discuss	some	basic
matrix	definitions.

2×3
(2.12)

2×2
(2.13)

4×1

(2.14)

1×4 (2.15)

2×2
(2.16)

3×3

(2.17)

4×4

(2.18)

4×4

(2.19)

The	 first	 example	 provided	 in	 Eq.	 2.12	 has	 two	 rows	 (horizontal	 lines)	 and	 three
columns	(vertical	lines).	The	order	of	this	matrix	is	2	×	3	since	it	has	two	rows	and	three
columns.	Matrices	where	the	number	of	rows	is	not	equal	 to	 the	number	of	columns	are
called	Rectangular	matrices.	The	second	example	provided	in	Eq.	2.13	has	two	rows	and
two	columns.	Matrices	where	the	number	of	rows	is	equal	to	the	number	of	columns	are
called	Square	matrices.	The	third	example	found	in	Eq.	2.14	has	only	one	column.	These
are	called	Column	matrices.	The	fourth	example	in	Eq.	2.15	has	only	one	row.	These	are
called	Row	matrices.	A	general	notation	for	a	matrix	is	given	by



Any	element	in	a	matrix	can	be	represented	using	the	double	subscript	notation	as	aij,
where	i	denotes	the	row	and	j	the	column	in	which	the	element	is	located.	When	m	=	n,	the
matrix	is	said	to	be	square.	The	diagonal	containing	the	elements	a11,	a22,…ann	 is	called
the	 principal	 diagonal	 of	 the	 matrix.	 The	 matrix	 given	 by	 Eq.	 2.17,	 where	 all	 the
elements	in	the	principal	diagonal	are	ones,	and	the	rest	of	the	elements	are	zeros,	is	called
the	Identity	Matrix.	The	matrix	 in	 the	 form	shown	 in	Eq.	2.18,	where	all	 the	 elements
below	the	principal	diagonal	are	zeros,	is	called	an	Upper	Triangular	matrix.	A	Lower
triangular	 form	 is	 provided	 in	 Eq.	 2.19,	 where	 all	 the	 elements	 above	 the	 principal
diagonal	are	zeros.

2.3.2 	Matrix	Operations

Addition

The	addition	of	two	matrices	is	possible	only	if	they	are	of	the	same	order.	If	two	matrices
A	and	B	have	 the	 same	order,	 then	A	+	B	can	 be	 obtained	 by	 adding	 the	 corresponding
elements	of	A	and	B.	Consider	the	following	example.

Example	1:

(2.20)

and

(2.21)

then,

(2.22)

Subtraction

Similar	 to	 the	 addition	 operation,	 two	matrices	 can	 be	 subtracted	 only	 if	 they	 have	 the
same	order.	 For	 the	 two	matrices	A	 and	B	 given	 by	 Eqs.	 2.20	 and	 2.21,	A	 −	B	 can	 be
obtained	by	subtracting	the	corresponding	elements	as,

Example	2:

Scalar	Multiplication

The	product	of	any	matrix	with	a	scalar	can	be	obtained	by	multiplying	each	element	of
that	matrix	with	that	scalar.	For	example,	for	matrix	A	in	Eq.	2.20,	4A	can	be	obtained	by



simply	multiplying	each	element	of	A	by	4.

Example	3:

4A	=	

Matrix	Multiplication

Unlike	 matrix	 addition,	 matrix	 multiplication	 is	 not	 obtained	 by	 multiplying	 the
corresponding	 elements	 of	 two	 matrices.	 Consider	 two	 matrices	C	 and	D.	 These	 two
matrices	can	be	multiplied	to	yield	CD	only	if	the	number	of	columns	 in	C	 is	equal	 to
the	number	of	 rows	 in	D.	 If	C	 is	an	m	×	n	matrix	and	D	 is	 an	 n	 ×	p	matrix,	 then	 the
product	of	C	and	D	has	an	order	of	m	×	p.	For	example,	consider	the	following:

Example	4:

and

then

In	addition,	consider

Note	 that	 CD	 ≠	 DC.	 The	 following	 are	 some	 important	 properties	 of	 matrix
multiplication.



1.	 AB	≠	BA
2.	 AI	=	IA	=	A
3.	 AB	=	0	does	not	necessarily	imply	A	=	0	or	B	=	0
4.	 k(AB)=(kA)B=A(kB),	where	k	is	a	scalar
5.	 A(BC)=(AB)C
6.	 (A	+	B)C=AC	+	BC
7.	 A(B	+	C)=AB	+	AC

Transpose

The	transpose	of	a	matrix	is	obtained	by	interchanging	its	rows	and	columns.	Consider	the
following	example.

Example	5:

Some	important	properties	of	the	transpose	of	a	matrix	follow:

1.	 If	AT	=	A,	then	A	is	called	a	Symmetric	Matrix.	If	AT	=	−A,	then	A	is	called	a	Skew
Symmetric	Matrix.

2.	 (AT)T	=	A
3.	 (A	+	B)T	=	AT	+	BT

4.	 (AB)T	=	BTAT

2.3.3 	Determinants

The	general	form	of	a	determinant	of	a	matrix	is	given	as

where	 j	 represents	 any	 row	 in	 A,	 Cij	 is	 called	 the	 Cofactor	 of	 A,	 and	 Mij	 is	 the
corresponding	minor.	 The	 minor	 determinant	Mij	 is	 the	 determinant	 of	 the	 sub-matrix
obtained	by	deleting	the	ith	row	and	the	jth	column	of	the	matrix.	A	cofactor	 is	a	signed



minor	determinant.	Specifically,	Cij	=	Mij	when	i	+	j	is	even	and	Cij	=	−Mij	when	 i	+	 j	 is
odd.	For	example,	let	us	compute	the	determinant	of	a	2	×	2	matrix.

Example	6:

The	following	example	demonstrates	computation	of	the	determinant	of	a	3	×	3	matrix.

Example	7:

The	following	are	some	important	properties	of	determinants	of	(square)	matrices.

1.	 det(AT)	=	det(A)
2.	 det(I)	=	1
3.	 If	two	rows	or	columns	of	a	matrix	are	identical,	then	det(A)	=	0.
4.	 If	all	entries	of	a	row	or	column	are	all	zeros,	then	det(A)	=	0.
5.	 If	B	is	obtained	by	interchanging	any	two	rows	or	columns	of	A,	then	det(B)	=	−det(A)
6.	 If	a	row	or	column	of	a	matrix	is	a	linear	combination	of	two	or	more	rows	or

columns,	respectively,	then	det(A)	=	0.
7.	 det(AB)	=	det(A)det(B)
8.	 det(cA)	=	cndet(A),	where	c	is	a	scalar.
9.	 If	the	determinant	of	a	matrix	is	zero,	the	matrix	is	said	to	be	singular.	Otherwise,	the

matrix	is	said	to	be	non-singular.
10.	 If	a	matrix	is	upper	triangular	or	lower	triangular,	the	determinant	of	that	matrix	is

simply	equal	to	the	product	of	the	elements	in	the	principal	diagonal.

2.3.4 	Inverse

For	a	square	matrix	A,	 if	 there	 exists	 a	matrix	B,	 such	 that,	AB	=	BA	=	 I,	 then	B	 is	 the
inverse	of	A.	A	general	definition	of	inverse	is	given	as

A-1	=	 [Adjoint(A)] (2.23)



where	Adjoint(A)	=	CT,	and	C	is	the	matrix	of	the	co-factors	of	A.	For	a	2	×	2	matrix,	the
above	equation	reduces	to	the	following	simple	formula.

It	follows	from	Eq.	2.23	that	the	inverse	of	a	matrix	exists	if	and	only	if	the	determinant
is	nonzero	(i.e.,	the	matrix	is	non-singular).	The	inverse	of	a	matrix	can	also	be	computed
using	 the	Gauss	 Jordan	method.	 The	 following	 example	 illustrates	 how	 to	 compute	 the
inverse	of	a	2	×	2	matrix	using	its	determinant.

Example	8:

The	 following	 properties	 of	 matrix	 inversion	 (assuming	 the	 associated	 matrices	 are
invertible)	are	also	important	to	know.

1.	 AA-1	=	I
2.	 (AB)-1	=	B-1A-1

3.	 (AT)-1	=	(A-1)T

2.3.5 	Eigenvalues

The	Eigenvalue	problem	is	defined	as	follows:

For	an	n	×	n	matrix,	find	all	scalars	λ	such	that	the	equation

Ax	=	λx (2.24)

has	a	nonzero	solution	x.	Such	a	scalar	λ	is	called	the	eigenvalue	of	A,	and	any	nonzero	n
×	1	vector,	x,	satisfying	Eq.	2.24	is	called	the	eigenvector	corresponding	to	λ.

Given	a	matrix	A,	the	eigenvalues	of	A,	denoted	by	λ,	can	be	computed	by	finding	the
roots	of	the	equation	|A	−	λI|	=	0.	This	equation	 |A	−	λI|	=	0	 is	called	 the	characteristic
equation.	The	following	example	illustrates	how	to	find	the	eigenvalues	of	a	2	×	2	matrix.

Example	9

A	=	 2×2

The	characteristic	equation	of	A	can	be	written	as	|A	−	λI|	=	0,	where	λ	 is	 the	eigenvalue
we	want	to	compute.



The	 above	 quadratic	 equation	 is	 the	 characteristic	 equation	 of	 A.	 Recall	 that	 for	 a
quadratic	 equation	 given	 by	 ax2	 +	 bx	 +	 c	 =	 0,	 the	 roots	 are	 given	 as	 .	 The
eigenvalues	of	A	are	the	roots	of	λ2	+	7λ	+	6	=	0,	which	are	found	to	be	λ	1	=	−1	and	λ2	=
−6.

2.3.6 	Eigenvectors

Given	a	matrix	A,	consider	the	equation	(A−λI)x	=	0,	where	λ	 is	an	eigenvalue	of	A.	The
nonzero	 values	 of	x	 that	 satisfy	 the	 above	 equation	 for	 each	 eigenvalue	 are	 called	 the
Eigenvectors	 of	 A.	 We	 will	 learn	 how	 to	 compute	 eigenvectors	 with	 the	 help	 of	 an
example.	Consider	the	matrix	A	in	Example	9.

Example	 10:	 Note	 that	 it	 is	 important	 to	 compute	 eigenvalues	 before	 we	 compute
eigenvectors.	Previously,	in	Example	9,	we	obtained	the	eigenvalues	of	A	as	λ1	=	−1	and
λ2	=	−6.	For	the	first	eigenvalue	λ1	=	−1,	we	find	values	of	x	such	that	(A−λ1I)x	=	0,	or	(A
−	(−1)I)x	=	0.

Expanding	the	above	matrix,	we	obtain

In	order	to	find	the	eigenvector	corresponding	to	λ1	=	−1,	we	need	to	find	the	values	of
x1	and	x2	that	satisfy	the	above	two	equations.	By	inspection,	we	find	that	x1	=	1	and	x2	=
2	satisfy	the	above	equations.	Thus,	the	vector	[1,	2]T	is	an	eigenvector	corresponding	 to
the	eigenvalue	λ1	=	−1.

After	 finding	 a	 particular	 x	 as	 an	 eigenvector	 for	 a	 given	 eigenvalue,	 note	 that	 a
multiple	of	x,	for	example	kx,	will	also	be	an	eigenvector	 for	 that	given	eigenvalue.	For
instance,	 for	 λ1	 =	 −1,	 [ ,	 1]T	 is	 also	 a	 valid	 eigenvector.	 Using	 the	 procedure	 outlined



above,	we	can	compute	the	eigenvector	for	the	eigenvalue	of	λ2	=	−6	to	be	[2,−1]T.

Note	that	there	could	be	several	linearly	independent	eigenvectors	possible	for	a	single
eigenvalue.	The	maximum	number	of	linearly	independent	eigenvectors	corresponding	to
an	eigenvalue	of	λ	is	called	the	geometric	multiplicity	of	λ.

2.3.7 	Positive	Definiteness

A	matrix	is	said	to	be	positive	definite	if	all	its	eigenvalues	are	positive.	A	matrix	is	said	to
positive	semidefinite	if	all	its	eigenvalues	are	non-negative	(that	is,	including	zero).

A	matrix	 is	said	to	be	negative	definite	 if	all	 its	eigenvalues	are	negative.	A	matrix	 is
said	to	negative	semidefinite	if	all	its	eigenvalues	are	non-positive	(that	is,	including	zero).

2.4 	Basic	Calculus:	Types	of	Functions,	Derivative,	Integration	and	Taylor	Series

You	can	find	a	mathematical	definition	of	 function	 in	numerous	books.	 Instead	of	using
mathematical	 language,	 we	 define	 function	 on	 a	 lighter	 note.	 Think	 about	 a	 vending
machine	 that	 takes	 in	money	and	gives	you	soda	or	coffee.	Functions	behaves	similarly.
They	generally	take	in	one	or	more	numbers	and	output	a	number.	For	example,	consider	a
simple	trigonometric	function	f	(x)	=	sin(x).	Now,	when	we	input	x	=	π⁄2,	we	obtain	f	(x)	=
1.	 Thus,	 the	 sine	 function	 maps	 the	 input	 π⁄2	 to	 the	 output,	 which	 is	 1.	 Try	 typing
sin(pi/2)in	 MATLAB.	 Most	 optimization	 books	 provide	 some	 useful	 mathematical
background	(Refs.	[2,	3]).	Note	that	our	simplistic	discussion	here	avaded	many	important
issues,	such	as	invertibility.

2.4.1 	Types	of	Functions

In	 this	 section,	we	will	 introduce	different	 types	of	 functions	 commonly	 encountered	 in
optimization.

Continuous	Functions

A	function	f	(x)	is	continuous	over	an	interval	[a,b]	if	the	following	conditions	are	satisfied
for	any	point	p	(a	≤	p	≤	b).

1.	 f	(x)	is	defined	on	the	interval	[a,b].
2.	 The	limit	of	f	(x),	as	x	tends	to	p,	should	exist.
3.	 The	limit	of	f	(x)	as	x	tends	to	p	is	equal	to	f	(p).	In	other	words,	the	limit	should	be

equal	to	the	value	of	the	function	evaluated	at	x	=	p.

The	first	plot	 in	Fig.	2.2	 illustrates	a	continuous	function.	For	 every	value	of	x,	 there
exists	 a	 unique	value	of	 f	 (x).	 In	 simple	 terms,	we	 note	 that	 if	 a	 function	 can	 be	 traced
without	lifting	the	hand,	it	is	continuous.



Figure	2.2.	Type	of	Functions

Discontinuous	Functions

Functions	 that	 do	 not	 satisfy	 the	 three	 conditions	 stated	 in	 the	 previous	 subsection	 are
called	discontinuous	functions.	As	illustrated	in	 the	second	plot	 in	Fig.	2.2,	at	x	=	a,	 the
function	 has	 two	 values,	 f	 (a)-and	 f	 (a)+.	 As	 such,	 it	 violates	 the	 third	 condition.	 A
discontinuous	function	cannot	be	traced	from	one	end	to	the	other	without	lifting	the	hand.
Try	it	on	the	discontinuous	function	shown	in	Fig.	2.2.

Discrete	Function

Discrete	functions	are	not	defined	for	all	values	of	x	within	the	given	interval;	rather,	they
are	defined	at	particular	values	of	x.	As	seen	in	the	third	plot	in	Fig.	2.2,	function	f	 (x)	 is
defined	for	discrete	values	of	x.	 Some	 optimization	 algorithms	approximate	 the	 discrete
function	using	a	continuous	function.

Monotonically	Increasing	Function

A	function	f	(x)	is	said	to	be	monotonically	increasing	if	it	satisfies	the	following	property.
For	 two	 points	 x	 =	 a	 and	 x	 =	 b,	 such	 that	b	>	 a,	 if	 f	 (b)	 ≥	 f	 (a),	 then	 the	 function	 is
monotonically	 increasing.	Monotonically	 increasing	 functions	 are	 shown	by	A	and	B	 in
Fig.	2.3.

Figure	2.3.	Monotonic	Functions

A	function	is	called	Strictly	increasing	if	f	(b)	>	f	(a),	as	represented	by	A	in	Fig.	2.3.

Monotonically	Decreasing	Function



A	function	f	(x)	is	monotonically	decreasing	if	it	satisfies	the	following	property.	For	two
points	x	=	a	and	x	=	b,	such	that	b	>	a,	if	f	(b)	≤	f	(a),	then	the	function	is	monotonically
decreasing.	Monotonically	decreasing	functions	are	shown	by	C	and	D	in	Fig.	2.3.

A	function	is	called	Strictly	decreasing	if,	for	any	b > a,	f	(b) < f	(a);	as	represented	by
C	in	Fig.	2.3.

Unimodal	Functions

Unimodal	 functions	 have	 a	 single	 optimum	 in	 a	 given	 interval	 (other	 than	 end-points),
which	may	be	either	a	maximum	or	a	minimum.	A	unimodal	function	that	has	a	minimum
value	at	x	=	p	is	represented	by	A	in	Fig	2.4.	We	note	that	f	(x)	is	strictly	decreasing	for	x
<	p	and	strictly	increasing	for	x	>	p.	In	Fig.	2.4,	B	represents	a	special	type	of	unimodal
function.	Unimodal	functions	need	not	be	continuous.	Function	C	in	Fig.	2.4	is	a	discrete
unimodal	function.

Figure	2.4.	Unimodal	and	Multimodal	Functions

Multimodal	Functions

Unlike	 the	 previous	 functions,	multimodal	 functions	 have	multiple	maxima	 or	minima.
One	such	multimodal	function	is	represented	by	D	in	Fig.	2.4,	which	has	two	minima.

Convex	Functions

A	convex	 function	 is	one	 for	which	 the	 line	 joining	any	 two	points	on	 the	 function	 lies
entirely	 on	 or	 above	 the	 function	 defined	 between	 these	 two	 points.	 The	 left	 plot	 in
Fig.	2.5	displays	a	convex	function.	As	shown	in	Fig.	2.5,	a	and	b	are	any	 two	points	 in
the	domain	of	a	function	f	(x).	The	line	joining	their	function	values	is	entirely	on	or	above
the	function	defined	between	a	and	b.



Figure	2.5.	Convex	and	Concave	Functions

If	f	(x)	is	twice	differentiable	(that	is,	you	can	find	its	second	derivative)	in	[a,b],	then	a
necessary	and	sufficient	condition	for	it	to	be	convex	on	that	interval	is	that	we	have	the
second	derivative	f′′(x)	>	0	for	all	x	in	[a,b].

Concave	Functions

A	function	f	(x)	is	said	to	be	concave	on	an	interval	[a,b]	if	the	function	−f	(x)	is	convex	in
that	interval.	Thus,	the	definition	of	concave	functions	is	exactly	opposite	 that	of	convex
functions.	The	right	plot	in	Fig.	2.5	illustrates	a	concave	function.	As	shown	in	Fig.	2.5,
the	 line	 joining	 the	 function	 values	 of	 a	 and	 b	 lies	 entirely	 on	 or	 below	 the	 function
defined	between	a	and	b.

2.4.2 	Limits	of	Functions

Consider	a	function	f	(x),	and	let	the	function	f	(x)	have	a	limit	L	when	x	tends	to	a	value
x0.	In	simple	language,	the	function	f	(x)	reaches	a	value	L	as	x	approaches	 the	value	x0.
Mathematically,	it	is	denoted	by

(2.25)

Example	2.1	chap_math_limit	Let	the	function	be	f	(x)	=	((a	+	x)2	−	a2)⁄x.	The	limit	of	this
function	as	x	tends	to	0	can	be	determined	as

To	find	the	limit	of	f	(x)	as	x	tends	to	0,	simply	substitute	x	=	0	 in	 the	above	equation,
and	obtain



2.4.3 	Derivative

The	derivative	of	a	function	f	(x)	at	a	certain	point	x	is	a	measure	of	the	rate	at	which	that
function	is	changing	as	the	variable	x	changes.	That	is,	a	derivative	represents	the	rate	of
change	of	a	function	with	respect	to	the	input	variable,	or	the	derivative	is	the	computation
of	the	instantaneous	slope	of	f	(x)	at	point	x.	Mathematically,	the	derivative	is	represented
as

(2.26)

where	h	is	an	infinitesimally	small	deviation	in	x.

2.4.4 	Partial	Derivative

For	 a	 function	 of	 several	 variables,	 it	 is	 often	 useful	 to	 examine	 the	 variation	 of	 the
function	with	respect	 to	 one	 of	 the	 variables	while	 all	 the	 other	variables	 remain	 fixed.
This	 is	 the	purpose	of	a	partial	derivative.	The	partial	derivative	 is	obtained	 in	 the	same
way	 as	 ordinary	 differentiation	 with	 this	 constraint.	 Partial	 derivatives	 are	 defined	 as
derivatives	of	a	function	of	multiple	variables	when	all	but	the	variable	of	interest	are	held
fixed	during	 the	 differentiation.	 Consider	 a	 function	 f	 (x,y),	 which	 is	 a	 function	 of	 two
variables,	x	and	y.	The	partial	derivative	of	this	function	with	respect	to	x	is	defined	as	the
derivative	of	the	function	when	y	is	held	constant.

(2.27)

Similarly,	the	partial	derivative	of	the	function	f	(x,y)	with	respect	to	y	is	defined	as	the
derivative	of	the	function	when	x	is	held	constant.

(2.28)

2.4.5 	Indefinite	Integration

The	 previous	 subsection	 presented	 the	 derivative	 of	 a	 function.	 Let	 us	 assume	 that	 the
derivative	of	a	function	f	 (x)	 is	F(x).	 It	 is	possible	 to	 recover	 f	 (x),	within	a	constant,	by
integrating	F(x),	as	follows

f	(x)	=	∫	F(x)dx	+	C (2.29)

where,	C	is	the	integration	constant.	For	example,	if	F(x)	=	x2	+	2,	then

f	(x)	=	∫	(x2	+	2)dx	+	C	=	 	+	2x	+	C (2.30)

2.4.6 	Definite	Integration

Definite	 integration	 is	 the	 integration	 of	 a	 function,	F(x),	 over	 a	 particular	 range	 of	 the
variable	x.	It	is	denoted	by



(2.31)

where	a	and	b	are	the	limits	of	integration.	Let	f	(x)	be	the	indefinite	integral	of	F(X).	The
definite	integral	is	determined	as	follows

(2.32)

For	example,	if	F(x)	=	x2	+	2,	then	from	Eq.	2.30	we	have	f	(x)	=	 	+	2x	+	C.	Now	let	us
evaluate	the	definite	integral	over	the	interval	from	x	=	1	to	x	=	2.

(2.33)
(2.34)

(2.35)

2.4.7 	Taylor	Series

A	Taylor	series	[4]	provides	an	approach	to	approximate	a	function.	Although	it	generally
requires	an	infinite	number	of	terms	to	obtain	the	exact	value	of	the	function,	in	practice
only	 a	 small	 number	 of	 terms	 is	 required	 for	 an	 adequate	 approximation.	 The
approximation	 takes	 the	 form	of	 a	polynomial.	 The	 approximation	 is	 accurate	 around	 a
chosen	point,	and	becomes	progressively	inaccurate	as	we	move	away	from	that	point.	For
a	single	variable	function,	f	(x),	the	Taylor	series	expansion	about	a	point	x	=	x0	is	given	by

(2.36)

where	′	represents	the	derivative.	To	increase	the	accuracy	of	the	function	approximation,
we	increase	the	number	of	 terms	 included	 in	 the	Taylor	series.	At	some	point,	 including
too	many	terms	will	become	impractical.	In	many	cases,	the	Taylor	series	progresses	as	far
as	the	2nd	derivative	term.	This	version	of	the	approximation	is	referred	to	as	a	2nd	order
Taylor	series	expansion.	It	is	given	as

(2.37)

When	 higher	 order	 terms	 (HOT)	 are	 excluded,	 it	 is	 called	 a	 “Taylor	 series
approximation.”	Let’s	evaluate	the	2nd	order	Taylor	series	for	f	(x)	=	sin(x)	at	x	=	π⁄2.	We
have	f′(x)	=	cos(x)	and	f′′(x)	=	−	sin(x).	Therefore,	the	2nd	order	Taylor	series	is	given	by

(2.38)



Since,	cos(π⁄2)	=	0	and	sin(π⁄2)	=	1,	we	find

(2.39)

2.5 	Optimization	Basics:	Single-Variable	Optimality	Conditions,	Gradient,	Hessian

A	general	optimization	problem	refers	to	finding	the	maximum	or	the	minimum	value	of	a
function.	Some	examples	of	optimization	problems	include	maximizing	 the	mileage	of	a
car	or	minimizing	the	failure	rate	of	a	product.

Consider	a	continuous	single	variable	 function	 f	 (x).	Optimization	 theory	gives	us	 the
tools	 to	 find	 a	“good”	 value	 of	 x	 that	 corresponds	 to	 a	 “good”	 value	 of	 f	 (x).	 In	many
problems,	the	choice	of	the	values	of	x	is	constrained	in	the	sense	that	a	candidate	value	of
x	 must	 satisfy	 some	 conditions.	 Such	 optimization	 problems	 are	 called	 Constrained
Optimization	 problems,	 which	 will	 be	 studied	 later.	 Unconstrained	 Optimization
problems,	on	the	other	hand,	involve	no	constraints	on	the	values	of	x.	In	this	section,	we
present	 some	 basic	 concepts	 of	 unconstrained	 optimization.	 We	 discuss	 the	 basic
conditions	 of	 optimality	 for	 single	 variable	 functions.	 We	 also	 present	 the	 two	 basic
entities	that	play	a	central	role	in	multi-variable	optimization:	gradients	and	Hessians.

Definitions

Consider	the	function	f	(x)	in	a	set	S.	We	define	global	and	local	minima	as	follows:

1.	 The	function	f	(x)	is	said	to	be	at	a	point	of	global	minimum,	x*	∈	S,	if	f	(x*)	≤	f	(x)
for	all	x	∈	S.

2.	 The	function	f	(x)	is	said	to	be	at	a	point	of	local	minimum,	x*	∈	S,	if	f	(x*)	≤	f	(x)	for
all	x	within	an	infinitesimally	small	distance	 	from	x*.	That	is,	there	exists	 	>	0	such
that	for	all	x	satisfying	|x	−	x*|	<	 ,	f	(x*)	≤	f	(x).

The	concept	of	global	and	local	minima	is	illustrated	in	Fig.	2.6.	The	word	“optimum”
refers	to	a	maximum	or	a	minimum.



Figure	2.6.	Local	and	Global	Minima

2.5.1 	Necessary	Conditions	for	Local	Optimum

Assuming	 that	 the	 first	 and	 second	derivatives	of	 the	function	 f	 (x)	exist,	 the	necessary
conditions	for	x*	to	be	a	local	minimum	of	the	function	f	(x)	on	an	interval	(a,b)	are:

1.	

2.	

The	 necessary	 conditions	 for	 x*to	 be	 a	 local	maximum	 of	 the	 function	 f	 (x)	 on	 an
interval	(a,b)	are:

1.	

2.	

It	 is	 important	 to	 understand	 that	 the	 above	 stated	 conditions	 are	 necessary,	 but	 not
sufficient.	This	means	that	if	the	above	conditions	are	not	satisfied,	x*	will	not	be	a	local
minimum	or	maximum.	On	the	other	hand,	if	the	above	conditions	are	satisfied,	it	does	not
guarantee	that	x*is	the	local	minimum	or	maximum.

2.5.2 	Stationary	Points	and	Inflection	Points

A	stationary	point	is	a	point	x*that	satisfies	the	following	equation:

An	 inflection	point	may	or	may	not	be	 a	stationary	point.	An	 inflection	point	 is	 one
where	 the	 curvature	 of	 the	 curve	 (second	 derivative)	 changes	 sign	 from	 positive	 to



negative,	or	vice	versa.	That	point	is	not	necessarily	a	minimum	or	a	maximum.

2.5.3 	Sufficient	Conditions	for	Local	Optima

Consider	a	point	x*at	which	the	first	derivative	of	f	(x)	is	equal	to	zero,	and	the	order	of	the
first	nonzero	higher	derivative	is	n.	The	following	are	the	sufficient	conditions	for	x*to	be
a	local	optimum.

1. If	n	is	odd,	then	x*is	an	inflection	point.

2. If	n	is	even,	then	x*is	a	local	optimum.	In	addition,

(a) If	 the	value	of	 that	derivative	of	 f	 (x)	at	x*is	positive,	 then	 the	point	x*is	 a	 local
minimum.

(b) If	 the	value	of	 that	derivative	of	f	 (x)	at	x*is	negative,	 then	 the	point	x*is	a	 local
maximum.

The	 procedure	 to	 find	 the	 maximum	 of	 a	 function	 is	 illustated	 using	 the	 following
example.

Example	10:	In	this	example,	we	find	the	maximum	value	of	a	function	given	by	f	(x)	=
−x3	+	3x2	+	9x	+	10	in	the	interval	−2	≤	x	≤	4.

First,	the	stationary	points	are	determined	by	solving	 	=	0.

Using	 the	 formula	 to	 compute	 roots	 of	 a	 quadratic	 equation,	 the	 roots	 of	 the	 first
derivative	are	found	by	solving	x	=	 .	This	process	yields	two	solutions:	x	=	3
and	x	=	−1	as	the	two	stationary	points,	which	are	in	the	interval	−2	≤	x	≤	4.	The	function
values	 at	 these	 stationary	 points	 are	 evaluated	 to	 determine	which	 of	 these	 points	 may
correspond	to	a	global	maximum.

Evaluating	 f	 (x)	at	x	=	3,−1,−2	and	4	yields	 the	 function	 values	 as	 37,	 5,	 12,	 and	 30,
respectively.	Therefore,	x	=	3	corresponds	to	the	maximum	of	the	function	in	the	interval
−2	≤	x	≤	4.

2.5.4 	Gradient	and	Hessian	of	a	Function

In	the	previous	subsection,	we	have	only	considered	single	variable	functions;	that	is,	f	(x),
where	x	is	a	single	variable.	In	practice,	however,	x	could	represent	the	two	dimensions	of
a	 rectangular	backyard.	 In	 this	case,	we	could	 let	x	be	 a	vector	with	 two	entries,	 a	 two-
dimensional	vector:	x	=	{x1,x2},	where	x1	=	Length	and	x2	=	Width.	Therefore,	in	general,
we	can	consider	multi-variable	functions	f	(x),	where	x	is	an	n-dimensional	vector.	In	these
cases,	the	first	and	the	second	derivatives	of	the	function	are	more	complicated.	They	are
respectively	referred	to	as	the	gradient	and	the	Hessian	of	the	functions.	The	gradient	is	an
n	×	1	vector	and	the	Hessian	is	an	n	×	n	matrix.

Gradient	of	a	Function:



Given	a	function	f	(x),	its	gradient	is	given	by

(2.40)

For	example,	given	 ,	the	gradient	is	given	by

(2.41)

Recall	that	when	the	partial	derivative	of	f	is	taken	with	respect	to	x1,	 ,	we	treat	x1	as
the	variable	and	x2	as	a	constant.

Hessian	of	a	Function:

The	Hessian	of	a	function	f	(x)	is	given	by	the	following	matrix

(2.42)

and	when	the	above	derivatives	exist,	the	Hessian	is	symmetric.	That	is,	the	terms	below
the	 diagonal	 are	 the	 same	 as	 those	 above	 the	 diagonal.	 Therefore,	 we	 can	 either	 forgo
evaluating	the	lower	or	upper	triangular	terms,	or	we	can	evaluate	all	the	terms	and	verify
that	the	resulting	matrix	is	indeed	symmetric.

For	the	above	function,	the	Hessian	is	given	by

(2.43)

leading	to	the	symmetric	matrix

(2.44)

2.6 	Summary

Quantitative	 optimization	 is	 founded	 on	 the	 understanding	 of	 important	 mathematical
concepts,	including	calculus,	geometry,	and	matrix	algebra.	This	chapter	hence	provided	a
summary	 of	 the	 important	 mathematical	 concepts	 that	 are	 needed	 for	 learning	 and
practicing	optimization.	Specifically,	it	provided	a	brief	introduction	to	vectors,	Euclidean
geometry	(e.g.,	equation	of	a	plane),	matrix	properties	and	operations,	and	differential	and
integral	 calculus	 (e.g.,	 function	 continuity,	 partial	 derivatives,	 and	 Taylor	 Series).	 The
chapter	ended	with	an	introduction	to	single-variable	optimality	conditions.	That	 is,	how
to	estimate	the	gradient	and	the	Hessian	of	a	function	and	use	them	to	determine	(or	search
for)	optimum	points.	These	topics	will	be	greater	amplified	in	later	chapters.



2.7 	Problems

Warm-up	Problems

2.1 A	vector	a	starts	from	the	point	P1	:	(0,−1,	1)	and	ends	at	 the	point	P2	 :	 (3,	4,−1).
Find	the	length	of	a.

2.2 You	are	given	three	vectors:	a	=	2i	+	3j	+	4k,	b	=	−i	+	2j	−	3k,	and	c	=	2i	+	3j	−	4k.
Compute	(1)	a	+	b,	(2)	b	+	a,	(3)	3a	+	3b,	(4)	3(a	+	b),	(5)	(a	+	b)	+	c,	and	(6)	a	+
(b	+	c).	Next,	(7)	What	do	you	observe	in	the	results	that	you	obtain	for	Parts	(1)
and	 (2),	 Parts	 (3)	 and	 (4),	 and	 Parts	 (5)	 and	 (6)?	 (8)	What	 are	 these	 properties
called?

2.3 Given	two	vectors	a	=	2i	+	3j	+	4k	and	b	=	−i	+	2j	−	3k,	compute	(a)	a	⋅b	and	(b)	b
⋅a.	Next,	(c)	What	property	of	dot	product	of	vectors	is	observed	in	this	example?
(d)	What	is	the	angle	between	a	and	b?

2.4 Given	three	vectors:	a	=	−i	+	2j	−	5k,	b	=	3i−j	+	4k,	and	c	=	2i	+	3j	−	4k.	Compute
(a)	a	⋅	(b	+	c),	(b)	a	⋅	(b	−c),	(c)	a	⋅b	+	a	⋅c,	and	(d)	a	⋅b	−a	⋅c.	What	properties	of
dot	product	of	vectors	are	observed	in	the	results	of	Parts	(a)	through	(d)?

2.5 Let	a	force	acting	on	a	particle	be	given	by	the	vector	f	=	−2i	+	j.	As	a	result	of	this
force,	the	particle	moves	from	the	point	A	:	(2,	4,−5)	to	B	:	(2,	4,−7).	 (a)	Compute
the	work	 done	 on	 the	 particle.	 (b)	 How	 can	 you	 explain	 the	 results	 you	 obtain?
Interpret	the	results	obtained	in	Part	(a)	from	a	Statics	point	of	view.

2.6 You	are	 given	 three	vectors	a	=	2i	+	 j,	b	=	4k,	 and	 c	 =	 −i	 +	 2j.	 Find	 the	 angles
between	(1)	a	and	b,	(2)	b	and	c,	and	(3)	a	and	c.	Next,	(4)	what	can	you	say	about
the	vectors	a,	b,	and	c	based	on	these	results?

2.7 Find	the	equation	of	the	line	passing	through	the	points	(−2,	2)	and	(3,	4).	What	is
the	slope	of	the	line	joining	these	two	points?

2.8 Find	the	equation	of	a	plane	passing	through	three	points	P1	:	(2,	0,	0),	P2	:	(0,	2,	0)
and	P3	:	(0,	0,	2)	using	the	three	point	formula,	and	verify	the	equation	you	obtain
using	the	intercept	formula	for	the	equation	of	the	plane.	Show	your	work	for	both
methods.

2.9 Let	A=[1	1;2	1],	B=[0	1;3	 2].	 Do	 the	 following	 problems	 by	 hand	 and	 verify
using	MATLAB.	 (a)	 (AB)T	 and	 (b)	BTAT.	 Turn	 in	 your	 hand	written	 results,	 and	 a
print	out	of	the	results	at	the	MATLAB	Command	Window.	What	do	you	notice	from
your	results?

2.10 Let	 A=[1	 0	 2;0	 3	 4;2	 1	 3]and	 B=[0	 2	 4;2	 3	 4;5	 1	 3].	 Do	 the	 following
problems	by	hand	and	verify	using	MATLAB.	Turn	in	your	hand	written	results	and	a
print	out	of	the	results	at	the	MATLAB	Command	Window.	If	you	 think	any	of	 the
operations	below	cannot	be	performed,	explain	why.	(a)	AT,	(b)	(AT)T,	(c)	(A	+	B)T,
and	(d)	AT	+	BT	(e)	What	matrix	properties	do	you	observe	in	these	results?

2.11 Given	A=[0	2	-1;-2	0	-4;1	4	0].	Find	AT	by	hand	and	MATLAB.	Turn	 in	your
hand	written	results	and	a	print	out	of	the	results	at	the	MATLAB	Command	Window.
What	is	the	special	property	you	observe	about	A?	What	are	these	kind	of	matrices



called?

2.12 With	the	help	of	an	example	of	your	choice,	prove	that	the	det(A)	where	A	is	upper
or	 lower	 triangular	 is	 equal	 to	 the	 product	 of	 elements	 in	 the	 principal	 diagonal.
Take	one	example	each	of	the	upper	and	lower	triangular	kinds.	Turn	in	your	hand
written	results.

2.13 Find	the	determinant	of	A=[1	0	2;0	3	4;2	1	3]	by	hand,	and	verify	your	results
using	MATLAB.

2.14 Find	the	inverse	of	a	3	×	3	Identity	matrix	by	hand.	What	do	you	observe?

2.15 Compute	 the	 eigenvalues	 and	 eigenvectors	 of	 A=[1	 2;3	 2]by	 hand.	 Find	 the
command	 in	MATLAB	 that	 can	 be	 used	 to	 compute	 eigenvalues	 and	 eigenvectors,
and	verify	your	results	using	MATLAB.	Turn	in	printouts	of	the	Command	Window.

2.16 Find	the	eigenvalues	of	A=[3	2	1;2	2	1;1	1	1]	by	hand	and	using	MATLAB.	What
can	 you	 say	 about	 the	 definiteness	 of	 the	 matrix?	 Give	 reasons.	 (You	 can	 use
MATLAB	to	solve	for	the	cubic	equation.)	Use	MATLAB	to	compute	the	eigenvectors
of	A.	 Turn	 in	 your	 hand	 written	 calculations	 and	 the	 printouts	 of	 the	 Command
Window.

2.17 Determine	the	following	limits.

(a)

(b)

(c)

2.18 Determine	if	the	function	is	convex	or	concave.

(a) f	(x)	=	e−x

(b) f	(x)	=	xlog(x)

(c) f	(x)	=	1/x2

2.19 Determine	the	derivatives	of	the	following	functions.	(This	is	an	opportunity	to	test
or	review	your	calculus).

(a) f	(x)	=	(x2	+	x	+	2)(x2	+	2)

(b) f	(x)	=	x2	+	x	+	x−1	+	x−2

(c) f	(x)	=	xlog(x)

(d) f	(x)	=	sin(x)

(e) f	(x)	=	 	cos(x)

(f) f	(x)	=	tan(x)

2.20 Determine	the	partial	derivatives	with	respect	to	x	of	the	following	functions.	(This
is	an	opportunity	to	test	or	review	your	calculus).

(a) f	(x,	y)	=	(y2	+	x	+	2)(x2	+	2)



(b) f	(x,	y)	=	x2	+	x	+	y−1	+	y−2

(c) f	(x,	y)	=	xlog(y)

(d) f	(x,	y)	=	 	cos(y)

(e) f	(x,	y)	=	

(f) f	(x,	y)	=	extan(x	−	y)

2.21 Solve	the	following	problems.

(a) Determine	 the	 1st	 and	 2nd	 order	Taylor	 series	 for	 f	 (x)	=	 sin(x)	 about	 x	 =	 0.
Using	MATLAB,	plot	the	following	functions	for	x	ranging	from	−1	to	1:	(i).	f	(x)
=	sin(x),	(ii)	 the	1st	order	Taylor	series	approximation,	and	(iii)	 the	2nd	order
Taylor	series	approximation.	Comment	on	 the	 accuracies	of	 these	 two	Taylor
series	approximations.

(b) Find	

(c) Find	

(d) Find	

2.22 X	is	a	design	variable	vector.	Find	the	Hessian	of	the	following	functions.

(a)

(b) f	(X)	=	(sin	x1	+	cos	x2)N,	N	is	an	integer

(c) f	(X)	=	x1	ln	x2	+	x2	ln	x1,	at	(x1,x2)	=	(1,	1)

2.23 Write	 a	 MATLAB	 program	 to	 generate	 a	 5	 ×	 5	 matrix	 of	 random	 real	 numbers
between	A	and	B,	where	[A,B]	=	 [−5,	 500].	 Show	whether	 the	matrix	 is	 positive
definite	or	positive	 semi-definite	or	negative	definite	or	negative	 semi-definite	or
indefinite.	Print	the	matrix	and	the	MATLAB	M-file.

2.24 Consider	 the	 following	 function	 and	 do	 the	 following	 (by	 hand):	

(a) What	are	the	gradient	and	Hessian	of	f	(x)?

(b) What	are	the	stationary	point(s)	of	f	(x)?

2.25 Consider	 the	 following	 function	 and	 do	 the	 following	 (by	 hand):	

(a) What	are	the	gradient	and	Hessian	of	f	(x)?

(b) What	are	the	stationary	point(s)	of	f	(x)?

Intermediate	Problems

2.26 Let	 f	 (x)	=	sin(x)	be	 a	 function	 that	 you	are	 interested	 in	 optimizing.	Answer	 the
following	questions.

(a) What	are	the	necessary	conditions	for	a	solution	to	be	an	optimum	of	f	(x)?



(b) Using	the	necessary	conditions	obtained	in	(a),	and	considering	the	interval	0	≤
x	≤	2π,	obtain	the	stationary	point(s).

(c) Confirm	whether	the	above	point(s)	are	inflection	points,	maxima,	or	minima.
If	 they	 are	 maximum	 (or	 minimum)	 points,	 are	 they	 global	 maximum	 (or
minimum)	in	the	given	interval?

(d) Plot	 the	 function	sin(x)	over	 the	 interval	0	 ≤	 x	 ≤	 2π.	 Show	 all	 the	 stationary
points	on	it,	and	label	them	appropriately	(maximum,	minimum,	or	inflection).

2.27 Consider	 the	 single	 variable	 function	 f	 (x)	 =	 e-ax
2	 ,	 where	 a	 is	 a	 constant.	 This

function	is	often	used	as	a	“radial	basis	function”	for	function	approximation.

(a) Is	the	point	x	=	0	a	stationary	point	for	(i)	a	>	0,	and	(ii)	a	<	0.	What	happens	if
a	=	0?	Is	x	=	0	still	a	stationary	point?

(b) If	 x	 =	 0	 is	 a	 stationary	 point,	 classify	 it	 as	 a	 minimum,	 maximum,	 or	 an
inflection	point	for	(i)	a	>	0,	(ii)	a	<	0,	and	(iii)	a	=	0.

(c) Prepare	a	plot	of	f	(x)	for	a	=	1,	a	=	2,	and	a	=	3.	Plot	all	 three	curves	on	 the
same	figure.	By	observing	the	plot,	do	you	think	f	(x)	=	e-ax

2	,a	>	0	has	a	global
minimum?	If	so,	what	is	the	value	of	x	and	f	(x)	at	the	minimum?
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PART	2

USING	OPTIMIZATION—THE	ROAD	MAP
In	the	first	part	of	the	book,	we	dealt	with	some	material	that	prepared	us	to	begin	learning
optimization.	Specifically,	we	learned	about	MATLAB	and	about	some	basic	mathematics.
In	this	next	portion	of	the	book,	we	start	to	understand	what	optimization	is	all	about.	 In
particular,	(i)	we	will	be	introduced	to	the	fascinating	world	of	optimization,	(ii)	we	will
differentiate	optimization	from	other	engineering	activities	 (e.g.,	analysis	and	modeling),
and,	 finally,	 (iii)	 we	 will	 provide	 an	 important	 classification	 of	 optimization,	 which	 is
important	to	know	in	practice.

Specifically,	the	topics	presented,	with	the	chapter	numbers,	are	given	below:

3. Welcome	to	the	Fascinating	World	of	Optimization

4. Analysis,	Design,	Optimization,	and	Modeling

5. Introducing	Linear	and	Nonlinear	Programming



3

Welcome	to	the	Fascinating	World	of	Optimization

3.1 	Overview

Welcome	to	the	fascinating	world	of	optimization.	Indeed,	you	will	find	optimization	to	be
a	powerful	addition	to	your	education	or	to	your	toolkit	in	the	workplace.	This	brief	initial
chapter	provides	you	with	a	clear	perspective	as	to	how	the	book	will	play	a	key	role	 in
your	 understanding	 of	 optimization.	 As	 discussed	 in	 the	 Preface,	 this	 book	 takes	 a
squarely	practical	perspective.	As	such,	your	learning	will	involve	practicing	optimization
using	many	problems.	By	the	end	of	your	study	of	this	book,	you	should	expect	to	be	able
to	 work	 with	 others	 to	 optimize	 practically	 any	 design	 or	 system	 and	 improve	 its
performance.	 If	 the	 design	 you	 would	 like	 to	 optimize	 is	 in	 your	 technical	 area	 of
expertise,	you	might	be	able	 to	do	all	of	 the	work	yourself.	 If	 the	design	or	system	you
would	like	to	optimize	involves	modeling	issues	with	which	you	are	not	familiar,	you	will
simply	need	to	collaborate	with	someone	(or	a	team)	who	is	able	to	provide	you	with	the
computational	performance	models.	In	this	 latter	case,	as	 it	often	 is	 in	practice,	you	will
provide	 your	 knowledge	 of	 optimization,	 and	 someone	 else	 may	 model	 the	 system.	 In
other	words,	one	person	might	do	 the	structural	analysis,	 another	might	do	 the	financial
analysis,	and	you	might	use	your	knowledge	of	this	book	to	optimize	the	combined	system
to	make	it	competitive	in	the	market	place.

3.2 	What	Is	Optimization?	What	Is	Its	Relation	to	Analysis	and	Design?

What	is	optimization?	Optimization	can	be	defined	in	different	ways.	Some	define	it	as
“the	art	of	making	things	the	best.”	Interestingly,	many	people	do	not	like	 that	definition
as	 it	may	not	be	reasonable,	or	even	possible,	 to	do	something	 in	 the	very	best	possible
way.	In	practice,	doing	something	as	well	as	possible	within	practical	constraints	is	very
desirable.	 Designing	 a	 product	 and	 doing	 all	 we	 can	 to	 increase	 profit	 as	 much	 as	 is
practically	possible	is	also	very	desirable.	These	comments	may	begin	to	give	you	an	idea
of	what	optimization	is	attempting	to	do	in	practice.	It	provides	us	with	the	means	to	make
things	happen	in	the	best	possible	practical	way.

Now,	we	may	ask	how	this	 is	different	from	what	all	engineers,	all	 financial	analysts,
and	 most	 other	 professionals	 try	 to	 do?	Well,	 the	 answer	 to	 this	 question	 is	 important
indeed.	Without	optimization,	we	accomplish	this	by	using	experience,	intuition,	and	 just
plain	luck!	With	optimization,	we	do	it	in	a	systematic	way,	where	we	use	the	power	of	a
computer	 to	 examine	 more	 possibilities	 than	 any	 human	 being	 could	 ever	 attempt.
Furthermore,	the	optimization	approach	makes	sure	that	the	search	is	done	as	efficiently	as
possible.

Since	 you	 have	 made	 the	 decision	 to	 educate	 yourself	 in	 the	 art	 and	 science	 of
optimization	(see	Refs.	[1,	2,	3,	4,	5]),	it	is	important	to	keep	in	mind	that	you	are	making
a	reasonable	investment	that	is	intended	to	bring	tangible	benefits.	Figure	3.1	provides	an



interesting	way	to	clarify	this	point.	Some	books	that	take	a	somewhat	different	but	useful
approach	include	(Refs.	[6,	7,	8]).

Figure	3.1.	Motivation	for	Optimization:	Creating	New	Possibilities

In	other	settings,	you	may	be	exposed	to	a	very	mathematical	view	of	optimization,	which,
in	my	opinion,	 sometimes	 obscures	 the	 basic	 beauty,	 simplicity,	 and	 practical	 power	 of
optimization.	To	avoid	that	pitfall,	 let	us	immediately	start	getting	an	operational	 idea	of
the	optimization	process.	We	can	do	 this	without	 any	equation	or	 complex	 terminology.
Let	 us	 simply	 examine	 Fig.	 3.2.	 This	 figure	 illustrates	 the	 design	 process	 using	 (i)
traditional	design	approaches,	and	(ii)	using	optimal	design	approaches.

Figure	3.2.	Traditional	vs.	Optimal	Design	Process

• Box	A	displays	the	input,	which	includes	two	basic	issues.	The	first	defines	our	dream
design:	the	desired	performance	levels	(e.g.,	maximize	profit,	minimize	mass)	and	any
constraints	 (e.g.,	 deformation	 less	 than	 5	 mm,	 cost	 less	 than	 $7).	 The	 second	 item
provides	 an	 initial	 design	 that	we	 can	obtain	 through	 any	 conventional	means.	 That
design	is	simply	a	starting	point	from	which	improvements	can	be	made.

• Box	B	illustrates	the	analysis	phase.	Analysis	is	essentially	what	you	do	in	almost	all	of
your	classes.	Analysis	usually	tells	you	what	the	output	result	is	for	a	given	set	of	input
conditions,	 whether	 you	 have	 a	 mechanical,	 electrical,	 or	 financial	 system	 under



consideration.	This	is	not	design	and	this	is	not	optimization;	however,	we	need	to	be
able	to	do	analysis	in	order	to	design	or	optimize.

• Box	C	explains	how	the	optimization	process	cycle	begins.	Using	the	initial	design	that
is	 provided,	 it	 is	 very	 unlikely	 that	 it	 will	 satisfy	 all	 the	 constraints	 and	 maximize
performance.	Most	likely,	it	will	need	to	be	improved	by	modifying	it	as	intelligently	as
possible.	This	is	where	the	power	of	optimization	comes	into	play.	This	takes	us	to	the
next	box.

• Box	D	is	where	the	design	is	revised	and	improved	in	a	very	systematic	way.	This	is	not
a	trivial	process.	However,	fortunately,	the	person	who	is	mainly	interested	in	applying
optimization	will	not	need	to	focus	on	most	of	what	is	in	that	box.	In	Parts	I,	II,	and	III
of	 the	book,	we	will	 learn	what	 is	 needed	 to	 competently	 apply	 optimization,	while
Parts	IV	and	V	address	more	advanced	topics	as	well	as	 the	details	of	Box	D.	 In	 the
process	of	optimization,	Box	D	continually	modifies	 the	design	with	 the	expectation
that	 the	design	will	 improve.	Each	modification	 is	submitted	 to	 the	analysis	module.
After	 the	 analysis	 is	 performed,	 the	 design	 performance	 is	 again	 evaluated	 to	 see
whether	it	meets	our	objectives.	If	it	does,	we	are	done.	If	it	does	not,	we	go	through	the
loop	 one	more	 time.	 Please	 note	 that	 the	 actual	 process	 is	 more	 complex	 than	 this
simplified	explanation.

• Box	E	illustrates	the	human	element	involved	in	making	the	required	improvements	in
a	traditional	way.	In	other	words,	Box	E	replaces	Box	D.	The	question	 that	person	 is
trying	to	answer	is:	How	can	I	change	the	design	to	make	it	perform	better?	The	options
are:	ask	a	friend,	use	intuition,	use	experience,	or	just	hope	to	be	lucky!	As	you	might
guess,	as	we	move	into	this	not-so-new	world	of	computers	and	of	extreme	competition,
this	is	not	necessarily	the	best	way	to	proceed.	Please	note	that	human	design	decision-
making	is	critically	needed,	but	not	at	the	level	of	Box	D.

Observation:	 A	 few	 observations	 regarding	 the	 conventional	 vs.	 the	 optimal
approaches	 are	 in	 order.	 Using	 the	 traditional	 approach,	 we	 can	 only	 perform	 a	 small
number	 of	 improvement	 loops.	 Using	 computational	 optimization	 approaches,	 we	 can
move	 through	 the	 improvement	 loop	 more	 effectively	 and	 efficiently.	 In	 addition,	 the
improvements	are	based	on	rigorous	thinking	using	the	power	of	optimization,	while	 the
traditional	approach	is	usually	ad	hoc,	based	on	intuition	and	experience	that	can	fail	us,
particularly	in	complex	and	innovative	designs.

Generic	 Car	 Optimization:	 Today,	 the	 car	 industry	 makes	 powerful	 use	 of
optimization.	Optimization	 takes	 place	 at	 many	 levels,	 from	 individual	 parts	 to	 crash-
performance	 to	 save	 lives.	 Other	 applications	 range	 from	 fuel	 efficiency	 to	 pollution
minimization	or	noise	reduction.	In	Fig.	3.3,	we	see	the	possible	impact	of	optimization	in
optimizing	 for	 drag	 reduction	 and	 various	 other	 important	 performance	 attributes.	 The
examination	of	Figs.	3.3(a)	and	3.3(b)	yields	endless	questions	regarding	the	process,	the
effectiveness	 and	 the	potential	 impact	 of	 optimization.	Many	 of	 these	questions	will	 be
addressed	in	this	book,	and	many	will	be	discovered	and	addressed	during	the	course	of
your	career	regarding	real-world	designs	and	systems.



Figure	3.3.	Generic	Car	Optimization

Role	of	Optimization	 in	 the	Revolutionary	Transformation	of	 the	Airplane:	 Over
two	centuries	ago,	Sir	George	Cayley	was	reported	 to	have	advanced	 the	concept	of	 the
modern	 airplane.	A	 century	 later,	 in	 1903,	 the	Wright	 brothers	 are	 credited	 for	 the	 first
sustained	 flight	 with	 a	 powered,	 controlled	 airplane.	 The	 past	 few	 decades	 have	 seen
revolutionary	 transformations	 of	 the	 airplane,	 while	 its	 basic	 shape	 has	 not	 drastically
changed.	In	Fig.	3.4,	we	observe	how	different	attributes	of	interest	can	result	in	different
layouts,	sizes,	fuel	consumptions,	cruise	speeds	for	a	business	jet	or	a	passenger	jet.	If	you
should	gather	a	few	experienced	engineers	in	a	room,	you	would	have	quite	an	engaging
discussion	about	which	 of	 these	 transformation	were	 or	 could	 have	 been	 influenced	 by
computational	 optimization.	 The	 past	 three	 decades	 have	 experienced	 rapidly	 growing
application	of	computational	optimization	in	many	critical	aspects	of	airplane	design,	and
the	 future	 is	 expected	 to	 bring	 us	 an	 acceleration	 of	 this	 trend,	 in	 part	 due	 to	 the
exponential	growth	of	computing	power.

Figure	3.4.	Evolutionary	and	Revolutionary	Transformation	of	the	Airplane

3.3 	Why	Should	Junior	and	Senior	College	Students	Study	Optimization?



The	 next	 question	 that	 may	 come	 to	 mind	 is:	 as	 a	 Junior	 or	 Senior,	 why	 should	 I	 be
studying	 optimization?	Well,	 hopefully,	 what	 you	 have	 learned	 thus	 far	 should	 at	 least
partially	answer	your	question.	In	truth,	this	is	a	question	that	you	will	be	able	to	answer	in
your	own	way	after	you	will	have	had	the	opportunity	to	optimize	designs	yourself,	and
feel	 comfortable	 and	 confident	 that	 you	 could	 not	 have	 possibly	 gotten	 these	 optimal
designs	any	other	practical	way.

In	addition	to	these	observations,	you	might	also	have	the	opportunity	to	be	able	to	use
optimization	while	you	 are	 still	 an	undergraduate.	There	 is	 no	 reason	 to	wait.	Applying
optimization	to	your	senior	capstone	design,	for	example,	is	one	significant	possibility	that
comes	to	mind.

3.4 	Why	Should	Graduate	Students	Study	Optimization?

To	 address	 this	 question,	 many	 of	 my	 previous	 comments	 to	 the	 undergraduates	 also
apply.	However,	in	your	case,	there	are	significantly	more	opportunities.	If	you	are	doing
research,	as	you	most	likely	are,	you	should	be	able	to	use	optimization	to	find	better	ways
to	proceed	with	your	experiments	or	with	your	designs.	Chances	are	that	you	would	like	to
obtain	a	desired	output	from	a	system	that	you	have	modeled	or	are	analyzing.	This	is	one
case	where	optimization	should	provide	you	with	a	way	to	obtain	an	optimal	output.

3.5 	Why	Should	Industry	Practitioners	Study	Optimization?

As	an	industry	practitioner,	you	will	be	able	to	use	optimization	to	help	you	in	any	number
of	 projects.	 And	 when	 you	 do,	 you	 may	 find	 optimal	 designs	 that	 others	 cannot
realistically	obtain	without	optimization.	It	is	also	important	to	keep	in	mind	that	when	I
use	 the	word	design,	 I	mean	 any	 system	 for	which	you	use	 computation	 to	 evaluate	 its
performance.	That	involves	a	majority	of	the	systems	that	we	deal	with	in	an	engineering
and/or	financial	environment.	In	addition,	an	increasing	number	of	software	packages	now
include	 an	 optimization	module	 that	 allows	 its	 users	 to	 apply	 optimization.	 With	 solid
practical	knowledge	of	optimization,	you	are	in	a	strong	position	to	apply	the	optimization
portion	of	these	software	packages	effectively.

3.6 	Why	Use	this	Book,	and	What	Should	I	Expect	from	It?

There	 are	 several	 popular	 books	 on	 optimization	 in	 the	 market,	which	 focus	 on	 either
theories	 or	 applications.	 This	 book,	 however,	 provides	 the	 following	 key	 advantages,
making	it	distinct.

1. This	book	serves	as	a	practical	guide	to	the	application	of	optimization.	This	book	uses
a	special	way	to	teach	optimization	that	requires	sufficient	practice.	Like	other	books	on
optimization,	 this	book	also	provides	a	mathematical	background	of	optimization.	 In
addition,	 it	 provides	 a	 large	 number	 of	 examples	 to	 help	 readers	 understand
optimization.	 This	 book	 helps	 readers	 to	 quickly	 learn	 how	 to	 solve	 practical
optimization	problems.	Readers	can	 follow	 the	 examples	 to	 learn	 how	 to	 solve	 real
engineering	 design	 problems.	One	 unique	 aspect	 of	 this	 book	 is	 that	 numerical	 and



modeling	issues	involved	in	practical	optimization	are	also	discussed.

2. This	book	covers	 a	broad	 range	of	knowledge	on	 the	 topic	of	optimization.	Various
aspects	of	optimization	are	covered	in	this	book,	such	as	linear	optimization,	nonlinear
optimization,	 multiobjective	 optimization,	 global	 optimization,	 and	 discrete
optimization.	 This	 book	 also	 teaches	 students	 how	 to	 solve	 contemporary	 complex
engineering	 problems.	 The	 problems	 after	 each	 chapter	 are	 a	 good	 exercise	 to	 help
readers	master	practical	optimization	problems.

3. This	book	is	suitable	for	different	classes	of	readers	including	undergraduate	students,
graduate	 students,	 and	 industry	 practitioners.	 Starting	 with	 the	 fundamentals	 of
MATLAB	and	optimization,	 this	book	moves	on	 to	explore	advanced	and	more	 recent
topics	in	optimization.

3.7 	How	this	Book	Is	Organized

This	book	contains	five	parts	comprising	19	chapters.	They	are	organized	as	follows:

Part	 I.	 Helpful	 Preliminaries:	 This	 part	 includes	 Chapters	 1	 and	 2.	 These	 chapters
provide	 an	 introduction	 to	 MATLAB,	 and	 the	 necessary	 mathematical	 preliminaries	 for
optimization.	This	part	includes	the	following	chapters:

• MATLAB	as	a	Computation	Tool

• Mathematical	Preliminaries

Part	II.	Using	Optimization—The	Road	Map:	This	part	includes	Chapters	3	to	5.	These
chapters	 illustrate	 the	 benefits	 of	 optimization,	 the	modeling	 of	 optimization	 problems,
and	the	classification	of	optimization	problems.	This	part	includes	the	following	chapters:

• Welcome	to	the	Fascinating	World	of	Optimization

• Analysis,	Design,	Optimization,	and	Modeling

• Introducing	Linear	and	Nonlinear	Programming

Part	III.	Using	Optimization—Practical	Essentials:	This	part	includes	Chapters	6	to	10.
These	 chapters	 examine	 how	 to	 solve	 multiobjective	 optimization,	 global	 optimization,
and	discrete	optimization	problems.	 Important	practical	numerical	 issues	of	optimization
are	 addressed.	 The	 links	 between	 optimization	 theories	 and	 applications	 are	 studied.
Practical	optimization	examples	are	provided.	This	part	includes	the	following	chapters.

• Multiobjective	Optimization

• Numerical	Essentials

• Global	Optimization	Basics

• Discrete	Optimization	Basics

• Practicing	Optimization	-	Larger	Examples

Part	IV.	Going	Deeper:	Inside	the	Codes	and	Theoretical	Aspects:	This	part	includes
Chapters	 11	 to	 13.	 Theorems	 and	 optimization	 algorithms	 for	 linear	 and	 nonlinear
optimization	are	presented	in	this	part.	This	part	includes	the	following	chapters:



• Linear	Programming

• Nonlinear	Programming	with	No	Constraints

• Nonlinear	Programming	with	Constraints

Part	V.	More	Advanced	Topics	in	Optimization:	This	part	includes	Chapters	14	 to	19.
Advanced	 topics,	 including	discrete	optimization,	design	optimization	under	uncertainty,
Pareto	 frontier	 generation,	 physical	 programming,	 and	 evolutionary	 algorithms,	 are
investigated	in	this	part.	This	part	includes	the	following	chapters:

• Discrete	Optimization

• Modeling	Complex	Systems:	Surrogate	Modeling	and	Design	Space	Reduction

• Design	Optimization	Under	Uncertainty

• Methods	for	Pareto	Frontier	Generation/Representation

• Physical	Programming	for	Multiobjective	Optimization

• Evolutionary	Algorithms

3.8 	How	to	Read	and	Use	this	Book

This	 book	 covers	 a	 broad	 range	 of	 knowledge	 of	 optimization.	Undergraduate	 students,
graduate	 students,	 and	 industry	 practitioners	 can	 use	 this	 book	 in	 different	 ways	 for
different	purposes.

Undergraduate	 students	 in	 their	 Junior	or	Senior	year,	who	have	 learned	calculus	 and
linear	 algebra,	 have	 an	 opportunity	 to	 explore	 their	 application	 in	 the	 study	 of
optimization.	Part	I	of	this	book	provides	a	brief	review	of	the	mathematical	preliminaries
for	learning	optimization.	MATLAB	serves	as	the	programming	language	and	computational
tool	for	solving	the	optimization	problems	in	this	book.	For	those	uninitiated	in	the	use	of
MATLAB,	it	is	necessary	to	carefully	study	Chapter	1.	Parts	II	and	III	present	the	basics	for
modeling	and	solving	optimization	problems	using	MATLAB.	The	knowledge	in	these	two
parts	 is	 sufficient	 for	 those	 students	 who	 wish	 to	 apply	 optimization	 to	 practical
engineering	design	problems.

To	 guide	 graduate	 students	 who	 would	 like	 to	 learn	 the	 theoretical	 aspects	 of	 the
optimization	algorithms	behind	the	MATLAB	functions,	Part	IV	discusses	the	theorems	and
algorithms	 for	 linear	 and	 nonlinear	 programming.	 Advanced	 topics,	 including	 discrete
optimization,	 optimization	 under	 uncertainty,	 Pareto	 frontier	 generation,	 physical
programming,	 and	 evolutionary	 algorithms,	 are	 presented	 in	 Part	 V.	 These	 topics	 are
important	 for	 research	 and	 development	 in	 engineering	 design.	 Doctorial	 students	 who
conduct	research	on	optimization	are	expected	to	learn	these	advanced	topics.

This	book	teaches	optimization	with	a	practical	approach,	which	favorably	distinguishes
it	from	other	books	on	optimization.	Industry	practitioners,	who	are	most	concerned	with
how	to	apply	optimization	to	practical	problems,	need	only	cover	the	chapters	in	Parts	 II
and	III.	These	chapters	cover	how	to	solve	practical	optimization	problems,	as	well	as	the
numerical	and	modeling	issues	encountered	thereof.



3.9 	Summary

This	chapter	provided	a	philosophical	introduction	to	design	optimization,	its	place	in	the
world	of	science	and	engineering,	and	the	importance	of	learning	optimization	to	students,
scholars,	 and	 industry	 practitioners.	 An	 illustration	 of	 how	 a	 generalized	 optimization
process	works	is	also	provided.	This	chapter	essentially	serves	as	a	gateway	to	the	theory
and	 practice	 of	 optimization	 taught	 in	 this	 book.	 To	 serve	 in	 that	 role,	 it	 provided	 an
overview	of	what	to	expect	from	the	upcoming	chapters	in	this	book,	and	how	the	overall
content	of	this	book	is	structured	toward	teaching	optimization	to	undergraduate	students,
graduate	students,	and	industry	practitioners.

3.10 	Problems

3.1 Describe	a	design	problem	of	your	interest	(in	400-500	words)	where	optimization
can	be	applied	to	enrich	the	design.	It	could	be	a	problem	you	are	currently	working
on	(e.g.,	Capstone	 design)	 or	 a	 problem	you	 plan	 to	work	on.	Clearly	 define	 the
scope	 of	 applying	 optimization	 and	 the	 expected	 improvement	 in	 that	 context.
Doctoral	students	 are	 strongly	 recommended	 to	 identify	a	problem	that	 is	 closely
related	to	their	principal	area	of	research.

3.2 Conceive	a	modern	real	life	product	(e.g.,	smartphone,	solar	PV,	or	PHEV)	where
optimization	 can	 be	 used	 to	 further	 improve	 its	 design.	 Describe	 the	 scope	 of
applying	optimization	in	that	context	(in	200-400	words).	Specifically	state	(i)	what
objectives	 will	 need	 to	 be	 maximized	 and	 minimized,	 (ii)	 what	 features	 of	 the
product	could	serve	as	design	variables,	and	(iii)	what	practical	constraints	should
be	taken	into	consideration	during	optimization.

3.3 Compare	 and	 contrast	 (i)	 quantitative	 optimization-based	 design,	 and	 (ii)
experience-based	design.

3.4 From	 your	 own	 standpoint,	 explain	 the	 role	 of	 modern	 day	 computing	 (from
portable	 ultrabooks	 to	 number-crunching	 supercomputers)	 in	 the	 application	 of
optimization	to	real	life	design.

3.5 Expand	 on	 the	 discussion	 associated	 with	 Fig.	 3.4	 where	 the	 evolutionary
transformation	of	the	airplane	is	briefly	discussed.	Let	your	discussion	be	guided	by
your	 initial	 understanding	 of	 the	 role	 of	 computational	 optimization	 in	 modern
engineering	and	related	fields,	as	well	as	finance	and	other	quantitative	areas.	There
is	not	specific	good	answer	 to	 this	question,	while	some	may	be	more	 thoughtful
and	imaginative	than	others.	A	bit	of	research	and	cursory	exploration	of	this	book
may	be	helpful.	Limit	your	discussion	to	no	more	than	one	to	two	pages.
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4

Analysis,	Design,	Optimization	and	Modeling

4.1 	Overview

In	this	chapter,	we	introduce	the	important	activities	of	analysis,	design,	optimization,	and
modeling.	 While	 we	 are	 all	 generally	 familiar	 with	 these	 terms,	 it	 is	 important	 to
understand	them	in	the	context	of	how	they	relate	to	our	optimization	activities.	We	also
develop	an	important	understanding	of	how	modeling	system	behavior	is	a	distinct	activity
from	modeling	an	optimization	problem.	These	involve	two	distinct	lines	of	expertise.	In
most	of	your	courses	(e.g.,	structures,	dynamics	and	finance)	you	focused	on	 the	former.
In	this	book,	we	focus	on	the	latter.

4.2 	Analysis,	Design	and	Optimization

Analysis	 and	 optimization	 are	 two	 activities	 integral	 to	 the	 process	 of	 design
(Refs.	 [1,	2,	3,	4,	5]).	 In	 this	 chapter,	 as	well	 as	 in	 the	 remainder	 of	 the	 book,	we	will
primarily	 focus	 on	 these	 two	 activities	 in	 the	context	 of	 engineering	 or	 systems	 design.
However,	the	mathematical	concepts,	approaches,	algorithms,	and	software	tools	that	you
will	 learn	 in	 this	 book	 could	 be	 applicable	 to	 diverse	 fields	 beyond	 engineering	 (e.g.,
optimization	 of	market	 portfolios)	 [6].	Although,	 from	 a	 technical	 perspective,	 analysis
and	optimization	can	be	considered	to	be	steps	within	the	process	of	design,	they	can	also
be	 performed	 as	 stand-alone	 activities	 toward	 other	 end	 goals	 within	 the	 scope	 of
academic	 research	 and	 industrial	 R&D.	 In	 this	 section,	 you	will	 learn	 the	 definition	 of
these	activities	and	how	they	are	related	to	each	other.	At	the	same	time,	you	will	have	the
opportunity	 to	 understand	 and	 appreciate	 the	 roles	 and	 responsibilities	 of	 the	 users,
researchers,	or	engineers	who	execute	these	activities,	whether	individually	or	as	a	part	of
a	team.

In	 order	 to	 help	 you	 better	 understand	 the	 practical	 essence	 of	 these	 activities,	 the
following	simple	design	example	will	be	used	throughout	this	section.	You	are	designing	a
table	 that	 can	 carry	 as	much	weight	 (of	 objects	 placed	 on	 it)	 as	 possible,	while	 fitting
within	a	particular	corner	of	your	room.	You	are	allowed	a	limited	budget	to	construct	the
table.

4.2.1 	What	Is	Analysis?

Analysis	 by	 itself	 is	 a	 broad	 term	 and	 generally	 refers	 to	 the	 process	 of	 dissecting	 a
complex	system,	 topic,	phenomena,	 incident,	or	 substance	 into	smaller	 (and	 likely	more
tractable)	parts	to	acquire	a	better	understanding	of	it.	Engineering	analysis	can	be	more
specifically	defined	as	the	application	of	scientific	principles	and	processes	 to	reveal	 the
properties	and	the	state	of	a	system,	and	also	to	understand	the	underlying	physics	driving
the	system	behavior.	Now,	 in	 the	 case	 of	 the	 “table	 design	problem,”	 you	 are	 primarily



required	 to	 analyze	 how	 the	 different	 design	 decisions	 (e.g.,	 the	 table	 geometry	 and
material)	 impact	 the	 capacity	 of	 the	 table	 to	carry	weight	without	 breaking	 down.	 This
capacity	will	be	referred	to	as	the	weight-holding	capacity	of	the	table	in	the	remainder	of
this	 chapter.	Considering	 the	problem	 in	more	 technical	 detail,	we	 realize	 that	 there	 are
multiple	modes	of	breakdown	(e.g.,	buckling	of	the	table	legs,	fracturing	of	the	table	top,
or	failure	of	one	or	more	joints).	Hence,	analyses	of	the	the	different	modes	of	breakdown
or	 failure	 becomes	 necessary,	 which	 again	 illustrates	 that	 analysis	 generally	 involves
decomposing	a	system/mechanism/problem	into	smaller	parts	 to	be	studied.	Now,	 if	you
are	from	a	mechanical	engineering	or	a	related	discipline,	you	might	have	already	realized
that	 the	 type	of	 analysis	needed	 for	 this	 problem	 is	structural	 analysis.	 This	 realization
brings	us	 to	another	 important	aspect	of	analysis.	The	 role	of	disciplinary	knowledge	 in
analysis	and	its	implication	in	a	research,	industrial,	or	practical	setting.

Analysis	 generally	 demands	 disciplinary	 knowledge	 pertinent	 to	 the	 system	 or
mechanism	 being	 analyzed.	 More	 often	 than	 not,	 practical	 systems	 involve	 multiple
disciplines.	 For	 example,	 designing	 an	 aircraft	 will	 require	 structural,	 aerodynamic,
control,	 and	propulsion	analyses	 [7,	8].	 In	 a	 practical	setting,	 the	 design	 team	generally
involves	 experts	 from	 different	 disciplines.	 Since	 disciplinary	 understanding	 may	 have
reached	different	levels	of	maturity	(with	scientific	progress),	mathematical	tools	might	be
readily	available	for	conducting	certain	types	of	analyses,	thus	alleviating	the	necessity	for
dedicated	 disciplinary	 expertise.	 On	 the	 other	 hand,	 in	 the	 case	 of	 mechanisms	 or
phenomena	that	are	not	yet	well	understood,	in-depth	and	fundamental	analyses	might	be
required	 -thereby	 demanding	 the	 involvement	 of	 a	 disciplinary	 expert.	 Now	 that	 the
importance	 of	 analysis	 and	 the	 role	 of	 disciplinary	 knowledge	 therein	 has	 been
established,	the	next	question	is	-	what	are	the	basic	approaches	to	engineering	analysis?

Analysis	 is	 sometimes	misinterpreted	 as	 a	 purely	mathematical	or	 theoretical	 activity.
Analysis	could	involve	“experiments	-	testing	-	mathematical	inferencing”	as	an	iterative
process,	especially	for	the	following	commonly-occurring	scenarios:

• the	underlying	physics	is	not	well	understood;

• the	 fundamental	 disciplinary	 principles	 or	 theory	 do	 not	 directly	 apply	 due	 to
geometrical	complexities	and	inherent	uncertainties;	or

• lack	 of	 knowledge	 of	 the	 material	 properties	 (e.g.,	 thermodynamic	 or	 structural
properties).

For	example,	in	the	case	of	the	“table	design	problem,”	ideally,	the	mathematical	theory
of	solid	mechanics	 (or	mechanics	or	materials)	can	be	used	 to	 fully	analyze	 the	 system.
However,	 in	practice,	you	might	not	know	 the	 structural	properties	of	 the	 type	 of	wood
used	for	construction	or	the	strength	of	the	fasteners	to	be	used	at	the	joints.	Appropriate
experiments	could	be	conducted	in	that	case	to	fill	this	knowledge	gap.	Such	scenarios	are
expected	 to	be	more	common	 in	 designing	 new	 and	 innovative	 systems	 and,	as	 such,	 a
comprehensive	 understanding	 of	 the	 scope	 of	 “analysis”	 is	 important	 (for
researchers/engineers)	to	effectively	contribute	to	technological	innovation.

4.2.2 	What	Is	Design?



Design,	 in	 general	 terms,	 can	 be	 defined	 as	 the	 creation	 of	 a	 plan	 and/or	 strategy	 for
constructing	 a	 physical	 system	 or	 process.	 Engineering	 design	 itself	 could	 be	 readily
classified	 into	multiple	 (often	 overlapping)	 categories	 based	 on	 the	 “object	 of	 design,”
such	as	product	design,	systems	design,	 industrial	design,	and	process	design.	An	 entire
dedicated	 book	 (or	 even	 sets	 of	 books)	 would	 be	 necessary	 to	 fully	 explain	 and
demonstrate	one	of	the	“design”	categories	(e.g.,	Ref.	[9]).	This	book	will	primarily	focus
on	engineering	design	in	the	context	of	mathematical	optimization.	From	this	standpoint,
“engineering	design”	itself	can	be	perceived	as	a	multi-stage	process,	an	example	of	which
is	 presented	 in	 Fig.	 4.1,	 which	 includes	 stages	 up	 to	 product	 delivery.	 In	 practice,	 the
design	process	might	not	 include	all	 the	stages	shown	in	Fig.	4.1	or	might	 include	some
additional	unique	stages.

	



Figure	4.1.	Multi-stage	Design	Process

Considering	the	example	of	the	“table	design	problem,”	conceptual	design	will	involve
(i)	planning	the	overall	shape	or	configuration	of	the	table	(e.g.,	 round	top	or	rectangular
top;	 rigid	or	collapsible	design),	 and	 (ii)	 choosing	 the	class	of	material	 to	be	used	 (e.g.,
metal,	 glass	 top,	 or	 wood	 construction).	Preliminary	 design	 in	 this	 case	 will	 primarily
involve	determining	 the	 optimum	dimensions	 of	 the	 different	parts	 of	 the	 table	 and	 the
material	 to	 be	 used	 for	 these	parts.	The	 objective	 of	maximum	weight-holding	 capacity
and	 the	 constraints	 imposed	 by	 the	 budget	 and	 the	 size	 of	 the	 room	 will	 guide	 this
preliminary	design	process.	Detail	design	will	 finally	 involve	determinimg	the	necessary
modularity	of	the	table	and	the	joint	mechanisms	from	the	perspective	of	manufacturing.

It	is	important	to	note	that,	in	practice,	these	design	stages	may	not	be	distinctly	defined
in	 a	 linear	 fashion;	significant	 overlap	 is	 common.	Additionally,	 iterations	 among	 these
stages	could	also	become	necessary.	For	example,	if	a	feasible	design	or	satisfactory	value
of	the	objectives	could	not	be	obtained	in	the	preliminary	design	stage,	you	might	need	to
go	back	and	re-think	your	conceptual	design.

4.2.3 	What	Is	Optimization?

In	 the	 previous	 chapter,	 you	 were	 introduced	 to	 a	 philosophical	 and	 practical
understanding	 of	 the	 role	 of	 optimization	 in	 academic	 research	 and	 industrial	 systems
development.	 You	 were	 also	 presented	 the	 opportunity	 to	 appreciate	 the	 importance	 of
learning	optimization	as	an	undergraduate	student,	a	graduate	student,	or	as	a	professional.
In	this	section,	we	will	take	a	step	further	into	the	world	of	optimization	by	looking	at	it
from	a	quantitative	 design	 perspective	without	 getting	 into	 the	mathematical	 intricacies
(which	will	be	described	in	later	chapters).

From	the	general	standpoint	of	searching	for	the	best	available	design,	optimization	can
be	 defined	 as	 follows.	Mathematical	 optimization	 is	 the	 process	 of	maximizing	 and/or
minimizing	 one	 or	 more	 objectives	 without	 violating	 specified	 design	 constraints,	 by
regulating	a	set	of	variable	parameters	that	influence	both	 the	objectives	and	 the	design
constraints.	It	is	important	to	realize	that	in	order	to	apply	mathematical	optimization,	you
need	 to	express	 the	objective(s)	and	 the	design	constraint(s)	 as	quantitative	 functions	of
the	variable	parameters.	These	variable	parameters	are	also	known	as	design	variables	or
decision	variables.

To	better	understand	the	definition	of	optimization,	we	consider	the	preliminary	design
stage	 for	 the	 “table	design	problem.”	For	 this	 problem,	optimization	of	 the	 table	 design
can	be	articulated	as	the	following	process:

• maximize	the	weight-holding	capacity	of	the	table	(i.e.,	the	total	weight	of	objects	that
can	be	placed	on	the	table),	while

• satisfying	(i)	 the	geometrical	constraints	 imposed	by	 the	 size	 and	 shape	of	 the	 room
(where	the	table	will	be	located)	and	(ii)	the	cost	constraints	imposed	by	the	allowed
budget	for	building	the	table,

• by	varying	 the	geometrical	 configuration	(e.g.,	 length,	 breadth,	 and	 thickness	 of	 the
table	top)	and	the	material	used	for	constructing	the	table.



4.2.4 	Interdependence	of	Analysis,	Design	and	Optimization

Whether	 in	 academic	 research	 or	 in	 an	 industrial	 R&D	 setting,	 design,	 analysis,	 and
optimization	are	generally	undertaken	as	strongly	interrelated	activities	toward	developing
better	 products	 and	 technologies.	 However,	 is	 no	 unique	 structure	 as	 to	 how	 they	 are
related	-the	relational	structure	generally	depends	on	the	available	human,	computational,
and	 physical	 resources	 and	 on	 the	 choices	 of	 decision-makers	 (e.g.,	 the	 design	 team
leader).	We	use,	 as	 an	 example,	 one	 of	 the	 common	 relational	structures	 to	 particularly
focus	on	understanding	how	the	activities	interact	with	each	other	on	a	one-on-one	basis.
This	structure	is	shown	in	Fig.	4.2.

Figure	4.2.	Relationship	Between	Design,	Analysis	and	Optimization	(A	Representative	Example)

Design,	in	general,	is	the	enveloping	process	that	includes	analysis	and	optimization	as
sub-processes.	 Figure	 4.2	 expands	 on	 the	 preliminary	 design	 stage.	 The	 primary	 steps
within	 this	 stage	 are	 (i)	 defining	 the	 design	 objectives,	 constraints,	 and	 variables,	 (ii)
performing	or	using	analysis,	and	(iii)	performing	optimization.	In	this	case,	optimization
is	 the	 main	 driver	 for	 improving	 the	 preliminary	 design.	 However,	 in	 order	 to	 yield
meaningful	 results	 in	a	 time-efficient	manner,	optimization	generally	depends	on	a	well-
thought	definition	of	the	design	objectives,	constraints,	and	variables,	which	is	also	known
as	effective	problem	formulation.	For	the	“table	design	problem,”	this	step	calls	for	a	clear
definition	of	the	following:

1. Which	 geometrical	 parameters	 will	 be	 considered	 as	 variables	 and	 what	 material
choices	are	available	for	constructing	the	table?

2. What	 is	 the	 total	 budget/cost	 constraint,	 and	 what	 are	 the	 geometrical	 constraints
imposed	by	the	room	shape	and	size?

3. What	 is	 the	minimum	needed	weight-holding	capacity	 of	 the	 table,	 and	what	 is	 the
desired	maximum	weight-holding	capacity	(if	any)?

With	 a	 clear	 problem	 formulation,	 you	 are	 ready	 to	 perform	 optimization	 where	 the
objective	 is	 to	 maximize	 the	 weight-holding	 capacity	 of	 the	 table.	 Optimization	 is	 a
methodical	 process	 of	 changing	 the	variable	 parameters	 (design	 variables)	 to	 determine
better	 values	 of	 the	 objectives	 within	 the	 feasible	 design	 space	 (defined	 by	 the
constraints).	 Thus,	 in	 order	 to	 implement	 optimization,	 you	 need	 a	 quantitative
understanding	 of	 how	 the	 weight-holding	 capacity	 of	 the	 table	 is	 related	 to	 the	 table



geometry	and	the	table	construction	material.	This	necessity	brings	us	to	 the	relationship
between	optimization	and	analysis.

Analysis	provides	you	with	the	knowledge	or,	more	specifically,	a	mathematical	model
that	 accepts	 the	 variable	 values	 (defining	 a	 candidate	 design)	 and	 outputs	 the
corresponding	values	of	the	objectives	of	interest	and	the	values	of	constraint	violations	(if
any).	This	knowledge	is	used	by	the	optimization	process	in	searching	through	the	design
space	 for	 the	 optimum	 results.	 In	 the	 case	 of	 the	 “table	 design	 problem,”	 a	 solid
mechanics-based	 analysis	 of	 the	 table	 structure	 is	 required	 to	 provide	 a	 quantitative
understanding	of	 the	 stress	 distribution	of	 the	 table	 as	 a	 function	of	 the	 table	 geometry,
table	material,	 and	 the	 force	 acting	on	 the	 table	 (attributed	 to	 the	weight	 of	 the	 objects
placed	 on	 it).	 This	 knowledge	 will,	 in	 turn,	 provide	 a	 strategy	 for	 quantifying	 the
maximum	 weight-holding	 capacity	 for	 a	 table	 of	 a	 given	 geometry	 and	 material.
Additionally,	a	cost	analysis	is	necessary	to	estimate	the	total	cost	of	constructing	a	table
of	any	given	geometry	and	material,	which	can	 include	material	costs,	 tool	 costs,	utility
costs,	 and	 labor	 costs.	 Analysis	 also	 provides	 the	 opportunity	 to	 investigate	 the
performance	 of	 the	 final	 optimum	 design.	Hence,	 in	 determining	 whether	 the	 optimum
design	satisfies	the	desired	goals,	input	from	both	the	optimization	process	and	analysis	is
needed,	as	shown	in	Fig.	4.2.

On	 the	other	hand,	optimization	could	provide	food	 for	 further	 analysis,	 especially	 in
the	 context	 of	 practical	 optimization	 where	 the	 design	 process	 rarely	 stops	 at	 a	 single
optimization	 run	 (instead	 generally	 requiring	 several	 iterations).	 For	 example,
optimization	 could	 provide	 insight	 into	 which	 region	 of	 the	 design	 space	 (i.e.,	 a	 more
focused	 range	 of	 designs	 than	 that	 initially	 allowed)	 show	 better	 promise	 in	 terms	 of
objective	values,	thereby	inciting	more	in-depth	analysis	of	the	system	over	that	region	of
the	 design	 space.	 As	 a	 result,	optimization	 and	analysis	 are	 considered	 to	 be	 mutually
contributive	elements	of	 the	design	process,	and	are	 linked	with	a	bidirectional	arrow	in
Fig.	4.2.

Although	 analysis	 and	 optimization	 are	 two	 central	 elements	 of	 quantitative	 design,
engineering	design	in	itself	could	also	involve	qualitative	elements	that	are	often	beyond
the	scope	of	analysis	and	optimization.	Two	typical	qualitative	elements	include:

1. Creativity-	 and	 aesthetics-driven	 design	 decisions:	 For	 example,	 the	 overall
configuration	(e.g.,	 round	 top)	and	 the	color	of	 the	 table	 surface	could	be	conceived
simply	based	on	aesthetics	and/or	prior	experience	with	tables.	Although	qualitative	in
nature,	these	decisions	have	important	quantitative	implications	for	the	later	stages	of
design	 where	 analysis	 and	 optimization	 are	 involved	 (e.g.,	 regulating	 the	 material
options).

2. Market-driven	 design	 decisions:	 Design	 decisions	 can	 also	 be	 driven	 by	 an
understanding	 of	 the	 market,	 especially	 in	 the	 case	 industrial	 and	 product	 design.
Although,	 quantitative	 market	 analysis	 might	 be	 available	 in	 certain	 cases,	 such
availability	is	not	necessarily	generic	(e.g.,	imagine	the	first	Iphone	or	major	changes	to
popular	automobile	models).	A	qualitative	understanding	of	customer	preferences	or
simply	 a	 clear	 vision	 for	 the	 product	 (i.e.,	 generating	 new	 customer	 preferences)	 is
necessary	to	make	design	decisions	in	such	cases.



4.3 	Modeling	System	Behavior	and	Modeling	the	Optimization	Problem

In	 the	 previous	 section,	 you	 learned	 about	 how	analysis	 and	optimization	 provides	 the
necessary	 tools	 for	 performing	 engineering	 design.	 Now,	 in	 order	 to	 pursue	 such	 a
quantitative	 design	 process,	 you	 require	 a	 tractable	 mathematical	 representation	 of	 the
system	analysis	and	of	the	optimization	problem.	This	requirement	brings	us	to	the	role	of
modeling	in	performing	design	through	analysis	and	optimization.	An	introduction	to	this
role	 is	 provided	 in	 this	 section.	 Further	 mathematical	 description	 of	 this	 role	 will	 be
provided	in	later	chapters	of	this	book.

4.3.1 	Modeling	System	Behavior

There	are	different	definitions	of	a	model	in	the	context	of	systems	design:

• Traditional	definition:	A	model	is	a	scaled	fabricated	version	of	a	physical	system.

• Simulation-oriented	 definition:	 A	model	 is	 a	 symbolic	 device	 built	 to	 simulate	 and
predict	characteristics	of	the	behavior	of	a	system.

Modeling	can	be	defined	as	a	process	by	which	an	engineer	or	a	scientist	 translates	 the
actual	physical	system	under	study	into	a	mathematical	model	of	the	system.

From	 the	 standpoint	 of	 design,	 one	 is	 generally	 concerned	 with	 quantifying	 certain
parameters	 of	 interest	 through	 analysis	 and	 modeling.	 These	 parameters	 can	 be
collectively	 termed	as	 criteria	 functions.	Thus,	modeling	system	behavior	boils	down	 to
developing	a	set	of	functions	that	represent	the	parameters	of	interest	as	functions	of	 the
variable	parameters	that	can	be	controlled	through	design.	Mathematically,	modeling	can
be	represented	as:

(4.1)

where	the	P	is	a	parameter	of	interest	that	can	be	represented	as	a	function	of	the	design
variables	defined	by	the	vector	X.	Therefore,	the	process	of	modeling	system	behavior	 is
basically	 the	 process	 of	 determining	 the	 function	 f.	 In	 practice,	 f	may	 not	 be	 a	 simple
analytical	 function.	 It	 could	 be	 a	 collection	 of	 functions	 or	 a	 computational
simulation	[10].

Depending	 on	 the	 approach	 used	 to	 develop	 system	 behavior	 models,	 they	 can	 be
classified	into	the	following	major	categories:

1. Physics-based	Analytical	Models:	These	models	are	developed	based	on	the	physics	of
the	system.	If	the	physics	of	the	system	is	defined	by	a	set	of	differential	equations,	the
analytical	models	represent	the	functional	solution	to	those	differential	equations.

2. Simulation-based	Models:	These	models	generally	leverage	a	discretized	representation
of	the	system	in	translating	the	system	behavior	to	a	set	of	algebraic	equations	that	are
solved	 using	 numerical	 techniques	 (by	 harnessing	 the	 number-crunching	 power	 of
computers).	 Depending	 on	 modeling	 assumptions	 and	 the	 resolution	 of	 the
discretization,	 the	 fidelity	 of	 these	 models	 can	 vary	 significantly.	 High-fidelity
simulations,	 especially	 for	 complex	 systems,	 generally	 tend	 to	 be	 computationally
expensive	 and	 more	 often	 than	 not	 require	 dedicated	 software	 for	 generating	 3D



geometries	 and	 performing	 the	 simulations	 (with	 limited	 portability).	 Examples	 of
simulation-based	 models	 include	 finite	 element	 models,	 finite	 volume	 models,	 and
spectral	analysis	models.

3. Surrogate	Models:	Surrogate	models	are	purely	mathematical	and/or	statistical	models
with	certain	generic	functional	forms	and	coefficients	that	can	be	tuned.	These	models
are	trained	(i.e.,	the	coefficients	are	tuned)	using	a	set	of	input-output	data	(i.e.,	[P,X]
data)	 generated	 from	 a	 high	 fidelity	 source.	 The	 high-fidelity	 source	 could	 be
comprised	of	experimental	or	simulations-based	analysis.	As	a	result,	surrogate	models
by	 themselves	 lack	 any	 direct	 physical	 information	 of	 the	 system;	 however,	 they
provide	 the	 advantage	 of	 being	 tractable,	 fast,	 and	 highly	 portable	 (generally	 not
requiring	any	specialized	software)	(see	Ref.	[11]).

With	the	exception	of	surrogate	models,	the	development	of	other	types	of	models	(i.e.,
physics-based	 models)	 generally	 necessitates	 disciplinary	 knowledge,	 and	 that’s	 where
your	disciplinary	courses	come	in	handy	in	the	design	process.	For	example,	in	the	case	of
the	 “table	 design	 problem,”	 your	 “Solid	 Mechanics,”	 “Mechanics	 of	 Materials,”	 or
“Structures”	 course	will	 prove	 helpful	 in	 developing	 a	model	 of	 the	maximum	weight-
holding	capacity	of	the	table	as	a	function	of	the	table	geometry	and	material.

At	this	point,	you	must	be	wondering	about	the	challenges	involved	in	designing	real-
life	engineering	systems	(e.g.,	an	aircraft)	where	knowledge	from	multiple	 disciplines	 is
required	at	a	 level	which	is	unlikely	to	come	from	a	single	expert.	Practical	engineering
design	generally	 requires	 a	 team	effort.	Working	with	others	 to	develop	or	use	physics-
based	models	that	are	outside	of	your	field	of	expertise	is	a	pervasive	practice	in	industrial
settings,	where	 the	 expertise	 of	 one	person	 is	 generally	 insufficient	 to	model	 the	 global
system.	As	a	team	contributor,	you	need	to	feel	comfortable	with	the	idea	of	understanding
only	part	of	the	analysis.

4.3.2 	Modeling	the	Optimization	Problem

Modeling	the	optimization	problem	is	also	called	problem	formulation,	a	process	that	you
will	 learn	 in	 more	 detail	 in	 later	 chapters.	 Essentially,	 it	 involves	 developing	 a	 clear
definition	 of	 the	 design	 variables,	 design	 objectives,	 and	 design	 constraints.	 In	 this
context,	 design	 variables	 and	 design	 constraints	 could	 be	 of	 different	 types	 (e.g.,
continuous	 and	 discrete	 variables,	 and	 equality	 and	 inequality	 constraints).	 Problem
formulation	 also	 involves	defining	 the	 upper	 and	 lower	 bounds	 of	 the	 design	 variables,
which	are	sometimes	perceived	as	linear	constraints.

Modeling	 the	 optimization	 problem	 is	 also	 strongly	 correlated	 with	 the	 choice	 of
optimization	algorithms.	In	other	words,	the	class	of	optimization	algorithms	available	to
solve	a	problem	depends	on	how	that	problem	is	formulated.	This	relationship	often	drives
researchers	 to	 make	 important	 approximations	 in	 their	 problem	 formulation	 (e.g.,
converting	equality	constraints	 to	 inequality	constraints	using	a	 tolerance	value)	 in	order
to	leverage	powerful	algorithms	that	perform	well	in	the	absence	of	equality	constraints.

4.3.3 	Interdependence	of	System	Behavior	Modeling	and	Optimization	Modeling



It	is	important	to	ensure	that	optimization	problem	formulation	is	coherent	with	the	system
behavior	 model.	 From	 Fig.	 4.2	 you	 can	 recall	 that	 analysis	 and	 optimization	 are
interrelated.	 Therefore,	 if	 the	 optimization	 process	 demands	 a	 set	 of	 output	 parameters
(criteria	 functions)	 to	 be	 estimated	 by	 the	 analysis	 model	 for	 a	 given	 set	 of	 input
parameters	 (design	 variables),	 the	 analysis	 model	 should	 be	 able	 to	 provide	 the	 right
outputs.	Any	discrepancy	in	this	information	exchange	will	crash	the	optimization	process.
In	other	words,	the	choice	of	objective	and	constraint	functions	and	the	choice	of	design
variables	 should	 be	 made	 in	 view	 of	 the	 capabilities	 of	 the	 analysis	 model	 when
accounting	 for	 the	 associated	 relationships.	 Alternatively,	 if	 the	 analysis	 model	 cannot
meet	 the	 needs	 of	 the	 optimization	 formulation,	 new	 analysis	 models	 will	 need	 to	 be
developed	to	represent	the	necessary	functional	relationships.	When	you	put	 these	 issues
in	 the	 context	 of	 practical	 design,	 where	 the	 analysis	 models	 are	 often	 developed	 by
disciplinary	experts	and	the	optimization	problem	is	formulated	by	a	design	expert	 (who
may	not	have	 in-depth	knowledge	of	 the	multiple	disciplines	 involved),	you	will	 realize
that	 there	 is	 often	 significant	 room	 for	 discrepancies.	 Effective	 communication	 is	 a
necessary	component	of	engineering	design	-	essentially	a	collaborative	effort.

There	are	also	other	practical	considerations	in	harmonizing	the	optimization	modeling
and	 systems	 behavior	modeling.	 For	 example,	 if	 you	 choose	 an	 optimization	 algorithm
that	 requires	 a	 relatively	 high	 number	 of	 system	 evaluations,	 you	 would	 most	 likely
require	 a	 fast	 (computationally-efficient)	model	 of	 the	 system	 behavior	 to	 complete	 the
optimization	 in	a	 reasonable	 amount	of	 time.	Similarly,	 if	 the	 system	behavior	model	 is
inherently	highly	nonlinear,	you	will	need	to	formulate	the	optimization	problem	such	that
a	nonlinear	optimization	algorithm	can	be	used	to	solve	 the	problem.	To	summarize,	 the
characteristics	 of	 the	 optimization	 problem	 formulation	 and	 the	 system	 behavior	model
should	be	aligned	with	each	other	and	with	the	overall	objectives	of	the	design	effort.

4.4 	Summary

This	 chapter	 introduced	 the	 key	 components	 of	 design	 optimization,	 namely	 analysis,
design,	 modeling,	 and	 optimization.	 A	 holistic	 view	 of	 design,	 including	 the	 major
activities	 involved	 in	 a	 design	 process	 (e.g.,	preliminary	 design	 and	 detailed	 design),	 is
provided.	The	importance	of	analysis,	modeling,	and	optimization	is	then	described	in	the
context	of	engineering	design.	 In	doing	so,	 this	chapter	also	provided	 important	 insights
into	 the	 relationship	 between	 these	 different	 components	 of	 design.	 The	 chapter	 ended
with	 a	 bi-level	 perspective	 to	modeling	 in	 the	 context	 of	 design.	 That	 is,	modeling	 the
behavior	 of	 the	 system	 being	 optimized,	 and	modeling	 the	 optimization	 problem	 itself.
This	bi-level	perspective	essentially	shows	how	modeling	decisions	in	these	two	steps	are
distinct	but	strongly	correlated,	such	as	is	terms	of	pertinent	computational	consequences.
These	thoughts	will	become	ever	clearer	as	we	move	along.

4.5 	Problems

4.1 Consider	the	table	design	problem	discussed	in	this	chapter	and	do	the	following:

1. Provide	 a	 hand-drawn	 sketch	 of	 a	 representative	 table	 (four-legged	 with



rectangular	table	top)	and	clearly	label	and	list	the	geometrical	design	variables.
Be	as	comprehensive	as	possible.

2.	Identify	three	differen	types	of	analysis	models	(analytical,	simulation-based,	and
surrogate	models)	 that	can	be	used	 to	represent	 the	weight-holding	capacity	of
the	 table	 as	 a	 function	 of	 the	 geometrical	 variables.	 If	 you	 are	 not	 from	 the
mechanical	engineering,	aerospace	engineering,	 structural	engineering	or	other
related	 disciplines,	 feel	 free	 to	 discuss	 the	 problem	 with	 your	 peers	 who	 are
from	those	disciplines	in	order	to	identify	the	analysis	models.

4.2 Compare	and	contrast	the	process	of	(i)	conceptual	design,	(ii)	preliminary	design,
and	(iii)	detailed	design	in	general	and	in	the	development	of	an	automobile.	Feel
free	to	refer	to	the	appropriate	literature	for	this	purpose.

4.3 Give	an	example	of	an	original	engineering	design	problem	and	clearly	outline	the
objectives,	the	constraints,	and	the	design	variables.

4.4 Outline	 two	 advantages	 and	 two	 limitations	 (each)	 of	 experiment-based	 analysis
and	simulation-based	analysis.

4.5 From	your	current	understanding	of	design,	analysis,	and	optimization,	elaborate	on
the	 relationship	 of	 analysis	 and	 optimization	 in	 the	 context	 of	 computational
expense	(in	200-300	words).

4.6 In	300-400	words,	discuss	the	role	of	simulation	software	(e.g.,	ANSYS,	Abaqus,
and	Simulink)	in	engineering	analysis	and	optimization,	and	compare	and	contrast
the	 impact	 of	 licensed	 software	 and	 open-source	 software	 (e.g.,	 free	 codes)	 in
performing	engineering	design	in	the	21st	century.
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5

Introducing	Linear	and	Nonlinear	Programming

5.1 	Overview

This	 chapter	 introduces	 important	 fundamental	 principles	 for	 the	 optimization	 of	 any
system	whose	performance	can	be	quantitatively	defined	in	term	of	quantities	that	can	be
controllably	changed	(i.e.,	design	variables).	In	Sec.	5.2,	we	discuss	the	various	classes	of
optimization	problems.	Specifically,	we	discuss	optimization	 in	 terms	of	 (i)	 linearity	vs.
nonlinearity,	 (ii)	 single	 vs.	 multiple	 objectives,	 (iii)	 discrete	 vs.	 continuous	 design
variables,	and	(v)	constrained	vs.	unconstrained	optimization.	In	Sec.	5.3,	we	discuss	 the
important	realization	that	in	most	cases,	problems	are	treated	as	if	they	involved	a	single
objective.	 In	 Sec.	 5.4,	 we	 present	 the	 solution	 approaches	 to	 optimization:	 analytical,
numerical,	graphical,	and	experimental.	In	the	last	section,	Sec.	5.5,	we	introduce	several
of	the	software	packages	available	for	solving	different	classes	of	optimization	problems.

5.2 	Problem	Classes

As	we	deal	with	a	given	optimization	problem,	 it	is	 important	 to	know	what	class	 (or
type)	of	problem	it	represents.	This	is	because	each	different	class	of	optimization	problem
generally	 calls	 for	 a	 different	 type	 of	 solution	 approach,	 as	 well	 as	 a	 different	 class	 of
software	 or	 algorithm.	 In	 this	 section,	 we	 define	 the	 major	 classes	 of	 optimization
problems,	part	of	which	is	presented	in	Fig.	5.1.	A	general	optimization	problem	can	be
formulated	using	the	following	set	of	equations	(Refs.	[1,	2].

(5.1)

subject	to

g(x)	≤	0 (5.2)

h(x)	=	0 (5.3)

xl	≤	x	≤	xu (5.4)



Figure	5.1.	Classification	of	Optimization	Methods

The	function	J(x)	represents	 the	objective	 function,	which	we	would	 like	 to	minimize.
The	 idea	 being	 that	 as	 we	 minimize	 the	 objective	 function,	 the	 system	 or	 design	 will
behave	 better	 (e.g.,	 cheaper,	 stronger,	 lighter,	 or	 faster).	 The	 function	g(x)	 represents	 a
vector	 of	 inequality	 constraints	 and	 the	 function	 h(x)	 represents	 a	 vector	 of	 equality
constraints.	 These	 constraints	 make	 the	 design	 feasible	 (i.e.,	 not	 unacceptable).	 For
example,	 they	 might	 ensure	 that	 the	 mass	 is	 not	 negative	 or	 that	 a	 process	 is	 not
prohibitively	expensive.	They	are	called	behavioral	constraints.	The	vector	 x	 represents
the	vector	of	design	variables.	These	are	the	quantities	that	we	can	change	in	the	design	to
improve	its	behavior.	The	constraints	on	the	design	variables	are	called	side	constraints.	A
set	of	design	variables	 that	 fully	 satisfies	 all	 the	 constraints	 is	 called	 a	 feasible	 solution
(even	if	it	does	not	minimize	the	objective	function).	However,	thus	far,	we	have	provided
no	 information	 regarding	 the	 important	 properties	 of	 the	 above	 quantities.	 These
properties	define	the	class	of	the	optimization	problem.	We	will	now	be	more	specific.

Broadly	 speaking,	 optimization	 problems	 can	 be	 classified	 along	 seven	 major
categories.	Knowledge	of,	and	appreciation	for,	these	categories	is	important	as	they	help
us	 understand	whether	 the	 problem	 at	 hand	 is	 simple	 or	 involved,	 and	whether	 a	 given
algorithm	or	software	applies	to	our	problem.	Figure	5.1	provides	a	helpful	presentation	of
the	interaction	between	the	first	four.	The	categories	are	as	follows:

1. Linear	vs.	Nonlinear

2. Constrained	vs.	Unconstrained

3. Discrete	vs.	Continuous

4. Single	vs.	Multiobjective

5. Single	vs.	Multiple	Minima

6. Deterministic	vs.	Nondeterministic

7. Simple	vs.	Complex

These	categories	are	discussed	below.



(1) Linear	 vs.	 Nonlinear:	 Are	 the	 functions	 J(x),	 g(x),	 and	 h(x)	 linear	 or	 nonlinear
functions	 of	 x?	When	 the	 objective	 function	 and	 the	 constraints	 are	 all	 linear,	 the
problem	is	called	a	 linear	programming	 (LP)	problem.	(As	mentioned	earlier,	 linear
programming	and	linear	optimization	mean	the	same	thing.	The	former	is	often	used
for	historical	reasons).	When	either	the	objective	function	or	any	of	the	constraints	is	a
nonlinear	 function	 of	 the	 design	 variables,	 the	 problem	 is	 called	 a	 nonlinear
programming	 (NP)	 problem	 (which	 means	 the	 same	 as	 a	 nonlinear	 optimization
problem).	 Generally,	 LP	 problems	 are	 much	 easier	 to	 solve	 than	 NP	 problems,
particularly	when	the	dimension	of	the	problem	is	large	(i.e.,	large	number	of	design
variables).	In	addition,	the	more	nonlinear	the	problem,	the	more	difficult	it	may	be	to
optimize.	It	 is	also	more	likely	to	present	numerical	difficulties.	Fortunately,	 there	 is
much	that	we	can	do	to	minimize	these	difficulties.	As	a	general	rule,	solving	a	large
LP	problem	is	a	more	reliable	process	than	solving	a	large	NP	problem.	There	are	many
different	ways	 to	 pose	 a	 Linear	Programming	 problem,	 all	 of	which	 are	 practically
equivalent.	One	possible	option	is	as	follows.

(5.5)

subject	to

Ax	≤	b (5.6)

Aeqx	=	beq (5.7)

xl	≤	x	≤	xu (5.8)

In	 the	 above	 equations,	 the	 quantities	 A	 and	 Aeq	 represent	 matrices	 of	 constant
coefficients.	The	quantites	c,b,	beq,	xl,	and	xu	represent	constant	vectors.	The	important
observation	to	make	here	is	that	the	objective	function,	as	well	as	the	constraints,	are	all
linear	 functions	 of	 the	 design	 variable	 x,	 which	 is	 what	 makes	 this	 a	 linear
programming	problem.	As	a	final	comparison,	we	examine	the	equality	constraints	in
the	linear	and	nonlinear	programming	formulations.	Specifically,	 let	us	compare	Eq.
5.3	and	Eq.	5.7.	In	the	former,	h	is	a	function	of	x,	which	may	be	linear	or	nonlinear.	In
the	latter,	we	have	a	multiplication	between	a	matrix,	Aeq,	and	a	vector,	x,	which	is	a
linear	operation	(see	Refs.	[3,	4]).

(2) Constrained	 vs.	Unconstrained:	 Does	 the	 optimization	 problem	 have	 constraints?
When	 the	 optimization	 problem	 does	 have	 constraints,	 we	 call	 it	 a	 constrained
optimization	problem.	When	we	do	not	have	any	constraints	at	all,	the	problem	is	an
unconstrained	 optimization	 problem.	 Most	 practical	 problems	 involve	 constraints.
Thus,	 unconstrained	 problems	 generally	 have	more	 theoretical	 than	 practical	 value.
Specifically,	in	the	case	of	nonlinear	programming,	the	problem	statement	would	only
involve	Eq.	5.1	–	 the	relations	5.2	and	5.3	would	not	be	part	of	 the	(unconstrained)
optimization	problem.	However,	for	reasons	that	will	be	explained	later,	we	must	have
constraints	 in	 the	 case	 of	 linear	 programming.	 Otherwise,	 the	 solution	 will	 not
generally	be	finite.	(We	invite	you	to	ponder	why	this	is	the	case.)	In	other	words,	in
the	case	of	linear	programming,	at	least	one	of	the	relations		5.6,	5.7,	and	5.8	must	be



part	 of	 the	 linear	 programming	 problem.	 This	 discussion	 applies	 in	 the	 case	 of
continuous	design	variables	(why	this	limitation?).	Continuity	or	discreteness	of	design
variables	is	discussed	next.

(3) Discrete	 vs.	Continuous:	 Are	 any	 of	 the	 design	 variables	 discrete,	 or	 are	 they	 all
continuous?	 If	 any	 design	 variable	 is	 discrete,	 we	 no	 longer	 have	 a	 continuous
optimization	problem.	We	note	the	following	typical	cases.	(i)	In	the	first,	the	design
variables	could	be	restricted	to	take	only	the	values	of	0	or	1.	This	case	is	called	0-1
programming	or	binary	programming.	(ii)In	the	second	case,	the	design	variables	are
restricted	to	take	on	only	integer	values.	This	case	is	called	integer	programming	(see
Refs.	[5,	6]).	(iii)	In	the	third	case,	the	design	variables	are	restricted	to	take	on	only	a
given	prescribed	set	of	real	values.	This	case	is	generally	called	discrete	optimization.
Often,	we	have	a	mixture	of	the	above	cases,	where	some	variables	may	be	0-1	type,
some	may	be	integers,	some	may	take	on	given/prescribed	real	numbers,	while	others
might	be	continuous.	Different	methods	are	available	to	handle	these	different	cases.
Continuous	optimization	problems	 are	 usually	much	 easier	 to	 deal	with.	 It	 is	worth
noting	that	in	some	cases,	the	integer	programming	problem	might	allow	for	the	design
variable	to	take	on	any	integer	value,	while	in	other	cases,	it	might	call	for	a	restricted
given	set	of	integer	values.	We	invite	you	to	think	of	practical	optimization	cases	that
may	involve	the	above	different	cases.	One	such	example	is	the	case	of	optimizing	the
diameter	of	a	pipe	 that	 is	available	 in	 ten	different	 sizes.	Another	case	may	 involve
optimizing	 profit	 in	 the	 case	 where	 a	 loan	 package	 must	 be	 chosen	 among	 ten
possibilities,	each	of	which	involves	a	different	interest	rate	and	a	different	origination
fee	(see	Ref.	[7]).

(4) Single	vs.	Multiobjective:	In	general,	the	design	or	optimization	of	practical	systems
involves	 tradeoffs	 among	 competing	 objectives.	 For	 example,	 to	 improve	 a	 car’s
crashworthiness,	 we	 make	 it	 heavier;	 but,	 in	 the	 process,	 the	 fuel	 efficiency	 is
worsened.	 Therefore,	 these	 two	 objectives	 (crashworthiness	 and	 fuel	 efficiency)
compete	against	each	other	and	require	a	compromise	where	we	tradeoff	one	for	 the
other	as	needed	for	an	optimal	situation.	As	we	think	of	the	above	situation	and	of	most
practical	problems,	we	realize	 that	most	optimization	problems	 involve	more	 than	 a
single	objective.	Most	are	multiobjective	in	nature.	There	are	many	methods	available
to	deal	with	both	single	objective	and	multiobjective	problems.	This	 is	an	 important
area	of	study	for	the	practical	application	of	optimization.	In	fact,	we	devote	a	whole
chapter	(Chapter	6)	to	this	topic.	As	such,	we	will	not	discuss	it	here	any	further.	We
only	note	that	this	is	an	important	classification	of	optimization	problems.

(5) Single	 vs.	 Multiple	 Minima:	 Does	 the	 optimization	 problem	 have	 a	 single
minimum/maximum	 (optimum),	 or	 multiple	 optimum	 values	 (i.e.,	 unimodal	 or
multimodal).	Solving	optimization	problems	that	have	several	optima	is	referred	to	as
global	 optimization.	 This	 optimization	 case	 is	 much	 more	 difficult	 to	 handle	 than
single	optimum	optimization,	as	we	will	see	later.	Furthermore,	the	algorithms	that	are
used	to	handle	unimodal	or	multimodal	problems	are	quite	different.	A	significant	class
of	 engineering	 problems	 can	 be	 managed	 using	 single-optimum	 optimization
algorithms,	which	is	the	main	focus	of	this	book.	Finally,	we	note	that	single	minimum
search	is	referred	to	as	local	optimization,	while	multi-minima	search	is	referred	to	as
global	optimization.



(6) Deterministic	 vs.	 Nondeterministic:	 In	 recent	 years,	 designers	 have	 realized	 that
information	is	almost	never	exact.	They	began	to	understand	that	there	is	a	high	cost
associated	with	 low/tight	 tolerances.	The	more	precisely	we	manufacture	a	 part,	 the
more	costly	it	will	be.	We	also	started	to	understand	that	it	is	not	necessary	for	every
part	in	a	design	to	have	the	same	tolerance.	In	addition,	there	are	certain	aspects	of	the
product	over	which	we	do	not	have	direct	control.	Demand	for	a	product,	for	example,
is	something	that	we	can	only	estimate.	The	net	result	is	that	there	are	some	aspects	of
the	 design	 that	 can	 be	 represented	 by	 design	 variables	 that	 are	 deterministic,	while
other	 design	 variables	 might	 have	 to	 be	 treated	 as	 as	 nondeterministic	 (e.g.,
probabilistic	 or	 stochastic).	 In	 this	 book,	 we	 will	 explicitly	 focus	 on	 deterministic
optimization,	although	many	of	the	techniques	discussed	in	this	book	can	be	used	for
nondeterministic	optimization	(see	Ref.	[8]).

(7) Simple	vs.	Complex	Problem:	Perhaps	the	most	critical	aspect	of	a	problem	at	hand	is
to	understand	whether	it	will	be	Simple	or	Complex	endeavor.	Let	us	explain	what	we
mean.	A	simple	problem	can	be	viewed	as	one	that	can	be	solved	relatively	easily	by
virtue	 of	 certain	 characteristics.	 This	 can	 be	 the	 case	 (i)	 because	 the	 model	 of	 the
system	 is	 provided	 or	 readily	 created,	 (ii)	 because	 it	 only	 involves	 continuous
variables,	(iii)	because	it	is	not	strongly	nonlinear,	(iv)	because	it	is	expected	that	local
optimization	will	 be	 sufficient,	 (v)	 because	 the	 computational	model	 of	 the	 system
behavior	can	run	on	a	computer	 in	 seconds	or	minutes	 (not	hours),	 (vi)	because	 the
number	of	design	variables	is	not	large,	(vii)	because	all	the	models	needed	to	describe
the	 system	 behavior	 can	 run	 on	 a	 single	 computer,	 or	 (viii)	 because	 all	 the	 design
variables	are	deterministic.	An	assessment	of	the	above	items	gives	us	a	sense	of	how
simple	or	complex	it	will	be	 to	optimize	 the	design	or	system.	In	practice,	however,
each	of	the	above	items	only	provides	us	with	indications,	and	not	absolutes,	in	terms
of	how	easy	a	problem	will	be	to	solve.

In	Fig.	5.1,	we	observe	the	interaction	of	the	first	four	categories	discussed	above.	The
shaded	 area	 represents	 a	 case	 that	 should	 not	 be	 considered.	 Specifically,	 this	 case
represents	continuous	unconstrained	linear	programming,	which	leads	to	a	solution	at	∞	or
-∞.	 The	 linear	 programming	 chapter	 (Chapter	 11)	 presents	 this	 scenario	 in	 detail.	 The
chapters	in	which	various	cases	are	discussed	in	the	book	are	also	provided.	Boxes	1	and	2
are	covered	by	the	bulk	of	this	book	and	most	introductory	texts.	Parts	of	Boxes	3	and	4
are	 also	 covered	 to	 offer	 the	 possibility	 of	 a	 more	 advanced	 treatment	 of	 practical
optimization.

5.3 	Single	Objective	Optimization—An	Inclusive	Notion

Most	 practical	 problems	 in	 design	 or	 in	 other	 technical	 areas	 involve	 conflicting
considerations.	 For	 example,	when	 you	make	 a	 part	 as	 light	 as	 possible,	 it	 cannot	 also
become	as	strong	as	possible.	In	this	case,	we	are	dealing	with	two	conflicting	objectives:
minimize	 mass	 and	 maximize	 strength.	 In	 practice,	 we	 must	 settle	 for	 a	 compromise
between	 the	 two	 objectives.	 One	 way	 to	 deal	 with	 this	 compromise	 (i.e.,	 tradeoff)	 is
through	so-called	multiobjective	optimization	methods.	We	present	this	important	topic	in
greater	detail	in	Chapter	6.



However,	there	are	important	reasons	to	learn	about	single	objective	optimization:

(i) As	you	will	 see,	 in	practice,	 a	multiobjective	problem	can	be	 transformed	 to
make	it	appear	to	be	single	objective.	This	seemingly	single	objective	is	actually	some
form	of	aggregation	of	the	multiple	objectives	involved.	This	point	will	become	clearer
later.

	(ii) In	line	with	the	above	comment,	we	often	treat	computational	optimization	as	single
objective.

(iii) Finally,	 we	 note	 that	 some	 problems	 are	 truly	 single	 objective.	 The	 most	 glaring
example	is	in	the	case	where	one	wishes	to	simply	maximize	one	quantity	–	profit.

5.4 	Solution	Approaches:	Analytical,	Numerical,	Experimental	and	Graphical

In	 the	 above	 section,	 we	 discussed	 the	 various	 categories,	 or	 classes,	 of	 optimization
problems.	We	also	discussed	their	associated	implications	in	terms	of	overall	difficulty.	In
this	 section,	 we	 discuss	 the	 various	 approaches	 that	 are	 available	 to	 us	 to	 solve
optimization	 problems.	 Generally	 speaking,	 we	 can	 identify	 four	 broad	 solution
approaches:	 analytical,	 algorithmic,	 experimental,	 and	 graphical.	We	 briefly	 discuss	 the
first	three,	followed	by	a	more	detailed	presentation	of	the	fourth	(graphical)	approach.

5.4.1 	Analytical	Optimization

The	analytical	approach	is	one	that	most	high	school	and	first	year	engineering	students
are	 actually	 already	 familiar	 with.	 To	 use	 this	 approach,	 we	must	 have	 a	mathematical
function	available	to	us	that	we	wish	to	minimize.	This	mathematical	function	is	supposed
to	 represent	 the	 performance	 of	 our	 design	 or	 system.	 By	 finding	 the	 conditions	 that
maximize	 this	 function,	 we	 will	 have	 identified	 the	 conditions	 that	 maximize	 the
performance	of	 the	design.	We	 learned	 in	 calculus	 that	 if	we	 differentiate	 this	 function,
and	 we	 identify	 the	 point	 where	 the	 obtained	 derivative	 is	 zero,	 we	 will	 also	 have
identified	an	optimum	point.	We	can	then	take	the	second	derivative.	If	it	is	positive,	we
have	a	minimum.	If	it	 is	negative,	we	have	a	maximum.	In	the	case	where	we	also	have
constraints	 in	 the	 problem,	 the	 situation	 is	 a	 bit	 more	 involved.	 It	 requires	 us	 to	 use
lagrange	multiplyers,	which	we	present	in	Sec.	13.5.

This	approach	was	the	most	viable	in	the	pre-computer	age,	when	differential	calculus
rather	 than	numerical	 approaches	was	 king.	 Unfortunately,	 for	most	 practical	 problems,
this	approach	is	too	complicated	to	be	viable.	However,	while	this	approach	is	not	a	viable
practical	 approach,	 it	 does	 help	 us	 understand	 how	 to	 develop	 more	 useful	 numerical
algorithms	upon	which	the	whole	modern	field	of	computational	optimization	is	based.

5.4.2 	Numerical	(or	Algorithmic)	Optimization

The	 numerical	 optimization	 approach	 is	 indeed	 the	 modern	 way	 to	 optimize.	 It	 fully
exploits	 the	 power	 of	 a	 computer	 as	 a	 computational	 workhorse.	 It	 helps	 us	 explore
endless	possibilities	 that	we	would	not	be	able	to	identify	in	any	manual	way.	Basically,
this	approach	uses	algorithms	to	help	us	search	the	possible	options.	Stated	differently,	we



start	with	one	possible	design	(generally	a	bad	one!).	Based	on	some	logic	in	an	algorithm,
we	estimate	a	next	design	(which	we	hope	will	be	better).	We	then	keep	iterating	until	we
reach	what	we	hope	will	be	the	optimal	design.	The	better	the	algorithm,	the	more	likely
we	are	to	reach	the	optimal	design	and	reach	it	faster.

As	we	can	see,	this	approach	involves	an	iterative	process.	The	advantage	and	power	of
this	approach	is	two-fold.	First,	it	uses	an	algorithm	to	determine	what	the	next	improved
design	should	be.	(There	is	no	guess-work).	Second,	it	uses	the	computer	to	perform	the
iterations.	Since	the	computer	does	not	get	tired,	we	can	perform	a	thorough	exploration
and	generally	obtain	an	optimal	design	in	a	reasonable	amount	of	time.

Here,	 we	 state	 a	 key	 distinctive	 approach	 of	 this	 book	 to	 our	 learning	 optimization.
Traditionally,	when	we	study	optimization,	we	spend	most	of	our	time	learning	how	these
search	algorithms	work.	Unfortunately,	we	might	be	extremely	knowledgeable	as	 to	how
they	 work,	 while	 they	 may	 play	 little	 role	 in	 helping	 us	 become	 better	 designers	 in
practice.	The	mere	knowledge	of	the	inner	workings	of	these	algorithms	may	or	may	not
play	a	critical	role	in	our	design	activities.	Instead,	we	need	to	know	how	to	use	them	in	a
computational	design	 infrastructure.	This	 is	what	 is	presented	 in	 the	 first	10	chapters	 of
this	 book.	 The	 knowledge	 of	 these	 algorithms	 is,	 however,	 a	 useful	 addition	 to	 our
advanced	 understanding	 of	 the	 topic	 of	 optimization.	 As	 such,	 we	 do	 provide	 a
presentation	 of	 these	 topics	 in	 Chapters	 11	 through	 13.	 In	 addition,	 we	 provide	 some
advanced	practical	topics	in	Chapters	14	through	19.

Describing	the	optimization	process	can	be	accomplished	more	vividly	using	numerical
and	graphical	 illustrations.	The	 following	 two	 examples	 illustrate	 how	 the	minimization
procedure	is	executed	to	obtain	optimal	solutions.

For	our	first	example,	let	us	consider	the	following	optimization	problem:

(5.9)

subject	to

–1	≤	x1	≤	1 (5.10)

–0.5	≤	x2	≤	0.5 (5.11)

Figure	 5.2	 helps	 to	 illustrate	 how	 optimization	 is	 carried	 out	 numerically	 on	 an
objective	 function,	 with	 two	 design	 variables	 satisfying	 the	 constraints	 in	 (5.10)	 and
(5.11).



Figure	5.2.	Numerical	Illustration	of	Optimization

The	function,	 f(x),	 generates	 the	 contour	 plot	 shown	 in	 the	 figure.	 Each	 point	 on	 the
diagram	represents	an	iteration,	and	the	number	in	the	brackets	represents	the	value	of	the
objective	function	for	 the	given	design	variables.	The	optimal	 solution	 is	defined	as	 the
smallest	 possible	 value	 of	 the	 objective	 function	satisfying	 the	 specified	 constraints.	 As
indicated	on	the	diagram,	the	contour	plot	corresponding	to	f(x)	=	1.00	forms	the	feasible
boundary	of	the	space	possessing	possible	solutions	(feasible	region).	The	initial	point,	x	=
[1,	0.2],	 yields	 the	 initial	 design	objective	value	of	 f(x)	 =	 1.56,	which	 is	 outside	 of	 the
feasible	region.	The	arrows	show	the	step	by	step	procedure	carried	out	by	the	optimizer
to	 obtain	 the	minimized	 solution.	 The	 iterative	 process	 indicates	 that,	 even	 though	 the
value	 of	 the	 objective	 function	 is	 being	 decreased,	 it	 is	 still	 possible	 to	 achieve	 lower
objective	function	values	satisfying	the	constraints.	The	 iterations	will	continue	until	 the
objective	 function	 reaches	 its	 minimum	 value	 (the	 optimal	 solution).	 Executing	 the
fmincon	 function	 in	MATLAB	 to	minimize	 this	 objective	 function	 requires	 13	 iterations.
From	 examining	 this	 function,	we	 observe	 that	 the	 optimal	 solution	 lies	 at	 x*	 =	 [0,	 0],
yielding	f(x)*	=	0.	In	practice,	MATLAB,	or	any	other	optimization	code,	will	generate	 the
optimum	with	a	finite	number	of	accurate	digits.	The	default	will	sometimes	be	4	to	6.	For
the	above	example,	MATLAB	generated	the	optimal	design	values	of	x*	=	[-0.0341,-0.002],
yielding	 f(x)*	=	1.0337	×	 10-6.	 Obtaining	more	 accurate	 values	 for	 the	 design	 variables
would	 require	 either	 scaling	 the	 objective	 function	 or	 changing	 some	 of	 the
MATLAB	 default	 accuracy	 parameters,	 as	 discussed	 in	 the	Numerical	 Essentials	 Chapter
(Chapter	7).

5.4.3 	Experimental	Optimization

Experimental	optimization,	 as	 it	 is	 called,	 can	 be	 viewed	 as	a	 traditional	 trial	 and	 error
approach	 to	design.	 It	essentially	 involves	 the	 following	steps:	 (i)	build	a	version	of	 the
physical	system,	(ii)	evaluate	its	performance,	and	(iii)	if	we	are	satisfied	with	the	current
performance,	we	STOP;	if	not,	we	review	what	changes	might	be	helpful,	and	go	back	to



the	first	step,	hopefully	yielding	an	improved	version.

This	approach	is	practically	obsolete.	It	can	be	very	costly	and	time	consuming,	and	it
might	not	converge	easily	to	a	good	solution.	It	might	lead	to	a	very	sub-optimal	solution.
It	 may	 also	 require	 quite	 a	 bit	 of	 experience	 in	 order	 to	 work.	 This	 approach	 makes
innovative	 new	 designs	 less	 likely.	 Fortunately,	 in	 this	 new	 highly	 competitive	 world
where	 high	 performance	 computing	 is	 available,	 we	 can	 do	 much	 better	 using	 other
approaches.

5.4.4 	Graphical	Optimization

It	is	also	possible	to	explain	this	phenomena	graphically.	We	now	consider	the	following
optimization	problem:

(5.12)

subject	to

(5.13)
(5.14)

In	this	example,	the	given	constraint	is	a	circle	whose	perimeter	forms	the	boundary	of
the	feasible	region.	Figure	5.3	illustrates	this	problem.

Figure	5.3.	Graphical	Illustration	of	Optimization

In	the	diagram,	each	line	corresponds	to	the	value	of	the	objective	function	during	the
minimization	process.	If	the	initial	point,	P,	where	x	=	[1,	1]	is	chosen,	then	f(x)	=	3.00.	It
is	clear	that	this	line	does	not	intersect	the	circle	at	any	point,	making	all	the	points	lying
on	this	line	infeasible.	Going	through	a	similar	iterative	process	as	in	the	first	example,	the
objective	function	is	sequentially	reduced	to	find	the	optimal	solution.	Therefore,	for	the
case	when	f(x)	=	2.00,	we	can	obtain	possible	solutions	that	fall	between	points	a1	and	a2.



Even	though	these	points	are	feasible	solutions,	it	is	still	possible	to	obtain	a	smaller	value
for	 f(x)	 satisfying	 the	 constraints	 (recall	 the	 definition	 of	 the	 optimal	 solution).	 The
minimization	process	will	 result	 in	smaller	and	smaller	values	of	 the	objective	 function,
with	 feasible	 solutions	 bounded	 between	 the	 points	 a1a2,…,e1e2.	 As	 indicated	 in	 the
figure,	a	point,	O*,	will	be	reached,	such	that	the	value	of	the	design	variables	at	this	point
will	result	in	the	smallest	possible	value	of	the	objective	function,	which	also	satisfes	the
constraint	equations	Eqs.	5.13	and	5.14.	This	is	the	optimal	solution.	MATLAB	generated	x*

=	 [-0.4472,-0.8944],	 yielding	 f(x)*	 =	 -2.2361	 ≈-2.4	 as	 optimal	 values	 for	 this	 problem.
Note	 that	 the	 optimal	 point	 falls	 on	 the	 line	 which	 is	 a	 tangent	 to	 the	 circle.	 Further
minimization	is	no	longer	required,	as	smaller	values	for	the	objective	function	will	yield
points	that	fall	outside	the	feasible	region.

5.5 	Software	Options	for	Optimization

In	this	section,	we	discuss	the	various	options	available	for	optimizing	problems	using	a
computer	 software.	 As	 presented	 in	 Table	 5.1,	 we	 define	 three	 main	 classes	 of
optimization	software.	The	first	class	involves	stand-alone	optimization	software,	where
the	 primary	 focus	 is	 to	 solve	 various	 types	 of	 prescribed	 optimization	 problems.	 The
second	 class	 involves	 design	 and/or	 analyses	 integration	 frameworks,	 where	 analyses
codes	 from	different	 engineering	disciplines	 can	be	conveniently	 integrated	 and	 designs
can	be	optimized.	The	third	class	of	optimization	software	involves	large	scale	analyses
codes	that	have	optimization	capabilities	as	one	of	their	offered	features	–	typically	added
in	recent	years	with	the	growing	popularity	of	optimization.	Details	of	the	above	options
are	discussed	next.	For	convenience,	we	respectively	refer	to	these	classes	as	(i)	Software
for	Optimization	as	Stand-Alone	(SO-SA),	(ii)	Software	for	Optimization	Within	Design
Framework	 (SO-WDF),	 and	 (iii)	 Software	 for	 Optimization	 Within	 Analysis	 Package
(SO-WAP).

Table	5.1.	Broad	Classification	of	Software	for	Optimization

Software	for	Optimization	(SO)

Within Within Discrete
Stand-Alone Design Analysis	Package Integer

Framework or
(SO-SA) (SO-WDF) (SO-WAP) Mixed

MATLAB	Toolbox iSIGHT GENESIS XPRESS
NEOS	Server PHX	ModelCenter NASTRAN CPLEX
DOT-VisualDOC modeFRONTIER ABAQUS Excel	and	Quattro
NAG XPRESS Altair NEOS	Server
NPSOL LINDO/LINGO ANSYS MINLP
GRG2 GAMS COMSOL GAMS	WORLD
LSSOL Boss	Quattro MS	Excel



CPLEX What’sBest!
BTN RISKOptimizer
PhysPro Busi.	Spreadsh.

Within	 this	section,	we	first	provide	a	 table	 (Table	5.1)	 that	 lists	many	of	 the	popular
software	for	each	of	 these	classes	 in	 the	 first	 three	columns.	The	 last	column	lists	 those
software	 that	 perform	optimization	 for	 problems	with	 discrete,	 integer,	 or	mixed	 design
variables.	 In	 Section	 5.5.1,	 we	 discuss	 the	 MATLAB	 Optimization	 Toolbox.	 In
Sections	5.5.2,	5.5.3	and	5.5.4,	we	discuss	each	of	the	three	classes	in	sequence.	The	last
column	 is	 discussed	 in	 Section	 14.3.7,	 where	 the	 topic	 of	 discrete	 optimization	 is
presented.

We	also	note	that	it	may	be	useful	to	classify	optimization	software	as	being	(i)	small
scale	or	large	scale,	(ii)	easy	or	difficult	to	use,	or	(iii)	particularly	effective	or	less	so.	The
choice	 of	 a	 particular	 optimization	 software	 will	 generally	 depend	 on	 pertinent	 user
experience	and	on	the	problem	under	consideration.

5.5.1 	MATLAB	Optimization	Code—fmincon	and	linprog

Nonlinear	Optimization/Programming

Here,	 we	 describe	 the	 procedure	 for	 solving	 a	 constrained	 nonlinear	 optimization
problem	using	MATLAB.	The	 first	 step	 is	 to	 carefully	 examine	 how	MATLAB	 defines	 the
optimization	problem,	which	is	as	follows

(5.15)

subject	to

(5.16)
(5.17)
(5.18)
(5.19)
(5.20)

Each	 of	 the	 above	 variables	 is	 defined	within	 the	 context	 of	 the	 following	 example.
Figure	 5.4	 provides	 a	 top	 level	 view	 of	 the	 optimization	 algorithm.	 A	 more	 detailed
presentation	 is	 provided	 in	Sec.	7.3,	and	 illustrated	 in	Fig.	7.1.	Note	 that	 if	we	wish	 to
maximize	a	function	f(x)	and	use	the	min	MATLAB	function,	we	simply	need	to	perform	the
operation	min	x	-f(x).



Figure	5.4.	Optimization	Flow	Diagram

Let’s	use	the	following	example	to	further	explain	the	optimization	problem	definition
given	by	Eqs.	5.15–5.20

Example	5.1

(5.21)

subject	to

(5.22)
(5.23)

We	 would	 like	 to	 obtain	 the	 optimum	 values	 of	 the	 design	 variables	 x1	 and	 x2	 that
minimize	 the	objective	 function	 f(x)	 in	Eq.	 5.21,	 subject	 to	 the	 constraints	 in	 Eqs.	 5.22
and	5.23	being	satisfied.

The	fmincon	function

To	 solve	 the	 above	 problem,	we	 use	 the	 fmincon	 function	 provided	 in	MATLAB.	 The
syntax	of	the	function	is	as	follows.
[xopt,	fopt]	=	fmincon(‘fun’,	x0,	A,	b,	Aeq,	beq,	LB,	UB,		

															‘nonlcon’)

where	x0,	A,	 b,	Aeq,	 beq,	 LB,	 and	UB	 are	 the	 input	 variables	 that	 need	 to	 be	 defined
before	calling	fmincon.	‘fun’	is	the	name	of	the	function	file	containing	 the	definition	of
f(x),	and	‘nonlcon’	 is	 the	name	of	 the	 function	 file	containing	 the	 nonlinear	 constraints.
The	variables	xopt	and	fopt	are	the	outputs	of	fmincon,	where	xopt	is	the	optimum	vector
of	variables	[x1,x2]	and	fopt	is	the	minimum	value	of	the	objective	function	f.

The	Calling	Function:	main.m

Define	 the	 input	 variables:	 x0:	 This	 is	 the	 initial	 guess	 provided	 to	 fmincon.	 It	 is	 a
vector	of	size	equal	to	the	number	of	variables	in	the	optimization	problem.	In	this	case,



we	have	two	variables,	x1	and	x2.	Let	us	define	x0	=	[1;1].

A,	b,	Aeq,	and	beq:	These	variables	need	to	be	defined	only	 if	 the	problem	has	 linear
constraints.	 In	 many	 cases,	 all	 constraints	 (linear	 and	 nonlinear)	 can	 be	 defined	 in	 the
nonlcon.m	file,	so	these	variables	can	simply	be	defined	as	empty	matrices.	For	example,
A=[	].	However,	 there	 are	great	 numerical	 advantages	 to	 defining	 the	 linear	 constraints
within	Eqs.	5.18	and	5.19,	rather	than	within	Eqs.	5.16	and	5.17,	respectively.

LB,	UB:	These	are	the	vectors	that	contain	the	lower	and	upper	bounds	on	the	variables
x1	and	x2,	 respectively.	From	 the	 above	problem	definition	(Eq.	5.23),	we	 define:	 LB	 =
[-5;-5]and	UB	=	[5;5].	If	a	problem	does	not	have	bounds,	these	variables	can	simply	be
declared	 as	 empty	 vectors.	 We	 recommend	 creating	 a	 main.m	 file	 that	 defines	 all	 the
above	variables	and	calls	fmincon	for	the	optimization.

After	 defining	 the	 above	 quantities,	 we	 call	 the	 function	 fmincon.m.	 The	 function
fmincon.m	calls	 (i)	nonlcon.m	to	 evaluate	 the	 constraints	 and	 (ii)	 fun.m	 to	 evaluate	 the
objective	function	as	needed.

Objective	Function	file:	fun.m

This	 file	 should	be	 saved	 in	 the	 same	 folder	 as	 the	 above	main	M-file.	This	 function
returns	the	value	of	the	objective	function	at	any	given	point	x.	The	contents	of	fun.m	are
as	follows:

function	f	=	fun(x)		

				f	=	x(1)^2	+	3*x(2)^2	-	2*x(1)*x(2)	-	15;

Nonlinear	constraints	file:	nonlcon.m

This	file	should	be	saved	in	the	same	folder	as	the	main	and	the	function	files.	It	returns
the	values	 of	 the	 inequality	 and	 equality	 constraints	 at	 any	 given	 point	 x.	 Note	 that	 all
inequality	constraints	should	first	be	written	 in	 the	form	g(x)	≤	0,	as	shown	in	Eq.	5.22.
The	expression	on	the	left-hand-side	of	the	inequality	is	then	defined	in	the	constraint	file
nonlcon.m	as	shown	below.

function	[C,Ceq]	=	nonlcon(x)		

								C(1)	=	-2*x(1)	-	2*x(2)	+	8;		

								Ceq	=	[	];

Note	that	C(1)	is	the	first	and	only	nonlinear	inequality	constraint	in	this	problem.	If	the
problem	had	more	 inequality	 constraints	 (say,	n),	 they	would	 be	 defined	 as	 C(2),	 C(3),
…,C(n).	Ceq	is	the	vector	of	all	equality	constraints,	which	is	empty	in	this	problem.

Calling	fmincon

Once	all	the	variables	and	function	files	are	defined,	we	can	call	the	 fmincon	function
as	shown	above,	to	obtain	the	output
xopt	=		

				2.6667		

				1.3333		

fopt	=		

			-9.6667

Figure	5.5	provides	 a	 plot	 of	 the	 objective	 function	 and	 the	 feasible	 region.	 fmincon



also	 allows	 the	 user	 to	 set	 a	 number	 of	 different	 optimization	 parameters,	 such	 as	 the
maximum	number	 of	 iterations	 and	 other	 termination	 criteria.	 It	also	 allows	 the	 user	 to
pass	problem	parameters	to	the	fun.m	and	the	nonlcon.m	files.	More	help	on	these	features
can	be	obtained	by	typing	‘help	fmincon’	at	the	MATLAB	command	prompt.

Figure	5.5.	Nonlinear	Optimization

Options

Optimization	 options	 can	 be	 set	 for	 fmincon	 using	 the	 command	 optimset.	 Some
options	apply	to	all	algorithms,	while	others	are	relevant	to	particular	algorithms.	You	can
use	optimset	to	set	or	change	the	values	of	the	options	arguments.	The	options	arguments
include	algorithms	selection,	information	display	settings	and	gradient	estimation	in	series
or	parallel.	Please	see	Optimization	Options	help	in	MATLAB	for	detailed	information.

Display

Depending	on	the	option	selected	for	display,	MATLAB	can	show	different	outputs	in	the
Command	 Window.	 The	 information	 includes	 outputs	 at	 each	 iteration	 and	 provides
technical	exit	messages.	The	exit	messages	can	include	hyperlinks.	These	hyperlinks	bring
up	a	window	containing	further	information	about	the	terms	used	in	the	exit	messages.

Linear	Optimization/Programming

Here,	we	describe	 the	procedure	 for	 solving	a	 linear	programming	 problem	using	 the
MATLAB	function	linprog.	The	first	step	is	 to	carefully	examine	the	way	MATLAB	defines
the	optimization	problem,	which	is	as	follows.

(5.24)

subject	to

(5.25)



(5.26)

(5.27)

where	f	is	a	so-called	cost	coefficient	vector,	A	and	Aeq	are	constant	matrices,	and	b	and
beq	are	constant	vectors.	The	quantities	LB	and	UB	are	the	lower	and	upper	bounds	on	the
design	variables.	This	optimization	statement	is	further	explained	within	the	context	of	the
following	example.

Example	5.2

(5.28)

subject	to

(5.29)
(5.30)
(5.31)

The	linprog	function

The	basic	syntax	of	the	linprog	function	is	as	follows
[xopt,fopt]	=	linprog(f,	A,	b)

where	xopt	and	fopt	are	the	optimum	values	of	the	design	variables	and	objective	function,
respectively.	 Before	 solving	 the	 linear	 program,	 we	 need	 to	 ensure	 that	 the	 objective
function	is	of	a	minimization	type,	and	that	all	the	inequality	constraints	are	written	in	the
form	of	a1x1	+	a2x2	≤	b1,	where	a1,a2,	and	b1	are	constants	(see	Eqs.	5.29	and	5.30).

Define	the	input	variables	
f:	 This	 is	 a	 row	 vector	 corresponding	 to	 the	 coefficients	 of	 the	 design	 variables	 in	 the
objective	function	f.	Thus,	in	the	current	problem,

f	=	[4;4]

A:	 This	 is	 a	 matrix	 in	 which	 every	 row	 corresponds	 to	 the	 coefficients	 of	 the	 design
variables	 in	 each	 “≤”	 constraint.	 Therefore,	 A	 will	 have	 as	 many	 rows	 as	 we	 have
inequality	constraints,	and	as	many	columns	as	we	have	design	variables.

A	=	[-5	-3;	-3	-5]

Aeq	and	beq:	These	matrices	do	not	exist	in	this	example,	so	we	write
Aeq	=	[	]		

				beq	=	[	]

b:	This	is	a	vector	in	which	each	element	is	the	number	that	appears	on	the	right-hand-side
of	 each	 “≤”	 constraint.	We	 need	 to	make	 sure	 that	 the	 order	 of	 the	 constraints	 used	 to
define	A	and	b	is	the	same.

b	=	[-30;	-15]

Calling	linprog
Calling	linprog	using	the	above	syntax	yields



xopt	=		

								1.8750		

								1.8750		

				fopt	=		

							15.0000

Figure	 5.6	 illustrates	 the	 objective	 function	 (dashed	 line)	 being	 minimized	 and	 the
feasible	region	defined	by	the	constraints	in	Eqs.	5.29	and	5.30.	The	dash	 lines	 represent
constant	values	of	 the	objective	function.	As	 this	 line	moves	downward,	 to	decrease	 the
value	of	the	objective	function,	it	reaches	the	optimum	point.	If	 it	decreased	any	further,
there	would	be	no	part	of	 the	 line	 that	would	 remain	 in	 the	feasible	 region.	Type	 ‘‘help
linprog”	at	the	MATLAB	command	prompt	to	explore	other	features	and	options.

Figure	5.6.	Linear	Optimization

5.5.2 	Software	for	Optimization	as	Stand-Alone	(SO-SA)

Stand-alone	optimization	software	refers	here	to	those	software	that	are	created	primarily
for	optimization	purposes.	We	note	 that	 the	following	 is	only	a	 representative	sample	of
the	software	options	available.	A	more	complete	listing	of	available	software	packages	is
provided	in	[9].	As	shown	below,	there	are	software	packages	that	have	the	capability	 to
solve	 different	 types	 of	 optimization	 problems.	 A	 representative	 list	 is	 provided	 below
with	associated	descriptions.

Please	note	 that	 the	websites	provided	 for	 some	of	 the	 software	 options	 listed	 below,
while	 active	 as	 of	 the	 writing	 of	 this	 chapter,	 are	 subject	 to	 change	 in	 the	 future.	 The
purpose	of	the	following	discussion	is	 to	 inform	the	readers	of	 the	broad	set	of	software
options	 available	 in	 the	 marketplace	 to	 perform	 optimization.	 In	 practice,	 the	 latest
information	can	be	readily	obtained	through	an	internet	search.

1. Multipurpose	Stand-Alone	Optimization	Software

a) MATLAB	optimization	toolboxes:	MATLAB	has	two	optimization	toolboxes	that	can



solve	 various	 types	 of	 optimization	 problems,	 such	 as	 linear,	 nonlinear,	 and
multiobjective	problems.	General	information	regarding	the	MATLAB	toolboxes	were
presented	in	Chapter	1.

b) NEOS	server:	The	NEOS	server	is	an	environment	to	solve	optimization	problems
over	the	internet.	It	is	available	at	the	website	www.neos-server.org/neos,	and	can	be
used	to	solve	a	variety	of	optimization	problems,	such	as	linear,	nonlinear,	discrete,
integer	programming,	 and	 combinatorial	 problems.	 The	NEOS	 server	 also	 offers
global	optimization	algorithms.	The	user	needs	to	provide	the	optimization	problem
in	 a	 specific	 format,	 which	 depends	 on	 the	 type	 of	 optimization	 problem	 being
solved.	The	software	details	of	the	solver	can	be	found	in	Ref.	[10].

c) GENESIS,	DOT,	and	VisualDOC:	GENESIS	is	a	structural	optimization	software
that	also	has	finite	element	analysis	capabilities.	The	DOT	and	VisualDOC	programs
are	 developed	 by	 the	 Vanderplaats	 Research	 and	 Development	 Inc.,	 and	 are
distributed	as	part	of	 the	GENESIS	package.	These	software	can	solve	nonlinear,
multiobjective,	and	discrete	optimization	problems.	Typical	problem	sizes	are	well
over	100	design	variables	with	thousands	of	constraints.	Details	are	provided	in	[11]
Further	 information	 about	 these	 software	 tools	 can	 be	 found	 at	 the	 following
website.

www.vrand.com

d) NAG	library:	Several	implementations,	such	as	C	and	Fortran,	are	available	for	the
NAG	 library	 [12,	 13].	 It	 can	 be	 used	 to	 solve	 linear,	 quadratic,	 and	 nonlinear
programming	 problems.	 Further	 information	 regarding	 the	 NAG	 Library	 can	 be
found	at	the	following	website.

www.nag.com/optimization/availnaglib.asp

2. Packages	for	Specific	Classes	of	Problems

a) Nonlinear	constrained	problems:

i. NPSOL:	 NPSOL	 is	 a	 software	 used	 to	 solve	 constrained	 optimization
problems.	It	is	especially	effective	for	nonlinear	problems	whose	functions	and
gradients	 are	 expensive	 to	 evaluate.	 These	 algorithms	 are	 claimed	 to	 be
numerically	stable,	and	to	provide	global	convergence.	Details	are	available	at	the
following	website.

www.sbsi-sol-optimize.com/asp/sol_product_npsol.htm

	ii. GRG2:	The	GRG2	software	[14]	is	used	for	nonlinear	programming	problems.	It
can	be	used	as	a	stand-alone	system	or	as	a	subroutine.	It	can	handle	up	to	two
hundred	 active	 constraints.	 Another	 implementation	 of	 GRG2,	 known	 as
LSGRG2	 [15],	 can	 solve	 large	 scale	 optimization	 problems	 with	 over	 500
constraints.

b) Linear	programming	problems:

i. LSSOL:	It	is	a	software	package	for	solving	constrained	linear	programs.
The	software	is	claimed	to	be	numerically	stable;	and	is	used	to	solve	problems	in
Statistics,	Economics,	and	Finance.	Details	are	available	at	the	following	website.

http://www.neos-server.org/neos
http://www.vrand.com
http://www.nag.com/optimization/availnaglib.asp
http://www.sbsi-sol-optimize.com/asp/sol_product_npsol.htm


www.sbsi-sol-optimize.com/asp/sol_product_lssol.htm

	ii. CPLEX:	CPLEX	is	used	to	solve	linear	programming	and	integer	programming
problems.	 It	 employs	 both	 Simplex	 and	 interior	 point	 algorithms	 for	 linear
programming.	It	can	be	used	directly	or	as	a	subroutine.	The	software	is	claimed
to	be	robust	and	reliable	with	a	user-friendly	interface.	Details	are	available	at	the
website:

www.ibm.com/software/commerce/optimization/cplex-optimizer

e) Unconstrained	nonlinear	problems:
The	 BTN	 software	 can	 be	 used	 to	 solve	 unconstrained	 nonlinear	 optimization
problems,	and	is	implemented	in	a	parallel	computing	environment.	This	software	is
particularly	suitable	for	large	scale	problems.	Details	are	in	[16].

d) Multiobjective	problems:

i. NIMBUS:	This	software	can	be	used	to	solve	multiobjective	problems.	In
the	NIMBUS	method,	 the	user	 examines	 the	 values	 of	 the	 objective	 functions
calculated	at	a	current	solution,	and	divides	the	objective	functions	into	as	many
as	five	classes.	The	classes	are	functions	whose	values:	(1)	should	be	improved,
(2)	should	be	improved	until	some	aspiration	level	is	reached,	(3)	are	satisfactory
at	the	moment,	(4)	are	allowed	to	worsen	up	to	some	bound,	or	(5)	are	allowed	to
change	 freely.	 A	 new	 subproblem	 is	 constructed	 and	 solved	 according	 to	 the
classification	and	the	associated	information.	Details	are	provided	in	[17].	Further
information	regarding	NIMBUS	can	be	found	at	the	following	website.

https://wwwnimbus.it.jyu.fi

	 ii. PhysPro:	 This	 software	 offers	 a	 unique	 and	 comprehensive	 formulation	 and
solution	 to	 multiobjective	 problems.	 It	 embodies	 the	 Physical	 Programming
Method,	which	is	briefly	presented	in	Chapter	18,	and	fully	in	Refs.	[2,		3].	For
more	information	regarding	PhysPro,	please	visit	www.physpro.com(Ref.	[20]).

Next,	 we	 discuss	 some	 examples	 of	 integration	 frameworks	 where	 multidisciplinary
analysis	and	optimization	can	be	performed.

5.5.3 	Software	for	Optimization	Within	Design	Framework	(SO-WDF)

The	 following	 is	 a	 representative	 list	 of	 various	 integration	 frameworks	 and	 their
optimization	features.

1. iSIGHT:	 This	 software	 helps	 engineers	 manage	 the	 computer	 software	 required	 to
execute	 simulation-based	 design	 processes,	 including	 commercial	 computer	 aided
design/analysis	software	and	Excel	spreadsheets.	iSIGHT	enables	the	rapid	integration
of	these	programs	and	automates	their	execution	to	accelerate	the	evaluation	of	several
design	alternatives.	iSIGHT	has	multiobjective	optimization	capabilities,	and	contains
state-of-the-art	 multiobjective	 genetic	 algorithm	 routines.	 A	 toolkit	 is	 available	 in
iSIGHT	for	users	to	integrate	their	own	proprietary	or	obtained	optimization	algorithms.
Through	a	standard	procedure,	these	user	algorithms	can	be	made	available	through	the
iSIGHT	optimization	interface,	including	algorithm	specific	tuning	parameters.	Details

http://www.sbsi- sol-optimize.com/asp/sol_product_lssol.htm
http://www.ibm.com/software/commerce/optimization/cplex-optimizer
https://wwwnimbus.it.jyu.fi
http://www.physpro.com


are	available	at	the	following	website.

www.simulia.com

2. PHX	ModelCenter:	Phoenix	Integration	has	developed	the	PHX	ModelCenter,	which
can	be	used	for	process	integration	and	design	optimization.	PHX	Model-Center	is	an
environment	 for	 process	 integration	 to	 support	 the	 design	 team.	 It	 also	 enables
visualizing	multidimensional	design	spaces	to	seek	the	best	designs.	PHX	ModelCenter
allows	the	user	to	construct	the	design	process	as	a	series	of	linked	applications	with	a
simple	 interface.	Once	completed,	 the	user	will	have	organized	analyses	models	 that
facilitate	optimization	and	rapid	design	space	exploration.	Further	details	are	available
at	the	following	website.

www.phoenix-int.com

3. LMS	 Samtech	 Boss	 Quattro:	 This	 is	 an	 applications	 manager	 that	 works	 in	 a
multidisciplinary	environment	and	allows	 the	user	 to	 explore	 the	design	 space	using
optimization.	 It	 allows	 interfacing	 with	 major	 computer	 aided	 design	 and	 analysis
software,	 with	 in-house	 codes,	 and	 with	 management	 of	 data	 sheets	 such	 as	 MS-
EXCEL.	 Boss	 Quattro	 is	 one	 of	 the	 software	 packages	 provided	 by	 SIEMENS.
SIEMENS	provides	various	software	solutions	that	can	be	adapted	to	the	applications	at
hand	and	to	the	industrial	environment.	Details	are	available	at	the	following	website.

www.plm.automation.siemens.com

4. modeFRONTIER:	 modeFRONTIER	 is	 a	 user-friendly	 and	 full-featured	 design
environment	 that	 facilitates	 easy	 integration	 of	 several	 computer	 aided	 engineering
(CAE)	tools,	whether	commercial	or	 in-house.	It	has	the	capability	to	integrate	finite
element	structural	analysis	and	computational	fluid	dynamics	software.	It	also	provides
multiple	 optimization	 features,	 which	 include	 gradient	 based	 optimization,	 genetic
algorithms,	 and	multiobjective	 optimization.	 The	modeFRONTIER	 software	 can	 be
viewed	as	a	wrapper	around	the	CAE	tool	that	performs	optimization	by	modifying	the
input	 variables	 and	 monitoring	 the	 output	 variables.	 Details	 can	 be	 found	 at	 the
following	website.

www.esteco.com

Next,	we	discuss	the	third	category	of	software	that	provides	optimization	features.

5.5.4 	Software	for	Optimization	Within	Analysis	Package	(SO-WAP)

The	following	is	a	representative	list	of	various	analysis	codes	from	different	disciplines
that	have	optimization	routines.

1. Altair	Optistruct:	Altair	OptiStruct	is	a	commercially	available	 finite	element-based
software	 program	 for	 both	 structural	 analysis	 and	 design	 optimization.	 Altair
OptiStruct	 is	 used	 to	 design,	 evaluate,	 and	 improve	 performance	 of	 mechanical
structures.	 Users	 can	 define	 a	 target	 and	 constraints	 such	 as	 maximum	 allowable
deflection	 and	 stress,	modal	 response,	 member	 sizing,	 and	method	 of	 manufacture.
Altair	OptiStruct	then	solves	and	visualizes	the	structurally	optimal	and	manufacturable
design	 proposal	 based	 on	 the	 specifications.	 Details	 are	 available	 at	 the	 following

http://www.simulia.com
http://www.phoenix-int.com
http://www.plm.automation.siemens.com
http://www.esteco.com


website.

www.altairhyperworks.com

2. NASTRAN:	MSC	NASTRAN	allows	the	user	to	perform	the	optimization	of	designs
where	the	objectives/constraints	can	be	responses	from	the	finite	element	analysis,	such
as	weight,	stress,	and	displacement.	Large	scale	optimization	with	hundreds	of	design
variables	and	millions	of	 responses	can	be	handled	 in	NASTRAN.	The	optimization
module	 can	 also	 handle	 numerical	 issues,	 such	 as	 design	 variable	 linking	 (see
Sec.	 15.3.1).	 Advanced	 capabilities,	 such	 as	 approximation	 methods	 and	 robust
optimization,	are	also	available.	For	further	details,	see	www.mscsoftware.com.

3. ANSYS:	ANSYS	offers	design	optimization	features	in	its	ANSYS	Mechanical	suite
of	products.	ANSYS	has	integrated	optimization	tools,	such	as	topological	optimization
and	probabilistic	design.	The	DesignXplorer	software,	a	subset	of	ANSYS,	allows	users
to	 study	and	quantify	various	 structural	 and	 thermal	 analysis	 responses	on	parts	 and
assemblies,	 and	 to	 subsequently	 perform	 optimization.	 It	 also	 offers	 design	 for	 six
sigma	capabilities.	More	details	are	available	at	the	following	website.

www.ansys.com

4. ABAQUS:	 ABAQUS	 provides	 optimization	 capabilities	 through	 relationships	 with
independent	software	vendors.	More	details	are	available	at	the	following	website.

www.simulia.com

The	disciplinary	solution	is	directly	provided	by	the	respective	software	vendor.

5. COMSOL:	The	optimization	module	in	COMSOL	provides	optimization	codes	that	are
suitable	 for	 computationally	 intensive	 finite	 element	 analyses	 and	 multiphysics
problems.	 The	 disciplines	 of	 the	 problems	 range	 from	 traditional	 engineering
disciplines,	 such	 as	 structural	 mechanics	 and	 chemical	 engineering,	 to	 emerging
technologies,	 such	 as	 bioengineering.	 The	user	 can	 input	 objectives	 and	 constraints,
which	 could	 be	 simple	 algebraic	 expressions,	 or	 an	 analysis	model	 of	 any	 physical
phenomena.	The	optimization	module	has	solvers	for	linear	and	nonlinear	constrained
problems.	Details	are	available	at	the	following	website.

www.comsol.com

6. Microsoft	Excel	Add-ins	for	optimization:	Microsoft	Excel	has	an	optimization	solver
that	 can	 be	 included	 as	 an	 add-in	 [21].	 The	 hybrid	 evolutionary	 solver,	 which	 is	 a
combination	of	genetic	algorithms	and	classical	nonlinear	optimization	methods,	enables
the	 user	 to	 optimize	 models	 with	 any	 Excel	 functions.	 Details	 are	 available	 at	 the
website:	 www.solver.com.	 In	 addition	 to	 the	 above	 solver,	 additional	 add-ins	 are
available	from	various	companies.	A	representative	list	follows.

a) What’sBEST!	 This	 add-in	 from	LINDO	Systems	 lets	 the	 user	 solve	 large	 scale
optimization	 models	 by	 using	 Microsoft	 Excel.	 It	 provides	 solvers	 for	 linear,
nonlinear,	integer,	and	global	optimization.	It	is	claimed	to	be	fast,	reliable,	and	easy
to	use.	Details	are	available	at	the	following	website.

www.lindo.com

http://www.altairhyperworks.com
http://www.mscsoftware.com
http://www.ansys.com
http://www.simulia.com
http://www.comsol.com
http://www.solver.com
http://www.lindo.com


b) RISKOptimizer:	RISKOptimizer	 is	 an	 optimization	 add-in	 for	Microsoft	 Excel.
RISKOptimizer	allows	 the	optimization	of	Excel	 spreadsheet	models	 that	contain
uncertain	values.	RISKOptimizer	is	claimed	to	find	solutions	quickly	and	is	easy	to
use.	Details	are	in	[22].

c) Business	 spreadsheets:	 Business	 Spreadsheets	 (formerly	 Excel	 Business	 Tools)
provides	purpose-built	Microsoft	Excel	templates	that	can	be	applied	to	a	range	of
financial	 analysis	 and	 business	 decision-making	 scenarios.	 The	 Portfolio
Optimization,	which	is	one	of	the	templates	of	Business	Spreadsheets,	evaluates	the
optimal	capital	weightings	for	a	basket	of	investments	that	gives	the	highest	return
for	the	least	risk.	Details	are	available	at	the	following	website.

www.business-spreadsheets.com

5.6 	Summary

The	 previous	 chapters	 provided	 the	 perquisite	 knowledge	 for	 learning	 the	 theory	 of
optimization,	and	for	implementing	optimization	through	computational	tools,	followed	by
a	 philosophical	 introduction	 to	 the	 essence	 and	 the	 principal	 components	 of	 design
optimization.	 This	 chapter	 built	 on	 that	 foundation	 by	 delving	 directly	 into	 the
mathematical	 theory	 of	 optimization.	 More	 specifically,	 this	 chapter	 provided	 an
introduction	 to	 the	 fundamental	 concepts	 of	 linear	 and	 nonlinear	 programming.	 An
insightful	classification	of	optimization	problems	was	first	provided,	based	on	the	function
(non)linearity,	 the	 number	 of	 objectives,	 the	 presence	 of	 constraints,	 and	 the	 nature	 of
design	variables.	This	was	followed	by	an	introduction	to	the	major	classes	of	approaches
used	 to	 solve	 such	 optimization	 problems;	 namely,	 analytical	 optimization,
numerical/algorithmic	 optimization,	 experimental	 optimization,	 and	 graphical
optimization.	The	capabilities	of	MATLAB	in	solving	optimization	problems	was	discussed
next,	 specifically	 focusing	 on	 the	 fmincon	 and	 the	 linprog	 functions.	 The	 chapter
concluded	 with	 short	 descriptions	 of	 different	 currently-available	 optimization-related
software,	 including	 commercial	 software,	 open-source	 codes,	 multi-purpose	 packages,
optimization	frameworks,	and	simulation	software	that	include	optimization	modules.

5.7 	Problems

Warm-up	Problems

5.1 Formulate	 the	 following	problem	 (by	hand)	 to	 represent	 the	 generic	 optimization
format	shown	in	Eq.	(5.15)	to	(5.20)	of	the	textbook.

(5.32)

subject	to

(5.33)
(5.34)
(5.35)

http://www.business-spreadsheets.com


(5.36)
(5.37)

(5.38)

5.2 Solve	 the	 following	 constrained	 optimization	 problem	 using	 MATLAB.	 Use	 the
following	as	your	starting	points:	(i)	[1;1]and	(ii)	[1;6].

(5.39)

subject	to

(5.40)
(5.41)

Answer	the	following	questions:

	

(a) Solve	the	above	problem	using	MATLAB.	Report	the	optimum	value	of	x1	and
x2,	and	the	corresponding	minimum	value	of	f(x)	for	both	starting	points.

(b) Does	the	minimum	objective	function	value	change	when	the	starting	point	is
changed?

(c) What	is	the	effect	of	the	starting	point	on	the	optimum	value	of	x2?

(d) Explain	in	your	own	words	any	interesting	features	of	this	problem	in	view	of
the	above	questions.

5.3 Consider	the	following	problem.

(5.42)

subject	to

(5.43)
(5.44)
(5.45)

	

(a) Solve	the	above	problem	using	MATLAB.	Report	the	optimum	value	of	x1	and
x2,	and	the	corresponding	minimum	value	of	f(x).



(b) Solve	the	above	problem	by	removing	the	first	constraint	2x1	+	x2	≥	4.	Report
the	optimum	value	of	x1	and	x2,	and	the	corresponding	minimum	value	of	f(x).

(c) Now,	 solve	 the	 same	 problem	 by	 removing	 all	 the	 constraints.	 Report	 the
optimum	value	of	x1	and	x2,	and	the	corresponding	minimum	value	of	f(x).

(d) Create	 a	 contour	 plot	 similar	 to	 Fig.	 1.11	 (a)	 showing	 the	 contours	 of	 the
objective	function.	Show	on	it	the	locations	of	the	optima	obtained	in	Parts	(a)
-	(c).

5.4 The	following	is	a	linear	programming	problem.

(5.46)

subject	to

(5.47)
(5.48)
(5.49)

	

(a) Solve	 the	 above	 linear	 optimization	 problem	 using	 the	 linprog	 command	 in
MATLAB.

(b) Solve	 the	 above	problem	using	 the	fmincon	command	 in	MATLAB.	 Compare
the	results	with	the	results	obtained	in	(a).

Intermediate	Problems

5.5 Discuss	the	nature	of	the	solution	of	a	continuous	linear	programming	problem	that
does	 not	 have	 constraints.	 Next,	 discuss	 the	 nature	 of	 the	 solution	 of	 a	 discrete
linear	programming	problem	that	does	not	have	constraints.

5.6 Prepare	 a	 one	 to	 two	 page	 review	 of	 the	 application	 of	 design	 optimization	 in	 a
field	 of	 your	 choice	 (e.g.,	 aerospace	 industry,	 energy	 industry,
biomedical/biotechnology	 industry,	 operations	 research	 (OR),	 and	 finance).	 The
review	should	summarize	the	contribution	of	design	optimization	to	the	concerned
field	 in	 the	 last	 few	 decades.	A	brief	 survey	 of	 some	 key	 literature	 and	 real	 life
implementation	of	optimization	in	that	field	should	also	be	 included.	Clearly	state
all	the	references	that	you	use	in	the	review.

5.7 The	water	tank	shown	in	Fig.	5.7	is	supported	by	a	vertical	column	and	subjected	to
a	wind	load,	w	[23].	As	the	engineer,	you	are	required	to	determine	the	best	value
for	the	thickness,	t,	and	inner	diameter,	di,	of	the	column	in	an	effort	 to	minimize
the	total	mass	for	the	design	(total	mass	is	given	as	the	mass	of	the	column	plus	the
mass	of	the	tank).



Figure	5.7.	Structure	of	Water	Tank

The	following	constants	are	given:	the	height	of	the	column,	H	=	35m,	diameter	of
the	 tank,	D	=	15m,	wind	pressure,	w	 =	 700N/m2,	 gravity,	g	 =	 9.81m/s2,	 average
thickness	 of	 the	 tank	 wall,	 tavg	 =	 0.015m,	 unit	 weight	 of	 steel,	 γs	 =	 80KN/m3,
allowable	bending	stress,	σb	=	165MPa,	and	allowable	deflection,	Δ	=	0.2m.

You	 are	 presented	 with	 a	 simple	 function	 wtower.m	 in	 the	 book	 website
(www.cambridge.org/Messac)	 that	 describes	 the	 loading	 condition	 shown	 in
Fig.	 5.7.	 This	 function	 allows	 you	 to	 enter	 values	 for	 the	 inner	 diameter	 and
thickness	 (inputs);	 giving,	 in	 return,	 the	 corresponding	 values	 of	 the	 following
(outputs):

1. Outer	diameter	of	the	column,	do,

2. 	Allowable	 axial	 stress,	 σa	 (calculated	 using	 the	 critical	 buckling	 load	 with	 a
factor	of	safety	 ),

3. Surface	area	of	the	tank,	As,

4. Deflection	of	the	tank,	δ,

5. Bending	stress,	fb,	and

6. Axial	stress,	fa
Figure	5.8	illustrates	the	function	wtower.m.

http://www.cambridge.org/Messac


Figure	5.8.	Input	and	Output	for	the	Function	wtower.m

The	following	constraints	should	be	imposed	on	the	water	tank	design:

	

1. 	≤	92,

2. δ	≤	Δ,

3. 	+	 	≤	1,

4. 0.7	≤	di	≤	2.0m	and

5. Enter	the	constants	given	above	as	a	0.01	≤	t	≤	0.2m

You	are	required	to	complete	the	following:

1. Enter	the	constants	given	above	as	a	row	vector	y.	That	is

y	=	[H	D	w	g	tavg	γs	σb	Δ]

2. Using	 the	 function	 wtower.m,	 with	 initial	 values	 for	 the	 inner	 diameter	 and
thickness	of	the	column	being	1m	and	0.1m,	respectively,	determine	the	optimal
values	 for	 the	 design	 variables	 and	 design	 objective.	 (Note:	 Your	 objective
function	and	constraints	should	be	functions	of	 the	design	variables,	x,	and	 the
constants,	y).

3. If	 you	minimize	 only	 the	mass	 of	 the	 column,	will	 the	 optimal	 values	 for	 the
design	 variables	 and	 design	 objective	 change?	 Discuss	 the	 reasons	 for	 your
results.

5.8 A	welded	cantilever	beam	subjected	to	a	tip	force	is	shown	in	Fig.	5.9.	The	volume
of	the	weld	holding	the	cantilever	should	be	as	small	as	possible	while	maintaining
the	 applied	 tip	 force.	As	 shown	 in	 Fig.	 5.9,	 the	weld	 has	 two	 segments,	 each	 of
length	l	and	height	b.	The	cantilever	beam,	of	length	L,	is	subject	to	a	tip	force	of	F.
This	 force,	F,	 induces	shear	stresses	 in	 the	welds	 indicated	by	 the	components,	τt
and	τy.	T	corresponds	to	the	turning	effect	(torque)	of	F.



Figure	5.9.	Schematic	of	Cantilever	Beam

	

1. Minimize	the	weld	volume	subject	to	a	maximum	shear	stress	limit	in	the	weld.
Find	the	optimal	solution	using	MATLAB.

2. Make	a	plot	of	the	design	variable	space,	showing	the	optimal	variable	values.
On	the	same	plot,	draw	(i)	the	objective	function	contour	that	passes	through	the
optimal	 design	 variables,	 and	 (ii)	 an	 objective	 function	 contour	 that	 is	 not
feasible.

3. Indicate	on	your	plot:	 the	constraint	 functions,	and	 the	direction	 for	which	 the
objective	function	contours	worsen.

Given	the	parameter	values:

The	expression	for	shear	stress	is	given	as:
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PART	3

USING	OPTIMIZATION—PRACTICAL	ESSENTIALS
In	 Part	 I,	 we	 presented	 some	 prerequisite	 material	 for	 our	 study	 of	 optimization:	 and
introduction	to	MATLAB,	and	some	elementary	mathematics.	In	Part	II,	we	learned	what	we
needed	to	explore	what	optimization	is	all	about,	and	the	important	role	it	can	play	in	your
life	as	and	engineer,	scientist,	business	person,	or	anyone	dealing	with	 improving	 things
quantitatively	(e.g.,	performance	and	cost).	In	Part	III,	we	get	into	the	thick	of	things!	We
learn	what	we	need	to	know	to	credibly	address	optimization	problems	in	practice.

Specifically,	the	topics	presented,	with	the	chapter	numbers,	are	given	below:

6. Multiobjective	Optimization

7. Numerical	Essentials

8. Global	Optimization	Basics

9. Discrete	Optimization	Basics

10. Practicing	Optimization—Larger	Examples



6

Multiobjective	Optimization

6.1 	Overview

In	 Part	 I	 of	 this	 book,	 we	 reviewed	 preparatory	 knowledge	 needed	 to	 start	 learning
optimization:	MATLAB,	 and	 elementary	mathematics.	 In	Part	 II,	we	were	 exposed	 to	 the
world	 of	 optimization	 and	 its	 potentially	 powerful	 role	 in	 our	 lives	 as	 engineers	 or
professionals	in	quantitative	fields.	We	then	delved	into	the	specific	activities	of	analysis,
design,	 and	 optimization,	 their	 links	 and	 distinctions.	 In	 the	 previous	 chapter,	 we	 then
began	addressing	the	fundamental	aspects	of	computational	optimization.	These	 included
single	 objective	 optimization,	 and	 the	 different	 approaches	 to	 optimization	 (analytical,
numerical,	 experimental,	 and	graphical).	This	was	followed	by	 a	 discussion	 of	 software
options.

In	this	chapter,	we	study	one	of	the	most	important	aspects	of	optimization	in	practice,
the	 notion	 of	multiobjective	 optimization.	 Stated	 simply,	Multiobjective	 optimization	 is
the	art	and	science	of	formulating	how	to	optimize	a	set	of	competing	objectives,	which	is
almost	 always	 the	 case	 in	 practice.	 A	 detailed	 presentation	 of	 the	 pertinent	methods	 is
provided	in	such	a	way	as	to	allow	you	to	be	readily	productive	and	effective	in	practical
design.

6.2 	The	Multiobjective	Problem	Definition

The	identification	of	 the	right	design	objectives	plays	a	crucial	 role	 in	 the	design	of	any
system.	 More	 often	 than	 not,	 in	 real-life	 design,	 you	 will	 find	 that	 your	 optimization
problem	contains	more	than	one	design	objective.	For	example,	wouldn’t	it	be	nice	if	your
car	dealer	would	 tell	you	 that	 the	car	you	 like	happens	 to	 feature	more	miles	per	gallon
and	also	costs	less	than	a	competitor’s	car?	As	an	engineer,	you	would	think	twice	before
making	 a	 decision	 based	 on	 his	 interesting	 comments.	 If	 he	 were	 right,	 the	 other	 car
company	would	probably	not	stay	in	business	for	very	long.	The	point	here	is	that	while
designing	 any	 product	 or	 system,	 you	 will	 almost	 always	 have	 to	 consider	 several
competing	design	objectives.	As	a	car	designer,	you	would	like	the	car	to	provide	the	most
miles	per	gallon	possible,	while	 taking	 care	 that	 the	 car	 does	not	 cost	a	million	dollars.
This	is	where	multiobjective	optimization	comes	to	the	rescue.	It	is	a	methodical	approach
to	 solving	 problems	 involving	 several	 competing	 design	 objectives	 simultaneously.	 The
fundamental	message	 is	 that	 you	will	 almost	 always	have	 to	 compromise	 between	 your
various	objectives	and	find	a	way	to	prioritize	them	somehow	(see	Refs.	[1,	2,	3,	4]).

6.2.1 	Example	Problem

Let	us	illustrate	a	typical	multiobjective	optimization	problem	through	a	design	example.
As	 a	member	 of	 a	 design	 team	 in	 an	 automobile	 company,	 your	 first	 simple	 task	 is	 to



design	 a	 pinned-pinned	 beam	shown	 in	Fig.	 6.1	 [5].	 Several	 of	 the	 beam’s	 features	 are
already	fixed	by	the	design	team,	including	its	length	L	and	width	b,	the	material,	and	the
load	acting	on	it.	The	only	parameter	that	you	are	allowed	to	change	is	the	height,	h.	As
part	of	the	design,	you	have	been	asked	to	minimize	the	bending	stress	in	the	beam	and,	at
the	same	time,	minimize	the	deflection	at	the	mid-span.

Figure	6.1.	A	Simple	Beam	Design	Problem

Using	 this	 information,	 we	 can	 now	 set	 up	 our	 multiobjective	 design	 problem	 as
follows.	The	design	objectives	are:

μ1	=	Bending	stress (6.1)
μ2	=	Deflection (6.2)

The	design	variable	is

x1	=	Height (6.3)

6.2.2 	Multiobjective	Optimization	Problem	Statement

We	explore	 the	 structure	of	 a	generic	multiobjective	optimization	 problem	 statement.	A
mathematical	definition	is	given	below.

(6.4)

subject	to

g(x)	≤	0 (6.5)

h(x)	=	0 (6.6)

xl	≤	x	≤	xu (6.7)

Our	 example	 problem	 had	 only	 two	 objectives.	 Note	 that,	 in	 the	 above	 problem
statement,	the	number	of	design	objectives	μi	 is	equal	 to	n.	When	n	=	2,	we	call	 it	a	bi-
objective	problem.	Recall	that	x	is	the	design	variable	vector.	Each	element	xi	 is	a	design
variable.	 In	 the	 above	 problem	 statement,	 g(x)	 represents	 the	 vector	 of	 inequality
constraints,	 and	 h(x)	 is	 the	 vector	 of	 equality	 constraints.	 That	 is,	 g1(x)	 is	 the	 first
inequality	constraint,	and	h3(x)	is	the	third	equality	constraint.	The	vectors	xl	and	xu	are	the
lower	and	upper	bounds	on	the	design	variable	vector	x,	respectively.



6.3 	Pareto	Optimal	Solution

6.3.1 	Introducing	the	Pareto	Solution

Thus	 far,	 we	 have	 discussed	 how	 to	 formulate	 a	 multiobjective	 optimization	 design
problem.	The	next	 important	question	is:	how	do	we	solve	this	optimization	problem?	It
indeed	does	not	resemble	the	various	single	objective	problems	that	we	have	seen	thus	far.
Does	 it	 have	 a	 single	 optimum	 solution	 or	 multiple	 solutions?	 What	 is	 the	 value	 (or
values)	of	x	that	seeks	to	minimize	μ1	and	μ2	simultaneously,	while	providing	a	desirable
tradeoff	between	the	two?	One	of	the	interesting	features	of	multiobjective	optimization	is
that	the	solution	to	the	problem	is	generally	not	unique	as	different	tradeoff	levels	may	be
desirable	(with	each	tradeoff	level	yielding	a	different	solution).	A	set	of	solutions	called
Pareto	Optimal	Solutions	form	the	complete	solution	set	of	the	optimization	problem.

To	 understand	 the	 concept	 of	 Pareto	 optimality,	we	 review	 the	 folloing	 example.	 For
simplicity,	we	consider	an	unconstrained	problem	involving	two	design	objectives,	μ1	and
μ2,	which	are	functions	of	a	single	design	variable	x.	We	are	interested	in	minimizing	both
design	objectives	simultaneously.	Figure	6.2	provides	 the	plot	of	each	objective	function
on	the	same	vertical	axis	and	the	design	variable	x	on	the	horizontal	axis.

Figure	6.2.	Multiobjective	Optimization

If	we	minimize	each	objective	function	independently,	ignoring	the	other	objective,	we
will	obtain	the	point	that	corresponds	to	the	minimum	of	the	objective	being	minimized.
These	 two	points	are	 indicated	by	stars	 in	Fig.	6.2.	Suppose	you	are	at	 the	minimum	of
Objective	1	(i.e.	Point	M1),	and	you	decide	that	you	want	a	design	that	has	a	lower	value
for	Objective	2	than	what	you	have	at	Point	M1.	To	achieve	this,	you	will	have	to	move	to
the	right	of	Point	M1,	say	to	a	point	B.	In	doing	so,	Objective	2	has	decreased	in	value,	but
what	happened	to	the	value	of	Objective	1?	It	 increased	as	we	moved	from	Point	M1	to
Point	B.	Remember,	we	are	trying	to	minimize	both	objectives.	Thus,	to	improve	the	value
of	μ2,	we	had	to	compromise	on	the	performance	of	μ1.	In	fact,	this	is	true	for	all	the	points
between	M1	 and	M2.	We	 call	 these	 points	Pareto	 optimal	 solutions	 or	 non-dominated
solutions.



Definition:	 Pareto	 optimal	 solutions	 are	 those	 for	 which	 any	 improvement	 in	 one
objective	will	result	in	the	worsening	of	at	least	one	other	objective	[6].	That	is,	a	tradeoff
will	take	place.

Thus,	if	a	point	is	Pareto	optimal,	we	can	be	assured	that	there	cannot	be	simultaneous
improvement	 in	all	 the	objectives.	 In	Fig.	6.2,	 if	we	move	 to	 the	 right	 of	Point	A,	 both
objectives	decrease	simultaneously.	Therefore,	we	 call	 points,	 such	 as	A,	non-Pareto	 or
dominated	solutions.	The	same	it	true	with	other	points	such	as	C.	The	hatched	region	in
the	central	portion	 is	 the	set	of	all	design	variable	values	 that	are	Pareto	optimal.	As	an
optimization	engineer,	 if	 you	 are	 solving	 a	multiobjective	 optimization	 problem,	 Pareto
points	are	what	you	should	be	looking	out	for.

6.3.2 	The	Pareto	Frontier

In	the	previous	subsection,	we	determined	how	to	identify	Pareto	solutions	in	the	design
variable	space;	that	is,	x	space.	We	introduce	the	concept	of	design	objective	space.	This	is
a	plot	with	a	design	objective	plotted	on	each	axis.	We	are	particularly	interested	in	what
happens	 if	we	 plot	 the	 design	 objective	 values	 of	 the	 Pareto	 solutions	 in	 this	 objective
space.	 The	 pattern	 of	 points	 that	 you	 see	 in	 the	 objective	 space	 is	 called	 the	 Pareto
frontier.	 The	 name	 might	 sound	 highly	 technical,	 but	 it	 is	 simply	 a	 plot	 of	 all	 Pareto
solutions	 in	 the	 objective	 space.	 Figure	 6.3	 is	 a	 plot	 of	 all	 the	 Pareto	 points	 that	 we
identified	in	Fig.	6.2.

Figure	6.3.	Pareto	Frontier

All	 the	 points	 (M1,	 M2,	 A,	 B,	 and	 C)	 illuatrated	 in	 Fig.	 6.2	 are	 plotted	 with	 their
respective	objective	function	values	 in	Fig.	6.3.	M1	and	M2,	 in	particular,	 form	the	end
points	of	the	Pareto	frontier,	also	known	as	anchor	points.	Point	M1	is	where	Objective	1
has	the	least	value,	while	M2	is	where	Objective	2	has	the	least	value.	Points	A	and	C,	as
dominated	points,	do	not	lie	on	the	Pareto	frontier.



You	can	appreciate	why	such	a	plot	can	be	of	immense	use	to	a	designer	who	is	trying	to
optimize	a	 particular	 system.	By	 looking	 at	 the	 Pareto	 frontier,	 one	 can	 clearly	 see	 the
tradeoffs	associated	with	each	Pareto	point.	For	example,	if	Objective	1	and	Objective	2,
respectively,	denote	stress	and	deflection,	then	one	can	immediately	identify	regions	of	the
Pareto	 frontier	 corresponding	 to	 the	 low	values	 of	 stress,	 or	 regions	with	 low	values	 of
deflection,	 whatever	 the	 preference	 of	 the	 designer.	 The	 designer	 can	 then	 select	 a
particular	 Pareto	 point	 (say	 Point	 B),	 and	 map	 it	 back	 to	 the	 design	 variable	 space
(Fig.	6.2)	 to	 determine	what	 values	of	 the	 design	 variables	 (x)	 yield	 Point	B.	Thus,	 the
concept	of	Pareto	frontier	is	central	to	the	understanding	and	application	of	multiobjective
decision	making.

6.3.3 	Obtaining	Pareto	Solutions

From	the	above	discussion,	it	is	clear	that	to	solve	a	multiobjective	problem,	we	need	to
obtain	a	Pareto	optimal	point	or	a	set	of	points	on	the	Pareto	frontier.	We	cannot	always
plot	 the	 design	 objectives	 as	 shown	 in	 Fig.	 6.2.	 In	 most	 real-life	 design	 problems,	 the
design	 objectives	 are	 functions	 of	 several	 variables,	 and	 we	 need	 more	 methodical
techniques	 to	 obtain	 Pareto	 solutions.	 Note	 that	 most	 optimization	 algorithms	 are
developed	 for	 single	 objective	 problems.	 As	 such,	 one	 intuitive	 way	 to	 solve	 a
multiobjective	problem	is	to	combine	all	the	objectives	into	a	single	Aggregate	Objective
Function	 (AOF)	 in	 such	 a	 way	 that,	 when	 the	 AOF	 is	 optimized,	 a	 Pareto	 solution	 is
obtained.

6.3.4 	Aggregate	Objective	Function

Definition:	An	Aggregate	Objective	Function	(AOF),	generally	denoted	by	J,	is	a	function
that	combines	the	design	objectives	into	a	scalar	function.

The	AOF	typically	contains	parameters	to	be	selected	by	the	designer.	These	parameters
reflect	 the	 relative	 importance	 of	 each	 design	 objective.	 An	 objective	 with	 higher
importance	will	be	given	priority	during	the	optimization	process.	That	is	a	form	of	inter-
criteria	preference.	In	addition,	as	effective	AOF	should	provide	the	ability	to	express	the
relative	preference	for	different	values	of	a	given	objective	(intra-criteria	preference).	Note
that	 the	 most	 commonly	 used	 AOFs	 do	 not	 effectively	 provide	 both	 of	 these	 crucial
attributes.	Keep	 in	mind	 that	 the	 final	 solution	 that	 can	be	achieved	will	 depend	 on	 the
type	of	AOF	that	is	used.	An	important	consideration	in	selecting	the	AOF	to	be	used	is	its
ability	 to	 allow	 the	 designer	 to	 impose	 his/her	 design	 objective	 preferences	 in	 an
unambiguous	manner.	Below	 are	 some	 popular	AOF	formulations	 used	 by	 designers	 in
industry.	You	will	 develop	 a	 deep	 appreciation	 for	 these	 crucial	 practical	 issues	 as	 you
study	the	material	in	this	chapter,	and	practice	solving	the	problems	at	the	end.

6.4 	The	Weighted	Sum	Method

6.4.1 	Two-Objective	Case

The	Weighted	Sum	approach	is	the	simplest	and	the	most	intuitively	meaningful	means	of



solving	multiobjective	optimization	problems.	It	is	also	the	one	that	is	most	widely	used.
However,	 it	 possesses	 some	 serious	 deficiencies.	 The	AOF	 is	 simply	 a	weighted	 linear
combination	of	 all	 the	 objective	functions.	 Let’s	 consider	 the	 two-objective	 case	 shown
below.

J(x)	=	w1μ1(x)	+	w2μ2(x) (6.8)

The	above	equation	is	a	linear	function	of	the	two	objective	functions.	Therefore,	if	we
plot	the	constant	value	curves	(contour	plot)	of	J	in	the	objective	space	(see	Fig.	6.3),	these
contours	 will	 appear	 as	 straight	 lines.	 Setting	 the	 weights	 in	 front	 of	 each	 objective
function,	 and	 minimizing	 J	 yields	 a	 Pareto	 point.	 By	 changing	 the	 weights	 (w	 ≥	 0)
uniformly,	say	from	0	to	1,	we	can	obtain	a	series	of	Pareto	points	on	the	Pareto	frontier.
The	mathematical	formulation	of	the	optimization	problem	is	given	below.

(6.9)

subject	to

g(x)	≤	0 (6.10)

h(x)	=	0 (6.11)

xl	≤	x	≤	xu (6.12)

Note	that	we	are	considering	the	generic	constrained	optimization	problem	in	Eq.	6.9.
The	constraints	g(x)	and	h(x)	define	the	feasible	region,	which	is	shown	in	Fig.	6.4	as	the
shaded	 region.	A	pictorial	 representation	 of	what	 goes	 on	 behind	 the	 scenes	 during	 the
optimization	process	is	also	provided.	The	dashed	lines	are	the	constant	value	curves	of	J.

Figure	6.4.	Weighted	Sum	Method

As	 the	 optimization	 process	 decreases	 the	 value	 of	 J,	 the	 solution	moves	 closer	 and



closer	to	the	Pareto	frontier.	The	optimization	will	terminate	when	it	is	no	longer	possible
to	decrease	both	μ1	and	μ2	simultaneously	while	remaining	in	the	feasible	 region.	Notice
that	if	you	set	w1	=	0,	the	constant	value	curves	of	J	are	parallel	 to	μ1;	and	 the	optimum
point	obtained	will	be	M2,	the	minimum	of	μ2.	Similarly,	if	you	set	w2	=	0,	you	will	obtain
M1	 as	 the	minimum.	 For	 all	 other	 combinations	 of	w1	 and	w2,	 different	 points	 on	 the
Pareto	frontier	can	be	obtained.	A	typical	way	to	set	the	weights	is	to	vary	them	between	0
and	1	such	that	their	sum	is	equal	to	1.	One	of	the	deficiencies	of	the	weighted	sum	method
is	that	there	is	no	easy	way	to	know	what	values	of	w	to	use.	They	are	generally	chosen	by
trial	and	error.

6.4.2 	Addressing	More	than	Two	Objectives

For	 two-objective	 (i.e.,	 bi-objective)	 optimization	 problems,	 the	 two	weights	 in	 Eq.	 6.9
can	be	made	to	vary	between	0	and	1	in	an	attempt	to	generate	Pareto	solutions.	Here,	we
address	the	case	of	m	objectives,	where	m	>	2	and	the	Aggregate	Objective	Function	can
be	expressed	as

	(x)	=	h1μ1(x)	+	h2μ2(x)	+	 	+	hmμm(x) (6.13)

where	 hi	 is	 greater	 than	 or	 equal	 to	 0,	 and	 represents	 the	 weight	 for	 the	 ith	 objective
function.	 Note	 that	 h	 i	 cannot	 be	 equal	 to	 0	 for	 all	 i.	 We	 now	 make	 the	 following
observations.	 The	 solution	 obtained	 using	 (x)	 is	 the	 same	 as	 that	 obtained	 using	 J(x),
where	J(x)	=	 	(x)	with	α	as	a	positive	constant.	If	we	let	α	=	h1	+	h2	+	 	+	hm,	 then	 the
new	objective	function	can	be	written	as

(6.14)

where

(6.15)

(6.16)

(6.17)

(6.18)



Figure	6.5.	The	Plane	of	Weights	for	a	Three-Objective	Optimization	Problem

With	the	above	construction,	we	note	that

(6.19)

From	 Eq.	 6.19,	 we	 observed	 that	 the	 weights,	 (w1,w2, ,wm)	 lie	 on	 the	 hyperplane
defined	by	w1	+	w2	+	 	+	wm	=	1,	where

0	≤	wi	≤	1 (6.20)

For	three-objective	optimization	problems,	the	points	belonging	to	the	plane	w1	+	w2	+
w3	 =	 1	 (0	 ≤	w1,w2,w3	 ≤	 1)	 define	 the	 ranges	 of	 appropriate	weights	 (see	 Fig.	 6.5).	 To
examine	how	the	weights	may	change	relative	to	each	other,	we	recall	that	the	sum	of	the
weights	is	equal	to	1,	and	we	make	the	following	observations:	(i)	We	begin	by	allowing
w1	to	vary	from	0	to	1.	(ii)	For	a	given	w1,	w2	must	vary	between	0	and	(1	–	w1),	in	order
to	have	w1	+	w2	=	1.	(iii)	For	a	given	w1	and	w2,	w3	must	vary	between	0	and	(1	–	w1	–	w2)
in	order	to	have	w1	+	w2	+	w3	=	1.	(iv)	(For	four	objectives,	we	would	have:)	For	a	given
w1,	w2	and	w3,	w4	must	vary	between	0	and	(1	–	w1	–	w2	–	w3)	in	order	to	have	w1	+	w2	+
w3	+	w4	=	1.	And	the	process	continues.

Figure	 6.5	 describes	 the	 range	 of	 weights	 for	 the	 three-objective	 case,	 where	 the
horizontal	 dashed	 line	 describes	 the	 generic	 range	 for	w2	 and	 the	 vertical	 dashed	 line



describes	the	generic	range	for	w3.

The	associated	MATLAB	code	for	the	three-objective	case	is	presented	below.	If	we	use
an	 increment	 of	 0.01	 for	 the	 weights	 iterations,	 the	 range	 of	 weights	 can	 be	 evaluated
using	the	following	nested	loop	code.
for	w1=0:0.01:1		

				for	w2=0:0.01:1-w1		

								w3=1-w1-w2;		

%							(evaluate	the	objectives	u1,	u2,	and	u3)		

								J	=	w1*u1	+	w2*u2	+	w3*u3;		

				end		

end

6.5 	Compromise	Programming

An	important	question	is	whether	the	weighted	sum	method	has	the	ability	to	generate	all
correct	 results.	 To	 answer	 this	 question,	 consider	 Fig.	 6.6.	 It	 displays,	 what	 we	 call	 in
multiobjective	 optimization	 terminology,	 a	 non-convex	 Pareto	 frontier.	 (Recall	 that	 the
Pareto	frontier	in	Fig.	6.4	was	part	of	a	convex	set.)

Figure	6.6.	Weighted	Sum	for	Non-convex	Pareto	Frontier

If	we	try	to	use	the	weighted	sum	method	for	this	type	of	problem,	the	Pareto	points	that
lie	 in	 the	 non-convex	 regions	 (all	 points	 between	 P	 and	 Q)	 will	 be	 unobtainable.	 A
pictorial	 representation	 of	 the	 optimization	 is	 shown	 in	 Fig.	 6.6.	 As	 the	 optimization
progresses,	you	might	think	that	it	will	stop	when	the	dashed	line	passes	through	point	T.
In	fact,	it	continues	beyond	point	T	and	yields	point	P	as	the	optimum	solution.	No	matter
what	 set	 of	 weights	 you	 use,	 points	 such	 as	 T	 (and	 any	 point	 between	 P	 and	 Q)	 are
unobtainable,	 because	 they	 lie	 in	 a	non-convex	 portion	 of	 the	 Pareto	 frontier.	 This	 is	 a
serious	drawback	of	the	weighted	sum	method,	and	one	that	calls	for	particular	caution.

Is	there	a	way	out?	Yes,	one	option	is	called	Compromise	Programming.	It	is	a	simple



extension	of	 the	weighted	sum	strategy.	The	mathematical	 form	of	 the	pertinent	AOF	is
provided	below.

J(x)	=	w1μ1n(x)	+	w	2μ2n(x) (6.21)

Notice	the	difference	between	the	above	equation	and	the	weighted	sum	in	Eq.	6.8.	 In
Eq.	6.21,	the	objective	functions	have	an	exponent,	n.	If	we	plot	the	constant	value	curves
of	J,	they	will	no	longer	be	straight	lines.	Instead,	they	will	be	n-th	order	curves.

Figure	6.7	presents	 the	constant	value	curves	of	J	as	dashed	 lines	 as	 the	optimization
progresses.	Note	 that	 if	we	 select	 a	 sufficiently	high	value	 for	n,	we	 can	reach	 into	 the
non-convex	 portions	 of	 the	 Pareto	 frontier.	 In	 this	 specific	 case,	 the	 optimum	 point
obtained	is	point	T,	which	was	previously	unobtainable	using	the	weighted	sum	method.

Figure	6.7.	Compromise	Programming

As	a	general	guideline,	always	choose	n	to	be	an	even	integer	less	than	or	equal	to	8.	In
most	 cases,	 using	 n	 =	 2	 or	 n	 =	 4	 should	 yield	 satisfactory	 results.	 When	 n	 =	 2,	 the
compromise	programming	approach	is	sometimes	called	the	weighted	square	sum	method.

6.6 	Generating	the	Pareto	Frontier—with	MATLAB

Previously	 in	 Sec.	 5.5.1,	we	 discussed	 how	 to	 use	 fmincon	 to	 solve	 a	 single	 nonlinear
optimization	 problem	with	 one	 objective.	 In	 this	 section,	we	 explain	 how	 to	 develop	 a
code	 in	 MATLAB	 to	 generate	 several	 Pareto	 solutions,	 or	 the	 Pareto	 frontier,	 for	 a
multiobjective	optimization	problem.

Consider	 the	 following	 bi-objective	 optimization	 problem	 for	 which	 we	 wish	 to
generate	the	Pareto	frontier.

(6.22)



subject	to

(6.23)
(6.24)
(6.25)

(6.26)

Figure	6.8	provides	the	MATLAB	code	for	Pareto	frontier	generation	using	the	weighted
sum	method.	The	procedure	is	summarized	below:

1. Program	 Structure:	 The	 main	 program	 is	 called	 main.m,	 which	 upon	 execution,
generates	 and	 plots	 a	 set	 of	 Pareto	 points.	 The	 file	 main.m	 calls	 the	 two	 functions
objfun.m	 and	 confun.m,	 which	 generate	 the	 objective	 functions	 and	 the	 constraints,
respectively.

2. Initialization:	The	file	main.m	begins	by	providing	the	initial	guess	(x0)	and	specifying
lower	and	upper	bounds	(LB	and	UB)	for	the	design	variables.	The	quantities	x0,	LB,	and
UB	 are	 arguments	 in	 fmincon.	 A	 counter	 j=	 1	 is	 defined.	 This	 counter	 is	 used	 to
increment	the	indices	of	the	arrays	in	which	the	Pareto	points	are	stored.

3. for	loop	and	Details:	After	initialization,	a	for	loop	is	defined.	Like	most	optimization
codes,	 the	 MATLAB	 solver	 fmincon	 can	 only	 solve	 single	 objective	 optimization
problems.	Therefore,	we	combine	the	two	objectives	in	the	problem	at	hand,	μ1	and	μ2,
to	form	a	single	AOF.	In	order	to	obtain	the	Pareto	frontier	of	the	bi-objective	problem,
we	solve	a	series	of	single	objective	problems.	Each	iteration	of	the	for	loop	solves	one
single	objective	optimization	problem.	This	approach	is	further	discussed	below.

a) Each	 single	 objective	 problem	 has	 a	 different	AOF	 that	 can	 be	 formed	 using	 the
weighted	sum	method	or	the	compromise	programming	method,	using	different	sets
of	 weights.	 In	 order	 to	 automate	 this	 AOF	 generation	 for	 each	 single	 objective
optimization,	we	use	the	for	loop	to	generate	the	sets	of	weights.

b) As	shown	in	Fig.	6.8,	each	iteration	of	the	for	loop	generates	one	set	of	weights	that
defines	 an	AOF	 for	 that	 iteration.	 The	 corresponding	 single	 objective	 problem	 is
solved	by	calling	fmincon.	The	command	fmincon,	 in	 turn,	calls	 the	 two	 function
files	objfun.m	and	confun.m.

c) Figure	6.8	describes	the	values	that	are	exchanged	among	the	files	main.m,	objfun.m
and	confun.m.	The	 file	main.m	provides	 the	 design	 variable	 and	weight	 values	 to
objfun.m	and	confun.m.	Note	that	although	the	weights	are	not	used	 in	confun.m,
they	still	need	to	be	passed.	All	problem	parameters	in	fmincon	(in	this	problem,	w1
and	w2)	must	be	provided	to	both	objfun.m	and	confun.m;	otherwise,	a	MATLAB	error
will	occur.

d) Based	on	the	weights	that	are	passed	into	objfun.m	from	main.m,	an	AOF	is	formed
in	objfun.m.	Every	time	fmincon	calls	the	objective	function	file,	objfun.m	returns
the	value	of	f,	which	is	the	AOF	value	for	the	corresponding	set	of	weights.	The	file
confun.m	returns	to	main.m	the	values	of	the	inequality	and	equality	constraints	[c,
ceq]	every	time	fmincon	calls	confun.m.



e) The	 optimum	 values	 of	 the	 corresponding	 design	 variables	 obtained	 by	 calling
fmincon	are	stored	in	the	variable	x.	Next,	the	values	of	the	corresponding	objective
functions	are	computed	and	stored	in	two	arrays,	solx	and	soly.	After	each	iteration
of	the	for	loop,	the	counter	j	is	incremented.

4. Plotting:	After	the	execution	of	the	for	loop	is	completed,	the	objective	values	in	the
two	arrays,	solx	and	soly,	are	plotted	to	obtain	the	Pareto	frontier.

Figure	6.8.	Generating	the	Pareto	Frontier	Using	MATLAB

The	number	of	Pareto	points	to	be	generated	can	be	set	using	the	for	 loop	arguments.
Different	sets	of	weights	used	to	form	the	AOF	generally	yield	different	Pareto	points.	The
above	statement,	however,	might	not	be	true	in	problems	with	numerical	issues.

The	 code	 in	 Fig.	 6.8	 generates	 the	 Pareto	 frontier	 shown	 in	 Fig.	 6.9.	 Readers	 are
encouraged	to	use	 this	example	 to	 reproduce	 the	Pareto	frontier	generation	code	and	 the
results	shown	in	Fig.	6.9.



Figure	6.9.	Pareto	Frontier	for	the	Example

6.7 	Reaching	a	Target—Goal	Programming

In	 some	problems,	 instead	of	 simply	minimizing	 the	design	objectives,	we	may	wish	 to
reach	a	given	target	value	for	each	objective.	For	example,	say	the	stress	design	objective
(μ1)	is	required	to	be	as	close	to	1,500	MPa	as	possible,	while	the	value	of	deflection	(μ2)
is	 required	 to	be	as	close	 to	2	 inches	as	possible.	Such	a	design	statement	can	be	easily
formulated	as	a	compromise	programming	AOF,	as	shown	below.

J(x)	=	w1 	n	+	w	2 	n (6.27)

where	n	is	an	even	integer,	often	chosen	to	be	equal	to	two.	In	the	above	equation,	notice
that	the	smallest	possible	value	of	J	is	zero,	which	is	achieved	only	when	μ1	=	1500	and	μ2
=	2.	In	most	real-life	problems,	this	point	will	not	be	achievable.	Instead,	by	choosing	an
appropriate	set	of	weights	(w1	and	w2)	 for	 the	design	objectives,	we	can	obtain	a	Pareto
solution	 that	 reflects	 the	 most	 desirable	 tradeoff	 between	 the	 two	 design	 objectives.
Finally,	 we	 note	 that	 it	 is	 often	 desirable	 to	 use	 a	 normalized	 version	 of	 the	 goal
programming	formulation	(Eq.	6.27).	This	version	is	expressed	as

(6.28)

where	μ1g	and	μ2g	are	good	values	of	 the	objectives	μ1	and	μ2,	 respectively;	and	μ1b	and
μ2b	are	bad	values	of	the	objectives	μ1	and	μ2,	respectively.	With	respect	 to	Eq.	6.27,	we
would	have	μ1g	=	1,	500	and	μ2g	=	2;	and	we	might	have	μ1b	=	8,	000	and	μ2b	=	10.	The
formulation	 in	Eq.	6.28	will	have	more	 stable	numerical	behavior	 than	 that	 in	Eq.	 6.27.
Such	 numerical	 conditioning	 and	 scaling	 strategies	 will	 be	 discussed	 in	 more	 detail	 in
Chapter	7.

We	 conclude	 by	 noting	 that,	 in	 the	 above	methods,	 we	 have	 described	 formulations
from	 the	 point	 of	 view	 of	 two	 objectives.	 While	 the	 bi-objective	 case	 is	 indeed	 more



computationally	 tractable,	we	 find	 that,	 at	 least	 conceptually,	 these	 formulations	 can	 be
readily	extended	to	cases	of	more	than	two	objectives	by	simply	adding	appropriate	terms
in	the	AOF.

6.8 	Expressing	a	Preference—Physical	Programming

In	the	case	of	Goal	Programming	(GP),	we	try	to	reach	a	given	target	for	each	objective.
However,	in	practice,	we	generally	have	a	more	complex	set	of	preferences.	The	Physical
Programming	method	provides	 the	means	 for	 a	more	 realistic	 expression	 of	 preference.
Instead	of	saying	that	the	goal	is	for	the	mass	to	be	close	to	single	fixed	target,	we	can	say
that	 we	 wish	 to	 minimize	 the	 mass	 with	 different	 ranges	 of	 differing	 desirability.
Specifically,	we	might	say	that	(i)	it	is	Highly	Desirable	for	the	mass	to	be	less	than	2	kg,
(ii)	Desirable	between	2	and	3	kg,	 (iii)	Tolerable	between	3	 and	5	kg,	 (iv)	Undesirable
between	 5	 and	 7	 kg,	 and	 (v)	Highly	Undesirable	 between	 7	 and	 8	 kg.	 Beyond	 8	 kg	 is
Unacceptable.	This	expression	of	preference	through	physical	programming	is	depicted	in
Fig.	6.10	for	the	mass	objective.	A	similar	expression	of	preference	for	other	objectives	–
deflection,	sig1,	and	sig2	–	are	shown	for	minimization,	and	sig3	for	maximization.	This
added	flexibility	is	a	distinguishing	feature	of	the	Physical	Programming	(PP)	method.	A
more	detailed	presentation	of	the	PP	method	is	provided	in	Chapter	18.	Figure	6.10	is	part
PhysPro	 (Ref.	 [7]),	 which	 is	 a	 software	 implementation	 of	 the	 Physical	 Programming
method.	(Note	that	this	figure	is	color	coded	in	the	actual	code	Graphical	User	Interface).

Figure	6.10.	Expressing	Preference	Using	Physical	Programming

Brief	contrast	of	the	two	methods:

Goal	Programming	Key	Characteristics:	(i)	GP	is	somewhat	easier	 to	 implement	 than
PP.	(ii)	GP	is	much	easier	to	code.	(iii)	GP	can	provide	useful	answers	in	many	practical
cases.	(iv)	GP	can	be	overly	dependent	on	the	target/goal	values	chosen.	 (v)	GP	requires
the	assignment	of	weights	for	each	goal,	which	can	be	extremely	difficult	in	cases	of	more
than	two	objectives.

Physical	 Programming	 Key	 Characteristics:	 (i)	 PP	 is	 more	 amenable	 to	 leading	 the
designer	to	the	most	preferred	solution.(ii)	PP	is	shown	not	to	be	highly	sensitive	on	 the
desirability	values	chosen.	(iii)	PP	does	not	require	the	assignment	of	weights,	which	are
notoriously	difficult	to	correctly	determine	in	practical	cases	of	more	than	two	objecives.
(iv)	 PP	 has	 been	 shown	 to	 work	 well	 in	 diverse	 multiobjective	 practical	 cases.	 (v)	 PP



brings	optimization	within	the	reach	of	users	with	minimal	technical	knowledge	thereof.

6.9 	Multiobjective	Optimization	Using	MATLAB	Optimization	Toolbox

The	MATLAB	Optimization	Toolbox	provides	 two	functions	for	 two	distinct	 formulations
of	multiobjective	optimization	problems:	(i)	goal	attainment	and	(ii)	minimax.

The	goal	attainment	problem	involves	reducing	the	value	of	a	linear	or	nonlinear	vector
function	in	order	to	attain	the	goal	values	given	in	a	goal	vector.	A	weight	vector	is	used,
which	 is	 intended	 to	 indicate	 the	 relative	 importance	 of	 the	 goals.	 The	 goal	 attainment
problem	may	 also	 be	 subject	 to	 linear	 and	 nonlinear	 constraints.	 The	 function	 used	 to
solve	the	goal	attainment	problem	is	fgoalattain.	Please	use	the	command	help	fgoalattain
for	further	information.

The	minimax	problem	involves	minimizing	the	worst	case	value	of	a	set	of	multivariate
functions,	possibly	subject	to	linear	and	nonlinear	constraints.	The	function	used	to	solve
the	minimax	 problem	 is	 fminimax.	 Please	 use	 the	 command	 help	 fminimax	 for	 further
information.

6.10 	Summary

Real-life	 design	 problems	 often	 involve	 multiple	 objectives	 or	 criteria	 that	 need	 to	 be
achieved;	 such	 as,	 reducing	 system	 cost,	 while	 maximizing	 the	 system	 efficiency,	 and
minimizing	the	system	weight.	Special	methodologies	that	can	address	multiple	objectives
are	needed	 to	 solve	 such	design	problems.	This	 chapter	 provided	 an	 introduction	 to	 the
concept	 of	multiobjective	 optimization,	 specifically	 focusing	 on	 how	 to	 formulate	 such
multiobjective	problems,	how	to	compare	solutions	and	identify	best	tradeoff	designs,	and
how	to	solve	multiobjective	problems.	The	concept	of	Pareto	solutions	and	Pareto	frontier
was	 first	 provided,	 followed	 by	 the	 concept	 of	 aggregate	 objective	 function.	 The	major
multiobjective	 optimization	 methods	 that	 were	 presented	 in	 this	 chapter	 included
traditional	 methods	 such	 as	 the	 weighted	 sum	method,	 compromise	 programming,	 and
goal	programming,	 as	well	 as	 the	 contemporary	method	 of	 physical	 programming.	 The
chapter	 ended	 with	 a	 brief	 overview	 of	 the	 provisions	 in	 MATLAB	 for	 solving
multiobjective	optimization	problems.

6.11 	Problems

Warm-up	Problems

6.1 Consider	 the	 following	 bi-objective	 optimization	 problem.	 This	 is	 a	 standard
single-variable	bi-objective	problem	often	used	to	test	multiobjective	optimizers.

μ1	=	x2 (6.29)

μ2	=	(x	–	2)2 (6.30)
–5	≤	x	≤	5 (6.31)



(a)	 Obtain	 several	 optimal	 points	 on	 the	 Pareto	 frontier	 using	 the	 weighted	 sum
method.	 Use	 the	 MATLAB	 function	 fmincon	 for	 optimization.	 Plot	 each	 design
objective	as	a	function	of	x	on	the	same	figure	(as	shown	in	Fig.	6.2).	 Identify	on
this	plot,	the	Pareto	solutions	that	you	just	obtained.	Turn	in	your	M-files.	(b)	Plot
the	Pareto	optimal	points	in	the	μ1-μ2	space.	Turn	in	your	M-files	and	the	plot.

6.2 Consider	the	following	bi-objective	optimization	problem.

μ1	=	sin	θ (6.32)
μ2	=	1	–	sin7	θ (6.33)

0.5326	≤	θ	≤	1.2532 (6.34)

(a)	 Obtain	 several	 optimal	 points	 on	 the	 Pareto	 frontier	 using	 the	 weighted	 sum
method.	Use	the	MATLAB	function	fmincon	for	optimization.	Plot	the	points	 in	 the
μ1-μ2	space.	Turn	in	your	M-files	and	the	plot.	(b)	Do	you	think	that	the	weighted
sum	method	performs	satisfactorily	 in	obtaining	points	on	 the	Pareto	frontier?	 (c)
Use	 the	 compromise	 programming	 approach	 with	 an	 appropriate	 value	 for	 the
exponent	to	obtain	the	Pareto	frontier.	Turn	in	the	plot	and	the	M-file	that	you	think
yields	the	most	satisfactory	results.

6.3 Design	a	 single-support	water	 tower	of	maximum	height,	h,	 and	maximum	water
storage	 capacity.	For	 this	 exercise,	 the	 only	mode	 of	 failure	 to	 protect	 against	 is
support	column	buckling.	The	basic	tower	design	is	shown	in	Fig.	6.11.

Figure	6.11.	Problem	6.3—Water	Tower

Assumptions:



(1) The	steel	water	tank	is	a	spherical	pressure	vessel	of	thickness	t.

(2) The	support	column	has	a	circular	cross	section	and	is	made	of	steel.

(3) The	weight	of	the	full	tank	acts	vertically	at	Point	B.

Design	Variables:

(1) Column	height:	h

(2) Tank	radius:	r

Side	constraints:

(1) Height:	10	≤	h	≤	16	(meters)

(2) Radius:	2.13	≤	r	≤	14	(meters)

Numerical	Constants:

(1) Modulus	of	steel,	E	=	206	GPa

(2) Diameter	of	support	column,	d	=	0.3	m

(3) Thickness	of	tank,	t	=	0.0127	m

(4) Buckling	safety	factor,	SF	=	2

(5) Gravitational	constant,	g	=	9.8	m/s2

(6) Density	of	steel,	ρs	=	7,800	kg/m3

(7) Density	of	water,	ρw	=	1,000	kg/m3

The	questions	are:

(a) Find	the	tallest	water	tower	design,	h.

(b) Find	the	largest	storage	capacity	design.

(c) Find	four	other	Pareto	solutions	that	are	significantly	different	from	any	other
design	 you	 have	 obtained.	 How	 do	 you	 compare	 your	 designs	 to	 decide	 the
extent	to	which	they	are	different?

(d) Plot	all	your	designs	from	the	previous	parts	 in	 the	μ1-μ2	 space.	Turn	 in	your
plot	and	your	M-files.

Intermediate	Problems

6.4 You	are	a	new	member	of	an	optimization	team	at	an	automobile	company.	As	your
first	task,	you	are	asked	to	optimize	a	particular	automotive	component.	You	have
been	 asked	 to	 simultaneously	 minimize	 the	 mass	 (μ1)	 and	 the	 cost	 (μ2)	 of	 the
component.	The	other	 team	members	give	you	a	hint,	 saying	 that	 if	 the	mass	and
cost	 are	 modeled	 as	 optimization	 variables,	 then	 the	 following	 optimization
constraints	can	be	imposed	to	solve	the	problem.

Table	6.1.	Problem	6.4—Results



(6.35)
(6.36)
(6.37)
(6.38)

To	 solve	 the	 problem,	 you	 will	 need	 to	 construct	 an	 appropriate	 Aggregate
Objective	Function	(AOF)	using	the	approaches	presented	in	this	chapter:	weighted
sum	and	compromise	programming.	An	example	of	an	AOF	is	shown	below:

J	=	w1μ1m	+	w	2μ2m (6.39)

(a) Your	task	is	to	duplicate	the	optimal	values	provided	in	the	table	below.	To	do
so,	you	will	need	to	choose	values	for	w1,w2,	and	m	 that	yield	 the	given	μ1,μ2
when	 J	 is	 minimized.	 For	 each	 case	 in	 the	 table,	 you	 will	 have	 to	 solve	 a
separate	 optimization	 problem.	 You	 can	 use	 weighted	 sum	 (m	 =	 1)	 or
compromise	programming	(m	=	2,	4,	6,…,	even	numbers).	Fill	in	the	following
table	 after	 you	 are	 confident	 that	 you	 have	 the	 correct	 values	 for	 the	 three
parameters.	Provide	 values	 of	 the	weights	 correct	 to	 three	 decimal	 places.	 In
each	 case,	 use	 the	 smallest	 value	 of	m	 possible.	 Use	 the	 MATLAB	 function
fmincon	for	the	optimization.	Provide	your	M-files.

(b) For	 the	above	problem,	generate	a	number	of	optimal	solutions	on	 the	Pareto
frontier.	Use	the	following	AOF	formulations:	(1)	Weighted	sum,	(2)	Weighted
square	sum,	(3)	Compromise	programming	with	m	=	4,	 and	 (4)	 Compromise
programming	 with	 m	 =	 10.	 Use	 the	 MATLAB	 function	 fmincon	 for	 the
optimization.	 Generate	 about	 60-80	 points	 on	 the	 Pareto	 frontier.	 Plot	 your
results	in	the	μ1-μ2	space.	Label	your	plots.	Provide	your	M-files.

(c) Comment	 on	 the	 performance	 of	 the	 weighted	 sum	 and	 compromise
programming	 approaches.	 Which	 approach	 would	 you	 recommend	 for	 this
problem?

6.5

(6.40)

subject	to

(6.41)
(6.42)
(6.43)



(6.44)

Using	 the	weighted	sum	method,	 plot	 the	 Pareto	 frontier	 for	 the	 above	 problem.
(Hint:	You	will	need	three	weights,	each	corresponding	to	a	design	objective.	Allow
each	of	these	weights	to	vary	between	0	and	1	when	executing	your	code.)

6.6 You	have	a	good	friend	who	is	about	 to	buy	two	 items.	For	some	strange	reason,
the	costs	of	these	two	items	depend	on	a	variable	x	which	varies	from	-4	to	4.	The
cost	for	 the	first	and	second	items	are	μ1	and	μ2,	 respectively.	After	much	market
research,	you	determine	that	the	following	relationships	apply.

Table	6.2.	Problem	6.6—Results

μ1	=	ex	+	R (6.45)

μ2	=	e-x	+	R (6.46)

where

(6.47)

Being	 a	 good	 friend	yourself,	 you	would	 like	 to	 save	him	money.	You	 decide	 to
minimize	the	function

J	=	w1μ1m	+	w	2μ2m;	m	=	2,	4,	6,…;	w	1,w2	≥	0 (6.48)

Your	 friend	 has	 various	 requests.	 For	 each	 request,	 you	 need	 to	 solve	 an
optimization	problem.	Therefore,	you	 need	 to	 find	 the	 correct	 scalar	weights,	w1
and	w2,	 in	addition	to	the	appropriate	power	m.	For	each	case,	use	 the	smallest	m
possible.	(a)	For	Cases	A	through	F	below,	your	friend	would	like	to	have	the	price
of	Item	1	to	be	very	near	1.5,	2,	2.9,	3.5,	4,	and	5.1,	respectively.	For	each	case,	fill
in	the	missing	information	in	following	table.	Turn	in	your	M-files.	(b)	Explain	the
relationship	between	 the	AOF	 that	you	use	and	 the	Pareto	 frontier	 in	geometrical
terms	(e.g.,	convex	or	concave).

6.7 Consider	the	following	multiobjective	problem:



subject	to

1. Generate	 the	Pareto	 frontier	using	 the	weighted	sum	method.	Do	you	obtain	a
good	representation	of	the	Pareto	frontier?	Explain	why	or	why	not.

2. Use	 the	 compromise	programming	method	 to	 obtain	 the	Pareto	 frontier.	What
value	of	the	exponent	gives	an	adequate	representation	of	the	Pareto	frontier?

3. Discuss	your	ability	to	generate	the	Pareto	frontier	in	terms	of	the	exponents	you
used	 in	 the	 compromise	 programming	 formulation.	Which	 exponents	 worked
satisfactorily	for	the	complete	Pareto	frontier	generation?

6.8 Consider	the	following	multiobjective	problem:

subject	to

1. Plot	the	Pareto	frontier	for	this	problem	using	the	weighted	sum	method.	Do	you
obtain	a	good	representation	of	the	Pareto	frontier?

2. Give	one	possible	 reason	why	 the	weighted	 sum	method	does	not	give	all	 the
Pareto	 points	 for	 this	 problem.	 Suggest	 another	 method	 that	 you	 think	 will
achieve	a	good	representation	of	the	Pareto	frontier.

3. Solve	 the	 above	 problem	 using	 the	method	 you	 suggested	 in	 response	 to	 the
previous	question.	Plot	at	least	50	Pareto	points.

4. Explain	why	the	method	you	suggested	is	more	suitable	than	the	weighted	sum
method	for	solving	similar	problems.

6.9 SPEED	 REDUCER:	 Figure	 6.12	 shows	 an	 illustration	 of	 the	 Golinski	 speed
reducer	[8].	The	design	of	 the	speed	reducer	 involves	 the	design	of	a	simple	gear
box.	This	mechanism	can	be	used	 in	 a	 light	 airplane	between	 the	 engine	 and	 the
propeller	to	allow	optimum	rotating	speed	for	each.



Figure	6.12.	Golinski	Speed	Reducer

There	are	seven	design	variables	in	the	problem:	(1)	gear	face	width,	x1	(cm),	(2)
teeth	module,	x2	(cm),	(3)	number	of	teeth	of	the	pinion,	x3	(we	will	treat	this	as	a
continuous	variable),	(4)	distance	between	 the	bearing	set	1,	x4	 (cm),	 (5)	distance
between	 the	 bearing	 set	 2,	 x5	 (cm),	 (6)	 diameter	 of	 shaft	 1,	 x6	 (cm),	 and	 (7)
diameter	of	shaft	2,	x7	(cm).

We	 are	 interested	 in	 minimizing	 two	 objectives:	 (1)	 the	 volume	 of	 the	 speed
reducer	and	(2)	the	stress	in	one	of	the	gears.	The	volume	of	the	speed	reducer,	μ1,
which	translates	to	its	weight,	is	given	as	follows.

(6.49)

The	stress	in	one	of	the	gears,	μ2,	is	given	as	follows.

(6.50)

Ten	 inequality	 constraints	 are	 imposed	 by	 considering	 gear	 and	 shaft	 design
practices.	An	upper	 limit	on	 the	bending	stress	of	 the	gear	 tooth	 is	 imposed	 (g1).
The	contact	stress	of	the	gear	tooth	is	constrained	using	g2.	Constraints	g3	and	g4
are	upper	limits	on	the	transverse	deflections	of	the	shafts.	Dimensional	constraints
due	to	space	limitations	are	imposed	using	g5	through	g7.	The	constraints	g8	and	g9
are	 design	 requirements	 on	 the	 shaft	 based	 on	past	 experience.	 The	 stress	 in	 the
gear	shaft	is	constrained	by	g10.	The	constraints	are	given	as	follows:

g1 ≡	 	≤	1 (6.51)



g2 ≡	 	≤	1 (6.52)

g3 ≡	 	≤	1 (6.53)

g4 ≡	 	≤	1 (6.54)

g5 ≡	 	≤	1 (6.55)
g6 ≡	 	≤	1 (6.56)

g7 ≡	 	≤	1 (6.57)

g8 ≡	 	≤	1 (6.58)

g9 ≡	 	≤	1 (6.59)

g10 ≡	 	≤	1 (6.60)

All	 the	 seven	 design	 variables	 have	 upper	 and	 lower	 bounds	 (b1	 through	b7),	 as
given	below.

b1 ≡	2.6	≤	x1	≤	3.6 (6.61)
b2 ≡	0.7	≤	x2	≤	0.8 (6.62)
b3 ≡	17	≤	x3	≤	28 (6.63)
b4 ≡	7.3	≤	x4	≤	8.3 (6.64)
b5 ≡	7.3	≤	x5	≤	8.3 (6.65)
b6 ≡	2.9	≤	x6	≤	3.9 (6.66)
b7 ≡	5.0	≤	x7	≤	5.5 (6.67)

Based	on	the	above	information,	answer	the	following	questions.

	

(a) Find	the	design	that	yields	the	minimum	weight	for	the	speed	reducer,	subject
to	the	constraints	discussed	above.

(b) Find	 the	 design	 that	 yields	 the	 minimum	 stress	 for	 the	 gear,	 subject	 to	 the
constraints	discussed	above.

(c) Now,	 try	 to	 minimize	 the	 weight	 and	 the	 stress	 simultaneously.	 Use	 the
weighted	 sum	method	 to	 form	 the	 AOF.	Minimize	 the	 AOF	 for	 a	 set	 of	 10
evenly	spaced	weights	between	zero	and	one.	Can	a	complete	representation	of
the	Pareto	frontier	be	obtained?

(d) How	 can	 a	 better	 representation	 of	 the	 Pareto	 frontier	 be	 obtained?	 (Hint:
Consider	 a	 larger	 set	 of	 evenly	 spaced	 weights	 between	 zero	 and	 one	 when
compared	 to	 Part	 (c).	 Increase	 the	 number	 of	 points	 until	 you	 can	 obtain	 a
complete	 representation	 of	 the	 Pareto	 frontier).	 Discuss	 the
advantages/disadvantages	of	using	the	technique	discussed	above,	especially	in
large	scale	problems.



6.10 You	have	been	recently	hired	as	an	optimization	expert	for	the	company	CoBeams.
This	company	specializes	in	the	design	of	sandwich	beams.	These	sandwich	beams
are	composites	made	up	of	different	material	layers.	The	engineering	properties	of
the	 beam,	 due	 to	 its	 composite	 nature,	 are	 well	 suited	 for	 certain	 design
applications.	A	particular	order	has	been	requested	by	one	of	the	company’s	major
customers.	The	beam	under	consideration	is	idealized	as	a	pinned-pinned	sandwich
beam	that	supports	a	motor	as	shown	in	Fig.	6.13.

Figure	6.13.	Sandwich	Beam	Designed	with	Vibrating	Motor

A	vibratory	disturbance	(at	v	Hz)	is	imparted	from	the	motor	onto	the	beam.	The
beam	is	of	length	L	and	width	b.	The	variables,	d1	and	d2,	 respectively,	 locate	 the
contact	of	Materials	one	and	two,	and	two	and	three.	The	variable,	d3,	 locates	 the
top	of	the	beam.	The	mass	density,	Young’s	modulus,	and	cost	per	unit	volume	for
Materials	one,	two,	and	three,	are	respectively	denoted	by	the	 triplets	 (ρ1,	E1,	c1),
(ρ2,	E2,	c2),	and	(ρ3,	E3,	c3).

The	overall	objective	is	to	design	the	preceding	sandwich	beam	in	such	a	way	as
to	passively	minimize	the	vibration	of	the	beam	that	results	from	the	disturbance	(v
=	 10Hz).	 Minimizing	 the	 vibration	 will	 require	 maximizing	 the	 fundamental
frequency,	 f0,	 of	 the	 beam.	 The	 optimal	 solution	 should	 be	 such	 that	 the
fundamental	frequency	is	maximized	economically	(i.e.,	at	minimum	cost,	c).

In	the	design	of	the	plant,	the	quantities	and	objectives	of	interest	are	as	follows:

Fundamental	frequency	maximization:

(6.68)

where

(6.69)
(6.70)

The	minimization	of	the	cost	is	given	as

(6.71)



The	mass	is	given	as

M	=	μL (6.72)

The	width	of	Layer	2	is	given	as

d21	=	d2	-	d1 (6.73)

The	width	of	Layer	3	is	given	as

d32	=	d3	-	d2 (6.74)

The	design	parameters	are

x	=	[d1	d2	d3	b	L] (6.75)

1. Develop	a	 function	 that	allows	you	 to	enter	 the	design	variables,	d1,	d2,	d3,	b,
and	L,	for	the	corresponding	values	of	f0,	c,	M,	d21,	and	d32.	Save	 this	 function
as	vbeam.m.

2. The	 customer’s	 specified	 conditions	 (e.g.,	material	 properties	 and	dimensions)
are	expressed	in	Table	6.3.

Table	6.3.	Constants	and	Design	Variable	Constraints

Constants Constraints

		 Inequality Equality

ρ1	=	100kg/m3			 0.01	≤d1	≤	0.3m M	=	1,845kg

ρ2	=	2,770kg/m3			 0.01	≤d2	≤	0.35m d3	=	0.345m

ρ3	=	7,780kg/m3			

E1	=	1.6	×	109Pa			 0.3	≤b	≤	0.7m

E2	=	70	×	109Pa			 3	≤L	≤	6m

E3	=	200	×	109Pa			

c1	=	500	$/m3			 d21	≥	0.001

c2	=	1,500	$/m3			 d32	≥	0.001

c3	=	800	$/m3			

3. To	ensure	your	function	is	working	correctly,	enter	the	following	values	for	the
design	variables:	d1	=	0.3,	d2	=	0.35,	d3	=	0.4,	b	=	0.4,	and	L	=	5.	Your	output
should	give	f0	=	112.684,9,	c	=	1,060,	M	=	2,230,	d21	=	0.05,	and	d32	=	0.05



4. The	 customer	 has	 also	 given	 you	 a	 budget	 of	 $500.	 Use	 the	 weighted	 sum
method	 to	maximize	μ1	 =	 f0,	minimize	μ2	 =	 c,	 and	 determine	 the	 weights	 to
obtain	an	optimal	design	cost	of	≈	$500,	if	possible.	Use	the	values	of	the	design
variables	 given	 in	 Part	 2	 above	 as	 initial	 values.	 (Hint:	 Form	 the	 aggregate
objective	function,	f(x)	=	w1μ1	+	w2μ2,	where	w2	=	1	-	w1.	Vary	the	value	of	w1,
ranging	between	0.85	and	1,	with	incremental	changes	of	0.01.	Determine	which
set	of	weights	in	this	range	gives	the	closest	value	of	c	=	250.)

5. Plot	 a	 Pareto	 frontier	 that	 contains	 100	 distinct	 solutions.	 (Note:	 Due	 to
numerical	 issues,	 the	 generation	 of,	 say,	 100	 Pareto	 solutions	 might	 produce
significantly	less	than	100	distinct	solutions.)

6. From	the	plot	generated	in	4,	form	a	table	that	provides	the	different	values	of
the	design	objectives	for	the	corresponding	design	variables.

7. Another	customer	interested	in	a	similar	beam	design	wants	to	know,	as	soon	as
possible,	what	fundamental	frequency	can	be	achieved	with	a	design	budget	of
$600.	He	 also	wishes	 to	 know	 how	 the	 design	 variables	 will	 be	 affected.	 By
referring	 to	 your	 table	 from	 5,	 provide	 the	 requested	 information	 for	 the
customer.

Advanced	Problems

6.11 Optimization	of	a	Simple	Two	Bar	Truss:	Minimize	the	square	of	the	deflection
at	 node	 P	 and	 minimize	 the	 total	 structural	 volume	 (see	 Fig.	 6.14);	 subject	 to
constraints	that	ensure	the	normal	stresses	and	beam	cross	sectional	areas	are	within
acceptable	levels.	Plot	the	Pareto	frontier	for	this	problem.



Figure	6.14.	Schematic	of	Simple	Two-Bar	Truss

Design	Parameters:	a1	=	cross	sectional	area	of	bar	1	 (m2);	a	 2	=	cross	sectional
area	of	bar	2	(m2);	and	b	=	horizontal	distance	from	the	leftmost	part	of	the	truss	to
node	P	(m).

Constant	Numerical	Values:	L	=	18.288	m	(60	ft);	W1	=	4.45	×	105	N	(100	kips);
W	2	=	4.45	×	106	N	(1,	000	kips);	E	=	1.99	×	1011	Pa	(29	×	103	kpsi);	Smax	=	3.79	×
109	Pa	(550	kpsi)	(Maximum	allowable	stress);	aimin	=	5.16	×	10

-4	m2,	i	=	1,	2;	aimax
=	1.94	×	10-3	m2,	i	=	1,	2;	b	min	=	9.144	m	(30	ft);	and	bmax	=	27.432	m	(90	ft).

Design	Objectives:	μ1	=	the	square	of	the	displacement	of	node	P	 (m2);	μ	 2	=	 the
total	structural	volume	(m3).

Determining	Nodal	Displacements	 in	Bars:	 In	 order	 to	 formulate	 the	 problem,
you	 first	need	 to	calculate	 the	 stiffness	matrix	 of	 the	 system.	You	have	 only	 one
node,	 so	 you	will	 have	 a	 2	 ×	 2	 stiffness	matrix.	 The	 relation	 between	 the	 nodal
displacement	(u)	and	the	axial	deflections	in	the	bars	(δ)	is	as	follows:

δ	=	Au,	where	A	=	

δ	=	 ,	u	=	

The	force	balance	at	the	node	yields:



ATf	=	W,	where	W	=	 ,	f	=	

where	W	is	the	applied	load,	and	f	is	the	axial	force	in	each	bar.

You	also	have,	from	elasticity	equations:	f	=	Cδ

where	C	=	

Substituting	the	expression	for	f	into	the	force	balance	equation:

ATCδ	=	W,	(ATCA)u	=	W

Consequently:	u	=	(ATCA)–1W.	Use	the	above	information	to	solve	the	problem.

6.12 Design	a	 cylindrical	pressure	vessel	 that	 can	store	750	ft3	of	 compressed	 air	 at	 a
pressure	of	30	psi.	The	design	variables	are:	(i)	the	radius,	R;	(ii)	the	length	of	the
cylindrical	shell,	L;	(iii)	the	shell	thickness,	Ts;	and	(iv)	the	head	thickness	Th.	The
basic	pressure	vessel	configuration	is	shown	in	Fig.	6.15	below.

Figure	6.15.	Pressure	Vessel

The	main	cylindrical	 shell	of	 the	pressure	vessel	 is	 fabricated	 in	 two	halves	of
rolled	 steel	 plate.	 The	 two	 halves	 are	 joined	 together	 by	 a	 longitudinal	 weld.
Manufacturing	limitations	restrict	the	length	of	the	shell	to	be	at	a	maximum	of	20
ft.	 The	 pressure	 vessel	 has	 two	 end	 caps,	 which	 are	 hemispherical,	 forged,	 and
welded	 to	 the	shell.	All	of	 the	welds	are	single-welded	butt	 joints	with	a	backing
strip.	The	material	is	carbon	steel.

The	 radius	 can	 range	 from	25	 to	 150	 inches,	 and	 the	 length	 of	 the	 cylindrical
shell	from	25	 to	240	 inches.	The	 thickness	of	 the	shell	must	be	between	1	and	1
inches,	and	the	thickness	of	the	head	must	be	between	 	and	1	 inch.	According	 to
the	ASME	Boiler	and	Pressure	Vessel	Codes,	the	thickness	of	the	shell	must	be	at
least	0.0193	times	the	radius,	and	the	thickness	of	the	head	must	be	at	least	0.00954
times	the	radius.

1. Minimize	 the	 total	 cost	 of	 the	 pressure	 vessel,	which	 is	 a	 combination	 of	 the
welding,	material,	and	forming	costs.	The	total	cost	of	the	system	is	given	as

(6.76)

Determine	 the	 optimal	 cost,	 as	 well	 as	 the	 optimal	 values,	 for	 the	 design



variables.

2. What	other	design	objectives	do	you	think	could	be	considered	in	this	problem?
Develop	an	equation	for	the	hoop	stress	in	the	cylindrical	section.

3. Minimize	 this	 hoop	 stress	 in	 the	 pressure	 vessel.	 Provide	 the	minimum	 hoop
stress	value,	as	well	as	the	optimal	values,	for	the	design	variables.

4. You	 are	 now	 asked	 to	 minimize	 both	 objectives	 (cost	 and	 hoop	 stress)
simultaneously.	Plot	the	Pareto	frontier	for	this	bi-objective	problem.	Determine
whether	and	when	the	solutions	you	obtained	in	No.	1	and	No.	3	belong	 to	 the
Pareto	frontier	of	the	bi-objective	problem.

5. Modify	 your	 code	 for	 the	 bi-objective	 problem	 to	 ensure	 that	 the	 hoop	 stress
does	not	exceed	 the	maximum	 stress	 for	 carbon	 steel	 (σmax	=	35,000	 psi).	 Do
you	 expect	 the	 Pareto	 solutions	 to	 be	 different	 from	 those	 of	 No.	 4	 with	 the
inclusion	 of	 this	 additional	 constraint?	 To	 be	 certain,	 repeat	 No.	 4	 with	 your
modified	code.	Is	the	new	Pareto	frontier	different	from	the	one	you	obtained	in
No.	4?	Explain	why	or	why	not.

6.13 The	 company	 Modern	 Energy	 specializes	 in	 new	 energy	 efficient	 systems	 for
commercial	 and	 domestic	 buildings.	 You	 have	 been	 recently	 hired	 as	 an
optimization	expert	to	be	a	part	of	their	research	and	development	department.	The
head	of	your	design	team	spawned	an	ambitious	idea	that	uses	windows	to	remove
heat	from	a	building.	He	calls	this	design	the	Active	Window	[9].	He	claims	that	if
an	active	cooling	system	is	placed	around	the	window,	then	it	might	be	possible	for
that	window	to	remove	heat	from	the	building	in	addition	to	removing	the	heat	that
was	allowed	to	enter	in	the	first	place.	He	suggests	using	thermoelectric	(TE)	units
aligned	 around	 the	 perimeter	 of	 the	 window	 as	 shown	 in	 Fig.	 6.16	 (see
Refs.	[2,	10,	11,	12,	11]).

Figure	6.16.	Proposed	Schematic	of	Active	Window

TE	 units	 are	 solid	 state	 devices	 that	 use	 thermocouples	 to	 convert	 electrical
energy	 into	 thermal	 energy	 or	 vice	 versa.	 For	 a	 given	 input	 current,	 the	 TE	 unit



absorbs	heat	at	its	cold	side	and	dissipates	it	at	its	hot	side.	The	amount	of	heat	that
can	be	absorbed	by	the	TE	unit,	Qte,	for	a	input	current,	Ite,	is	given	as

Qte	=	2N	 (6.77)

and	the	supplied	voltage,	V	te,	as

V	te	=	2N	 (6.78)

where	N	is	the	number	of	thermocouples,	α	is	the	Seebeck	coefficient,	Tc	 is	 the
cold	 side	 temperature	 of	 the	 TE	 unit,	 ρ	 is	 the	 resistivity,	 ΔT	 is	 the	 temperature
difference	 between	 the	 hot	 and	 cold	 side	 of	 the	 TE	 unit,	 κ	 is	 the	 thermal
conductivity,	and	G	 is	 the	geometry	factor,	which	 is	 the	area	 to	 thickness	 ratio	of
the	TE	unit.

For	practical	and	innovative	purposes,	it	is	necessary	that	this	design	provides	an
efficiency	 that	 is	 equivalent	 to	 or	 greater	 than	 existing	 cooling	 systems.	 Cooling
systems	are	usually	 rated	by	 their	coefficient	of	performance	 (COP).	The	COP	 is
defined	as	the	amount	of	heat	that	can	be	absorbed	by	a	cooling	device	per	unit	of
input	power.	Good	cooling	systems	have	a	COP	of	approximately	3.

The	head	of	your	design	team	has	assigned	you	the	task	of	doing	an	initial	study
on	the	Active	Window.	He	is	interested	in	finding	out	the	maximum	amount	of	heat
the	Active	Window	can	remove	from	a	building	under	energy	efficient	conditions.
The	Active	 window	will	 be	 considered	 feasible	 only	 if	 it	 can,	 at	 the	 very	 least,
remove	the	heat	it	allowed	to	enter	the	building	for	a	COP	≥	3.	Experts	on	window
heat	 transfer	 are	 available	 to	 supply	 you	 with	 information	 regarding	 the	 heat
allowed	by	a	particular	window.

The	head	of	your	design	 team	suggests	carrying	out	your	 study	based	on	 three
TE	units	 for	which	pertinent	 information	 is	provided	 in	Table	6.4.	 Information	 in
Table	6.4	corresponds	to	Tc	=	297	K.

Table	6.4.	Geometrical	Properties	for	the	Different	Thermoelectric	Units

TE	No. N G Lte Imax V	max Th α ρ κ

1 125 0.00184 0.0244 8.75 14.1 310.4 2.02e	–	4 1.01e	–	5 1.51
2 125 0.00282 0.0244 12.18 13.4 317.3 2.02e	–	4 1.01e	–	5 1.51
3 31 0.00473 0.01565 24.13 3.6 305.4 2.02e	–	4 1.01e	–	5 1.51

In	Table	6.4,	Th	(K)	is	the	hot	side	temperature	of	the	TE	unit.	Before	you	begin
your	study,	he	would	like	you	to	note	the	following:

1. Despite	 the	 fact	 that	 the	 TE	 units	 are	 aligned	 physically	 in	 series	 around	 the
perimeter	 of	 the	 window,	 they	 can	 be	 connected	 electrically	 in	 parallel	 and
series.	Ntep	and	Ntes	correspond	to	the	number	of	TE	units	connected	in	parallel



and	series,	respectively.

2. The	total	length	occupied	by	the	TE	units	is	the	product	of	the	length	of	one	TE
unit,	Lte	(m),	and	the	total	number	of	TE	units,	NtepNtes.

3. The	total	length	occupied	by	the	TE	units	should	not	exceed	the	perimeter	of	the
window.

4. Ite	and	V	te	should	not	exceed	the	TE	maximum	current,	Imax,	and	TE	maximum
voltage,	V	max,	respectively.	These	values	are	specified	by	the	manufacturer,	and
are	given	in	Table	6.4

5. The	total	heat	absorbed	by	the	Active	Window,	Q	(W),	is	given	as

(6.79)

(6.80)

6. The	Power	input	to	the	Active	Window,	P	(W),	is	given	as

(6.81)
(6.82)

7. The	COP	for	the	Active	Window	should	be	above	3	when	possible,	or	otherwise
as	close	to	3	as	possible.	Specifically,	we	have

(6.83)

Use	Ite,	Ntep,	and	Ntes	as	design	variables	with	the	following	bounds:

(6.84)
(6.85)

The	 head	 of	 your	 design	 team	 wants	 a	 report	 that	 contains	 all	 the	 necessary
information.	You	can	complete	your	report	by	doing	the	following:

1. Maximize	 Q	 for	 a	 window	 with	 Lwin	 =	 1	 m,	 satisfying	 all	 the	 conditions
previously	stated	 for	 each	TE	unit.	Can	all	 the	TE	units	 satisfy	 the	 conditions
imposed?	 Develop	 a	 table	 that	 provides	 the	 optimum	 values	 for	 the	 design
variables,	V	te,	Q,	P,	and	the	COP	for	the	TE	units	that	satisfy	the	constraints.

2. If	 the	experts	claim	that	a	window	with	Lwin	=	1	m	allows	581	W	to	enter	 the
building,	what	conclusions	can	you	draw	based	on	the	feasibility	of	the	Active
Window	with	respect	to	the	TE	units?

3. Remove	 the	constraint	 for	COP	and	maximize	Q	 for	 each	TE	unit.	Develop	 a
table	similar	to	that	in	No.	1	above.

4. With	 the	constraint	 for	COP	removed,	plot	a	Pareto	 frontier	 that	maximizes	Q
and	 minimizes	 P	 for	 each	 TE	 unit.	 Identify	 the	 point	 on	 each	 plot	 that
corresponds	to	the	maximum	COP	achievable	by	that	TE	unit.



5. Compare	the	value	of	Q	for	TE	No.	3	corresponding	to	the	maximum	COP	with
that	from	No.	1.	What	observation	can	be	made?

Graduate	Level	Problems

6.14 (Note:	 This	 problem	 could	 also	 be	 used	 as	 an	Advanced	 problem).	 Figure	 6.17
provides	 the	 schematic	 representation	 of	 a	 ten-bar	 truss.	 The	 ten	 members	 are
connected	to	each	other	at	six	nodes,	represented	by	the	numbers	1	through	6.	You
can	assume	 that	 the	 truss	 lies	 and	deflects	 in	 one	plane,	and	 that	 every	node	has
only	 two	degrees	of	 freedom	(the	displacements	 along	 the	horizontal	 and	vertical
axes).	 The	 left-hand-side	 of	 the	 truss	 is	 fixed	 to	 the	 wall,	 yielding	 zero
displacements	 for	 Nodes	 1	 and	 4.	 The	 displacements	 along	 the	 horizontal	 and
vertical	axes	for	the	remaining	nodes	are	represented	by	u1	through	u8.	F1	 through
F8	represent	loads	applied	to	these	nodes,	respectively.	The	cross	sectional	areas	of
the	truss	members	are	given	by	x1	through	x10.	The	stresses	induced	in	the	ten	bars
are	given	by

{σ}	=	[S]{u}		 (6.86)

Figure	6.17.	Ten-Bar	Truss

where,	 {σ}	 =	 {σ1,σ2,…σ10}T	 is	 the	 stress	 vector,	 and	 {u}	 =	 {u1,u2,…u8}T	 is	 the
displacement	vector.	Matrix	 [S]	 is	given	by	Eq.	6.96	at	 end	 of	 this	 problem.	 The
displacements	vector	u	is	evaluated	using	the	finite	element	formulation

{F}	=	[K]{u}		 (6.87)

where,	the	force	vector	is	{F}	=	{F1,F2,…F8}T.	The	stiffness	matrix	[K]	is	given	by
Eq.	6.14	at	 the	end	of	 this	problem.	The	maximum	allowable	stresses	are	 (σmaxt,σ

max
c)	=	(150	MPa,–150	MPa)	 (tension/compression),	and	 the	maximum	allowable

deflections	are	 (umaxt,u	maxc)	=	(15	mm,–15	mm)	 (tension/compression).	The	cross
sectional	areas	should	be	between	5	mm2	and	200	mm2.

1. Minimize	the	total	material	volume	of	the	truss	when	Fi	=	2KN	(i=1	to	8)	and	E
=	2	×	105	N⁄mm2.	The	optimization	problem	statement	is	given	by



(6.88)

subject	to

{σmaxc} ≤{σ}≤{σ	maxt} (6.89)

{umaxc} ≤{u}≤{u	maxt} (6.90)
{xmin} ≤{x}≤{xmax} (6.91)

2. Minimize	 the	 maximum	 deflection	 of	 the	 truss.	 The	 optimization	 problem
statement	is	given	as	follows.

(6.92)

subject	to

{σmaxc} ≤{σ}≤{σ	maxt} (6.93)

{umaxc} ≤{u}≤{u	maxt} (6.94)
{xmin} ≤{x}≤{xmax} (6.95)

3. Generate	 a	 two-objective	 Pareto	 frontier	 for	 this	 problem	 with	 at	 least	 100
design	points.	Plot	it,	discuss	the	tradeoffs	that	it	presents	to	you,	and	do	so	in
quantitative	terms.

Matrices:	For	the	above	problem,	the	[S]	matrix	is	given	as

[S]	=	 	 (6.96)

For	the	above	problem,	the	[K]	matrix	is	given	as	follows	(with	z	=	2 ):

[K]	=	 [Ka|Kb] (6.97)

where



[Ka]

=	

(6.98)

[Kb]

=	

(6.99)
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7

Numerical	Essentials

7.1 	Overview

In	 this	 chapter,	 you	 will	 be	 exposed	 to	 perhaps	 some	 of	 the	 most	 important	 issues	 in
optimization.	Interestingly,	most	optimization	books	and	courses	leave	it	up	to	the	students
to	 learn	 many	 of	 these	 issues	 simply	 by	 chance,	 leaving	 a	 broad	 set	 of	 the	 important
practical	topics	unaddressed.	We	are	referring	here	to	numerical	conditioning	issues	which
strongly	control	the	success	of	computational	optimization.

We	 will	 not	 engage	 in	 highly	 mathematical	 and	 theoretical	 issues	 of	 numerical
optimization.	 Instead,	we	will	 learn	 about	 the	 tangible	 and	 practical	 issues	 that	 directly
affect	our	success	in	formulating	and	solving	optimization	problems.	Fortunately,	for	most
of	this	chapter,	all	we	need	is	the	knowledge	of	first-year	college	mathematics.

Keeping	these	issues	in	mind	will	often	make	the	difference	between	success	and	failure.
That	is:	(i)	easily	applying	optimization	successfully,	or	(ii)	experiencing	great	frustration
in	trying	to	obtain	an	adequate	solution	unsuccessfully.	 In	addition,	we	will	learn	how	to
control	 the	 resulting	 accuracy	 of	 our	 results,	 a	 critical	 issue	 in	 practice.	 The	 topics
explored	 here	 include:	 numerical	 conditioning,	 scaling,	 finite	 differences,	 automatic
differentiation,	 termination	 criteria,	 and	 sensitivities	 of	 optimal	 solutions,	 as	 well	 as
examples	that	illustrate	how	to	handle	these	issues	in	practice	(Refs.	[1,	2,	3].

7.2 	Numerical	Conditioning—Algorithms,	Matrices	and	Optimization	Problems

We	begin	by	asking	 the	 following	questions:	What	 is	numerical	conditioning?	And	how
does	it	relate	to	optimization?	As	we	have	learned,	optimization	depends	on	the	numerical
evaluation	of	the	performance	of	the	system	being	optimized.	This	performance	evaluation
typically	involves	coding,	simulation,	or	software-based	mathematical	analysis,	often	also
involving	 matrix	 manipulations	 (e.g.,	 involving	 Hessians).	 For	 example,	 linear
programming	 involves	 extensive	 matrix	 manipulations.	 Therefore,	 understanding	 the
numerical	properties	of	the	matrices	and	of	 the	algorithms	used	 in	optimization	codes	 is
important.	From	a	practical	point	of	view,	we	can	think	of	a	numerically	well-conditioned
problem	or	matrix	as	one	that	lends	itself	to	easy	numerical	computation.	Conversely,	we
can	 think	 of	 a	numerically	 ill-conditioned	 problem	 or	matrix	 as	 one	 that	 lends	 itself	 to
difficult	numerical	computation.	A	well-conditioned	problem	is	also	said	to	be	well-posed.
Numerical	conditioning	can	also	refer	to	the	property	of	a	particular	algorithm,	as	you	will
see	shortly.	A	well-conditioned	algorithm	is	likely	to	converge	relatively	easily,	while	an
ill-conditioned	algorithm	may	converge	after	many	more	iterations	or	may	not	converge	at
all.	 In	 other	 words,	 numerical	 conditioning	 may	 refer	 to	 the	 facility	 with	 which	 an
algorithm	converges.	Numerical	conditioning	may	also	have	practical	consequences	on	the
quality	or	accuracy	of	the	resulting	solution.



The	 immediate	questions	 that	come	 to	mind	at	 this	point	are:	How	do	we	know	 if	an
algorithm,	a	matrix,	or	an	optimization	problem	 is	well-conditioned	or	not?	How	do	we
quantify	numerical	conditioning?	Well,	there	is	some	good	news:

(i)	Algorithms:	 Since	 this	 book	 is	 primarily	 concerned	 with	 the	 practical	 aspects	 of
formulating	 and	 applying	 optimization,	 we	 will	 not	 be	 learning	 about	 how	 to	 make
algorithms	 well-conditioned.	 This	 is	 an	 advanced	 topic	 of	 numerical	 computation.
Fortunately,	if	we	use	reputed	optimization	codes,	the	algorithmic	numerical	conditioning
properties	are	usually	adequate.

(ii)	Matrices:	For	our	purpose,	the	numerical	conditioning	of	a	matrix	is	quantified	by
the	condition	number.	 For	 symmetric	matrices	 (e.g.,	Hessians	(Eq.	 2.42)),	 the	 condition
number	is	the	square	of	the	ratio	of	the	highest	to	the	lowest	eigenvalues.	The	case	of	non-
symmetric	matrices	 involves	 singular	 values,	 which	 is	 an	 advanced	 topic	 that	 does	 not
directly	concern	us.	A	condition	number	with	an	order-of-magnitude	of	one	 is	desirable,
while	a	much	higher	condition	number	is	a	concern.	The	numerical	properties	of	matrices
play	 an	 important	 role	 in	 optimization	 algorithms.	 Sometimes	 an	 optimization	 run	 that
does	not	converge	will	report	that	the	“Hessian	is	 ill-conditioned”	(see	Sec.	2.5.4	 for	 the
definition	 the	 Hessian).	 The	 strong	 relevance	 of	 a	 function’s	 Hessian	 becomes	 fully
evident	in	our	study	of	the	more	advanced	aspects	of	optimization	presented	in	Part	IV	of
this	book;	specifically,	Chapters	12	and	13.

(iii)	Optimization	 Problems:	 Posing	 our	 problems	 well	 is	 critically	 important.	 Two
theoretically	 equivalent	 problems	 can	 have	 radically	 different	 numerical	 properties,	 as
described	 later.	 Fortunately,	 we	 can	 generally	 deal	 with	 problem	 conditioning	 through
proper	scaling,	which	we	will	study	in	Sec.	7.3.

7.2.1 	Reasons	Why	the	Optimization	Process	Sometimes	Fails

There	are	many	reasons	why	optimization	runs	sometimes	fail	to	converge	to	an	adequate
solution.	The	following	are	the	prevailing	ones	that	you	should	keep	in	mind:

1. The	problem	has	a	coding	bug	–	a	software/programming	error;

2. The	problem	is	ill	conditioned	–	poorly	scaled;

3. The	problem	is	incorrectly	formulated	(e.g.,	missing	a	constraint);

4. The	problem	posed	does	not	reflect	a	physical	design	 that	 is	 realistic	 (you	can’t	 fool
mother	nature!);

5. The	 algorithm	used	 is	 not	 appropriate,	 or	 not	sufficiently	 robust,	 for	 the	 problem	 at
hand.

In	 the	 event	 of	 non-convergence,	 or	 indicate	convergence	 to	 a	 solution	 that	 is	 not	 to
one’s	liking,	the	above	items	should	be	explored	–	roughly	 in	 the	order	presented.	Next,
we	briefly	comment	on	each	of	the	above	items.	(1)	Regarding	coding	errors,	one	simply
needs	to	employ	the	debugging	strategy	of	personal	choice.	This	issue	concerns	computer
coding	 in	 general,	 and	 is	 not	 exclusive	 to	 optimization.	 (2)	 The	 problem	 of	 scaling	 is
addressed	in	detail	later	in	this	chapter.	(3)	As	far	as	 the	formulation	of	 the	optimization
problem	is	concerned,	the	material	in	this	book	is	of	direct	help,	in	particular,	the	previous



chapter	 on	multiobjective	 optimization.	 Proper	 formulation	 is	 also	 an	 issue	 of	 common
sense.	 Failing	 to	 include	 a	 constraint,	 for	 example,	 could	 yield	 a	 design	 that	 is	 not
desirable.	(4)	The	problem	of	seeking	an	unrealistic	design	is	one	that	should	be	carefully
examined.	 Often,	 relaxing	 the	 constraints	 will	 allow	 the	 search	 process	 to	 explore
physically	feasible	designs.	Another	possible	cause	for	unknowingly	seeking	an	unrealistic
design	 is	 the	 inappropriateness	 of	 the	 objective	 function	 (e.g.,	 wrong	 weights	 in	 the
weighted	sum	approach).	As	a	final	example,	we	could	be	trying	to	design	a	small	table	to
support	 an	 elephant	 in	 a	 way	 that	 is	 impossible.	 All	 the	 modeling	 equations	 and
optimization	 formulations	 issues	might	be	 seemingly	fine,	 but	we	 are	 simply	 asking	 for
the	impossible.	(5)	The	final	item	presented	concerns	the	appropriateness	of	the	algorithm.
For	 example:	 (i)	 the	 algorithm	 might	 not	 be	 sufficiently	 robust	 for	 problems	 of	 poor
numerical	conditioning;	(ii)	the	algorithm	might	not	be	appropriate	for	problems	of	large
dimensions;	 (iii)	 the	 algorithm	might	 be	 limited	 to	 solving	 specific	 types	 of	 problems:
continuous,	discrete,	or	integer	variables.	(iv)	the	algorithm	might	not	work	well	for	noisy
(i.e.,	non-smooth)	objective	functions	or	constraints.	

Before	 we	 present	 the	 approaches	 to	 address	 numerical	 conditioning	 issues	 in
optimization,	it	is	important	that	we	first	learn	about	certain	numerical	problems	that	can
occur	 independently	 of	 the	 optimization	 process.	 Specifically,	we	 find	 that	 the	matrices
themselves	can	be	problematic,	and	so	can	the	way	that	they	are	used	in	a	given	algorithm.
These	two	issues	are	addressed	next.

7.2.2 	Exposing	Numerical	Conditioning	Issues—Algorithms	and	Matrices

Through	simple	examples,	we	illustrate	how	we	must	concern	ourselves	with	matrices	and
algorithm	 issues,	 in	 addition	 to	 those	 directly	 related	 to	 optimization.	 We	 provide	 an
example	of	how	numerical	conditioning	issues	can	affect	us	 in	a	seemingly	simple	case.
This	 telling	 example	will	 sensitize	 us	 to	 the	 critical	 nature	of	 numerical	 issues.	 For	 the
sake	of	simplicity	of	presentation,	we	only	use	a	3	×	3	matrix.	We	also	use	a	numerical
computation	 that	 is	simple	and	readily	understood.	 In	practice,	matrices	are	much	 larger
and	computations	are	much	more	complex.	In	spite	of	the	simplicity	of	the	present	case,
the	numerical	difficulties	presented	are	quite	serious.

Consider	Matrix	A,	which	depends	on	α,	given	by

A	=	 (7.1)

The	 three	eigenvalues	of	Matrix	A	can	be	evaluated	as:	1⁄α,	1,	and	α.	As	a	 result,	 the
condition	number	of	A	(the	square	of	the	ratio	of	the	highest	to	the	lowest	eigenvalue	since
A	is	symmetric)	is	1⁄α4	when	α	≤	1	and	α4	when	α	≥	1.	Therefore,	we	should	expect	 that
for	 a	 very	 low	 or	 a	 very	 high	 value	 of	 α,	 we	 may	 experience	 numerical	 difficulties,
particularly	when	the	algorithm	within	which	it	is	being	used	is	not	well	conditioned.

To	 explore	 the	 numerical	 properties	 of	 Matrix	A,	 let	 n	 be	 any	 positive	 integer,	 and
consider	the	expressions

(7.2)



(7.3)

where	I	is	the	identity	matrix.	Using	elementary	linear	algebra,	we	can	indeed	verify	that
both	A1	and	A2	are	identically	equal	to	3	×	3	zero	matrices.	We	can	further	write	the	scalar
equations

(7.4)
(7.5)

where	we	use	the	maximum	norm	defined	as	 	M	 =	max{|mij|},	with	mij	denoting	the	ij-th
entry	of	Matrix	M.

We	make	the	important	observation	that	the	zero	answers	in	Eqs.	7.4	and	7.5	are	exact
only	from	a	theoretical	standpoint.	When	we	compute	 	A1	 	and	 	A2	 	using	a	computer,	we
immediately	 observe	 that	 the	 numerical	 results	 depart	 markedly	 from	 the	 theoretical
answers.	 To	 illustrate	 this	 important	 point,	 we	 present	 Table	 7.1,	 where	 the	 incorrect
answers	are	in	bold	face.	In	this	table,	we	vary	the	parameter	α	in	Matrix	A,	as	well	as	the
power	n	in	the	A1	and	A2	expressions.

Table	7.1.	Ill-Conditioned	Matrices	and	Algorithms	

We	further	make	three	specific	observations:	(1)	Even	for	high	values	of	the	condition
number	Cn,	the	quantity	 	A1	 	is	evaluated	accurately.	In	fact,	 	A1	 	is	evaluated	accurately
for	all	the	cases	presented	in	Table	7.1.	(2)	Even	for	values	of	the	condition	number	 that
are	less	than	100	(α	=	0.4),	the	quantity	 	A2	 	 is	unacceptably	 inaccurate,	 for	n	=	50.	 (3)
Even	though	 	A1	 and	 	A2	 are	theoretically	both	equal	to	zero,	the	computation	of	 	A1	 	is
more	 numerically	 robust	 than	 that	 of	 	A2	 .	 Finally,	 (4)	 in	 general,	 the	 stability	 of	 the
algorithm	 and	 the	 condition	 numbers	 of	 the	 matrices	 involved	 can	 greatly	 impact	 the
accuracy	of	the	solutions	obtained.	For	example,	in	optimization,	how	we	pose	a	constraint
(numerically)	 can	 impact	 the	 success	 of	 the	 optimization.	 Next,	 we	 expose	 the	 critical
need	for	scaling	in	the	following	example.

7.2.3 	Exposing	Numerical	Conditioning	Issues—Optimization	Problems



We	 provide	 a	 simple	 example	 of	 an	 optimization	 problem	 for	 which	 proper	 scaling	 is
essential.	We	begin	by	stating	the	general	optimization	problem	formulation	as	follows.

PROB-7.2-GOPF:	General	Optimization	Problem	Formulation

(7.6)

subject	to

(7.7)
(7.8)
(7.9)

Next,	we	consider	the	following	seemingly	trivial	optimization	problem	given	by

(7.10)

subject	to

(7.11)
(7.12)

Using	the	techniques	later	presented	in	this	chapter	on	scaling,	we	find	that	the	solution	to
this	 problem	 is	 x	 =	 10–6	 ×{3.083,	 1.541}.	 The	 important	message	 here	 is	 that,	 without
proper	scaling,	the	solution	produced	by	MATLAB	could	be	deemed	incorrect.	Specifically,
MATLAB	 converged	 to	 the	 solution	 x	 =	 10–6	 ×{4.948,	 2.474},	 which	 has	 strongly
inaccurate	 values	 of	 x.	 (We	 note	 that	 different	 MATLAB	 settings	 may	 lead	 to	 different
equally	 erroneous	 answers).	 The	 danger	 here	 is	 that	 there	 is	 no	 indication	 that	 we	 are
dealing	with	an	incorrect	solution.	This	simple	example	points	to	the	importance	of	using
various	 strategies	 to	 increase	 our	 confidence	 in	 the	 solutions	 obtained	 by	 optimization
codes.	 Indeed,	 one	 of	 the	more	 important	ways	 to	 increase	 confidence	 is	 to	 implement
proper	scaling	as	mentioned	earlier	in	this	section,	and	presented	in	the	next	section.

7.3 	Scaling	and	Tolerances	for	Design	Variables,	Constraints	and	Objective
Functions

This	 section	 deals	 directly	 and	 explicitly	 with	 the	 all	 important	 subject	 of	 scaling	 in
optimization.	 We	 all	 understand	 that	 it	 is	 important	 to	 learn	 how	 to	 formulate	 an
optimization	problem	in	particular	cases,	which	may	 range	 from	 finance	 to	 engineering;
and	 to	 learn	 useful	 theoretical	 aspects	 of	 optimization.	 However,	 unless	 we	 also	 pay
special	 attention	 to	 the	 numerical	 issues	 of	 scaling,	 we	 may	 have	 serious	 trouble	 in
practice.	Fortunately,	the	information	that	is	presented	in	this	section	provides	the	essence
of	what	we	need	to	know	in	practice.

Specifically,	 in	 practice,	we	 need	 to	 know	 about	 scaling	 for	 (i)	 design	 variables,	 (ii)
objective	functions,	and	(iii)	constraints.	Depending	on	the	problem,	one,	two,	or	all	three
of	 the	above	 items	may	be	critical.	What	do	we	mean	by	“critical”?	We	mean	 that	with
scaling,	we	may	obtain	faster	convergence	 to	 the	correct	minimum.	Without	scaling,	we



may	experience	non-convergence	or	premature	termination	at	a	poor	design,	and	not	even
realize	that	this	is	the	case.

For	convenience,	we	discuss	scaling	in	the	context	of	the	MATLAB	optimization	routine
fmincon,	for	which	the	optimization	problem	is	posed	as	follows.

PROB-7.2-MATLAB:	fmincon	Optimization	Model

(7.13)

subject	to

(7.14)
(7.15)
(7.16)
(7.17)
(7.18)

where	(i)	A	and	Aeq	are	matrices	that	define	the	left-hand-sides	of	 the	linear	constraints,
(ii)	b	and	beq	are	vectors	that	define	the	right-hand-sides	of	the	linear	constraints,	(iii)	c(x)
and	ceq(x)	are	vectors	of	nonlinear	constraints,	and	(iv)	LB	and	UB	denote	bounds	on	the
design	variables.	Equation	7.18	defines	what	is	called	the	side	constraints.	 It	 is	useful	 to
note	 the	 similarities	 between	 PROB-7.2-GOPF	 and	 PROB-7.2-MATLAB.	 The	 latter
provides	the	flexibility	of	differentiating	between	linear	and	nonlinear	constraints.	Doing
so	can	provide	significant	numerical	efficiencies.	That	is,	it	is	numerically	efficient	to	put
the	linear	constraints	in	Eqs.	7.16	and	7.17,	even	though	linear	constraints	can	also	be	put
in	Eqs.	7.14	and	7.15;	however,	 the	reverse	 is	not	 true.	This	MATLAB	notation	 is	 the	one
used	in	Figs.	5.4	and	7.1.	The	former	has	no	scaling,	while	the	latter	does.



Figure	7.1.	Optimization	Flow	Diagram—with	Scaling

Figure	7.1	illustrates	the	optimization	process	using	fmincon	(or	any	code	that	conforms
with	the	PROB-7.2-MATLAB	problem	definition).	The	general	scaling	process	is	discussed
with	the	aid	of	Fig.	7.1.	Scaling	is	discussed	in	terms	of	its	three	generic	components:	(i)
design	variables,	 (ii)	objective	 functions,	and	 (iii)	 constraints.	Upon	examining	Fig.	 7.1,
we	make	 the	 following	 important	observations:	 (i)	The	variables	 that	 immediately	enter
and	leave	the	optimization	routine	(fmincon)	are	scaled	variables,	and	(ii)	these	variables
are	immediately	unscaled	if/when	they	are	used	in	the	main	file,	the	objective	function,	or
the	constraint	 function	modules.	Stated	differently,	 the	variables	are	scaled	as	 they	enter
fmincon,	and	they	are	unscaled	as	they	leave	fmincon	for	use	anywhere	else.	The	variables
are	scaled	as	they	enter	fmincon	because	the	optimization	routine	needs	to	use	variables	in
the	 desirable	 numerical	 ranges	 to	 operate	 properly.	However,	 the	 variables	must	 regain
their	unscaled	values	when	 they	are	used	 in	 the	actual	model	models.	Figure	7.1	depicts
both	the	unscaling	processes	(triangle)	and	the	scaling	processes	(circle).	Note	that	in	this
chapter,	( )s	denotes	the	scaled	version	of	the	variable	( ),	except	in	the	cases	of	αs,βs,	and
γs,	which	are	prescribed	scaling	constants.

In	Fig.	7.1,	we	describe	where	scaling	takes	place	for	the	design	variables.	We	note	that,
in	a	similar	 fashion,	 scaling	 also	 takes	 place	 for	 the	quantities	 c(x),	 ceq(x)	 and	 f(x),	 as
shown	in	Fig.	7.1.	The	quantity	Is	in	Fig.	7.1	represents	the	set	of	scaling	parameters	that
are	used	for	the	scaling	and	unscaling	of	various	quantities.	This	set	includes	αs,βs,	and	γs,
which	are	 all	 defined	 in	 this	 section.	Next,	we	discuss	 the	 important	 issue	of	 numerical
accuracy	 representation,	 which	 will	 be	 followed	 by	 the	 development	 of	 scaling
approaches.

7.3.1 	Understanding	the	Accuracy	of	the	Reported	Results

An	important	aspect	of	our	work	is	to	understand	(i)	the	accuracy	of	the	results	we	obtain,
and	(ii)	how	to	report	these	results.	These	issues	entail	two	related	components.	The	first
involves	 understanding	 and	 controlling	 the	 accuracy	 of	 the	 results	 produced	 by	 the
optimization	code	using	scaling.	The	second	involves	understanding	the	inherent	accuracy
of	the	physics-based	models	used	in	the	optimization.	We	discuss	each	next.

Accuracy	of	Results	of	Optimization	Code:

As	we	will	learn	in	this	section,	we	have	the	ability	to	control	the	accuracy	of	the	results
that	 the	 optimization	 code	 produces.	 We	 can	 do	 so	 with	 scaling,	 in	 conjunction	 with
prescribing	 certain	 parameter	 settings	 in	 the	 optimization	 code.	 As	 we	 examine	 the
numbers	that	the	optimization	code	produces,	we	keep	in	mind	that	the	computer	has	in	its
memory	 many	 more	 digits	 than	 we	 report	 for	 that	 number.	 It	 is	 up	 to	 us	 to
decide/understand	how	many	digits	of	the	number	are	significant	(i.e.,	meaningful).

As	we	report	 the	numbers,	we	may	choose	 to	either	put	zero	digit	 in	 the	place	of	 the
meaningless	 digits	 or	 use	 exponent	 notation.	 For	 example,	 we	may	 use	 12,345,000,	 or
1.2345	×	107,	for	five	significant	digits	(see	Table	7.2),	even	though	the	first	8	digits	in	the
computer	memory	might	be	12,345,678.	Note	that	as	we	decided	to	report	five	significant
digits	 of	 the	 computer	 results,	 we	 did	 so	 simply	 because	 we	 determined	 that	 the



optimization	converged	to	within	five	significant	digits.	This	convergence	does	not	tell	us
that	these	five	significant	digits	are	physically	meaningful.	Next,	we	discuss	this	physical
aspect	in	greater	detail.

Table	7.2.	Numerical	Accuracy	Definitions

Generic	Number DA NSD

0.012,3 10–4 3
100.012,345,6 10–7 10
123,000 103 3

DA:	Decimal	Accuracy

NSD:	No.	of	Significant	Digits	of	Accuracy

	

Accuracy	Results	with	Physics-Based	Model:

In	addition	to	 the	accuracy	of	 the	optimization	code	results	discussed	above,	we	must
also	 concern	 ourselves	 with	 the	 accuracy	 of	 the	 physics-based	models	 being	 used.	 For
example,	 if	we	obtain	 the	optimal	value	of	 the	deflection	of	a	beam	as	1.234,56	×	10–6,
perhaps	 only	 3	 or	 4	 of	 these	 digits	might	 be	 physically	 meaningful,	 even	 though	 all	 6
might	be	significant	in	the	optimization	code	convergence.

If	we	wish	 to	 know	 how	many	 digits	 are	 physically	meaningful,	we	 need	 to	 ask	 the
structural	engineer	who	developed	the	model.	He	or	she	might	 tell	us	 that	 the	deflection
model	 that	 we	 are	 using	 only	 provides	 an	 accuracy	 of	 approximately	 four	 significant
digits.	In	 this	case,	we	would	only	report	 to	 the	outside	world	 the	number	1.234	×	10–6.
We	 conclude	 by	 noting	 that	 if	 (i)	 we	 report	 nr	 significant	 digits	 of	 accuracy,	 (ii)	 the
physics-based	model	produces	npm	significant	digits	of	accuracy,	and	(iii)	the	optimization
code	converges	to	within	nop	 significant	digits	of	accuracy,	 then	 it	 is	advisable	 to	use	nr
such	that

(7.19)

where	nr	need	not	be	the	same	for	each	resulting	number	(e.g.,	design	variable).	That	 is,
the	 accuracy	 for	 deflection	 might	 be	 different	 from	 the	 accuracy	 for	 stress	 in	 a	 given
model.	Next,	we	 present	 the	 scaling	 approach	 (the	 how)	 for	 design	 variables,	 objective
functions,	and	behavioral	constraints.

7.3.2 	Design	Variable	Scaling—Order	of	Magnitude	(DV-1)

Design	variables	scaling	is	often	desirable	anytime	the	order	of	magnitude	of	 the	design
variables	 is	 much	 higher	 or	 much	 lower	 than	 one.	 Similarly,	 when	 the	 actual/unscaled



values	 of	 the	 design	 variables	 are	 in	 the	 desirable	 order	 of	 magnitude,	 no	 scaling	 is
typically	 necessary.	 As	 illustrated	 in	 Fig.	 7.1,	 the	 scaling	 of	 the	 design	 variables	 takes
place	in	three	places:	(i)	the	main	file,	(ii)	the	objective	function	evaluation,	and	(iii)	the
constraints	evaluations.	Although	 there	are	sophisticated	approaches	for	scaling,	 in	most
practical	 cases,	we	 can	 simply	multiply	 each	 design	 variable	 by	 a	 constant	 that	will	 (i)
bring	it	close	 to	1,	and/or	(ii)	address	some	 tolerance	or	accuracy	 issues	 to	be	discussed
later.
To	 bring	 the	magnitude	 of	 the	 design	 variable	 close	 to	 “one”,	 we	 use	 the	 following

trivial	form	of	design	variable	scaling

(7.20)

where	nx	is	the	number	of	design	variables,	and	αis	is	a	constant	that	is	chosen	to	make	the
quantity	αisx	 i	approximately	 equal	 to	 one	 (or	 on	 the	 order	 of	one).	Therefore,	Eq.	 7.20
represents	the	scaling	process	that	takes	place	in	the	circles	of	Fig.	7.1	that	pertain	 to	 the
design	 variables.	 Conversely,	 the	 unscaling	 process	 takes	 the	 form	 xi	 =	 xis⁄α	 is	 in	 the
triangles.	The	upper	and	lower	bounds	of	the	design	variables	(in	the	side	constraints)	can
be	scaled	as

(7.21)

Note	 that	 in	 the	 case	where	 the	 initial	 design	variable	 is	 several	 orders	 of	magnitude
different	 from	the	final	or	optimal	value,	 it	may	be	necessary	 to	perform	more	 than	one
optimization	 run,	 each	 with	 an	 updated	 scaling	 (i.e.,	 each	 time	 using	 the	 final	 design
variable	value	of	one	run	as	the	initial	value	of	the	next	run).

Let’s	further	clarify.	Say	we	have	x3–initial	=	123,45.67,	but	x3–optimal	=	0.012,345	(much
lower	magnitude).	 In	 this	 case,	 to	 perform	 the	 optimization,	we	 determine	 the	 scaling
factor	using	x3–initial,	which	has	a	higher	magnitude.	This	scaling	factor	might	not	yield	an
accurate	answer	for	x3–optimal,	which	has	a	significantly	lower	magnitude	than	x3–initial.	To
increase	confidence	 in	our	 results,	we	determine	a	new	scaling	factor	using	 the	possibly
inaccurate	 results	 obtained	 for	 x3	 from	 the	 first	 optimization	 run.	 We	 then	 perform	 a
second	optimization	 run	using	 the	 updated	 scaling	 factor.	 This	 second	 optimization	 run
will	generally	yield	more	accurate	results.

7.3.3 	Design	Variable	Scaling—Tolerance	Definition	(DV-2)

Before	we	begin,	 let	 us	 clarify	 our	 terminology	pertaining	 to	 accuracy.	 Specifically,	we
recall	the	definitions	of	Decimal	Accuracy	(DA)	and	Number	of	Significant	Digits	(NSD).
We	observe	 the	 definitions	of	 these	 terms	 by	 inspecting	 Table	 7.2,	where	 three	 generic
numbers	are	examined.

Next,	 we	 proceed	 with	 the	 development	 approach	 to	 scaling	 design	 variables.	 As
previously	discussed,	 the	scaling	of	 the	design	variables	only	needs	 to	 take	 into	account
their	 orders	 of	 magnitude.	 The	 proper	 order	 of	 magnitude	 of	 the	 design	 variables	 will
promote	 improved	 convergence	 of	 the	 algorithms.	However,	 having	 the	 proper	 order	 of



magnitude	alone	will	not	address	 the	all	 important	 issue	of	 the	desired	accuracy	of	each
variable.	To	explain	this	issue,	let	us	consider	two	scenarios:

Scenario	1	
If	we	are	optimizing	the	thickness	of	a	sheet	of	paper	with	an	order	of	magnitude	of	10–3
(say,	0.001,234,567),	we	might	need	the	decimal	accuracy	 (or	 tolerance)	of	 the	pertinent
design	variable	to	be	10–6,	yielding	the	number	0.001,234,	which	has	4	significant	digits.

Scenario	2
Similarly,	 if	 we	 are	 optimizing	 the	 annual	 revenue	 of	 a	 company	 with	 an	 order	 of
magnitude	 of	 109	 (say,	 $1,234,567,891.234),	 we	 might	 need	 the	 decimal	 accuracy	 (or
tolerance)	of	the	pertinent	design	variable	to	be	103,	yielding	the	number	$1,234,567,000,
which	has	7	significant	digits.

7.3.4 	Design	Variable	Scaling—Optimization	Code	Decimal
Accuracy	Setting	(DV-3)

As	we	see,	the	number	of	significant	digits	of	a	number	depends	on	its	decimal	accuracy,
as	generated	 by	 the	 code.	All	 codes,	 in	 fact,	 provide	 us	with	 the	means	 to	 specify	 this
decimal	accuracy.	In	the	case	of	MATLAB,	 the	optimization	parameter	setting	called	TolX
governs	 the	decimal	accuracy	of	 the	entries	of	 the	design	variable	vector	x.	The	 default
value	of	TolX	is	10–6.	Accordingly,	 in	 the	 case	 of	 Scenario	 1	 above,	 the	 nominal	 result
would	be	0.001,234;	however,	in	the	case	of	Scenario	2	above,	the	nominal	result	would
be	 $1,	 234,	 567,	 891.234,	 000.	 At	 this	 point,	 we	make	 two	 important	 observations.	 In
Scenario	 1,	 the	 code	 needs	 to	 produce	 only	 four	 significant	 digits,	 which	 poses	 no
particular	 difficulty.	 In	 Scenario	 2,	 however,	 the	 code	 needs	 to	 produce	 16	 significant
digits	 of	 accuracy,	 which	 is	 problematic.	 In	 the	 latter	 case,	 the	 code	 will	 either	 not
converge	to	this	many	significant	digits,	or	it	may	take	an	unduly	long	time	to	do	so.

7.3.5 	Design	Variable	Scaling—Combining	Order	of	Magnitude	and
Desired	Tolerance	(DV-4)

We	discuss	the	order	of	magnitude	and	the	desired	tolerance	of	design	variables	in	terms
of	the	resulting	number	of	significant	digits	of	accuracy.	We	again	discuss	these	concerns
with	the	aid	of	Scenarios	1	and	2.

In	Scenario	1,	if	we	are	satisfied	with	four	correct	digits	as	presented	above,	all	is	well.
If,	instead,	we	would	prefer	five	significant	digits	of	accuracy,	we	can	perform	scaling	and
let	αis	=	10	(Eq.	7.20)	 for	 the	pertinent	variable.	 In	 this	 case,	 the	 code	 now	works	with
xis=0.012,345,67;	and	since	TolX=10–6,	the	code	will	yield	the	result	xis=0.012,345,	which
has	five	significant	digits	of	accuracy,	as	desired.	Recall	that	we	need	to	unscale	using	the
relation	xi	=	xis⁄α	is,	yielding	the	unscaled/correct	value	xi=0.001,234,5,	which	has	the	same
number	of	significant	digits	of	accuracy	(i.e.,	five).	We	note	that	an	alternative	approach
for	 obtaining	 five	 significant	 digits	 (alternative	 to	 scaling)	 is	 to	 let	 TolX=10–7,	 which
would	again	yield	xi=0.001,234,5.	However,	 this	approach	 is	not	generally	advised	since



changing	 TolX	 in	MATLAB	 affects	 all	 the	 design	 variables,	 and	 not	 just	 xi.	 In	 addition,
significantly	altering	the	default	tolerance	values	of	any	code	may	result	in	unpredictable
consequences	on	the	operation	of	the	code.

In	Scenario	2,	if	we	would	like	to	have	7,	rather	than	16,	significant	digits	of	accuracy,
we	can	simply	scale	and	let	αis	=	10–9,	leading	to	xis=1.234,567,891,234,	yielding	the	final
value	xis=1.234,567,	which	has	6	decimal	digits	of	accuracy	(TolX=10–6)	and	7	significant
digits	of	accuracy,	as	desired.	Again,	recall	that	we	need	to	unscale	using	the	relation	xi	=
xis⁄α	is,	yielding	the	unscaled/correct	value	xi=$1,234,567,000,	which	has	the	same	number
of	significant	digits	(i.e.,	seven).

7.3.6 	Design	Variable	Scaling—Setting	Scaling	Parameters	(DV-5)

As	noted	 above,	 the	magnitude	 of	 the	 design	 variable	xi	has	 a	 direct	 impact:	 (i)	 on	 the
success	of	the	optimization	(i.e.,	convergence),	 (ii)	on	 the	computation	 time,	and	(iii)	on
the	accuracy	of	the	final	result	(e.g.,	tolerance).	We	note	 that	 the	magnitude	 that	 is	most
important	is	that	of	the	design	variable	at	the	end	of	 the	optimization,	where	 the	desired
tolerance	 is	 meaningful.	 To	 bring	 the	 final/optimal	 design	 variable	 to	 an	 order	 of
magnitude	of	one,	we	need	to	divide	the	design	variable	by	a	number	that	is	approximately
equal	to	its	optimal	value.	As	such,	the	user	could	specify	his	or	her	best	guess	as	to	what
the	 typical	 optimal	 value	 of	 xi	might	 be.	When	 we	 do	 so,	 the	 optimal	 value	 will	 have
approximately	six	decimal	digits	of	accuracy	(TolX=10–6),	and	seven	significant	digits	of
accuracy,	since	the	optimal	value	is	approximately	on	the	order	of	one.	Specifically,	we	let

(7.22)

in	Eq.	7.20	(with	TolX=10–6),	where	n	dvi	denotes	an	exponent	parameter	setting	for	the	i-
th	design	variable.	Using	Eq.	7.22	is	expected	to	yield	approximately	7	+	ndvi	 significant
digits	 of	 accuracy.	 If,	 instead,	 we	 let	 αis	 =	 10ndvi	 ,	 we	 will	 simply	 have	 increased	 the
accuracy	of	the	i-th	design	variable	by	ndvi	digits	compared	to	its	accuracy	without	scaling.
When	ndvi	is	negative,	we	will	have	decreased	the	accuracy	by	ndvi	digits.	Finally,	we	note
that	 the	 absolute	 value	 of	 ndvi	 should	 generally	 be	 no	 greater	 than	 three,	 to	 avoid
requesting	excessive	accuracy.

In	 the	 case	 of	MATLAB,	 the	 designer	 is	 allowed	 to	 specify	 the	 typical	 values	 of	 the
design	 variables	 of	 the	 vector	 x	 by	 prescribing	 the	 vector	 TypicalX.	 Using	 the	 vector
TypicalX	and	the	scalar	TolX,	one	is	expected	to	obtain	the	desired	number	of	significant
digits	 of	 accuracy.	 Therefore,	 one	 has	 the	 option	 of	 setting	 the	 above	 two
MATLAB	parameters,	or	 to	 simply	 set	 a	 scaling	 parameter	 for	 each	 design	 variable.	 The
latter	approach	offers	more	flexibility.

As	we	examine	the	development	presented	above,	a	word	of	caution	is	in	order.	When
we	predict	a	given	number	of	 significant	 digits,	 our	prediction	 is	only	approximate.	We
also	note	that	different	codes	behave	differently,	and	different	versions	of	 the	same	code
will	often	behave	differently.	However,	the	general	ideas	presented	in	this	section	embody



the	important	message	that	we	need	to	know.

We	conclude	with	two	important	notes.	In	the	case	where	a	given	initial	or	final	design
variable	is	nearly	zero,	it	may	be	unnecessary	to	perform	scaling	for	that	design	variable.
Moreover,	 in	 the	 case	 where	 the	 design	 variables	 are	 nearly	 of	 the	 same	 order	 of
magnitude	(and	different	from	one),	with	similar	tolerances,	it	may	be	acceptable	to	use	a
single	value	of	the	constant	α	for	all	design	variables.

7.3.7 	Objective	Function	Scaling

Most	optimization	codes	are	designed	to	perform	well	when	the	objective	function	value	is
on	 the	 order	 of	 one.	 While	 many	 codes	 offer	 significantly	 more	 flexibility,	 it	 is
nevertheless	 safer	 to	 let	 the	 objective	 functions	 take	 on	 the	 desired	 order	 of	magnitude
through	appropriate	scaling.	For	values	that	lie	significantly	outside	of	this	range,	various
aspects	 of	 the	 optimization	 algorithm	 become	 ill-conditioned.	 The	 finite	 difference
derivatives,	for	example,	take	on	undesirably	large	or	small	magnitudes.

For	the	purpose	of	optimization,	the	scaling	of	the	objective	function	only	needs	to	be
performed	 after	 its	 evaluation	 in	 the	 objective	 function	 module,	 before	 it	 is	 passed	 to
fmincon.	 This	 scaling	 is	 illustrated	 in	 the	 circular	 functional	 block	 after	 the	 objective
function	evaluation	in	Fig.	7.1.	The	mathematical	expression	for	this	scaling	can	take	the
form

(7.23)

where	 βs	 is	 a	 constant	 chosen	 so	 as	 to	 bring	 f(x)	 within	 the	 desirable	 range.	 At	 the
conclusion	 of	 the	 optimization	 run,	 fmincon	 returns	 the	 optimal	 value	 of	 the	 objective
function.	We	 recall	 that	 this	 is	 the	 scaled	 value.	 Therefore,	 before	 we	 use	 it,	 we	 must
unscale	 it	 in	 the	main	 file	 (the	 unscaling	 is	 not	shown	 in	Fig.	7.1)	 by	 simply	 using	 the
equation	f	=	f	s/βs.

Much	 of	 the	 discussion	 regarding	 accuracy	 in	 the	 earlier	 subsections	 for	 the	 design
variables	also	applies	in	the	case	of	the	objective	function,	and	will	not	be	repeated	here	in
detail.	The	number	of	significant	digits	of	accuracy	of	 the	objective	function	 is	obtained
with	the	aid	of	scaling,	in	conjunction	with	the	MATLAB	setting	called	TolFun.	The	default
value	of	TolFun	is	10–6.	TolFun	represents	the	decimal	accuracy	of	the	objective	function	f
(x).

In	 a	 manner	 similar	 to	 the	 discussion	 above,	 we	 obtain	 the	 desired	 accuracy	 of	 the
objective	function	by	scaling	with

(7.24)

(TolFun=10–6),	where	n	obj	denotes	an	exponent	 parameter	 setting,	which	 is	 expected	 to
yield	approximately	7	+	nobj	significant	digits	of	accuracy.	The	constant	ftypical	represents	a
number	that	is	of	the	order	of	magnitude	of	the	optimal	value	of	the	objective	function.	If,
instead,	we	 let	βs	=	10nobj	 ,	we	will	 simply	have	 increased	 the	accuracy	 of	 the	 objective
function	 by	 nobj	 digits	 when	 compared	 to	 its	 accuracy	 without	 scaling.	 When	 nobj	 is



negative,	 we	 will	 have	 decreased	 the	 accuracy	 by	 nobj	 digits.	 Again,	 we	 note	 that	 the
absolute	 value	 of	 nobj	 should	 generally	 be	 no	 more	 than	 three	 to	 avoid	 requesting
excessive	accuracy.	In	the	case	where	the	optimal	value	of	the	objective	function	 is	near
zero,	scaling	may	be	unnecessary.

We	conclude	this	discussion	on	objective	function	scaling	by	noting	that	some	codes	set
the	accuracy	of	the	objective	function	by	prescribing	the	number	of	significant	digits	(say,
6),	 rather	 than	 the	 decimal	 accuracy	 (say,	 10–6)	 at	 convergence.	 For	 example,	 if	 the
optimal	 value	 of	 the	 objective	 function	 is	 fopt=1,234.123,456,789,	 the	 former	 case	 will
yield	fopt=1,234.12,	while	the	latter	case	will	be	fopt=1,234.123,456	(without	scaling).	On
the	 other	 hand,	 if	 we	 have	 fopt=0.000,001,234,567,	 the	 former	 case	 will	 yield
fopt=0.000,001,234,56,	while	 the	 latter	 case	will	 be	 fopt=0.000,001	 (without	 scaling).	We
can	see	the	relative	advantages	of	each	approach.	However,	with	scaling,	both	approaches
can	be	made	to	yield	the	same	answer.

7.3.8 	Behavioral	Constraints	Scaling

Behavioral	constraints,	 in	some	sense,	describe	aspects	of	 the	system	behavior.	They	do
so	in	the	form	of	imposed	constraints	that	can	be	equalities	or	inequalities.	In	PROB-7.2-
MATLAB,	 the	 behavioral	 constraints	 are	 expressed	 by	 Equations	 7.14	 to	 7.17.	 As	 stated
earlier,	 the	 first	 two	 constraints	 are	 nonlinear,	 while	 the	 last	 two	 constraints	 are	 linear.
Equation	 7.18	 concerns	 the	 design	 variables	 (i.e.,	 side	 constraints),	 and	 is	 addressed
earlier	under	design	variable	scaling.	In	keeping	with	the	scope	of	this	book,	we	will	only
explicitly	 discuss	 the	 scaling	 of	 nonlinear	 behavioral	 constraints.	 The	 essence	 of	 the
following	discussion	on	nonlinear	behavioral	constraints	also	applies	to	linear	behavioral
constraints.	However,	linear	constraints	also	entail	other	complex	numerical	conditioning
issues	that	are	often	automatically	addressed	in	the	linear	programming	algorithm,	and	do
not	require	our	attention	here.	Next,	we	address	nonlinear	equality	constraints.	The	same
techniques	apply	to	inequality	constraints.	Consider	the	vector	of	constraints

(7.25)

In	MATLAB,	 as	 in	most	 optimization	 codes,	 the	 above	 constraint	 is	 satisfied	 to	within	 a
given	decimal	accuracy.	 In	MATLAB,	 the	pertinent	 tolerance	parameter	 is	 called	TolCon,
and	 its	 default	 value	 is	 TolCon=	 10–6.	 Specifically,	 in	 satisfying	 the	 constraints	 in
Eq.	7.25,	the	optimization	algorithm	will	stop	after	the	relation

(7.26)

is	satisfied,	where	nec	denotes	the	number	of	nonlinear	equality	constraints.	Consequently,
for	 example,	 ceq(x)	 =	 10–7	 will	 be	 considered	 numerically	 acceptable.	 However,	 this
situation	might	be	physically	unacceptable.	Consider	the	following	two	scenarios.

Scenario	1

Consider	the	constraint	2x12	+	x	2	=	0.	Assume	that	the	normal/good	values	of	the	design



variables	are	on	the	order	of	10–7,	 say,	x	 1	=	x2	=	2.5	×	10–7.	By	 inspection,	we	see	 that
these	values	of	x	do	not	satisfy	 the	constraint	 (x2	 is	not	equal	 to	 -2x12.)	 In	 this	case,	we
have	2x12	+	x	 2	=	2.500,001,25	×	10–7	and	Eq.	7.26	 yields	 2.500,001,25	 ×	 10–7	 ≤	 10–6,
which	numerically	satisfies	the	constraint.	This	is	in	disagreement	with	our	view	that	the
constraint	is	not	satisfied.	

To	correct	this	situation,	we	multiply	the	left-	and	right-hand-sides	of	the	constraint	by
106,	which	yields	(2x12	+	x	2)	×	106	=	0.	We	let	ceq(x)1	=	(2x12	+	x	2)	×	106.	Substituting
the	values	of	x	in	ceq(x)1,	Eq.	7.26	yields	2.500,001,25	×	10–1	≤	10–6,	which	is	clearly	not
satisfied	–	in	agreement	with	our	view.	The	important	message	here	is	that,	by	multiplying
the	 constraint	 by	 a	 constant,	 we	 can	 enforce	 satisfaction	 of	 the	 constraint	 within	 the
accuracy	that	we	desire.

Scenario	2

Consider	 the	 constraint	x1	=	2x2,	 which	 yields	 ceq1	 =	 x1	 -	 2x2.	 Assume	 that	 the	 design
variables	are	on	the	order	of	106;	and	the	optimization	yields	x1	=	2,222,222.33,	and	x2	=
1,111,111.11.	For	practical	 purposes,	we	might	 consider	 these	 values	 of	x	 to	 satisfy	 the
constraint.	 However,	 Eq.	 7.26	 yields	 0.11	 ≤	 10–6,	 which	 is	 clearly	 not	 satisfied	 –	 in
disagreement	with	our	view.

We	could	satisfy	the	constraint	by	increasing	TolCon	to	be	greater	than	0.11,	but	such	a
high	value	of	TolCon	will	 likely	compromise	 the	operation	of	 the	optimization	code	and
adversely	affect	the	other	constraints.	Alternatively,	could	try	to	force	the	code	to	generate
a	 very	 high	 number	 of	 digits	 of	 accuracy,	 say	 x	 =	 {2,222,222.222,222,2;
1,111,111.111,111,	1},	but	this	approach	would	require	too	many	iterations	and	often	will
not	converge.

To	correct	this	situation,	we	follow	a	path	similar	to	the	previous	approach.	We	multiply
the	left-	and	right-hand-sides	of	the	constraint	by	10–6,	yielding	(x	1	-	2x2)	×	10–6	=	0.	We
let	ceq(x)1	=	(x1	-	2x2)	×	10–6.	Substituting	the	values	x	=	{2,	222,	222.33;	 1,	111,	111.11}
in	 ceq(x)1,	 Eq.	 7.26	 yields	 0.11	 ×	 10–6	 ≤	 1.0	 ×	 10–6,	 which	 is	 clearly	 satisfied	 –	 in
agreement	 with	 our	 view.	 The	 message	 here	 is	 the	 same	 as	 above;	 namely,	 that	 by
multiplying	the	constraint	by	a	constant,	we	can	enforce	the	satisfaction	of	the	constraint
within	the	accuracy	that	we	desire.	In	doing	so,	we	save	unnecessary	computation	and	we
increase	the	likelihood	of	successful	convergence.

Constraint	Scaling	Approach:	The	above	discussion	 leads	us	 to	a	simple	approach	 to
scaling	equality	constraints.	We	simply	let

(7.27)

where	ceq(x)i	denotes	the	ith	entry	of	ceq(x),	ceq(x)is	is	the	scaled	value	of	ceq(x)	i,	γis	is	a
constant	that	is	used	to	increase	or	decrease	the	degree	of	constraint	satisfaction,	and	nec
denotes	 the	 number	 of	 equality	 constraints.	 At	 this	 point,	 an	 important	 question	 arises:
What	 is	 a	 good	 value	 for	 γis?	 As	 we	 can	 see	 from	 the	 above	 discussion,	 the	 answer



depends	on	(i)	the	accuracy	to	which	we	need	the	constraint	(Eq.	7.25)	to	be	satisfied,	and
(ii)	the	value	of	the	constraints	setting	of	the	optimization	code	that	we	are	using	(TolCon
in	the	case	of	MATLAB).	We	can	address	this	question	in	various	ways.

First,	the	most	direct	answer	to	this	question	is	to	simply	let	γis	=	10n	or	10–n	if	we	wish
to	 increase	 or	 decrease	 the	 accuracy	 of	 the	 constraint	 satisfaction,	 respectively.	 The
greater	the	integer	n,	the	greater	the	increased	or	decreased	constraint	satisfaction.

The	next	approach	involves	a	pseudo-normalization	scheme.	We	let

(7.28)

where	 ceqi–nominal	 is	 a	 nominal	 value	 of	 ceqi	 and	 neqi	 denotes	 an	 exponent	 parameter
setting	for	the	i-th	constraint.	We	note	 the	similarities	between	Eqs.	7.22,	7.24	and	7.28.
However,	 while	 values	 for	 xtypical	 and	 ftypical	 can	 generally	 be	 estimated,	 the
typical/nominal	value	of	ceqi	is	known	and	is	zero.	Therefore,	we	cannot	divide	by	it	in	a
fashion	similar	to	Eqs.	7.22	and	7.24.	In	the	present	case,	we	used	what	we	call	ceqnominal.
To	determine	good	values	of	ceqnominal,	we	are	guided	by	the	constraint	Scenarios	1	and	2
above,	and	present	the	following	three	representative	cases:

(7.29)
(7.30)
(7.31)

where	x2–typical	is	a	typical	value	of	x2,	used	to	make	one	term	in	ceq(x)i	be	close	to	“one.”
If	we	 let	neqi	 =	 0	 in	 Eq.	 7.28,	 in	 each	 of	 the	 three	 cases	 above,	 the	 value	 chosen	 for
ceqi–nominal	will	be	such	that	one	term	in	ceqis	will	be	on	the	order	of	one.	Since	“one”	is
much	larger	than	TolCon,	the	remaining	terms	in	ceq(x)i	will	attempt	to	cancel	the	“one”
term	as	much	as	possible,	thereby	promoting	a	meaningful	satisfaction	of	the	constraint.	In
the	 cases	where	we	wish	 to	 further	 increase	 or	 decrease	 constraint	 satisfaction,	we	 can
simply	choose	a	positive	or	negative	integer	for	neqi	in	Eq.	7.28,	as	previously	discussed.

We	 again	 note	 that	 all	 scaling	 functions	 above	are	 presented	 as	 simple	multiplicative
constants	 –	 a	 proportional	 function.	 These	 comments	 conclude	 the	 presentation	 of	 the
scaling	 approach.	 Next,	 we	 provide	 useful	 information	 regarding	 practical
MATLAB	implementation,	followed	by	some	insightful	examples.

7.3.9 	Setting	MATLAB	Optimization	Options	and	Scaling	Parameters:	Syntax

In	 our	 approach	 to	 scaling,	 we	 discussed	 the	 need	 to	 sometimes	 change	 certain
optimization	settings.	Here,	we	provice	the	syntax	for	changing	them	in	MATLAB.	We	can
change	them	in	the	following	ways:

Several	at	once:
	options	=	optimset(‘TolFun’,	1e-8,	‘TolX’,	1e-7,	‘TolCon’,	1e-6)

In	 this	 case,	 several	 settings	 are	 used	 simultaneously	 and	 assigned	 to	 the	 set	 called



“options,”	which	will	be	used	in	the	optimization	function	call	“fmincon.”

One	at	a	time:
options1	=	optimset		

				options2	=	optimset(options1,	‘TolFun’,	1e-8)		

				options3	=	optimset(options2,	‘TolX’,	1e-7)		

				options	=	optimset(options3,	‘TolCon’,	1e-6)

To	obtain	more	thorough	information	regarding	the	MATLAB	settings	parameters;	we	can
type,	 on	 the	 MATLAB	 prompt,	 “help	 optimset.”	 The	 options	 used	 are:	 Display,	 TolX,
TolFun,	 TolCon,	 DerivativeCheck,	 Diagnostics,	 FunValCheck,	 GradObj,	 GradConstr,
Hessian,	 MaxFunEvals,	 MaxIter,	 DiffMinChange	 and	 DiffMaxChange,	 LargeScale,
MaxPCGIter,	 PrecondBandWidth,	 TolPCG,	 TypicalX,	Hessian,	 HessMult,	 HessPattern,
PlotFcns,	and	OutputFcn.

Fortunately,	we	 rarely	 have	 to	 deal	with	most	 of	 these	 parameters.	 To	 obtain	 general
information	 regarding	 the	 optimization	 settings;	 we	 can	 type,	 at	 the	 MATLAB	 prompt,
“help	optimoptions.”

The	left-hand-sides	of	any	of	 the	above	optimset	calls	define	a	set	of	“options”	 that
can	be	used	in	the	fmincon	call,	which	will	be	used	during	optimization	as	follows.
[xopt,fopt]	=	fmincon(‘fun’,x0,A,B,Aeq,Aeq,LB,UB,‘nonlcon’,		

																							options)

In	 addition	 to	 setting	 the	 “options”	 parameters	 as	 performed	 above,	 we	 also	 need	 to
define	 the	 scaling	 parameters	 and	 pass	 them	 to	 the	 various	 routines.	 In	 Fig.	 7.1,	 these
scaling	parameters	 are	defined	by	 Is.	 Specifically,	 the	 scaling	 parameters	αs	 (alphas),	 βs

(betas),	 and	 γs	 (gammas)	 can	 be	 defined	 in	 the	 main	 calling	 function	 and	 passed	 to
fmincon,	 the	 constraint	 function	 nonlcon.m,	 and	 the	 objective	 function	 objfun.m.	 The
commands	are:
[xopts,fopts]	=	fmincon(‘objfun’,x0s,A,B,Aeq,Aeq,LB,UB,		

																‘nonlcon’,…	options,	alphas,	betas,	gammas);		

	

[Cs,Ceqs]		=		nonlcon(xs,	alphas,	betas,	gammas);		

	

fs		=		objfun(xs,	alphas,	betas,	gammas);

This	presentation	of	the	MATLAB	syntax	concludes	our	discussion	of	scaling	approaches.
Next,	we	provide	some	simple	examples.	A	larger	example	is	presented	in	Sec.	7.7.

7.3.10 	Simple	Scaling	Examples

Here	we	perform	the	scaling	for	some	simple	examples.

Example	1

Consider	 the	 optimization	 problem	 of	 Eqs.	 7.10	 to	 7.12.	 As	 previously	 stated,	 the
MATLAB	answer	with	scaling	is	x	=	10–6	×{3.083,	1.541}	and	f		=	1.724	×	10–12,	while	the
MATLAB	answer	without	scaling	is	x	=	10–6	×{4.948,	2.474}	and	f	=	6.0714	×	10–12.	This
is	a	case	where	scaling	is	 indeed	required	or,	possibly,	 the	 tolerance	parameters	must	be
changed.	We	previously	discussed	why	scaling	is	generally	the	preferable	approach.



Let	us	scale	the	design	variables,	the	objective	function,	and	the	constraint:

(i) From	Eqs.	7.20	and	7.22,	and	observing	the	orders	of	magnitude	of	the	design
variables,	we	let	ndvi	=	0	and	xi–typical	=	10–7,	with	(i	=	1,	2).

	(ii) From	Eqs.	7.23	and	7.24,	and	observing	the	orders	of	magnitude,	we	let	nobj	=	0	and
ftypical	=	10–12.

(iii) Similarly,	according	to	Eqs.	7.27	and	7.28,	we	let	neqi	=	0	and	ceqnominal	=	10–6,	using
x2–typical,	according	to	Eq.	7.31.

Using	these	scaling	parameters,	MATLAB	indeed	yields	the	accurate	answers	above.

We	note	that,	in	some	cases,	we	may	need	to	perform	some	preliminary	investigation	in
order	 to	 obtain	 the	 pertinent	 orders	 of	 magnitude	 of	 the	 various	 quantities	 needed	 to
implement	the	scaling.	Finally,	we	note	that	the	answers	we	obtain	should	not	be	sensitive
to	 the	 scaling	 parameters	 we	 used.	 That	 is,	 if	 we	 moderately	 increase	 the	 scaling,	 we
should	obtain	similarly	more	accurate	answers.	If	our	answers	change	significantly,	then
our	scaling	might	be	inadequate.

Example	2

Consider	a	 slightly	modified	version	of	 the	optimization	problem	of	Eq.	7.10	 used	 in
Example	 1,	 where	 the	 objective	 function	 includes	 a	 constant	 term.	 From	 optimization
theory,	the	design	variables	of	the	modified	problem	should	not	change	from	their	original
values;	only	 the	objective	 function	should	change.	Let	 us	 examine	 the	 resulting	pitfalls.
The	modified	version	reads

(7.32)

subject	to

(7.33)
(7.34)

Without	scaling,	 the	MATLAB	answers	are	x	=	10–6	×{4.948,	2.474}	and	 f	=	 1.112×10–8,
which	 can	 be	 deemed	 incorrect.	 Note	 the	 low	 orders	 of	 magnitude	 of	 the	 various
quantities.	We	 also	 note	 that	 this	 problem	 poses	 numerical	 issues,	 in	 part,	 because	 the
objective	 function	 is	 fairly	 flat	near	 the	minimum.	We	 implement	 scaling	 in	 accordance
with	our	previous	discussion:

(i) For	the	design	variables	(Eqs.	7.20	and	7.22),	we	let	ndvi	=	0	and	xi–typical	=	10–7

(i	=	1,	2).

	(ii) For	the	objective	function	(Eqs.	7.23	and	7.24),	we	let	nobj	=	0	and	ftypical	=	10–8.

(iii) For	the	equality	constraint	(Eqs.	7.27	and	7.28),	we	let	neqi	=	0	and	ceqnominal	=	10–6.

This	scaling	yields	a	MATLAB	answer	of	x	=	10–6	×{1.200,	0.600}	and	f	=	1.1116	×	10–8,



which	is	deemed	incorrect.	We	know	that	it	is	incorrect	because,	in	this	particular	case,	we
know	the	correct	answer	from	above.	It	is	important	to	note	that	we	could	have	easily	been
fooled	 into	 thinking	 that,	 since	we	 implemented	scaling,	our	answer	 is	correct.	The	way
we	deal	with	this	is	to	make	sure	we	develop	confidence	in	any	answer	we	obtain	through
optimization,	a	topic	we	discuss	in	Sec.	7.6.3.	In	the	case	of	scaling,	what	we	have	done
thus	 far	 is	 applied	 guidelines.	 We	 used	 nobj	 =	 0	 in	 accordance	 with	 the	 guidelines
provided.	We	need	to	explore	whether	changing	nobj	(or	changing	any	of	the	other	scaling
parameters)	is	not	necessary.	Indeed,	if	we	let	nobj	=	2,	MATLAB	yields	x	=	10–6	×{3.0828,
1.541}	and	f	=	1.111	×	10–8,	which	is	correct.

As	 a	 final	 comment,	 we	 wish	 to	 emphasize	 that	 the	 material	 of	 this	 section	 is	 a
comprehensive	presentation	of	information	that	we	would	learn	over	perhaps	years	of	trial
and	error	in	optimization,	which,	to	our	knowledge,	is	not	provided	in	any	other	textbook
in	 this	 form.	What	we	have	provided	 is	a	set	of	general	guidelines	and	 insights	 into	 the
numerical	processes	that	will	be	very	helpful	to	you.	We	have	not	given	strict	predictions
of	 computational	 outcomes	 as	 it	 might	 well	 be	 impossible	 to	 do	 so.	 In	 fact,	 we	 should
sometimes	expect	 the	unexpected.	Final	numerical	results	depend	on	 too	many	unknown
parameters	 for	 us	 to	 make	 predictions	 with	 any	 kind	 of	 certainty.	 However,	 we	 have
provided	 you	with	 a	 set	 of	 useful	 tools	 and	 understandings	 that	 should	 be	 of	 critical
assistance	 in	 practice.	 An	 example	 of	 a	 larger	 scaling	 problem	 is	 presented	 in
Section	7.7.

7.4 	Finite	Difference

This	 section	 presents	 finite	 difference	 and	 the	 important	 role	 it	 plays	 in	 computational
optimization.	The	first	subsection	introduces	the	fundamentals	of	finite	difference	and	the
second	presents	its	pertinent	accuracy	issues.

7.4.1 	Fundamentals	of	Finite	Difference

A	particular	class	of	optimization	algorithms	is	known	as	gradient-based	algorithms.	This
class	of	algorithms	uses	the	gradient	of	the	objective	function	and	of	the	constraints	in	the
search	for	the	optimal	solution.	As	discussed	in	Sec.	2.5.4,	the	gradient	of	a	scalar-valued
function	 is	 a	 vector	 of	 the	 partial	 derivatives	 of	 a	 function	with	 respect	 to	 each	 of	 the
design	 variables.	 Specifically,	 the	 gradient	 of	 a	 scalar	 function	 f	 (x),	 where	 x	 is	 an	 n-
dimensional	column	vector,	is	given	by

(7.35)

The	gradient	vector	is	used	not	only	to	govern	the	search,	but	also	to	help	decide	when
the	optimum	is	reached	and	the	search	terminated.	When	the	optimum	is	reached,	we	say
that	the	optimality	condition	is	satisfied.

Generally,	 the	value	of	 the	objective	 function	 is	evaluated	using	 a	 complex	 computer
code.	As	such,	we	do	not	have	an	explicit	analytical	expression	for	the	objective	function
that	can	be	used	 to	evaluate	 its	gradient.	As	a	 result,	an	adequate	approximation	 is	used



instead.	This	approximation	is	referred	to	as	a	finite	difference	derivative,	as	opposed	to	an
analytical	derivative	[4].	The	finite	difference	derivative	of	f(x)	at	a	point	x0	is	given	by

(7.36)

with

(7.37)

where	Δxi	is	a	small	deviation	of	xi	about	xi0,	and	Δf0	is	the	corresponding	variation	in	f(x).
The	quantity	 	can	be	evaluated	using	 three	 typical	approaches:	 (i)	 forward	difference,
(ii)	backward	difference,	or	(iii)	central	difference.	We	express	each	as	follows:

Forward	Difference

(7.38)

Backward	Difference

(7.39)

Central	Difference

(7.40)

Further,	we	 note	 that	 the	 finite	 difference	 approximation	 entails	 an	 error	 that	 can	 be
partially	explained	by	the	equation

(7.41)

where	∝	 (Δxi)2	 is	 a	 term	 proportional	 to	 (Δx	 i)2	 that	 is	 ignored	 by	 the	 finite	 difference
approximation	above,	and	HOT	represents	additional	Higher	Order	Terms	(proportional	to
(Δxi)nh	;	nh	>	2)	that	are	also	ignored.	The	smaller	the	magnitude	of	Δxi,	the	more	negligible
the	 ignored	 terms	become	and	 the	more	accurate	 the	 finite	difference,	 at	 least	 in	 theory.
However,	as	we	will	see	later	in	this	section,	there	is	a	limit	to	the	acceptable	smallness	of
Δxi	in	practice.

It	 is	 interesting	 to	 think	 of	 the	 three	 finite	 difference	 evaluation	 options,	 both	 in
mathematical	 terms	 and	 in	 geometrical/graphical	 terms.	 Equations	 7.38,	 7.39,	 and	 7.40
provide	 the	 expressions	 for	 the	 mathematical	 evaluations	 of	 the	 forward,	 backward,	 or
central	difference,	respectively.	Similarly,	Figs.	7.2	(a),	(b),	and	(c)	provide	the	respective
graphical	interpretations	of	these	finite	differences,	in	the	case	where	x	is	a	scalar.



Figure	7.2.	Graphical	Representation	of	Finite	Difference	Approximation

We	make	the	following	observations:

(i) The	 solid	 line	 represents	 the	 tangent	 line	 at	 the	 point	 x0.	 The	 slope	 of	 the
tangent	line	is	exactly	the	derivative	of	f	(x)	at	the	point	x0.

	(ii) The	dashed	 line	represents	 the	so-called	secant	 line.	The	slope	of	 the	secant	 line	 is
equal	to	the	finite	difference	value.

(iii) As	 Δx	 tends	 to	 zero,	 the	 secant	 line	 converges	 to	 the	 tangent	 line;	 and	 the	 finite
difference	(Eqs.	7.38,	7.39,	or	7.40)	converges	to	the	gradient	(Eq.	7.35).	However,	as
we	will	see	shortly,	excessively	small	values	of	Δx	pose	some	numerical	difficulties.

(iv) Number	of	Function	Calls	–	Objective	Function:	When	x	 is	a	scalar,	 the	gradient	 is
also	a	scalar	(or	a	one-dimensional	vector).	In	this	case,	the	forward,	backward,	and
central	difference	evaluations	require	two	function	calls	each	(see	Eqs.	7.38,	7.39,	and
7.40).	 In	 the	 case	 where	 the	 vector	 x	 has	 dimension	 nx,	 then	 the	 finite	 difference
approximation	of	 the	gradient	 requires	nx	+	1	 function	 evaluations	 for	 forward	 and
backward	 difference	 (i.e.,	 one	 evaluation	 at	 x0,	 and	 nx	 evaluations	 obtained	 after
deviating	each	of	the	nx	entries	of	the	vector	x).	Note	that	the	case	of	central	difference
requires	2nx	function	evaluations.	In	this	latter	case,	there	is	no	evaluation	at	x0;	we
instead	deviate	each	variable	forward	and	backward	(see	Eq.	7.40).

	(v) Number	of	Function	Calls	–	Constraints:	When	we	have	constraints,	and	we	also	use	a
finite	difference	approximation	for	the	gradient	in	the	constraints,	it	may	lead	to	a	large
number	of	constraint	functions	evaluation.	For	example,	if	we	have	neq	constraints	and
we	use	forward	difference,	 the	 finite	difference	 evaluations	will	 require	neq(nx	+	 1)
constraint	function	evaluations.

(vi) The	central	difference	option	generally	yields	more	accurate	answers	(see	Fig.	7.2),	but
also	requires	more	function	evaluations	as	discussed	above.

This	discussion	leads	us	to	the	all	important	topic	of	the	accuracy	of	the	finite	difference
approximation.

7.4.2 	Accuracy	of	Finite	Difference	Approximation

The	success	of	all	gradient-based	optimization	algorithms,	as	their	names	suggest,	strongly
depends	on	 the	 accuracy	of	 the	 evaluated	gradient	vector.	An	 important	question	at	 this
point	is:	How	accurate	is	this	finite	difference	approximation?	This	is	a	critical	question,



since	gradient-based	optimization	is	one	of	the	most	popular	approaches	in	practice.

Assume	that	the	function	f	(x)	has	nsda	significant	digits	of	accuracy.	As	a	rule	of	thumb,
the	 number	 of	digits	 of	 accuracy	 of	 derivatives	 drops	 by	 half	 (nsda⁄2).	 For	 the	 second
derivatives,	it	drops	by	another	half	(nsda⁄4).	Please	keep	in	mind	that	this	is	indeed	a	rule
of	 thumb.	 In	 practical	 cases,	 the	 situation	 could	 be	 much	 worse	 or	 much	 better.	 The
resulting	finite	difference	values	may	become	useless	 in	 the	optimization	algorithm,	and
result	in	serious	convergence	difficulties.

Optimizing	with	Experimental	Data

An	important	practical	situation	of	 interest	occurs	when	experimental	data	 is	used	 for
the	objective	function	or	 the	constraint	 functions.	This	situation	may	have	 low	accuracy
(say	six	digits.)	In	this	case,	the	first	derivative	may	only	have	three	digits	of	accuracy,	and
the	second	derivative	might	be	practically	unusable	in	an	optimization	algorithm.

In	 these	 cases,	 it	 may	 be	 useful	 to	 first	 develop	 so-called	 response	 surfaces	 of	 the
resulting	data.	Once	obtained,	it	might	be	more	reliable	to	optimize	using	 these	surfaces,
which	 are	 essentially	 a	 best-fit	 of	 the	 data	 available.	 At	 a	 basic	 level,	 the	 situation	 is
straightforward;	that	is,	(i)	form	a	best-fit	function	of	the	data	(make	the	best	fit	as	smooth
as	possible)	and	(ii)	optimize	using	this	best	fit	function.	This	approach	works	quite	well.
The	details	of	 this	 topic	are	beyond	the	scope	of	 this	book.	References	[5]	and	[6]	offer
representative	works	 in	 the	 area.	 The	 first	 is	 a	 fundamental	 book	 on	 response	 surface
methodology.	The	second	provides	 response	surface	 information	from	the	perspective	of
design	of	experiments,	within	one	concise	chapter.

How	to	Impact	Finite	Difference	Accuracy

We	 can	 impact	 finite	 difference	 accuracy	 in	 three	 basic	 ways.	 Fortunately,	 most
optimization	 codes	 perform	 well	 in	 promoting	 the	 maximum	 accuracy	 of	 the	 obtained
results.	However,	 there	 is	much	 that	we	can	also	 do.	The	 three	 basic	 approaches	 are	 as
follows.

(1) Adequate	 Scaling.	 Adequate	 scaling	 (as	 previously	 discussed)	 will	 address:	 (ii)	 the
magnitude	of	the	objective	functions,	(i)	the	magnitude	of	the	design	variables,	(iii)	the
magnitude	 of	 the	 constraints,	 and	 (iv)	 the	 pertinent	 setting	 parameters	 of	 the
optimization	 codes.	When	 these	 issues	 are	 addressed,	 finite	 difference	 will	 tend	 to
perform	more	effectively.

(2) Forward,	 Backward,	 or	 Central	 Difference:	 As	 previously	 discussed,	 forward	 and
backward	 differences	 provide	 similar	 accuracies,	 while	 central	 difference	 provides
greater	accuracy.	However,	 the	central	difference	 is	more	computationally	 intensive.
Depending	on	the	computer	 labor	involved	in	evaluating	the	objective	functions	and
constraints,	we	may	decide	to	choose	one	option	vs.	another.

(3) The	Magnitude	of	Δx:	This	last	consideration	is	the	most	critical.	Too	small	or	too	large
a	magnitude	will	result	in	excessive	inaccuracies.	Let	us	consider	each	scenario.

	 i Too	 large	a	magnitude	of	Δx	makes	 the	secant	 line	 too	distinct	 from	the	 tangent	 line.
Their	corresponding	slopes	become	too	dissimilar	(i.e.,	the	finite	difference	and	gradient
become	too	different).	This	situation	is	readily	seen	in	Fig.	7.2.



ii Too	small	 a	magnitude	of	Δx	also	makes	 the	corresponding	Δf	 too	 inaccurate.	 Let	 us
explain.	 Assume	 that	 the	 function	 f(x)	 possesses	 eight	 significant	 digits	 of	 accuracy.
(This	means	 that	 all	 digits	 beyond	 the	8th	are	 useless.)	Let	 f(x0)	 =	1.234,567,812,34,
where	 the	 first	 eight	 (bold)	 digits	 are	accurate/significant	 and	 the	 last	 four	 digits	 are
useless/incorrect.	Let	us	consider	two	cases.

CASE	1:	Assume	that	Δx	is	so	small	that	f(x0	+Δx)	=	1.234,567,825,67.	 In	 the	case	of
forward	difference,	Δf0	=	 f(x0	+	Δx)	 -	 f(x0).	 The	 key	 observation	 here	 is	 that,	 using	 the
above	 numbers,	 we	 obtain	 Δf0	 =	 0.000,000,013,01.	However,	 only	 the	 bold	 digits	 are
meaningful,	leaving	no	accuracy	at	all.	This	evaluation	of	the	finite	difference	will	have
no	 digit	 of	 accuracy.	 This	 loss	 of	 accuracy	 is	 referred	 to	 as	 a	 cancelation	 error.
Cancelation	errors	may	occur	when	we	subtract	two	numbers	that	have	similar	magnitudes
and	an	insufficient	number	of	digits	of	accuracy.

CASE	 2:	 Assume	 that	 Δx	 is	 now	 sufficiently	 large	 so	 that	 f(x0	 +	 Δx)	 =
1.234,688,925,57,	where	the	change	 in	 f(x)	 takes	place	 in	 the	 last	 four	significant	digits,
leaving	 the	 first	 four	 unchanged.	 In	 this	 case,	 Δf0	 =	 0.000,121,113,23.	 We	 have	 four
significant	digits	of	accuracy	in	the	finite	difference	computation.	This	is	half	the	number
of	digits	of	accuracy	in	f(x),	which	reflects	a	good	compromise	between	 too	 large	or	 too
small	a	value	of	Δx.

Selection	of	Finite	Difference	Method

When	 using	 the	MATLAB	 Optimization	 Toolbox,	 one	 can	 select	 how	 to	 evaluate	 the
finite	difference	derivatives.	The	pertinent	option	 is	set	up	using	 the	command	optimset.
For	the	function	fmincon,	 two	options	are	available:	’forward’	(the	default)	and	’central’
(about	 the	 center).	 The	 command	 to	 select	 the	 central	 difference	 method	 is	 shown	 as
follows.
options	=	optimset(’FinDiffType’,’central’)

Example	of	Finite	Difference	Accuracy

Table	7.3	provides	a	 specific	 example	of	 the	number	of	 significant	 digits	 of	 accuracy
available	 in	 a	 given	 finite	 difference	 case.	 We	 perform	 forward	 and	 central	 finite
difference.	The	 results	 are	 self	 explanatory.	We	note	 that	MATLAB	was	 used,	 and	 that	 it
provides	16	significant	digits	of	accuracy	by	default.	The	finite	difference	is	evaluated	for
two	values	of	x.	We	make	the	following	observations:

Table	7.3.	Example	of	Finite	Difference	Accuracy	(f(x)	=	4x4	+	2x3	+	1⁄x)



(1) The	3rd	column	reports	11	(of	the	available	16)	significant	digits	of	accuracy	for	the
gradient	–	full	MATLAB	accuracy.	These	results	are	used	as	a	benchmark	to	determine
finite	difference	accuracy.

(2) For	very	small	or	very	large	values	of	Δx,	the	number	of	Digits	of	Accuracy	(DoA)	is
expectedly	lower.	In	fact,	for	two	cases,	we	have	no	accuracy	at	all	(Number	of	DoA	=
0).

(3) For	mid-range	values	of	Δx,	the	accuracy	is	generally	the	highest.

(4) Central	difference	is	predictably	more	accurate	than	forward	difference.

(5) Generally,	 the	 finite	 difference	 yields	 approximately	six	 to	 eight	 digits	 of	 accuracy.
This	is	somewhat	less	than	one-half	of	16	–	the	accuracy	of	f(x)	in	MATLAB.

(6) These	trends	are	shown	graphically	in	Fig.	7.3,	where	the	horizontal	axis	depicts	-	log
Δx	(smaller	values	of	Δx	on	the	right	and	larger	values	on	the	left).

Figure	7.3.	Finite	Difference—Number	of	Digits	of	Accuracy



We	conclude	with	the	following	important	message:	(i)	When	Δx	is	too	small,	we	have
large	errors	because	 f(x)	has	 limited	accuracy	(16	DoA	in	MATLAB).	 (ii)	When	Δx	 is	 too
large,	we	have	large	errors	because	the	secant	line	departs	from	the	tangent	line.	(iii)	The
greatest	accuracy	we	can	generally	obtain	for	 the	finite	difference	 is	approximately	one-
half	the	accuracy	of	the	function	f	(x).	With	this	understanding	of	the	practical	limitations
of	 finite	 difference,	 we	 now	 turn	 to	 another	 option	 that	 is	 largely	 immune	 to	 these
numerical	issues:	Automatic	Differentiation.

7.5 	Automatic	Differentiation

As	 discussed	 in	 Sec.	 7.4	 above,	 optimization	 codes	 that	 are	 gradient-based	 need	 the
differentiation	of	 the	objective	function	and	of	 the	constraints	with	respect	 to	 the	design
variables	 to	allow	them	to	march	 toward	 the	optimum.	 In	most	cases,	we	simply	 let	 the
code	 evaluate	 this	 differentiation	 using	 finite	 difference.	 In	 simple	 cases,	 we	 could
manually	 write	 a	 code	 that	 evaluates	 these	 differentiations	 analytically,	 as	 opposed	 to
letting	 the	 code	 use	 finite	 difference.	 Let	 us	 refer	 to	 this	 option	 as	 Analytical
Differentiation.	We	could	then	provide	the	analytical	differentiation	code	to	MATLAB,	or	to
any	other	optimization	software	that	we	are	using	(if	it	has	the	capability	to	use	that	code).
In	 more	 complicated	 cases,	 it	 is	 generally	 much	 easier	 and	 more	 practical	 to	 let	 the
optimization	code	use	finite	difference	to	obtain	the	needed	differentiations.	However,	as
we	 see	 from	 Sec.	 7.4,	 finite	 difference	 can	 be	 computationally	 intensive,	 as	 well	 as
computationally	ill-conditioned,	leading	to	potential	complications.

We	note	important	tradeoffs	between	analytical	differentiation	and	finite	difference:

Analytical	Differentiation

(i) It	is	highly	efficient,	computationally.

	(ii) It	promotes	faster	and	more	certain	convergence,	and	is	numerically	stable.

(iii) It	 is	more	 difficult	 and	 time	 consuming	 to	 implement,	 in	 practice,	 for	 problems	 of
realistic	complexity.

(iv) It	 is	 generally	 not	 implemented	 in	 optimization	 codes	 and	 must	 be	 explicitly
implemented	by	the	user.

Finite	Difference

(i) It	is	computationally	intensive.

	 (ii) It	generally	converges	more	slowly	 than	with	 the	 finite	difference	approach,	and	 is
more	likely	to	lead	to	numerical	instabilities.

(iii) It	is	much	easier	to	implement	in	practice.

(iv) It	 is	 generally	 an	 integral	 component	 of	 the	 gradient-based	 optimization	 codes,
requiring	no	user	coding.

Automatic	Differentiation

Interestingly,	 there	 is	yet	another	approach	that	offers	us	 the	best	of	both	worlds.	 It	 is
the	Automatic	Differentiation	 approach.	 Specifically,	 it	 offers	 the	 benefits	 of	 analytical



differentiation	 and	 finite	difference	without	 their	 respective	 complications.	 It	 essentially
employs	 analytical	 differentiation.	However,	 it	 does	 not	 require	 the	 user	 to	 develop	 the
analytical	 expressions	 for	 the	 derivatives	manually.	 These	 derivatives	 are	automatically
developed	by	 another	 software	 –	 the	Automatic	Differentiation	 software.	We	 explain	 in
detail	with	the	help	of	Fig.	7.4.

Figure	7.4.	Automatic	Differentiation	vs.	Finite	Difference	Approximation

In	Fig.	7.4,	we	 explain	 and	 contrast	Automatic	Differentiation	 and	 Finite	Difference.
For	 the	 sake	 of	 presentational	 simplicity,	 we	 only	 discuss	 the	 differentiation	 of	 the
objective	function.	We	note	that	the	very	same	discussion	applies	to	the	differentiation	of
the	constraints.	Figure	7.4	is	divided	into	four	blocks:	(A),	(B),	 (C),	and	(D).	Blocks	(A)
and	 (C)	 describe	 the	 finite	 difference	 option,	 and	 Blocks	 (B)	 and	 (D)	 describe	 the
automatic	 differentiation	 option.	 In	 addition,	 Blocks	 (A)	 and	 (B)	 describe	 the
work/development	 that	must	 be	 done	 by	 the	 engineer	 before	 optimization	 can	 proceed,
while	 Blocks	 (C)	 and	 (D)	 depict	 the	 software	 modules	 that	 are	 required	 for	 the
optimization	to	proceed.	Let	us	describe	each	option.

Finite	Difference

Block	 (A)	describes	 quite	 a	 familiar	 situation.	Namely,	 that	we	must	 have	 a	 software
routine	available	to	evaluate	the	objective	function	that	we	will	provide	to	the	optimization
code	for	the	optimization	to	proceed.

Block	(C)	describes	a	situation	where	(i)	the	objective	function	evaluation	code	is	used
by	 the	optimization	code,	and	(ii)	 the	 finite	difference	operation	 is	performed	within	 the
optimization	code.	The	remainder	is	self	explanatory.



Automatic	Differentiation

Block	 (B)	 explains	 the	 preparatory	 work	 that	 is	 required	 before	 optimization	 can
proceed.	An	Automatic	Differentiation	 (AD)	Software	 is	 used	 as	depicted	 in	 the	 figure.
The	function	evaluation	routine	is	available	to	us.	This	code	becomes	the	input	to	the	AD
software.	The	AD	 software	 then	 uses	 a	 series	of	 chain	 rule	 applications	 throughout	 the
objective	 function	 code,	 and	 generates	 another	 code	 as	 its	 output.	 This	 output	 code	 is
specifically	 designed	 to	 generate	 the	 gradient	 vector,	 given	 a	 current	 value	 of	 x.	 In
summary,	at	the	end	of	the	work	of	Block	(B),	we	have	available	to	us	two	codes:	one	that
evaluates	the	objective	function,	given	x,	and	one	that	generates	the	gradient	of	f	(x),	given
x.	At	 this	 point,	 it	 is	 critically	 important	 to	keep	 in	mind	 that	 this	 gradient	 is	 evaluated
analytically	and	not	through	finite	difference.	We	also	note	that	sometimes	the	generated
gradient	code	provides	two	outputs:	(i)	the	gradient	and	(ii)	the	objective	function.	In	this
case,	 the	originally	used	objective	 function	evaluation	 function	 is	 no	 longer	 needed.	 (In
Fig.	7.4,	these	objective	functions	and	gradients	are	generated	by	two	codes).

Block	 (D)	 describes	 the	 optimization	 process	 when	 no	 finite	 difference	 takes	 place.
Instead,	 the	 gradient	 is	 evaluated	 during	 the	 optimization	 process	 using	 the	 function
generated	 by	 the	 Automatic	 Differentiation	 Software	 in	 Block	 (B).	 The	 well-known
automatic	differentiation	software	called	ADIFOR	may	be	used,	which	we	describe	next.

ADIFOR	(Automatic	DIfferentiation	 in	FORtran)	was	developed	by	 the	Mathematics
and	 Computer	 Science	 Division	 at	 Argonne	 National	 Laboratory	 and	 the	 Center	 for
Research	 on	 Parallel	 Computation	 at	 Rice	 University.	ADIFOR	 is	 a	 software	 tool	 that
performs	 automatic	 differentiation	 for	 Fortran	 77	 programs.	 Given	 a	 Fortran	 77	 source
code	and	a	user’s	specification	of	the	dependent	and	independent	variables,	ADIFOR	will
generate	 a	 code	 that	 computes	 the	 partial	 derivatives	 of	 all	 of	 the	 specified	 dependent
variables	with	respect	to	all	of	the	specified	independent	variables.	ADIFOR	also	outputs
the	objective	function	value.	Details	on	the	background	and	 implementation	of	ADIFOR
are	provided	in	Refs.	[7,	8].

As	 the	C	 programming	 language	 increased	 in	popularity,	 an	 analog	 of	ADIFOR	was
developed.	ADIC	is	a	 tool	 that	 implements	automatic	differentiation	on	a	ANSI	C	code.
Reference	[9]	describes	 the	architecture	of	ADIC	and	how	to	use	 it,	with	 the	help	of	an
example.	In	Ref.	[10],	an	enhancement	for	ADIFOR	and	ADIC	that	computes	Hessians	is
discussed.

7.6 	Other	Important	Numerical	and	Computational	Issues

In	this	section,	we	discuss	several	useful	numerical	issues	that	do	not	readily	fall	under	the
previously	discussed	topics.	These	are:

1. Sensitivity	of	optimum	solution	[11],

2. Termination	of	the	optimization	run	–	criteria	and	causes,

3. Level	of	confidence	in	the	optimal	results	obtained,

4. Computational	burden	and	problem	dimension,

5. Additional	numerical	pitfalls.



7.6.1 	Sensitivity	of	Optimal	Solutions	in	Nonlinear	Programming

Sensitivity	to	System	Parameters

Understanding	how	sensitive	our	optimum	solution	is	to	small	changes	in	various	system
parameters	 (that	 are	 not	 design	 variables)	 is	 generally	 important.	 This	 information
provides	us	with	the	means	to	potentially	further	improve	our	design	by	reconsidering	the
values	 of	 these	 parameters.	 The	 simplest	 way	 to	 assess	 this	 sensitivity	 is	 to	 run	 the
optimization	 code	 with	 different	 values	 of	 the	 potentially	 sensitive	 parameters,	 and	 to
observe	the	resulting	optimal	solution.	Alternatively,	an	indication	of	the	sensitivity	can	be
obtained	 by	 simply	 evaluating	 the	 objective	 function	 and	 the	 constraints	 for	 different
values	of	these	parameters	that	are	near	their	nominal	values.	It	 is	important	to	note	 that
undue	 sensitivity	 to	 a	 system	parameter	may	potentially	 indicate	 pitfalls	 in	 the	 physical
design,	which	should	be	carefully	examined.	This	aspect	of	sensitivity	is	one	of	continuing
research	in	the	community,	and	will	not	be	further	addressed	here.

In	 the	case	of	 linear	programming,	 there	are	also	important	practical	sensitivity	 issues
that	should	be	considered.	These	issues	are	discussed	in	Sec.	11.7.4.

Sensitivity	to	Design	Variables

The	more	urgent	aspect	of	the	sensitivity	of	the	optimal	solution	is	that	with	respect	to	the
design	variables.	The	 generated	 optimum	 solution	 can	be	 highly	 sensitive	 to	 the	 design
variables	 in	 a	way	 that	 indicates	 the	presence	of	numerical	 issues,	 and	 that	 the	 solution
obtained	might	not	be	adequate	or	mathematically	optimal.	Extreme	sensitivity	to	design
variables	 may	 also	 actually	 indicate	 that	 the	 problem	 is	 not	 well	 posed,	 or	 may	 also
indicate	 the	 presence	 of	 pitfalls	 in	 the	 physical	 design	 –	 as	 in	 the	 case	 of	 system
parameters	 discussed	 above.	 Stated	 differently,	 the	 problem	 might	 be	 a	 purely
computational	issue	that	has	no	bearing	on	the	actual	design,	or	might	indicate	pitfalls	 in
the	actual	design.	In	the	case	where	the	problem	is	of	a	numerical	nature,	we	can	simply
employ	 the	 techniques	 presented	 in	 Sec.	 7.3.	 If	 the	 computational	 issues	 persist	 after
proper	scaling,	then	a	consideration	of	the	physical	design	may	be	advisable.

Sensitivity	to	Weights	in	the	Objective	Function

Undue	 sensitivity	 to	 the	 weights	 in	 the	 objective	 function	 may	 also	 be	 a	 sign	 of
complications	that	should	be	explored.	Careful	scaling	of	the	objectives	and	of	the	design
variables	will	generally	be	helpful.	In	the	case	where	we	are	dealing	with	 the	weights	 in
the	weighted	sum	approach,	our	physical	 insight	 into	 the	meaning	of	 the	weights	can	be
helpful,	and	we	may	reconsider	our	stated	preferences	 in	forming	the	objective	function.
However,	the	mere	knowledge	of	the	sensitivity	to	these	weights	may	give	us	insight	into
the	nature	of	our	optimal	solution	with	respect	 to	our	preferences.	 In	 the	case	where	 the
weights	 are	 part	 of	 more	 complex	 nonlinear	 objective	 functions,	 the	 issues	 are	 more
involved.

7.6.2 	Optimization	Termination	Criteria	and	Optimization	Termination	Causes



Optimization	 codes	 terminate	 the	 convergence	process	 for	 numerous	 reasons.	 Some	 are
desirable	and	generally	indicate	a	successful	outcome.	Others	indicate	non-convergence	or
convergence	 to	 a	 non-optimal	 solution.	 Yet	 other	 termination	 causes	 call	 for	 further
investigation.	 The	 information	 on	 page	 159	 (regarding	 possible	 reasons	 for	 the
optimization	process	to	fail)	is	directly	relevant	to	our	present	discussion.	Let	us	consider
various	termination	scenarios.

Scaling

As	 previously	 discussed,	 scaling	 is	 arguably	 the	 most	 important	 step	 we	 can	 take	 to
maximize	the	likelihood	of	convergence	to	the	optimum	solution.	Therefore,	the	wealth	of
pertinent	 information	 provided	 in	 Sec.	 7.3	 should	 be	 exploited	 to	 the	 fullest.	 A	 poorly
scaled	 problem	 will	 usually	 force	 the	 optimization	 code	 to	 terminate	 at	 a	 non-optimal
solution,	while	the	designer	might	not	even	be	aware	of	this	serious	situation.

Optimization	Settings

All	good	optimization	codes	provide	the	user	with	the	ability	to	influence	 the	conditions
under	which	the	optimization	process	will	 terminate.	To	influence	the	code,	 the	designer
has	 at	 his/her	disposal	 various	 settings.	Different	 codes	 have	 different	 versions	 of	 these
settings.	Pertinent	MATLAB	settings	include:

1. The	 max	 number	 of	 function	 evaluations	 (MaxFunEvals).	 Its	 default	 value	 is	 100*
(Number	of	Variables).

2. Maximum	number	of	iterations	(MaxItr).	The	default	is	400.

Even	 though	 you	may	 not	 have	 a	 complete	 understanding	 of	 these	 settings,	 increasing
them	might	be	helpful	when	MATLAB	 informs	us	 that	 the	code	 terminated	because	 these
maximum	values	have	been	reached.	Please	see	the	end	of	Sec.	7.3	 to	determine	how	to
change	 these	 settings.	 Please	 note	 that	 the	 default	 values	 of	 these	 settings	may	 change
from	one	version	of	MATLAB	to	the	other.

7.6.3 	Developing	Confidence	in	Optimization	Results

Upon	obtaining	a	final	solution	from	an	optimization	run,	it	is	 important	 to	take	steps	to
develop	appropriate	confidence	in	the	validity	of	the	answer.	These	steps	may	include:

1. Being	satisfied	that	the	previous	discussion	in	Sec.	7.2.1	on	page	159	regarding	why	the
optimization	process	sometimes	fails	have	been	addressed.

2. Implementing	multiple	starts	with	very	different	initial	points	to	avoid	or	identify	local
minima,	 particularly	 in	 the	 case	 of	 gradient-based	 algorithms.	 It	 may	 be	 required	 to
update	the	scaling	for	each	different	start.

3. Critically	examine	 the	physical	validity/feasibility	of	 the	optimum	solution.	Common
sense	alone	will	often	point	to	potential	issues.



7.6.4 	Problem	Dimension	and	Computational	Burden

The	 problem	 size	 or	 dimension,	 which	 can	 be	 represented	 by	 the	 number	 of	 design
variables,	is	directly	related	to	its	computational	intensity	(see	Sec.	15.3).	The	fidelity	of
the	models	employed	is	also	a	determining	factor	for	the	computation	resources	needed.	In
addition,	 the	 more	 computationally	 intensive	 the	 problem	 is,	 the	 more	 likely	 it	 is	 to
involve	numerical	 issues.	Therefore,	whenever	possible,	we	 should	 explore	 strategies	 to
reduce	the	problem	dimension	[12].	Design	variable	linking	is	one	venue	to	this	end	(see
Sec.	 15.3.1).	 The	 proper	 fidelity	 of	 the	 models	 that	 should	 be	 used	 is	 an	 important
continuing	research	 activity	 in	 the	 community,	 and	 should	 be	considered	 in	 any	 serious
system	optimization	effort.

7.6.5 	Additional	Numerical	Pitfalls

Additional	potential	numerical	pitfalls	are	briefly	mentioned	here:

1. Some	constraints	can	be	violated	during	the	optimization,	and	become	satisfied	during
the	optimization	process.	This	 is	perfectly	 fine.	However,	some	others	may	cause	 the
optimization	 algorithm	 to	 misbehave	 or	 fail.	 These	 include	 constraints	 that	 lead	 to
invalid	results	in	the	given	context.	Examples	are:

• The	violation	of	a	constraint	that	the	outer	diameter	of	a	pipe	must	be	larger	than	its
inner	diameter,	resulting	in	a	non-physical	design.

• The	violation	of	 a	 constraint	 that	 the	argument	 of	 a	 square	 root	must	 be	 positive,
potentially	resulting	in	a	non-physical	design.

2. Division	by	a	quantity	that	vanishes.

3. Taking	the	square	root	of	a	negative	quantity.

4. Having	the	diameter	of	a	bar	become	negative.

5. Having	a	mass	take	on	a	negative	value.

6. Numerical	cancelation,	as	discussed	in	the	context	of	finite	difference	(see	Sec.	7.4).

7. Matrices	becoming	singular	to	working	precision.

8. Starting	 the	 optimization	 too	 close	 to	 its	 optimum,	 which	 can	 cause	 convergence
problems.

7.7 	Larger	Scaling	Example:	Universal	Motor	Problem

7.7.1 	Universal	Motor	Problem	Definition

Let	us	consider	the	design	of	a	universal	motor	[13,	14].	A	universal	motor	 is	simply	an
electric	motor	that	functions	on	both	AC	and	DC	supplies	to	produce	a	torque.	The	ratio	of
the	power	input	to	the	power	output	of	the	motor	gives	a	measure	of	the	motor	efficiency,
and	 it	 is	known	that	 increasing	 the	windings	 in	 the	field	and	armature	of	 the	motor	will
increase	the	efficiency.	However,	this	increase	in	windings	is	associated	with	an	 increase
in	 the	mass	 of	 the	motor.	 Since	 these	motors	 are	 widely	 used	 in	 kitchen	 appliances,	 a



motor	having	a	large	mass	is	undesirable.	The	universal	motor	is	to	be	optimally	designed
in	an	effort	to	maximize	its	efficiency	and	minimize	its	mass.

Our	universal	motor	problem	is	governed	by	the	following	design	variables:

1. Number	of	turns	of	wire	on	the	armature,	Na,

2. Number	of	turns	of	wire	on	the	field,	Nf,

3. Cross	sectional	areas	of	the	wires	on	the	field,	Awf,

4. Cross	sectional	area	of	the	wires	on	the	armature,	Awa,

5. Electric	current,	I,

6. Outer	radius	of	the	stator,	ro,

7. Thickness	of	the	stator,	t,	and

8. Stack	length,	L

Finding	 the	 values	 of	 mass,	M,	 power,	 P,	 efficiency,	 η,	 torque,	 T,	 and	 magnetizing
intensity,	H,	of	the	motor	requires	the	design	variables	as	inputs.	No	equations	are	given	to
you	to	compute	the	values	of	mass,	power,	efficiency,	torque,	and	magnetizing	intensity	of
the	motor.	However,	 you	 are	 given	 a	MATLAB	 function	 umotor.m,	 in	 the	 book	 website
(www.cambridge.org/Messac),	 that	 allows	you	 to	 enter	 all	 the	design	variables	 in	 a	 row
vector	(lets	call	it	x)	 to	get	 the	resulting	mass,	M,	power,	P,	efficiency,	η,	 torque,	T,	and
magnetizing	intensity,	H,	of	the	motor	as	shown	in	Fig.	7.5.	Thus

x	=	[Na	Nf	Awf	Awa	I	ro	t	L]

Figure	7.5.	Input	and	Output	for	the	Program	umotor.m

We	 will	 use	 the	 outputs	 of	 umotor.m	 (see	 the	 book	 website
www.cambridge.org/Messac)	in	our	objective	function	and	constraints.	Anytime	you	need
the	values	of	mass,	M,	power,	P,	efficiency,	η,	torque,	T,	and	magnetizing	intensity,	H,	of
the	motor,	you	should	call	the	function	umotor.m.

The	side	limits	on	the	design	variables	are	as	follows:

http://www.cambridge.org/Messac
http://www.cambridge.org/Messac


1. 100	≤	Na	≤	1,500	turns

2. 1	≤	Nf	≤	500	turns

3. 0.01	×	10–6	≤	A	wf	≤	1.0	×	10–6m2

4. 0.01	×	10–6	≤	A	wa	≤	1.0	×	10–6m2

5. 0.1	≤	I	≤	6	Amps

6. 0.01	≤	ro	≤	0.10m

7. 0.0005	≤	t	≤	0.10m

8. 0.000566	≤	L	≤	0.10m

In	addition	to	the	design	variables	bounds,	we	have	additional	constraints	presented	in
Table	7.4.

Table	7.4.	Constraints	for	Universal	Motor

Constraints Value

Magnetizing	intensity,	H H	<	5,000
Feasible	geometry ro	>	t
Power	of	each	motor,	P P	=	300W
Efficiency	of	each	motor,	η η	≥	0.15
Mass	of	each	motor,	M M	≤	2.0kg
Torque,	T T	=	0.25Nm

Your	 task	 is	 to	 obtain	 the	Pareto	 frontier	 for	 the	 two	objectives,	mass	 and	 efficiency.
Use	a	set	of	100	evenly	spaced	weights,	and	use	the	initial	guess	of	X0	=	(LB	+UB)⁄2	for
all	 Pareto	 points.	 Prepare	 a	 MATLAB	 code	 that	 generates	 the	 Pareto	 frontier	 for	 this
problem.	You	will	 realize	 that	fmincon	 is	 unable	 to	 converge	 for	 some	Pareto	 points.	 If
you	 use	 the	 given	 assumptions	 regarding	 the	 initial	 guess	 and	weights,	 you	will	 obtain
several	solutions	that	are	not	Pareto,	as	seen	in	Fig.	7.6(a).

Figure	7.6.	Pareto	Frontier



This	difficulty	occurs	because	the	design	variables	are	of	different	orders	of	magnitude,
thereby	causing	numerical	difficulties	for	fmincon.	In	this	exercise,	you	learn	a	method	to
overcome	 the	 numerical	 issues	 caused	 by	 design	 variable	 scaling	 and	 obtain	 a	 good
representation	of	the	Pareto	frontier.

7.7.2 	Design	Variable	Scaling

One	effective	yet	simple	approach	to	overcome	the	above	discussed	numerical	issues	is	to
scale	each	design	variable	in	fmincon	so	that	it	is	on	the	order	of	one.	The	scaled	design
variables	are	used	only	for	numerical	purposes,	so	that	fmincon	will	converge.	We	need	to
make	 sure	 that	 the	 original	 (or	 unscaled)	 design	 variables	 are	 used	 to	 compute	 the
objective	function	and	constraint	values.

The	scaled	design	variables	used	by	the	fmincon	optimizer	will	need	to	be	unscaled	to
their	original	magnitudes	when	executing	the	objective	function	and	constraint	functions.
Note	 that	 the	function	umotor.m	needs	 the	original	design	variables	 to	yield	meaningful
results	for	mass,	M,	power,	P,	efficiency,	η,	torque,	T,	and	magnetizing	intensity,	H,	of	the
motor.	 Figure	 7.6(b)	 provides	 the	 correct	 Pareto	 frontier	 that	 results	 from	 scaling.
Figure	 7.6	 illustrates	 side-by-side	 Pareto	 frontier	 plots	with	 and	without	 scaling,	which
demonstrates	the	dramatic	impact	that	scaling	can	have.	The	procedure	for	implementing
the	scaling	of	the	design	variables	in	the	MATLAB	code	is	shown	in	Fig.	7.7.



Figure	7.7.	Scaling	of	Design	Variables

In	addition	to	scaling	and	unscaling	in	the	objective	and	constraint	files,	we	need	to	do
the	following.	In	the	main	file,	reset	 the	upper	and	lower	bounds	to	correspond	with	our
scaled	design	variables.	You	may	also	wish	to	specify	an	initial	point	that	lies	within	the
lower	and	upper	bounds	of	the	scaled	design	variables.

7.8 	Summary

This	chapter	provided	an	analytical,	 intuitive,	and	computational	discussion	of	 the	major
numerical	 issues	 encountered	 in	 practical	 implementation	 computational	 optimization.
Effective	methods	that	address	these	issues	were	also	presented.	These	methods	 included
numerical	conditioning	of	algorithm,	matrices,	and	the	optimization	problem;	followed	by
methods	used	to	scale	and	to	set	the	tolerances	for	different	optimization	parameters	(e.g.,
variables,	objective	functions	and	constraint	functions).	The	example	provided	at	the	end
illustrates	 the	 application	 of	 such	 scaling	 techniques.	 This	 chapter	 also	 provides	 a
description	 of	 the	 primary	 methods	 used	 to	 estimate	 function	 gradients	 (e.g.,	 finite
differences).	 The	 chapter	 concluded	 with	 a	 discussion	 of	 some	 of	 the	 other	 important



numerical	 considerations	 toward	 successful	 application	 of	 optimization,	 such	 as
termination	 criteria	 and	 solution	 sensitivity.	 Importantly,	 these	 issues	 can	 collectively
make	or	break	optimization	in	practice!

7.9 	Problems

Warm-up	Problems

7.1 Give	 five	 reasons	 why	 we	 need	 to	 pay	 attention	 to	 numerical	 issues	 in	 our
engineering	activities,	which	include	design,	analysis,	and	optimization.	Not	all	five
should	be	from	the	book.

7.2 What	does	it	mean	for	a	problem	to	be	(i)	well-posed?,	(ii)	ill-conditioned?	Explain
each	in	approximately	200	words.

7.3 Provide	 three	 important	 reasons	why	 optimization	 codes	 sometimes	 do	 not	work
well.	Explain	each	in	detail	in	approximately	300	words.

7.4 Evaluate	A1	in	Eq.	7.2,	while	A	is	given	by	Eq.	7.1.	Prove	that	Eq.	7.2	indeed	holds
true	for	any	positive	integer	n.

7.5 Let	α	=	0.5	in	Eq.	7.1.	Evaluate	A1	in	Eq.	7.2	with	n	=	2.	Perform	this	calculation
without	a	computer,	and	show	all	your	 intermediate	steps.	This	problem	will	also
help	you	recall	elementary	matrix	algebra.	Please	do	a	quick	review	if	some	related
concepts	have	become	a	bit	rusty	in	your	mind.

7.6 How	can	you	evaluate	the	condition	number	of	a	symmetric	matrix;	and	how	does
this	number	relate	to	its	numerical	conditioning	properties?

7.7 Use	MATLAB	 to	 solve	 the	 optimization	 problem	 defined	 by	 Eqs.	 7.10,	 7.11,	 and
7.12.	Do	so	without	implementing	any	scaling.	Compare	the	solution	you	obtained
with	the	solution	x	=	10–6	×{3.083,	1.541}.	Which	solution	yields	a	lower	value	of
the	objective	function?	Explain.

7.8 Consider	the	general	optimization	problem	statement	defined	by	Eqs.	7.13	through
7.18.	 (a)	 Provide	 the	 mathematical	 equation	 for	 a	 constraint	 that	 can	 be
interchangeably	used	either	in	Eq.	7.15	or	Eq.	7.17.	Explain.	 Is	 it	computationally
more	desirable	to	use	this	constraint	in	Eq.	7.15	or	Eq.	7.17?	Explain.	 (b)	Provide
the	mathematical	equation	for	a	constraint	that	can	be	used	in	Eq.	7.15,	but	not	 in
Eq.	7.17.	Explain.

Intermediate	Problems

7.9 For	Matrix	A	given	in	Eq.	7.1,	generate	the	Table	7.1	–	while	adding	a	column	for	n
=	100.	Please	keep	in	mind	that	you	may	not	obtain	numbers	that	are	exactly	equal
to	those	in	the	table,	but	you	should	be	able	to	observe	that	the	conclusions	will	be
the	same.	Submit	your	clearly	organized	MATLAB	codes.

7.10 For	Matrix	A	given	by



A	=	 (7.42)

generate	the	Table	7.1	while	adding	a	column	for	n	=	100.	Discuss	any	 interesting
observations	 that	 you	 can	make	 from	 the	 results.	 Submit	 your	 clearly	 organized
MATLAB	codes.

7.11 The	 two	bar	 truss	shown	in	Fig.	7.8	 is	 to	be	designed	so	 that:	 (1)	 it	 is	as	 light	 as
possible,	and	(2)	the	vertical	deflection	at	node	A	is	as	low	as	possible.

Figure	7.8.	Schematic	of	Two-Bar	Truss

The	dimensions	H	and	D	 are	 the	 design	 variables.	 The	 following	 parameters	 are
given:

The	bounds	on	H	and	D	are	given	as:

The	vertical	deflection	at	node	A	is	given	as	follows:

Assume	that	the	cross	sectional	area	of	the	beam	is	πDT,	and	use	this	expression	for
your	analysis.	Answer	the	following	questions:

1.	What	are	the	most	important	failure	modes	in	this	problem?

2.	Clearly	write	down	the	mathematical	expressions	for	your	constraints.

3.	Formulate	the	bi-objective	optimization	problem,	and	obtain	the	Pareto	frontier.

7.12 Consider	the	tubular	column	shown	in	Fig.	7.9.



Figure	7.9.	Tubular	Column

1. Design	 the	 column	 to	 support	 the	 load	P	at	minimum	mass,	m,	 and	minimum
cost,	C,	 by	 choosing	 optimal	 values	 for	 the	 outer	 radius	 ,	 rout,	 and	 the	 inner
radius,	rin.	Ensure	that	your	column	avoids	buckling;	P	should	be	 less	 than	 the
critical	buckling	load,	Pcr.	In	addition,	ensure	that	the	load	induced	stress,	σ,	does
not	exceed	the	maximum	stress,	σmax,	of	the	material.	Use	the	expressions	given
below	to	aid	in	your	design	optimization.

2. Plot	 the	Pareto	 frontier	 for	 this	problem.	Ensure	you	obtain	a	complete	Pareto
frontier.

7.13 MATLAB	code	for	universal	motor	with	and	without	scaling:

1. Write	 a	 MATLAB	 code	 to	 generate	 the	 Pareto	 frontier	 of	 the	 universal	 motor
problem	discussed	in	this	chapter.	Do	so	without	design	variable	scaling.	In	other
words,	reproduce	the	results	shown	in	Fig.	7.6(a).	Use	the	initial	guess	of	X0	=
(LB	 +	UB)⁄2	 for	 all	 Pareto	 points,	 where	 LB	 and	UB	 are	 the	 original	 design
variable	 bounds.	Note	 that	 you	may	 not	 get	 the	 exact	 identical	 point,	 but	 the



conclusion	will	be	clear.

2. Now,	scale	the	design	variables	as	described	previously	(refer	to	Fig.	7.7).	Use
the	 initial	point	specified	 in	Fig.	7.7	 for	 all	Pareto	points.	Generate	 the	 Pareto
frontier	 using	 scaled	 design	 variables.	 In	 other	 words,	 reproduce	 the	 results
shown	in	Fig.	7.6(b).

7.14 Consider	the	following	nonlinear	programming	(NLP)	problem:

subject	to

1. Use	 the	default	 settings	 for	 the	function	fmincon	 in	 the	MATLAB	 Optimization
Toolbox	 to	 obtain	 an	 optimal	 solution,	x*,	 to	 this	 problem.	Was	 your	 solution
process	able	to	converge?

2. Make	the	following	changes	to	your	code	and	the	various	search	options	in	the
MATLAB	Optimization	Toolbox	to	try	and	obtain	the	optimal	solution.

a) Make	sure	that	the	medium	scale	SQP	algorithm,	with	Quasi-Newton	update
and	line-search,	is	the	selected	solver	in	fmincon.	Although	you	may	not	yet
know	 these	 algorithms,	 you	 can	 proceed	with	 this	 problem.	 The	 details	 of
these	algorithms	are	presented	later	in	the	book.

b) Set	the	solution	point	tolerance,	function	tolerance,	and	constraint	tolerance	in
fmincon	to	10–7.

c) Specify	the	initial	guess	as	x0	=	[1	1	1]T.

d) Make	sure	that	the	inequality	constraint	g2	is	treated	as	a	linear	constraint	by
fmincon.

e) Solve	the	NLP	by	using	a	finite	difference	approximation	of	the	gradients	of
the	 objective	 function	 and	 constraints	 first.	 Then,	 resolve	 the	 problem	 by
providing	explicit	expressions	for	the	gradients	of	the	objective	function	and
constraints	 (ask	 fmincon	 to	 check	 for	 the	 gradients	 before	 running	 the
optimization	in	this	latter	case).

3. Record	the	optimal	solution	for	the	design	variables	and	the	objective	function.
Ensure	that	your	problem	converges.

7.15 Optimize	 the	 simple	 I-beam	 shown	 in	 Fig.	 7.10.	 The	 symmetrical	 I-beam	 cross
section	is	also	shown.



Figure	7.10.	Schematic	of	Simply	Supported	I-Beam

Find	 the	 optimal	 cross	 section	 dimensions	 that	minimize	 the	 structural	mass	 and
minimize	 the	 mid	 span	 static	 deflection.	 As	 shown	 in	 Fig.	 7.10,	 the	 I-beam	 is
simply	supported	at	both	ends	and	is	subjected	to	an	applied	concentrated	load,	P.
The	 final	design	must	be	able	 to	sustain	a	maximum	bending	stress	of	160	MPa,
and	the	beam	dimensions	must	be	within	the	acceptable	limits	given	below.

Acceptable	Beam	Dimensions:	0.10	m	≤	x1	≤	0.80	m;	0.10	m	≤	x2	≤	0.50	m;	0.009
m	≤	x3	≤	0.05	m;	0.009	m	≤	x4	≤	0.05	m.

Constant	Numerical	Values:	P	=	600	kN;	L	=	2	m;	E	=	200	GPa;	ρ	=	7,	800	kg/m3.

1. Provide	a	clear	optimization	problem	statement.

2. Use	the	weighted	sum	method	to	complete	the	following	table.	W1	denotes	 the
weight	 for	 the	 mass	 objective,	 and	W2	 denotes	 the	 weight	 for	 the	 deflection
objective.(Hint:	Your	code	should	cater	to	any	scaling	problems.

3. Plot	the	Pareto	frontier	for	this	problem.

5. Show	the	points	obtained	in	No.	2	on	your	plot.
Table	7.5.	Optimum	Design	Results	for	Different	Objective	Weights

W1 W2 Mass	(M) Deflection	(δ) x1 x2 x3 x4

0 1
0.25 0.75
0.5 0.5
0.75 0.25
1 0

7.16 Problem	6.10	of	the	Multiobjective	chapter	presents	numerical	challenges	that	can
be	addressed	with	proper	scaling	of	the	design	variables,	objective	functions,	and/or



constraints.	First	solve	Parts	1	through	6	of	that	problem	using	appropriate	scaling.
Comment	on	the	behavior	of	the	Pareto	frontier	with	and	without	scaling.

Advanced	Problems

7.17 Consider	 the	 task	of	designing	a	cantilever	beam	with	a	 rectangular	cross	 section
subjected	to	the	load	P,	as	shown	in	Fig.	7.11.	We	are	interested	in	finding	the	cross
sectional	dimensions,	b	and	w,	 that	 can	 safely	 support	 the	 load	P.	 At	 the	 same
time,	we	would	like	the	beam	to:	(1)	be	as	light	as	possible	and	(2)	have	 the	 least
possible	deflection	(see	Fig.	7.11).

Figure	7.11.	Schematic	of	Cantilever	Beam

The	following	information	is	given	to	you:

1.	P	=	600	kN,

2. L	=	2	m,

3. Young’s	Modulus	E	of	the	beam	material	=	200	GPa,

4. Density	of	the	beam	material	=	7800	kg/m3,

5. Maximum	allowable	stress	of	the	beam	material	=	160	MPa,

6. Maximum	and	minimum	acceptable	values	for	b	and	w	are:	bmin	=	0.1	m,	bmax	=
0.8	m,	wmin	=	0.1	m,	and	wmax	=	0.5	m.

7. The	expression	for	the	deflection	of	a	cantilever	beam	at	any	Section	X	–	X

where	x	is	the	length	of	the	beam	measured	from	the	fixed	end	(see	Fig.	7.11),

8. The	expression	for	the	bending	stress	at	the	Section	X	–	X	is	given	as

Answer	the	following	questions:

1. At	what	value	of	x	does	the	maximum	deflection	occur?	At	what	value	of	x	does
the	maximum	stress	occur?

2. What	are	your	design	objectives	in	this	problem?	Write	down	the	mathematical
expressions	for	the	maximum	deflection	and	the	mass	of	the	beam.



3. What	are	your	design	variables	in	this	problem?

4. Write	down	the	mathematical	expressions	of	the	behavioral	and	side	constraints
for	this	problem.

5. Clearly	write	down	your	multiobjective	problem	formulation.

6. Obtain	the	Pareto	frontier	of	the	above	problem	using	fmincon.

7.18 Answer	the	following	questions:

(i) Discuss	two	reasons	why	the	MATLAB	tolerance	parameter	typicalX	can
be	helpful	to	use	in	an	optimization	problem.

	(ii) Discuss	two	reasons	why	the	MATLAB	tolerance	parameter	tolx	can	be	helpful
to	use	in	an	optimization	problem.

(iii) Develop	 an	 optimization	 problem	for	which	 you	 do	 not	 obtain	 the	 optimum
solution	without	scaling	the	design	variables.

(iv) For	 the	 problem	 you	 just	 developed	 in	 Part	 (iii),	 use	 the	 scaling	 techniques
presented	in	this	chapter	to	obtain	the	optimum.

	 (v) Now,	 instead	 of	 scaling	 the	 design	 variables,	 obtain	 the	 optimum	 solution
simply	by	using	the	tolerance	parameters	typicalX	and	tolx.	The	size	of	 the
problem	is	 up	 to	 you.	Note	 that	much	 of	 the	 learning	will	 take	 place	 in	 the
process	of	generating	the	problem.
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8

Global	Optimization	Basics

8.1 	Overview

The	objective	of	global	optimization	is	to	find	the	best	local	solution	among	the	known	or
discoverable	 set	 of	 local	 optima.	 The	 best	 local	 optimum	 is	 called	 the	 global	 optimum.
Formally,	 global	 optimization	 generally	 seeks	 a	 global	 solution	 to	 an	 unconstrained	 or
constrained	optimization	problem.	Global	search	 techniques	are	often	essential	 for	many
applications	(e.g.,	advanced	engineering	design,	data	analysis,	financial	planning,	process
control,	risk	management,	and	scientific	modeling).	Highly	nonlinear	engineering	models
often	entail	multiple	local	optima.

A	global	optimization	problem	can	be	defined	as

(8.1)

subject	to

(8.2)
(8.3)
(8.4)

The	 function	 f	 (x)	 represents	 the	 objective	 function.	 The	 constraints	 include	 the
inequality	 constraint	 function	 g(x),	 the	 equality	 constraint	 function	 h(x),	 and	 the	 side
constraints.

The	unique	challenges	presented	by	global	optimization	are	discussed	in	Sec.	8.2.	Three
typical	methods	employed	to	solve	global	optimization	problems	are	presented	in	Sections
	8.3,	8.4,	and	8.5.	Section	8.6	illustrates	how	to	solve	global	optimization	problems	using
the	 MATLAB	 Global	 Optimization	 Toolbox.	 Helpful	 pertinent	 references	 for	 a	 more
advanced	treatment	include	(Refs.	[1,	2]).

8.2 	Practical	Issues	in	Global	Optimization

As	explained	in	Chapter	2,	objective	functions	can	have	global	minima	and	local	minima.
When	 this	 occurs,	 the	problem	is	 classified	 as	 a	multimodal	 optimization	 problem.	The
objective	of	global	optimization	is	to	find	the	global	optima.

Figure	 8.1	 presents	 two	 different	 types	 of	 one-dimensional	 objective	 functions.	 The
variable,	x,	 is	 in	 the	 interval	between	0	and	10.	The	 function	 illustrated	 in	Fig.	8.1(a)	 is
unimodal.	 It	 only	 has	 one	 local	 minimum,	 which	 is	 its	 global	minimum.	 The	 function
shown	in	Fig.	8.1(b)	 is	multimodal.	The	 four	points,	x1*,	x	 2*,	x	 3*,	 and	 x*,	 are	 all	 local
minima.	The	 function	value	of	x*	 is	 the	 lowest	 of	 all	 the	 local	minima.	 It	 is	 the	 global



minimum	of	the	multimodal	objective	function.

Figure	8.1.	Unimodal	and	Multimodal	Objective	Functions

The	 global	minimum	 of	 the	 unimodal	 objective	 function	 in	 Fig.	 8.1(a)	 can	 be	 found
using	 the	gradient-based	optimization	methods	 presented	 in	 Chapters	 12	 and	 13.	 In	 the
case	of	the	multimodal	objective	function	presented	in	Fig.	8.1(b),	it	is	difficult	to	readily
find	the	global	minimum.	Gradient-based	optimization	methods	will	simply	yield	one	of
the	local	minima,	depending	on	the	starting	point	used.	Finding	the	global	optimum	is	not
guaranteed	when	using	gradient-based	algorithms.

Figure	 8.2	 provides	 the	 3D	 surface	mesh	 of	 a	 two-dimensional	multimodal	 function.
Note	that	this	function	has	several	local	minima	and	one	global	minimum.

Figure	8.2.	The	3D	Surface	Plot	of	a	Multimodal	Function

In	 practical	 global	 optimization	 problems,	 the	situation	 can	 be	more	 complicated	 and
challenging	 than	 the	 above	 examples.	 Objective	 functions	 may	 be	 non-smooth	 or
discontinuous.	At	some	points	or	in	certain	intervals,	the	derivatives	of	objective	functions
may	 not	 be	 available	 or	may	 be	 expensive	 to	 compute.	 For	 some	 real	 life	 engineering
design	problems,	it	is	often	challenging	to	determine	whether	a	highly	nonlinear	function
is	unimodal	or	multimodal	before	 starting	 the	optimization.	More	 importantly,	 even	 if	 a
problem	 is	 known	 to	 be	 multimodal,	 is	 is	 generally	 not	 possible	 to	 know	 how	 many
modes/optima	 there	 are.	 Gradient-based	 optimization	 methods,	 in	 their	 conventional



forms,	may	 not	 be	 appropriate	 for	 these	 global	 optimization	 problems.	 Derivative-free
methods,	such	as	evolutionary	algorithms,	may	be	more	appropriate	in	these	cases.

8.3 	Exhaustive	Search

Exhaustive	 search	 algorithms	 enumerate	 all	 of	 the	 possible	 candidates	 for	 optimization
problems,	 and	 the	 best	 solution	 is	 the	 global	 optimum.	 Exhaustive	 search	 may	 be
applicable	 to	 optimization	 problems	 that	 are	 comprised	 of	 a	 manageable	 number	 of
variable	 combinations.	 The	 time	 required	 for	 conducting	 an	 exhaustive	 search	 may
dramatically	 increase	 as	 the	 number	 of	 candidate	 solutions	 increases.	 The	 following
example	implements	a	global	optimization	problem	exhaustive	search	process.

Example:	 Use	 exhaustive	 search	 to	 find	 the	 global	 optimum	 of	 the	 following
optimization	problem.

(8.5)

subject	to

(8.6)
(8.7)

Each	of	the	design	variables	has	three	possible	values.	In	selecting	x1	and	x2	 from	the
feasible	 sets,	 there	 are	 nine	 possible	 combinations.	 The	 nine	 combinations	 and	 their
objective	function	values	are	listed	in	Table	8.1.

Table	8.1.	Design	Variable	Combinations	and	Their	Objective	Function	Values

Comparing	 the	 nine	 objective	 function	 values	 in	 Table	 8.1,	 we	 find	 that	 the	 global
minimum	of	f	(x)	is	5.	The	optimal	solution	is	x1 = 3	and	x2	=	2.

8.4 	Multiple	Start

The	multiple	start	approach	uses	gradient-based	methods	to	find	local	and	global	minima.
It	generates	multiple	starting	points,	and	stores	local	and	global	solutions	found	during	the
search	process.

Several	 variations	 of	 the	multiple	 start	method	are	 available	 in	 the	 literature.	 The	 basic
multiple	start	method	consists	of	the	following	steps:

1. Generate	multiple	starting	points.	The	points	can	be	either	uniformly	distributed	within
predefined	bounds	or	generated	using	a	sampling	algorithm.

2. Filter	out	the	infeasible	starting	points.	This	step	is	optional.	If	applied,	this	step	may
help	reduce	the	total	computational	expense	required	to	find	the	corresponding	feasible



optima.

3. For	each	starting	point,	use	a	gradient-based	optimization	method	to	search	for	a	local
minimum.

4. Save	the	multiple	local	minima	returned	by	Step	3.

5. Compare	all	the	local	minima.	The	local	minimum	with	the	lowest	objective	function
value	is	considered	the	global	minimum.	However,	since	there	is	no	guarantee	that	we
have	obtained	 the	complete	 set	 of	 local	minima,	we	 cannot	 be	 certain	 that	we	 have
obtained	the	global	minimum.

The	function	shown	in	Fig.	8.1(b)	is	a	multimodal	objective	function.	The	multiple	start
method	can	be	used	to	find	its	global	optimum.

Example:	The	optimization	problem	shown	in	Fig.	8.1(b)	is	stated	as	follows.	Use	the
multiple	start	method	to	find	its	global	optimum.

(8.8)

subject	to

(8.9)

Choose	 0,	 1,	 2,	 3,	 4,	 5,	 6,	 7,	 8,	 9,	 and	 10	 as	 starting	 points.	 These	 eleven	 points	 are
uniformly	distributed	within	the	specified	bounds.	Note	that	the	practical	implementation	of
the	multiple	start	method	can	demand	a	significantly	higher	number	of	starting	points.	In
this	example,	fmincon	 is	 used	 to	 solve	 the	optimization	 problem	 corresponding	 to	 each
starting	point.	The	MATLAB	codes,	including	the	main	file,	the	objective	function	file,	and
the	constraint	function	file,	are	given	below.

1. Main	file
clear		

clc		

	

%	Define	Linear	constraints		

A=[	];	B=[	];	Aeq=[];	Beq=[];		

	

%	Define	bounds	constraints		

LB=[0];	UB=[10];		

	

%	Define	optimization	options		

options=optimset(’largescale’,’off’,’MaxFunEvals’,	…		

200000,’display’,’off’,’MaxIter’,1e6);		

	

%	Define	starting	points		

xsta	=	[0	1	2	3	4	5	6	7	8	9	10];		

k=11;		

	

%	Optimization	from	11	starting	points		

for	i=1:1:k		

				x0=xsta(i)		

				[xopt,fopt(i)]=fmincon(’MS_Func’,	x0,	A,	B,	…		

				Aeq,	Beq,	LB,	UB,	’MS_cons’,	options)		



end

2. Objective	function	file
function	[f]=MS_Func(x)		

	

f	=	x+10*sin(2*x);

3. Constraint	function	file
function	[C	Ceq]=MS_cons(x)		

	

C	=	[];		

Ceq	=	[];

The	optimization	yields	11	local	optima,	some	of	which	are	redundant.	They	are	listed	in
Table	8.2.	In	the	table,	x0	represents	the	starting	points,	x*represents	the	corresponding	local
optimal	values	of	the	variable,	and	f*	(x)	represents	the	corresponding	local	optima	of	f	(x).

Table	8.2.	Local	Optima	for	11	Starting	Points

By	 comparing	 the	 local	 optima	 given	 by	 the	 multiple	 start	 method	 (as	 reported	 in
Table	8.2),	the	global	minimum	is	found	to	be	-7.66.	The	corresponding	optimal	value	of	x
is	 2.33.	 It	 is	 important	 to	 note	 that,	 in	 a	 multiple	 start	 approach,	 since	 the	 individual
optimization	runs	do	not	depend	on	each	other,	the	runs	can	be	executed	in	parallel.	This
strategy	will	 allow	 you	 to	 significantly	 reduce	 the	 net	 computing	 lapse	 time	 by	 taking
advantage	 of	 the	 parallel	 and	 distributed	 computing	 capabilities	widely	 available	 today.
MATLAB	 itself	 provides	 pertinent	 capabilities	 in	 the	 form	 of	 its	 “Parallel	 Computing
Toolbox.”

8.5 	Role	of	Genetic	Algorithms	in	Global	Optimization

Evolutionary	 algorithms	 are	 population-based	 optimization	 algorithms	 inspired	 by	 the
principles	 of	 natural	 evolution.	When	compared	with	 other	 optimization	 algorithms,	 the
advantage	of	evolutionary	algorithms	is	that	they	do	not	make	limiting	assumptions	about
the	 underlying	 objective	 functions.	 The	 objective	 functions	 are	 treated	 as	 black-box
functions.	Furthermore,	 the	definition	of	objective	 functions	does	not	 require	 significant
insight	into	the	structure	of	the	design	space.

Darwin’s	theory	of	evolution	identified	the	principles	of	natural	selection	and	survival	of
the	fittest	as	driving	forces	behind	biological	evolution.	His	theory	can	be	summarized	as
follows	[3].

Variation

There	is	variation	between	individuals	in	a	population.

Competition

Resources	are	limited.	In	such	an	environment,	there	will	be	a	struggle	for	survival	among



individuals.

Offspring

Species	have	great	fertility.	They	produce	more	offsprings	than	can	grow	to	adulthood.

Genetics

Organisms	pass	genetic	traits	to	their	offspring.

Natural	selection

Those	individuals	with	the	most	beneficial	traits	are	more	likely	to	survive	and	reproduce.

Evolutionary	algorithms	are	based	on	the	principles	of	biological	evolution	described	in
Darwin’s	 theory.	Genetic	Algorithms	 (GAs)	 are	 a	 class	 of	 evolutionary	 algorithms,	 also
known	as	population-based	metaheuristic	optimization	algorithms.	GA	was	first	conceived
by	 J.H.	 Holland	 in	 [4].	 GA	 uses	 a	 population	 of	 solutions,	 whose	 individuals	 are
represented	in	the	form	of	chromosomes.	The	individuals	in	the	population	go	 through	a
process	of	simulated	evolution	to	obtain	the	global	optimum.

The	GA	repeatedly	modifies	a	set	of	solutions	or	individuals	in	the	course	of	its	entire
run.	At	each	iteration,	the	genetic	algorithm	selects	individuals	from	the	current	population
to	serve	as	parents	based	on	certain	criteria.	The	parents	are	 then	used	to	create	 the	next
generation	 of	 individuals,	 called	 children.	 Over	 successive	 generations,	 the	 population
evolves	toward	an	optimal	solution	or	Pareto	frontier,	depending	on	the	type	of	problems
and	 the	 type	 of	GA	 being	 used.	 The	 procedure	 for	 a	 genetic	 algorithm	 is	 illustrated	 in
Fig.	8.3.



Figure	8.3.	Procedure	for	a	Genetic	Algorithm

The	terms	used	in	the	procedure	in	Fig.	8.3	are	explained	below:

Encoding

Encoding	is	a	way	to	represent	individual	solutions	in	evolutionary	algorithms.	Typically,
individual	solutions	are	coded	as	a	finite	fixed	length	string.	Binary	numbers	are	usually
used	as	codes.	This	string	is	also	known	in	the	literature	as	a	chromosome.	For	example,	a
binary	number,	10001,	represents	the	decimal	number	17.	The	conversion	from	the	binary
number	to	the	decimal	number	is	given	by	1	×	24	+	0	×	23	+	0	×	22	+	0	×	21	+	1	×	20	=	16
+	1	=	17.

Initial	population

The	algorithm	begins	by	generating	a	population	of	individuals	in	the	design	space.	Prior
to	 population	 initialization,	 the	designer	must	 choose	 the	number	of	 individuals	 in	 each
population	and	 the	 number	 of	 bits	 in	 the	 encoding	process.	 Both	 of	 these	 decisions	 are
extremely	important	in	promoting	the	success	of	the	GA-based	optimization.	For	example,
too	 large	a	population	can	 lead	 to	undesirable	computational	expense,	while	 too	 small	 a
population	 can	 lead	 to	 premature	 convergence	 to	 a	 local	 optimum	 or	 suboptimal	 point.



Further	description	of	these	features	and	issues	of	GAs	can	be	found	 in	 the	foundational
book	on	GA	by	Goldberg	[5].

Evaluation

Computation	of	the	objective	values	for	the	individual	solutions.

Optimization	criteria

The	stopping	criteria	of	the	algorithm.	Examples	of	stopping	criteria	 include	 the	number
of	generations,	the	computation	time	limit,	and	the	function	tolerance.

Fitness	assignment

There	 are	 several	 choices	of	 fitness	assignment.	 In	 a	 rank-based	 fitness	assignment,	 the
individuals	are	sorted	according	 to	 their	 objective	values.	 It	creates	 an	 order	 among	 the
individuals.

Selection

A	selection	criterion	filters	out	the	candidate	solutions	with	poor	fitness	and	retains	those
with	acceptable	fitness	to	enter	the	reproduction	process	with	a	higher	probability.

Reproduction

A	 new	 generation	 in	 the	 genetic	 algorithm	 is	 created	 through	 reproduction	 from	 the
previous	 generation.	 Three	 mechanisms	 (elitist,	 crossover,	 and	 mutation)	 are	 primarily
used	to	create	a	new	generation.

Elitist

The	 individuals	with	 the	 best	 fitness	 values	 in	 the	 current	 generation	 are	 guaranteed	 to
survive	in	the	next	generation.

Crossover

In	 this	 technique,	 a	 part	 of	 the	 encoded	 string	 of	 one	 individual	 is	 exchanged	with	 the
corresponding	string	part	of	another	individual.	There	are	many	approaches	to	performing
the	crossover	operation.	Suppose	 there	are	 two	 individuals,	10101	and	11001.	Exchange
the	first	two	bits	of	the	two	individuals.	The	offspring	of	the	two	individuals	are	11101	and
10001.

Mutation

Mutated	child	solution	is	generated	from	a	single	parent	by	randomly	reversing	some	bits
from	0	to	1,	or	vice	versa.	For	example,	through	mutation,	the	2nd	bit	and	the	5th	bit	of
10101	are	reversed.	The	new	offspring	is	11100.

Best	individual

The	global	optimum	that	satisfies	the	termination	criteria.

The	steps	of	GA	are	illustrated	in	more	detail	in	Chapter	19.	The	multimodal	 function
shown	in	Fig.	8.1(b)	is	solved	using	MATLAB	GA	Solver	as	follows.

Example:	The	optimization	problem	presented	in	Fig.	8.1(b)	is	stated	as	follows.

(8.10)



subject	to

(8.11)

To	set	up	this	problem	in	MATLAB,	using	the	ga	command,	three	M-files	are	generated:	a
main	file,	 an	 objective	 function	 file,	 and	 a	 constraint	 function	 file.	Note	 that	 this	 file
structure	is	similar	to	the	one	used	with	fmincon.

The	main	 file	 contains	 the	 initializations,	bounds,	 options,	 and	 the	ga	 command.	 The
objective	 function	 file	 contains	 the	 objective	 or	 the	 fitness	 function	 definition.	 The
constraint	 file	contains	 the	nonlinear	 inequality	and	equality	constraints.	The	 files	 are
reported	below.

1. Main	file
clear		

clc		

	

%	Define	Linear	constraints		

A=[	];	B=[	];	Aeq=[];	Beq=[];		

	

%	Define	bounds	constraints		

LB=[0];	UB=[10];		

	

%	Number	of	design	variables		

nvars	=	1;		

	

%	Optimization	function	ga		

[x,fval]	=	ga(@GA_Func,nvars,A,B,Aeq,Beq,LB,UB,@GA_cons);		

	

display(x)		

display(fval)

2. Objective	function	file
function	[f]=GA_Func(x)		

	

f	=	x+10*sin(2*x);

3. Constraint	function	file
function	[C	Ceq]=GA_cons(x)		

	

%	Define	inequality	constraints		

C	=	[];		

	

%	Define	equality	constraints		

Ceq	=	[];

The	 global	 optimum	 of	 the	 objective	 function	 obtained	 by	 MATLAB	 is	 -7.6563.	 The
optimum	value	of	the	variable	is	2.3312.	The	result	is	the	same	as	that	obtained	using	the
multiple	start	method.

This	problem	can	also	be	solved	using	the	ga	command	from	the	graphical	user	interface
of	the	GA	Solver.	Please	note	 that	 the	folder	 that	contains	the	fitness	 function	and	 the
nonlinear	 constraint	 function	 should	 be	 selected	 as	 the	MATLAB	Current	 Directory.



Figure	8.4	shows	how	to	set	up	the	GA	solver	to	solve	the	problem.	This	screen	can	be
opened	by	 typing	optimtool(	 ′ga′)	 in	 the	Command	Window.	Alternatively,	 you	 can
type	optimtool	in	the	Command	Window;	then	choose	the	ga	solver	option	from	the	top
left	dropdown	menu.	Set	@GA_Func	as	the	fitness	function.	Set	@GA_cons	as	the	nonlinear
constraint	function.	Since	there	is	no	nonlinear	constraint	for	this	problem,	we	can	leave	
blank.	Set	the	number	of	variables	as	1.	Set	the	lower	bound	as	0	and	the	upper	bound	as
10.

After	 5	 iterations,	 the	 optimization	 is	 terminated.	 The	 global	 optimum	 value	 of	 the
objective	function	is	-7.6563.

Figure	8.4.	MATLAB	Genetic	Algorithm	Solver	from	the	Global	Optimization	Toolbox

8.6 	MATLAB	Global	Optimization	Toolbox

The	MATLAB	Global	Optimization	Toolbox	provides	methods	to	search	for	global	solutions
to	 problems	 that	 contain	 multiple	maxima	 or	 minima.	 The	 optimization	 solvers	 in	 the
toolbox	 include	 global	 search,	 multiple	 start,	 pattern	 search,	 genetic	 algorithms,	 and
simulated	 annealing	 solvers.	 Using	 the	 toolbox,	 one	 can	 select	 a	 solver	 and	 define	 an
optimization	 problem.	 Genetic	 algorithms	 and	 pattern	 search	 solvers	 can	 also	 be
customized.	For	genetic	algorithms,	 initial	population	 and	 fitness	 scaling	options	 can	be
modified	 and	 parent	 selection,	 crossover,	and	mutation	 functions	 can	 be	 defined	 by	 the
users.	For	pattern	search,	polling,	searching,	and	other	functions	can	be	defined.

The	 MATLAB	 Multiobjective	 Genetic	 Algorithm	 Solver	 can	 be	 used	 to	 solve
multiobjective	optimization	problems	to	generate	Pareto	frontiers.	This	solver	can	be	used
to	 solve	 either	 smooth	or	nonsmooth	 optimization	 problems,	with	 or	without	 the	 bound
constraints	and	the	linear	constraints.



As	 illustrated	 in	 Sec.	 8.5,	 MATLAB	 Global	 Optimization	 Toolbox	 can	 solve	 global
optimization	problems	using	 the	ga	 solver.	 It	also	provides	other	 solvers	 to	 solve	global
optimization	 problems.	 The	 following	 steps	 are	 required	 to	 solve	 a	 global	 optimization
problem	using	the	toolbox.

1. Select	a	solver	and	define	an	optimization	problem.

2. Set	up	and	inspect	the	optimization	options.

3. Run	the	optimization	tool	and	visualize	the	intermediate	and	final	results.

The	 toolbox	 includes	 a	 number	 of	 plotting	 functions	 for	 visualizing	 the	 optimization
process	and	the	results.	These	visualizations	provide	users	with	real-time	feedback	about
the	optimization	progress.	The	 toolbox	also	provides	 custom	plotting	 functions	 for	 both
genetic	algorithms	and	pattern	search	algorithms.

While	the	optimization	is	running,	one	can	change	certain	options	to	refine	its	solution
and	 update	 the	 performance	 results	 in	 genetic	 algorithms,	 multiobjective	 genetic
algorithms,	simulated	annealing,	and	pattern	search	solvers.	For	example,	one	can	enable	or
disable	 the	 plot	 functions,	 the	 output	 functions,	 and	 the	 command-line	 iterative	 display
during	run	time	to	view	intermediate	results	and	query	solution	progress,	without	the	need
to	stop	and	restart	the	solver.	The	user	can	also	modify	the	termination	criteria	to	refine	the
solution	 progression	 or	 reduce	 the	 number	 of	 iterations	 required	 to	 achieve	 a	 desired
tolerance	 based	 on	 run	 time	 performance	 feedback.	 An	 introductory	 webinar	 of	 the
MATLAB	global	optimization	toolbox	is	provided	in	Ref.	[6].

If	 the	Parallel	Computing	Toolbox	is	available,	 it	can	be	used	 in	conjunction	with	 the
Global	Optimization	Toolbox	to	reduce	computation	time	using	parallel	processing.	Built-in
support	for	parallel	computing	accelerates	the	objective	and	constraint	function	evaluation
in	genetic	algorithms,	multiobjective	genetic	algorithms,	and	pattern	search	solvers.

This	chapter	provided	an	introductory	presentation	of	global	optimization,	with	sufficient
information	 to	 tackle	 elementary	 problems.	 This	 book	 also	 presents	 more	 advanced
approaches	that	can	be	used	in	more	practical	contexts.	The	pertinent	chapters	are:	Discrete
Optimization	Basics	 (Chapter	9),	Discrete	Optimization	 (Chapter	 14),	 and	 Evolutionary
Algorithms	(Chapter	19).

8.7 	Summary

Most	 engineering	 design	 problems	 are	 non-linear	 in	 nature,	 and	 the	 resulting	 nonlinear
problems	 often	 involve	 multiple	 local	 optima.	 Global	 optimization	 is	 the	 process	 of
identifying	the	best	of	these	local	optima,	otherwise	known	as	the	global	optimum,	in	such
nonlinear	 problems.	 This	 chapter	 introduced	 the	major	 global	 optimization	 approaches,
starting	with	basic	approaches	such	as	exhaustive	search	to	advanced	approaches	such	as
genetic	 algorithms.	 The	 chapter	 concluded	 with	 an	 overview	 of	 the	 MATLAB	 Global
Optimization	Toolbox.

8.8 	Problems



Warm-up	Problems

8.1 Use	the	exhaustive	search	technique	to	find	the	global	optimum	for	 the	following
optimization	problem.

(8.12)

subject	to

(8.13)
(8.14)

8.2 Use	the	multiple	start	method	to	find	the	global	optimum	for	the	following	problem.

(8.15)

subject	to

(8.16)

8.3 Use	GA	to	find	the	global	optimum	for	the	following	problem.

(8.17)

subject	to

(8.18)

Intermediate	Problems

8.4 Consider	 the	 following	 optimization	 problem.	 Solve	 it	 using	 the	 GA	 Solver	 in
MATLAB,	using	both	the	m-files	and	the	graphical	user	interface.

(8.19)

subject	to

(8.20)
(8.21)
(8.22)
(8.23)

8.5 Learn	 the	 peaks	 command	 from	 the	 MATLAB	 tutorial	 available	 on
www.mathworks.com.	 In	 this	optimization	problem,	 the	 lower	bounds	of	 the	 two
variables	are	-3	and	their	upper	bounds	are	3.	Now	use	GA	to	determine	the	global
maximum	of	the	peaks	function	within	the	defined	region.	Generate	a	3D	plot	of	the
peaks	command	using	mesh,	and	label	the	global	maximum	on	the	plot.	Turn	in	your
M-file	and	the	plots.

http://www.mathworks.com
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9

Discrete	Optimization	Basics

9.1 	Overview

Previous	 chapters	 focused	 on	 methods	 to	 solve	 optimization	 problems	 that	 involve
continuous	design	variables.	Real	life	engineering	design	problems	often	involve	discrete
choices.	For	example,	the	number	of	components	in	a	product	has	to	be	a	positive	integer.	In
this	 case,	 corresponding	 design	 variables	 must	 be	 restricted	 to	 a	 set	 of	 given	 discrete
numbers.	This	type	of	optimization	problem	is	called	a	discrete	optimization	problem.

Discrete	optimization	is	broadly	defined	in	Sec.	9.2.	Section	9.3	describes	how	to	use	the
exhaustive	search	approach	to	solve	discrete	optimization	problems.	Section	9.4	illustrates
the	 relaxation	 approach.	 Section	 9.5	 introduces	 some	 advanced	 approaches	 to	 address
discrete	problems,	which	include	genetic	algorithms,	simulated	annealing,	and	the	branch
and	bound	method.	The	chapter	 concludes	with	 a	 summary	 in	Sec.	 9.6.	More	 advanced
approaches	 for	 discrete	 optimization	 are	 presented	 in	 Chapter	 14,	 entitled	 Discrete
Optimization.

9.2 	Defining	Discrete	Optimization

Discrete	 optimization	 can	 address	many	real-world	 problems	 and	 has	 been	 applied	 in	 a
wide	range	of	fields,	such	as	industrial	operations,	transportation,	and	finance.	A	generic
discrete	optimization	problem	can	be	defined	as

(9.1)

subject	to

(9.2) (9.3) (9.4) (9.5) (9.6)

where	x,	y,	and	z	are	the	design	variable	vectors;	f	(x)	is	the	objective	function;	g(x)	and	h(x
are	inequality	constraints	and	equality	constraints,	respectively;	Zm	is	a	set	of	given	feasible
integers;	Rn	is	a	set	of	real	numbers;	and	A	 stands	for	a	combinatorial	set	 resulting	from
given	 feasible	 discrete	 values.	 Depending	 on	 the	 existence	 of	 x,	 y,	 and	 z,	 discrete
optimization	problems	can	be	classified	into	the	following	five	categories.

1. Pure	integer	programming	problems:	Only	x	exists.	The	design	variables	only	take
on	integer	values	(see	Refs.	[1,	2]).

2. Mixed-integer	programming	problems:	Both	x	and	y	exist.	 Some	design	 variables



take	on	integer	values,	while	others	are	allowed	to	take	on	continuous	values.

3. Discrete	non-integer	optimization	problems:	Only	z	exists.	The	design	variables	are
allowed	to	be	selected	from	a	given	set	of	discrete	values.

4. Binary	programming	problems:	Only	x	exists,	 and	 it	 can	 only	 take	 on	 a	 value	 of
either	0	or	1.	These	problems	are	also	called	zero-one	programming	problems.

5. Combinatorial	optimization	problems:	Only	z	exists.	The	possible	feasible	solutions
are	defined	by	a	combinatorial	set	resulting	from	the	given	feasible	discrete	values.

For	 a	 purely	 finite	 discrete	 optimization	 problem	 (no	 continuous	 variables),	 all	 the
feasible	 design	 variable	 combinations	 are	 known	 before	 hand.	 Theoretically,	 using
exhaustive	search,	all	the	possible	designs	can	be	evaluated	to	determine	the	optimum	in
the	purely	finite-discrete	optimization	problem.	In	practice,	this	approach	(exhaustive	search
in	Sect.	9.3)	only	works	for	very	small	problems.	For	medium-size	problems	and	industrial
scale	 problems,	 this	 approach	 becomes	 computationally	 prohibitive.	 Consider	 a	 binary
programming	problem	that	has	100	design	variables.	The	number	of	its	possible	solutions	is
2100	=	1.27	×	1030.	In	Sec.	9.5,	evolutionary	algorithms	and	the	branch	and	bound	method
are	 introduced.	 These	 methods	 are	 particularly	 effective	 in	 solving	 practical	 discrete
optimization	problems.

9.3 	Exhaustive	Search

Exhaustive	search	is	a	straightforward	approach	that	can	be	leveraged	to	solve	small	scale
discrete	problems.	 It	 enumerates	all	of	 the	 feasible	candidates.	The	best	 solution	among
them	is	the	optimum.

Exhaustive	 search	 is	 viable	 when	 solving	 optimization	 problems	 with	 a	 manageable
number	of	combinations.	The	following	example	illustrates	how	to	solve	a	combinatorial
optimization	problem	using	exhaustive	search.	Chapters	8	and	14	provide	further	pertinent
information.

Example:	Use	 exhaustive	 search	 to	 find	 the	optimum	of	 the	 following	 combinatorial
optimization	problem.

(9.7)

subject	to

(9.8)
(9.9)
(9.10)

The	number	of	 feasible	combinations	of	 the	 three	design	variables	 is	3	×	3	×	2	=	18.
These	18	combinations	and	their	objective	function	values	are	listed	in	Table	9.1.

Table	9.1.	Design	Variable	Combinations	and	Their	Objective	Function	Values



When	comparing	the	18	objective	function	values	in	Table	9.1,	the	minimum	of	f	(x)	is
estimated	to	be	37.	The	optimal	solution	is:	x1	=	3,	x2	=	2,	and	x3	=	4.

9.4 	Relaxation	Approach

The	relaxation	approach	assumes	that	all	the	design	variables	in	a	problem	are	continuous,
and	 solves	 the	 problem	 using	 continuous	 optimization	 techniques.	 After	 the	 optimal
solution	to	the	relaxed	continuous	optimization	problem	is	obtained,	the	optimum	variable
values	are	rounded	off	to	the	nearest	feasible	discrete	solution.

Please	 note	 that	 the	 solution	 obtained	 by	 this	 approach	 can	 often	 be	 sub-optimal.
Furthermore,	this	method	does	not	guarantee	that	the	solution	is	feasible.

Example:	Consider	the	following	linear	discrete	optimization	problem.

(9.11)

subject	to

(9.12)
(9.13)
(9.14)
(9.15)

By	 ignoring	 the	 constraint	 in	 Eq.	 9.15,	 the	 problem	 can	 be	 solved	 as	 a	 continuous
optimization	problem.	In	 this	example,	MATLAB	 function	linprog	 is	used	 to	solve	 the
relaxed	linear	programming	problem.	The	MATLAB	code	is	given	below.
clear		

clc		

	

%	objective	function		

f	=	[-2;	1];		

	

%	Define	Linear	constraints		

A=[6	-4;	1	1];	B=[15;	5];		

Aeq=[];	Beq=[];		

	

%	Define	bounds	constraints		

LB=[0	0];	UB=[];		

	

[x,	fopt]	=	linprog(f,	A,	B,	Aeq,	Beq,	LB,	UB)



The	final	solution	obtained	is:	x1	=	3.5	and	x2	=	1.5.	Rounding	off	to	the	nearest	integer
yields	an	 integer	 optimal	 solution	 of	x1	=	4,x2	 =	 2.	However,	 they	 do	 not	 satisfy	 the
inequality	constraint	given	as	Eq.	9.13.	However,	if	we	round	off	the	continuous	solution
to	x1	=	3,x2	=	1,	we	obtain	the	correct	solution.

The	following	example	illustrates	how	the	relaxation	approach	could	yield	sub-optimal
or	infeasible	solutions.

Example:	 Use	 the	 relaxation	 approach	 to	 solve	 the	 following	 discrete	 linear
programming	problem.	Examine	whether	the	solution	is	correct.

(9.16)

subject	to

(9.17)
(9.18)
(9.19)
(9.20)

Using	 the	 relaxation	 approach,	 the	 constraint	 in	 Eq.	 9.20	 is	 ignored.	 The	 relaxed
optimization	problem	is	solved	using	MATLAB	 function	linprog.	The	MATLAB	code	 is
given	below.
clear		

clc		

	

%	objective	function		

f	=	[-5;	-1];		

	

%	Define	Linear	constraints		

A=[10	1;	0	1];	B=[20;	2];		

Aeq=[];	Beq=[];		

	

%	Define	bounds	constraints		

LB=[0	0];	UB=[];		

	

[x,	fopt]	=	linprog(f,	A,	B,	Aeq,	Beq,	LB,	UB)

The	 optimal	 solution	 of	 the	 relaxed	 optimization	 problem	 is	 x1	 =	 1.8	 and	 x2	 =	 2.
Rounding	off	to	the	nearest	integer	yields	an	integer	optimal	solution	of	x1	=	2	and	x2	=
2.

The	optimization	problem	can	also	be	solved	graphically	as	seen	in	Fig.	9.1.	From	this
figure,	note	that	the	rounded	solution	lies	in	the	infeasible	region	of	the	design	space.	The
optimal	solution	 is	x1	=	2	 and	 x2	 =	 0.	 This	 example	 demonstrates	 that	 the	 relaxation
approach	can	be	misleading.



Figure	9.1.	The	Actual	Optimum	Solution

9.5 	Advanced	Options:	Genetic	Algorithms,	Simulated	Annealing,	and	Branch	and
Bound

9.5.1 	Genetic	Algorithms

Genetic	 Algorithms	 (GAs)	 are	 a	 family	 of	 computational	 algorithms	 inspired	 by	 the
principles	of	evolution	 described	 in	Darwin’s	 theory.	GAs	were	 first	 conceived	 by	 J.H.
Holland	in	1975	[3].	Binary	coded	genetic	algorithms	are	particularly	popular	choices	for
discrete	optimization	because	of	their	ability	to	deal	directly	with	discrete	search	spaces.
Introductory	discussion	of	GA	has	already	been	presented	in	Chapter	8.

9.5.2 	Simulated	Annealing

As	discussed	in	Sec.	9.2,	discrete	optimization	problems	can	become	unmanageable	using
combinatorial	methods	as	the	number	of	candidates	increases	exponentially.	An	effective
algorithm	that	can	be	used	to	solve	these	problems	is	simulated	annealing.	The	idea	behind
this	algorithm	is	based	on	the	manner	in	which	liquids	freeze	or	metals	recrystalize	during
the	 process	 of	 annealing.	 The	algorithm	mimics	 the	metallurgical	 process	 of	 annealing:
heating	a	material	and	slowly	lowering	the	temperature	to	decrease	defects,	thus	minimizing
the	system	energy	[4].	At	the	beginning	of	this	method,	the	initial	state	is	similar	to	that	of	a
thermodynamic	 system.	 At	 each	 iteration	 of	 the	 algorithm,	 a	 new	 point	 is	 randomly
generated.	The	distance	of	the	new	point	from	the	current	point,	or	the	extent	of	the	search,
is	based	on	a	probability	distribution.	The	scale	of	 the	distribution	 is	proportional	 to	 the



temperature.	The	algorithm	accepts	all	new	points	that	lower	the	energy;	but	with	a	certain
probability,	 also	 accepts	 points	 that	 raise	 the	 energy.	 By	 accepting	 points	 that	 raise	 the
energy,	 the	 algorithm	 avoids	 being	 trapped	 in	 local	 minima,	 and	 is	 capable	 of	 global
exploration	 for	 better	 solutions.	 An	 annealing	 schedule	 is	 selected	 to	 systematically
decrease	 the	 temperature	 as	 the	 algorithm	 proceeds.	 As	 the	 temperature	 decreases,	 the
algorithm	reduces	the	extent	of	its	search	to	progressively	converge	to	a	minimum.

Simulated	annealing	has	been	used	in	various	combinatorial	optimization	problems	and
has	 been	 particularly	 successful	 in	 circuit	 design	 problems.	 For	 more	 information	 on
simulated	 annealing,	 refer	 to	 Chapter	 19.	More	 details	 and	 examples	 are	 also	 provided
in	[5].

9.5.3 	Branch	and	Bound

The	branch	and	bound	method	 is	a	basic	 technique	used	 to	 solve	discrete	 programming
problems.	This	method	is	based	on	the	observation	that	the	enumeration	of	integer	solutions
has	an	inherent	tree	structure.	It	enumerates	candidate	solutions	systematically	for	a	discrete
optimization	problem.	Refer	to	Chapter	14	for	more	information	on	this	method.

The	procedure	for	the	branch	and	bound	method	used	to	solve	a	linear	integer	programming
problem	is	illustrated	in	Fig.	9.2	(see	Refs.	[1,		2]).

Figure	9.2.	Branch	and	Bound	Method	Flowchart

The	technical	terms	used	in	Fig.	9.2	are	explained	below.

Relaxed	 continuous	LP:	 A	 relaxed	 continuous	 linear	 programming	 (LP)	 problem	 is
formulated	by	 ignoring	 the	 integer	constraints.	The	 resulting	optimal	solution	may	 have
some	non-integer	variable	values.	If	the	resulting	LP	solution	has	only	integer	values,	the
obtained	solution	is	the	integer	optimal	solution.



Ceil:	The	 notation	 of	 x 	 is	 defined	 as	 the	 ceiling	 function.	 This	 function	 returns	 the
smallest	integer	value	that	is	greater	than	or	equal	to	x.	For	example,	 5.14 	=	6,	 10 	=	10,
and	 -8.6 	=	-8.

Floor:	The	 floor	 function	 is	denoted	 x ,	which	 returns	 the	 largest	 integer	 that	 is	 less
than	or	equal	to	x.	For	example,	 5.14 	=	5,	 10 	=	10,	and	 -8.6 	=	-9.

Add	a	ceil	or	a	floor:	For	those	design	variables	with	decimal	parts	in	the	optimal	result,
two	subproblems	are	created	by	imposing	a	ceil	or	a	 floor	on	 the	design	variable	values,
respectively.	The	following	constraint	is	added	to	the	first	subproblem:	xi	≤	 x .	The	second
subproblem	is	formulated	by	adding	the	constraint	xi	≥	 x .	The	two	subproblems	are	then
solved	as	continuous	problems.	The	solutions	of	the	two	subproblems	are	then	examined	for
fractional	parts,	and	the	process	is	repeated.

Branching:	The	above	process	that	adds	a	ceil	or	a	floor	is	called	branching.	For	a	given
variable,	the	branching	process	is	repeated	until	the	relaxed	continuous	problem	with	 the
additional	 constraints	 yields	 either	 an	 integer	 solution	 or	 an	 infeasible	 solution.	 The
branching	process	is	repeated	for	all	the	variables	that	have	fractional	solutions.

Bounds:	The	added	ceil	and	floor	constraints	are	called	bounds	on	the	variable	values.

A	basic	implementation	of	the	branch	and	bound	method	for	linear	integer	programming
problems	consists	of	the	following	steps	(see	Refs.	[1,	2]).	Note	that	 the	given	procedure
only	applies	to	linear	integer	programming	problems.

1. Formulate	a	relaxed	continuous	 linear	programming	problem	by	 ignoring	 the	 integer
constraints.	The	relaxed	problem	is	comprised	of	continuous	variables.

2. If	 the	 solution	 to	 the	 above	 relaxed	 continuous	 (linear	 optimization)	 problem	 only
involves	integers,	it	is	the	optimal	solution.	If	the	solution	has	non-integer	variables,	go
to	the	next	step

3. Select	one	non-integer	variable	and	generate	two	subproblems	(two	branches).	For	one
of	 them,	 add	 a	 ceil	 constraint	 to	 the	 selected	 non-integer	variable	 and,	 for	 the	 other
branch,	add	a	floor	constraint	to	it.

4. If	a	branch	has	no	feasible	solutions,	stop	this	branch.	If	the	solution	only	has	integers,	
becomes	 a	 candidate	 for	 the	 final	 optimal	 solution.	 If	 the	 solution	 has	 non-integer
values,	go	back	to	Step	3.

5. Once	the	branching	process	is	completed	for	all	the	variables,	compare	all	the	integer
solutions	obtained	by	the	different	branches.	The	best	solution	is	considered	 the	final
optimal	solution.

Example:	Solve	the	following	linear	discrete	optimization	problem	using	the	branch	and
bound	method.

(9.21)

subject	to

(9.22)



(9.23)
(9.24)

(9.25)

Figure	 9.3	 presents	 the	 subproblems	 and	 their	 solutions	when	 the	 branching	 process
begins	with	 the	variable	x1.	The	gray-shaded	boxes	 are	 the	 integer	solutions	 obtained
during	this	branching.	Note	the	branching	process	after	the	optimal	solution	x1*	=	3,x	2*	=
0.75,	and	f*	=	-5.25.	The	two	further	possible	branches	are	x2	≤	0	and	x2	≥	1.	The	first
branch,	x2	≤	0,	is	not	feasible,	and	is	not	solved	further.	The	second	branch,	x2	≥	1	yields
the	optimal	integer	solution,	x1*	=	3,x	2*	=	1,	and	f*	=	-5.

Figure	9.3.	Branch	and	Bound	Method	Example

9.6 	Summary

In	 this	 chapter,	 a	 new	 class	 of	 optimization	 problems	 was	 introduced	 –	 the	 discrete
optimization	problem.	Several	 simple	approaches	were	 illustrated	with	 examples.	 These
approaches	can	be	readily	applied	to	solve	discrete	optimization	problems.



9.7 	Problems

9.1 Formulate	 a	 discrete	 optimization	 problem	 based	 on	 your	 real-world	 engineering
design	experience.	Solve	it	using	the	appropriate	optimization	method.

9.2 Use	exhaustive	search	to	find	the	optimum	for	the	following	discrete	optimization
problem.

(9.26)

subject	to

(9.27)
(9.28)

9.3 Consider	the	two	discrete	optimization	problems	given	in	Sec.	9.4.	Reproduce	 the
results	of	the	two	problems	using	the	MATLAB	function	linprog.	Solve	 the	second
problem	graphically,	and	show	the	actual	optimum	on	your	figure.

9.4 Reproduce	the	results	for	the	example	given	in	Sec.	9.5.3.	Turn	in	your	M-file	and
results.

9.5 Consider	 the	 linear	 discrete	 optimization	problem	 given	 in	 Sec.	 9.5.3.	Apply	 the
branch	and	bound	method	starting	with	x2.
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10

Practicing	Optimization—Larger	Examples

10.1 	Overview

This	chapter	covers	the	practice	of	optimization	in	diverse	technical	areas.	What	has	been
learned	thus	far	is	the	practical	knowledge	that	is	needed	to	apply	optimization	to	different
types	of	designs	or	systems.	We	will	explore	optimizing	systems/designs	in	the	following
disciplines:	 chemistry,	 mechanics,	 aerospace,	 automotive,	 mathematics	 (data	 fitting),
nuclear,	electrical,	portfolio	management,	and	business	(Ref.	[1]).	Our	ability	to	optimize
these	various	designs	provides	us	with	the	skills	to	apply	optimization	beyond	the	confines
of	 this	book	or	of	 the	 class	 you	might	 be	 taking,	 and	successfully	 venture	 into	 the	 real
world!

10.2 	Mechanical	Engineering	Example

10.2.1 	Structural	Example

Figure	10.1	represents	 a	 ten-bar	 truss.	 The	members	 are	 connected	 to	 each	 other	 at	 six
nodes,	numbered	1	to	6.	The	truss	is	assumed	to	be	planar,	and	every	node	has	two	degrees
of	freedom	(i.e.,	it	is	free	to	move	both	in	the	x	and	y	directions).	The	left	edge	of	the	truss
is	fixed	to	the	wall.	The	displacements	u1	to	u8	are	specified	at	the	specific	non-fixed	nodes.
F1	to	F8	represent	loads	applied	to	these	nodes.	The	variables	by	x1	to	x10	denote	the	cross
sectional	 areas	 of	 the	 truss	members.	 The	Young’s	modulus	 of	 the	material	 is	E	 =	 1	 ×
106N/mm2.	 The	 maximum	 allowable	 stress	 in	 each	 bar	 is	 σult	 =	 ±100N/mm2	 (i.e.,
tension/compression),	and	 the	maximum	allowable	deflection	 is	δmax	=	±2	mm.	We	note
that	the	unit	of	length	in	the	figure	and	in	this	problem	is	mm,	and	that	of	force	is	N.	While
the	current	example	 is	commonly	used	 in	 the	 literature,	 the	reader	 is	also	encouraged	 to
review	the	topology	optimization	survey	by	Rozvany	in	Ref.	[2].

Figure	10.1.	Ten-Bar	Truss

Imagine	 you	 are	 hired	 as	 the	 optimization	 expert	 for	 the	 ten-bar	 truss	 project.	 The



structural	engineer	working	on	the	project	provides	you	with	a	program	blackbox-10bar.m,
which	allows	you	to	enter	the	loads	at	the	nodes	and	the	area	of	each	member,	and	obtain	the
corresponding	nodal	displacements	and	stresses	in	the	members.	Figure	10.2	illustrates	this
task.	The	ten-bar	truss	is	subjected	to	10	different	loading	conditions	given	in	Table	10.1.

Figure	10.2.	Black	Box

Table	10.1.	Loading	Conditions

Your	task	is	to	generate	the	most	optimal	design	for	the	ten-bar	truss	by	minimizing	the
mass	of	the	configuration	along	with	the	maximum	stress	for	a	given	set	of	conditions.	The
following	steps	will	help	you	accomplish	this	optimization	process.

1. Generate	the	row	vector	F	that	contains	all	the	8	forces:

F	=	[61,540	5,790	1,530	83,810	19,340	49,660	72,710	79,480]

2. Generate	the	row	vector	x	that	contains	all	the	10	areas:

x	=	[16.49	4.67	13.34	0.40	0.10	0.10	17.57	11.36	4.06	16.19]

3. Use	 these	values	 in	 the	program	blackbox-10bar.m	 to	 determine	 (1)	 stresses	 and	 (2)
deflections.

4. Double	 the	 value	 of	 the	 forces	 and	 use	 these	 new	 values	 in	 the	 program	 blackbox-
10bar.m	to	obtain	the	stresses	and	deflections.

5. Halve	 the	 areas	 and	 repeat	 the	 process	 to	 obtain	 the	 corresponding	 stresses	 and
deflections.

6. Minimize	the	total	material	volume	of	the	truss	for	the	loading	condition	specified	 in
Part	1	and	 the	 initial	areas	specified	 in	Part	2.	Note	 that	 to	obtain	 the	corresponding
minimum	 mass,	 we	 would	 simply	 multiply	 by	 the	 density.	 (Hint:	 In	 forming	 the
constraint	 function,	 use	 the	 black	 box	 program	 to	 determine	 your	 stresses	 and



displacements,	which	should	not	exceed	the	maximum	design	conditions).

7. Minimize	 the	 total	 material	 volume	 of	 the	 truss	 for	 all	 ten	 loading	 conditions
individually.	 (Hint:	 Change	 the	 set	 of	 loading	 conditions	 in	 each	 minimization
subroutine.	The	different	set	of	loading	conditions	are	given	in	Table	10.1.	In	addition
to	the	area	vector	provided	in	Part	2.,	randomly	generate	9	row	sets	of	area	values	 to
obtain	the	initial	area	matrix).

8. Minimize	 the	maximum	stress	along	with	 the	 total	mass	of	 the	 truss	 for	 the	 loading
condition	specified	 in	Part	1	and	 the	 initial	areas	specified	 in	Part	2.	Plot	 the	Pareto
frontier	for	11	solutions.	(Hint:	This	is	a	bi-objective	problem	where	the	first	objective
is	the	combined	mass	of	the	truss,	and	the	second	objective	is	the	maximum	stress).

9. In	this	case,	you	are	not	so	blessed	as	to	have	the	Black	Box	simply	provided	to	you.
You	started	your	job,	and	since	you	graduated	in	Mechanical	Engineering	(or	Civil	or
Aerospace),	your	team	simply	expects	 that	you	will	develop	the	Black	Box	yourself.
Your	task	is	to	develop	this	Black	Box.	(i)	Provide	clear	documentation	and	explain	your
assumptions	in	developing	the	analysis	for	this	Black	Box.	Comment	on	how	truss	or
frame	structures	assumptions	apply	here,	and	your	pertinent	decisions.	(ii)	Code	your
development	in	your	own	Black	Box.	(iii)	Solve	Item	8	above	using	your	own	Black
Box;	then	using	the	one	provided.	Comment	on	the	relative	accuracies	and	computation
times	 between	 the	 two	Black	Boxes,	 yours	 and	 the	 one	 provided.	 (This	 part	 of	 the
problem	 (9.)	 is	 geared	 towards	graduate	 students	 in	mechanical,	aerospace,	 or	 civil
engineering).

10.2.2 	Tolerance	Allocation	Problem

Consider	the	example	of	a	two-part	assembly	shown	in	Fig.	10.3.	The	dimensions	of	 the
two	parts,	A	and	B,	are	given	by	x1	through	x12.	Parts	A	and	B	are	mass	produced	by	 the
same	manufacturing	 company.	 To	 understand	 the	 concept	 of	 tolerance,	 assume	 that	 the
design	requirement	for	the	dimension	x1	is	50	in.	Consider	a	batch	of	10,000	parts	of	A.	If
we	measure	the	dimension	x1	of	each	part	in	the	batch,	it	will	not	be	exactly	equal	to	50	in.
There	is	some	variability	in	the	measurement	of	x1	in	all	the	10,000	parts.	This	variability
can	result	from	measurement	errors	or	the	manufacturing	process	itself.	Each	measurement
of	the	dimension	x1	for	the	batch	falls	within	a	range	50	±	tol	inch,	where	tol	is	termed	as
the	tolerance	of	the	dimension.



Figure	10.3.	Tolerance	Design	Example

It	 is	 desirable	 to	 have	 the	 tolerances	 be	as	 close	 to	 zero	 as	 possible	 to	 ensure	 a	 high
quality	 product.	 However,	 smaller	 tolerances	 require	 precise	 manufacturing	 processes,
which,	in	turn,	result	in	higher	manufacturing	costs.	The	range	of	50	±	tol	inch	mentioned
above	specifies	the	acceptable	range	of	the	dimension	x1.	Parts	that	do	not	conform	to	the
above	specification	are	rejected,	which	are	either	scrapped	or	reworked,	thus	adding	to	the
manufacturing	 costs.	 Setting	 a	 “good”	 tolerance	 value	 for	 a	 dimension	 involves
understanding	 the	 tradeoff	between	cost	 and	quality.	Multiobjective	optimization	 can	 be
effectively	applied	in	these	problems.

To	understand	how	to	mathematically	represent	the	variability	in	the	part	dimensions	in
the	optimization	formulation,	the	concept	of	a	random	variable	and	probability	theory	are
used.	A	detailed	description	of	probability	 theory	can	 be	 found	 in	 probability	 textbooks
(Ref.	 [3,	 4]).	 In	 this	 problem,	we	 present	 a	 brief	 summary	 of	 the	 basics	 of	 probability,
normal	distribution	in	particular.

Basic	Concepts	in	Probability	Theory

An	 event	 that	 can	 result	 in	 different	 outcomes,	 even	 though	 it	 is	 repeated	 in	 the	 same
manner	every	time,	is	known	as	a	random	event.	In	the	above	example,	each	manufacturing
event	for	the	10,000	parts	in	the	batch	results	in	a	different	length	x1.	In	probability	theory,	a
variable	 referred	 to	 as	a	random	variable	 is	 associated	with	 the	 outcome	 of	 the	 random
event.	For	the	above	example,	the	length	of	the	dimension	x1	in	each	part	of	the	batch	is	a
random	variable.	Random	variables	are	denoted	by	upper	case	letters.	The	dimensions	of
Parts	A	and	B,	x1	through	x12,	can	be	thought	of	as	random	variables,	denoted	X1	through
X12.

A	 function	 that	 assigns	 probability	 values	 to	 a	 random	 variable	 is	 known	 as	 the



probability	density	function	(PDF).	There	are	several	random	variables	with	standard	PDF
definitions	that	are	typically	used	in	engineering	applications,	such	as	uniform,	Gaussian,
and	exponential	distributions.	In	this	example,	we	use	Gaussian	(or	normal)	distribution	to
represent	the	probabilities	of	the	random	variables	X1	through	X12.	Figure	16.3	shows	 the
PDF	of	a	normal	distribution.

The	quantities	μ	and	σ	in	Fig.	10.4	are	referred	to	as	the	mean	and	the	standard	deviation
of	 the	 normal	 distribution,	 respectively.	 The	 PDF	 curve	 provides	 information	 about	 the
probabilities	of	random	variables.	Consider	two	points	on	the	x-axis,	such	as	μ	+	σ	and	μ	−	
in	Fig.	10.4.	The	probability	that	the	random	variable,	X,	lies	between	μ	+	σ	and	μ	−	σ	 is
given	by	 the	area	under	 the	PDF	curve,	denoted	by	 the	 shaded	 region	 in	Fig.	10.4.	 The
probabilities	that	X	falls	within	the	intervals	μ	±	σ,	μ	±	2σ,	and	μ	±	3σ	(see	Fig.	10.4)	for	a
normal	distribution	are	0.6827,	0.9545,	and	0.9973,	 respectively	[4].	The	area	under	 the
entire	PDF	curve	is	always	equal	to	one.

Figure	10.4.	Normal	Distribution

The	 two	quantities,	mean	and	 standard	deviation,	define	 the	bell-shape	of	 the	 normal
distribution	illustrated	in	Fig.	10.4.	The	normal	distribution	is	symmetric	about	 its	mean.
The	 smaller	 the	 value	 of	 σ,	 the	 narrower	 the	 bell-shaped	 PDF.	 In	 the	 manufacturing
example,	 the	 closer	 the	 tolerance	 on	 the	 dimension	X1,	 the	 lower	 its	 variability.	 Thus,
achieving	closer	tolerances	requires	reducing	the	standard	deviation	of	the	random	variable
X1.

Finding	Optimal	Tolerances

To	formulate	the	multiobjective	problem	that	models	the	tradeoff	between	 the	 tolerances
and	the	manufacturing	costs,	the	tolerances	of	the	variables	X1	through	X12	are	assumed	to
be	six	times	their	standard	deviations.	The	nominal	or	the	mean	values	of	X1	through	X12
are	given	as

The	quality	of	the	assembly	requires	that	the	angles	θ1	and	θ2	in	Fig.	10.3	be	as	close	to



each	other	as	possible.	Satisfaction	of	this	requirement	imposes	tight	tolerances	on	the	parts
dimensions,	which	increases	manufacturing	costs.

The	design	variables	for	the	problem	are	the	standard	deviations	of	the	dimensions.	The
first	 objective,	 J1,	 is	 to	 minimize	 cost,	 which	 is	 given	 as	 a	 function	 of	 the	 standard
deviations	of	the	design	variables	as	follows.

(10.1)

where	b	=	[50	50	50	50	50	50	50	50	50	50	50	50],	and	σXi	is	the	standard	deviation	of	the	i-
th	 dimension.	 Note	 that	 the	 above	 cost	 function	 increases	 as	 the	 standard	 deviations
decrease.

The	second	objective,	J2,	ensures	that	the	angles	θ1	and	θ2	are	as	close	to	each	other	as
possible.	Note	 that	 the	 tangent	of	 the	angles	θ1	and	θ2	can	be	expressed	 in	 terms	 of	 the
dimensions	X6,	X5,	X2,	X3	and	X9,	X10,	X7,	X8,	respectively.	Since	the	above	dimensions	are
random	variables,	the	tangent	of	the	angles	θ1	and	θ2	are	also	random.	To	ensure	that	θ1	and
θ2	are	as	close	to	each	other	as	possible,	consider	the	random	variable	θ1	−	θ2	and	minimize
its	variation.	One	possible	measure	of	the	variation	of	θ1	−θ2	is	its	standard	deviation,	J2,
given	as	follows.

(10.2)

(10.3)

Where	Xn(i)	is	the	i-th	element	of	the	mean	vector	of	X	(given	as	Xn);	V	is	the	variance	of	θ
−θ2;	and	the	square	root	of	the	variance	yields	the	standard	deviation.

The	multiobjective	optimization	problem	formed	to	obtain	the	optimal	tolerances	from	a
cost	perspective	is	presented	below.

(10.4)

subject	to

0.0001	≤	σX	≤	1 (10.5)
J1	≤	100 (10.6)
J2	≤	1 (10.7)

–(Xn(6)	–	Xn(5))	+	(Xn(8)	–	Xn(7))

(10.8)
–(Xn(3)	–	Xn(4))	+	(Xn(11)	–	Xn(10))



(10.9)

Equation	10.5	represents	the	maximum	and	minimum	allowable	standard	deviations	for
X1	through	X12.	Equations	10.8	and	10.9	ensure	that	the	clearances	between	Parts	A	and	B
are	positive,	as	shown	in	Fig.	10.3.

The	Pareto	frontier	for	the	above	bi-objective	problem	is	illustrated	in	Fig.	10.5.	The	weighted
sum	method	is	used	to	obtain	the	Pareto	frontier.	Based	on	the	relative	preferences,	any	of	the
Pareto	solutions	may	be	chosen	as	the	final	design.	From	the	design	variable	values	at	the	chosen
Pareto	solution,	the	tolerances	can	be	computed.

Figure	10.5.	Pareto	Frontier	for	the	Tolerance	Allocation	Problem

10.3 	Aerospace	Engineering	Example

When	designing	an	aircraft	landing	gear,	the	wheel	track	(the	length	between	the	left-most
and	the	right-most	wheels	when	looking	at	a	front	view)	has	several	requirements	that	must
be	considered.	These	include	(i)	the	ground	lateral	control,	(ii)	the	ground	lateral	stability,
and	(iii)	 the	structural	 integrity.	The	minimum	allowable	value	 for	 the	wheel	 track	must
satisfy	 the	 ground	 lateral	 control	 and	 the	 ground	 lateral	 stability	 requirements.	 The
maximum	 allowable	 value	 for	 the	 wheel	 track	 must	 satisfy	 the	 structural	 integrity
requirements	(Ref.	[5]).

10.3.1 	Ground	Controllability

The	wheel	 track	must	 be	 sufficiently	wide	 so	 that	 the	 aircraft	 does	 not	 roll	 over	 while
taxiing	on	the	ground.	The	centrifugal	force	(Fc)	during	a	turn,	which	may	cause	the	aircraft
to	roll,	is	given	by

(10.10)



where	m	 represents	 the	 aircraft	mass,	V	denotes	 the	 aircraft	 ground	 speed,	 and	R	 is	 the
radius	of	the	turn	(see	Fig.	10.6(b)).	The	sum	of	the	two	contributing	moments	(the	moment
of	the	centrifugal	force	(Fc)	and	the	moment	due	to	the	aircraft	weight,	W	=	mg)	about	the
gear	is	given	by

∑	Mo	=	0		⇒		mg	⋅	T⁄2	+	Fc	⋅	Hcg (10.11)

Figure	10.6.	An	Aircraft	in	a	Ground	Turn

where	 the	parameter	Hcg	 is	 the	distance	 of	 the	 aircraft’s	 center	 of	 gravity,	 cg,	 from	 the
ground,	and	T	is	the	length	of	the	wheel	track.	The	minimum	constraint	for	the	wheel	track
(T)	is	given	by

(10.12)

10.3.2 	Ground	Stability

While	taxiing	on	the	ground,	wind	affects	the	stability	of	the	aircraft	and,	as	such,	must	be
considered	during	the	design	process.	A	cross	wind	(i.e.,	perpendicular	to	the	ground	path
or	fuselage	centerline	of	the	aircraft)	is	the	most	important	wind	force	when	designing	for
ground	stability.

The	cross	wind	force	(FW)	on	an	aircraft	can	be	modeled	as	a	drag	force	given	by

(10.13)

where	ρ	 is	 the	 air	 density,	V	W	denotes	 the	wind	 speed,	 and	AS	 is	 the	 aircraft	 side	 area
(hatched	area	in	Fig.	10.7).	The	parameter	CDs	is	the	side	drag	coefficient	of	the	aircraft,
and	it	varies	from	0.3	to	0.8.	To	prevent	an	aircraft	from	overturning	due	to	the	cross	wind,
the	wheel	track	(T)	satisfies

T	>	2 (10.14)

where	Hc	is	the	distance	of	the	centroid	from	the	ground.



Figure	10.7.	Aircraft	Side	Area	and	Its	Centroid

10.3.3 	Structural	Integrity

When	 seen	 from	 the	 front,	 the	 aircraft	structure	 can	 be	modeled	 as	 a	 beam	with	 a	 few
simple	supports	(see	Fig.	10.8).	At	the	main	gear	station,	the	wing	is	the	beam	and	the	two
main	wheels	are	the	simple	supports.	The	wheel	track	is	then	the	distance	between	 these
two	supports.

Figure	10.8.	Front	View	of	the	Aircraft	Structure	Modeled	as	a	Beam	with	Two	Simple	Supports

The	maximum	deflection	(ymax)	in	a	beam	(wing)	is	given	by

ymax	=	− (10.15)

where	Fmmax	is	the	maximum	load	on	the	main	gear,	E	is	the	modulus	of	elasticity,	and	I	is
the	beam	area	moment	of	inertia.	The	maximum	static	load,	which	is	carried	by	the	main
gear,	can	also	be	estimated	as

Fmmax	=	 mg (10.16)

where	B	is	the	wheel	base	(the	distance	between	the	nose	gear	and	the	main	gear	along	the
x-axis),	and	Bnmax	is	the	maximum	length	between	the	aircraft	cg	and	the	nose	gear	along
the	x-axis.	Substituting	Eq.	10.16	 into	Eq.	10.15,	 the	wheel	 track	 in	 terms	of	maximum
allowable	deflection	is	given	by

T	=	 (10.17)

For	a	twin	engine	jet	transport	aircraft,	the	maximum	allowable	wing	deflection	is	0.03	m
and	the	take-off	mass	is	50,000	kg.

The	question	at	hand:	Your	job	is	to	determine	the	range	of	wheel	tracks	that	will	satisfy
all	 of	 the	 requirements	 discussed	 in	 this	 Aerospace	 Engineering	 Example.	 Explain	 the
practical	 meaning	 of	 the	 nature	 of	 your	 answer,	 including	 an	 examination	 of	 which
constraints	are	active	of	inactive.



Constants	are	given	as

(10.18)
(10.19)
(10.20)
(10.21)
(10.22)
(10.23)
(10.24)

and	constraints	as

(10.25)
(10.26)
(10.27)
(10.28)
(10.29)
(10.30)
(10.31)

10.4 	Mathematical	Example

10.4.1 	Data	Fitting

Data	fitting	 is	 the	process	of	constructing	a	mathematical	 function	 to	 fit	a	 series	of	data
points.	 Data	 points	 can	 be	 experiment	 results,	 simulation	 results,	 or	 observations	 of	 n
natural	phenomena.	There	are	many	different	methods	for	data	fitting.	This	section	will	use
the	least	squares	approach,	which	requires	the	use	of	optimization.

Let	us	look	at	the	three	points	marked	as	circles	in	Fig.	10.9.	The	coordinates	of	the	three
points	are	(2,	9),	(6,	1),	and	(9,	16).



Figure	10.9.	Data	Fitting	Through	Three	Points

We	will	use	a	quadratic	function,	expressed	by	y	=	ax2	+	bx	+	c,	to	fit	the	data.	To	fit	a
quadratic	function	that	passes	through	all	three	points,	the	following	system	of	equations
must	be	solved.	In	the	following	system	of	equations,	a,	b,	and	c	are	unknowns	and	 their
values	can	be	obtained	exactly	by	solving	the	equations.	The	equations	are	satisfied	by	a	=
1,	b	=	−10,	and	c	=	25.

(10.32)
(10.33)
(10.34)

The	 fitted	 curve	 of	 the	 above	 example	passes	 through	 all	 three	 points.	 If	 a	 quadratic
function	is	required	to	fit	more	than	three	points,	its	curve	can	pass	through	all	points	only
in	special	cases.	The	method	of	least	squares	is	a	popular	and	easy-to-implement	approach
to	approximate	the	solution	of	overdetermined	systems	(sets	of	equations	in	which	there	are
more	equations	 than	unknowns).	The	overall	solution	obtained	by	 the	 least	 squares	data
fitting	minimizes	the	sum	of	the	squares	of	the	errors	when	solving	every	single	equation.	It
is	used	in	Sec.	10.4.2	to	fit	a	quadratic	function	to	four	points.

10.4.2 	Least	Squares	Data	Fitting

The	least	squares	data	fitting	minimizes	the	sum	of	the	squared	residuals.	The	residuals	are
the	differences	between	the	recorded	values	and	the	fitted	(or	approximate)	values	provided
by	a	model	(Ref.	[6]).	In	this	example,	there	is	one	more	point	(7.5,	6.5)	in	addition	to	the
three	points	in	Sec.	10.4.1.	This	new	point	is	not	on	the	curve	given	by	y	=	x2	−	10x	+	25.	A
fitted	quadratic	function	cannot	pass	through	all	the	four	points.	Instead,	the	least	squares
data	fitting	is	used	to	fit	a	quadratic	function	that	minimizes	the	sum	of	the	errors	between
the	 fours	 points	 and	 the	 corresponding	 points	 on	 its	 curve.	 Let	 ỹ	 represent	 the	 fitted
quadratic	function.	The	sum	of	the	errors	is	expressed	as



(10.35)

Perform	an	unconstrained	minimization	using	Eq.	10.35	as	the	objective	function.	After
the	minimization	problem	is	solved	using	MATLAB,	 the	corresponding	values	of	 the	 three
parameters	are	a	=	0.9937,	b	=	−9.9198,	and	c	=	24.8524.	The	sum	of	the	squared	residuals
is	0.0383.	The	four	points,	as	well	as	the	curve	given	by	the	fitted	quadratic	function,	are
plotted	in	Fig.	10.10.	Note	that	the	points	are	very	close	to,	but	not	exactly	on,	 the	fitted
curve.

Figure	10.10.	Least	Squares	Data	Fitting	Through	Four	Points

10.5 	Civil	Engineering	Example

The	company	you	work	 for	 is	planning	on	building	a	new	 facility	 to	 account	 for	 recent
growth.	You	 have	 been	chosen	 to	 design	 the	 exterior	walls	 of	 the	 building.	 The	 indoor
temperature	 is	 to	 remain	at	Ti	=	25°C	 for	a	comfortable	 indoor	environment.	During	 the
winter	months,	 the	outdoor	 temperature	 is	consistently	at	To	=	0°C.	Your	 objective	 is	 to
minimize	the	heat	loss	during	the	winter	months,	while	also	being	cost	conscious.

In	the	building	and	construction	industry,	insulating	materials	are	commonly	described
by	 their	 thermal	 resistance	 (R-value).	 The	 R-value	 being	 discussed	 is	 the	 unit	 thermal
resistance.	This	 is	used	for	a	unit	value	of	any	particular	material.	 It	 is	expressed	as	 the
thickness	of	the	material	divided	by	the	thermal	conductivity.	For	the	thermal	resistance	of
an	entire	section	of	material,	the	unit	thermal	resistance	is	divided	by	the	thickness	of	the
material.	The	larger	the	R-value,	the	better	the	building	insulation’s	effectiveness	(Ref.	[7]).

Heat	transfer	through	an	insulating	layer	is	analogous	to	electrical	resistance.	The	heat
transfer	in	a	simple	system	can	be	solved	by	using	electrical	resistance	in	series	with	a	fixed



potential.	The	differences	between	electrical	and	thermal	are:	(i)	the	resistances	of	thermal
systems	are	thermal	resistances,	and	(ii)	the	potential	is	the	difference	in	temperature	from
one	side	of	the	material	to	the	other.	The	resistance	of	each	material	to	heat	transfer	depends
on	the	specific	thermal	resistance	[R-value]/[unit	thickness].

Assuming	1-D	steady	heat	transfer,	given	by	Eq.	10.36.

	=	0 (10.36)

The	boundary	conditions	are	given	by

−	k 	=	h0(T0	−	T(0)) (10.37)

and

−	k 	=	hi(T(L)	−	Ti) (10.38)

where	 k	 is	 the	 thermal	 conduction	 coefficient,	 and	 h	 is	 the	 convection	 heat	 transfer
coefficient.	The	convective	heat	transfer	coefficients	are	hi	=	2	[ ]	and	h0	=	22	[ ]	for	the
inner	and	outer	regions,	respectively.

Your	boss	said	 that	 the	wall	must	cost	no	more	 than	$100	and	be	no	 thicker	 than	1m.
Instead	 of	 solving	 the	 differential	 equation	 by	 hand,	 you	 are	 provided	 with	 the	 file
steadyeqn.m	to	calculate	the	inner	and	outer	wall	temperatures.	Using	the	above	equations
along	 with	 the	 material	 properties	 in	 Table	 10.2,	 minimize	 the	 heat	 transfer	 rate	 and
minimize	the	cost	per	unit	wall	area.

Table	10.2.	Material	Properties

Material k	(W/mK) Cost	($/cm)

Concrete	block 0.688 1
R-15	insulation	board 0.04 15
Wood 0.212 3
Brick 1.24 0.50

1. Plot	the	Pareto	frontier	for	each	of	the	four	materials	on	the	same	graph.

2. Plot	the	Pareto	frontier	for	the	entire	range	of	materials	and	thicknesses.

10.6 	Electrical	Engineering	Example

10.6.1 	Introduction	to	Thermoelectric	Window	Design

The	 Thermoelectric	 (TE)	 window	 design	 presented	 in	 this	 example	 uses	 TE	 units	 to
actively	transfer	heat	to	maintain	the	desired	indoor	temperatures.	TE	units	are	solid	state
devices	 that	 actively	 transfer	 heat	 in	 designated	 directions	when	 supplied	 with	 electric
power	(see	Refs.	[8,	9,	10,	11]).	They	are	sufficiently	small	to	be	integrated	into	a	window.



The	simplified	schematic	of	the	TE	window	depicted	 in	Fig.	10.11	 indicates	 that	 the	TE
units	 are	 installed	within	 the	 frame	 of	 the	 window,	which,	 for	 practical	 purposes,	 also
performs	as	a	heat	enhancer	(heat	sink).	TE	units	in	the	window	facilitate	heat	flow	(solid
lines)	 in	 the	 direction	opposite	 that	 of	 the	 passive	 heat	 flow	through	 the	window	 panes
(broken	lines),	as	illustrated	in	Fig.	10.11(a).	Though	not	shown	in	Fig.	10.11(a),	the	frame
of	the	TE	window	will	be	equipped	with	fins	to	maximize	heat	transfer.	With	this	design,	it
is	 possible	 to	 integrate	 TE	 units	 in	 any	 glazing	 system	 once	 the	 frame	 is	 modified	 to
accommodate	the	TE	units.

Figure	10.11.	Schematic	of	TE	Window

To	achieve	a	high	heat	transfer	rate	through	the	TE	units	installed	on	the	window	frame,
the	connection	of	the	TE	units	in	their	electric	network	should	be	optimized.	Suppose	the
TE	units	are	connected	in	Np	parallel	circuits.	In	each	of	the	parallel	circuits,	there	are	Ns	TE
units	connected	in	series.	The	electric	network	is	shown	in	Fig.	10.12.



Figure	10.12.	Electric	Network

The	TE	units	shown	in	Fig.	10.12	are	integrated	into	the	window	frames	to	transfer	heat
from	inside	to	the	outside	in	summer.	Under	this	condition,	the	function	of	the	TE	units	is	to
cool	the	air	inside	the	room.	The	higher	the	rate	of	heat	transfer	through	the	TE	units,	the
better	 the	performance.	The	objective	of	 this	 optimization	 is	 to	maximize	 the	 total	 heat
transfer	 rate	 through	 the	TE	units	 to	 the	outside,	expressed	as	 cold.	The	numbers	of	TE
units	in	series	and	in	parallel,	the	total	current,	and	the	temperature	difference	across	the	TE
units	are	the	four	parameters	to	be	varied	in	the	optimization.	In	this	problem,	the	TE	units
are	modeled	based	on	their	configuration	and	properties.	The	trust	region	method	is	used	to
generate	an	approximation	for	the	optimization	problem.

10.6.2 	Brief	Introduction	to	the	Trust	Region	Method

The	 trust	 region	 method	 generates	 a	 series	 of	 intermediate	 steps	 with	 the	 help	 of	 a
quadratic	model	of	the	objective	function.	This	method	defines	a	region	around	the	current
iterate	within	which	it	trusts	 the	model	 to	be	an	adequate	 representation	of	 the	objective
function.	It	then	defines	the	step	leading	to	an	approximate	minimum	of	the	model	in	this
region.	A	detailed	discussion	of	the	theory	and	implementation	of	the	method	can	be	found
in	(Refs.	[12,	13,	14,	15]).

The	trust	region	method	chooses	the	direction	and	length	of	the	step	simultaneously.	If	a
step	is	not	acceptable,	it	reduces	the	size	of	the	region	and	finds	a	new	minimum.	In	general,
the	direction	of	the	step	changes	whenever	the	size	of	the	trust	region	is	altered.	The	size	of
the	trust	region	is	critical	to	the	effectiveness	of	each	step.	If	 the	region	is	 too	small,	 the
algorithm	misses	an	opportunity	to	take	a	substantial	step	that	will	move	it	much	closer	to
the	minimum	of	the	objective	function.	If	it	is	too	large,	the	minimum	of	the	model	may	be
far	from	that	of	the	objective	function	in	the	region,	and	the	size	of	the	region	will	need	to
be	 reduced.	 In	 practical	 algorithms,	 the	 size	 of	 the	 region	 is	 chosen	 according	 to	 the
performance	 of	 the	 algorithm	 during	 previous	 iterations.	 If	 the	 model	 is	 consistently
reliable,	 producing	 good	 steps	 and	 accurately	 predicting	 the	 behavior	 of	 the	 objective
function	along	these	steps,	 the	size	of	 the	 trust	region	may	be	increased	to	allow	longer,



more	 ambitious,	 steps	 to	 be	 taken.	 A	 failed	 step	 is	 an	 indication	 that	 our	 model	 is	 an
inadequate	representation	of	the	objective	function	over	the	current	trust	region.	After	such	a
step,	 the	 size	 of	 the	 region	 is	 reduced,	 and	 the	 step	 is	 run	 again.	 [12]	 The	 detailed
implementation	of	the	trust	region	method	for	this	optimization	is	explained	in	Sec.	10.6.4.

10.6.3 	Modeling	TE	Units

The	ATI	windows	 use	 TE	 units	 to	 control	 the	 heat	 transferred	 through	 the	 inner	 panes
(Ref.	 [9]).	 Each	 TE	 unit	 consists	 of	 thermocouples	 which,	when	 supplied	 with	 electric
current,	induce	heat	flow	in	the	direction	of	the	current.	This	is	known	as	the	Peltier	effect.
Because	of	the	thermocouples’	electrical	resistance,	heat	is	generated.	This	is	known	as	the
Joules	effect.	As	a	result	of	the	two	conflicting	effects,	heat	is	absorbed	on	the	cold	side	and
released	from	the	hot	side.	A	temperature	difference	is	created	across	the	TE	units.	On	the
cold	side	of	the	TE	units,	the	heat	rate	is	predicted	as

cold	=	2NteN	 (10.39)

where	Nte	is	the	number	of	TE	units;	N	is	the	number	of	thermocouples	in	each	TE	unit;	α	is
the	Seebeck	coefficient;	Ite	is	the	electric	current;	Tc	is	the	cold	side	temperature;	ρ	is	 the
resistivity;	G	 is	 the	geometry	 factor,	which	 represents	 the	 area	 to	 thickness	 ratio	 of	 the
thermocouple;	κ	is	the	thermal	conductivity;	and	ΔTte	is	the	temperature	difference	across
the	thermocouple.	For	a	given	TE	unit,	α,	ρ,	and	κ	are	temperature	dependent	properties,	N
and	 G	 are	 constants,	 and	 are	 all	 provided	 by	 the	 manufacturer.	 The	 remaining	 four
variables,	Ite,	Tte,	Tc,	and	Nte,	are	design	variables	for	the	problem	presented	in	Sec.	10.6.4.

TE	units	are	connected	in	an	electrical	network,	and	power	is	supplied	to	every	TE	unit.
The	TE	units	used	for	the	TE	window	design	are	divided	into	several	groups.	The	number
of	 the	groups	 is	Np.	There	 is	 the	 same	number	 of	TE	units	 in	 each	 group,	which	 is	Ns.
Within	each	group,	the	TE	units	are	connected	in	series.	Then,	all	the	groups	are	connected
in	parallel.	The	electric	voltage	supplied	to	each	group	is	the	same.	The	connection	of	the
TE	units	is	shown	in	Fig.	10.12.	The	total	number	of	TE	units	is

Nte	=	NsNp (10.40)

The	voltage	drop	across	the	TE	unit	is	given	by

V	te	=	2N	 (10.41)

The	heat	released	from	the	hot	side	of	the	TE	unit	is	the	combination	of	the	heat	absorbed
by	the	TE	and	the	heat	generated	by	electric	current,	which	is	given	by

hot	=	NteIteV	te	+	 cold (10.42)

The	maximum	allowable	applied	current,	Imax,	is	given	by

(10.43)



where	Z	is	the	figure-of-merit	provided	by	the	manufacturer,	Th	is	the	hot	side	temperature,
and	the	other	variables	are	defined	above.

The	maximum	allowable	temperature	difference,	ΔTmax,	is	given	by

ΔTmax	=	Th	−	 (10.44)

10.6.4 	Solving	Optimization	Problem

The	optimization	of	the	connection	of	the	TE	units	can	be	solved	as	follows:

1. Objective	of	Optimization

The	TE	units	 are	 integrated	 into	 the	window	 frames	 to	 transfer	 the	 heat	 from	 the
inside	of	a	room	to	the	outside	in	summer.	In	this	condition,	the	function	of	the	TE	units
is	 to	 cool	 the	 air	 inside	 the	 room.	The	 objective	 of	 optimization	 is	 to	maximize	 the
overall	heat	transfer	rate	through	the	TE	units	to	the	outside,	which	is	 cold.	The	number
of	the	TE	units	in	series,	Ns,	the	number	of	the	TE	units	in	parallel,	Np,	the	total	electric
current,	I,	and	the	temperature	difference	across	the	TE	units,	δT,	are	the	four	variables
for	optimization.

2. Physical	Constraints

The	TE	units	are	fixed	on	the	frame	of	the	window.	The	total	area	of	all	the	TE	units
should	 not	 exceed	 the	 area	 of	 the	 frame,	 Aframe.	 The	 total	 area	 of	 the	 TE	 units	 is
expressed	as

Aall	=	NsNpAte (10.45)

The	 electric	 current	 in	 each	 set	 of	 TE	 units	 should	 not	 exceed	 the	 maximum
allowable	current.

Ite	≤	Imax (10.46)

According	to	energy	conservation,	the	outside	temperature	is	less	than	the	sum	of	the
inside	temperature	and	the	temperature	difference	across	the	TE	units.

Tout	≤	Tcold	+	NsΔTte (10.47)

Bounds	on	the	total	current	are	used	to	avoid	excessively	large	power	requirements	or
unreasonably	small	power	consumption.

0.01	≤	NpIte	≤	100 (10.48)

3. Modeling	the	Optimization	Problem

Considering	the	objective	of	the	optimization	and	 the	constraints,	 the	optimization
problem	is	as	follows.



(10.49)

subject	to

(10.50)
(10.51)
(10.52)
(10.53)
(10.54)

(10.55)

4. Optimization	Procedure

The	trust	region	method	is	used	for	optimization.	At	the	k	iteration,	the	model	of	the
TE	units	is	approximated	by	a	quadratic	Taylor	series	expansion.

coldapprox(p)	=	 cold(xk)	+	Gk
Tp	+	 pTH	kp (10.56)

Where	 coldapprox(p)	is	the	approximated	objective	function;	p	is	the	step	length;	 cold(xk)	is
the	optimal	result	from	the	last	iteration	and	also	the	initial	value	of	the	objective	function
in	the	current	iteration;	GkT	is	the	gradient	at	the	starting	point,	and	Hk	is	the	Hessian	at	the
starting	point.

In	each	iteration,	a	ratio	is	defined	to	evaluate	the	agreement	between	the	approximate
objective	function	and	the	actual	objective	function,	as	given	by

ρk	=	 (10.57)

The	approximate	objective	in	Eq.	10.56	is	optimized	using	MATLAB.	In	each	iteration,	the
approximate	model	is	optimized	as	follows.

Given	a	small	number	 	>	0,	γ	=	0.3,	Δ0	=	γ ,	α	=	1,	and	μ	=	 ;
for	k=1,	2,	…

Solve	optimization	problem	for	the	approximate	model	of	Eq.	10.56	in	MATLAB.

Check	the	improvement	that	Δ cold	has	on	the	value	of	the	actual	objective	function.

	if	Δ cold	≤	α
Stop	optimization.	The	actual	value	of	the	objective	
function	 cold	is	the	final	optimal	value.

else	continue.	
				Evaluate	ρk	in	Eq.	10.57
				if	ρk	≤
										Δk+1	=	μΔk
				else



										if	ρk	≥ 	and	 pk 	=	Δk
													Δk+1	=	min(2Δk, )
										else	Δk+1	=	Δk
				if	ρk	≥	μ
										xk+1	=	xk	+	pk
				else
				xk+1	=	xk
end	(for).

10.6.5 	Results

The	optimization	of	the	problem	in	Sec.	10.6.4	 is	performed	by	MATLAB.	The	maximum
value	of	the	objective	function	is	Qcold	=	1924.	The	optimal	values	of	the	design	variables
obtained	from	the	optimization	are	ΔT	=	6,	I	=	23.36,	Ns	=	16.8,	and	Np	=	6.6.	Since	 the
numbers	of	the	TE	units	in	series	and	in	parallel	are	integers,	the	values	of	Ns	and	Np	are
rounded	to	the	closest	integers.	The	final	optimal	results	are	ΔT	=	6,	I	=	23.36,	Ns	=	17,	and
Np	=	7.	The	optimization	stops	only	after	four	iterations	to	evaluate	the	approximate	model.

10.7 	Business	Example

You	are	put	 in	charge	of	rearranging	the	dining	room	at	 the	restaurant	you	work	at.	The
owner	has	told	you	that	your	salary	will	now	be	measured	as	a	percentage	of	all	food	sold.
Therefore,	you	have	chosen	to	use	optimization	to	maximize	your	paycheck.

The	restaurant	is	a	square	with	each	side	measuring	40	ft.	You	are	free	to	select	the	size,
position,	and	number	of	circular	tables	within	the	dining	hall.	In	order	for	the	kitchen	staff
to	operate	properly	and	the	patrons	to	feel	comfortable,	 the	owner	has	decided	 that	 there
must	 be	 a	minimum	 distance	 of	 3	 ft	 between	 any	 two	 surfaces.	 This	 includes	 between
tables,	as	well	as	away	from	the	walls.	 In	order	 to	please	 the	wait	staff	 (whose	salary	 is
based	on	tips),	you	have	chosen	a	minimum	of	two	seats	per	table.	The	minimum	radius	of
these	two	person	tables	is	1	ft.

For	every	2.5	ft.	of	additional	circumference,	you	may	add	a	place	setting.	If	you	assume
that	 your	 salary	 is	 directly	 proportional	 to	 the	 number	 of	 seats	 you	 can	 fit	 (neglecting
atmosphere,	quality	 of	 food,	 sanitary	 requirements,	 fire	 regulations,	 etc.),	 formulate	 and
solve	a	problem	to	maximize	your	paycheck.

10.8 	Summary

In	order	to	fully	appreciate	the	imperative	role	of	optimization	in	designing	systems	-	from
simple	everyday	products	and	complex	engineering	systems,	to	non-engineering	systems	-	it
is	 important	 to	 begin	 the	 application	 of	 optimization	 to	 practical	 problems.	 With	 this
perspective	in	mind,	this	chapter	provided	the	opportunity	to	apply	optimization	to	diverse
practical	problems.	These	included	(i)	designing	a	truss	structure,	(ii)	designing	an	aircraft



landing	gear,	(iii)	data	fitting,	(iv)	designing	a	thermoelectric	window,	and	(v)	arranging	the
seating	pattern	in	a	restaurant.	Pertinent	mathematical	models	were	also	provided	for	each
problem,	 such	 that	 additional	 references	were	 not	 required	 to	 formulate	 and	 solve	 each
optimization	problem.

10.9 	Problems

Warm-up	Problems

10.1 Prove	the	results	of	Sec.	10.4.1.	Briefly	discuss	the	issues	as	you	see	them.

Intermediate	Problems

10.2 A	structural	engineering	example	is	presented	in	Sec.	10.2.1,	solve	Items	1.	through
5.	Explain	your	work	throughout.

10.3 A	structural	engineering	example	is	presented	in	Sec.	10.2.1,	solve	Items	1.	through
8.	Explain	your	work	throughout.

10.4 Generate	the	Pareto	frontier	for	the	tolerance	allocation	problem	shown	in	Fig.	10.5
with	 20	 points.	 Prepare	 a	 five-page	 PowerPoint	 presentation	 for	 a	 customer	who
wants	 to	understand	 the	 tradeoffs	 involved	 in	 the	problem.	Also	submit	a	concise
report	that	explains	how	you	developed	your	presentation	results.	The	customer	will
give	 your	 report	 to	 her	 technical	 group	 leader	 who	 will	 pass	 judgement	 on	 the
credibility	of	your	findings.

10.5 In	Section	10.3,	an	aerospace	engineering	example	is	provided.	You	are	to	determine
the	range	of	wheel	track	values	that	will	satisfy	all	of	the	requirements	discussed	in
this	Aerospace	Engineering	Example.	Explain	the	practical	meaning	of	the	nature	of
your	answer,	including	an	examination	of	which	constraints	are	active	or	 inactive,
and	 any	pertinent	 implications.	Discover	 any	 tradeoffs	 that	 result	 from	 the	 range
provided	 in	 your	 answer.	 Prepare	 a	 five-page	 PowerPoint	 presentation	 of	 your
findings,	and	a	concise	report	that	supports	your	results.

10.6 Solve	the	problem	in	Section	10.4.2,	using	computational	optimization.

10.7 Solve	the	problem	in	Section	10.4.2,	using	analytical	optimization.	That	is,	find	the
necessary	conditions,	and	solve	them	using	linear	algebra.

10.8 (i)	 Solve	 the	 problem	 in	 Section	 10.5.	 (ii)	 Prepare	 a	 five-page	 PowerPoint
presentation	of	your	findings.	(iii)	Submit	a	brief	report	that	supports	your	analytical
developments.

10.9 HEAT	EXCHANGER:	In	this	problem,	we	are	interested	in	designing	a	three-stage
heat	exchanger	network	(Refs.	[16,	17]).	A	schematic	of	the	heat	exchanger	network
is	shown	in	Fig.	10.13.	A	cold	stream	of	fluid	of	a	given	flow	rate,	W,	and	specific
heat,	Cp,	 is	 heated	 from	 temperature	T0	 	 oF	 to	 T˙3	 oF	 to	T3	 oF	 using	 three	 heat
exchangers	arranged	in	three	stages.	At	each	stage,	the	cold	fluid	is	heated	by	a	hot
fluid	 of	 the	 same	 flow	 rate,	W,	 and	 specific	 heat,	Cp,	 as	 for	 the	 cold	 fluid.	 The



temperatures	 of	 the	 hot	 fluid	 entering	 Stages	 1,	 2,	 and	 3	 are	 t11,	 t12,	 and	 t13,
respectively.	 The	 overall	 heat	 transfer	 coefficients	 U1,	U2,	 and	 U3	 of	 the	 heat
exchangers	are	known.

Figure	10.13.	Heat	Exchanger	Network	Design	Problem

Our	 focus	 is	 to	minimize	 the	 sum	of	 the	areas	of	 the	 individual	heat	 exchangers,
while	maximizing	 the	 final	 temperature	of	 the	cold	fluid,	T3.	We	 assume	 that	 the
initial	temperature	of	the	cold	fluid,	T0,	is	given.

A	total	of	six	inequality	constraints	are	imposed	in	this	design.	The	first	three	arise
from	the	fact	that	the	rate	of	heat	transferred	to	the	cold	fluid	is	less	than	or	equal	to
the	rate	of	heat	lost	by	the	hot	fluid.	For	the	i-th	heat	exchanger,	this	constraint	can
be	expressed	as

WCp(Ti	−	Ti-1)	≤	WCp(ti1	−	ti2)					i	=	{1,	2,	3} (10.58)

The	remaining	inequality	constraints	reflect	that	the	heat	gained	by	the	cold	fluid	is
less	than	or	equal	to	the	heat	lost	by	the	heat	exchanger.	For	the	i-th	heat	exchanger,
this	constraint	can	be	expressed	in	a	simplified	form	as

(10.59)

The	areas	and	temperatures	are	given	by	the	following	upper	and	lower	bounds.

(10.60)

(10.61)

(10.62)

The	given	design	parameters	are	T0	=	100oF,	WC	p	=	105	BTU/Hr-oF,	 ti1	=	{300,
400,	600}oF,	and	Ui	=	{120,	80,	40}	BTU/hr-sq.ft-oF,	where	i	=	{1,	2,	3}.	Given	the
above	information,	solve	the	following	problems.

(a) Assume	that	the	initial	temperature	of	the	cold	fluid	is	100	oF,	and	 the	desired
final	 temperature	 is	 500	 oF.	 Minimize	 the	 total	 area	 of	 the	 heat	 exchanger
network	that	accomplishes	the	desired	heating	of	 the	cold	fluid,	subject	to	 the
constraints	discussed	above.

(b) Assume	that	the	initial	temperature	of	the	cold	fluid	is	still	100oF.	Find	a	design
that	 maximizes	 the	 final	 temperature	 of	 the	 cold	 fluid,	 subject	 to	 the	 given



constraints.	 (c)	We	 now	wish	 to	 simultaneously	minimize	 the	 total	 area,	 and
maximize	 the	 final	 temperature	 of	 the	 cold	 fluid,	 subject	 to	 the	 above
constraints.	 Formulate	 the	 multiobjective	 problem,	 and	 solve	 it	 using	 the
weighted	 sum	 method.	 With	 supporting	 information,	 comment	 on	 how
easy/difficult	 it	 was	 to	 obtain	 the	 Pareto	 frontier	 using	 the	 weighted	 sum
method.

(d) Now	that	we	have	obtained	the	Pareto	frontier,	use	it	as	a	design	tool	to	choose
the	 “optimum”	 design	 for	 the	 heat	 exchanger.	 You	 are	 given	 the	 ranges	 of
desirability	 for	each	of	 the	objectives	 (see	Table	10.3).	On	 the	Pareto	frontier
plot,	 mark	 each	 of	 these	 ranges	 for	 the	 two	 objectives.	 A	 grid	 of	 different
possibilities	in	the	design	space	(in	terms	of	ranges	of	differing	desirabilities)	is
obtained.	As	an	example,	a	region	in	the	design	space	could	have	total	area	as
“unacceptable”	and	the	final	temperature	as	“desirable.”

Table	10.3.	Ranges	of	Desirability	for	the	Objectives

Total	area,	AT	(×104		ft2) Final	Temperature	(oF	)

Ideal AT	≤	0.5 ≥	600
Desirable 0.5	≤	AT	≤	1 600	≤	T3	≤	550
Tolerable 1	≤	AT	≤	1.5 550	≤	T3	≤	500
Undesirable 1.5	≤	AT	≤	2 500	≤	T3	≤	450
Unacceptable AT	≥	2 T3	≤	450

Is	it	possible	for	both	of	the	objectives	to	be	in	the	“ideal”	or	“desirable”	range
of	desirability?	Explain.

(e) Our	task	now	is	to	choose	a	final	design	that	achieves	the	“best	of	both	worlds”
from	the	above	generated	grid	of	possibilites.	Make	sure	that	your	final	design
does	not	 fall	 into“undesirable”	or	“unacceptable”	ranges	for	either	objectives.
Discuss	your	thought	process	behind	your	choice	of	final	design	(note	that	there
is	generally	no	single	correct	answer	for	such	problems).

Advanced	Problems

10.10 UNIVERSAL	MOTOR:	Refer	to	the	universal	motor	problem	given	in	Sec.	7.7.	Use
information	in	that	example	to	complete	the	following	tasks.		

1. Use	the	following	values	for	the	design	variables,	Na	=	1236.8,Nf	=	53.23,Awf
=	0.2596×10-6,A	wa	=	0.2601×10-6,I	=	6,r	o	=	0.025448,t	=	0.007184,	and	L	=
0.024894.	 Input	 the	 information	 as	 a	 row	 vector	 and	 use	 the	 function
umotor.m	 to	determine	 the	mass,	power,	efficiency,	 torque,	and	magnetizing
intensity	of	the	motor	from	the	design	variables.

2. Minimize	the	mass	of	the	motor	using	the	values	in	Part	1	as	initial	guesses.



3. Minimize	 the	 mass	 and	 maximize	 the	 efficiency	 of	 the	 motor,	 for	 both
objective	functions	bearing	the	same	weight	(i.e.,	w	=	0.5	in	f	=	w(μ1)	+	(1	−
w)(μ2)).	 This	 is	 a	 bi-objective	 problem	 where	 μ1	 is	 the	 mass	 and	 μ2	 is
efficiency.	What	is	the	result?	Discuss	possible	reasons	for	your	results.

4. Implement	 the	 scaling	 of	 the	 design	 variables	 discussed	 in	 the	 chapter.
Minimize	 the	 mass	 and	 maximize	 the	 efficiency	 of	 the	 motor	 for	 both
objective	 functions	 bearing	 the	 same	 weight.	 (Remember	 to	 specify
appropriate	upper	and	lower	bounds.)

5. Plot	the	Pareto	frontier	for	the	bi-objective	problem.	Maximize	efficiency	and
minimize	mass.	Obtain	100	Pareto	points.

6. Design	the	motor	for	a	mass	target	of	0.5kg	and	an	efficiency	target	of	0.7.

10.11 WIND	Energy:	You	have	installed	a	small	wind	turbine	at	Syracuse	University.	 In
the	next	36	hours,	it	can	be	operated	for	only	4	hours	30	minutes	(4.5	hours).	The
turbine	can	be	switched	on	and	off	twice	over	the	concerned	36	hours	(i.e.,	it	can	be
operated	only	twice).	It	cannot	be	operated	when	the	chance	of	precipitation	(C)	is
50%	or	more.	The	power	generated	(P)	by	the	turbine	in	watts	depends	on	the	wind
speed	(U),	as	given	by

P	=	3.0	×	U3 (10.63)

The	energy	generated	(E)	over	a	period	of	T	minutes	can	be	estimated	as:

(10.64)

where	Pi	is	the	power	generated	by	the	turbine	in	the	ith	minute.		

1. Model	the	variations	of	wind	speed	(U)	and	chance	of	precipitation	(C)	with
time	 (T)	 over	 the	 concerned	 36	 hours.	 You	 may	 use	 quadratic	 or	 cubic
polynomial	functions	for	this	purpose.

2. Formulate,	model,	 and	solve	an	optimization	problem	 to	maximize	 the	 total
energy	produced	(ET)	by	 the	 turbine	over	 the	next	36	hours,	 starting	 from	a
point	of	data	 recording.	The	design	variables	are	 the	 two	starting	 times,	TT1
and	TT2,	and	 the	 two	stopping	 times,	TP1	and	TP2.	All	 four	 design	variables
are	to	be	expressed	in	minutes.

The	hourly	(and	15-min	interval)	weather	data	(i.e.,	wind	speed	(U)	and	chance	of
precipitation	(C))	can	be	obtained	from	the	website:	www.weather.com.

10.12 Solve	 the	 business	 problem	 presented	 in	 Sec.	 10.7.	 Provide	 brief	 and	 helpful
pertinent	discussions.

Graduate	Level	Problems

10.13 A	structural	engineering	example	is	presented	in	Sec.	10.2.1.	Solve	Items	1.	through

http://www.weather.com


9.	 (This	 problem	 is	 geared	 towards	 graduate	 students	 in	 mechanical,	 civil,	 or
aerospace	engineering).	This	problem	may	require	some	 independent	 research	for
some	students.

10.14 We	are	given	 the	means,	μX,	and	standard	deviations,	σX,	of	a	 set	 of	 independent
random	variables,	X	=	{X1,X2,…Xnx}.	The	mean	and	standard	deviation	of	a	function
of	 X,	 say	 g(X),	 can	 be	 found	 using	 a	 Taylor	 series	 approximation,	 given	 as
follows	[18].

(10.65)

(10.66)

(10.67)

where	 μg,	 V	 g,	 and	 σg	 are	 the	 mean,	 variance,	 and	 standard	 deviation	 of	 g,
respectively.	Using	the	above	equation,	derive	the	expression	for	 the	variance	and
standard	 deviation	 of	 θ1	 −	 θ2	 (Eqs.	 10.2	 and	 10.3)	 for	 the	 tolerance	 allocation
problem.
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PART	4

GOING	DEEPER:	INSIDE	THE	CODES	AND
THEORETICAL	ASPECTS

Part	IV	of	the	book	explains	what	is	inside	the	code	and	how	it	works.	This	knowledge	will
make	it	possible	to	use	the	optimization	code	with	more	confidence,	and	more	reliably.	It
will	also	help	you	know	what	to	do	when	things	do	not	work.	The	material	presented	will
also	 be	 great	 preparation	 for	 further	 studies	 in	 optimization.	 With	 this	 more	 advanced
knowledge,	it	will	be	possible	to	understand	such	things	as	the	code	error	messages.	The
material	examined	 in	 this	part	of	 the	book	will	 reinforce	and	advance	 the	knowledge	of
optimization	that	was	previously	learned.

Metaphorically,	the	material	up	to	this	point	taught	us	how	to	drive	the	design	from	a	bad
state	 to	 an	 optimal	 state.	We	did	 so	without	 understanding	 how	 the	 car	we	 are	 driving
works,	how	to	fix	it,	design	it,	or	actually	build	it.	However,	we	have	sufficient	practical
knowledge	to	drive	from	a	bad	to	a	good	design.	The	following	material	will	teach	us	how
the	car	works,	how	to	fix	it,	how	to	make	it	perform	very	well,	and	even	prepare	us	venture
into	 the	 advanced	 world	 of	 designing	 cars	 (if	 that	 is	 our	 interest).	 That	 is,	 building
optimization	 codes	 and	 algorithms.	 Interestingly,	most	 of	 us	 want	 to	 use	 the	 power	 of
optimization,	without	having	to	become	expert	in	the	intricate	details	of	the	inner-workings
of	the	optimization	code.	This	book	provides	the	breadth	of	presentation	to	suit	these	diverse
objectives.	More	advanced	topics	will	be	presented	beyond	Part	IV.

Specifically,	Part	IV	presents	three	elementary	topics:

11. Linear	Programming

12. Nonlinear	Programming	with	No	Constraints

13. Nonlinear	Programming	with	Constraints



11

Linear	Programming

11.1 	Overview

Linear	programming	(LP)	is	a	technique	for	optimizing	a	linear	objective	function,	subject
to	 linear	 equality	 and	 linear	 inequality	 constraints.	 Linear	 programming	 is	 an	 important
field	 of	 optimization	 for	 several	 reasons	 (Refs.	 [1,	 2]).	 Many	 practical	 problems	 in
engineering	and	operations	 research	 can	 be	 expressed	 as	 linear	 programming	 problems.
Linear	programming	problems	can	be	solved	in	an	easy,	fast,	and	reliable	manner.

Linear	programming	was	first	used	in	the	field	of	economics,	and	still	remains	popular
in	the	areas	of	management,	economics,	 finance,	and	engineering.	During	World	War	II,
George	Dantzig	 of	 the	 U.S.	 Air	 Force	 used	 LP	 techniques	 for	 planning	 problems.	 He
invented	the	Simplex	method,	which	 is	one	of	 the	most	popular	methods	for	solving	LP
problems.

Linear	 programming	 is	 a	 well	 developed	 subject	 in	 operations	 research,	 and	 several
references	that	focus	on	linear	programming	alone	are	available	[3,	4,	5,	6].	The	reader	is
encouraged	 to	 consult	 these	 references	 for	 a	 more	 detailed	 discussion	 of	 linear
programming.

In	 this	 chapter,	 the	 basics	 of	 linear	 programming	 problems	will	 be	 studied.	 First,	 an
introduction	 of	 the	 basic	 terminology	 and	 important	 concepts	 in	 LP	 problems	 will	 be
presented	in	Sec.	11.2.	In	Sec.	11.3,	the	graphical	approach	for	solving	LP	problems	will
be	discussed,	and	four	 types	of	possible	solutions	for	an	LP	problem	will	be	 introduced.
Details	on	the	MATLAB	linear	programming	solver	are	presented	in	Sec.	11.4.	Sections	11.5
and	11.6	discuss	 the	various	concepts	 involved	 in	 the	Simplex	method.	 In	Sec.	11.7,	 the
notion	of	duality	and	interior	point	methods	are	briefly	discussed.	Section	11.8	concludes
the	chapter	with	a	summary.

11.2 	Basics	of	Linear	Programming

In	 this	 section,	 some	 basic	 terminology	 and	 definitions	 in	 linear	 programming	 will	 be
discussed.

A	 generic	 linear	 programming	 problem	 consisting	 of	 linear	 equality	 and	 linear
inequality	constraints	is	given	as

(11.1)

subject	to

(11.2)
(11.3)



(11.4)
(11.5)
(11.6)

(11.7)

where	 z	 is	 the	 linear	 objective	 function	 to	 be	 minimized;	 c	 represents	 the	 vector	 of
coefficients	for	each	of	the	n	design	variables;	A	and	b	represent	the	matrix	and	vector	of
coefficients	for	m	inequality	constraints,	respectively;	Aeq	and	beq	represent	the	matrix	and
vector	 of	 coefficients	 for	p	 equality	 constraints,	 respectively;	 and	 xi-lb	 and	 xi-ub	 are	 the
lower	 and	 upper	 bounds	 on	 the	 i-th	 design	 variable,	 respectively.	 Note	 that	 the	 above
problem	is	not	defined	 in	 the	so-called	standard	form,	which	 is	commonly	used	 in	some
LP	solvers.	The	standard	form	will	be	discussed	later.

In	a	matrix	notation,	the	above	formulation	can	be	written	as

(11.8)

subject	to

(11.9)
(11.10)
(11.11)

where	 xlb	 and	 xub	 are	 vectors	 of	 the	 lower	 and	 upper	 bounds	 on	 the	 design	 variables,
respectively.	 Note	 that	 in	 some	 references,	 the	 objective	 function,	 z,	 is	 called	 the	 cost
function.	The	 coefficients	 c1,…,cn	 are	 also	 known	 as	 cost	 coefficients.	 Some	 references
pose	the	LP	problem	as	a	maximization	problem,	which	is	different	from	the	convention	in
the	present	chapter,	a	minimization	problem.

11.3 	Graphical	Solution	Approach:	Types	of	LP	Solutions

The	 graphical	 approach	 is	 a	 simple	 and	 easy	 technique	 to	 solve	 LP	 problems.	 The
procedure	involves	plotting	the	contours	of	the	objective	function	and	the	constraints.	The
feasible	 region	of	 the	 constraints	 and	 the	optimal	 solution	 is	 then	 identified	 graphically.
Note	 that	 the	 graphical	 approach	 to	 solving	 LP	 problems	 may	 not	 be	 possible	 as	 the
number	of	variables	increases.

There	are	four	possible	types	of	solutions	in	a	generic	LP	problem:	(1)	unique	solution,
(2)	 segment	 solution,	 (3)	 no	 solution,	 and	 (4)	 solution	 at	 infinity.	 These	 four	 types	 of



solutions	will	be	studied	using	examples.

11.3.1 	The	Unique	Solution

Consider	the	following	LP	problem.

(11.12)

subject	to

(11.13)
(11.14)
(11.15)

Plot	the	constraints	and	the	objective	function	contours,	as	shown	in	Fig.	11.1(a).	There	is
a	unique	solution	for	this	problem,	where	the	objective	function	contour	has	the	least	value
while	remaining	in	the	feasible	region.

Figure	11.1.	Types	of	LP	Solutions

Here	is	an	important	point	to	keep	in	mind.	If	a	constant	value	is	added	to	the	objective
function	 in	 the	 above	 problem,	 for	 example,	 x1	 –	 2x2	 +	 5,	 and	 the	 constraints	 remain
unchanged,	how	would	 it	affect	 the	 optimal	 solution?	 The	 optimal	 values	 of	 the	 design
variables	will	not	change	 because	 of	 the	 added	 constant.	 This	 is	 because	 the	 additional
constant	 in	 the	 objective	 function	 does	 not	 change	 the	 slope	 of	 the	 function	 contours.
However,	the	optimal	value	of	 the	objective	function	will	change	when	compared	 to	 the
original	objective	function.

11.3.2 	The	Segment	Solution

Consider	the	LP	problem	with	infinitely	many	solutions	in	the	form	of	a	segment	solution.



Examine	the	following	example:

(11.16)

subject	to

(11.17)
(11.18)
(11.19)

From	Figure	11.1(b),	the	slope	of	the	objective	function	and	the	slope	of	the	constraint
function,	 –0.5x1	 +	 x2	 ≤	 10,	 are	 the	 same.	 Upon	 optimization,	 the	 objective	 function
coincides	with	 the	 constraint	 function,	 resulting	 in	 infinitely	 many	 solutions	 along	 the
segment	shown	in	Fig.	11.1(b).

A	discussion	of	the	third	type	of	LP	solutions	is	presented	next.

11.3.3 	No	Solution

In	this	case,	we	will	study	LP	problems	that	do	not	have	a	feasible	solution.	Consider	 the
following	example.

(11.20)

subject	to

(11.21)
(11.22)
(11.23)

Observe	 the	 feasible	 region	 of	 this	 problem	 from	 Fig.	 11.1(c).	 The	 respective	 feasible
regions	of	the	inequality	constraints	do	not	intersect.	There	is	no	solution	that	satisfies	all
the	constraints.	Thus,	there	is	no	solution	to	this	problem.

11.3.4 	The	Solution	at	Infinity

Consider	the	following	problem.

(11.24)

subject	to

(11.25)
(11.26)

The	above	problem	leads	to	a	solution	at	 infinity.	The	feasible	region,	as	 illustrated	 in
Fig.	11.1(d),	is	not	bounded	to	yield	a	finite	optimum	value.	The	solution	for	this	problem
lies	at	infinity.



An	 unconstrained	 linear	 programming	 problem	 has	 a	 solution	 at	 infinity.	 These
problems	 are	 rarely	 encountered	 in	 practice.	 On	 the	 contrary,	 unconstrained	 nonlinear
programming	problems	are	 fairly	common	in	 practice.	Nonlinear	 optimization	problems
do	not	require	the	presence	of	a	constraint	in	order	to	yield	a	finite	optimum.

Thus	 far,	 four	 possible	 types	 of	 LP	 solutions	 have	 been	 described.	 The	 graphical
approach	to	solving	LP	problems	is	feasible	only	for	small	scale	problems.	For	large	scale
problems,	 software	 implementations	of	 LP	 solution	 algorithms	 are	 used.	However,	 note
that	graphical	visualization	means	can	be	used	to	examine	the	solution	obtained	for	a	large
scale	LP	problem.

11.4 	Solving	LP	Problems	Using	MATLAB

In	this	section,	the	command	linprog	in	MATLAB	is	revisited.	The	MATLAB	LP	solvers	use
variations	 of	 the	 numerical	 methods	 that	 will	 be	 learned	 later	 in	 this	 chapter.	 The
command	linprog	employs	different	solution	strategies,	such	as	the	Simplex	method	and
the	 interior	 point	 methods	 based	 on	 the	 size	 of	 the	 problem.	 The	 command	 allows	 for
linear	equality	and	linear	inequality	constraints	and	bounds	on	the	design	variables.

Different	 software	 codes	 follow	 their	 own	 respective	 formulations.	 Before	 using	 the
solver,	the	problem	is	transformed	into	the	formulation	specified	by	the	solver.	The	default
problem	formulation	for	linprog	is	given	as

(11.27)

subject	to

(11.28)
(11.29)
(11.30)

In	the	above	formulation,	f	is	the	vector	of	coefficients	of	the	objective	function;	A	and	Aeq
represent	the	matrices	of	the	left-hand-side	coefficients	of	the	linear	inequality	and	linear
equality	constraints,	 respectively;	b	 and	beq	 represent	 the	 vectors	 of	 the	 right-hand-side
values	of	the	linear	inequality	and	equality	constraints,	respectively;	and	xlb	and	xub	are	the
lower	and	upper	bounds	on	the	design	variables,	respectively.

Example:	 Consider	 the	 following	 example	 to	 demonstrate	 the	 use	 of	 the	 linprog
command.

(11.31)

subject	to

(11.32)
(11.33)
(11.34)



The	constraints	can	be	 rewritten	as	–4x1	+	6x2	≤	9	and	x1	 +	 x2	 ≤	 4,	 according	 to	 the
MATLAB	 standard	 formulation.	 The	 MATLAB	 code	 that	 solves	 the	 above	 problem	 is
summarized	below.
f	=	[1;-2]		%		Defining	Objective		

A=	[-4	6;	1		1];			%	LHS	inequalities		

b	=	[9;	4]					%		RHS	inequalities		

Aeq	=	[];					%		No	equalities		

beq	=	[];						%		No	equalities		

lb	=	[0;0]					%		Lower	bounds		

ub	=	[]									%		No	upper	bounds		

x0	=	[1;1]				%		Initial	guess		

	

x	=	linprog(f,A,B,Aeq,beq,lb,ub,x0)

The	output	generated	by	MATLAB	is	given	below.
Warning:	Large	scale	(interior	point)	method	uses	a		

built-in	starting	point;		

ignoring	user-supplied	X0.		

>	In	linprog	at	235		

Optimization	terminated.		

	

x	=		

	

				1.5000

				2.5000

The	warning	displayed	above	informs	the	reader	that	 the	interior	point	algorithm	used
by	 the	MATLAB	 solver	does	not	need	a	 starting	point.	The	 starting	point	provided	 has
been	 ignored	 by	 the	 solver.	 These	 messages	 are	 warnings	 that	 often	 help	 the	 user
understand	the	solver	algorithm	and	should	not	be	mistaken	for	error	messages.

Thus	far,	we	have	studied	the	graphical	approach	to	solving	LP	problems,	followed	by
the	use	of	the	MATLAB	software	options.	Next,	we	present	a	popular	numerical	 technique
for	solving	LP	problems	that	forms	the	basis	of	many	commercial	solvers.

11.5 	Simplex	Method	Basics

This	 section	 introduces	 the	 Simplex	 method.	 Before	 discussing	 the	 algorithm	 of	 the
Simplex	 method,	 some	 terminology	 and	 basic	 definitions	 associated	 with	 the	 Simplex
method	are	presented.

11.5.1 	The	Standard	Form

In	order	to	apply	the	Simplex	method,	the	problem	must	be	posed	in	standard	form.	The
standard	form	of	an	LP	problem	for	the	Simplex	method	is	given	below.

(11.35)

subject	to



(11.36)
(11.37)
(11.38)
(11.39)

(11.40)

The	standard	formulation	does	not	contain	inequality	constraints.	In	a	matrix	notation,	the
standard	formulation	can	be	written	as	follows.

(11.41)

subject	to

(11.42)
(11.43)

where	c	=	[c1,…,cn]	is	the	vector	of	the	cost	coefficients	for	the	objective	function;	A	is	an
m	×	n	matrix	of	the	coefficients	for	the	linear	equality	constraints;	and	b	is	the	m×	1	vector
of	the	right-hand-side	values.

The	 feasible	 region	 of	 the	 standard	 LP	 problem	 is	 a	 convex	 polygon.	 The	 optimal
solution	 of	 the	 LP	 problem	 lies	 at	 one	 of	 the	 vertices	 of	 the	 polygon.	 In	 the	 Simplex
method,	the	solution	process	moves	from	one	vertex	of	the	polygon	to	the	next	along	 the
boundary	of	the	feasible	region.

11.5.2 	Transforming	into	Standard	Form

In	the	standard	definition	of	LP	problems,	there	are	no	inequality	constraints.	All	design
variables	have	non-negativity	constraints.	If	a	given	problem	is	not	in	this	standard	form,
certain	operations	are	performed	to	 transform	the	problem	into	 the	Standard	Form.	How
the	 operations	 are	 performed	 for	 inequality	 constraints	 and	 for	 unbounded	 variables	 is
discussed	below.

Inequality	Constraints

If	the	given	problem	formulation	contains	inequality	constraints	of	the	form	g(x)	≤	0,	they
are	 transformed	 into	equality	constraints	by	using	slack	variables.	For	constraints	 of	 the
form	g(x)	≤	0,	add	a	non-negative	slack	variable,	s1,	to	the	left-hand-side	of	the	constraint,
yielding	g(x)	+	s1	=	0.	The	variable	s1	is	called	a	slack	variable	because	 it	 represents	 the
slack	between	the	left-hand-side	and	the	right-hand-side	of	the	inequality.

For	inequalities	of	the	form	g(x)	≥	0,	they	are	 transformed	 into	equality	constraints	by
using	surplus	variables.	Subtract	a	non-negative	surplus	variable,	s2,	 from	the	 left-hand-
side	of	the	constraint,	yielding	g(x)	–	s2	=	0.	The	variable	s2	represents	the	surplus	between
the	left-hand-side	and	the	right-hand-side	of	the	inequality.



The	 slack/surplus	 variables	 are	 unknowns,	 and	will	 be	 determined	 as	 part	 of	 the	 LP
solution	process.

Example:	Consider	the	following	linear	programming	problem.

(11.44)

subject	to

(11.45)
(11.46)
(11.47)

The	standard	form	for	the	above	formulation	can	be	given	as

(11.48)

subject	to

(11.49)
(11.50)
(11.51)

The	 standard	 form	 for	 the	 LP	 formulation	 requires	 the	 design	 variables	 to	 be	 non-
negative.

Unbounded	Design	Variables

In	 the	 standard	 form,	 the	 design	 variables	 should	 be	 non-negative,	 x	 ≥	 0.	 However,	 in
practice,	 the	 bounds	 on	 the	 design	 variable	 could	 also	 be	 of	 the	 form	 x	 ≤	 0.	 In	 some
problems,	 the	 design	 variables	may	 be	 indefinite	 (i.e.,	 no	 bounds	may	 be	 specified).	 In
these	cases,	how	are	the	design	variables	put	into	a	standard	form?

If	 a	design	variable,	xi,	 does	 not	 have	bounds	 imposed	 in	 the	 problem,	 the	 following
technique	is	used.	Let	xi	=	s1	–	s2,	where	s1,s2	≥	0.	In	the	standard	form,	the	variable	xi	is
then	replaced	by	s1	–	s2,	and	the	additional	constraints	s1,s2	≥	0	are	added	to	the	problem.
In	other	words,	the	unbounded	design	variable	is	rewritten	as	the	difference	between	two
non-negative	additional	variables.	The	additional	variables	will	be	determined	as	 part	 of
the	LP	solution	process.

Example:	Consider	the	following	formulation.

(11.52)

subject	to

(11.53)



(11.54)
(11.55)

Note	that	the	variable	x3	is	unbounded	in	the	above	formulation.	Assume	that	x3	=	s1	–
s2	and	s1,s2	≥	0.	The	standard	formulation	can	be	written	as	follows.

(11.56)

subject	to

(11.57)
(11.58)
(11.59)

Next,	we	introduce	the	Gauss	Jordan	method,	which	forms	an	important	component	of	the
Simplex	method.

11.5.3 	Gauss	Jordan	Elimination

Note	 that	 the	 number	 of	 variables	 (including	 the	 n	 design	 variables	 and	 the	 p	 slack
variables)	 is	 not	 necessarily	 equal	 to	 the	 number	 of	 equations,	 m.	 If	 the	 number	 of
variables	 is	 equal	 to	 the	 number	 of	 equality	 constraints,	 then	 the	 solution	 is	 uniquely
defined.	In	most	LP	problems,	there	exists	more	variables	than	equations.	This	 results	 in
an	under-determined	system	of	 equations,	 resulting	 in	 infinitely	many	 feasible	 solutions
for	 the	equality	constraint	 set.	The	optimization	problem	 then	 lies	 in	determining	which
feasible	solution(s)	results	in	the	minimization	of	the	objective	function,	while	satisfying
the	non-negativity	constraints	for	the	design	variables.

Example:	Consider	the	following	under-determined	system	of	equations:

(11.60)
(11.61)
(11.62)

The	 above	 set	 of	 equations	 have	more	 variables	 than	 equations.	 Therefore,	 there	 are
infinitely	many	solutions	for	this	case.

To	efficiently	work	with	the	constraint	set	of	the	LP	problem,	reduce	the	constraint	set
into	a	special	form.	The	set	of	equations	in	 the	special	 form	is	said	 to	be	 in	a	canonical
form.	The	original	constraint	set	and	the	canonical	form	are	equivalent	(i.e.,	they	have	the
same	set	of	solutions).	By	transforming	the	LP	constraint	set	into	a	canonical	form	(which
is	easier	to	solve),	the	solutions	can	be	found	more	efficiently.	To	solve	LP	problems,	use	a
canonical	form	known	as	the	reduced	row	echelon	form.	This	approach	of	using	a	reduced
row	 echelon	 form	 to	 solve	 a	 set	 of	 linear	 equations	 is	 known	 as	 the	 Gauss	 Jordan
elimination.



How	can	a	given	constraint	be	reduced	into	a	 row	echelon	form?	A	canonical	 form	is
usually	defined	with	respect	to	a	set	of	dependent	or	basic	variables,	which	are	defined	in
terms	 of	 a	 set	 of	 independent	 or	non-basic	 variables.	 The	 choice	 of	 basic	 variables	 is
arbitrary.	A	system	of	m	equations	and	n	variables	is	said	to	be	in	a	reduced	row	echelon
form	with	 respect	 to	 a	set	of	 basic	 variables,	 x1,…,xm,	 if	 all	 the	 basic	 variables	 have	 a
coefficient	 of	 one	 in	 only	 one	 equation,	 and	 have	 a	 zero	 coefficient	 in	 all	 the	 other
equations.	A	generic	matrix	based	 representation	of	 a	 set	of	 equations	 in	 a	 reduced	 row
echelon	form	with	m	basic	variables	and	p	non-basic	variables	is	given	as

(11.63)

where	 d	 is	 the	matrix	 of	 coefficients	 for	 the	 non-basic	 variables;	 xb	 is	 the	 set	 of	 basic
variables;	and	xnb	is	the	set	of	non-basic	variables.	The	number	of	basic	variables	is	equal
to	the	number	of	equations.

The	reduced	row	echelon	form	is	illustrated	with	the	help	of	the	following	example.

Example:	The	following	equations	are	in	a	reduced	row	echelon	form	with	respect	 to
the	variables	x1,x2,x3,	and	x4.

(11.64)
(11.65)
(11.66)
(11.67)

Writing	the	above	equation	set	in	a	matrix	form	allows	us	to	obtain	the	following.

(11.68)

Notice	 the	 matrix	 of	 coefficients	 on	 the	 left-hand-side.	 Each	 row	 of	 the	 matrix
represents	 one	 constraint.	 We	 note	 that	 the	 coefficients	 corresponding	 to	 the	 basic
variables	x1,x2,x3,	and	x4	are	equal	to	one	in	only	one	equation,	and	zero	elsewhere.

The	given	set	of	constraints	of	an	LP	problem	is	not	usually	given	in	the	row	echelon
form.	A	series	of	row	operations	must	be	performed	to	transform	it	into	the	standard	form.
The	details	are	discussed	next.



11.5.4 	Reducing	to	a	Row	Echelon	Form

A	pivot	operation	consists	of	a	series	of	elementary	row	operations	 to	make	a	particular
variable	a	basic	variable	 (i.e.,	 reduce	 the	coefficient	of	 the	variable	 to	unity	 in	only	one
equation,	and	to	zeroes	in	the	other	equations).	A	particular	variable	to	be	made	basic,	xbi,
could	exist	in	some	or	in	all	of	the	m	equations.	We	need	to	decide	which	coefficient	of	the
basic	variable	should	be	made	one	(i.e.,	in	which	equation).	By	definition,	each	equation	is
to	 have	 only	 one	 basic	 variable	with	 unit	 coefficient.	 The	 choice	 as	 to	 which	 equation
corresponds	to	which	basic	variable	is	arbitrary,	or	is	based	on	algebraic	convenience	for
the	 reduced	 row	echelon	 form.	There	will	 be	 further	 restrictions	 on	 this	 issue	when	 the
Simplex	method	is	discussed.

There	are	two	types	of	elementary	row	operations	that	can	be	performed	to	reduce	a	set
of	equations	into	a	reduced	row	echelon	form:	(1)	Multiply	both	sides	of	an	equation	with
the	 same	 non-zero	 number.	 (2)	 Replace	 one	 equation	 by	 a	 linear	 combination	 of	 other
equations.

Example:	Reduce	the	following	set	of	equations	into	a	row	echelon	form.

(11.69)
(11.70)
(11.71)

Choose	x1,	x2,	and	x3	as	basic	variables.	In	order	to	obtain	a	row	echelon	form,	perform
operations	such	that	the	variables	x1,	x2,	and	x3	appear	in	only	one	equation	with	a	unit
coefficient,	and	do	not	appear	in	the	other	equations.	Use	the	following	representation,
where	 the	 first	 four	 columns	 represent	 the	 coefficients	 of	 each	 variable,	 and	 the	 last
column	represents	the	right-hand-side	of	the	equation.

(11.72)

First,	make	 x1	 a	 basic	 variable.	 Choose	 x1	 to	 have	 a	 unit	 coefficient	 in	R1,	 and	 zero
coefficients	in	R2	and	R3.	Replace	R2	by	R2+R1	and	R3	by	R3–	R1	to	obtain

(11.73)

With	the	above	transformations,	x1	is	made	a	basic	variable	(appears	only	in	R1).	Now
make	x2	a	basic	variable.	That	is,	make	its	coefficient	one	in	R2	and	zeroes	in	the	other
rows.	First,	divide	R2	by	4	to	obtain	a	unit	coefficient	in	R2.



(11.74)

Now	replace	R1	by	R1	–	R2	and	R3	by	R3	–	R2	to	make	the	coefficients	of	x2	zeroes	in	the
other	equations	to	obtain

(11.75)

Next,	make	x3	a	basic	variable	by	making	 its	coefficient	unity	 in	R3	and	zeroes	 in	 the
other	equations.	Divide	R3	by	3	to	obtain	the	following.

(11.76)

Replace	R2	by	R2	+	2R3	and	R1	by	R1	–	R3	to	make	the	coefficients	of	x3	zeroes	 in	 the
other	equations.

(11.77)

The	 above	 set	 of	 equations	 are	 in	 the	 reduced	 row	 echelon	 form	with	 respect	 to	 the
basic	variables	x1,x2,	and	x3.	Note	that	the	particular	choice	of	making	x1,	x2,	and	x3	the
basic	variables	is	arbitrary.

11.5.5 	The	Basic	Solution

Thus	 far,	 our	 discussion	 has	 dealt	 with	 how	 to	 reduce	 a	 given	 set	 of	 equations	 into	 a
canonical	 form.	 The	 next	 step	 is	 to	 find	 the	 solution	 for	 the	 set	 of	 equations	 in	 the
canonical	form.	A	basic	solution	is	obtained	from	the	canonical	form	by	setting	 the	non-
basic	 (or	 independent)	 variables	 to	 zero.	A	basic	 feasible	solution	 is	 a	 basic	 solution	 in
which	the	values	of	the	basic	variables	are	non-negative.	In	other	words,	the	basic	feasible
solution	is	feasible	for	the	standard	LP	formulation,	whereas	a	basic	solution	is	not	always
feasible.

Example:	Consider	the	following	canonical	form	derived	previously.



(11.78)

Set	the	non-basic	variable,	x4,	to	zero.	Then,	obtain	the	basic	solution	by	solving	for	x1,
x2,	and	x3.	The	basic	solution	can	then	be	written	as	x1	=	–1,x2	=	4,x3	=	1,	and	x4	=	0.
Note	 that	 this	 basic	 solution	 is	 not	 a	 basic	 feasible	 solution	 for	 the	 standard	 LP
formulation	since	x1	<	0.

The	 choice	of	 the	 set	 of	basic	variables	 is	 not	 unique,	 and	 can	be	decided	 according	 to
computational	 convenience.	 In	 the	 example	 considered	 above,	 x2,x3,	 and	 x4	 could	 have
been	chosen	as	basic	variables	instead	of	x1,	x2,	and	x3.	For	a	generic	problem,	any	set	of
m	variables	(recall	that	there	are	m	equations)	from	the	possible	n	variables	can	be	chosen
as	basic	variables.	This	implies	that	 the	number	of	basic	solutions	for	a	generic	standard
LP	problem	with	m	constraints	and	n	variables	is	given	as

(11.79)

Example:	Consider	the	following	set	of	equations	from	the	previous	example.

(11.80)
(11.81)
(11.82)

Here,	m	=	3	and	n	=	4.	Therefore,	C34	=	 	=	4	basic	solutions.

As	mentioned	earlier,	the	feasible	region	of	the	standard	LP	problem	is	a	convex	polygon.
Each	 vertex	 of	 this	 convex	 polygon	 corresponds	 to	 a	 basic	 feasible	 solution	 of	 the
constraint	set.	The	optimal	solution	of	the	LP	problem,	which	is	the	basic	feasible	solution
with	the	minimum	objective	function	value,	lies	at	one	of	the	vertices	of	the	polygon.	 In
the	Simplex	method,	 the	 solution	process	moves	 from	one	vertex	of	 the	polygon	 to	 the
next	along	 the	boundary	of	 the	feasible	 region.	Now	that	 the	supporting	mathematics	 of
the	 Simplex	 method	 has	 been	 presented,	 we	 may	 proceed	 to	 discuss	 the	 Simplex
algorithm.

11.6 	Simplex	Algorithm

11.6.1 	Basic	Algorithm

The	optimal	solution	of	the	LP	problem	lies	at	one	of	the	vertices	of	the	feasible	convex
polygon.	A	cumbersome	approach	 to	 solve	an	LP	problem	would	be	 to	 list	 all	 the	basic
feasible	 solutions	 from	 which	 the	 optimal	 solution	 could	 be	 chosen.	 In	 the	 Simplex
method,	the	solution	process	efficiently	moves	from	one	basic	feasible	solution	to	the	next,
while	ensuring	objective	function	reduction	at	each	iteration	(Ref.	[7]).



Before	discussing	the	details	of	the	Simplex	algorithm,	please	note	the	following.	The
standard	LP	problem	was	 posed	 as	 a	minimization	problem.	 The	 rules	 of	 the	 following
algorithm	 apply	 to	 minimization	 problems	 only.	 Some	 other	 textbooks	 may	 treat	 the
standard	LP	 problem	 as	a	maximization	 problem,	 and	 the	 rules	 of	 the	 algorithm	would
differ	accordingly.

The	Simplex	method	algorithm	is	presented	in	6	generic	steps:

1. Transformation	into	the	Standard	LP	Problem

2. Formation	of	the	Simplex	Tableau

3. Choice	of	the	Variable	that	Enters	the	Basis	–	Identify	the	Pivotal	Column

4. Application	of	the	Minimum	Ratio	Rule	–	Identify	the	Pivotal	Row

5. Reduction	to	Canonical	Form

6. Checking	for	Optimality

The	 presentation	 of	 these	 steps	 follows.	 The	 algorithm	 of	 the	 Simplex	 method	 is
summarized	in	Fig.	11.2.



Figure	11.2.	Simplex	Algorithm

1. Transform	 into	 Standard	 LP	 Problem:	 Transform	 the	 given	 problem	 into	 the
standard	 LP	 formulation	 by	 adding	 slack/surplus	 variables.	 Consider	 a	 generic



formulation	with	n	design	variables,	m	 inequality	constraints,	and	m	 slack	 variables.
The	standard	LP	formulation	is	given	as

(11.83)

subject	to

(11.84)
(11.85)
(11.86)

(11.87)

Example:	Consider	the	following	LP	problem.

(11.88)

subject	to

(11.89)
(11.90)
(11.91)

The	standard	form	for	the	above	problem	is	given	below.

(11.92)

subject	to

(11.93)
(11.94)
(11.95)

2. Form	 the	 Initial	 Simplex	Tableau:	 List	 the	 constraints	 and	 the	 objective	 function
coefficients	in	the	form	of	a	table,	known	as	the	Simplex	tableau,	shown	below.

(11.96)

Example:	The	Simplex	tableau	for	the	example	is	shown	in	Table	Reproduce.



The	basic	feasible	solution	for	the	initial	Simplex	tableau	with	s1	and	s2	as	basic
variables	is	x1	=	0,x2	=	0,s1	=	4,	and	s2	=	3,	and	 the	function	value	 is	 f	=	0	 (see
Fig.	11.3).

Figure	11.3.	Simplex	Method	Example

3. Choose	 the	 Variable	 that	Enters	 the	 Basis	 –	 Identify	 the	 Pivotal	 Column:	 The
above	set	of	 equations	 is	 in	 the	 reduced	row	 echelon	 form	with	 respect	 to	 the	 slack
variables,	 s1,…sp.	 The	 Simplex	 algorithm	 begins	 with	 this	 initial	 basic	 feasible
solution.	 By	 observing	 the	 coefficients	 of	 the	 objective	 function	 row	 in	 the	 initial
Simplex	 tableau,	 the	 algorithm	 moves	 to	 the	 adjacent	 basic	 feasible	 solution	 that
reduces	 the	 objective	 function.	 The	 other	 adjacent	 basic	 solution(s)	 with	 objective
function	value(s)	higher	than	the	current	solution	are	ignored.

In	 order	 to	 move	 to	 the	 next	 basic	 feasible	 solution,	 the	 algorithm	 proceeds	 by
making	an	existing	basic	variable	a	non-basic	variable.	 In	 addition,	 an	 existing	non-
basic	 variable	 is	 made	 into	 a	 basic	 variable.	 How	 do	 we	 choose	 which	 non-basic
variable	becomes	a	basic	variable?	Similarly,	how	do	we	choose	which	will	be	the	next
basic	variable?

The	 non-basic	 variable	 with	 the	 highest	 negative	 coefficient	 in	 the	 objective
function	 is	selected	 to	become	the	basic	variable	 in	 the	next	 iteration.	This	choice	 is
driven	by	our	 interest	 in	minimizing	 the	objective	function	 value.	 The	 variable	with
the	highest	negative	coefficient	has	the	potential	to	reduce	the	objective	function	value
to	 the	maximum	 extent,	when	compared	 to	 the	 other	 variables.	 In	 other	words,	 this
choice	can	incur	the	maximum	improvement	to	the	objective	value	per	unit	of	increase
of	the	variable.	In	contrast,	the	coefficient	of	a	non-basic	variable	would	not	have	the
opportunity	 to	play	an	active	role	 in	 the	minimization	process,	 since	 the	value	of	all
non-basic	variables	are	set	to	zero	–	in	determining	the	basic	feasible	solutions.	As	the
non-basic	variable	 enters	 the	 basis	 (in	 the	 next	 iteration),	 it	 will	 directly	 impact	 the
function	minimization	process.	Similarly,	in	a	function	maximization	process,	the	non-
basic	variable	with	the	highest	positive	coefficient	would	be	chosen	to	enter	the	basis



in	the	next	iteration.

According	 to	 the	 above	 approach,	 each	 iteration	 of	 the	 Simplex	method	makes	 a
non-basic	variable	a	 basic	 variable.	The	 corresponding	variable	 is	 then	 said	 to	 enter
the	 basis.	 When	 all	 the	 coefficients	 of	 the	 objective	 function	 are	 positive	 at	 any
iteration,	then	the	corresponding	basic	solution	is	the	optimal	solution.	Therefore,	 the
Simplex	algorithm	steps	are	repeated	until	all	the	coefficients	in	the	objective	function
row	are	positive.

Example:	Consider	the	initial	Simplex	tableau	given	in	Table	11.1.	Currently,	the
basic	variables	are	s1	=	4	and	s2	=	3	since	they	appear	with	unit	coefficient	in	only
one	 equation	 and	 have	 zero	 coefficients	 in	 the	 other	 equations.	 The	 non-basic
variables	are	x1	=	0	and	x2	=	0,	 and	 the	 corresponding	 function	 value	 is	 f	 =	 0.
Observing	the	entries	of	 the	objective	function	row	(R3),	 the	coefficient	of	x2	 is
negative	(see	bold-faced	entries	in	Table	11.2).	The	current	basic	variables,	s1	and
s2,	are	not	part	of	the	objective	function	(see	the	corresponding	coefficients	in	R3
in	Table	11.2).	If	x2	is	made	a	basic	variable,	the	objective	function	value	can	be
reduced	from	its	current	value.	Therefore,	the	variable	x2	enters	the	basis,	as	per
Table	 11.2.	 (Note	 that	 enters	 the	 basis	 means	will	 enter	 the	 basis	 in	 the	 next
iteration.

Table	11.1.	Initial	Simplex	Tableau

x1 x2 s1 s2 b

R1 1 1 1 0 4
R2 –1 1 0 1 3
R3 1 –2 0 0 f

Table	11.2.	Simplex	Method	Example:	Identifying	the	Pivotal	Column

x1 x2 s1 s2 b

R1 1 1 1 0 4
R2 –1 1 0 1 3
R3 1 –2 0 0 f

4. Minimum	Ratio	Rule	–	Identify	the	Pivotal	Row:	In	the	previous	step,	the	variable
entering	 the	 basis	 was	 identified.	 However,	 the	 variable	 may	 appear	 in	 all	 the
equations	in	the	constraint	set.	In	other	words,	the	previous	step	identified	the	column
of	 interest,	or	 the	pivotal	column.	For	a	variable	 to	be	basic,	 recall	 that	 it	must	have
unit	 coefficient	 in	 one	 equation	 only,	 and	 zero	 coefficients	 in	 all	 other	 equations.



Which	 equation	 will	 have	 the	 unit	 coefficient?	 In	 other	 words,	 how	 is	 the	 row	 of
interest	determined,	or	the	pivotal	row?

The	 number	 of	 basic	 variables	 in	 a	 set	 of	 equations	 cannot	 be	 greater	 than	 the
number	 of	 equations.	 Since	 one	 variable	was	 added	 to	 the	 basic	 variable	 set	 in	 the
previous	step,	an	existing	basic	variable	must	be	made	non-basic.	In	order	to	determine
which	variable	is	eliminated	from	the	basic	variable	set,	use	 the	minimum	ratio	rule.
The	variable	that	is	selected	using	this	rule	is	said	to	be	leaving	the	basis.	To	select	the
variable	that	leaves	the	basis,	compute	the	following	ratio	 for	 the	selected	column	in
the	previous	step	corresponding	to	the	variable	that	enters	the	basis,	say	xj.

(11.97)

The	row	that	satisfies	the	above	minimum	ratio	rule	is	then	selected	as	the	pivotal	row.

In	the	previous	step,	the	entering	basic	variable	was	chosen	based	on	its	potential	to
reduce	the	objective	function	value.	However,	the	allowable	reduction	of	the	objective
function	depends	on	the	condition	that	the	constraints	are	not	violated.	The	minimum
ratio	rule	above	provides	the	largest	 increase	in	the	objective	function	value	possible
while	the	constraints	are	not	violated.

Special	Cases:	
(1)	If	all	the	coefficients	of	the	column	corresponding	to	the	chosen	basic	variable,	aij,
are	negative,	the	minimum	ratio	cannot	be	computed	using	Eq.	11.97.	 In	 these	cases,
the	LP	problem	has	an	unbounded	solution.	
(2)	 If	 two	or	more	rows	have	 the	same	minimum	ratio	as	computed	from	Eq.	11.97,
any	of	these	can	be	chosen	as	the	pivotal	row.	
(3)	When	one	or	more	of	the	basic	variables	have	zero	values,	the	solution	is	said	to	be
degenerate.	 This	 can	 happen	 when	 the	 right-hand-side	 value	 bi	 is	 zero	 and,
consequently,	the	minimum	ratio	in	Eq.	11.97	is	zero.	This	usually	implies	that	adding
a	new	variable	to	 the	basic	variable	set	may	not	 reduce	 the	objective	function	value.
This	may	result	 in	cycling,	where	 the	Simplex	 algorithm	may	enter	 an	 infinite	 loop.
Fortunately,	in	most	practical	problems,	this	situation	usually	does	not	arise.

Example:	 After	 applying	 the	 minimum	 ratio	 rule,	 the	 pivotal	 row	 has	 been
identified	as	shown	in	Table	11.3.

Table	11.3.	Simplex	Method	Example:	Identifying	the	Pivotal	Row

x1 x2 s1 s2 b bi	⁄aij

R1 1 1 1 0 4 4⁄1	=	4
R2 –1 1 0 1 3 3⁄1	=3
R3 1 –2 0 0 f

5. Reduce	to	Canonical	Form:	Once	the	pivotal	row	and	the	pivotal	column	have	been



chosen	based	on	the	above	rules,	the	pivotal	element	can	be	identified.	The	constraint
set	 is	 then	 transformed	 into	 a	 reduced	 row	 echelon	 form	with	 respect	 to	 the	 newly
identified	incoming	basic	variable.

Example:	By	performing	elementary	row	operations	as	discussed	in	Sec.	11.5.3,
the	initial	Simplex	tableau	is	reduced	into	the	canonical	form	with	respect	to	the
newly	added	basic	variable,	x2.	The	coefficient	of	x2	is	reduced	to	one	in	R2,	and
is	reduced	to	zero	in	R1	and	R3.	Table	11.4	provides	the	updated	Simplex	tableau
in	the	canonical	form	with	respect	to	x2.

Table	11.4.	Simplex	Method	Example:	Tableau	in	Canonical	Form

x1 x2 s1 s2 b

R1 2 0 1 –1 1
R2 –1 1 0 1 3
R3 –1 0 0 2 f	+	6

The	basic	solution	for	the	above	Simplex	tableau	is	x1	=	0,	x2	=	3,	s1	=	1,	and	s2	=
0,	while	the	function	value	is	f	=	–6	(see	Fig.	11.3).	The	variable	x2	has	entered
the	basis	and	s1	has	left	the	basis.	The	value	of	x2	has	increased	from	zero	in	the
initial	Simplex	tableau	to	three	in	the	current	iteration,	and	the	function	value	has
been	reduced	from	f	=	0	to	f	=	–6.

As	 shown	 in	 Fig.	 11.3,	 the	 Simplex	 method	 moves	 from	 one	 basic	 feasible
solution	 to	 an	 adjacent	one	with	 a	 reduced	 objective	 function	 value.	 The	 other
adjacent	 basic	 feasible	 solution	 at	 x1	 =	 4,x2	 =	 0	 is	 ignored	 since	 the	 objective
function	value	is	higher	(f	=	4)	than	the	initial	basic	feasible	solution	(f	=	0).

6. Check	for	Optimality:	If	the	coefficients	of	the	objective	function	are	all	positive	in
the	current	Simplex	tableau,	the	optimum	has	been	reached	and	the	algorithm	can	be
terminated.	If	not,	repeat	the	Simplex	algorithm	until	the	above	termination	criterion	is
met.

Example:	 In	 Table	 11.4,	 the	 coefficient	 of	 x1	 in	 the	 objective	 function	 row	 is
negative.	Therefore,	choose	x1	as	 the	variable	entering	 the	basis.	The	minimum
ratio	rule	in	the	last	column	indicates	that	R1	is	the	pivotal	row	(see	Table	11.5).

Table	11.5.	Simplex	Method	Example:	The	Second	Iteration

x1 x2 s1 s2 b bi	⁄aij

R1 2 0 1 –1 1 1/2
R2 –1 1 0 1 3 3
R3 –1 0 0 2 f	+	6



By	 reducing	 Table	 11.5	 to	 a	 canonical	 form	 with	 respect	 to	 x1,	 the	 Simplex
tableau	 provided	 in	 Table	 11.6	 is	 obtained.	 The	 basic	 feasible	 solution	 for
Table	11.6	is	x1	=	 ,x2	=	 ,s1	=	0,	and	s2	=	0,	and	the	function	value	is	f	=	– .	The
coefficients	in	the	objective	function	in	Table	11.6	are	all	positive.	Therefore,	the
current	basic	feasible	solution	is	the	optimal	solution.

Table	11.6.	Simplex	Method	Example:	Final	Simplex	Tableau

x1 x2 s1 s2 b

R1 1 0 1⁄2 –1⁄2 1⁄2
R2 0 1 1⁄2 1⁄2 7⁄2
R3 0 0 1⁄2 3⁄2 f	+	13⁄2

Figure	11.3	 illustrates	 the	 progression	 of	 the	 iterations	 of	 the	 Simplex	method.
The	solid	 black	 circles	 represent	 the	 four	 basic	 feasible	 solutions.	 The	 feasible
region	 of	 the	 standard	 LP	 problem	 is	 a	 polygon	 which,	 in	 this	 case,	 is	 a
quadrilateral.	The	hollow	block	arrows	 illustrate	 the	progression	of	 the	Simplex
method	 along	 the	 boundary	 of	 the	 feasible	 quadrilateral.	 The	 initial	 Simplex
tableau	 has	 a	 basic	 feasible	 solution	 at	 x1	 =	 0,x2	 =	 0.	 Using	 the	 rules	 of	 the
Simplex	 algorithm,	 the	 method	 proceeds	 to	 the	 adjacent	 vertex	 of	 the
quadrilateral	that	reduces	the	objective	function	value.

The	above	example	concludes	our	discussion	of	the	Simplex	algorithm.	Next,	we	briefly
examine	how	to	deal	with	cases	where	the	Simplex	method	cannot	be	applied.

11.6.2 	Special	Cases

The	 discussion	 of	 the	 Simplex	method	 in	 the	 previous	 subsection	 assumes	 that	 the	 LP
problem	 can	 be	 reduced	 into	 the	 standard	 formulation.	 In	 some	 cases,	 it	 will	 not	 be
directly	 possible	 to	 do	 so.	 One	 requirement	 of	 the	 standard	 LP	 problem	 is	 that	 the
variables	must	be	non-negative,	and	the	right-hand-side	constants	for	the	constraints	must
be	 non-negative.	 In	 some	 problems,	 obtaining	 a	 standard	 LP	 problem	 is	 not
straightforward.	 In	 these	 cases,	artificial	 variables	 are	 used.	 Variations	 of	 the	 Simplex
method	known	as	the	two-phase	Simplex	method	and	the	dual	Simplex	method	are	used.	A
detailed	 discussion	 of	 the	 theory	 and	 implementation	 of	 these	 methods	 can	 be	 found
in	[3,	8].	Next,	we	explore	some	advanced	concepts	in	the	area	of	linear	programming.

11.7 	Advanced	Concepts

Two	 important	 topics	will	 be	 studied	 briefly	 in	 this	 section:	 duality	 and	 interior	 point
methods.	While	a	detailed	discussion	of	these	topics	 is	outside	 the	scope	of	 this	chapter,



the	 following	 discussion	 provides	 the	 reader	 with	 a	 basic	 understanding	 of	 the	 theory
underlying	these	advanced	concepts.

11.7.1 	Duality

Duality	 is	 an	 important	 concept	 in	 linear	 programming	 problems.	 Each	 LP	 problem,
known	 as	 the	 primal,	 has	 another	 corresponding	 LP	 problem,	 known	 as	 the	 dual,
associated	with	it.	The	dual	and	the	primal	problems	share	some	common	features,	but	are
arranged	differently.	How	is	this	concept	useful?	As	will	be	discussed	later,	the	solutions
of	 the	primal	and	dual	problems	have	 interesting	relationships.	 In	some	cases,	 solving	 a
dual	problem	might	be	computationally	more	convenient	than	solving	the	primal	problem.
The	concept	of	duality	is	of	great	importance	in	various	numerical	optimization	algorithms
and	LP	solvers.	This	section	introduces	the	basic	concept	of	duality	in	LP	problems.

Consider	the	following	matrix	representation	of	the	LP	problem.

(11.98)

subject	to

(11.99)
(11.100)

For	the	above	primal	problem,	the	corresponding	dual	problem	can	be	defined	as	follows.

(11.101)

subject	to

(11.102)
(11.103)

If	the	primal	is	a	minimization	problem,	the	dual	will	be	a	maximization	problem,	and	vice
versa.

Example:	Consider	the	following	LP	problem.

(11.104)

subject	to

(11.105)
(11.106)
(11.107)

(11.108)

In	 the	above	problem,	c	 is	a	4	×	1	column	vector	given	as	c	=	 [1,–1,–2,	4]T;	 the	 left-
hand-side	coefficients	form	a	3	×	4	matrix



(11.109)

and	the	right-hand-side	values	of	 the	 inequality	constraints	 form	a	3×1	column	vector
given	as	b	=	[1,	5,	3]T.

The	dual	of	the	above	problem	is	given	as

(11.110)

subject	to

(11.111)
(11.112)
(11.113)
(11.114)
(11.115)

Note	the	following	relationships	between	the	primal	and	the	dual	problem:

1. The	 primal	 problem	 had	 three	 inequality	 constraints,	while	 the	 dual	 problem	 has
three	design	variables.

2. The	 primal	 problem	 had	 four	 design	 variables,	 while	 the	 dual	 problem	 has	 four
inequality	constraints.

3. The	primal	is	a	minimization	problem,	while	the	dual	is	a	maximization	problem.

4. The	primal	inequalities	are	of	the	form	≤	0,	whereas	the	dual	constraints	are	of	 the
form	≥	0.

Next,	we	examine	the	relationships	between	the	primal	and	the	dual	problems.

11.7.2 	Primal-Dual	Relationships

The	feasible	sets	and	the	solutions	of	the	primal	and	the	dual	problems	are	related.	Duality
theory	 presents	 the	 relationship	 between	 the	 two	 problems.	 The	 following	 are	 the
important	relationships	between	the	primal	and	the	dual	problems.

1. The	objective	 function	value	 of	 the	 dual	 problem	 evaluated	 at	 any	 feasible	 solution
provides	 a	 lower	 bound	 on	 the	 objective	 function	 value	 of	 the	 primal	 problem
evaluated	at	any	feasible	solution.	This	is	known	as	the	weak	duality	theorem.

2. Every	feasible	solution	for	the	dual	problem	provides	a	lower	bound	on	every	feasible
solution	of	the	primal.

3. The	dual	of	a	dual	problem	is	the	primal	problem.

4. If	 the	 primal	 solution	 has	 a	 feasible	 solution	 and	 the	 dual	 problem	 has	 a	 feasible
solution,	 then	 there	 exists	optimal	 feasible	 solutions	 such	 that	 the	 objective	 function



values	of	 the	primal	and	 the	dual	 are	 the	same.	This	 is	 known	as	 the	 strong	 duality
theorem.

5. If	the	primal	problem	is	unbounded,	the	dual	problem	is	infeasible.

The	second	topic	in	this	section,	interior	point	methods,	is	introduced	next.

11.7.3 	Interior	Point	Methods

The	 Simplex	 algorithm	 moves	 along	 the	 boundary	 of	 the	 feasible	 region	 to	 find	 the
optimal	 solution	 (see	 Fig.	 11.3).	 For	 large	 scale	 problems,	 the	 Simplex	 method	 can
become	 cumbersome	 and	 computationally	 expensive.	 There	 exists	 another	 class	 of
solution	 approaches	 for	 LP	 problems	 known	 as	 the	 interior	 point	 methods.	 These
algorithms	 are	 known	to	 converge	 faster	 than	 the	 Simplex	method.	Unlike	 the	 Simplex
method,	which	shifts	 from	one	vertex	of	 the	feasible	polygon	 to	 the	other,	 interior	point
methods	 move	 across	 the	 feasible	 region	 based	 on	 pre-defined	 criteria,	 such	 as	 the
feasibility	of	the	constraints	or	the	objective	function	value.

Some	 variations	 of	 the	 interior	 point	 method	 employ	 the	 concept	 of	 duality.	 An
important	component	of	the	interior	point	method,	similar	to	most	numerical	optimization
algorithms,	is	determining	the	search	direction	and	the	step	size.	The	search	direction	idea
here	is	similar	to	those	discussed	in	Chapter	12,	such	as	the	steepest	descent	direction	and
the	Newton’s	search	direction.	Comprehensive	presentations	of	 the	 interior	point	method
can	be	found	in	Refs.	[5]	and	[9].

11.7.4 	Solution	Sensitivity

In	linear	programming	(LP),	it	is	crucial	to	understand	the	impact	of	the	coefficients	in	the
objective	 and	 the	constraint	 functions	 on	 the	 optimum	 solution.	 In	 other	words,	 for	 LP
problems,	 the	 optimum	 solution	 is	 highly	 sensitive	 to	 the	 slope	 (or	 gradient)	 of	 the
objective	 function	 and	 the	 constraint	 functions.	 Therefore,	 a	 careful	 observation	 of	 the
slope	of	 these	 functions	provides	 important	 insight	 into	 the	behavior	 of	 the	LP	problem
even	 prior	 to	 optimization.	 Two	 important	 characteristics	 of	 the	 solution	 sensitivity	 are
pointed	 out	 in	 this	 section.	 In	 order	 to	 discuss	 these	 characteristics,	 we	 revisit	 the	 LP
problem	defined	by	Eqs.	(11.12	-	11.15)	and	illustrated	in	Fig.	11.4.



Figure	11.4.	Sensitivity	of	Optimum	to	Slope	of	Linear	Objective	Function

The	more	readily	evident	characteristics	are	the	direct	proportionality	of	the	function	to
the	coefficients	of	the	linear	terms.	For	example,	in	Eq.	11.12,	the	objective	function	value
increases	at	the	same	rate	at	which	the	variable	x1	increases,	and	decreases	at	twice	the	rate
at	which	variable	x2	increases.	The	impact	of	x2	on	the	objective	function	is	double	that	of
x1.	However,	when	we	 consider	 the	 relative	 slopes	 of	 the	 objective	 function	 and	 of	 the
constraint	functions,	potentially	more	significant	impacts	become	evident.	A	minor	change
in	the	slope	(or	in	the	linear	term	coefficients)	can	switch	the	optimum	from	one	vertex	of
the	feasible	region	(or	feasible	polytope)	to	another	adjacent	one.	To	explain	this	scenario,
we	will	call	 the	objective	function	given	by	Eq.	11.12	as	 fA,	and	 consider	 an	 alternative
objective	function,	fB.	These	two	objective	functions	are	described	below:

(11.116)

(11.117)

The	direction	 in	which	objective	functions	 fA	and	 fB	decrease	 are	 provided	 in	 Fig.	 11.4,
represented	by	the	dash-dot	line	and	the	dashed	line,	respectively.	Note	that,	with	the	same
feasible	region,	the	optimum	for	fA	lies	at	the	vertex	xA*	=	 ,	while	the	optimum	for	fb
lies	at	the	vertex	xB*	=	 .	The	constraint	given	by	Eq.	11.13	is	the	active	constraint	 in
both	cases.	Now,	if	we	carefully	compare	the	slopes	of	the	objective	functions	(fA	and	 fB)
with	that	of	the	active	constraint	given	by	Eq.	11.13,	we	find	that	the	slope	of	fA	is	slightly
greater	than	that	of	the	constraint,	while	the	slope	of	fB	is	slightly	smaller.	Thus,	as	a	result
of	 a	 minor	 change	 in	 the	 slope	 of	 the	 objective	 function	 (with	 respect	 to	 the	 active
constraint),	the	location	of	the	optimum	can	change	drastically.

In	 the	 context	 of	 practical	 application	 of	 LP,	 the	 following	 comment	 can	 be	 made.
Although	mathematically,	the	sensitivity	of	the	objective	function	to	the	design	variables
remain	the	same	across	the	design	space	for	an	LP	problem,	practically,	the	location	of	the



optimum	becomes	more	critical	(or	sensitive)	to	the	slope	of	the	objective	function	when
this	slope	is	close	to	that	of	an	active	constraint.	Under	these	scenarios,	when	formulating
a	 practical	 optimization	 problem,	 if	 the	 objective	 function	 coefficients	 are	 changed
slightly,	it	may	lead	to	a	substantial	change	in	the	location	of	the	optimum.	Extreme	care
should	be	exercised	when	formulating	such	LP	problems.

11.8 	Summary

Linear	 Programming	 is	 a	 topic	 of	 great	 importance	 in	 optimization.	 This	 chapter
introduced	 the	 basics	 of	 linear	 programming.	 Specifically,	 the	 four	 types	 of	 possible
solutions	 for	 the	Simplex	method	were	 discussed.	 The	 graphical	 solution	 approach	 and
software	options,	 such	as	linprog	 in	MATLAB,	 were	 also	 discussed	with	 examples.	 The
theory	behind	the	Simplex	method	and	the	Simplex	algorithm	were	explored	in	detail	with
the	help	of	examples.	We	provided	a	brief	overview	of	the	theory	of	duality	and	 interior
point	methods.	With	 the	 basic	 understanding	 of	 the	 topic	 provided	 in	 this	 chapter,	 the
reader	 can	 understand	 and	 further	 explore	 linear	 programming	 in	 more	 detail
(Refs.	[1,	3,	2,	4,	5,	6].

11.9 	Problems

11.1 Consider	 the	 LP	 problem	 given	 in	 Sec.	 11.3.1.	 Reproduce	 the	 results	 shown	 in
Fig.	11.1(a)	using	MATLAB.	How	does	the	optimal	solution	change	 if	a	constant	 is
added	to	the	objective	function?	Run	your	MATLAB	code	with	five	different	starting
points.	Do	you	observe	a	change	in	the	optimal	results?

11.2 Consider	 the	 LP	 problem	 given	 in	 Sec.	 11.3.2.	 Reproduce	 the	 results	 shown	 in
Fig.	 11.1(b)	 using	 MATLAB.	 Run	 your	 MATLAB	 code	 with	 five	 different	 starting
points.	Do	you	observe	a	change	in	the	optimal	results?

11.3 You	 are	 given	 the	 following	 optimization	 problem.	 Solve	 the	 following	 problem
graphically.

(11.118)

subject	to

(11.119)
(11.120)
(11.121)

Plot	the	objective	function	and	the	constraint	equations.	Identify	the	feasible	design
space	and	the	optimal	solution.

11.4 Transform	the	following	problem	into	the	standard	LP	formulation.

(11.122)

subject	to



(11.123)
(11.124)
(11.125)
(11.126)
(11.127)

11.5 Consider	the	following	set	of	equations.

(1) How	many	basic	solutions	are	possible	for	this	set	of	constraints?

(2) Transform	 them	 into	 the	 reduced	 row	echelon	 form	with	 respect	 to	 the	basic
variables	x1,	x2,	and	x3.

(11.128)
(11.129)
(11.130)

11.6 Solve	the	LP	formulation	given	in	Problem	11.4	using	linprog.

11.7 Consider	 the	following	LP	problem	from	Sec.	 11.3.1.	 Solve	 it	 using	 the	 Simplex
method.

(11.131)

subject	to

(11.132)
(11.133)
(11.134)

11.8 	Solve	the	following	problem	using	the	Simplex	method.	Verify	 the	correctness	of
your	solution	using	linprog.

(11.135)

subject	to

(11.136)
(11.137)
(11.138)
(11.139)
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12

Nonlinear	Programming	with	No	Constraints

12.1 	Overview

Nonlinear	programming	is	a	technique	used	to	solve	optimization	problems	that	 involves
nonlinear	mathematical	 functions	 (e.g.,	 objective	 functions	 or	 constraints,	 or	 both).	 The
methods	 presented	 in	 this	 chapter	 are	 capable	 of	 solving	 unconstrained	 optimization
problems	with	unimodal	objectives.	The	procedures	used	for	these	methods	are	illustrated
via	 minimization	 problems.	 Maximization	 problems	 can	 be	 converted	 to	 minimization
problems	by	multiplying	the	objective	functions	by	–1.

Unconstrained	nonlinear	programming	has	many	practical	applications.	Many	real	 life
design	problems	have	nonlinear	objectives	due	to	the	nonlinearities	in	nature.	Some	design
problems	 do	 not	 have	 constraints,	 or	 the	 constraints	 are	 negligible.	 Constrained
optimization	problems	can	be	reformulated	as	unconstrained	problems.	The	methods	used
to	 solve	 unconstrained	 nonlinear	 problems	 are	 powerful	 tools	 for	 solving	 optimization
problems.

12.2 	Necessary	and	Sufficient	Conditions

Chapter	2	provides	mathematical	knowledge	concerning	the	first	and	second	derivatives	of
functions.	Local	optima	can	be	determined	by	their	derivatives.	This	chapter	provides	the
conditions	 for	 local	 minima.	 These	 conditions	 involve	 the	 gradients	 (first	 derivative
vectors)	 and	 Hessian	matrices	 (second	 derivative	 matrices)	 for	 the	 objective	 functions.
These	conditions	are	the	foundation	for	several	of	the	algorithms	described	in	this	chapter
(see	Refs.	[3,	1]).

Assume	a	function,	f(x),	is	continuous	and	has	continuous	first	and	second	derivatives.
The	function	can	be	expressed	as	a	Taylor	expansion.

(12.1)

Neglecting	the	higher	order	terms,	O3(Δx),	the	objective	function	change	can	be	expressed
as

(12.2)

If	x*is	 a	 local	minimum,	 any	other	 points	 in	 its	 neighborhood	 should	 produce	 a	 greater
objective	value,	which	can	be	expressed	as

(12.3)



From	Eq.	12.2,	in	order	for	the	sign	of	Δf(x)	to	be	known	(e.g.,	positive	for	a	minimum	at
x*)	for	arbitrary	values	of	Δx,	the	first	derivative	of	 f(x)	should	be	zero.	Otherwise,	Δf(x)
can	be	forced	to	be	positive	or	negative	by	changing	the	sign	of	Δx,	and	Eq.	12.3	cannot
be	 satisfied.	 Therefore,	 a	 local	 minimum,	 x*,	 should	 satisfy	 the	 following	 first-order
necessary	conditions.

Theorem	(First-Order	Necessary	Conditions)

If	 x*is	 a	 local	 minimum	 of	 f(x)	 and	 f(x)	 is	 continuously	 differentiable	 in	 an	 open
neighborhood	of	x*,	then	the	gradient	∇f(x*)	=	0.
Since	∇f(x*)	=	0	at	the	local	minimum,	Eq.	12.2	becomes

(12.4)

It	should	satisfy	Δf(x)	≥	0	since	x*is	a	 local	minimum.	Then,	∇2f(x*)	 should	 be	 positive
semidefinite,	which	is	stated	as	the	second-order	necessary	conditions	as	follows.

Theorem	(Second-Order	Necessary	Conditions)

If	 x*is	 a	 local	 minimum	 of	 f(x)	 and	 ∇2f(x)	 exists	 and	 is	 continuous	 in	 an	 open
neighborhood	of	x*,	then	∇f(x*)	=	0	and	∇2f(x*)	is	positive	semidefinite.
The	second-order	necessary	conditions	do	not	guarantee	a	local	minimum.	At	x	=	0,	the

function,	 f(x)	 =	 x3,	 satisfies	 the	 first-order	 and	 second-order	 necessary	 conditions.
However,	x	=	0	is	not	a	local	minimum	of	f(x)	=	x3.

If	the	Hessian	of	f(x)	is	positive	definite	at	the	point	where	∇f(x)	=	0,	then

(12.5)

Equation	12.5	guarantees	the	point,	x*,	is	a	strict	local	minimum.	It	is	stated	as	the	second-
order	 sufficient	 condition.	 The	 second-order	 sufficient	 conditions	 are	 stronger	 than	 the
second-order	necessary	conditions.

Theorem	(Second-Order	Sufficient	Conditions)

Given	f(x),	if	∇2f(x)	is	continuous	in	an	open	neighborhood	of	x*	and	∇f(x*)	=	0;	if	∇2f(x*)
is	positive	definite,	then	x*is	a	strict	local	minimum	of	f(x).

12.3 	Single	Variable	Optimization

Some	unconstrained	nonlinear	optimization	problems	may	only	have	a	single	variable.	In
this	section,	the	methods	for	solving	single	variable	nonlinear	optimization	problems	are
presented.	 We	 parenthetically	 note	 that	 the	 Bisection	 and	 the	 Golden	 search	 methods
require	bounds	which,	technically,	are	constraints.	However,	 these	bounds	need	not	have
physical	meanings,	 and	 can	 be	 arbitrarily	 chosen	 for	 the	 sole	 purpose	 of	 implementing
these	algorithms.



12.3.1 	Interval	Reduction	Methods

Bisection

The	 interval	 reduction	methods	 are	 applicable	 to	 single	 variable	 nonlinear	 optimization
problems	whose	variables	have	lower	bounds	and	upper	bounds.

The	Bisection	method	 (also	known	as	 the	 Interval	Halving	method)	 finds	 an	 extreme
point	 in	a	bounded	region	for	a	unimodal	single	 variable	 function.	 The	 function	 and	 its
first	 derivative	 are	 assumed	 continuous.	 The	 Bisection	 method	 successively	 halves	 the
interval,	and	decides	in	which	one	of	the	two	half	 intervals	 the	extreme	point	exists.	The
Bisection	method	uses	 the	first	derivative	of	 the	function	 to	determine	 in	which	half	 the
extreme	point	lies.	Figure	12.1	illustrates	how	to	update	the	interval	according	to	the	sign
of	the	first	derivative.	Suppose	the	variable	x	of	a	unimodal	convex	function	f(x)	is	inside
the	interval	[a,b].	The	function	f(x)	and	its	derivative	f′(x)	are	continuous	over	this	interval.
The	 first	 derivatives	 at	 the	 two	 ends	 satisfy	 the	 condition	 f′(a)f′(b)	<	 0.	 This	 condition
implies	 that	 there	 is	 a	minimum	 in	 the	 interval	 [a,b]	 (with	 0	 derivative).	 The	Bisection
method	procedure	for	finding	the	minimum	is	outlined	as	follows.

Figure	12.1.	Interval	Updates	of	the	Bisection	Method

1. Specify	 the	 convergence	 tolerance	 for	 an	 interval	 of	 length	 	 >	 0.	 Specify	 the
convergence	 tolerance	 of	 the	 gradient	 γ	 >	 0.	 Set	 the	 iteration	 number,	 k,	 to	 0.	 The
bounds	are	l0	=	a	and	r0	=	b.

2. If	 rk	 –	 lk	<	 ,	 stop.	 The	 midpoint	 xk	 =	 	 is	 taken	 as	 the	 minimum,	 x*,	 and	 the
corresponding	function	value	f(x*)	is	the	optimal	solution.

3. Evaluate	the	gradient	of	the	function	at	the	midpoint	f′(xk)	=	f′( ).

4. If	 f′(xk) 	<	 γ,	 stop.	 The	 corresponsing	 xk	 is	 considered	 the	 minimum,	 x*,	 and	 the
corresponding	function	value,	f(x*),	is	the	optimal	solution.

5. Evaluate	the	derivative	f′(xk).	If	it	is	positive,	let	lk+1	=	lk	and	rk+1	=	xk.	If	it	is	negative,
let	lk+1	=	xk	and	rk+1	=	rk.

6. k	=	k	+	1.	Go	to	Step	2.

Example:	The	following	optimization	problem	is	used	to	illustrate	the	Bisection	method.

(12.6)

Figure	12.2	presents	the	function	curve	in	the	defined	region.



Figure	12.2.	Plot	of	the	Objective	Function

The	 convergence	 tolerance	 of	 the	 interval	 length,	 ,	 is	 set	 as	 0.001.	 The	 convergence
tolerance	of	 the	gradient	at	 the	midpoints,	γ,	 is	 set	 as	0.01.	Table	 12.1	 provides	 the	 end
points,	ak	and	bk,	and	the	derivatives	at	each	midpoint.	The	Bisection	method	stops	after
10	iterations.	At	the	10th	 iteration,	 the	distance	between	 the	 two	points,	0.0098,	 is	 larger
than	 the	 convergence	 tolerance	 of	 the	 interval	 length,	 .	 The	 absolute	 value	 of	 the
derivative	 at	 the	midpoint	 is	 less	 than	 the	 convergence	 tolerance	 of	 the	 gradient	 at	 the
midpoint,	 γ.	 It	 is	 determined	 that	 the	 optimal	 value	 is	 at	 the	 midpoint	 3.9990.	 The
corresponding	function	value	is	f(x*)	=	15.0000.

Table	12.1.	The	End	Points	and	the	Derivatives	at	Each	Midpoint

k ak bk Derivative

1 0.0000 5.0000 -15.0000
2 2.5000 5.0000 -2.5000
3 3.7500 5.0000 3.7500
4 3.7500 4.3750 0.6250
5 3.7500 4.0625 -0.9375
6 3.9063 4.0625 -0.1563
7 3.9844 4.0625 0.2344
8 3.9844 4.0234 0.0391
9 3.9844 4.0039 -0.0586
10 3.9941 4.0039 -0.0098

Golden	Section	Search



The	Golden	Section	Search	is	a	method	to	minimize	or	maximize	a	unimodal	function	of
one	 variable.	 The	 algorithm	 maintains	 the	 function	 values	 for	 triples	 of	 points	 whose
distances	 form	 a	 golden	 ratio.	 This	 method	 does	 not	 require	 information	 about	 the
derivatives.	If	the	minimum	is	known	to	exist	inside	a	region	of	the	variable,	this	method
successively	narrows	the	range	of	function	values	inside	which	the	minimum	exists.

In	mathematics,	 two	 quantities	 are	 in	 the	 golden	 ratio	 if	 the	 ratio	 of	 the	 sum	 of	 the
quantities	 to	 the	 larger	quantity	 is	equal	 to	 the	ratio	of	 the	 larger	quantity	 to	 the	smaller
quantity.	Figure	12.3	 illustrates	 the	 geometric	 relationship	 that	 defines	 the	 golden	 ratio.
The	 total	 length	 is	 lac,	 the	 larger	 segment	 is	 lab,	 and	 the	 smaller	 segment	 is	 lbc.	 From
Fig.	12.3,	the	golden	ratio	can	be	expressed	as

Figure	12.3.	Line	Segments	Divided	According	to	the	Golden	Ratio

(12.7)

Solving	Eq.	12.7,	the	value	of	φ	is

(12.8)

The	value	of	its	conjugate	is

(12.9)

Suppose	 the	variable	of	 a	 unimodal	 function	 f(x)	 is	 inside	 the	 interval	 [a,b],	 and	 f(x)	 is
continuous	over	 this	 interval.	The	minimum	exists	 inside	 this	 interval.	 The	 steps	 of	 the
Golden	Section	Search	are	illustrated	as	follows.

1. Select	 	>	0	as	the	convergence	tolerance	of	the	interval.	Set	the	iteration	number,	k,	to
0.	The	bounds	are	a0	=	a	and	b0	=	b.	Set	l0	=	b0	–	τ(b0	–	a0)	and	r0	=	a0	+	τ(b0	–	a0).

2. If	bk	–	ak	<	 ,	stop.	The	midpoint,	xk	=	 ,	is	considered	the	optimal	value,	x*;	and	the
corresponding	function	value,	f(x*),	is	the	optimal	solution.

3. If	f(lk)	>	f(rk),	the	parameters	are	updated	as	shown	in	the	f(lk)	>	f(rk)	case	in	Fig.	12.4.



Figure	12.4.	Interval	Updates	of	the	Golden	Section	Search

4. If	f(lk)	<	f(rk),	the	parameters	are	updated	as	the	f(lk)	<	f(rk)	case	in	Fig.	12.4.

5. k	=	k	+1,	go	to	Step	2.

Inside	each	 iteration,	depending	on	 f(lk)	>	f(rk)	or	 f(lk)	<	 f(rk),	 the	 objective	 function	 is
evaluated	 at	 different	 new	 points.	 The	 two	 bounds	 of	 the	 interval	 are	 updated	 and	 the
interval	becomes	shorter.	At	Step	2	of	each	iteration,	the	bounds	are	[ak,bk].	If	f(lk)	<	f(rk),
the	right	bound,	bk,	is	updated	in	Step	4.	The	length	of	the	new	interval	is

(12.10)

The	length	of	the	interval	is	reduced	by	a	factor	of	τ	at	each	iteration.	The	length	reduction
is	similar	to	when	f(lk)	>	f(rk).

The	 following	 observations	 are	 noteworthy.	 The	 Golden	 Section	 Search	 method
requires	one	evaluation	of	the	objective	function	at	each	iteration	to	determine	the	interval
where	the	minimum	lies;	while	the	Bisection	method	requires	one	evaluation	of	 the	first
derivative	at	each	iteration.

Example:	The	same	optimization	example	used	for	the	Bisection	method	is	again	used
to	illustrate	the	Golden	Section	Search.	The	convergence	 tolerance	rate,	 ,	 is	set	as	0.1
for	 this	 example,	 which	 is	 different	 from	 the	 previous	 example	 for	 the	 Bisection
method.

(12.11)

Table	12.2	 provides	 the	 four	 points,	 ak,	bk,	 lk,	 and	 rk,	 and	 their	 function	 values.	 The
Golden	Section	Search	stops	after	10	iterations.	At	 the	10th	 iteration,	 the	values	of	 the
objective	function	are	compared	at	two	points,	l10	=	4.00	and	r10	=	4.03.	It	is	determined
that	 the	optimal	value	 is	between	 the	points,	3.95	and	4.03.	The	distance	between	 the



two	points	is	less	than	the	convergence	tolerance,	 .	Finally,	the	point	x*	=	(3.95+4.03)⁄2
=	3.99	is	considered	the	optimal	value,	and	the	corresponding	function	value	 is	 f(x*)	=
15.00.

Table	12.2.	Endpoints,	Golden	Section	Points	and	Function	Values	at	Each	Iteration

k ak bk f(ak	) f(bk	) lk rk f(lk	) f(rk	)

1 0.00 10.00 95.00 195.00 3.82 6.18 15.16 38.77
2 0.00 6.18 95.00 38.77 2.36 3.82 28.44 15.16
3 2.36 6.18 28.44 38.77 3.82 4.72 15.16 17.60
4 2.36 4.72 28.44 17.60 3.26 3.82 17.72 15.16
5 3.26 4.72 17.72 17.60 3.82 4.16 15.16 15.13
6 3.82 4.72 15.16 17.60 4.16 4.38 15.13 15.71
7 3.82 4.38 15.16 15.71 4.03 4.16 15.01 15.13
8 3.82 4.16 15.16 15.13 3.95 4.03 15.01 15.01
9 3.95 4.16 15.01 15.13 4.03 4.08 15.01 15.03
10 3.95 4.08 15.01 15.03 4.00 4.03 15.00 15.01

12.3.2 	Polynomial	Approximations:	Quadratic	Approximation

If	we	assume	an	objective	function	is	unimodal	and	continuous	inside	an	 interval,	 then	 it
can	 be	 approximated	 by	 a	 polynomial.	 A	 is	 the	 simplest	 interpolation	 of	 the	 objective
function	 (see	Ref.	 [3]).	 The	 quadratic	 approximation	method	 consists	 of	 a	 sequence	 of
reducing	 intervals,	 and	 iterative	 approximations	 in	 the	 reduced	 intervals.	 As	 the
approximation	 approaches	 the	 actual	minimum,	 its	 accuracy	 increases.	 When	 the	 error
between	 the	 approximation	 and	 the	 actual	 function	 is	 less	 than	 a	 predefined	 tolerance,
terminate	the	iteration.

A	quadratic	approximating	function	can	be	constructed	given	three	consecutive	points,
x1,	x2,	and	x3,	and	their	corresponding	function	values,	f(x1),	f(x2),	and	f(x3).	The	quadratic
function	is	expressed	as	follows.

(12.12)

At	the	three	points,	x1,	x2,	and	x3,	 	(x)	=	f(x).	The	 three	constants,	c0,	c1,	and	c2,	can	be
determined	as	follows.

At	the	point	x1,	since	f(x1)	=	 	(x1)	=	c0,	the	first	constant	is	c0	=	f(x1).	At	 the	point	x2,
f(x2)	=	 	(x2)	=	c0+c1(x2–x1).	The	second	constant,	c1,	can	be	evaluated	as	follows.

(12.13)



At	 the	point	x3,	 f(x3)	=	 	 (x3)	=	c0+c1(x3–x1)+c2(x3–x1)(x3–x2).	 The	 third	 constant,	 c2,	 is
obtained	from	the	following	equation.

(12.14)

Using	the	above	quadratic	approximation,	the	minimum	point,	x*,	should	satisfy	the	first-
order	necessary	conditions.

(12.15)

Then,	the	minimum	point,	x*,	can	be	expressed	as

(12.16)

The	 quadratic	 approximation	 can	 be	 implemented	 in	 successively	 reduced	 intervals.	 A
successive	quadratic	approximation	method	is	outlined	as	follows.

1. Define	 the	 tolerance	 of	 the	 function	 successive-values	 difference,	 γ	 >	 0,	 and	 the
tolerance	of	the	variable,	 	>	0.	Set	Δx.	Set	the	iteration	number,	k,	to	1.

2. Set	the	initial	point,	x11.	Compute	x21	=	x	11	+	Δx.	Evaluate	f(x11)	and	f(x	21).	If	f(x11)	>
f(x21),	then	x	31	=	x21	+	Δx.	If	f(x11)	<	f(x	21),	then	x31	=	x11–Δx.	Evaluate	f(x31).

3. Compare	the	function	values	at	the	three	points,	x1k,	x2k,	and	x	3k.	Find	 the	minimum,
fmink	=	min{f(x	1k),f(x	2k),f(x	3k)},	and	the	corresponding	point,	xmink.

4. Using	the	three	points,	x1k,	x	2k,	and	x3k,	construct	a	quadratic	approximation.	Compute
the	minimum	point,	xk*,	using	Eq.	12.16.	Evaluate	f(xk*).

5. If	 f(xk*)	 –	 fmink 	<	 γ	 and	 xk*–x	 mink 	<	 ,	 take	 xk*	 as	 the	 minimum.	 Terminate	 the
iteration.

6. Take	the	current	best	point	xk*	and	the	two	points	bracketing	it	as	the	three	points	 for
the	next	quadratic	approximation.	k	=	k	+	1.	Go	to	Step	3.

Example:	 Use	 the	 quadratic	 approximation	 method	 to	 solve	 the	 following
optimization	problem.	The	variable,	x,	is	inside	(1.001,	10).

(12.17)

Define	the	tolerance	of	the	function	successive-values	difference	as	0.01 f(xk*) 	and	the
tolerance	of	the	variable	as	0.05 xk* .	Set	Δx	=	1.	Set	the	initial	point,	x11	=	2.



Define	δfk	and	δxk	as

(12.18)

(12.19)

The	results	for	all	the	iterations	are	listed	in	Table	12.3.
Table	12.3.	The	Iterations	for	the	Quadratic	Approximation	Method

At	the	end	of	the	second	iteration,	the	errors	satisfy	the	 tolerances.	The	 iterations	are
terminated.	The	optimal	point	is	2.65	and	the	optimal	function	value	is	12.57

12.4 	Multivariable	Optimization

Most	 practical	 unconstrained	 nonlinear	 optimization	 problems	 have	 multiple	 design
variables.	 In	 this	 section,	 the	 methods	 for	 solving	 multivariable	 nonlinear	 optimization
problems	are	illustrated.

12.4.1 	Zeroth-Order	Methods

Simplex	Search	Method

The	 Simplex	 Search	 method	 is	 a	 direct-search	 method	 that	 does	 not	 require	 function
derivatives	(see	Ref.	[4]).	Although	the	name	of	this	method	includes	the	word	simplex,	it
has	no	relationship	to	the	Simplex	method	of	linear	programming.

In	 geometry,	 a	 Simplex	 is	 a	 triangle	 in	 two-dimensional	 space	 and	 a	 tetrahedron	 in
three-dimensional	 space.	 In	 n-dimensional	 space,	 it	 is	 an	 n-dimensional	 polytope.	 The
main	 idea	 of	 the	Simplex	method	 is	 that,	 at	 each	 iteration,	 based	 on	 the	 comparison	 of
function	values	at	all	the	vertices,	one	vertex	is	projected	through	the	centroid	of	the	other
vertices	 at	 a	 suitable	 distance.	At	 the	 beginning,	 the	 Simplex	 Search	 method	 sets	 up	 a
regular	Simplex	in	the	space	of	the	variables.	The	objective	function	is	evaluated	at	each
vertex.	For	minimization	problems,	 the	vertex	with	 the	highest	 function	value	 is	 the	one
that	 is	 reflected	 through	 the	 centroid	of	 the	 other	 vertices	 to	generate	 a	 new	 point.	 The



point	and	the	remaining	vertices	construct	the	next	Simplex.

At	the	beginning	of	the	algorithm,	it	requires	the	first	Simplex	to	be	generated	given	a
base	 point,	 x0,	 and	 an	 appropriate	 scale	 factor,	α.	 Assuming	 the	 variable	 vector	 has	N
dimensions,	two	increments,	δ1	and	δ2,	are	defined	by	the	following	two	expressions.

(12.20)

(12.21)

Using	the	two	increments,	the	jth	dimension	for	the	ith	vertex	can	be	calculated	using	 the
following	expression.

(12.22)

At	 each	 iteration,	 the	 vertex	 with	 the	 highest	 function	 value	 is	 selected	 as	 xhigh.	 It	 is
reflected	 through	 the	centroid	of	 the	remaining	points.	The	 centroid	 is	 evaluated	 by	 the
following	expression.

(12.23)

The	line	passing	through	xhigh	and	xcentroid	is	given	by	the	following	expression.

(12.24)

The	selection	of	λ	can	yield	the	desired	point	on	the	line.	If	λ	=	0,	it	yields	the	point,	xhigh.
If	λ	=	1,	the	result	is	the	point,	xcentroid.	In	order	to	generate	a	symmetric	reflection,	λ	is	set
as	2.	The	reflected	point,	xreflected,	is	evaluated	as

(12.25)

The	 reflection	process	 is	 illustrated	 in	Fig.	12.5.	The	point,	x2,	 has	 the	 highest	 function
value,	and	it	is	reflected	through	the	centroid	of	x1	and	x3.



Figure	12.5.	Reflection	of	the	Vertex	with	the	Highest	Function	Value

During	the	optimization,	the	following	two	situations	may	occur.

1. At	the	current	iteration,	the	vertex	with	the	highest	function	value	is	the	reflected	point
generated	in	the	last	iteration.	In	this	situation,	choose	instead	the	vertex	with	the	next
highest	function	value	and	generate	a	reflected	point.

2. The	 iterations	can	cycle	between	 two	or	more	Simplexes.	 If	 a	 vertex	 remains	 in	 the
Simplex	for	more	than	M	iterations,	set	up	a	new	Simplex	with	the	lowest	point	as	the
base	point	and	reduce	 the	size	of	 the	Simplex.	The	number	of	 the	dimension	for	 the
variable	 is	N.	 The	 value	 of	M	 can	 be	 estimated	 by	M	 =	 1.65N	 +	 0.05N2	 and	M	 is
rounded	to	the	nearest	integer.

The	Simplex	Search	method	is	terminated	when	the	size	of	 the	Simplex	is	sufficiently
small	or	other	 termination	criteria	are	met.	The	vertex	with	 the	 lowest	 function	 value	 is
taken	as	the	minimum.

The	Simplex	construction	and	point	reflection	are	illustrated	in	the	following	example.

Example:	Use	the	Simplex	Search	method	to	minimize	the	following	function.

(12.26)

The	number	of	the	dimensions	is	2.	Each	Simplex	has	3	vertices.	Take	x0	=	[1,	1]T	as	the
starting	point,	and	set	α	=	2.	The	increments,	δ1	and	δ2,	can	be	evaluated	as	follows.

(12.27)

(12.28)

The	coordinates	of	the	other	two	vertices	are	calculated	as	follows.

(12.29)

(12.30)

The	function	values	at	the	three	points,	x0,	x1,	and	x2,	are	as	follows.



(12.31)

(12.32)

(12.33)

Since	 the	 vertex,	 x0,	 has	 the	 highest	 function	 value,	 it	 is	 reflected	 to	 form	 a	 new
Simplex.	The	centroid	of	the	two	remaining	points,	x1	and	x2,	is	calculated	as	follows.

(12.34)

The	reflected	point,	xreflected,	is	calculated	as	follows.

(12.35)

At	the	point,	xreflected,	f(xreflected)	=	2.3027.	The	vertex	with	the	highest	function	value	in
this	 new	 Simplex	 is	 x1.	 The	 algorithm	 will	 continue	 by	 reflecting	 the	 x1,	 and	 the
iterations	proceed	following	the	reflection	rule	until	the	optimal	point,	[2,	3]T,	is	found.

Pattern	Search	Methods

The	 pattern	 search	 methods	 are	 a	 family	 of	 derivative-free	 numerical	 optimization
methods.	They	 can	be	 applied	 to	 not	 only	 the	 optimization	 of	 continuous	 differentiable
functions,	 but	 also	 to	 the	 optimization	 of	 discrete	 or	 nondifferentiable	 functions.	 The
pattern	search	methods	look	along	certain	specified	directions,	and	evaluate	 the	objective
function	at	a	given	step	length	along	each	of	these	directions.	These	points	form	a	frame
around	 the	 current	 iteration.	Depending	 on	 whether	 any	 point	within	 the	 pattern	 has	 a
lower	objective	function	value	than	the	current	point,	the	frame	shrinks	or	expands	in	the
next	iteration.	The	search	stops	after	a	minimum	pattern	size	is	reached.

An	 important	decision	 in	 the	pattern	search	methods	 is	 to	choose	 the	search	 direction
set,	Dk,	at	each	iteration	k.	A	key	condition	is	that	at	least	one	direction	in	this	set	should
give	 a	 descent	 direction	 for	 the	 objective	 function	whenever	 the	 current	 point	 is	 not	 a
stationary	 point.	 If	 a	 search	 direction,	p,	 satisfies	 the	 following	 inequality,	 it	 can	 be	 a
direction	of	descent	for	the	objective	function.

(12.36)

where	δ	is	a	positive	constant.

If	the	search	direction,	p,	satisfies	Eq.	12.36	at	each	iteration,	 it	 is	a	descent	direction.
Choose	the	search	direction	set,	Dk,	so	that	at	least	one	direction,	p	∈	Dk,	will	satisfy	cos	θ
>	δ,	regardless	of	the	value	of	∇fk.



A	second	condition	on	Dk	is	that	the	lengths	of	the	vectors	in	this	set	are	all	similar.	The
diameter	of	the	frame	formed	by	 this	set	 is	captured	adequately	by	 the	step	 length.	This
condition	can	be	expressed	as

(12.37)

where	βmin	and	βmax	are	positive	constants.

For	the	pattern	search	methods	in	n-dimensional	space,	examples	of	sets	Dk	that	satisfy
the	above	two	conditions	in	Eqs.	12.36	and	12.37	include	the	coordinate	direction	set

(12.38)

and	the	set	of	n+1	vectors	defined	by

(12.39)

where	e	=	(1,	1,…,	1)T.

Another	important	decision	in	the	pattern	search	method	 is	how	to	choose	a	sufficient
decrease	 function	 ρ(l).	 The	 sufficient	 decrease	 function	 is	 used	 to	 determine	 the
convergence	of	the	results.	It	is	a	function	of	the	step	length	and	its	domain	is	[0,∞).	It	 is
an	 increasing	 function	of	 l	and	 the	 function	 values	 are	 positive.	As	 l	 approaches	 0,	 the
limit	of	ρ(t)⁄t	is	0.	An	appropriate	choice	of	the	sufficient	decrease	function	is	Mt3⁄2,	where
M	is	some	positive	constant.	If	the	decrease	of	the	objective	function	value	is	less	than	the
value	of	the	sufficient	decrease	function,	the	pattern	search	is	converged	to	the	minimum.

At	each	iteration,	the	search	direction	set	is	Dk	and	the	step	length	is	lk.	The	frame	that
consists	of	 the	points	at	 the	next	 iteration	 is	xk	+	 lkpk	 for	all	pk	∈	Dk.	When	 one	 of	 the
points	in	the	frame	yields	a	significant	decrease	of	the	objective	function,	 it	becomes	 the
next	searching	point,	xk+1,	and	the	next	step	length,	lk+1,	is	increased.	If	none	of	the	points
in	 the	frame	has	a	significantly	smaller	 function	value	 than	 fk,	 the	next	step	 length,	 lk+1,
will	be	reduced.	The	procedure	of	the	pattern	search	algorithm	is	illustrated	as	follows.

1. Define	 the	 sufficient	 decrease	 function	 ρ(l).	 Choose	 convergence	 tolerance	 ltol,
contraction	parameter	θmax,	and	search	direction	set	Dk.	Choose	initial	point	x0,	initial
step	length	l0,	and	initial	direction	set	D0.	Set	the	iteration	number,	k,	to	1.

2. Evaluate	the	objective	function	value	f(xk).

3. If	the	step	length	is	lk	≤	ltol,	take	xk	as	the	optimal	point,	x*.	Stop.

4. If	f(xk+lkpk)	<	f(xk)	–	ρ(lk)	for	some	pk	∈	Dk,	set	xk+1	as	xk+lkpk	for	some	pk	∈	Dk,	and
increase	the	step	length	for	the	next	iteration.

5. If	f(xk+lkpk)	≥	f(xk)	–	ρ(lk)	for	all	pk	∈	Dk,	use	the	same	point	xk	as	the	point	xk+1	for	the
next	iteration.	Reduce	the	step	length	for	the	next	iteration,	lk+1.	Set	lk+1	as	θklk,	where



0	<	θk	≤	θmax	<	1.

6. Set	k	=	k	+	1.	Go	to	Step	2.

MATLAB	has	the	function,	patternsearch,	that	finds	the	minimum	of	a	function	using	the
pattern	 search	method.	 It	 can	 handle	 optimization	 problems	with	 nonlinear,	 linear,	 and
bound	constraints,	and	does	not	 require	 functions	 to	be	differentiable	or	continuous.	An
example	 is	 provided	 below	 to	 illustrate	 how	 to	 solve	 a	 nonlinear	 optimization	 problem
without	constraints	using	patternsearch.

Example:	 Use	 the	 pattern	 search	 method	 to	 solve	 the	 following	 three-dimensional
quadratic	problem.

(12.40)

(12.41)

(12.42)

The	sufficient	decrease	function	is	set	as	ρ(l)	=	10l3⁄2.	The	contraction	factor	is	0.5.	The
convergence	 tolerance	 is	 set	 as	0.001.	The	contraction	 factor,	 θmax,	 is	 set	 as	 0.5.	 The
initial	 step	 length,	 l0,	 is	 set	 as	 0.5.	 The	 starting	 point,	 x0,	 is	 [0,	 0,	 0]T.	 The	 search
directions	set,	Dk,	is	the	coordinate	direction	set,	which	is	as	follows.

(12.43)

At	the	initial	point,	x0,	the	function	value,	f(x0),	is	0.	At	the	first	iteration,	 the	function
values	 at	 x0	 +l0pk,	 (k	 =	 1,…,	 6)	 are	 9,	 10.5,	 10.5,	 –7,	 –7.5,	 and	 –5.5.	 The	 value	 of
sufficient	decrease	function	is	as	follows.

(12.44)

For	the	six	points	x0	+	l0pk,	three	of	them	(k	=	4,	5,	6)	satisfy	the	equation,	f(xk+lkpk)	<
f(xk)–(lk).	 Set	 the	 point,	 x0	 +	 l0p5,	 as	 x1,	 and	 increase	 the	 step	 length.	 The	 iterations
continue.	The	minimum	point	is	obtained	as	follows.

(12.45)



The	optimal	function	value	f(x*)	=	–35.9.

This	problem	can	also	be	 solved	by	MATLAB	 function	patternsearch.	 The	 result	 is	 the
same.	The	main	file	is	as	follows.
clc		

clear		

X0	=	[0;	0;	0];		

[x,fopt]=patternsearch(@obj_fun,X0)

The	file	for	the	objective	function	is	as	follows.
function	f	=	obj_fun(x)		

Q	=	[2	0	0;	0	3	0;	0	0	5];		

c	=	[-8;	-9;	-8];		

f	=	0.5*x’*Q*x-c’*x;

12.4.2 	First-Order	Methods

Steepest	Descent

The	steepest	descent	method	 is	 a	 first-order	optimization	algorithm.	 In	 each	 iteration,	 it
takes	 the	 negative	 direction	 of	 the	 gradient	 as	 the	 descent	 direction	 of	 the	 objective
function.	This	method	 takes	steps	 along	 the	 descent	 direction	 to	 find	 a	 local	minimum.
The	procedure	is	as	follows.

1. Choose	a	starting	point	x0.	Set	k	=	0.

2. Check	the	conditions	of	f(xk).	If	xk	is	the	minimum,	stop.

3. Calculate	the	descent	direction,	pk,	as	follows.

(12.46)

4. Evaluate	the	step	 length,	αk.	The	step	 length,	αk,	 should	be	an	acceptable	solution	 to
the	following	minimization	problem.

(12.47)

5. Update	the	value	of	the	variable,	xk+1,	using	the	descent	direction	and	the	step	length.

(12.48)

6. Set	k	=	k+1	and	go	to	Step	2.

The	 steepest	 descent	 method	 is	 the	 simplest	 Newton-type	 method	 for	 nonlinear
optimization.	The	search	direction	is	 the	opposite	of	 the	gradient.	 It	does	not	 require	 the
computation	 of	 second	 derivatives,	 and	 it	 does	 not	 require	 matrix	 storage.	 The
computational	 cost	 per	 iteration	 is	 lower	 compared	 to	 other	 Newton-type	 methods.
However,	this	method	is	very	inefficient	at	solving	most	problems.	It	converges	only	at	a
linear	rate.	This	means	it	requires	more	iterations.	As	a	result,	although	the	computational



cost	per	iteration	is	low,	the	overall	costs	are	high.	However,	the	steepest	descent	method
is	 theoretically	 useful	 in	 proving	 the	 convergence	 of	 other	 methods;	 and	 it	 provides	 a
lower	bound	on	the	performance	of	other	algorithms.

The	procedure	to	solve	an	unconstrained	nonlinear	problem	using	 the	steepest	descent
method	 is	 illustrated	 with	 the	 following	 example.	 Only	 the	 first	 two	 iterations	 are
illustrated	in	this	example.

Example:	 Use	 the	 steepest	 descent	method	 to	 solve	 the	 following	 three-dimensional
quadratic	problem.

(12.49)

(12.50)

(12.51)

In	this	problem,	the	steepest	descent	direction	is

(12.52)

The	step	length	used	for	exact	line	search	xk+1	=	xk	+	αkpk	is

(12.53)

Choose	an	initial	point	x0	=	(0,	0,	0)T.	At	x0,

(12.54)

(12.55)

and

(12.56)

Since	 ∇f(x0) 	>	0,	go	 to	 the	 next	 iteration.	The	 step	 length	 is	α0	 =	 0.1875.	 The	 next
point	is



(12.57)

At	point	x1,	the	function	value,	the	gradient,	and	the	norm	of	the	gradient	are	as	follows.

(12.58)

(12.59)

and

(12.60)

The	next	step	length	is	α1	=	0.1715	and	the	new	point	is

(12.61)

At	point	x2,	the	function	value,	the	gradient,	and	the	norm	of	the	gradient	are	as	follows.

(12.62)

(12.63)

and

(12.64)

The	above	are	the	first	two	iterations	to	solve	this	problem.	It	takes	36	iterations	before
the	norm	of	the	gradient	is	less	than	0.001.	The	optimal	solution	is

(12.65)

The	corresponding	optimal	function	value	is	f(x*)	=	–0.65.

Conjugate	Gradient	Methods

In	addition	to	the	Gaussian	elimination	method,	iterative	methods	are	also	a	valuable	tool



for	solving	linear	equations	in	the	form	of	Eq.	12.66.	One	of	the	many	iterative	methods	is
the	conjugate	gradient	method,	which	is	designed	to	solve	Eq.	12.66	when	the	matrix	A	is
symmetric	and	positive	definite.

(12.66)

Equation	12.67	is	an	optimization	problem	that	has	a	quadratic	objective	function.

(12.67)

The	 matrix	 A	 is	 symmetric	 and	 positive	 definite.	 The	 first-order	 necessary	 conditions
require	the	gradient	of	f(x)	to	be	equal	to	zero.	The	gradient	can	be	expressed	as	Eq.	12.68.

(12.68)

Since	 the	Hessian	matrix,	∇2f(x)	=	A,	 is	 positive	definite,	 the	 sufficient	 conditions	 for	 a
local	minimum	are	 satisfied.	This	optimization	problem	 is	 equivalent	 to	 the	 problem	 of
linear	equations	as	shown	by	Eq.	12.66.

If	 a	 set	 of	 vectors,	 pi,	 satisfies	 Eq.	 12.69,	 the	 vectors	 are	 said	 to	 be	 conjugate	 with
respect	to	the	matrix	A.	Any	set	of	conjugate	vectors	is	also	linearly	independent.

(12.69)

The	residual	of	Eq.	12.68	is

(12.70)

In	Eq.	12.67,	if	the	matrix	A	is	diagonal,	the	contours	of	the	function	f(x)	are	ellipses.	The
axes	of	 the	 ellipses	 are	aligned	with	 coordinate	directions.	 The	 conjugate	 directions	 are
along	 the	coordinate	directions.	Figure	12.6	 illustrates	 the	 conjugate	 directions	 in	 a	 two
dimensional	space.	The	minimum	of	the	function	can	be	found	by	performing	successive
one-dimensional	minimizations	along	the	conjugate	directions.



Figure	12.6.	Conjugate	Directions	for	a	Diagonal	Matrix	A

In	 Eq.	 12.67,	 if	 Matrix	 A	 is	 non-diagonal,	 the	 contours	 of	 the	 function	 f(x)	 are	 also
ellipses.	However,	the	axes	of	the	ellipses	are	not	aligned	with	the	coordinate	directions.
The	 conjugate	 directions	are	not	 along	 the	coordinate	directions.	 Figure	 12.7	 shows	 the
conjugate	directions	for	a	non-diagonal	matrix	in	a	two	dimensional	space.

Figure	12.7.	Conjugate	Directions	for	a	Non-diagonal	Matrix	A

The	 conjugate	 gradient	 methods	 used	 to	 solve	 the	 quadratic	 optimization	 problem
(Eq.	12.67)	exist	in	different	versions	of	the	algorithm.	The	steps	for	one	of	these	versions
are	illustrated	as	follows.

1. Set	 an	 initial	 guess	 x0.	 The	 residual	 is	 r0	 =	 Ax0	 –	 b.	 Set	 a	 vector	 with	 the	 same
dimension	of	the	conjugate	vector,	p0	=	–r0.	Specify	the	convergence	tolerance,	 	>	0.
Initialize	the	iteration	counter,	i	=	0.



2. Check	the	value	of	the	residual	 ri .	If	 ri 	<	 ,	stop.

3. Set	αi	=	riTr	i⁄piTAp	i.

4. Evaluate	the	next	point,	xi+1	=	xi	+	αipi.

5. Evaluate	the	residual,	ri+1	=	ri	+	αiApi.

6. Set	βi+1	=	ri+1Tr	i+1⁄riTr	i.

7. Set	the	conjugate	vector,	pi+1	=	–ri+1+βi+1pi.

8. Set	i	=	i	+	1.	Go	to	Step	2.

Example:	 Use	 the	 above	 algorithm	 for	 conjugate	 gradient	 methods	 to	 solve	 the
following	three-dimensional	quadratic	problem.

(12.71)

(12.72)

(12.73)

The	convergence	tolerance,	 ,	is	set	as	0.01.	Choose	an	 initial	point	x0	=	 (0,	0,	0)T.	At
this	 point,	 the	 residual	 is	 r0	 =	 (8,	 9,	 8)T.	 This	 point	 is	 not	 optimal.	 The	 algorithm
performs	several	 iterations	 in	 search	 of	 the	 optimal	 solution.	 Table	 12.4	 provides	 the
results	for	all	the	iterations.

Table	12.4.	The	Iterations	for	the	Conjugate	Gradient	Method

At	 the	 initial	 point	 x0,	 r0 	 =	 14.46.	 In	 the	 first	 iteration,	 r1 	 =	 5.24.	 In	 the	 second
iteration,	 r2 	 =	 1.22.	 In	 the	 third	 iteration,	 	 r3 	 =	 0.	 Since	 r3	 	 ≤	 	 	 ,	 the	 point	 x3	 =
(–4.00,–3.00,–1.60)T	 is	 the	optimal	solution	 to	 this	example,	 and	 the	optimal	 function
value	is	f(x3)	=	–35.9.

Different	 versions	 of	 the	 conjugate	 gradient	 method	 can	 be	 applied	 to	 quadratic
optimization	 problems	 and	 general	 unconstrained	 nonlinear	 optimization	 problems.	 The
Fletcher-Reeves	method	extends	the	conjugate	gradient	method	to	nonlinear	optimization



problems	 by	 making	 two	 changes.	 First,	 the	 one-dimensional	 minimum	 along	 each
conjugate	 vector	 is	 identified	 by	 a	 line	 search.	 Second,	 the	 residual	 is	 replaced	 by	 the
gradient	of	the	nonlinear	function.	The	steps	of	the	Fletcher-Reeves	method	are	as	follows.

1. Set	an	initial	guess	x0.	At	x0,	evaluate	the	function,	f(x0),	and	 its	gradient,	∇f(x0).	Set
p0	=	-∇f(x0).	Specify	the	convergence	tolerance	of	the	residual,	 	>	0.	Set	the	iteration
number,	i,	to	0.

2. Check	the	norm	of	the	gradient	∇f(xi) .	If	∇f(xi) 	<	 ,	stop.

3. Use	 a	 line	 search	 along	 the	 direction	 of	 the	 conjugate	 vector	 to	 determine	 the
minimum	xi+1	=	xi	+	αipi.

4. Evaluate	the	gradient	∇f(xi+1).

5. Set	βi+1	=	∇f(xi+1)T∇f(x	i+1)⁄∇f(xi)T∇f(x	i).

6. Set	the	conjugate	vector	pi+1	=	-∇f(xi+1)	+	βi+1pi.

7. Set	i	=	i	+	1.	Go	to	Step	2.

12.4.3 	Second-Order	Methods

Newton	Method

Newton’s	 method	 approximates	 the	 function	 f(x)	 with	 a	 quadratic	 function	 at	 each
iteration.	 The	 approximated	 quadratic	 function	 is	 minimized	 exactly,	 and	 a	 descent
direction	is	evaluated.

In	each	iteration,	the	function	is	approximated	as	follows.

According	to	the	first-order	necessary	condition,	the	first	derivative	of	 	(x)	should	satisfy
∇ 	(x)	=	0.	This	condition	can	be	expressed	as

(12.75)

Solving	the	above	equation,

(12.76)

Assuming	the	inverse	of	the	Hessian	exists,	then

(12.77)

The	second	 term	in	Eq.	12.77	 is	used	as	 the	 reasonable	direction	 to	estimate	xk+1	 in	 the
next	iteration.



(12.78)

The	descent	direction,	pk,	can	be	expressed	as

(12.79)

If	[∇2f(x	k)]-1	exists,	pk	can	be	evaluated	using	Eq.	12.79.	The	other	way	 to	evaluate	 the
descent	direction,	pk,	is	by	solving	the	following	equation.

(12.80)

Equation	12.80	can	be	solved	by	Gaussian	Elimination,	Cholesky	Factorization,	or	other
suitable	methods.

The	 expression	 of	 the	 descent	 direction	 is	 simple	 in	 Newton’s	 method.	 However,
Newton’s	method	has	certain	shortcomings.	(1)	Newton’s	method	does	not	always	find	a
minimum,	and	might	only	find	a	stationary	(not	minimum)	point.	(2)	It	converges	only	if
one	starts	sufficiently	near	an	optimal	solution.	(3)	The	computational	cost	to	evaluate	the
inverse	of	the	Hessian	is	high,	especially	for	high-dimensional	optimization	problems.

The	steps	to	solve	an	unconstrained	nonlinear	problem	are	illustrated	with	the	following
example.

Example:	Use	Newton’s	method	to	minimize	the	following	function.

(12.81)

The	gradient	of	f(x)	is	as	follows.

(12.82)

The	Hessian	of	f(x)	is	as	follows.

(12.83)

The	inverse	of	∇2f(x)	is	as	follows

(12.84)

Choose	an	initial	point,	x0	=	(10,	10)T.	The	next	point,	x1,	is	evaluated	as	follows.

(12.85)



The	point	x1	=	(0,	0)T	is	the	optimal	solution	for	this	example,	and	the	optimal	function
value	is	f(x1)	=	0.

Quasi-Newton	Methods

Quasi-Newton	 methods	 are	 among	 the	 most	 widely	 used	 methods	 for	 nonlinear
optimization.	 When	 the	 Hessian	 is	 difficult	 to	 compute,	 quasi-Newton	 methods	 are
effective	for	solving	these	kinds	of	problems.	There	are	different	quasi-Newton	methods,
but	they	are	all	based	on	approximations	of	 the	Hessian	by	another	matrix	 to	 reduce	 the
computational	 cost.	 In	Sec.	12.4.3,	Newton’s	method	 estimates	 the	 search	 direction,	pk,
that	satisfies	the	following	equation.

(12.86)

Quasi-Newton	methods	 use	 an	 approximation	 of	 the	 Hessian,	 Bk,	 to	 obtain	 the	 search
direction,	pk.	The	search	direction	is	obtained	by	solving

(12.87)

For	 one-dimensional	 nonlinear	 optimization	 problems,	 quasi-Newton	 methods	 are
generalizations	of	the	secant	method.	The	secant	method	approximates	the	Hessian	using

(12.88)

where	f′(xk)	can	be	approximated	as

(12.89)

For	multidimensional	nonlinear	optimization	problems,	the	above	condition	is	rewritten	as

(12.90)

From	the	above	Eq.	12.90,	the	condition	for	the	approximation	matrix	Bk	is	derived,	which
can	be	expressed	as

(12.91)

The	matrix	Bk	has	n2	entries	and	the	secant	condition	only	has	a	set	of	n	equations.	This
condition	 is	 insufficient	 to	 define	Bk	 uniquely.	 The	 matrix	 Bk	 does	 not	 always	 have	 a
unique	solution	for	the	secant	condition.

There	are	several	ways	to	approximate	and	update	the	matrix	Bk.	Define	two	vectors,	sk
and	yk,	as	follows.



sk =	xk+1	–	xk (12.92)
yk =	∇f(xk+1)	-∇f(xk) (12.93)

As	 one	 of	 the	 approximation	 formulae,	 the	 symmetric	 rank-one	 update	 formula	 can	 be
expressed	as

(12.94)

The	Bk’s	updated	by	Eq.	12.94	are	symmetric.	However,	they	are	not	necessarily	positive
definite.

As	one	of	the	most	widely	used	formulae,	the	BFGS	update	formula	can	be	expressed
as

(12.95)

Upon	 selecting	 the	 appropriate	 update	 formula	 of	 Bk,	 the	 quasi-Newton	 algorithm	 is
illustrated	as	follows.

1. Choose	a	starting	point	x0.	Choose	an	initial	Hessian	approximation	B0,	which	can	be
the	diagonal	matrix,	I.	Set	k	=	0.

2. If	xk	is	optimal,	stop.

3. Determine	the	search	direction,	pk,	by	solving	Bkpk	=	-∇f(xk).

4. Find	the	step	length,	αk,	by	a	line	search	to	minimize	f(xk+	αkpk).

5. Set	xk+1	=	xk	+	αkpk.

6. Update	Bk+1	using	the	selected	update	formula.

7. Set	k	=	k	+	1	and	go	to	Step	2.

The	steps	to	solve	an	unconstrained	nonlinear	problem	are	illustrated	with	the	following
example.

Example:	Use	a	quasi-Newton	method	with	the	symmetric	rank-one	Bk	update	formula
to	solve	the	following	three-dimensional	quadratic	problem.

(12.96)

(12.97)



(12.98)

Choose	an	 initial	point	x0	=	 (0,	0,	0)T.	The	 initial	 guess	 is	B0	=	 I.	 At	 this	 point,	 x0,	
∇f(x0) 	=	 -c 	=	14.4568,	so	this	point	is	not	optimal.

From	B0p	=	-∇f(x0),	the	first	search	direction	is	derived	as

(12.99)

The	line	search	formula	gives	α0	=	0.3025.	The	new	estimated	point	is

(12.100)

The	gradient	at	the	new	point	x1	is

(12.101)

To	update	B1,	first	evaluate	s0	and	y0.

(12.102)

(12.103)

(12.104)

At	this	new	point	x1,	∇f(x1) 	=	5.2423.	It	is	not	optimal.	The	search	direction	is

(12.105)



The	line	search	step	length	is	α1	=	0.3471.	At	the	new	point,	x2,	the	new	estimates	of	the
solution,	the	gradient,	and	the	Hessian	are

(12.106)

(12.107)

(12.108)

At	the	point	x2,	∇f(x2) 	=	0.8397.	It	is	not	optimal.	The	new	search	direction	is

(12.109)

and	the	step	length	α2	=	0.4145.	The	line	search	yields	the	point

(12.110)

At	point	x3,

(12.111)

The	point	x3	is	the	optimal	solution	 to	 this	example,	and	 the	optimal	 function	value	 is
f(x3)	=	–35.9.

12.5 	Comparison	of	Computational	Issues	in	the	Algorithms

12.5.1 	Rate	of	Convergence

The	optimization	algorithms	discussed	in	this	chapter	are	iterative	methods,	and	are	used
to	evaluate	a	sequence	of	approximate	solutions.	The	rate	of	convergence	is	a	measure	of
efficiency,	which	describes	how	quickly	 the	estimates	of	 the	solution	approach	 the	exact
solution.	Efficient	algorithms	reduce	the	computational	cost.	Assume	a	sequence	of	points
xk	converges	to	a	solution	x*.	The	error	at	the	kth	iteration	can	be	defined	as



(12.112)

As	the	sequence	approaches	the	solution	x*,	the	limit	of	e	k	is	0.

If	 Eq.	 12.113	 holds,	 the	 sequence	 xk	 is	 said	 to	 converge	 to	 x*	 with	 rate	 r	 and	 rate
constant	C.	The	constant	C	<	∞.

(12.113)

For	a	sequence	of	errors,	when	r	=	1,	the	convergence	is	said	to	be	 linear,	as	Eq.	12.114
indicates.	Note	that	if	0	<	C	<	1,	then	the	norm	of	the	error	is	reduced	at	every	iteration.	If
C	>	1,	then	the	sequence	diverges.

(12.114)

If	r	=	1	and	C	=	0,	the	rate	of	the	convergence	is	said	to	be	superlinear.	For	any	r	>	1,	if

(12.115)

then	Eq.	12.116	holds.	Any	convergence	with	r	>	1	has	a	superlinear	rate	of	convergence.

(12.116)

When	 r	 >	 2,	 the	 convergence	 is	 called	 quadratic.	 The	 rates	 of	 convergence	 for	 some
optimization	algorithms	in	this	chapter	are	listed	in	Table	12.5.

Table	12.5.	Comparison	of	Optimization	Methods	for	Unconstrained	Nonlinear	Problems

Method Converge Convergence Computation Problem
Proof Rate Cost Scale

Bisection yes linear very	high 1-dimensional
Golden	Section yes linear high 1-dimensional
Quadratic	Appro yes linear very	high 1-dimensional
Pattern	Search yes high small
Steepest	Descent yes linear high medium
Conjugate	Grad yes linear-quadratic medium	high large
Newton no quadratic medium	-	high small-medium
Quasi-Newton yes superlinear low	-	medium small	-	mid

12.5.2 	Line	Search	Methods



In	the	above	sections,	at	each	iteration,	the	steepest	descent	method,	the	conjugate	gradient
method,	 the	 Newton	 method	 and	 the	 quasi-Newton	 methods	 first	 evaluate	 a	 search
direction	pk,	and	then	do	a	line	search	along	the	direction	to	determine	an	appropriate	step
length,	αk.	The	iteration	is	given	by

(12.117)

Most	line	search	algorithms	require	the	search	direction,	pk,	to	be	a	descent	direction,	and
it	should	satisfy

(12.118)

The	 step	 length,	 αk,	 should	 generate	 a	 substantive	 reduction	 of	 f(x)	 along	 the	 descent
direction.	The	minimum	of	Eq.	12.119	is	chosen	as	a	function	of	αk.

(12.119)

In	 general,	 it	 is	 not	 computationally	 practical	 to	 determine	 that	 exact	 minimum.	 Some
practical	strategies	perform	an	inexact	line	search	to	identify	a	step	length	with	adequate
reduction	in	f(x).	These	strategies	reduce	computational	cost.

A	popular	inexact	line	search	condition	requires	that	αk	give	a	sufficient	decrease	in	the
objective	function,	f(x),	as	measured	by	the	following	inequality:

(12.120)

where	the	constant	c1	∈	(0,	1).	This	inequality	is	called	the	Armijo	condition.

The	sufficient-decrease	condition	is	not,	by	itself,	adequate	to	ensure	that	the	algorithm
makes	reasonable	progress.	To	rule	out	unacceptable	short	steps,	the	curvature	condition	is
introduced	as	the	following	inequality.

(12.121)

where	 the	 constant	 c2	 ∈	 (c1,	 1).	 The	 sufficient-decrease	 condition	 and	 the	 curvature
condition	are	collectively	known	as	the	Wolfe	conditions.

12.5.3 	Comparison	of	Different	Methods

The	 optimization	 methods	 presented	 in	 this	 chapter	 include	 the	 Bisection	 method,	 the
Golden	Section	Search	method,	 the	quadratic	 approximation	method,	 the	 pattern	 search
methods,	 the	 steepest	 descent	 method,	 the	 conjugate	 gradient	 methods,	 the	 Newton
method,	and	the	quasi-Newton	methods.

All	 of	 these	 methods	 have	 applications	 in	 different	 fields.	 Unconstrained	 nonlinear
problems	can	be	classified	as	small,	mid,	or	large	scale	problems.	Computers	used	 to	 run



the	 codes	 of	 the	 algorithms	 can	 have	 different	 computational	 capacity.	 The	 appropriate
method	can	be	selected,	depending	on	the	application,	the	computation	capability,	and	the
storage	 requirements.	 Note	 that	 computation	 capacity,	 in	 this	 regard,	 and	 storage
requirements	have	become	less	critical	issues	in	recent	years.

Table	12.5	provides	a	 comparison	of	 the	 different	methods.	 The	 comparison	 includes
the	following	properties:	convergence	guarantee,	convergence	rate,	computation	cost,	and
problem	 scale.	 It	 is	 important	 to	 keep	 in	mind	 that	 the	 overall	 computational	 cost	 is	 a
combination	of	 (i)	 the	 number	 of	 iterations,	 and	 (ii)	 the	 cost	 of	 each	 iteration.	While	 a
method	may	converge	in	fewer	iterations,	it	might	require	more	costly	computation	at	each
iteration.	For	example,	the	Newton	method	may	often	converge	with	fewer	iterations	than
the	 Conjugate	 Gradient	 method.	 However,	 at	 each	 iteration,	 Conjugate	 Gradient	 only
requires	gradient	computation,	while	Newton	requires	a	very	costly	Hessian	computation.

The	 Conjugate	 Gradient	 method	 may	 exhibit	 linear	 to	 quadratic	 convergence,
depending	on	the	particular	implementation.	As	standalone	algorithms,	Bisection,	Golden
Section,	and	Quadratic	Approximation	methods	are	capable	of	performing	only	univariate
optimization	or	 line	search.	However,	 they	can	be	applied	as	 techniques	 to	perform	line
search	 along	 a	 direction	 of	 improvement	 (direction	 vector)	 within	 the	 context	 of
multivariate	 optimization.	 We	 note	 that	 some	 of	 the	 above	 comments	 are	 somewhat
subjective,	and	that	much	depends	on	the	particular	problem	and	the	computing	resources
at	hand.

This	chapter	provides	the	reader	with	sufficient	information	to	understand	the	basics	of
unconstrained	nonlinear	programming.	This	background	makes	it	possible	to	explore	more
theoretical	aspects	of	the	topic	[5].

12.6 	Summary

Since	 most	 engineering	 design	 problems	 tend	 to	 be	 nonlinear	 in	 nature,	 the	 topic	 of
nonlinear	programming	(NLP)	is	of	paramount	importance	in	learning	optimization.	This
chapter	introduced	the	basics	of	unconstrained	NLP.	The	chapter	began	with	a	description
of	the	necessary	and	sufficient	conditions	for	optimality	in	unconstrained	NLP	problems.
This	description	was	followed	by	the	introduction	of	the	major	techniques/algorithms	used
for	solving	uni-vartiate	and	multivariate	NLP	problems.	Specifically,	two	major	classes	of
uni-variate	methods	were	 presented:	 (i)	 interval	 reduction	methods	 and	 (ii)	 polynomial
approximation	methods.	This	was	followed	by	a	description	of	the	three	major	classes	of
multivariate	unconstrained	NLP	methods.	These	are:	the	Zeroth	order	methods	(e.g.,	 line
search	and	pattern	 search),	 the	 first	 order	methods	(e.g.,	 steepest	 descent	 and	 conjugate
gradient),	and	the	second	order	methods	(e.g.,	Newton’s	and	Quasi	Newton	methods).	The
chapter	 concluded	 with	 a	 comparative	 discussion	 of	 the	 rate	 of	 convergence	 and	 the
computational	cost	of	 these	different	classes	 of	methods	 for	solving	 unconstrained	NLP
problems.

12.7 	Problems

Warm-up	Problems



12.1 Consider	the	function:

	

1. Calculate	the	Hessian	matrix	of	the	function.

2. Calculate	the	Hessian	at	(i)[1,	1],	(ii)[2,	2],	and	(iii)[0,	0].

3. Use	 optimality	 conditions	 to	 classify	 the	 points	 in	Question	 (2)	 as	 minimum,
maximum,	or	saddle	points.

Intermediate	Problems

12.2 Consider	the	following	two	dimensional	function:

1. Calculate	the	gradient	vector	of	the	above	function	by	hand.

2. Calculate	 the	gradient	at	 the	 following	points	by	hand:	 (i)[1,	1],	 (ii)[2,	2],	and
(iii)[0,	0].

3. Write	a	small	program	in	MATLAB	that	evaluates	the	gradient	at	each	point	in	a
two-dimensional	 grid	 in	 the	 space	 –5	 ≤	 x1	 ≤	 5.	 Choose	 an	 appropriate	 grid
spacing	(at	least	100	points).

4. Find	a	way	 in	MATLAB	 to	plot	each	gradient	vector	of	Question	 (3)	as	a	small
arrow	 (pointing	 in	 the	 correct	 direction)	 at	 its	 x1,	 x2	 location;	 that	 is,	 if	 you
evaluated	1,	000	gradient	vectors	in	Question	3,	then	your	plot	should	contain	1,
000	arrows.	In	addition,	plot	the	contours	of	f	on	top	of	the	gradient	plot.

5. Interpret	your	plot	and	comment	on	the	likely	location	of	the	minimum	point	by
observing	the	gradient	vectors	and	the	contours	of	f.

12.3 Consider	the	function:

1. Write	 a	 program	 to	 estimate	 the	 minimum	 of	 the	 function	 using	 the	 steepest
descent	method.	Use	the	starting	point	[10,	1].

2. Compare	your	optimum	results	with	the	results	of	fmincon.	How	many	function
evaluations	does	your	code	need?	How	many	function	evaluations	does	fmincon
need?

3. On	the	contour	plot	of	the	function,	plot	the	sequence	of	points	obtained	during
the	optimization	iterations	using	your	steepest	descent	code.

Advanced	Problems

12.4 Consider	the	following	function:



We	wish	to	find	the	minimum	of	the	above	function	in	the	given	range	of	x.

1. Using	the	following	listed	methods,	estimate	the	minimum	of	the	above	function
using	up	to	three	iterations.	Solve	Parts	(a)	through	(c)	by	hand,	and	please	show
your	complete	work.

(a) Interval	Halving	Method	(i.e.,	Bisection	method)

(b) Newton-Raphson	Method	using	x0	=	1	as	the	starting	point

(c) Golden	Section	Method

(d) Plot	 the	function	 f(x)	using	MATLAB,	 and	 identify	 the	optimum	solution	 in
the	 range	 of	 x.	 For	 Parts	 (a)	 through	 (c),	 calculate	 the	 percentage	 error
between	 the	 optimum	 x	 value	 and	 the	 value	 of	 x	 after	 three	 iterations.
Present	your	results	in	a	tabular	form,	as	shown	below,	for	methods	in	Parts
(a),	(b),	and	(c).

2. Write	 a	 MATLAB	 code	 for	 the	 Newton-Raphson	 method	 that	 evaluates	 the
minimum	of	the	function	in	Problem	1.	Use	an	appropriate	stopping	criterion.

3. Verify	 your	 results	 using	 fmincon.	 Make	 sure	 your	 code	 gives	 you	 the	 same
solution	 as	 that	 given	 by	 fmincon.	 You	 might	 have	 to	 change	 your	 stopping
criterion.

4. How	 many	 function	 evaluations	 does	 your	 code	 need?	 How	 many	 function
evaluations	does	fmincon	need?	Use	 the	same	starting	point	 for	your	code	and
fmincon.

Table	12.6.	Results	Summary	for	Given	Search	Methods

Iteration (a) (b) (c)

x f(x) x f(x) x f(x)

1
2
3

12.5 Consider	the	following	function:

We	want	to	find	the	minimum	of	the	above	function	in	the	given	range	of	x.

	

1. Using	 the	 following	methods,	 estimate	 the	minimum	of	 the	above	 function	by
implementing	 up	 to	 three	 iterations.	 Solve	 Parts	 (a)	 through	 (c)	 by	 hand,	 and
please	show	your	complete	work.

(a) Bisection	Method



(b) Secant	Method

(c) Successive	 quadratic	 estimation	 Present	 your	 results	 in	 a	 tabular	 form,	 as
shown	below,	for	methods	in	Parts	(a),	(b),	and	(c).

2. Write	a	MATLAB	code	for	the	above	three	methods	for	the	given	function.	Use	an
appropriate	stopping	criterion.

Table	12.7.	Results	Summary	for	Given	Search	Methods

Iteration (a) (b) (c)

x f(x) x f(x) x f(x)

1
2
3

BIBLIOGRAPHY	OF	CHAPTER	12

[1] M.	S.	Bazaraa,	H.	D.	Sherali,	and	C.	M.	Shetty.	Nonlinear	Programming:	Theory	and	Algorithms.	John	Wiley	and
Sons,	3rd	edition,	2013.

[2] A.	Ruszczynski.	Nonlinear	Optimization.	Princeton	University	Press,	2011.

[3] B.	 Zwicknagl	 and	 R.	 Schaback.	 Interpolation	 and	 approximation	 in	 taylor	 spaces.	 Journal	 of	 Approximation
Theory,	171:65–83,	2013.

[4] A.	R.	Conn,	K.	Scheinberg,	and	L.	N.	Vicente.	Introduction	to	Derivative-free	Optimization.	SIAM,	2009.

[5] R.	J.	Vanderbei.	Linear	Programing:	Foundations	and	Extensions.	Springer,	2014.



13

Nonlinear	Programming	with	Constraints

13.1 	Overview

Practical	engineering	optimization	problems	often	involve	constraints.	Since	nonlinearities
are	pervasive	in	practical	constraints	and	objective	functions,	 it	 is	necessary	 to	explicitly
study	the	methods	used	to	solve	nonlinear	optimization	problems	with	constraints	[1,	2,	3].

In	the	previous	chapter	(Chapter	12),	the	methods	used	to	solve	nonlinear	programming
problems	without	constraints	were	discussed.	The	present	chapter	presents	a	representative
set	 of	methods	 used	 to	 solve	 nonlinear	 programming	 problems	 with	 constraints.	 These
include:	 the	 elimination	 method,	 the	 penalty	 method,	 the	 Karush-Kuhn	 Tuker	 (KKT)
condition	that	defines	optimality,	sequential	linear	programming,	and	sequential	quadratic
programming.

13.2 	Structure	of	Constrained	Optimization

The	general	formulation	of	optimization	problems	has	been	defined	as

(13.1)

subject	to

(13.2)
(13.3)
(13.4)

The	function	f	(x)	represents	the	objective	function.	The	constraints	include	the	inequality
constraint	function	g(x),	the	equality	constraint	function	h(x),	and	the	side	constraints.	An
optimization	problem	is	classified	as	a	constrained	nonlinear	programming	problem	when	(i)
it	 involves	at	 least	one	constraint,	and	(ii)	when	at	 least	one	of	 the	functions	(among	 its
objective	 function	 or	 its	 constraint	 functions)	 is	 nonlinear.	 An	 example	 of	 constrained
nonlinear	optimization	problems	is	as	follows.

Example:

(13.5)

subject	to

(13.6)

(13.7)



This	example	involves	one	nonlinear	function:	the	inequality	constraint	g(x).	The	feasible
region	 is	depicted	 in	Fig.	13.1.	The	 inequality	constraint,	 g(x),	 constrains	 the	 feasible
region	inside	the	circle.	The	equality	constraint	function,	h(x),	constrains	the	feasible	region
to	the	single	straight	line	segment	inside	the	circle.	Therefore,	the	feasible	region	is	the	line
segment	between	the	two	points,	a	and	b,	as	given	by	the	dashed	line	in	the	figure.

Figure	13.1.	An	Example	of	a	Constrained	Nonlinear	Optimization	Problem

This	optimization	problem	can	be	solved	using	graphical	approaches.	The	location	of	the
minimum	is	point	b.	(In	this	chapter,	more	advanced	numerical	methods	are	introduced	to
solve	constrained	nonlinear	optimization	problems.)

Note	that	it	is	acceptable	to	include	the	side	constraints	(Eq.	13.4)	into	the	set	of	behavioral
inequality	 constraints	 (Eq.	 13.2),	 so	 that	 no	 side	 constraints	 explicitly	 appear	 in	 the
formulation.	This	 inclusion	of	side	constraints	 into	 the	behavioral	 constraints	 is	 done	 in
Sec.	13.5	in	the	development	of	the	Karush-Kuhn-Tucker	Conditions.	Note	that,	in	software
application,	this	inclusion	can	have	negative	computational	consequences.	This	is	because
optimization	 software	 treat	 these	 constraints	 differently	 for	 computational	 efficiency
purposes.	We	combine	them	here	only	for	theoretical	convenience.	In	this	case,	the	problem
formulation	takes	the	form

(13.8)

subject	to

(13.9)
(13.10)

13.3 	Elimination	Method



If	an	optimization	problem	only	has	equality	constraints,	it	can	be	solved	as	an	unconstrained
problem	by	eliminating	variables.	This	class	of	problems	is	defined	as

(13.11)

subject	to

(13.12)

In	 the	 above	 problem	 definition,	N	 represents	 the	 number	 of	 design	 variables,	 and	 n
represents	the	number	of	equality	constraints.	Suppose	N	>	n	and	the	n	equality	constraints
are	mutually	 independent.	 In	 this	 case,	 the	 equality	 constraints	 can	 be	 solved,	 and	 the
expressions	 of	n	 variables	 can	 be	 substituted	 into	 the	 objective	 function.	 This	 process
reduces	the	number	of	variables	from	N	to	N	−	n.	In	addition,	the	constrained	optimization
problem	 becomes	 unconstrained.	 Methods	 used	 to	 solve	 unconstrained	 optimization
problems	can	then	be	used	to	search	for	the	optimum	solution.	The	following	example	is	used
to	 illustrate	 this	 elimination	 method	 for	 solving	 constrained	 nonlinear	 programming
problems	involving	only	equality	constraints.

Example:	Use	the	elimination	method	to	solve	the	following	optimization	problem	with
equality	constraints.

(13.13)

subject	to

(13.14)
(13.15)

The	equality	constraints	can	be	simplified	to

(13.16)

(13.17)

Substituting	 the	 above	 expressions	 for	 x2	 and	 x3	 into	 the	 objective	 function	 of	 the
constrained	optimization	problem	yields	the	following	unconstrained	problem:

(13.18)

Solving	the	above	unconstrained	optimization	problem,	the	minimum	point	is	found	to	be
x*	=	0.1667,	and	the	minimum	value	of	the	objective	function	is	−3.1667.

13.4 	Penalty	Methods

The	Penalty	method	is	used	to	replace	the	original	optimization	problem	with	a	sequence	of
subproblems	in	which	a	functional	form	of	the	constraints	is	added	to	the	objective	function.
The	idea	of	this	approach	is	that,	in	the	limit,	the	solutions	of	the	subproblems	will	converge



to	the	solution	of	the	original	constrained	problem.	Penalty	methods	are	classified	into	two
groups	depending	on	how	the	methods	add	the	inequality	constraints:	(i)	the	interior	point
methods	which	generate	a	sequence	of	feasible	points;	and	(ii)	the	exterior	point	methods
which	generate	a	sequence	of	infeasible	points.

Penalty	methods	reformulate	the	constrained	optimization	problem	into	an	unconstrained
optimization	problem.	The	unconstrained	problem	has	two	parts:	the	objective	function	of
the	original	problem,	and	a	penalty	term.	The	unconstrained	problem	is	expressed	as

(13.19)

In	Eq.	13.19,	ΩR,	g(x),	h(x)	is	the	penalty	term.	It	is	a	function	of	R	and	the	constraints.	In
this	 function,	R	 is	called	 the	penalty	parameter.	 It	can	have	more	 than	one	 number.	 The
penalty	parameter	 and	 the	constraint	 functions	 can	 take	 on	 different	 forms.	 The	 penalty
parameter	can	be	updated	using	different	rules.

If	the	stationary	point	of	P(x,R)	is	infeasible,	an	exterior	point	method	is	being	used.	The
updated	 parameter,	R,	 forces	 the	 stationary	 point	 to	 be	 closer	 to	 the	 feasible	 region.	 In
contrast,	if	the	form	of	Ω	forces	the	stationary	point	of	the	unconstrained	function	P(x,R)	to
be	feasible,	an	interior	point	method	is	being	used.	The	interior	point	method	is	also	called
the	barrier	method,	as	the	penalty	term	forms	a	barrier	along	the	boundaries	of	the	feasible
region.

There	are	different	choices	of	penalty	forms.	A	commonly	used	penalty	form	for	equality
constraints	is	the	parabolic	penalty,	which	is	given	by

(13.20)

The	parabolic	penalty	function	is	plotted	in	Fig.	13.2.	The	parabolic	penalty	term	is	0	only	at
the	point	where	h(x)	=	0.	As	h(x)	moves	farther	away	from	0,	the	value	of	Ω	becomes	larger.
Thus,	the	parabolic	penalty	term	discourages	both	positive	and	negative	violations	of	h(x).



Figure	13.2.	Parabolic	Penalty

Another	useful	penalty	form	is	the	logarithmic	function.	The	logarithmic	penalty	form	for
inequality	constraints	is	expressed	as

(13.21)

The	logarithmic	penalty	form	is	usually	used	for	the	interior	point	methods.	The	initial	point
is	in	the	feasible	region.	As	the	point	approaches	the	boundary	of	the	feasible	region	and
−gi(x)	tends	to	0,	the	penalty	term,	Ω,	approaches	positive	infinity,	and	attempts	to	keep	it
from	 crossing	 the	 feasibility	 boundary.	 As	 the	 penalty	 parameter	 R	 approaches	 0,	 the
function	P(x,R)	approaches	the	original	objective	function	f	(x).

Another	useful	penalty	function	is	the	Inverse	Penalty,	expressed	as

(13.22)

In	principle,	if	one	is	interested	in	a	penalty	function	that	keeps	an	objective	function	within
two	boundaries,	a	potential	penalty	function	of	 the	form	illustrated	 in	Fig.	13.3	could	be
devised.



Figure	13.3.	Generic	Penalty	Function	for	Double-Sided	Boundaries

It	is	important	to	note	that	some	of	these	penalty	functions	are	fraught	with	complications
that	 must	 be	 attended	 to.	 In	 the	 case	 of	 the	 log	 function,	 when	 the	 argument	 should
unintendedly	become	negative,	we	have	a	situation	for	which	we	must	devise	a	recovery	plan.
In	the	case	of	the	Inverse	Penalty,	when	the	argument	should	become	too	close	to	zero,	the
situation	similarly	becomes	problematic.	The	published	literature	offers	effective	pertinent
recovery	mechanisms	(see	Ref.	[4]).

The	exterior	point	method	and	the	interior	method	are	illustrated	using	the	following	two
examples.

Example:	Solve	the	following	optimization	problem	with	an	equality	constraint	using	the
parabolic	penalty	form.

(13.23)

subject	to

(13.24)

The	penalty	function	is	formed	using	the	parabolic	penalty	term.

(13.25)

The	stationary	point	of	the	unconstrained	function	P(x,R)	satisfies	the	following	first-order
conditions.

(13.26)

(13.27)



Then,	the	coordinates	of	the	stationary	point	are	given	by

(13.28)

As	the	value	of	R	approaches	positive	infinity,	the	values	of	x1	and	x2	become

(13.29)

It	can	be	verified	that	the	minimum	point,	[2,	2]T,	satisfies	the	equality	constraint.

The	numerical	implementation	of	the	penalty	method	begins	with	a	small	value	of	R.	As	
increases,	the	stationary	point	of	the	unconstrained	optimization	function	approaches	the
actual	optimal	solution	of	the	constrained	problem.	Table	13.1	provides	the	optimal	results
of	the	unconstrained	optimization	problem	as	R	increases.	In	other	implementations	of	the
penalty	method,	R	may	start	from	a	very	large	value	and	is	decreased	to	zero	in	order	to
reach	the	constrained	optimum.

Table	13.1.	Optimal	Results	for	Different	R	Values

R x1	* x2	* f* h(x)

10 2.0476 2.0476 1.9048 0.0952
100 2.0050 2.0050 1.9900 0.0100
1,000 2.0005 2.0005 1.9990 0.0010
10,000 2.0000 2.0000 1.9999 0.0000
100,000 2.0000 2.0000 2.0000 0.0000

Example:	Solve	the	constrained	optimization	problem	with	inequality	constraints	using	
logarithmic	penalty	form.

(13.30)
(13.31)
(13.32)

The	penalty	function	is	formed	using	the	logarithmic	penalty	term,

(13.33)

The	stationary	point	of	P(x,R)	should	satisfy	the	following	first-order	conditions.

(13.34)



(13.35)

Then,	the	coordinates	of	the	stationary	point	are	given	by

(13.36)

(13.37)

As	the	value	of	R	approaches	0,	the	limits	of	x1	and	x2	become

(13.38)

(13.39)

It	can	be	verified	that	the	minimum	point,	(1,	0),	satisfies	the	inequality	constraints.

The	numerical	 implementation	of	 the	penalty	method	 begins	with	 a	 sufficiently	 large
positive	 value	 of	R.	 As	R	 approaches	 zero,	 the	 stationary	 point	 of	 the	 unconstrained
optimization	function	approaches	the	actual	optimal	solution	of	the	constrained	problem.
Table	13.2	provides	the	optimal	results	of	the	unconstrained	optimization	problem	as	R
approaches	zero.

Table	13.2.	Optimal	Results	for	Different	R	Values

R x1	* x2	* f* g1	(x) g2	(x)

1 1.366 1.866 4.134 -1.000 -1.366
0.1 1.048 0.198 3.102 -0.100 -1.048
0.01 1.005 0.020 3.010 -0.010 -1.005
0.001 1.000 0.002 3.001 -0.001 -1.000
0.0001 1.000 0.000 3.000 0.000 -1.000

13.5 	Karush-Kuhn-Tucker	Conditions

For	constrained	nonlinear	optimization,	the	Lagrangian	function	and	the	Lagrange	multiplier
are	used	to	provide	a	strategy	for	finding	and	validating	the	optimum	of	a	function	subject	to
constraints.	 Consider	 the	 minimization	 of	 a	 nonlinear	 optimization	 problem	 subject	 to
equality	constraints.

(13.40)



subject	to

(13.41)

The	Lagrangian	function	converts	the	constrained	problem	into	an	unconstrained	problem,	as
given	by

(13.42)

The	unspecified	constants,	νj,	are	the	Lagrange	multipliers.	There	are	no	sign	restrictions	on
the	values	of	νj.	 Suppose	 the	minimum	 for	 the	 unconstrained	 problem	L(x,ν)	 is	 x*,	 and
x*satisfies	h	j(x)	=	0.	For	all	values	of	x	that	satisfy	hj(x)	=	0,	the	minimum	of	L(x,ν)	is	the
minimum	of	f(x)	subject	to	hj(x)	=	0.	Then	x*minimizes	the	constrained	optimization	problem.

The	following	example	shows	us	how	to	solve	an	optimization	problem	with	equality
constraints	using	the	Lagrangian	function.

Example:	Minimize	the	following	two	variable	function	with	a	single	equality	constraint.

(13.43)

subject	to

(13.44)

The	Lagrangian	function	of	the	problem	is	given	by

(13.45)

The	gradient	of	L(x,ν)	with	respect	to	x	is	equal	to	zero	at	the	minimum.

(13.46)

(13.47)

The	Hessian	matrix	of	L(x,ν)	with	respect	to	x	is	given	by

The	Hessian	 is	positive	definite,	 implying	 that	 the	optimal	point	 is	 a	minimum	of	 the
objective	function.

From	the	above	two	functions	of	gradients	and	the	equality	constraint	function,	the	point	of
the	minimum	is	found	to	be	x1*	=	0.8	and	x2*	=	1.6.	The	Lagrange	multiplier	is	ν	=	−1.6.
The	minimum	value	of	the	objective	function	is	8.2.



The	steps	to	solve	constrained	optimization	problems	with	equality	constraints	using	 the
Lagrangian	function	include

1. 	Construct	the	Lagrangian	function	L(x,ν)	using	the	objective	function	and	the	equality
constraints.

2. 	Solve	∇xL(x,ν)	=	0	and	h(x)	=	0.

The	same	method	can	be	used	to	solve	optimization	problems	with	inequality	constraints.
The	Lagrangian	function	in	that	case	is	constructed	as

(13.48)

However,	there	are	sign	restrictions	on	the	Lagrange	multipliers	for	inequality	constraints.
They	should	satisfy	λi	≥	0.	Additionally,	the	following	functions	should	also	be	satisfied	at
the	minimum.

(13.49)

(13.50)

A	new	concept	known	as	the	active	set	should	be	introduced	before	the	discussion	of	this
method.	The	active	set	at	any	feasible	point	x	is	comprised	of	the	equality	constraints	and	the
inequality	constraints	for	which	gi(x)	=	0.

An	inequality	constraint,	at	the	minimum	point	x*in	the	feasible	region,	can	be	classified
into	the	following	two	cases.

Case	I:	The	inequality	constraint	is	inactive	at	the	minimum	point	x*,	which	implies	gi(x*)	<
0.	Since	the	minimum	point	x*satisfies	λi*g	i(x*)	=	0,	the	Lagrange	multiplier	is	λi*	=	0.	Then
L(x*,λ)	=	f(x*).

Case	II:	The	inequality	constraint	is	active	at	the	minimum	point	x*,	which	implies	gi(x*)	=	0
Then	L(x*,λ)	=	f(x*).

At	the	minimum	point	x*,	∇xL(x*,λ)	=	0.

The	following	example	explains	the	above	process.

Example:	Minimize	the	following	two-variable	function	with	a	single	inequality	constraint.

(13.51)

subject	to

(13.52)

The	Lagrangian	function	is	given	by



(13.53)

The	gradient	of	L(x,λ)	satisfies	the	following	two	equations:

(13.54)

(13.55)

The	following	two	equations	are	satisfied:

(13.56)

(13.57)

(13.58)

Since	λ	=	0	does	not	satisfy	∇xL	=	0,	λ	is	greater	then	zero.	From	Eq.	13.56,	it	is	derived
that	(x12	+x	22	−1)	=	0.

From	Eq.	13.54	and	13.55,	it	is	derived	that	x1	=	x2.

Since	λ	>	0,	it	is	derived	from	Eq.	13.54	and	13.55	that	x1	<	0	and	x2	<	0.

Solving	(x12	+x	22	−1)	=	0,	the	minimum	point	 is	 found	 to	be	 located	at	 (− ,− ).	The
optimal	value	of	the	objective	function	is	− .

The	Lagrangian	function	for	an	optimization	problem	with	multiple	constraints	is	expressed
as

(13.59)

At	 the	 feasible	 point	 x,	 if	 the	 gradients	 of	 the	 constraints	 in	 the	 active	 set	 are	 linearly
independent,	the	Linear	Independence	Constraint	Qualification	(LICQ)	holds.

Suppose	there	are	two	inequality	constraints	as	given	by

(13.60)

(13.61)

In	that	case,	the	only	feasible	point	is	(1,	0),	as	shown	by	Fig.	13.4.	At	(1,	0),	the	gradients	
the	two	constraints	are	given	by

(13.62)



(13.63)

Equations	13.62	and	13.63	are	not	linearly	independent.	Therefore,	the	LICQ	does	not	hold
at	that	point.	The	Karush-Kuhn-Tucker	(KKT)	conditions	are	necessary	for	a	solution	to	be	a
local	minimum.

Figure	13.4.	The	LICQ	Does	Not	Hold

Theorem	(Karush-Kuhn-Tucker	Conditions)
Suppose	that	x*	is	a	local	minimum	solution	of	f(x)	subject	to	constraints	gi(x)	≤	0	(i	=	1,
…,m)	and	hj(x)	=	0	(j	=	1,	…,n).	The	objective	function,	f	(x),	and	the	constraints,	gi(x)	and
hj(x),	 are	 continuously	 differentiable.	 The	 LICQ	 holds	 at	 x*.	 Then	 there	 are	 Lagrange
multipliers	λ*and	ν*,	such	that	the	following	conditions	are	satisfied	at	(x*,λ*,ν*).

(13.64)
(13.65)
(13.66)
(13.67)
(13.68)

(13.69)

The	following	example	 is	 used	 to	 illustrate	 how	 to	use	 the	KKT	 conditions	 to	 solve	 an
optimization	problem.

Example:	Minimize	the	following	two	variable	function	with	two	inequality	constraints.

(13.70)

subject	to

(13.71)



(13.72)

This	optimization	problem	can	be	solved	using	the	graphical	approach.	The	feasible	region
and	the	optimal	point	are	plotted	in	Fig.	13.5.

Figure	13.5.	Using	the	KKT	Conditions	to	Solve	an	Optimization	Problem

The	Lagrangian	function	is	formulated	as

(13.73)

This	problem	can	be	solved	using	the	KKT	conditions	as	follows.

(13.74)

(13.75)

(13.76)

(13.77)

(13.78)

(13.79)



(13.80)

(13.81)

Based	on	Eqs.	13.74	—	13.81,	the	four	possible	cases	for	different	values	of	λ1	and	λ2	are
discussed	below.

Case	I:	λ1	=	0	and	λ2	=	0.

If	λ1	=	0	and	λ2	=	0,	Eq.	13.74	and	13.75	cannot	be	equal	to	0.

Case	II:	λ1	>	0	and	λ2	=	0.

From	Eq.	13.74	and	13.75,	it	is	found	that	x1	=	x2	and	they	should	be	negative.

From	Eq.	13.78,	x1	=	x2	=	− .	However,	they	do	not	satisfy	Eq.	13.81.

Case	III:	λ1	=	0	and	λ2	>	0.

Equation	13.75	is	not	satisfied.

Case	IV:	λ1	>	0	and	λ2	>	0.

From	Eq.	13.79,	it	is	found	that	x1	=	− .	From	Eq.	13.75,	x2	<	0.	From	Eq.	13.78,	x2	=	−
All	the	other	equations	are	satisfied.	The	values	of	λ1	and	λ2	are	 	and	(1	− ).

Therefore,	the	minimum	point	is	found	to	be	(x1,x2)	=	(− ,− ),	using	the	KKT	conditions.

13.6 	Sequential	Linear	Programming

In	Chapter	11,	we	determined	that	certain	algorithms	can	be	used	to	efficiently	and	reliably
solve	linear	programming	problems.	We	note	here	that	nonlinear	optimization	problems	can
be	converted	to	approximate	linear	optimization	problems.	These	converted	problems	are
only	partially	equivalent	to	the	original	problem,	and	only	in	a	certain	neighborhood	of	the
design	space	—	near	the	operating	point.	Subsequently,	in	the	neighborhood	of	the	operating
point,	the	problems	can	be	solved	using	linear	programming	techniques.

The	 sequential	 linear	 programming	 method	 linearizes	 the	 objective	 function	 and
constraints	of	an	optimization	problem,	and	expresses	them	as	linear	functions	using	Taylor
series	expansions.	A	Taylor	series	expansion	at	the	point,	xk,	is	given	by

(13.82)

The	higher	order	terms,	O( 	x−xk	 )2,	are	ignored	and	only	the	linear	term	is	retained.	The
linearization	form	of	f	(x)	at	xk	is	given	by

(13.83)



The	most	direct	use	of	sequential	linear	programming	is	to	replace	a	nonlinear	problem
with	a	complete	linearization	of	the	constituent	functions	at	a	sequential	set	of	points	that	are
intended	to	lead	to	the	solution.	This	method	can	also	be	applied	to	a	linearly	constrained
problem	with	a	nonlinear	objective	function.	A	linearly	constrained	nonlinear	programming
problem	has	the	following	form.

(13.84)

subject	to

(13.85)
(13.86)

The	 objective	 function,	 f(x),	 is	 linearized	 at	 a	 feasible	 point,	 xk,	 and	 the	 problem	 is
reformulated	as	follows.

(13.87)

subject	to

(13.88)
(13.89)

Assuming	 the	 feasible	 region	 is	 bounded,	 the	 above	 problem	 will	 possess	 an	 optimal
solution,	 k*,	at	a	feasible	corner	point.	The	optimal	solution,	 k*,	 is	not	guaranteed	 to	be
improved	over	the	current	point,	xk.	Since	the	feasible	region	is	a	polyhedron	and	since	 k*is
a	corner	point	of	the	feasible	region,	any	point	on	the	line	between	 k*	and	xk	 is	 feasible.
Since	 ( k*;	x	k)	<	f(xk),	 the	vector	 ( k*−	x	 k)	 is	a	descent	direction.	A	 line	search	on	 this
descent	direction	can	lead	to	an	improvement	in	f	(x).	The	formulated	line	search	problem	is
stated	as	follows:

(13.90)

subject	to

(13.91)

The	line	search	will	find	a	feasible	point,	xk+1,	that	satisfies	f	(xk+1)	<	f(xk).	The	new	point,
xk+1,	is	used	as	a	linearization	point	for	the	next	linear	approximation,	and	a	new	line	search
is	 then	 performed.	 After	 successive	 iterations	 of	 approximations	 and	 line	 searches,	 the
process	is	expected	to	converge	to	the	optimal	point	of	the	nonlinear	problem.	For	nonlinear
programming	problems	with	linear	constraints,	 the	solution	steps,	using	sequential	 linear
programming,	are:

1. 	Set	an	initial	guess	x0.	Specify	the	convergence	tolerance	 	>	0.

2. 	Calculate	the	gradient	of	f	(xk).	If	the	gradient	is	∇fk 	≤	 ,	stop.



3. 	Approximate	the	original	objective	function	at	xk	using	the	Taylor	expansion.

4. 	Solve	the	linearized	problem	to	find	the	optimal	solution,	 k*.

5. 	Perform	a	line	search	for	the	original	objective	function	between	the	points	xk	and	xk*	to
find	an	improved	point	xk+1.

6. Set	k	=	k	+	1.	Go	to	Step	2.

A	general	nonlinear	optimization	problem	can	involve	nonlinear	constraints,	as	defined	by

(13.92)

subject	to

(13.93)
(13.94)
(13.95)

Using	the	Taylor	expansions	for	the	objective	function	and	the	constraints	at	the	point	xk,	the
linearized	approximation	problem	is	constructed	as

(13.96)

subject	to

(13.97)
(13.98)
(13.99)

Solving	the	above	linear	programming	problem,	a	new	point,	xk+1,	is	obtained	in	the	feasible
region	of	the	linear	constraints.	A	series	of	points	can	be	generated	through	iterations.	At	each
iteration,	the	solution	to	the	previous	linear	approximate	problem	is	used	as	the	linearization
point,	and	a	new	linear	programming	problem	is	constructed	and	solved.	However,	there	is
no	assurance	that	the	solution	to	the	approximate	linear	programming	problem	lies	within	the
feasible	region	of	the	original	problem.	In	order	to	attain	convergence	to	the	true	optimal
solution	of	the	nonlinear	programming	problem,	at	each	iteration,	an	improvement	in	both
the	objective	function	and	the	constraint	feasibility	should	be	made.	One	way	to	achieve	a
satisfactory	 approximation	 of	 the	 linearization	 is	 to	 impose	 limits	 on	 the	 allowable
increments	in	the	variables,	in	order	to	keep	the	solution	to	the	linear	programming	problem
within	a	reasonably	small	neighborhood	of	the	linearization	point.	The	limits	can	be	stated	as

(13.100)

The	steps	 to	solve	a	general	nonlinear	programming	problem	using	 the	sequential	 linear
programming	method	are:

1. 	Set	an	initial	guess	x0.	Specify	the	convergence	tolerance	 	>	0.



2. 	Calculate	the	gradient	of	f	(xk).	If	the	gradient	∇fk 	≤	 ,	stop.

3. 	Approximate	the	original	nonlinear	functions	at	xk	using	the	Taylor	expansion.

4. 	Impose	increment	limits.	−δ	≤	x	−	xk	≤	δ,	δ	>	0.

5. 	Solve	the	linearized	problem	to	find	the	optimal	solution,	xk+1.

6. Set	k	=	k	+	1.	Go	to	Step	2.

The	optimization	problem	in	 the	following	example	 is	 a	 quadratic	 problem.	It	 can	 be
solved	using	the	sequential	linear	programming	method	without	imposing	increment	limits.

Example:	Solve	the	following	minimization	problem.

(13.101)

subject	to

(13.102)
(13.103)
(13.104)
(13.105)

The	feasible	region	lies	on	the	curve	h1(x)	=	0	between	the	point	(1,	4)	determined	by	the
linear	bound	1	≤	x1	and	 the	 point	 (2,	 3)	 determined	 by	 the	 constraint	g1(x)	 ≤	 0.	 The
linearized	approximation	of	the	problem	is	constructed	at	the	point	(2,	4)	as	shown	below.

(13.106)

subject	to

(13.107)
(13.108)
(13.109)
(13.110)

The	solution	to	the	approximate	optimization	problem	is	found	to	be	(1.8889,	3.2222).	At
this	point,	the	optimization	can	be	relinearized	and	solved.	After	several	 iterations,	 the
minimum	solution	to	the	original	problem	is	found	to	be	(2,	3).	The	estimated	minimum
value	of	the	objective	function	is	2.

13.7 	Sequential	Quadratic	Programming

Sequential	quadratic	programming	(SQP)	is	a	highly	effective	method	to	solve	constrained
optimization	problems	involving	smooth	nonlinear	functions.	This	approach	solves	a	series	of
quadratic	subproblems.

A	nonlinear	optimization	problem	without	inequality	constraints	is	defined	as



(13.111)

subject	to

(13.112)

The	Lagrangian	function	for	the	above	problem	is	expressed	as

(13.113)

The	KKT	conditions	require	that	∇L(x*,ν*)	=	0	at	the	optimal	point.	The	Newton	method	for
unconstrained	minimization	can	be	expressed	as

(13.114)

In	Equation	13.114,	the	step	pk	and	qk	are	obtained	as	the	solution	to	the	following	linear
function.

(13.115)

Equation	13.115	can	also	be	expressed	as

(13.116)

Equation	 13.116	 represents	 the	 first-order	 optimality	 conditions	 for	 the	 following
optimization	problem.

(13.117)

subject	to

(13.118)

In	Equation	13.114,	qk	represents	the	Lagrange	multiplier,	νk,	in	the	above	formulation.

At	each	iteration,	a	quadratic	problem	is	solved	to	obtain	[pk,qk]T.	These	values	are	used	to
update	[xk,νk]	using	Eq.	13.114.

A	nonlinear	optimization	problem	with	both	equality	and	inequality	constraints	is	defined
as

(13.119)

subject	to



(13.120)
(13.121)

The	above	optimization	problem	can	be	reformulated	as

(13.122)

subject	to

(13.123)
(13.124)

Example:	Apply	the	SQP	method	to	solve	the	following	problem	involving	an	equality
constraint.

(13.125)

subject	to

(13.126)

Considering	the	initial	values	of	x	and	ν	as	X0	=	[1,−1]T	and	ν0	=	1,	we	get

(13.127)

(13.128)

(13.129)

(13.130)

(13.131)

(13.132)

(13.133)

Using	the	first-order	optimality	conditions,	the	solution	to	[p0,q0]T	can	be	obtained	from	the
following	equation.



(13.134)

From	Eq.	13.134,	the	values	of	steps	p0	and	q0	are	given	by

(13.135)

(13.136)

The	values	of	x	and	ν	can	then	be	updated	for	the	next	iteration	as

(13.137)

(13.138)

The	above	equations	represent	the	process	for	the	first	iteration.	The	values	of	x	and	ν	are
updated	by	 the	 same	 procedure.	 The	minimum	 point	 for	 this	 problem	 is	 found	 to	 be
[0.6633,−0.7483]T.	The	minimum	function	value	is	estimated	as	0.1764.

13.8 	Comparison	of	Computational	Issues

In	this	chapter,	the	methods	used	to	solve	nonlinear	programming	problems	with	constraints
were	presented,	including	 the	elimination	method,	penalty	methods,	 the	sequential	 linear
programming	method,	and	the	sequential	quadratic	programming	method.

The	 elimination	 method	 is	 limited	 in	 its	 application.	 It	 can	 be	 useful	 for	 solving
optimization	 problems	 involving	 equality	 constraints.	 It	 requires	 solving	 systems	 of
equations,	making	 it	challenging	 to	convert	 this	method	 into	numerical	algorithms.	 This
method	is	not	practical	for	solving	large	scale	problems.

The	penalty	methods	solve	a	sequence	of	subproblems	with	updated	penalty	parameters.
These	methods	require	a	large	number	of	iterations.	If	the	constraints	values	span	several
orders	of	magnitude,	the	penalty	method	may	face	scaling	issues.

The	sequential	linear	programming	method	 is	efficient	 for	optimization	problems	with
mild	nonlinearities.	This	method	 is	 not	well-suited	 for	 optimization	 problems	 involving
highly	nonlinear	functions.

The	sequential	quadratic	programming	method	is	one	of	the	most	effective	methods	used
to	solve	constrained	nonlinear	optimization	problems.	It	can	be	leveraged	to	solve	both	small
scale	and	 large	scale	problems,	as	well	 as	problems	with	significant	 nonlinearities.	 This
method	 has	 been	 implemented	 in	 many	 optimization	 solvers	 and	 commercial	 software
packages	and	has	a	wide	applicability.



13.9 	Summary

This	 Chapter	 delved	 further	 into	 the	 theory	 and	 application	 of	 nonlinear	 programming
(NLP),	with	the	description	of	the	characteristics	of	constrained	NLP,	and	introductions	to
the	 major	 approaches	 used	 for	 solving	 constrained	 NLP	 problems.	 The	 structure	 of
constrained	NLP	problems	 is	 first	 presented,	 the	 general	 formulation	 of	which	 includes
inequality	and	equality	constraints.	Basic	methods	 for	 solving	constrained	NLP,	 such	 as
Elimination	methods	and	Penalty	methods,	are	then	introduced.	This	was	followed	by	the
introduction	of	the	Karush-Kuhn	Tucker	conditions,	which	are	of	paramount	importance	in
NLP,	both	as	a	set	of	optimality	criteria	and	as	a	means	of	solving	simpler	constrained	NLP
problems.	Advanced	methods	for	solving	constrained	NLP	problems	are	also	presented	in
this	chapter,	specifically	including	Sequential	Linear	Programming	and	Sequential	Quadratic
Programming.	The	chapter	concluded	with	a	comparative	discussion	of	the	computational
capabilities	and	limitations	of	the	different	classes	of	constrained	NLP	methods.

13.10 	Problems

Warm-up	Problems

13.1 Consider	the	following	optimization	problem:

(13.139)

subject	to

(13.140)

	

1. Find	all	the	points	that	satisfy	the	KKT	condition	using	Lagrange	multipliers.

2. Use	 the	 variable	 elimination	 method	 to	 solve	 the	 problem	 (eliminate	 x1).
Compare	 the	 solutions	 obtained	 using	 the	 variable	 elimination	 method	 with
those	obtained	in	Question	1.

13.2 Use	the	Lagrange	multiplier	method	to	solve	the	following	problem:

(13.141)

subject	to

(13.142)
(13.143)

Intermediate	Problems

13.3 Consider	the	following	optimization	problem:

(13.144)



subject	to

(13.145)
(13.146)
(13.147)
(13.148)
(13.149)
(13.150)

	

1. Write	 down	 the	 Karush-Kuhn	 Tucker	 (KKT)	 necessary	 conditions	 for	 this
problem

2. You	are	given	that	constraints	g1	and	g4	are	active,	and	the	other	constraints	are
inactive.	Given	this	information,	simplify	the	KKT	conditions	found	in	No.	1.

3. Find	all	the	possible	KKT	points	using	the	simplified	KKT	conditions	from	No.
2.

13.4 Solve	the	constrained	optimization	problem	below	using	the	inverse	penalty	method.

(13.151)

subject	to

(13.152)

	

1. Perform	 four	 unconstrained	 optimizations	 using	 the	 following	 values	 for	 the
penalty	parameter:	R	=	1,	0.1,	0.01,	and	0.001.

2. For	each	R,	prepare	a	table	that	provides	the	value	of	the	penalty	parameter,	the
values	of	the	design	variables,	objective	function	and	the	constraint.

3. Can	you	guess	where	the	constrained	minimum	might	be?

13.5 Consider	the	following	problem:

(13.153)

subject	to

(13.154)

	

1. Solve	 the	 above	 optimization	 problem	 using	 the	 bracket	 operator	 penalty
method.

2. Check	your	answer	using	fminsearch.



3. Plot	 contours	 of	 the	 objective	 function,	 and	 the	 path	 of	 the	 intermediate
solutions	as	the	optimal	point	is	reached.

13.6 Let	f	(x)	=	2x3−3x2−12x+1.	Answer	the	following	questions:

(a) Determine	the	minimum	of	f	(x)	by	hand.	Report	 the	values	of	 the	optimum	x
and	the	function	value	at	this	point.

(b) This	sub-problem	is	a	simple	demonstration	of	how	constrained	optimization	is
sometimes	 performed.	 Let	 us	 add	 another	 component	 to	 the	 above	 function.
The	function	now	takes	the	form	f	(x)	=	2x3	−	3x2	−	12x	+	1	+	R(x−	6)2,	where
R	is	a	constant.	Plot	this	new	function	for	R	=	0,R	=	1,R	=	10,R	=	100,	and	R	=
1,	000	for	0	≤	x	≤	8	on	the	same	figure.	Use	different	colors	for	each	R.	Keep
your	vertical	axis	limits	between	−100	and	800.

(c) By	looking	at	 the	plot	 in	Part	 (b),	can	you	 tell	what	 the	minimum	of	 the	new
function	is	for	the	different	values	of	R?	Indicate	these	minima	on	the	plot,	and
compare	 them	with	 the	minimum	of	 the	original	 function	 in	Part	 (a).	What	 is
the	minimum	of	the	new	function	if	R	=	∞∞?

(d) Explain	 how	 this	 problem	 shows	 you	 one	 way	 to	 solve	 constrained
optimization	problems.
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PART	5



MORE	ADVANCED	TOPICS	IN	OPTIMIZATION

This	 part	 introduces	 carefully	 chosen	 advanced	 topics	 that	 are	 appropriate	 for	 graduate
students	or	undergraduate	students	who	might	pursue	study	in	the	design	optimization	field.
These	topics	will	generally	be	of	great	interest	to	industry	practitioners	as	well.	While	these
topics	are	advanced,	a	mathematically	advanced	presentation	 is	not	provided.	 Instead,	an
introductory	presentation	is	provided,	with	an	eye	toward	practical	usefulness.

Specifically,	the	topics	presented,	with	the	chapter	numbers,	are	given	below:

14. Discrete	Optimization

15. Modeling	Complex	Systems:	Surrogate	Modeling	and	Design	Space
Reduction

16. Design	Optimization	Under	Uncertainty

17. Methods	for	Pareto	Frontier	Generation/Representation

18. Physical	Programming	for	Multiobjective	Optimization

19. Evolutionary	Algorithms



14

Discrete	Optimization

14.1 	Overview

In	most	previous	chapters,	continuous	optimization	problems	were	considered	where	 the
design	variables	were	assumed	to	be	continuous;	that	is,	design	variables	assume	real	values
within	given	ranges.	In	many	practical	engineering	problems,	the	acceptable	values	of	the
design	variables	do	not	form	a	continuous	set.	These	problems	are	referred	 to	as	discrete
optimization	problems.	For	example,	the	number	of	rivets	required	in	a	riveted	joint	has	to	be
an	 integer	 (such	as	1,	2,	3).	Another	 example	 is	when	 the	 feasible	 region	 of	 the	 design
variable	is	a	set	of	given	discrete	numbers,	such	as	{6.25,	6.95,	7.65},	which	may	be	 the
available	standardized	sizes	of	nuts.	The	basics	of	discrete	optimization	were	introduced	in
Chapter	 9,	 where	 some	 pertinent	 elementary	 methods	 were	 presented.	 This	 chapter
introduces	more	advanced	approaches.	The	reader	is	advised	to	first	 review	Chapter	9	as
preparation	for	the	current	chapter.

This	chapter	is	organized	as	follows.	The	next	section	(Sec.	14.2)	provides	the	problem
classes,	examples,	and	definition	(along	with	the	notion	of	computational	complexity	of	the
solution	algorithms).	Section	14.3	discusses	the	basics	of	some	popular	techniques	used	to
solve	 integer	 programming	 problems,	with	 examples.	 The	methods	 studied	will	 be:	 the
exhaustive	search	method	(Sec.	14.3.1),	the	graphical	method	(Sec.	14.3.2),	the	relaxation
method	(Sec.	14.3.3),	 the	branch	and	bound	method	(Sec.	14.3.4),	and	 the	cutting	plane
method	(Sec.	14.3.5).	Popular	current	software	options	(Sec.	14.3.7)	are	also	discussed.	The
chapter	concludes	with	a	summary	in	Sec.	14.4.

14.2 	Problem	Classes,	Examples	and	Definition

This	section	presents	discrete	optimization	problem	classes,	problem	examples,	and	problem
definition.	Computational	complexity	of	the	solution	algorithms	is	also	briefly	addressed	in
connection	with	the	discrete	optimization	problem	definition.

14.2.1 	Problem	Classes

Given	the	idea	of	discreteness	of	the	feasible	design	variable	set,	there	are	several	categories
optimization	 problems.	As	 explained	 in	 Chapter	 9,	 the	 following	 terms	 are	 commonly
encountered	within	the	umbrella	of	the	discrete	optimization	literature;	and	define	the	main
classes	of	discrete	optimization	problems	(see	Fig.	14.1).



Figure	14.1.	Discrete	Optimization	Overview

1. Pure	 integer	 programming	 problems:	 When	 the	 design	 variables	 are	 allowed	 to
assume	only	integer	values.	Example:	Number	of	routes	a	traveling	salesman	can	take
(see	Refs.	[1,	2]).

2. Mixed-integer	programming	problems:	When	some	design	variables	are	allowed	to
assume	only	integer	values,	while	others	are	allowed	to	assume	continuous	values.

3. Discrete	non-integer	optimization	problems:	When	the	design	variables	are	allowed	
assume	 only	 a	 given	 set	 of	 discrete,	 not	 necessarily	 integer,	 values.	 Example:
Standardized	sizes	of	machine	components.

4. Zero-one	Programming	problems:	When	the	design	variables	are	allowed	to	assume
values	of	either	0	or	1.

5. Combinatorial	optimization	problems:	Where	the	set	of	possible	feasible	solutions	is
defined	by	a	combinatorial	set	resulting	from	the	given	feasible	discrete	values	of	 the
design	variables.

Next,	 we	 discuss	 some	 of	 the	 popular	 discrete	 optimization	 problems	 that	 you	 may
encounter	in	the	literature	and	in	practice.

14.2.2 	Popular	Example	Problems

In	 this	 subsection,	descriptions	 of	 a	 few	 example	 problems	 in	 discrete	 optimization	 are
introduced.	The	sample	problems	presented	 below	 span	 a	wide	 range	 of	 fields,	 such	 as
mathematics,	transportation,	and	finance.

Knapsack	problem:	This	is	a	classical	example	of	a	combinatorial	optimization	problem.
A	select	set	of	items	needs	to	be	packed	in	a	knapsack,	or	a	bag.	Each	member	of	the	set	of
items	has	a	cost	and	a	merit	associated	with	it.	How	can	the	items	be	optimally	chosen	to	be
packed	such	that	the	cost	is	minimized,	and	the	merit	maximized?

Vehicle	 routing	problem:	 The	 goal	 of	 this	 problem	 is	 to	 choose	 the	 route	 so	 as	 to
minimize	the	total	distribution	cost	of	 the	goods	 to	be	delivered	 to	a	set	of	customers	at



different	locations.	The	goods	are	assumed	to	be	located	in	a	central	inventory.

Traveling	salesman	problem:	A	traveling	salesman	needs	to	plan	a	round-trip	route.	The
salesman	needs	to	visit	a	given	number	of	cities,	and	each	city	exactly	once.	Each	segment	
the	journey	(from	one	city	to	another)	has	an	associated	cost.	Which	route	yields	the	least
expensive	round-trip	that	visits	each	city	exactly	once?

Capital	 budgeting:	 This	 problem	 optimizes	 the	 allocation	 of	 capital	 budgets	 among
different	investment	alternatives.	Suppose	a	given	amount	of	money	in	invested	among	four
alternatives.	 Each	 investment	 alternative	 has	 a	 present	 value	 and	 a	 minimum	 required
investment.	How	can	 the	budgets	 be	distributed	among	 the	 alternatives	 so	 that	 the	 total
present	value	is	maximized?

The	above	discussion	provides	 the	reader	with	a	basic	 idea	of	 the	various	challenging
discrete	optimization	problems	commonly	found	in	the	literature.	Some	references	 in	 the
area	of	discrete	optimization	contain	a	mathematically	 rigorous	 treatment	of	 the	 subject,
which	 is	 outside	 the	 scope	 of	 this	 introductory	 textbook.	 This	 chapter	 presents	 a	 basic
treatment	of	the	ideas	involved,	with	illustrative	examples.

14.2.3 	Problem	Definition	and	Computational	Complexity

This	section	introduces	a	generic	integer	programming	problem	formulation.	The	notion	of
computational	complexity	of	the	solution	algorithms	is	also	briefly	presented.

Problem	Definition

A	generic	integer	programming	problem	is	given	below.

(14.1)

subject	to

(14.2)
(14.3)
(14.4)

where	x	 is	 the	 design	 variable	 vector;	 f	 (x),	g	 (x),	 and	h	 (x)	 are	 the	 objective	 function,
inequality	constraints,	and	equality	constraints,	respectively;	and	Z	is	the	set	of	given	feasible
integers.	Note	 that	 for	 a	 generic	discrete	 optimization	 problem,	 the	 set	 of	 integers	Z	 in
Eq.	14.4	will	be	replaced	by	the	given	set	of	real	numbers,	and	are	not	necessarily	integers.

Example:	For	illustration	purposes,	consider	the	linear	integer	programming	problem	shown
below.

(14.5)

subject	to

(14.6)



(14.7)
(14.8)

(14.9)

The	feasible	region	of	the	above	problem	is	shown	in	Fig.	14.2.	The	next	section	solves	the
above	problem	using	some	popular	discrete	optimization	approaches.

Figure	14.2.	Graphical	Solution	for	Example	1

Before	 studying	 the	 solution	 approaches,	 we	 briefly	 examine	 the	 computational
complexity	of	the	algorithms	that	can	solve	discrete	optimization	problems.

Computational	Complexity

Discrete	optimization	problems	are	known	to	be	computationally	complex.	The	study	of
complexity	 is	 related	 to	 a	 branch	 of	 mathematics	 and	 computing	 known	 as	 complexity
theory.	One	of	the	issues	of	interest	in	complexity	theory	is	to	quantify	the	performance	of
computational	algorithms.	The	computation	time	of	an	algorithm	is	usually	presented	using
the	O	(known	as	the	Big	O)	notation.

Example:	Say	we	are	interested	in	finding	the	gradient	of	a	function	f	(x1,x2,…xn)	using	the
finite	difference	method.	The	i-th	component	of	the	n	×	1	gradient	vector	can	be	computed
as

(14.10)

where	δp	is	the	chosen	step	size.	The	above	computation	requires	two	function	evaluations.
To	compute	all	of	 the	n	components	of	 the	gradient	vector,	we	require	n	+	1	 function
evaluations.	Therefore,	this	finite	difference-based	gradient	computation	algorithm	has	a
complexity	of	the	order	of	O(n)	for	a	problem	size	of	n.	Note	that	whether	we	use	forward
or	 backward	 difference	 (Chapter	 7)	 to	 compute	 the	 gradient	 vector,	 we	 will	 have	 a
complexity	of	the	order	of	O(n).



An	algorithm	is	said	to	be	of	polynomial	time	if	its	complexity	is	of	the	order	of	O(nk)	for
problem	size	of	n,	where	k	is	a	finite	non-negative	integer.	[3].

Another	 aspect	 of	 complexity	 theory	 is	 to	 categorize	 computational	 problems	 and
algorithms	into	complexity	classes.	One	important	complexity	class	is	known	as	the	P	class.
The	problems	belonging	 to	 the	P	class	are	 regarded	 as	 tractable,	 and	 easily	 solvable	 by
algorithms	 in	 polynomial	 time.	 Unfortunately,	 several	 practical	 discrete	 optimization
problems	belong	to	the	notoriously	difficult	complexity	class	of	the	so-called	NP-Complete
problems.	A	detailed	presentation	of	complexity	theory	is	beyond	the	scope	of	this	chapter.

The	 methods	 employed	 to	 solve	 discrete	 optimization	 problems	 are	 studied	 next.
Examples	are	provided	where	necessary.

14.3 	Solution	Approaches

An	overview	of	discrete	optimization	solution	approaches	is	provided	in	Fig.	14.1	(also	see
Sec.	14.2).	Discrete	problems	 can	be	 linear	 (with	 linear	 constraints	 and	 linear	 objective
function)	 or	 nonlinear	 problems	 (with	 nonlinear	 constraints	 and/or	 nonlinear	 objective
function).	From	the	formulation	and	solution	approaches	perspectives,	discrete	problems	can
be	 classified	 as	 pure-integer	 problems,	 mixed-integer	 problems,	 discrete	 non-integer
problems,	and	zero-one	problems.	Nonlinear	discrete	problems	are	much	more	complicated
solve	than	linear	discrete	problems.

As	reported	 in	Fig.	14.1,	although	 the	broad	 solution	approaches	 for	 various	 types	 of
discrete	problems	are	often	the	same,	their	specific	implementation	and	complexity	will	vary.
For	 example,	 variations	of	 the	branch	and	bound	and	 cutting	 plane	methods	 have	 been
applied	to	linear,	as	well	as	nonlinear,	discrete	problems	of	several	kinds.	In	this	chapter,	our
goal	 is	 to	 introduce	 the	 basics	 of	 how	 these	 popular	 algorithms	 work.	 Linear	 integer
programming	 problems	will	 be	 considered	 for	 presentational	 simplicity.	 More	 rigorous
treatment	of	the	methods	discussed	in	this	section	is	available	in	[4,	5,	2].

14.3.1 	Brute	Force	Method:	Exhaustive	Search

The	most	 straightforward,	 and	 computationally	 expensive,	 approach	 to	 solving	 discrete
problems	is	to	perform	an	exhaustive	search	–	where	all	the	possible	options	are	enumerated
and	 evaluated.	 The	 optimal	 solution	 can	 then	 be	 readily	 selected	 from	 the	 enumerated
solutions.	 This	 approach	 is	 a	 viable	 option	 only	 for	 small	 problems,	 as	 it	 can	 be
computationally	prohibitive	for	larger	problems.

Example:	Consider	the	following	simple	example.	We	have	a	set	of	6	truss	elements.	The
generic	i-th	element	has	a	weight	wi	(see	Table	14.1).	We	need	to	choose	three	elements	that
a	minimum	total	weight.	This	problem	can	be	viewed	as	a	combinatorial	optimization	problem,
and	can	be	stated	as

(14.11)

where



(14.12)
(14.13)
(14.14)

There	are	6C3	=	 	=	20	ways	of	choosing	three	elements	from	six	possibilities.	Table	14.2
lists	the	possible	20	combinations,	along	with	the	corresponding	total	weight.

Table	14.1.	Brute	Force	Method:	Six	Elements

Element,	i 1 2 3 4 5 6

Weight,	wi 1.5 6.4 2.0 3.2 5.7 4.3

Table	14.2.	Brute	Force	Method:	Twenty	Combinations

Combination Total	weight Combination Total	weight

1,2,3 		9.9 2,3,4 11.6
1,2,4 11.1 2,3,5 14.1
1,2,5 13.6 2,3,6 12.7
1,2,6 12.2 2,4,5 15.3
1,3,4 		6.7 2,4,6 13.9
1,3,5 		9.2 2,5,6 16.4
1,3,6 		7.8 3,4,5 10.9
1,4,5 10.4 3,4,6 		9.5
1,4,6 		9 3,5,6 12
1,5,6 11.5 4,5,6 13.2

	

The	row	shown	in	bold	in	Table	14.2	is	the	optimal	solution.	Note	that	as	the	number	of
possibilities	increases,	such	exhaustive	enumeration	becomes	computationally	expensive.

The	graphical	method	to	solve	discrete	optimization	problems	is	studied	next.

14.3.2 	Graphical	Method

For	simple	problems	where	the	objective	function	and	the	constraints	can	be	visualized,	the
feasible	region	could	be	plotted	to	find	the	optimal	discrete	solution	graphically.	However,	a
graphical	solution	may	not	be	a	viable	option	for	complex	problems	with	a	large	number	of
design	variables.

Example:	For	the	example	problem	previously	discussed	(Eqs.	14.5	through	14.9),	 the
feasible	region	can	be	plotted	as	shown	in	Fig.	14.2.	The	direction	of	decreasing	objective



function	value	is	shown	by	the	block	arrow.	The	grey	shaded	region	represents	the	feasible
region	as	defined	by	the	inequality	constraints	alone,	and	the	diamonds	represent	feasible
integer	solutions.	Upon	inspection	of	Fig.	14.2,	the	optimal	solution	is	x1	=	1,x2	=	2,	which
is	the	integer	solution	within	the	feasible	design	space	with	the	least	objective	function
value.

Once	 the	 feasible	 region	 is	 identified,	 one	 could	 also	 perform	 an	 exhaustive	 search,
considering	only	the	feasible	design	variable	values,	to	find	the	optimum	solution.

The	next	subsection	discusses	a	simple	and	commonly	used	approach	 to	solve	discrete
problems.

14.3.3 	Relaxation	Approach:	Solve	as	Continuous	Problem

In	this	method,	the	discrete	formulation	is	relaxed	by	treating	the	discrete	variables	as	if	they
were	continuous.	The	optimization	problem	is	then	solved	using	the	continuous	optimization
techniques	 learned	 earlier.	 The	 real-valued	 optimum	 design	 variables	 obtained	 are	 then
rounded	off	to	the	nearest	feasible	discrete	solution.

While	this	 technique	 is	used	quite	often	due	 to	 its	ease	of	 implementation,	 the	user	 is
warned	 that	 the	 solution	 obtained	 can	 often	 be	 sub-optimal.	 In	 addition,	 the	 previously
discussed	 rounding	 of	 the	 optimal	 solution	 can	 result	 in	 constraints	 violations	 at	 the
approximate	discrete	solution.

Example:	Consider	the	linear	discrete	optimization	problem	presented	in	Eqs.	14.5	–	14.9
Now,	solve	it	as	a	continuous	optimization	problem	by	ignoring	the	constraint	in	Eq.	14.9
relaxed	optimization	problem	then	becomes

(14.15)

subject	to

(14.16)
(14.17)
(14.18)

Solving	the	above	optimization	problem	using	a	continuous	optimization	algorithm,	such	as
fmincon,	yields	the	optimal	solution	as	x1	=	1.5,x2	=	2.5.	Rounding	off	to	the	nearest	integer
would	yield	an	integer	optimal	solution	of	x1	=	2,x2	=	3.	As	seen	in	Fig.	14.2,	the	rounded
solution	lies	in	the	infeasible	region	of	the	design	space.	If	the	continuous	solution	is	instead
rounded	off	to	x1	=	1,x2	=	2,	we	obtain	the	correct	solution.	The	relaxation	approach	for
solving	discrete	problems	must,	therefore,	be	carefully	employed.

14.3.4 	Branch	and	Bound	Method

The	branch	and	bound	method	involves	a	systematic	enumeration	of	the	candidate	solutions
for	a	discrete	optimization	problem.	We	explain	the	basics	of	a	branch	and	bound	algorithm
a	series	of	steps	that	can	be	used	to	solve	a	linear	integer	programming	problem	by	hand.



Software	implementations	of	the	algorithm	could	be	much	more	involved.

A	basic	implementation	of	the	branch	and	bound	method	consists	of	the	following	steps.

1. Formulate	a	relaxed	continuous	linear	programming	(LP)	problem	by	ignoring	the	integer
constraints	–	resulting	in	a	continuous	formulation.	The	resulting	optimal	solution	may
have	some	non-integer	design	variable	values.	If	the	resulting	LP	solution	has	only	integer
values,	the	obtained	solution	is	indeed	the	optimal	solution.

2. Notation:	Say	xi*contains	a	decimal	part.	Define	the	notation	of	 x ,	also	known	as	the
ceiling	function.	This	function	returns	the	smallest	integer	value	which	is	greater	than	or
equal	to	x.	For	example,	 5.134 	=	6,	 10 	=	10,	and	 -8.6 	=	–8.	The	second	notation	defined
is	the	floor	function,	denoted	by	 x ,	which	returns	the	largest	integer	that	is	less	than	or
equal	to	x.	For	example,	 5.134 	=	5,	 10 	=	10,	and	 –8.6 	=	–9.

3. For	 those	design	variables	with	 decimal	 parts	 in	 the	 solution,	 two	 subproblems	 that
impose	bounds	on	 the	 design	 variable	 values	 are	 created.	 This	 process	 is	 known	 as
branching.	The	following	additional	constraint	is	added	to	the	first	subproblem:	xi	≤	 x
The	second	subproblem	is	formulated	by	adding	the	constraint	xi	≥	 x .	The	subproblems
are	then	solved	as	continuous	problems.	The	solutions	of	the	two	subproblems	are	then
examined	for	fractional	parts,	and	the	branching	process	is	repeated.

4. For	 a	 given	 variable,	 the	 branching	 process	 is	 usually	 repeated	 until	 the	 relaxed
continuous	problem	with	the	additional	constraints	yields	either	an	integer	solution	or	an
infeasible	solution.	The	branching	process	 is	 repeated	 for	 all	 the	 variables	 that	 have
fractional	solutions.

5. Once	the	branching	process	is	completed	for	all	the	variables,	the	best	solution	among	the
integer	solutions	from	all	branches	is	considered	the	optimal	solution.	Note	that	the	above
algorithm	discussion	applies	only	to	linear	integer	programming	problems.

Example:	Consider	the	following	example,	and	implement	the	branch	and	bound	method.

(14.19)

subject	to

(14.20)
(14.21)
(14.22)
(14.23)

Figure	14.3	provides	the	subproblems	and	their	solutions	when	the	branching	is	performed
on	the	variable	x1.	The	gray-shaded	boxes	are	the	integer	solutions	obtained	during	this
branching.	Note	the	branching	process	after	the	optimal	solution	x1*	=	0.75,x	2*	=	2,f*	=
–3.25.	The	two	further	possible	branches	are	x1	≤	0	and	x1	≥	1.	The	first	branch,	x1	≤	0,	is	not
feasible,	as	it	violates	the	first	constraint,	and	is	not	solved	further.	The	second	branch,	x1
1,	conflicts	with	the	first	branching,	x1	≤	1.	Note	that	this	conflict	yields	x1	=	1	as	the	only



possibility	for	the	variable	x1,	yielding	the	optimal	integer	solution,	x1*	=	1,x	2*	=	2,f*	=	–
Figure	14.4	reports	the	subproblems	and	the	corresponding	solutions	when	the	branching
performed	on	x2.	The	gray-shaded	box	is	the	integer	solution	obtained	(x1*	=	1,x	2*	=	2,f*

–3),	which	is	also	the	optimal	integer	solution	for	this	problem.

Figure	14.3.	Branch	and	Bound	Method	Example:	Integer	Bounds	on	x1



Figure	14.4.	Branch	and	Bound	Method	Example:	Integer	Bounds	on	x2

14.3.5 	Cutting	Plane	Method

The	basic	concept	of	the	cutting	plane	method	is	to	add	inequalities,	also	known	as	cuts,	to
the	existing	integer	problem.	The	purpose	of	adding	the	inequality	is	to	cut	off	the	non-integer
solutions	without	eliminating	integer	points	of	the	feasible	region.	The	resulting	formulation
then	solved	as	a	non-integer	continuous	problem,	and	is	tested	if	the	obtained	solution	is	an
integer.	If	not,	a	new	cut	is	added	and	 the	procedure	 is	 repeated	until	an	optimal	 integer
solution	is	found.	There	are	different	approaches	for	finding	effective	inequalities	or	cuts	that
are	added	to	the	initial	set	of	constraints.	These	effective	inequalities	are	usually	taken	from
pre-defined	families,	one	of	which	is	the	Gomory	cut,	which	will	be	studied	in	this	chapter.

Consider	a	 linear	 integer	programming	problem.	A	Gomory	 cut	 is	a	 linear	 inequality
constraint	that	does	not	exclude	any	feasible	integer	solutions	from	the	integer	problem.	In



this	chapter,	we	will	explain	the	cutting	plane	method	by	using	the	Simplex	method	that	was
presented	in	Chapter	11.	The	following	is	a	generic	discussion	of	Gomory’s	cutting	plane
method	for	linear	integer	programming	problems.

1. Initial	Simplex	Tableau:Begin	by	relasing	the	integer	programming	problem	by	ignoring
integer	constraints	on	the	design	variables.	The	linear	programming	(LP)	formulation	can
written	as

(14.24)

subject	to

(14.25)
(14.26)
(14.27)

Adding	slack	variables,	denoted	by	the	vector	s,	to	the	inequality	constraints	for	the	Simplex
method,	obtain	the	following	formulation.

(14.28)

subject	to

(14.29)
(14.30)
(14.31)

The	above	relaxed	linear	programming	formulation	is	solved	using	the	Simplex	method.
If	the	resulting	optimal	solution	consists	of	only	integer	values,	the	solution	procedure	can
be	stopped.	If	that	is	not	the	case,	use	the	following	procedure	to	further	obtain	integer
solutions.	A	constraint	is	added	to	the	formulation,	known	as	the	Gomory	cut.

2. Generating	 the	Gomory	Cut:	 Examine	 the	 current	 basic	 variables	 in	 the	 Simplex
tableau.	Arbitrarily	choose	one	basic	variable	with	a	fractional	value,	say	xi.	The	following
equation	corresponds	to	the	row	of	xi	in	the	Simplex	tableau.

xi	=	bi	-{ai1x1	+	…	+	aitxt} (14.32)

where	t	is	the	total	number	of	variables:	n	original	variables	and	m	slack	variables.	Note
that	in	the	above	equation,	xi	and	bi	are	fractional.

Now	separate	each	of	the	above	coefficients	into	their	respective	integer	and	fractional
parts.	Let	bi	=	bZ:i	+	bf:i,	where	bZ:i	is	an	integer,	and	bf:i	is	a	positive	fraction	such	that	0
bf:i	≤	1.	Similarly,	we	separate	each	of	the	coefficients,	aij,j	=	{1,…,t},	into	an	integer	part,
aZ:j,	and	non-negative	fractional	part,	af:j,	yielding	aij	=	aZ:j+af:j.

Example:	Consider	the	following	equation.



x2	=	 	– x3	+	 x4
(14.33)

It	can	be	re-written	as

x2	=	 – (14.34)

Using	the	above	nomenclature,	rewrite	Eq.	14.32	as	follows.

xi	=	bZ:i	+	bf:i	-	[{aZ:1	+	af:1}x1	+	…	+	{aZ:t	+	af:t}xt] (14.35)

The	above	equation	can	be	further	written	as

bf:i	-	[af:1x1	+	…	+	af:txt]	=	xi	-	bZ:i	+	[aZ:1x1	+	…	+	aZ:txt] (14.36)

Note	that	the	right-hand-side	of	the	above	equation	is	always	an	integer.	Therefore,	the
left-hand-side	should	also	be	an	integer.

bf:i	-	[af:1x1	+	…	+	af:txt]	∈	Z (14.37)

Since	af:i	are	non-negative	fractions	and	x	≥	0,	the	quantity	[af:1x1+…+af:txt]	is	non-
negative.	In	addition,	note	that	0	≤	bf:i	≤	1.	Therefore,	the	following	equation	holds.

bf:i	-	[af:1x1	+	…	+	af:txt]	≤	bf:i	≤	1 (14.38)

From	Eq.	14.37,	note	that	the	left-hand-side	of	the	above	equation	should	be	an	integer.
This	implies	that	bf:i–[af:1x1+…+af:txt]	should	either	be	zero	or	a	negative	integer.	This
condition	yields	the	Gomory	constraint,	given	as

bf:i	-	[af:1x1	+	…	+	af:txt]	≤	0 (14.39)

3. Solving	problem	with	the	Gomory	constraint:

Adding	a	slack	variable	to	Eq.	14.39,	we	obtain

bf:i	-	[af:1x1	+	…	+	af:txt]	+	st+1	=	0 (14.40)

The	above	constraint	is	then	added	to	the	linear	programming	problem	from	STEP	1.
Note	that	the	optimal	solution	obtained	in	STEP	1	(initial	Simplex	tableau)	does	not	satisfy
the	Gomory	constraint	generated	above.	In	this	case,	the	basic	Simplex	method	used	in
STEP	1	cannot	be	used	to	solve	the	new	problem.	Use	 the	dual	Simplex	method	 (see
Ref.	[5])	for	solving	the	new	problem	with	the	Gomory	constraint.

4. Repeat:	The	process	of	generating	the	Gomory	constraint	and	solving	the	new	formulation
with	the	dual	Simplex	method	is	repeated	until	integer	solutions	are	obtained.

Note	 that	 the	 above-stated	 approach	 is	 a	 very	 simplified	 discussion	 of	 cutting	 plane
methods.	For	a	more	rigorous	mathematical	discussion,	see	[2].	Some	shortcomings	of	this
method	 are:	 (1)	As	 the	 number	 of	 variables	 grows,	 the	 size	 and	 the	 complexity	 of	 the



problem	also	grows,	since	an	additional	slack	variable	and	an	additional	constraint	are	added
for	each	non-integer	variable.	(2)	Implementing	this	method	in	a	computer	using	decimal
representation	can	result	in	rounding	errors	as	the	algorithm	proceeds,	and	may	result	in	a
wrong	integer	optimal	solution.

The	cutting	plane	method	is	now	illustrated	with	the	help	of	the	following	example.

Cutting	plane	algorithm	example:

The	linear	integer	programming	problem	is	given	as	follows.

(14.41)

subject	to

(14.42)
(14.43)
(14.44)
(14.45)

1. Initial	Simplex	Tableau:	Temporarily	ignore	the	integer	constraints	on	x1	and	x2.	The
standard	linear	programming	formulation	for	the	Simplex	method	can	be	written	as	follows.

(14.46)

subject	to

(14.47)
(14.48)
(14.49)

The	initial	Simplex	tableau	can	be	written	as	shown	in	Table	14.3.	The	final	Simplex	tableau
that	yields	 the	continuous	optimal	solution	 is	x1*	=	 ,x2*	=	 ,f*	=	– ,	and	 is	shown	 in
Table.	14.4.

Table	14.3.	Initial	Simplex	Tableau	Before	Adding	Cutting	Planes

x1 x2 s1 s2 b bi	⁄aij

R1 -4 6 1 0 9 3⁄2
R2 1 1 0 1 4 4
f 1 -2 0 0 f

Table	14.4.	Final	Simplex	Tableau	Before	Adding	Cutting	Planes

x1 x2 s1 s2 b



R1 0 1 1⁄10 2⁄5 2⁄5
R2 1 0 -1⁄10 3⁄5 3⁄2
f 0 0 3⁄10 1⁄5 f	+	2⁄7

	

2. Generating	the	Gomory	Cut:	If	the	above	step	yielded	an	integer	solution,	the	integer
problem	would	have	been	solved,	and	the	solution	procedure	would	end	there.	However,
is	not	the	case	in	the	example	under	consideration.	A	constraint	is	added	using	the	theory
Gomory	cut	algorithm.	From	the	Simplex	tableau	in	Table	14.4,	arbitrarily	choose	a	basic
variable	that	has	a	fractional	value,	say	x2	(from	row	R1).	The	equation	in	R1	can	be	written

(14.50)

or

(14.51)

Now	rewrite	the	above	equation	by	separating	the	integer	and	fractional	parts.

(14.52)
(14.53)

Using	the	earlier	discussion	and	Eq.	14.39,	the	Gomory	cut	for	the	above	case	can	be	written
follows.

(14.54)
(14.55)

3. Solve	problem	with	Gomory	constraint	(Iteration	1):

Including	Eq.	14.55	in	the	Simplex	tableau,	the	updated	tableau	can	be	written	as	shown	in
Table	14.5.

Table	14.5.	Initial	Simplex	Tableau	After	Adding	First	Cutting	Plane	(Eq.	14.55)

x1 x2 s1 s2 s3 b

R1 0 1 1⁄10 2⁄5 0 5⁄2
R2 1 0 -1⁄10 3⁄5 0 3⁄2
R3 0 0 -1⁄10 -2⁄5 1 -1⁄2
f 0 0 3⁄10 1⁄5 0 f	+	7⁄2
ci⁄(-ai) N/A N/A 3 1⁄2 N/A



	

The	linear	programming	problem	in	Table	14.5	will	now	be	solved	using	the	dual	Simplex
method.	Select	R3	from	Table	14.5,	as	it	has	a	negative	b	value.	For	each	negative	coefficient
R3,	find	the	corresponding	cost	coefficient	(entries	of	the	row	f),	ci,	and	compute	the	following.

(14.56)

For	example,	the	s1	column	can	be	evaluated	as

(14.57)

Since	the	column	for	s2	satisfied	the	above	condition,	we	pivot	on	the	element	– 	in	R3	in
Table	14.5.	We	then	obtain	the	final	Simplex	tableau	provided	in	Table	14.6.	This	is	the	final
Simplex	tableau	as	all	the	elements	in	the	b	vector	are	positive.

Table	14.6.	Final	Simplex	Tableau	After	Adding	the	First	Cutting	Plane	(Eq.	14.55)

x1 x2 s1 s2 s3 b

R1 0 1 0 0 1 2
R2 1 0 -1⁄4 0 3⁄2 3⁄4
R3 0 0 1⁄4 1 -5⁄2 5⁄4
f 0 0 1⁄4 0 1⁄2 f	+	13⁄4

	

The	optimal	values	from	Table	14.6	are	x1*	=	 ,x2*	=	2,f	=	– .	Since	the	optimal	solution
fractional	parts,	another	Gomory	cutting	plane	will	be	generated	from	Table	14.6.

4. Solve	problem	with	Gomory	constraint	(Iteration	2):

Choose	x1	as	the	variable	for	which	a	Gomory	constraint	is	generated,	using	R1.	Using	the
discussion	provided	earlier,	we	separate	the	integer	and	the	fractional	parts	of	the	coefficients,
as	shown	below.

(14.58)
(14.59)
(14.60)

(14.61)

Or,	the	Gomory	constraint	can	be	written	as

(14.62)



The	initial	Simplex	tableau	for	the	above	problem	is	provided	in	Table	14.7.	Select	row
with	the	negative	b	value.	Computing	the	 	ratio	for	the	negative	elements	in	the	row	leads
to	the	choice	of	the	s1	column.	Pivoting	on	– 	in	row	R4	in	Table	14.7,	obtain	the	final
Simplex	tableau	shown	in	Table	14.8,	with	optimal	values	of	x1*	=	1,x	2*	=	2,f*	=	–3.

Table	14.7.	Initial	Simplex	Tableau	After	Adding	Second	Cutting	Plane	(Eq.	14.62)

x1 x2 s1 s2 s3 s4 b

R1 0 1 0 0 1 0 2
R2 1 0 -1⁄4 0 3⁄2 0 3⁄4
R3 0 0 1⁄4 1 -5⁄2 0 5⁄4
R4 0 0 -3⁄4 1 -1⁄2 1 -3⁄4
f 0 0 1⁄4 0 1⁄2 0 f	+	13⁄4
ci⁄(-ai) N/A N/A 1⁄3 N/A 1 N/A N/A

	
Table	14.8.	Final	Simplex	Tableau	After	Adding	Second	Cutting	Plane	(Eq.	14.62)

x1 x2 s1 s2 s3 s4 b

R1 0 1 0 0 1 0 2
R2 1 0 0 0 0 5⁄3 1
R3 0 0 0 1 -8⁄3 1⁄3 1
R4 0 0 1 0 2⁄3 -4⁄3 1
f 0 0 0 0 4⁄3 1⁄3 f	+	3

	

The	above	example	concludes	our	discussion	of	the	cutting	plane	method.	We	discuss	other
solution	approaches	next.

14.3.6 	Evolutionary	Algorithms

Evolutionary	algorithms,	and	certain	versions	of	swarm-based	algorithms	[6],	are	a	popular
choice	for	discrete	optimization	because	of	their	ability	to	work	directly	with	discrete	search
spaces.	The	application	of	evolutionary	algorithms	will	be	studied	in	Chapter	19.

14.3.7 	Software	Options	for	Discrete	Optimization



This	subsection	presents	some	of	the	popular	software	tools	available	for	solving	discrete
programming	problems.	Note	that	most	of	these	software	tools	can	solve	more	than	just	integer
programming	 problems.	 For	 convenience,	 we	 repeat	 here	 the	 table	 listing	 software	 in
Section	5.5,	as	Table	14.9,	where	software	options	are	discussed.	Here,	we	will	focuss	on	the
last	column	of	Table	14.9,	where	discrete	optimization	software	is	presented.

Table	14.9.	Broad	Classification	of	Software	for	Optimization—with	Discrete	Case

Software	for	Optimization	(SO)

Within Within Discrete
Stand-Alone Design Analysis	Package Integer

Framework or
(SO-SA) (SO-WDF) (SO-WAP) Mixed

MATLAB	Toolbox iSIGHT GENESIS XPRESS
NEOS	Server PHX	ModelCenter NASTRAN CPLEX
DOT-VisualDOC modeFRONTIER ABAQUS Excel	and	Quattro
NAG XPRESS Altair NEOS	Server
NPSOL LINDO/LINGO ANSYS MINLP
GRG2 GAMS COMSOL GAMS	WORLD
LSSOL Boss	Quattro MS	Excel
CPLEX What’sBest!
BTN RISKOptimizer
PhysPro Busi.	Spreadsh.

	

1. The	XPRESS	suite	of	optimization	algorithms	is	distributed	by	Dash	Optimization	[7].	
XPRESS	MIP	tool	provides	the	capability	to	solve	mixed-integer	programming	problems
using	sophisticated	implementations	of	the	branch	and	bound	and	cutting	plane	algorithms.
Further	information	about	the	XPRESS	suite	can	be	found	at	the	following	website.

www.fico.com/en/products/fico-xpress-optimization-suite

2. CPLEX	solvers,	created	by	CPLEX	Optimization,	Inc.,	are	designed	to	handle	problems
mixed-integer	programming	features.	The	solver	uses	a	combination	of	algorithms	and
heuristics	[8].	Further	information	regarding	the	free	CPLEX	solver	can	be	found	at	the
following	website.

openopt.org/cplex

3. Excel	and	Quattro	Pro	Solvers,	developed	by	Frontline	Systems[9],	are	available	to	solve
small	 scale	 integer	 programming	 problems	 using	 Excel	 spreadsheets.	 The	 integer
programming	method	employs	a	branch	and	bound	technique,	which	uses	a	nonlinear
programming	tool	known	as	GRG2	[10].

http://www.fico.com/en/products/fico-xpress-optimization-suite
http://openopt.org/cplex


4. The	NEOS	Server	is	a	website	hosted	by	Argonne	National	Laboratory,	and	is	free	to	use.
Several	state-of-the-art	algorithms	in	optimization	software,	including	those	in	integer
programming,	are	available	from	the	website	www.neos-server.org/neos/solvers

5. The	GAMS	WORLD	[11,		12]	is	a	website	hosted	by	the	international	GAMS	community.
provides	a	large	suite	of	source	codes	for	solving	mixed	integer	nonlinear	programming
(MINLP)	problems,	which	are	an	important	and	complex	class	of	discrete	optimization
problems.	 The	 MINLP	 solver	 codes	 can	 be	 found	 at	 the	 following	 website:
www.gamsworld.org/minlp/solvers.htm

The	above	subsection	concludes	our	discussion	on	 the	solution	approaches	of	discrete
optimization.

14.4 	Summary

This	chapter	introduced	important	aspects	of	discrete	optimization.	The	treatment	of	the	subject
in	this	chapter	is	fairly	simple	when	compared	to	more	detailed	references.	Simple	and	easy-to-
implement	solution	approaches	for	discrete	problems	that	can	be	readily	implemented	for
engineering	problems	were	introduced.	Examples	were	provided	to	further	illustrate	how	the
algorithms	work.	A	list	of	some	popular	software	options	was	also	provided,	together	with	their
pertinent	characteristics.

14.5 	Problems

14.1 Perform	a	literature	survey	and	find	at	least	two	examples	of	discrete	optimization
problems	that	were	not	discussed	in	the	chapter.

14.2 Solve	the	problem	presented	in	Sec.	14.3.2	graphically.	In	addition,	reproduce	the	details
shown	in	Fig.	14.2.	Clearly	label	your	plot.

14.3 Solve	the	following	integer	problem	graphically.	Clearly	label	your	plots.

(14.63)

subject	to

(14.64)
(14.65)
(14.66)
(14.67)

14.4 Solve	the	following	integer	problem	graphically.	Clearly	label	your	plots.

(14.68)

subject	to

(14.69)

http://www.neos-server.org/neos/solvers
http://www.gamsworld.org/minlp/solvers.htm


(14.70)
(14.71)

(14.72)

14.5 Duplicate	the	results	for	the	integer	programming	problem	presented	in	Sec.	14.3.4.

14.6 Solve	the	integer	problem	shown	in	Problem	14.3	using	the	branch	and	bound	method.
Clearly	write	down	the	subproblem	statement,	and	the	corresponding	optimal	solutions.

14.7 Solve	the	integer	problem	shown	in	Problem	14.4	using	the	branch	and	bound	method.
Write	down	the	detailed	solutions.

14.8 Duplicate	the	results	for	the	cutting	plane	method	example	discussed	in	Sec.	14.3.5.

14.9 Solve	the	integer	problem	shown	in	Problem	14.3	using	Gomory’s	cutting	plane	method.
Clearly	write	down	the	subproblem	statement,	and	the	corresponding	optimal	solutions.

14.10 Solve	the	integer	problem	shown	in	Problem	14.4	using	Gomory’s	cutting	plane	method.
Write	down	the	detailed	solutions.
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Modeling	Complex	Systems:	Surrogate	Modeling
and	Design	Space	Reduction

15.1 	Overview

In	this	chapter,	we	introduce	efficient	mathematical	approaches	 to	model	 the	behavior	of
complex	systems	 in	 the	context	of	optimizing	 the	system.	Specifically,	complex	systems
often	involve	a	large	number	of	design	parameters	 (to	be	 tuned),	and	 the	optimization	of
these	 systems	 often	 demand	 large	 scale	 computational	 simulations	 or	 experiments	 to
quantify	 the	system	behavior.	The	resulting	high	dimensionality	of	 the	design	space,	 the
prohibitive	 computation	 time	 (or	 expense),	 or	 the	 lack	 of	mathematical	 models	 present
important	 challenges	 to	 the	 quantitative	 optimization	 of	 these	 complex	 systems.	 This
chapter	 introduces	 traditional	 and	 contemporary	 approaches,	 such	 as	 design	 variable
linking	 and	 surrogate	 modeling,	 to	 address	 the	 modeling	 challenges	 encountered	 in
solving	complex	optimization	problems.

Section	15.2	discusses	 the	generic	challenges	 in	 complex	 optimization	 problems.	 The
impact	of	problem	dimension	is	addressed	in	Sec.	15.3,	where	design	variable	linking	and
design	of	experiments	are	introduced.	Section	15.4	presents	surrogate	modeling,	where	the
discussion	includes:	the	process,	the	polynomial	response	surface	methodology,	the	radial
basis	function	method,	the	Kriging	method,	and	the	artificial	neural	network	method.	The
chapter	concludes	with	a	summary	provided	in	Section.	15.5.

15.2 	Modeling	Challenges	in	Complex	Optimization	Problems

Modeling	is	one	of	the	primary	activities	in	optimization.	Leveraging	computational	tools
and	models,	as	opposed	 to	purely	depending	on	experiments,	can	be	considered	 the	way
forward	 in	 the	 area	 of	 system	 optimization.	 The	 design	 of	 complex	 systems,	 such	 as
aircrafts,	 cars,	 and	 smart-grid	 networks,	 are	 increasingly	 performed	 using	 simulation-
based	design	and	analysis	tools	such	as	Finite	Element	Analysis	(FEA)	and	Computational
Fluid	Dynamics	 (CFD).	 The	 incorporation	 of	 these	 tools	 has	 dramatically	 transformed
modern	engineering	design	and	optimization	approaches.

These	 changes,	 however,	 are	 not	 free	 of	 challenges.	 For	 example,	modern	 aerospace
systems	present	significantly	 complex	 design	 requirements	 [1],	where	 design	 objectives
generally	involve	improving	performance,	reducing	costs,	and	maximizing	safety.	Another
example	 is	 the	 optimization	 of	 a	 vehicle	 structure	 to	 absorb	 crash	 energy,	 maintain
adequate	passenger	space,	and	control	crash	deceleration	pulse	during	collisions	[2].	The
collision	process	is	an	extremely	complex	multibody	dynamic	process.

The	relationship	between	the	objectives	and	the	design	variables	in	complex	systems	is
generally	 not	 governed	 by	 functions	 of	 simple	 analytical	 form.	 The	 use	 of	 complex
computational	 or	 simulation-based	 models	 to	 design	 these	 systems	 may	 demand



unreasonably	high	computational	costs.	You	will	find	that	the	techniques	presented	in	this
chapter	are	paramount	to	overcoming	 the	computational	barrier	and	efficiently	exploring
optimal	designs	for	complex	systems.

It	is	also	important	to	remember	that,	as	discussed	in	Chapter	4,	inappropriate	modeling
can	result	 in	slow	 convergence,	 everlasting	 computation,	 or	 unrealistic	 solutions.	 In	 the
context	 of	 modeling,	 practical	 optimization	 problems	 are	 faced	 with	 three	 major
challenges:

1. Design-space	dimensionality:	Complex	problems	may	 involve	a	very	 large	number	of
variables.	 For	 example,	 nearly	 300	 variables	 are	 involved	 in	 designing	 a	 vehicle
powertrain	system	[3]	and	more	than	1,000	design	variables	are	 involved	 in	designing
large	scale	wind	farms	or	systems	with	multiple	physical	domains	[4].	Models	that	are
formulated	 to	 operate	 only	 on	 the	 entire	 (high-dimensional)	 variable	 space	 in	 these
cases	 may	 pose	 challenging-to-prohibitive	 numerical	 burdens	 on	 the	 optimization
process.

2. Computational	 expense:	 As	 we	 learned	 in	 the	 previous	 chapters,	 the	 behavior	 of
complex	 physical	 systems	 are	 often	 modeled	 using	 computational	 simulations	 (e.g.,
FEA	 or	 CFD),	 which	 are	 basically	 the	 computer-based	 implementation	 of	 complex
(often	multi-step)	 mathematical	 models.	 However,	 these	 simulations	 can	 take	 hours
(even	 days)	 to	 run.	 Thus,	 their	 usage	 could	 become	 computationally/time-wise
prohibitive	in	the	context	of	optimization	when	simulation	models	have	to	be	executed
thousands	(or	tens	of	thousands)	of	times	during	optimization.	For	example,	 if	a	 large
eddy	simulation	[5]	 (which	 is	a	CFD	model)	 is	used	 to	model	 the	flow	inside	a	wind
farm,	 it	 may	 demand	 approximately	 600	 million	 CPU-hours	 for	 optimizing	 the
configuration	of	a	25-turbine	wind	farm	[6].

3. Lack	 of	mathematical	 models:	 Alternatively,	 for	 certain	 systems	 or	 problems,	 there
may	not	exist	any	mathematical	models	that	define	the	underlying	physics/behavior	of
the	system	(or	 the	dynamics	of	 the	problem).	 This	 could	 be	 due	 to	 a	 lack	 of	 a	 clear
understanding	 of	 the	 underlying	 physics	 or	 the	 relationship	 between	 the	 design
parameters	and	 the	criteria	 functions.	For	example,	without	a	physics-based	model	 to
represent	 the	 constitutive	 relationship	 of	 Ti-25V-15Cr-0.2	 Si	 alloy	 during	 the	 hot
deformation	process,	empirical	models	(based	on	experimental	data)	are	used	[7].

One	 class	 of	 approaches	 to	 address	 the	 first	 challenge	 (i.e.,	 design-space
dimensionality)	 is	 design	 space	 reduction	 or	 design	 variable	 linking.	 Design	 variable
linking	 is	 an	 approach	 that	 seeks	 to	 reduce	 the	 design	 dimensionality	 of	 a	 problem	 by
developing	relationships	among	the	variables	–	thereby	yielding	models	 that	quantify	 the
system	behavior	in	terms	of	a	smaller	(likely	more	tractable)	set	of	variables	than	initially
defined.	 These	 approaches	 are	 discussed	 in	 the	 following	 section.	 In	 addition,	 the
following	section	introduces	another	aspect	of	model	development,	sampling	(or	design	of
experiments),	which	is	also	directly	related	to	the	dimensionality	of	the	design	space.

The	other	two	challenges	are	generally	addressed	by	a	class	of	mathematical	 functions
that	 have	 different	 names,	 based	 on	 the	 research	 community	 with	 which	 you	 are
communicating	 (e.g.,	 mathematicians,	 material	 scientists,	 or	 aerospace	 engineers).	 The
process	of	developing/using	this	class	of	mathematical	functions	is	known	by	such	names



as	metamodeling,	surrogate	modeling,	response	surface	methodology,	and	function	fitting.
Essentially,	they	represent	an	approach	to	mathematical	modeling	that	does	not	exploit	the
understanding	 of	 the	 underlying	 physics	 of	 the	 system	 behavior	 being	 modeled.	 An
introductory	discussion	of	this	class	of	models,	known	as	surrogate	models,	is	provided	in
Sec.	15.4.

15.3 	Impact	of	Problem	Dimension

In	 this	 section,	 you	will	 be	 introduced	 to	 approaches	 that	 can	 reduce	 the	 dimension	 of
design	 optimization	 problems,	 which	 can	 be	 considered	 as	 an	 important	 aspect	 of
modeling	and	problem	formulation.	Subsequently,	we	will	 explore	 other	 implications	 of
the	design	space	dimensionality.	Specifically,	we	will	learn	how	to	design	or	plan	a	set	of
computational/physical	experiments	to	analyze	and	model	the	behavior	of	the	system	(that
is	 being	 optimized);	 and	 how	 this	 design	 of	 experiments	 is	 closely	 related	 to	 problem
dimensionality	(Ref.	[8]).

15.3.1 	Design	Variable	Linking

In	 certain	 optimization	 problems,	 when	 the	 number	 of	 design	 variables	 is	 large,	 it	 is
possible	 to	 reduce	 the	 dimensionality	 through	 design	 variable	 linking	 [9].	 Equality
constraints	 are	 used	 to	 define	 this	 linking.	 The	 value	 of	 one	 design	 variable	 can	 be
expressed	 in	 terms	 of	 one	 or	 more	 design	 variables.	 The	 behavior	 of	 symmetric
components	can	be	 identical	under	certain	circumstances,	which	may	offer	opportunities
to	 reduce	 the	number	of	 independent	 design	 variables.	 This	 reduction	 of	 the	 number	 of
design	variables	is	generally	intended	to	reduce	the	computational	cost	of	optimization.

Assume	 that	 an	 optimization	 problem	 is	 defined	 by	 n-dimentional	 design	 variable
vector	x,	where	n	is	deemed	large	and	computationally	undesirable.	It	may	be	possible	 to
redefine	the	optimization	problem	in	terms	of	a	new	m-dimensional	design	variable	vector	
,	where	m	<	n,	 through	a	 linear	 transformation	defined	 by	 the	 constant	matrix	T.	 This
transformation	can	be	expressed	as

xn×1	=	Tn×m	 	m×1

For	example,	the	reduction	from	3	to	2	design	variables	can	take	the	form

x3×1	=	 	2×1 (15.1)

Lets	look	at	an	example	where	design	variable	linking	is	used.

Example:	Buckling	 is	a	common	 failure	mode	when	 a	 structure	 is	 subjected	 to	 high
compressive	stresses.	A	vertical	aluminum	column	is	pinned	at	both	ends,	as	shown	in
Fig.	15.1.	The	height	of	the	column	is	l	=	0.5m.	Its	cross	section	is	depicted	in	Fig.	15.2.
The	value	of	h	is	a	quarter	of	b.	The	column	is	subjected	 to	a	 force,	P	=	35.5N,	on	 its
top.	The	Young’s	modulus	of	aluminum	is	69	GPa	at	 room	temperature	 (21°	C).	Only
buckling	failure	 is	considered	 in	 this	 optimization	 problem,	where	 the	 objective	 is	 to



minimize	the	volume	of	the	column.

Figure	15.1.	A	Column	Subject	to	Buckling

Figure	15.2.	Rectangular	Cross	Section

The	area	moment	of	inertia	of	a	rectangle	is	given	by

I0	=	 (15.2)

The	critical	force	that	the	column	can	accept	is	given	by

Pcr	=	 (15.3)

where	P	 is	 the	critical	 force,	E	 is	 the	modulus	 of	 elasticity,	 I0	 is	 the	 area	moment	 of
inertia,	l	is	the	unsupported	length	of	the	column,	and	K	is	the	column	effective	 length
factor.	For	a	column	where	both	ends	are	pinned,	the	factor	K	is	equal	to	1.

The	optimization	problem	is	formulated	as

(15.4)



subject	to

(15.5)
(15.6)
(15.7)

The	 above	 formulation	 of	 the	 optimization	 problem	 involves	 two	 design	 variables.
Using	design	variable	linking	[9],	we	can	reduce	the	number	of	design	variables	to	one.
Constraint	 (15.5)	 is	 used	 to	 eliminate	 h	 from	 the	 formulation.	 Therefore,	 the
optimization	problem	is	reduced	to

(15.8)

subject	to

(15.9)
(15.10)

The	optimal	solution	to	the	above	optimization	problem	is	b	=	0.01m	and	h	=	0.0025m.
The	volume	is	1.25×10–5m3.	Thus,	in	this	problem,	design	variable	linking	[9]	is	used	to
reduce	 the	 number	 of	 design	 variables	 from	 two	 to	 one,	 thereby	 simplifying	 the
optimization	problem	and	likely	saving	computational	costs.

15.3.2 	Design	of	Experiments

Design	 of	 experiments	 (DoE)	 techniques	 were	 originally	 developed	 to	 study	 (and
empirically	 model)	 the	 behavior	 of	 systems	 through	 physical	 experiments	 (e.g.,	 in
experimental	 chemistry	 [10]).	 DoE	 can	 be	 defined	 as	 the	 design	 of	 a	 controlled
information	gathering	exercise	for	a	system	or	phenomena	where	variation	is	known	to	be
present.	 DoE	 techniques	 have	 existed	 in	 some	 form	 since	 the	 late	 1700s	 [11],	 and	 is
considered	a	discipline	with	very	broad	applications	across	the	different	natural	and	social
sciences,	and	engineering.

The	primary	objective	of	DoE	is	 to	determine	multiple	combinations	of	 the	controlled
parameters	 (or	conditions)	at	which	 the	experiments	will	be	conducted.	 In	mathematical
terms,	each	combination	of	controlled	parameters	can	be	considered	 a	 sample.	As	 such,
DoE	 can	 also	 be	 perceived	 as	 a	 process	 of	 generating	 parameter/condition	 samples	 to
conduct	 controlled	 experiments.	Although,	 traditionally	 controlled	 experiments	 referred
only	 to	 physical	 experiments,	 in	 modern	 times,	 it	 would	 include	 both	 physical	 and
computational	experiments	(i.e.,	simulation-based	experiments).

Once	 experiments	 have	 been	 performed	 for	 each	 planned	 sample	 condition,	 the	 data
acquired	 can	 be	 used	 to	 (i)	 investigate	 a	 theoretical	 hypothesis,	 (ii)	 analyze	 the	 system
behavior	(e.g.,	sensitivity	analysis),	and/or	 (iii)	develop	empirical	or	surrogate	models	 to
represent	 the	 relationship	 between	 different	 system	 parameters.	 In	 this	 chapter,	we	will
primarily	focus	on	the	third	application	of	DoE,	where	the	objective	 is	 to	understand	and
model	the	relationship	between	“the	input	parameters	(that	comprised	the	planned	sample
set),”	 and	 “the	 output	 parameters	 of	 interest	 (whose	 values	were	 acquired	 through	 the



experiment).”

DoE	 techniques	 have	 a	 large	 influence	 on	 the	 accuracy	 of	 the	 surrogate	 model
developed	 thereof.	 To	 develop	 effective	 surrogate	 models,	 it	 is	 necessary	 to	 acquire
adequate	information	about	 the	underlying	system.	Assuming	no	prior	knowledge	of	 the
system	behavior,	 the	 typical	DoE	strategy	 is	 to	 generate	 a	 distribution	 of	 sample	 points
throughout	the	design	space	in	an	uniform	fashion.	There	are	several	techniques	available
to	 distribute	 the	 sample	 points,	 to	 provide	 an	 adequate	 coverage	 of	 the	 design	 space
without	 any	 particular	 variable	 bias.	 These	 techniques	 include	 Factorial	 design	 [12],
Central	 Composite	 designs	 [13],	 and	 Latin	 Hypercybe	 design	 [14],	 and	 Sobol
sequence	[15].

The	most	straightforward	approach	to	uniform	sampling	is	the	factorial	design	method.
In	this	technique,	the	range	of	each	design	variable	is	divided	into	different	levels	between
the	upper	and	lower	limits	of	a	design	space.	In	a	full	factorial	design,	 sample	points	are
located	at	all	the	combination	of	the	different	levels	of	all	the	design	variables.	Figure	15.3
illustrates	 a	 three	 level	 factorial	 design	 in	 a	 three-variable	 space.	 In	 high-dimensional
problems,	the	full	factorial	design	approach	may	be	cost/time	prohibitive.	For	example,	in
a	10	dimension	problem,	even	a	2-level	full	factorial	design	would	require	as	many	as	210
=	1,	024	sample	points.	If	we	assume	that	each	experiment	takes	only	1	hr,	42	days	would
be	required	to	run	through	the	entire	sample	set.

Figure	15.3.	A	3-Level	and	3-Dimensional	Full	Factorial	Design	(27	Points)

In	 these	 situations	 of	 excessive	 resources	 requirment,	 only	 a	 fraction	 of	 the	 sample
points	 can	 be	 used	 for	 conducting	 experiments.	Designs	 that	 use	 a	 fraction	 of	 the	 full
factorial	 design	 sample	 points	 are	 called	 fractional	 factorial	 design.	 Central	 composite
design	(CCD)	combines	full	or	fractional	factorial	designs	with	additional	points	to	allow
the	 fitting	 of	 full	 quadratic	 polynomial	 models.	 The	 MATLAB	 functions	 available	 to
perform	full	factorial	design	and	fractional	factorial	design	are	fullfract	and	fracfact,



respectively.	A	simple	two-level	factorial	design	can	be	performed	using	the	function	ff2n
as	follows.
%	To	generate	a	2-level	factorial	design	with	3	factors		

dFF2	=	ff2n(3)		

dFF2	=		

			0			0			0		

			0			0			1		

			0			1			0		

			0			1			1		

			1			0			0		

			1			0			1		

			1			1			0		

			1			1			1

In	a	Latin	Hypercube	design	(LHD)	or	Latin	Hypercube	Sampling	(LHS),	the	range	of
each	design	variable	is	divided	into	n	non-overlapping	intervals	with	equal	probability.	A
sample	point	is	then	located	randomly	on	each	interval	of	every	design	variable.	Consider
a	 simple	 example	 where	 we	 wish	 to	 generate	 a	 LHD	 of	 size	 n	 =	 10	 for	 two	 design
variables.	 The	 ten	 intervals	 of	 the	 variable	 x1	 and	 x2	 in	 that	 case	 are	 presented	 in
Fig.	15.4(a).	The	next	step	 is	 to	 randomly	select	specific	values	 for	x1	and	x2	 in	each	of
their	ten	intervals	as	shown	in	Fig.	15.4(b).

Figure	15.4.	Latin	Hypercube	Sampling	(LHS)	with	10	Points

MATLAB	 provides	 a	 set	 of	 in-built	 functions	 to	 perform	 different	 types	 of	 Latin
Hypercube	 Sampling	 (LHS).	 The	most	 straight-forward	 implementation	 of	 LHS	 can	 be
performed	using	lhsdesign.	Direct	implementation	of	this	function	generates	a	sample	set
in	the	range	of	 	for	each	variable.	A	two-variable	implementation	is	shown	below.
%	To	generate	and	plot	a	LHS	set	for	two	variables		

x	=	lhsdesign(50,2);		

plot(x(:,1),x(:,2))

The	plot	of	the	sample	set	generated	by	using	the	MATLAB	LHS	function	is	provided	in
Fig.	15.5.	It	is	noted	from	Fig.	15.5	that	the	LHS	provides	uniform	yet	non-deterministic
coverage	of	the	multi-dimensional	design	space.	Note	that	using	such	methods	as	LHS	for
sample	generation	is	also	helpful	when	creating	the	initial	population	of	candidate	designs
in	evolutionary	algorithms,	as	we	will	see	in	a	later	chapter	in	this	book.



Figure	15.5.	A	LHS	for	a	2-Variable	Problem,	Generated	Using	MATLAB

In	 the	 next	 section,	we	 show	 that	DoE	 or	 effective	 sampling	 is	 the	 first	 step	 in	 the
development	of	surrogate	models	 [16].	 This	 is	 because	 surrogate	models	 are	 trained	 by
using	(i)	 the	 input	data	generated	 by	 the	DoE	 and	 (ii)	 the	 output	 data	 generated	 by	 the
experiments	conducted	under	 that	DoE.	Thus,	 the	greater	 the	 number	 of	 samples	 or	 the
more	dense	the	coverage	of	the	design	space,	 the	greater	 is	 the	expected	accuracy	of	 the
surrogate	models	trained	with	these	samples.

Unfortunately,	using	a	generously	large	number	of	samples	contradicts	the	very	purpose
of	developing	surrogate	models,	which	 is	 to	avoid	 the	unreasonable	 cost	 of	 running	 too
many	 expensive	 computational/physical	 experiments.	 To	 develop	 accurate	 surrogate
models,	performing	a	comprehensive	set	of	simulations	 or	 experiments	 is	 desirable,	 but
often	unreasonable.	We	learned	from	the	discussion	of	the	different	DoE	methods,	the	size
of	 the	 sample	 set	 is	 closely	 related	 to	 the	 dimension	 of	 the	 problem.	 Richard	 Bellman
coined	the	term	“curse	of	dimensionalit”	to	describe	the	rapid	increase	of	the	sample	size
resulting	from	an	increase	in	the	number	of	variables	 [17].	The	DoE	techniques	 that	you
learned	 in	 this	 section	 are	 uniquely	 helpful	 in	 planning	 effective	 sample	 sets	 for	 the
surrogate	modeling	of	systems	of	different	design	dimensions.

15.4 	Surrogate	Modeling

The	 need	 to	 quantify	 the	 economic	 and	 engineering	 performance	 of	 complex	 systems
often	demands	highly	complex	and	computationally/time-wise	expensive	simulations	and
experiments.	 The	 direct	 use	 of	 these	 computational	 simulations	 or	 experiments	 in
optimization	could	be	anywhere	from	challenging	to	prohibitive.	Surrogate	models	are	one
of	 the	most	popular	methodologies	 to	deal	with	 this	 issue.	 They	 provide	 a	 significantly
less	expensive	and	often	more	tractable	alternative	toward	model-based	optimization.

Surrogate	modeling	is	concerned	with	 the	construction	of	purely	mathematical	models
to	estimate	system	performance	or,	in	other	words,	to	define	relationships	between	specific
system	inputs	and	outputs.	Over	the	past	couple	of	decades,	 function	estimation	methods



and	approximation-based	optimization	have	progressed	remarkably.	Surrogate	models	are
being	 extensively	 used	 in	 the	 analysis	 and	 optimization	 of	 complex	 systems	 or	 in	 the
solution	 of	 complex	 problems.	 Surrogate	 modeling	 techniques	 have	 been	 used	 for	 a
variety	 of	 applications	 from	 multidisciplinary	 design	 optimization	 to	 the	 reduction	 of
analysis	time	and	 the	 improvement	of	 the	 tractability	of	complex	analysis	codes	[1,	18].
Figure	15.6	illustrates	the	diverse	applicability	of	surrogate	modeling.

Figure	15.6.	Applications	of	Surrogate	Modeling	(Graphics	Courtesy	SUMO)

The	general	surrogate	modeling	problem	can	be	stated	as	follows:	“Given	a	set	of	data
points	xi	∈	Rm,i	=	1, ,n	p,	and	 the	corresponding	function	values,	 f(xi),	 obtain	 a	 global
approximation	 function,	 (x),	 that	 adequately	 represents	 the	 original/actual	 functional
relationship	over	a	given	design	domain.”	In	this	section,	you	are	provided	an	introduction
to	the	overall	surrogate	modeling	process,	and	a	brief	description	of	 the	major	surrogate
modeling	methods.

15.4.1 	Surrogate	Modeling	Process

The	 process	 of	 surrogate	 modeling	 generally	 involves	 three	 stages:	 (i)	 design	 of
experiments	 (DoE);	 (ii)	construction	or	 training	of	 the	 surrogate	model;	 and	 (iii)	model
validation.

We	have	already	learned	about	DoE	and	sampling	in	 the	previous	section.	However,	 it
is	important	to	realize	that	in	some	cases,	it	might	not	be	practically	feasible	to	control	the
DoE.	 This	 is	 especially	 true	 in	 practice,	 when	 the	 source	 of	 experimental	 data	 is
significantly	different	from	where	the	surrogate	model	is	being	constructed.	For	example,
data	 from	 the	 literature,	 historical	 data	 from	 previously	 reported	 experiments	 or
measurements,	 or	 data	 from	 commercial	 sources	 may	 need	 to	 be	 used	 to	 construct	 a
surrogate	model.	In	these	cases,	the	user	constructing	the	model	does	not	have	any	direct
control	 over	 the	 data	 generation.	 For	 example,	 Zhang	 et	 al.	 [19]	 used	 data	 from	 the
National	Renewable	Energy	Laboratory	[20]	to	construct	a	wind	farm	cost	model,	where
the	 levelized	 cost	 of	wind	 farms	was	 represented	 as	 a	 function	 of	 turbine	 features	 and
reported	labor	costs.



The	sample	points	used	to	construct	the	surrogate	models	are	generally	called	 training
points,	while	the	construction	of	the	surrogate	models	is	often	called	model	training.	Once
the	training	points	have	been	defined	(through	DoE	or	other	sources),	 the	next	step	 is	 to
select	an	appropriate	surrogate	model	or	 functional	 form.	An	 introductions	 to	 four	major
surrogate	 models	 is	 provided	 in	 the	 following	 subsections.	 These	 models	 are:	 (i)
polynomial	 response	surfaces,	 (ii)	 radial	basis	 functions,	 (iii)	Kriging,	 and	 (iv)	 artificial
neural	 network.	 We	 take	 this	 opportunity	 to	 note	 that	 the	 quantification	 of	 surrogate
modeling	errors	is	an	important	current	research	area	(see	Refs.	[21,	22]).

Once	 the	 surrogate	 model	 has	 been	 constructed,	 the	 final	 step	 is	 to	 evaluate	 the
performance	or	expected	accuracy	of	the	surrogate	model.	The	two	most	popular	measures
of	model	error	are	the	root	mean	squared	error	(RMSE)	and	the	maximum	absolute	error
(MAE).	The	root	mean	squared	error	(RMSE)	is	a	global	error	measure	 that	provides	an
understanding	of	the	model’s	accuracy	over	the	entire	design	domain;	while	the	maximum
absolute	error	(MAE)	provides	an	understanding	of	the	maximum	local	deviations	of	 the
model	 from	the	actual	 function.	 The	most	 prominent	 approaches	 used	 to	 estimate	 these
error	measures	are	[1]:	(i)	split	sample,	(ii)	cross-validation,	and	(iii)	bootstrapping.

In	the	split	sample	strategy,	the	sample	data	is	divided	into	training	and	test	points.	The
former	is	used	to	construct	the	surrogate;	while	the	latter	is	used	to	test	the	performance	of
the	surrogate.	The	cross-validation	technique	operates	through	the	following	five	steps:

1. Splits	the	sample	points	randomly	into	q	(approximately)	equal	subsets;

2. Removes	each	of	these	subsets	in	turn	(one	at	a	time);

3. Trains	an	intermediate	surrogate	model	to	the	remaining	q	–	1	subsets;

4. Computes	the	error	of	the	intermediate	surrogate	using	the	omitted	subset;	and

5. Once	each	one	of	the	q	subsets	has	been	used	as	the	omitted	subset,	the	q	sets	of	errors
evaluated	therein	are	generally	aggregated	to	yield	a	global	error	measure.

The	 bootstrapping	 approach	 generates	m	 subsamples	 from	 the	 sample	 points.	 Each
subsample	is	a	random	sample	with	replacements	from	the	full	sample.	Different	variants
of	the	bootstrapping	approach	can	be	used	for	(i)	model	identification,	and	(ii)	identifying
confidence	intervals	for	surrogate	models	[1].

The	four	major	surrogate	models	are	discussed	next.

15.4.2 	Polynomial	Response	Surface	Methodology

The	Polynomial	Response	Surface	(PRS)	methodology	 is	motivated	by	 the	Taylor	series
expansion	[23].	A	Taylor	series	generally	 requires	an	 infinite	number	of	 terms	 to	 obtain
the	exact	value	of	 the	real	 function.	The	approximation	 takes	 the	form	of	 a	 polynomial.
The	number	of	terms	included	in	a	PRS	depends	on	the	desired	accuracy.	We	may	seek	a
zero-th	order	(constant),	a	first	order	(linear),	a	second	order	(quadratic),	or	an	even	higher
order	 approximation.	 The	 approximation	 is	 accurate	 in	 the	 neighborhood	 of	 a	 chosen
point,	and	becomes	progressively	inaccurate	as	we	move	away	from	that	point.	Depending
on	 the	 form	 of	 a	 real	 function,	 the	 availability	 of	 training	 data,	 and	 users’	 accuracy
requirement,	PRS	may	be	selected	as	a	linear,	second-order,	or	higher-order	polynomial	of



the	vector	of	the	design	variables.	Low-order	polynomials,	defined	in	a	small	region	of	the
variable	space,	are	generally	used	in	practice	when	PRS	is	the	model	of	choice.

The	Kth-order	PRS	of	a	single	variable	x	has	the	following	form.

(15.11)

where	a0,a1,…,aK	are	arbitrary	coefficients	to	be	determined	by	training.

In	n-dimensional	space,	variable	x	has	n	components:	xj,	where	 j	=	1, ,n.	The	 linear
PRS	of	n-dimensional	variable	x	has	the	following	form.

(15.12)

where	the	generic	aj	are	arbitrary	coefficients	to	be	determined	by	training.

The	most	popular	PRS	 is	 the	 the	 2nd-order	 PRS,	 or	 the	Quadratic	 Response	 Surface
(QRS).	The	QRS	of	an	n-dimensional	variable	x	has	the	following	form.

(15.13)

where	the	generic	aj	and	aji	are	arbitrary	coefficients	to	be	determined	by	training.

The	generalized	kth-order	PRS	of	an	n-dimensional	variable	x	can	be	represented	as

(15.14)

where	the	generic	aj	to	aj1j2 jk	are	arbitrary	coefficients	to	be	determined	by	training.

The	PRS	methodology	is	frequently	used	in	regression	analyses.	In	regression	analyses,
the	number	of	training	points	is	generally	greater	than	that	of	the	unknown	coefficients,	ai.
Only	lower	order	PRS	are	used	in	practice.	Thus,	 the	resulting	PRS	does	not	necessarily
pass	 through	 the	 training	sample	data	 (i.e.,	does	not	necessarily	have	a	zero	 error	 at	 the
training	 points).	 This	 is	 why	 PRS	 and	 other	 regression	 functions	 are	 often	 called
approximation	functions.	One	of	the	approaches	used	to	evaluate	the	unknown	coefficients
(a)	 is	 the	 least	 squares	 method.	 The	 least	 squares	 method	 solves	 a	 regression	 as	 an
optimization	problem.	The	overall	solution	minimizes	the	sum	of	the	squares	of	the	errors
between	the	real	function	values	and	 the	corresponding	estimated	PRS	values,	where	 the
summation	is	taken	over	all	the	training	points.	The	following	example	 illustrates	how	to
estimate	the	parameters	of	a	QRS	for	a	one-dimensional	problem	using	 the	 least	squares
method.

Example:	 The	 following	 four	 training	 points	 and	 their	 corresponding	 real	 function
values	are	given	as:	f(x1	=	2)	=	4.2,	f(x2	=	7.1)	=	8.7,	 f(x3	=	4)	=	14.8,	and	 f(x4	=	5)	=



11.1.	Using	the	least	squares	method,	fit	a	quadratic	response	surface	(QRS),	 	(x)	of	the
single	 variable	 x.	 Find	 the	 maximum	 value	 of	 the	 fitted	 function,	 which	 is	 the
approximated	maximum	value	of	the	real	function.

The	second-order	response	surface	of	one	variable	is	given	as

(x)	=	a0	+	a1x	+	a2x2 (15.15)

The	parameters,	a0,	a1,	and	a2,	need	to	be	determined	using	the	least	squares	method.	In
order	 to	 solve	 the	 least	 squares	 method,	 the	 following	 unconstrained	 optimization
problem	is	formulated.

(15.16)

The	solution	 to	 the	optimization	problem	is	a0	=	–12.10,	a1	=	10.06,	and	a2	 =	 –1.05.
The	mean	squared	error	is	estimated	to	be	2.38.

To	 find	 the	 maximum	 value	 of	 the	 fitted	 function,	 we	 need	 to	 solve	 the	 following
optimization	problem.

(15.17)

The	optimal	point	is	x	=	4.78,	and	the	corresponding	maximum	function	value	is	11.93.

The	process	to	fit	PRS	for	practical	optimization	problems	 is	 the	same	as	described	 in
the	example.	First,	the	least	squares	method	or	other	methods	are	used	to	fit	an	appropriate
PRS	based	to	the	training	data.	The	accuracy	of	the	PRS	is	generally	given	by	the	RMSE
error.

For	 a	 one-dimensional	 problem,	 the	 in-built	MATLAB	 function,	 polyfit,	 can	 also	 be
used	to	fit	a	PRS	of	a	desired	order.	The	process	of	fitting	a	QRS	for	 the	above	example
using	polyfit	is	shown	below.
%	To	fit	a	1-D	QRS	to	a	set	of	four	training	points		

x	=	[2	3.5	4	5];		

y	=	[4.2	7.1	14.8	11.1];		

P	=	polyfit(x,y,2)		

P	=		

-1.0533	10.0627	-12.1013

Note	 that	 the	coefficients	of	 the	PRS,	as	estimated	and	 displayed	 by	 polyfit,	 appear
from	 the	 highest	 order	 term	 to	 the	 lowest	 order	 term	 (i.e.,	 from	 a2	 to	 a0).	 It	 is	 also
observed	 that	 the	QRS	 trained	 using	 polyfit	 is	 similar	 to	 that	 trained	 using	 the	 least
squares	method.

15.4.3 	Radial	Basis	Function	Method

The	 idea	 of	 using	Radial	Basis	Functions	 (RBFs)	 as	 approximation	 functions	was	 first
proposed	 by	 Hardy	 [24]	 in	 1971,	 where	 he	 used	 multiquadric	 RBFs	 to	 fit	 irregular
topographical	data.	Since	then,	RBFs	has	been	used	for	numerous	applications	that	require



a	global	representation	of	multidimensional	scattered	data	[25,	26,	27].

Radial	Basis	Function	(RBF)	 expresses	 surrogate	models	 as	 linear	 combinations	 of	 a
particular	type	of	basis	function	(ψ(r)),	where	each	constituent	basis	function	is	defined	in
terms	of	the	Euclidean	distance	(r)	between	a	 training	point	and	 the	point	of	evaluation.
The	Euclidean	distance	(r)	can	be	expressed	as

r	=	 x	–	xi (15.18)

where	xi	is	the	ith	training	point,	and	x	is	the	point	of	evaluation.

The	commonly	used	non-parametric	basis	functions	are:

1. Linear:	ψ(r)	=	r,

2. Cubic:	ψ(r)	=	r3,	and

3. Thin	plate	spline:	ψ(r)	=	r2lnr.

The	commonly	used	parametric	basis	functions	are:

1. Gaussian:	ψ(r)	=	e–r
2⁄(2δ2),

2. Multiquadric:	ψ(r)	=	(r2+	δ2)1⁄2,	and

3. Inverse	multiquadric:	ψ(r)	=	(r2+	δ2)–1⁄2.

The	RBF	model	is	then	expressed	as	a	linear	combination	of	the	basis	functions	across
all	the	training	points,	xi	∈	Rn,	i	=	1, ,m,	as	given	by

(15.19)

where	wi	are	the	generic	weights	of	the	basis	functions	(to	be	determined	by	training).	The
standard	process	of	estimating	the	weights	(wi)	is	described	below.

The	weights,	wi,	are	evaluated	using	all	 the	 training	points	xi	and	 their	 corresponding
function	values	f(xi).	In	the	evaluation	of	wi,	Ψ	is	used	to	represent	the	matrix	of	the	basis
function	values	at	the	training	points,	as	given	by

Ψ	=	 (15.20)

The	vector	of	the	weights	is	W.

W	=	 (15.21)



The	vector	Y	has	the	function	values	at	the	training	points	(f(xi)).

Y	=	 (15.22)

The	weights	wi	are	then	evaluated	by	solving	the	following	matrix	equation.

ΨW	=	Y (15.23)

It	 is	 important	 to	 keep	 in	mind	 that	 RBFs	 are	 essentially	 interpolating	 functions	 (i.e.,	 a
trained	RBF	model	will	pass	through	all	the	training	points).	This	property	enables	RBFs
to	 represent	 highly	 nonlinear	 data,	which	 is	 otherwise	 often	 challenging	 to	 accomplish
using	low	order	PRSs.

The	 training	 date	 for	 the	 example	 in	 Sec.	 15.4.2	 is	 used	 to	 illustrate	 the	 process	 of
constructing	a	RBF	model.

Example:	The	training	points	and	their	corresponding	real	function	values	are	f(x1	=	2)
=	4.2,	f(x2	=	3.5)	=	7.1,	f(x3	=	4)	=	14.8,	and	f(x4	=	5)	=	11.1.	Fit	a	RBF	model	 	(x)	of	a
single	 variable	 x.	 Find	 the	maximum	 value	 of	 the	 fitted	 function	 in	 the	 range	 [2,5],
which	will	give	the	approximated	maximum	value	of	the	real	function.

In	 this	 example,	 the	 multiquadric	 basis	 function,	 ψ(r)	 =	 (r2+	 δ2)1⁄2,	 is	 used.	 The
parameter,	δ,	is	set	to	0.9..

The	matrix	Ψ	of	the	basis	function	values	at	training	points,	and	the	vectors	Y	and	W	are
given	below.

Ψ	= (15.24)

= (15.25)

Y	=	 (15.26)

and

W	=	 (15.27)



By	solving	the	following	matrix	equation	for	the	weights

ΨW	=	Y (15.28)

we	obtain	w1	=	–4.947,	w2	=	66.437,	w3	=	–82.098,	and	w4	=	23.144.

To	 find	 the	 maximum	 of	 the	 RBF	 function,	 we	 solve	 the	 following	 optimization
problem.

(15.29)

	The	optimal	point	 is	 found	 to	be	x	=	4.28,	and	 the	corresponding	maximum	function
value	is	16.29.

Figure	15.7	shows	the	plot	of	the	fitted	function	in	the	range	[0,7].	The	fitted	function	is
unimodal	 in	 the	 range	 [2,5].	However,	 it	 is	multimodal	when	we	 consider	 the	 entire
range	from	0	to	7.	As	an	interpolation	method,	RBFs	are	highly	capable	of	representing
such	multimodal	data.	However,	on	the	negative	side,	as	an	 interpolating	function,	 the
accuracy	of	RBFs	is	highly	unreliable	beyond	the	range	of	the	training	data.

Figure	15.7.	Fitted	Function

Although	 the	maximum	 function	 values	 obtained	 using	 the	 PRS	model	 and	 the	RBF
model	are	similar,	 they	are	meaningfully	different.	This	observation	 indicates	 that	 the
choice	 of	 surrogate	 models	 can	 have	 an	 important	 impact	 on	 the	 optimal	 solutions
obtained.

There	exists	an	advanced	version	of	RBF,	called	the	Extended	Radial	Basis	Functions	or
E-RBF	 [28].	 The	 E-RBF	 is	 essentially	 a	 combination	 of	 radial	 and	 non-radial	 basis
functions,	 where	 non-radial	 basis	 functions	 (N-RBFs)	 are	 defined	 in	 terms	 of	 the
individual	 coordinates	 of	 generic	 points	 x,	 relative	 to	 a	 given	 data	 point	 xi,	 in	 each
dimension	separately.	Further	description	of	 the	E-RBF	surrogate	model	can	be	found	 in
the	paper	by	Mullur	and	Messac	[28].



15.4.4 	Kriging	Method

Another	popular	surrogate	model	is	Kriging,	which	is	most	commonly	(but	not	 restricted
to	 be)	 used	 as	 an	 interpolating	model.	Kriging	 [29,	 30]	 is	 an	 approach	 to	 approximate
irregular	 data.	 The	 Kriging	 approximation	 function	 consists	 of	 two	 components:	 (i)	 a
global	 trend	 function,	 and	 (ii)	 a	 deviation	 function	 representing	 the	 departure	 from	 the
trend	 function.	 The	 trend	 function	 is	 generally	 a	 polynomial	 (e.g.,	 constant,	 linear,	 or
quadratic).	The	general	form	of	the	Kriging	surrogate	model	is	given	by	[31]:

	(x)	=	G(x)	+	Z(x) (15.30)

where	 	(x)	is	the	unknown	function	of	interest,	G(x)	is	the	known	approximation	(usually
polynomial)	 function,	 and	Z(x)	 is	 the	 realization	 of	 a	 stochastic	 process	with	 the	 mean
equal	to	zero,	and	a	nonzero	covariance.	The	 i,j	–th	element	of	 the	covariance	matrix	of
Z(x)	is	given	as

COV	[Z(xi),Z(xj)]	=	σ	z2R	ij (15.31)

where	Rij	is	the	correlation	function	between	the	ith	and	 the	 jth	data	points,	and	σz2	 is	 the
process	variance.	Further	description	of	the	Kriging	model	can	be	found	in	[31].

15.4.5 	Artificial	Neural	Networks	(ANN)

A	more	recent	and	increasingly	popular	choice	of	surrogate	model	is	the	Artificial	Neural
Network	(ANN).	A	neural	network	generally	contains	an	input	layer,	one	or	more	hidden
layers,	and	an	output	layer	(Ref.	[32]).	Figure	15.8	shows	a	typical	three-layer	feedforward
neural	 network.	 An	 ANN	 is	 developed	 by	 defining	 the	 following	 three	 types	 of
parameters:

Figure	15.8.	A	Generic	Topology	of	Neural	Networks

1. The	interconnection	pattern	between	different	layers	of	neurons;

2. The	learning	process	for	updating	the	weights	of	the	interconnections;	and



3. The	activation	function	that	converts	a	neuron’s	weighted	input	to	its	output	activation.

One	of	the	drawbacks	associated	with	neural	networks	for	function	approximation	is	the
fairly	 large	 number	 of	 parameters	 that	 need	 to	 be	 prescribed	 by	 the	 user,	 thereby
demanding	adequate	user	experience	in	implementing	ANN.	These	prescribed	parameters
include	the	number	of	neurons,	the	number	of	layers,	the	type	of	activation	function,	and
the	 optimization	 algorithm	 used	 to	 train	 the	 network.	 In	 addition,	 the	 training	 process
generally	needs	to	be	supervised	in	order	to	avoid	“over-fitting”	[33].	MATLAB	provides	a
dedicated	toolbox	for	ANN,	which	can	be	started	using	the	command	nnstart	(Ref.	[34]).

15.5 	Summary

This	chapter	provided	a	brief	overview	of	the	modeling	issues	encountered	in	the	process
of	optimizing	complex	and/or	large	dimensional	systems.	The	chapter	introduced	methods
for	 reducing	 the	 dimension	 of	 the	 design	 space	 in	 the	 course	 of	modeling	 (e.g.,	 design
variable	 linking),	 and	 methods	 for	 addressing	 empirical	 modeling	 and	 analysis	 in	 the
design	space	(e.g.,	design	of	 experiments).	 This	was	 followed	 by	 the	 development	 of	 a
special	 class	 of	 mathematical	 models	 that	 provide	 an	 approximation	 of	 the	 system
behavior,	by	leveraging	an	affordable	and	carefully	designed	set	of	expensive	experiments
(simulation-based	or	physical	experiments).	These	models	are	known	as	surrogate	models,
of	which	four	major	types	were	presented.	They	are	used	to	provide	quick/computationally
benign	 approximations	 of	 complex	 system	 behavior	 for	 the	 purpose	 of	 optimizing	 the
system.	The	methodologies	and	modeling	approaches	provided	in	 this	chapter	are	crucial
in	overcoming	the	barrier	of	computational	expense	and	complexity	 in	designing	current
and	next	generation	complex	systems,	such	as	aircraft,	ground	vehicles,	and	wind	turbines.

15.6 	Problems

15.1 The	9	training	points	are	(2,3),	(4,3),	(6,3),	(2,5),	(4,5),	(6,5),	(2,7),	(4,7),	and	(6,7).
Their	corresponding	function	values	are	12.12,	5.97,	11.98,	8.04,	2.18,	7.97,	12.03,
5.97,	 and	 12.	 Use	 the	 training	 data	 to	 fit	 a	 second-order	 polynomial	 response
surface	of	two	variables.	Find	the	minimum	value	of	the	fitted	function.

The	second-order	response	surface	has	the	following	form.

	(x)	=	a0	+	a1x(1)	+	a	2x(2)	+	a	11(x(1))2	+	a	22(x(2))2	+	a	12x(1)x(2). (15.32)

15.2 For	Problem	15.1,	fit	RBF	functions	using	the	multiquadric	basis	ψ(r)	=	(r2+δ2)1⁄2.
The	value	of	δ	can	be	set	to	0.01.	Find	the	minimum	point	in	the	region	spanned	by
the	training	points.	Plot	 the	figure	of	 the	fitted	function	 in	a	 region	slightly	 larger
than	that	surrounded	by	the	training	points.

15.3 The	9	training	points	are	(2,3),	(4,3),	(6,3),	(2,5),	(4,5),	(6,5),	(2,7),	(4,7),	and	(6,7).
Their	corresponding	function	values	are	 -12.12,	 -5.97,	 -11.98,	 -8.04,	 -2.18,	–7.97,
-12.03,	 -5.97,	 and	 -12.	 Fit	 RBF	 functions	 using	 the	 multiquadric	 basis	 ψ(r)	 =
(r2+δ2)1⁄2.	The	value	of	δ	can	be	set	to	0.01.	Find	the	maximum	point	in	the	region
spanned	 by	 the	 training	 points.	 Plot	 the	 figure	 of	 the	 fitted	 function	 in	 a	 region



slightly	larger	than	that	surrounded	by	the	training	points.

15.4 The	aluminum	cantilever	beam	shown	in	Fig.	15.9	 is	subjected	 to	a	 tip	 force,	P	=
35.5N.	 The	 length	 of	 the	 column	 is	 l	 =	 0.5m.	 Its	 cross	 section	 is	 shown	 in
Fig.	 15.10.	 The	 Young’s	 modulus	 of	 aluminum	 is	 69	 GPa	 at	 room	 temperature
(21°C).	Minimize	the	volume	of	the	beam.	Reduce	the	minimization	problem	using
design	variable	linking.

Figure	15.9.	Cantilever	Beam	Subject	to	a	Tip	Force

Figure	15.10.	Rectangular	Cross	Section
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Design	Optimization	Under	Uncertainty

16.1 	Overview

The	previous	chapters	presented	deterministic	optimization	methods.	These	do	not	implicitly
take	into	account	the	inherent	uncertainties	typically	present	in	the	design	process,	in	the	system
being	designed,	or	in	the	models	describing	the	system	behavior.	Uncertainties	emanates	from
myriad	sources.	These	include	imperfect	manufacturing	processes	and	material	properties,
fluctuating	loading	conditions,	over-simplified	engineering	models,	or	uncertain	operating
environment.	All	of	these	may	have	a	direct	impact	on	the	system	performance	in	its	use	or	in
the	market	place.	To	obtain	a	reliable	and	robust	design	(these	terms	are	defined	later),	these
uncertainties	must	be	considered	as	part	of	the	design	process.

In	the	past,	empirical	safety	factors	were	often	used	to	guard	against	engineering	design
failure	[1].	Safety	factors	resulted	in	overly	conservative	designs,	increasing	the	probability
businesses	may	lose	their	competitive	edge	in	terms	of	cost	and	performance.	More	recently,
design	 optimization	 methods	 under	 uncertainty	 have	 gained	 broad	 recognition.	 These
approaches	explicitly	consider	uncertainties	of	various	forms,	and	search	for	designs	that	are
insensitive	to	variations	or	uncertainty	to	a	significant	extent.

This	chapter	introduces	the	concept	of	design	optimization	under	uncertainty,	and	discusses
pertinent	popular	approaches	available.	Section	16.2	defines	a	generic	example	that	is	used
throughout	the	book	to	facilitate	the	presentation	of	the	material.	The	next	Section	(Sec.	16.3
defines	five	generic	components/STEPS	involved	in	design	under	uncertainty.	This	is	followed
by	 the	presentation	of	 these	STEPS	in	 the	following	five	Sections:	 (1)	uncertainty	 types
identification	(Sec.	16.4),	(2)	uncertainty	quantification	(Sec.	16.5),	(3)	uncertainty	propagation
(Sec.	16.6),	(4)	formulation	of	optimization	under	uncertainty	(Sec.	16.7),	and	(5)	results	analysis
(Sec.	16.8).	Section	16.9	briefly	discussed	other	popular	methods.	A	chapter	summary	 is
provided	in	Sec	16.10.

16.2 	Chapter	Example

This	section	defines	a	generic	example	that	it	used	throughout	the	chapter	to	illustrate	the	various
concepts	involved	in	design	under	uncertainty.	Consider	the	optimization	of	a	two	bar	truss
in	Fig.	16.1.	The	objective	is	to	identify	the	optimal	position	of	node	P	from	the	left,	b,	and
optimal	cross	sectional	areas	for	the	bars,	a1	and	a2,	such	that	the	squared	displacement	at	the
is	minimized.	The	loads	W1	and	W2	are	applied	as	shown	in	Fig.	16.1.	The	deterministic
optimization	problem	statement	for	the	truss	example	is	given	as	follows.



Figure	16.1.	Two-Bar	Truss	Example

(16.1)

subject	to

(16.2)
(16.3)
(16.4)
(16.5)
(16.6)

(16.7)

The	variables	u1	and	u2	are	the	horizontal	and	vertical	deflections	at	node	P,	respectively;	S
the	normal	stress	induced	in	each	bar;	Smax	is	the	maximum	allowable	stress;	θ	is	the	angle
between	the	horizontal	and	Bar	1	(defined	by	h1);	and	β	is	the	angle	between	the	horizontal
Bar	2	(defined	by	h2).	The	volume	of	the	truss	is	required	to	be	equal	to	4,000	in3	(defined	
h3).	The	above	constraints	are	presented	in	a	normalized	form.	The	fixed	parameters	for	this
problem	are	the	Young’s	Modulus,	E	=	29×103	ksi;	the	truss	height,	L	=	60	ft;	the	maximum
allowable	stress,	Smax	 =	 350	 ksi;	 and	 the	 loads,	W1	 =	 100	 kips,	 and	W2	 =	 1,	 000	 kips.
Additionally,	ai	min	=	0.8	in2,	and	ai	max	=	3.0	in2	for	i	=	(1,	2);	bmin	=	30	ft;	and	bmax	=	90	ft
The	expressions	for	the	stresses	are	given	as



(16.8)

(16.9)

The	 deterministic	 optimum	 of	 this	 problem	 (using	 an	 initial	 guess	 [(a1min+a1max)⁄2,
(a2min+a2max)⁄2,	(bmin+bmax)⁄2,	0.1,	0.1])	is:	J	=	187.5	in	2,	a1	=	2.55,a2	=	1.5,b	=	3600	in.

Discussion:	The	above	example	is	used	to	illustrate	why	the	consideration	of	uncertainty
important.

The	deterministic	problem	presented	does	not	take	into	account	the	various	uncertainties
are	present	in	the	problem.	For	example,	in	the	cross	sectional	areas	of	the	bars,	the	loads	applied
are	subject	to	random	variations.	The	material	properties,	such	as	the	Young’s	modulus,	and	the
maximum	allowable	stress	could	be	uncertain.	The	engineering	model	we	have	assumed	for	the
analysis	may	also	be	over-simplified.

Given	these	uncertainties,	optimizing	the	truss	in	a	deterministic	fashion	as	shown	above
result	in	design	failure	due	to	a	possible	stress	constraint	violation	(Eq.	16.2)	under	uncertainty.
The	design	might	not	be	reliable.	In	addition,	the	deterministically	optimized	design	may	not
consistently	perform	as	intended	under	uncertainty	(the	objective	function	is	viewed	as	a	measure
of	 the	 performance	 of	 the	 design).	 Since	 deterministic	 optimization	 does	 not	 consider
uncertainties,	a	small	variation	in	the	problem	parameters	due	to	any	of	the	uncertainties	mentioned
above	may	lead	to	significant	performance	deterioration,	or	even	catastrophic	failure.	The
resulting	design	performance	will	not	 be	 robust.	 The	 goal	 of	 design	 optimization	 under
uncertainty	is	to	explicitly	consider	the	influence	of	uncertainty,	and	to	improve	the	design’s
reliability	and	robustness	in	view	of	these	uncertainties.

16.3 	Generic	Components/STEPS	of	Design	Under	Uncertainty

This	chapter	presents	five	generic	steps	involved	in	design	optimization	under	uncertainty,	
descrived	in	Fig.	16.2.	At	every	step	discussed,	the	two	bar	truss	example	will	be	used	to
quantitatively	illustrate	the	concepts	presented.	The	popular	approaches	used	for	each	of	the
above	steps	will	be	discussed,	and	pertinent	references	for	theoretical	and	practical	details	will
provided.



Figure	16.2.	Overview	of	Design	Optimization	Under	Uncertainty

Given	the	design	objectives,	variables,	and	constraints,	a	typical	design	optimization	problem
under	uncertainty	involves	the	following	five	steps.

1. STEP	1:	Identifying	Types	of	Uncertainty:	What	types	of	uncertainties	exist	 in	 the
problem	(e.g.,	uncertainties	in	parameters,	in	design	variables,	or	in	the	model	itself)?	We
will	study	this	issue	in	Sec.	16.4	with	examples.

2. STEP	2:	Uncertainty	Quantification:	How	do	we	model	the	uncertainty	mathematically
(e.g.,	using	probability	theory)?	How	can	the	uncertainty	be	defined	in	terms	of	a	set	of
parameters	(e.g.,	mean	and	standard	deviation)?	This	step	is	discussed	in	more	detail	in
Sec.	16.5	with	examples.

3. STEP	3:	Uncertainty	Propagation:	How	do	we	propagate	the	uncertainty	in	the	models
(e.g.,	given	the	uncertainty	parameters	in	the	cross	sectional	areas	in	the	truss	problem,	
do	we	calculate	the	uncertainty	parameters	of	the	stress)?	Sec.	16.6	covers	this	topic	in	detail
with	examples.

4. STEP	4:	Development	of	an	Optimization	Formulation:	How	do	we	incorporate	the
uncertainty	into	the	optimization	problem?	We	will	study	 this	 issue	 in	Sec.	16.7	with
examples.

5. STEP	5:	Analyzing	Results:	How	do	we	interpret	the	results?	What	are	the	tradeoffs
involved?	Sec.	16.8	presents	more	details	concerning	this	topic	with	examples.

The	reader	should	keep	in	mind	that	each	of	the	above	steps	are	evolving	areas	of	active
research.	What	follows	is	an	introductory	presentation	of	the	popular	techniques	available	in	the
literature,	illustrated	with	the	two	bar	truss	example.

16.4 	STEP	1:	Identifying	Types	of	Uncertainty

There	can	be	various	sources	of	uncertainty	and	differing	classifications	of	these	sources	of
uncertainty.	In	the	context	of	modeling,	uncertainties	in	systems	can	be	classified	into	two



types:	Aleatory	 and	Epistemic	 uncertainties.	Aleatory	 uncertainty	 refers	 to	 the	 inherent
variability	that	exists	in	physical	processes.	The	word	“aleatory,”	derived	from	the	Latin
“alea”	[2],	means	rolling	the	dice.	Essentially,	it	refers	to	uncertainty	introduced	by	the	intrinsic
randomness	of	a	system/phenomena.	It	is	sometimes	also	referred	to	as	parametric	uncertainty
(i.e.,	uncertainty	in	the	parameters	of	the	design).	This	kind	of	uncertainty	is	typically	not
reducible.	Aleatory	uncertainties	are	relatively	well	understood.

Example:	In	the	two	bar	truss	example,	uncertainties	in	the	parameters,	such	as	the	cross
sectional	areas	of	the	bars	and	the	material	properties,	are	examples	of	aleatory	uncertainties.
Truss	bars	are	typically	batch-produced.	The	cross	sectional	areas	of	 the	bars	across	a
production	batch	usually	vary	due	to	manufacturing	process	variations.

Assume	a	sample	of	100	bars	are	collected	from	a	production	batch,	and	the	cross	sectional
of	the	members	are	measured,	as	given	in	Table	16.1.	In	deterministic	optimization,	the
tolerances	in	the	areas	are	not	considered.	 In	most	design	optimization	methods	under
uncertainty,	a	statistical	measure	of	the	variation	in	the	data	(Table	16.1)	 is	used	 in	 the
optimization	(e.g.,	mean	and	standard	deviation).	The	data	in	Table	16.1	is	also	provided
book	website	(www.cambridge.org/Messac).

Table	16.1.	Sample	Set	of	One	Hundred	Cross-Sectional	Areas	for	a	Batch-Produced
Truss	Bar	(in2)

0.943 0.966 0.903 0.978 1.023 1.142 1.115 1.121 0.893 0.959
1.229 0.857 1.066 1.167 1.088 1.116 0.947 0.906 0.948 1.110
0.879 0.929 1.133 1.072 0.940 0.988 0.966 0.816 0.867 1.192
1.026 1.015 1.063 0.751 0.819 1.033 1.142 1.148 0.921 1.024
0.917 0.956 0.935 1.071 0.937 1.094 1.006 1.071 0.958 1.054
0.998 0.960 0.921 0.969 0.955 0.931 0.971 0.820 0.871 1.050
1.037 1.060 1.060 0.853 1.028 0.978 0.954 1.072 0.959 0.880
1.096 1.099 0.997 1.074 0.925 1.136 1.017 0.919 0.849 1.047
1.038 1.028 1.161 1.013 0.910 1.053 0.998 1.029 1.159 0.929
0.849 0.875 0.966 0.951 1.011 0.947 0.989 1.045 1.035 0.802

The	mean	of	the	observed	set	of	values	in	Table	16.1	is	0.995	in2,	and	the	standard
deviation	is	0.096	in2.	The	MATLAB	commands	mean	and	std	can	be	used	to	find	the	mean
and	standard	deviation	of	a	data	set,	as	shown	below.
%	Using	the	data	given	in	Table	1.1,	define	the		

%	variable	“set”	as	a	vector	of	100	elements.		

m	=	mean(set);		

s	=	std(set);

As	we	will	see	later,	the	mean	and	standard	deviation	of	uncertain	quantities	are	used	in
optimization	under	uncertainty.

Epistemic	uncertainty	[3]	arises	because	of	the	following	related	factors:	(1)	lack	of
knowledge	in	the	quantity,	environment,	and/or	physical	process	being	modeled,	 (2)

http://www.cambridge.org/Messac


insufficient	data,	(3)	over-simplification	of	complex	coupled	physical	phenomena,	and	(4)
lack	of	knowledge	of	the	possible	failure	modes	of	the	design.	The	word	“epistemic,”
derived	from	the	Greek	“episteme,”	means	knowledge	[2].	Thus,	it	refers	to	uncertainty
introduced	by	the	lack	of	knowledge	of	a	system/phenomena.	Epistemic	uncertainty	is	also
commonly	referred	to	as	modeling	uncertainty,	and	is	usually	more	difficult	to	model	than
aleatory	uncertainty.	This	kind	of	uncertainty	can	be	reduced	by	developing	a	better
understanding	of	the	involved	phenomena,	(e.g.,	by	conducting	more	experiments).

Example:	In	the	two	bar	truss	problem,	epistemic	uncertainty	could	arise	from	the	fact
we	have	included	only	compressive	failure	mode	for	the	bars.	We	ignored	other	possible
failure	modes,	(e.g.,	buckling).	In	other	words,	we	have	over-simplified	the	failure
analysis	for	the	problem.	This	is	typically	viewed	as	a	modeling	or	epistemic	uncertainty.
In	a	complex	design	problem,	such	as	aircraft	design,	the	designer	might	not	even	be	fully
aware	of	the	modes	of	failure	that	have	been	ignored,	which	might	adversely	impact	the
reliability	and	robustness.	For	the	truss	problem,	the	modeling	uncertainty	in	the	stresses
in	the	bars,	Si	{i=1,2},	can	be	represented	by	considering	a	multiplicative	term,	Si*,	and	an
additive	term,	 ,	as	shown	below.

(16.10)

(16.11)

The	additive	and	multiplicative	terms	could	be	functions	of	the	design	variables	with
problem-specific	definitions.	The	additive	term,	 ,	could	be	the	higher	order	term	of	an
expansion,	such	as	a	Taylor	series.	In	keeping	with	the	scope	of	this	introductory	chapter,
we	will	henceforth	use	 	=	0	and	Si*	=	1.

Engineering	design	often	involves	both	types	of	uncertainties.	As	a	result,	it	is	sometimes
challenging	to	classify	a	source	of	uncertainty	(at	the	modeling	stage)	as	exclusively	aleatory
or	epistemic.	In	recent	years,	interesting	models	and	methodologies	have	been	developed	to
address	systems	with	mixed	aleatory-epistemic	uncertainties	(simultaneous	presence	of	both
uncertainties)	[4,	5,	6].	The	report	by	Eldred	and	Swiler	[5]	provides	a	helpful	review	of	these
methods	and	the	corresponding	benchmark	results.	Once	the	uncertainties	in	a	problem	have
been	identified,	the	next	step	is	to	quantify	those	uncertainties.

16.5 	STEP	2:	Uncertainty	Quantification

Thus	far,	we	have	not	defined	how	to	model	uncertainty	in	a	mathematical	form.	The	question
interest	in	this	section	is:	how	to	parameterize	uncertainty?	That	is,	how	to	describe	uncertainty
using	a	set	of	parameters?	These	uncertainty	parameters	will	become	part	of	the	optimization
problem	in	various	forms.	Quantifying	aleatory	uncertainties	will	be	discussed.	A	detailed
discission	of	epistemic	uncertainties	is	beyond	the	scope	of	this	 introductory	chapter	 (see
Ref.	[7]).

This	section	presents	uncertainty	quantification	methods	that	are	based	on	the	availability
data	for	a	particular	problem.	What	is	meant	by	“data”?	If	a	quantity	of	interest	is	uncertain
random,	data	refers	to	a	set	of	possible	measured	outcomes	or	samples	of	the	quantity.	This	data



may	be	available	from	a	manufacturer’s	catalog	or	recorded	information	from	past	history.
Given	that	data	may	or	may	not	always	be	available,	uncertainty	quantification	in	two	different
cases	will	be	studied,	as	follows.

16.5.1 	Sufficient	Data	Available:	Probability	Theory

To	mathematically	represent	a	random	quantity,	probability	theory	can	be	used	when	sufficient
data	is	available.	Basic	knowledge	of	probability	theory	by	the	reader	is	assumed	[8]	in	this
chapter.

In	probability	theory,	a	random	variable	is	associated	with	the	outcome	of	an	uncertain	event.
For	example,	the	cross	sectional	areas	of	the	truss,	a1	and	a2	(in	Fig.	16.1),	are	random	variables,
since	they	are	batch-produced	and	have	associated	tolerances.	In	this	chapter,	random	variables
are	denoted	by	upper	case	letters,	A1	and	A2.	A	probability	density	function	(PDF),	denoted
fX(x),	is	used	to	compute	the	probability	that	a	continuous	random	variable	X	lies	between	two
limits	x1	and	x2,	as	given	below.

(16.12)

There	are	several	standard	PDF	types	that	are	used	in	engineering	applications,	such	as
Uniform,	Normal,	Weibull,	and	Lognormal	distributions	[8].	Normal	distributions	are	often
for	design	optimization	problems.	The	two	quantities,	mean	and	standard	deviation,	define	
bell-shape	of	the	normal	distribution	depicted	in	Fig.	10.4.	The	shaded	area	in	Fig.	10.4	represents
the	probability	that	a	random	variable	lies	within	one	standard	deviation	of	the	mean	value.

When	sufficient	data	is	available,	techniques	such	as	histogram	or	probability	plots	may	
used	to	explore	the	underlying	distribution	[9].	While	more	than	one	standard	distribution	may
“fit”	a	data	set,	the	underlying	physical	quantity	may	suggest	a	particular	distribution.	For
example,	normal	or	lognormal	distributions	are	used	to	represent	physical	dimensions	and
material	properties.	Weibull	distribution	is	commonly	used	in	reliability	problems	to	model
quantities	such	as	time	to	failure.	Statistical	tests,	such	as	the	Chi-square	test	or	Kolmogorov-
Smirnov	test,	can	be	used	to	determine	the	goodness	of	a	PDF	fit	[9].

Figure	16.3.	Normal	Distribution



Once	a	PDF	is	fit	to	a	data	set,	the	uncertainty	parameters	that	are	of	interest	are	usually	the
first	two	moments	of	the	PDF,	namely,	mean	and	standard	deviation.

Example:	In	the	two	bar	truss	problem,	the	cross	sectional	areas	could	be	modeled	as	normal
random	variables.	Material	properties	are	usually	given	as	lognormal	variables,	since	most
them	are	positive	quantities.	For	the	given	data	set	of	cross	sectional	areas	(Table	16.1)	for
two	bar	truss	problem,	find	the	underlying	distribution	using	the	two	MATLAB	commands:
histfit	and	normplot.	The	histfit	command	plots	the	histogram	of	the	given	set,	while
normplot	command	plots	the	normal	probability	plot	for	the	given	data.
%	Using	the	data	given	in	Table	16.1,	define	the		

%	variable	“set”	as	a	vector	of	100	elements.		

histfit(set);		

figure(2)											%	Open	a	new	figure		

normplot(set);

Figure	16.4	presents	the	pertinent	plots	for	the	data	set	given	in	Table	16.1.	Note	that	a	data
considered	normally	distributed	if	its	normal	probability	plot	is	approximately	linear,	as	is	the
case	 in	Fig.	16.4.	 Therefore,	 the	 cross	 sectional	 area	 can	 be	 assumed	 to	 be	 normally
distributed.	The	shape	of	the	histogram	further	validates	the	normality	assumption.

Once	the	assumed	distribution	of	the	data	is	tested	and	deemed	satisfactory,	the	uncertainty
parameters	of	interest	are	the	mean	and	the	standard	deviation	of	the	PDF.	For	the	given	
the	cross	sectional	areas,	the	mean	and	the	standard	deviation	are	0.9947	and	0.0961	in2,
respectively.



Figure	16.4.	Finding	the	Underlying	Distribution	of	the	Given	Cross-Sectional	Area	Data	Set

Thus	far,	we	discussed	the	case	where	the	data	set	for	the	cross	sectional	areas	was	provided
to	us.	How	can	we	quantify	uncertainty	when	sufficient	data	is	not	available?	That	is	the	next
topic	of	our	discussion.

16.5.2 	Insufficient	Data:	Non-Probabilistic	Methods

As	previously	discussed,	probability	theory	for	uncertainty	quantification	can	be	used	when
sufficient	data	is	available.	However,	the	data	sufficiency	requirement	is	not	always	satisfied
(e.g.,	during	early	conceptual	design	when	sufficient	data	is	not	available).	Gunawan	and
Papalambros	[10]	propose	the	notion	that	insufficient	data	has	become	a	major	bottle-neck	



engineering	 analysis	 involving	 uncertainty.	 For	 these	 cases,	 the	 use	 of	 evidence
theory	[11,	12,	13],	possibility	theory	[14,	15,	16,	17,	18],	Bayes	theory	[19,	20,	21],	and
imprecise	probabilities	is	an	emerging	trend	[22,	17,	23].	Evidence	theory	uses	fuzzy	measures
called	plausibility	and	belief	to	measure	the	likelihood	of	events.	These	fuzzy	measures	are
upper	and	lower	bounds	on	the	probability	of	an	event.	Plausibility	and	belief	measures	are,
respectively,	associated	with	evidence	theory	and	the	classical	probability	theory.	We	note	that
there	is	some	controversy	associated	with	these	non-probabilistic	approaches.

In	recent	years,	other	methods	have	also	evolved	to	address	insufficient	data	scenarios.	A
combination	of	Evidence	Theory	and	the	Bayesian	approach	was	suggested	by	Zhou	and
Mourelatos	[24]	to	deal	with	insufficient	data.	Wang	et	al.	[25]	presented	a	new	paradigm	in
system	reliability	prediction	that	allowed	the	use	of	evolving,	insufficient,	and	subjective	data
sets.	To	deal	with	these	data	sets,	a	combination	of	probability	encoding	methods	and	Bayesian
updating	mechanism	was	used.

How	to	quantify	the	basic	uncertainties	(i.e.,	uncertainties	in	design	variables	and	design
parameters)	has	been	discussed.	The	next	step	is	to	compute	the	uncertainty	parameters	of	the
functions	of	random	variables	(i.e.,	constraints	and	objectives	in	the	optimization	problem).

16.6 	STEP	3:	Uncertainty	Propagation

The	goal	of	uncertainty	propagation	is	to	compute	the	uncertainty	characteristics	of	a	function
random	variables	(known	as	a	random	function),	given	the	uncertainty	characteristics	of	the
variables	(known	as	input	variables)	present	in	those	functions	(see	Ref.	[26]).	The	uncertainty
characteristics	of	interest	could	be	the	moments	of	the	function,	or	the	probability	of	failure
the	function.

The	random	function	of	interest	may	be	a	given	linear	or	nonlinear	function	of	the	constituent
random	variables,	or	may	be	a	black-box	function	with	no	explicit/provided	functional	form.
some	cases,	where	the	random	function	is	given,	it	may	be	possible	to	analytically	compute
moments	of	a	 function.	When	 this	 is	not	possible,	other	methods	 to	 propagate	 the	 input
uncertainties	must	be	employed.	This	section	introduces	some	popular	uncertainty	propagation
methods	in	the	literature.	From	an	optimization	perspective,	uncertainty	propagation	is	an
important	step	that	is	required	for	objective	and	constraint	function	formulation.

This	section	introduces	four	popular	approaches	for	uncertainty	propagation:	(i)	sampling
methods,	(ii)	analytical	methods,	such	as	the	First	Order	Reliability	Method	(FORM)	and	the
Second	Order	Reliability	Method	(SORM),	(iii)	polynomial	approximation	using	Taylor	series,
and	(iv)	advanced	methods,	such	as	stochastic	expansion.	Illustrative	examples	are	provided	for
discussion.

Example:	Let’s	revisit	the	two	bar	truss	problem.	Once	the	uncertainties	in	the	variables
been	quantified,	(e.g.,	cross	sectional	areas),	we	 then	need	 to	calculate	 the	uncertainty
parameters	of	the	quantities	that	are	functions	of	the	areas	(e.g.,	compressive	stresses,	S1	
These	estimated	parameters	are	needed	for	the	optimization	process.

16.6.1 	Sampling	Methods



Sampling	methods	are	used	to	generate	a	set	of	sample	points	for	the	input	variables	as	per	their
uncertainty	distributions.	At	each	generated	sample,	the	values	of	the	random	functions	are
computed,	and	a	set	of	sample	points	of	the	function	values	are	subsequently	generated.	This
generated	function	sample	set	can	then	be	used	to	compute	statistics	of	interest	for	the	random
function.	An	illustrative	example	is	provided	shortly	after	the	important	practical	issues	are
discussed.	More	details	regarding	this	topic	of	sampling	methods	in	optimization	can	be	found
in	[27].

The	first	issue	of	importance	in	sampling	methods	is	how	to	distribute	the	sample	set	for	
input	random	variables.	Should	they	be	uniformly	distributed	(uniform	sampling),	randomly
distributed	(Monte	Carlo	sampling),	or	should	we	concentrate	the	samples	in	a	desired	region	of
importance	(importance	sampling)?	Other	popular	sampling	 techniques	 include	stratified
sampling	and	Latin	Hypercube	sampling.	Monte	Carlo	and	Latin	Hypercube	sampling	are	very
commonly	used	 in	 the	 optimization	 community.	 The	 selection	 of	 a	 sampling	 scheme	 is
dependent	on	 the	 level	of	computational	 resources	 available,	 the	 acceptable	 error	 in	 the
estimated	parameter,	and	also	on	the	nature	of	the	data.	The	focus	will	be	on	Monte	Carlo
sampling	techniques.

The	second	issue	of	importance	in	sampling	methods	is	how	many	input	samples	are	needed
(e.g.,	is	10,000	samples	sufficient?	or	is	106	sufficient?)	This	number	depends	on	the	accuracy
required	in	the	quantity	being	estimated.	How	are	these	sampling	considerations	important	in
present	context	of	optimization	under	uncertainty?

For	this	case,	the	goal	of	the	sampling	method	is	to	estimate	failure	probabilities	and/or
moments	of	the	random	function.	The	failure	probability	can	be	estimated	from	a	Monte	Carlo
simulation	as	follows.	Generate	N	input	random	samples,	and	compute	the	corresponding
constraint	values.	Then,	identify	those	Nf	instances	out	of	N	that	violate	the	constraint	feasibility.
The	probability	of	failure	can	then	be	estimated	as	 .

The	failure	probability	in	engineering	problems	of	interest	may	be	as	low	as	10-6.	To	observe
at	least	one	failure	in	a	Monte	Carlo	simulation	for	such	a	case,	the	sample	set	should	have	at
least	106	simulations.	The	number	of	samples	N	should	be	chosen	to	be	at	least	one	order	of
magnitude	higher	than	106.	Several	problems	at	the	end	of	the	chapter	are	provided	to	illustrate
the	issue	of	the	number	of	input	samples.

The	advantage	of	sampling	methods	is	that	(i)	 they	are	 relatively	accurate,	and	(ii)	 the
pertinent	(sampling)	errors	are	usually	quantifiable.	However,	sampling	methods,	especially
when	 used	 in	 optimization,	 can	 be	 computationally	 expensive.	 Many	 mathematical
computational	software	packages	have	built-in	functions	to	generate	random	numbers	using
standard	distributions.	As	shown	in	the	following	example,	MATLAB	has	built-in	functions	to
generate	normal	random	variables.

Example:	Assume	for	the	truss	problem	that	the	cross	sectional	area,	A1,	of	the	truss	is	normally
distributed	with	a	mean	 value	 of	 1.6	 in	 and	 a	 standard	 deviation	 of	 0.05	 in.	Use	 the
MATLAB	normrnd	function	to	generate	10,000	instances	of	the	variable	A1.

%	To	generate	a	vector	of	10,000	X	1		

%	normal	random	variables		

A1	=	normrnd(1.6,0.05,10000,1)



At	each	generated	instance,	compute	the	value	of	S1	(using	Eq.	16.8).	Assume	for	this	particular
case	that	b	and	L	are	deterministic.	In	addition,	assume	that	θ	=	30°,β	=	60°,	yielding	S1	=

.	Using	this	expression,	obtain	a	set	of	10,000	stress	values,	that	is	used	to	compute
uncertainty	parameters	of	the	stress.	The	generated	data	set	can	be	used	to	evaluate	the
probability	of	failure	of	the	constraint	S1	<	Smax.

From	the	results	of	MATLAB,	the	probability	of	failure	ranges	from	approximately	0.92	to
the	program	is	run	multiple	times,	the	resulting	estimated	probability	of	failure	may	change
from	run	to	run	because	of	the	random	nature	of	the	simulation.	The	amount	of	variation
failure	probability	value	depends	on	the	number	of	simulation	samples	considered.	As	the
number	of	simulation	samples	increases,	the	variation	in	the	failure	probability	from	run	
decreases.	This	point	is	further	illustrated	through	the	problems	at	the	end	of	the	chapter.

The	high	failure	probability	obtained	above	 is	a	 function	 of	 the	 input	 design	 variable
uncertainties.	The	uncertainty-based	optimization	helps	find	input	uncertainty	parameters
yield	acceptable	failure	probabilities	in	a	systematic	manner.

16.6.2 	First-Order	and	Second-Order	Reliability	Methods	(FORM	and	SORM)

The	First	Order	Reliability	Method	(FORM)	and	the	Second	Order	Reliability	Method	(SORM)
are	more	popularly	used	as	major	components	of	the	Reliability-based	Design	Optimization
(RBDO)	architecture	 (see	Rozvany	and	Maute	 in	Ref.	 [28]).	However,	 they	 can	 also	 be
leveraged	to	estimate	uncertainty	propagation.	Zaman	et	al.	[29]	reported	that	if	the	uncertainty
described	by	intervals	can	be	converted	to	a	probabilistic	format,	well	established	probabilistic
methods	 of	 uncertainty	 propagation,	 such	 as	 the	 Monte	 Carlo	 methods	 [30]	 and	 the
optimization-based	methods	(FORM	and	SORM),	can	be	readily	used.	The	application	of
probabilistic	methods	for	uncertainty	propagation	will	avoid	the	computational	expense	of
interval	analysis,	as	it	allows	for	the	treatment	of	aleatory	and	epistemic	uncertainties	together
without	nesting	[29].	Du	[31]	also	proposed	a	unified	uncertainty	analysis	method	based	on	the
FORM,	where	aleatory	uncertainty	and	epistemic	uncertainty	were	modeled	using	probability
theory	and	evidence	theory,	respectively.	Further	discussion	of	the	FORM	and	the	SORM	can
be	found	in	Sec.	16.7.1.

16.6.3 	Polynomial	Approximation	Using	Taylor	Series

Using	this	approach,	the	mean	and	standard	deviation	of	the	random	function	are	approximated
by	first	building	a	polynomial	approximation	of	the	function,	followed	by	finding	the	moments
of	this	polynomial	approximation.	A	linear	or	quadratic	polynomial	approximation	of	 the
random	function	is	constructed	using	a	Taylor	series	expansion	about	a	point	of	interest,	usually
the	mean	value	vector.

Unlike	sampling	methods,	this	approach	is	not	commonly	used	to	estimate	probability	of
failures	because	of	its	limited	accuracy,	especially	for	non-normal	cases.	It	is	more	commonly
used	in	robust	design	optimization	formulations.	The	mean	and	the	variance	of	a	function	of
random	variables,	g(X),	can	be	approximated	using	the	first-order	Taylor	series		[9],	given	as

(16.13)



(16.14)

where	nx	is	the	number	of	elements	in	the	input	random	vector	X,	μX	and	σX	denote	the	vectors
the	mean	and	standard	deviation,	respectively,	of	X;	and	Cov(Xi,Xj)	denotes	the	covariance
between	the	variables	Xi	and	Xj,	with	i,j	=	{1,…,nx}.	Covariance	is	a	measure	of	correlation
between	two	sets	of	random	variables	[8].

The	standard	deviation	of	g	can	then	be	computed	as	σg	=	 .	If	the	design	variables	are
assumed	to	be	statistically	independent,	the	covariance	between	them	is	zero,	and	the	variance
expression	given	in	Eq.	16.14	reduces	to

(16.15)

Using	 the	 above	 method	 to	 estimate	 moments	 is	 quite	 simple,	 as	 it	 uses	 a	 linear
approximation	of	the	random	function	to	approximate	its	moments.	In	the	case	of	black	box
functions,	where	it	is	not	possible	to	compute	the	analytical	partial	derivatives	in	the	above
equations,	finite	differences	may	be	used	instead.	A	careful	choice	of	step	size	for	the	finite
differences	is	necessary.	This	issue	is	further	explored	in	Chapter	7.

Example:	Consider	the	expression	for	the	stress,	S1	=	 ,	from	the	previous	subsection.
Assuming	that	A1	is	the	input	random	variable	with	a	mean	and	a	standard	deviation	of	μ

and	σA1	=	0.1	in
2,	respectively;	the	mean	and	standard	deviation	of	S1	can	be	estimated	as

(16.16)

(16.17)

16.6.4 	Advanced	Methods	Overview

The	previous	subsection	reviewed	the	Taylor	series	method	that	approximates	the	moments
random	function	by	taking	the	moments	of	a	polynomial	approximation.	The	First-order	Taylor
series	approximation	is	commonly	used,	since	it	is	simple	to	implement	and	requires	only
gradient	information.	However,	the	method	can	yield	erroneous	results	in	some	cases	[32],	
must	 be	 applied	 carefully.	 A	 first-order	 Taylor	 series	 approximation	 builds	 a	 linear
approximation	 of	 the	 random	 function	 to	 compute	 its	 approximate	 moments.	 The
approximation	is	valid	only	in	the	neighborhood	of	the	linearization	point,	and	may	not	be
suitable	for	highly	nonlinear	functions.

One	could	also	use	a	second	order	Taylor	series	approximation	of	the	mean	and	the	variance



of	a	random	function,	which	may	yield	higher	accuracy	when	compared	to	the	first	order
approximation	at	the	cost	of	high	computational	expense.

Another	method	to	compute	moments	is	to	approximate	the	distribution	with	respect	to	which
the	moments	are	computed	[33].	Use	of	advanced	methods,	such	as	polynomial	chaos	[34]	
uncertainty	propagation,	is	also	popular.

16.6.5 	An	Important	Note	on	Uncertainty:	Analysis	vs.	Optimization

Thus	far,	we	have	discussed	the	details	of	uncertainty	quantification	and	propagation.	These
steps	together	are	commonly	referred	to	as	uncertainty	analysis	or,	in	some	cases,	probabilistic
analysis	 or	 stochastic	 analysis.	 Note	 that	 uncertainty	 analysis	 alone	 is	 a	 complex	 and
computationally	expensive	task,	and	may	be	the	end	goal	of	some	engineering	studies.	These
studies	are	performed	to	estimate	the	reliability	or	performance	robustness	of	a	system,	and
may	involve	complex	physical	phenomena	modeled	by	computationally	expensive	simulation
tools.

Design	 optimization	 problems	 under	 uncertainty	 can	 be	 viewed	 as	 one	 level	 above
uncertainty	analysis,	where	each	iteration	of	optimization	usually	requires	uncertainty	analysis
of	the	objective	and	constraint	functions.	Optimization	adds	another	layer	of	complexity	to	these
problems.

Why	then	optimize	these	problems?	As	was	discussed	with	the	truss	example	previously,
set	of	input	design	variables	yields	a	particular	failure	probability	of	the	design.	Ideally,	the
will	have	the	least	possible	constraint	violation.	Given	a	set	of	constraints	in	the	problem,
optimization	helps	automate	the	search	for	the	least	constraint	violation	for	all	constraints,	while
simultaneously	minimizing	the	objectives.	Without	optimization,	uncertainty	analysis	alone
merely	allow	us	to	explore	the	system’s	probabilistic	behavior,	but	without	the	means	to	favorably
impact	it.

16.7 	STEP	4:	Embedding	Uncertainty	into	an	Optimization	Framework

This	step	considers	how	the	optimization	problem	under	uncertainty	is	posed	mathematically,
and	how	the	concepts	studied	thus	far	can	be	used	in	an	optimization	framework.	Probabilistic
methods,	such	as	robust	design	optimization	(RDO)	and	reliability	based	design	optimization
(RBDO)	 techniques,	are	popular	approaches	 that	 include	 the	effects	of	uncertainty	 in	 an
optimization	framework.	First,	a	brief	overview	of	the	pertinent	issues	is	provided;	illustrative
examples	are	given	later.

There	are	 two	primary	challenges	 that	 designers	 face	 in	 optimization	 problems	 under
uncertainty.	The	first	challenge	is	to	ensure	that	the	design	does	not	fail	under	uncertainty.	This
involves	controlling	the	constraints’	failure	probabilities	by	repeating	the	constraint	uncertainty
analysis	for	different	values	of	the	design	variables,	as	illustrated	in	Fig.	16.5.	One	of	the
primary	differences	between	RBDO	and	RDO	techniques	is	the	approach	used	for	uncertainty
analysis	for	constraints.



Figure	16.5.	Uncertainty	Problems	in	Engineering	Design

The	second	challenge	in	optimization	problems	under	uncertainty	is	to	maintain	robust
performance	of	the	system	design.	Consider	the	design	of	an	air	conditioning	system	that	is
required	 to	maintain	an	ambient	 temperature	of	27o	C	 in	a	 room.	Several	conditions	 are
uncertain	in	this	design	(e.g.,	the	outside	temperature).	In	spite	of	the	uncertainty,	the	design
the	air	conditioning	system	must	have	the	ability	to	maintain	the	desired	ambient	temperature
the	room	(i.e.,	the	design	should	remain	optimal).	Moreover,	it	is	required	that	the	temperature
the	room	not	significantly	fluctuate	under	uncertainty.	In	other	words,	the	performance	of	the
design	must	be	robust.	A	robust	design	is	one	that	is	minimally	sensitive	to	uncertain	conditions.
The	second	important	difference	between	the	RBDO	and	RDO	approaches	is	that	RDO	methods
typically	consider	robustness	metrics	as	one	of	the	objectives	to	be	minimized,	while	RBDO
approaches	typically	do	not.

The	above	two	challenges	(maintaining	feasibility	and	robustness)	are	generally	conflicting.
Because	of	the	computational	complexity	involved,	most	current	research	in	this	area	tends
focus	either	(1)	on	rigorous	constraint	formulations	(RBDO	approaches)	alone,	with	simplified
problem	architecture,	or	 (2)	 on	a	 rigorous	problem	 architecture	 alone,	with	 a	 simplified
constraint	structure.

Example:	The	two	bar	truss	problem	is	used	to	explore	the	above	discussion	in	concrete
What	is	the	goal	of	the	optimization	problem	under	uncertainty?	Recall	that	in	the	deterministic
formulation,	the	goal	was	to	minimize	the	squared	nodal	displacement.	In	the	uncertainty
problem,	this	quantity	is	now	random	and	has	its	own	PDF,	which	is	not	a	normal	distribution.
We	use	the	uncertainty	propagation	tools	previously	discussed	to	determine	the	approximate
mean	and	standard	deviations	of	the	squared	displacement.	More	pertinent	quantitative	details
are	discussed	in	Sec.	16.7.3.

The	objective	of	the	robust	problem	can	then	be	posed	in	terms	of	minimizing	the	mean	of
squared	displacement	(optimality),	or	the	standard	deviation	of	the	squared	displacement
(robustness),	or	both.	In	addition,	the	constraints	must	be	suitably	posed.	The	constraint	can
posed	in	terms	of	the	probability	of	constraint	violation	(RBDO	approach),	or	by	shifting
constraint	boundary	by	a	suitable	amount	(RDO	approach).

We	examine	the	RBDO	methods	first,	followed	by	the	RDO	method.



16.7.1 	Reliability-Based	Design	Optimization	(RBDO)

The	development	in	this	field	is	primarily	derived	from	the	structural	reliability	community
In	this	field	of	research,	significant	progress	has	been	made	over	the	last	decade.	This	section
provides	a	high	level	summary	of	the	ideas	involved	in	this	area	of	research.	Interested	readers
are	directed	to	the	references	for	details.

The	RBDO	approach	emphasizes	high	 reliability	 of	 the	 design	 by	 ensuring	 a	 desired
probability	of	constraint	satisfaction.	The	mean	of	a	desired	performance	metric	is	usually	used
as	the	objective	function	for	RBDO	problems.	A	general	formulation	for	the	constraint	g(X)
in	RBDO	approach	can	be	given	as

(16.18)

where	R	is	the	desired	reliability	of	the	constraint.	The	probability	of	failure	in	Eq.	16.18	is
given	by	the	following	integral.

(16.19)

where	fX(x1,x2,…xn)	is	the	joint	probability	density	function	of	the	n	random	variables	{X1,…
Xn}.	 In	practice,	 the	 joint	 probability	 density	 function	 of	 the	 design	 variables	 is	 almost
impossible	to	obtain.	Even	if	it	can	be	obtained,	evaluating	the	multiple	integral	in	Eq.	16.19
difficult.	Analytical	approximations	of	the	integral	that	yield	the	probability	of	failure	are
typically	used:	the	First-Order	Reliability	Method	(FORM)	and	the	Second-Order	Reliability
Method	(SORM)		[9].

The	inequality	constraint	g(X)	≤	0	is	usually	called	the	limit	state	equation.	The	limit	state
equation	can	be	a	linear	or	a	nonlinear	function	of	the	design	variables.	The	FORM	method
be	used	when	the	limit	state	equation	is	a	 linear	 function	of	uncorrelated	normal	 random
variables,	or	is	represented	as	a	linear	approximation	of	equivalent	normal	variables.	The
SORM	method	estimates	the	probability	of	failure	using	a	second	order	approximation	of	the
limit	state.

The	 concept	 of	 the	Most-Probable	 Point	 (MPP)	 is	 used	 to	 approximate	 the	 multiple
integral	[35].	The	MPP	is	usually	a	point	in	the	design	space	that	is	at	the	minimum	distance
from	the	origin	(closest	to	failure),	after	performing	requisite	co-ordinate	transformations.	In	the
case	of	nonlinear	constraints,	the	computation	of	 the	MPP	distance	from	the	origin	 is	an
optimization	problem.	The	overall	RBDO	problem	is	a	nested	optimization	problem,	where	the
computation	of	the	probability	of	failure	at	each	iteration	itself	is	an	optimization	problem.
Several	computationally	efficient	techniques,	such	as	sequential	methods	[36],	and	hybrid
methods	[37],	have	been	developed	for	efficient	implementation	of	the	nested	(“double	loop”)
RBDO	formulations.

It	is	important	to	note	that	there	exists	multiple	optimization	architectures	within	RBDO	
“double	loop”	and	“single	loop”	approaches).	The	more	traditional	approach	is	the	nested	or	the
“double	loop”	approach	as	discussed	above.	In	this	approach,	each	iteration	step	of	the	design
optimization	process	requires	a	loop	of	iterations	of	the	reliability	analysis.	Two	popular	“double
loop”	approaches	are	the	reliability	index	approach	(RIA)	[38]	and	the	performance	measure
approach	(PMA)	[39,	37].	These	approaches	apply	FORM	to	perform	the	reliability	analysis,



which	requires	an	inner	nonlinear	constrained	optimization	loop.	When	the	constraints	are
active,	the	two	approaches	yield	similar	results.	However,	in	the	literature,	PMA	has	been
reported	to	be	more	efficient	and	stable	 than	RIA	[39,	37].	When	 the	reliability	analysis
(comprising	the	inner	loop)	searches	for	the	MPP,	the	overall	“double	loop”	computation	can
become	prohibitive,	particularly	 if	 the	 concerned	 function	 evaluation	 is	 computationally
expensive	[40,	41,	42].

In	 order	 to	 reduce	 the	 computational	 burden	 of	 RBDO,	 several	 approximate	 RBDO
approaches	have	been	developed	that	decouple	the	double	loop	problem.	These	approaches
popularly	known	as	“single	loop”	approaches.	A	list	of	“single	loop”	approaches	is	summarized
in	the	paper	by	Nguyen	et	al.	[43].	One	of	the	major	“single	loop”	approaches	uses	the	Karush
Kuhn	Tucker	 (KKT)	 optimality	 condition	 to	 approximate	 the	 solution	 of	 the	 inner-loop
optimization	[44].	The	inner-loop	is	replaced	by	a	deterministic	constraint,	which	transforms	a
double-loop	RBDO	problem	into	 an	 equivalent	 single-loop	 optimization	 problem.	More
advanced	single	loop	approaches	have	been	proposed	in	recent	years	[45,	43].

16.7.2 	Use	of	Approximation	Methods	Under	Uncertainty

Incorporating	reliability	evaluations	within	an	optimization	framework	can	be	computationally
prohibitive.	This	problem	is	compounded	in	the	presence	of	computationally	expensive	limit
states,	where	each	evaluation	of	the	function	could	take	hours	or	possibly	days.	To	alleviate
computational	burden,	a	popular	approach	is	to	use	approximation	methods,	such	as	response
surfaces	and	Kriging,	in	optimization	problems	under	uncertainty.	The	approximation	could	be
done	at	an	optimization	level,	at	the	uncertainty	propagation	level,	or	both.	More	details	can
found	in	the	reference	[46].

Example:	The	two	bar	truss	problem	that	has	been	considered	thus	far	has	a	simple	failure
surface,	which	is	the	normal	stress	equation.	Instead,	if	the	stresses	were	computed	using
finite	element	analysis,	the	computational	expense	would	significantly	increase.	At	each
iteration	of	the	optimization	problem,	an	uncertainty	propagation	for	the	finite	element	code
would	be	performed;	which,	in	itself,	is	a	computationally	expensive	task.	Approximation
methods	can	significantly	reduce	computational	costs.

16.7.3 	Robust	Design	Optimization	(RDO)

As	previously	mentioned,	the	focus	in	RDO	methods	is	to	minimize	the	effects	of	uncertainty
product	performance	[7,	47,	49,		50,	51,	52,	53,	54,	55].	While	the	constraint	handling	 in
RDO	problems	is	typically	simpler	than	 that	 in	RBDO	problems,	RDO	has	been	used	 in
problems	in	a	multidisciplinary	and	multiobjective	setting.	The	challenges	in	these	problems
the	pertinent	formulation	methods	are	discussed	in	this	section.	An	illustrative	example	is
provided	after	the	theoretical	developments	are	discussed.

To	reduce	 the	 computational	 burden	 associated	with	 probabilistic	 constraints,	 a	more
simplistic	approach	known	as	the	moment	matching	approach	is	widely	used	in	RDO	[56,	48
The	moment	matching	approach	employs	moments	of	the	constraints	and	objectives	in	the
optimization	framework,	unlike	the	computationally	expensive	probabilistic	formulation	in	the
RBDO	approach.	For	inequality	constraints,	a	worst-case	formulation	is	usually	used,	where	the



constraints	are	shifted	so	that	the	worst	case	uncertainty	still	results	in	a	feasible	design	[48
(see	Fig.	16.6).

Figure	16.6.	Inequality	Constraints:	Deterministic	vs.	Robust

Equality	constraints	need	careful	consideration	when	formulated	under	uncertainty	because
the	strictness	associated	in	their	feasibility.	An	equality	constraint	can	be	classified	into	two
a	robust	problem[57,		58]:	(1)	Type	I:	those	that	are	always	exactly	satisfied	(e.g.,	laws	of	nature,
such	as	static	and	dynamic	equilibrium),	and	(2)	Type	II:	those	that	are	not	always	exactly	satisfied
(e.g.,	designer-imposed	dimensional	constraints,	such	as	Eq.	16.5).

Classification	of	constraints	into	the	above	two	types	depends	on	the	nature	of	the	design
variables	present	in	them,	and/or	the	designer	preferences	[58].	Some	of	the	existing	equality
constraint	formulations	are	[58]:	(1)	TYPE	I	constraints:	elimination	of	 the	constraint	by
substituting	for	a	dependent	variable,	or	satisfy	the	constraint	at	its	mean	value,	and	(2)	TYPE
II	constraints:	satisfy	the	constraint	as	closely	as	possible	using	 the	approximate	moment
matching	method	[58],	or	satisfy	exactly	at	its	mean	value	(see	Fig.	16.7).	An	 illustrative
example	is	presented	shortly.



Figure	16.7.	Formulation	for	Type	II	Constraints

The	objectives	of	the	RDO	problem	are	usually	to	optimize	the	mean	of	the	objective	function,
to	minimize	the	standard	deviation	of	the	objective	function,	or	both.	The	standard	deviation
the	objective	function	can	be	estimated	using	a	first	order	Taylor	series	expansion.	The	RDO
mathematical	formulation	is	presented	using	the	two	bar	truss	example.

Example:	Recall	the	deterministic	truss	formulation	presented	earlier.	Using	the	discussion
provided	in	this	section	regarding	inequality	and	equality	constraints,	objective	function,
design	variables,	the	following	RDO	formulation	can	be	obtained	(explained	in	detail	next).

(16.20)

subject	to

(16.21)
(16.22)
(16.23)
(16.24)

1. 	Design	variables:	Assume	that	a1,	a2,	and	b	are	uncertain	normal	random	variables.	The
corresponding	random	design	variables	are	denoted	by	A1,	A2,	and	B.	Assume	σai	=	0.005
σb	=	6	in.



2. 	Inequality	constraints:	The	inequality	constraints,	S1	and	S2,	and	the	design	variable	bounds
are	shifted	by	 three	respective	standard	 deviations.	 This	makes	 the	 constraints	more
conservative	by	shrinking	the	feasible	design	space,	as	illustrated	in	Fig.	16.6.	The	mean
the	standard	deviation	of	the	inequality	constraints	can	be	computed	using	the	uncertainty
propagation	methods	discussed	in	Sec.	16.6.

3. Equality	constraints:	Constraints	h1	and	h2	of	the	deterministic	problem	are	connectivity
constraints	at	the	node	P,	which	must	be	satisfied.	These	are	TYPE	I	constraints.	Eliminate
constraints	h1	and	h2	by	substituting	for	θ	and	β.	Constraint	h3	is	a	dimensional	constraint,
which	restricts	the	structural	volume	of	the	truss	to	be	equal	to	4,	000	in3.	This	is	a	TYPE
constraint.	We	could	either	satisfy	the	constraint	exactly	at	 its	mean	value,	or	use	 the
approximate	moment	matching	method.	We	chose	the	first	option	because	of	its	simplicity.

4. 	Objectives:	Consider	minimization	of	the	mean	and	the	standard	deviation	of	the	squared
nodal	displacement,	μJ	and	σJ,	which	can	be	calculated	using	a	first	order	Taylor	series
expansion.

5. 	Solutions:	Note	that	the	deterministic	single	objective	problem	(Eq.	16.1)	has	now	become
multiobjective	under	uncertainty	(Eq.	16.20).	Solve	this	multiobjective	problem	and	obtain
its	Pareto	set	(see	Fig.	16.8(a)).	The	above	formulation	presents	an	interesting	tradeoff
situation,	since	a	Pareto	set	of	robust	solutions	is	now	available	to	choose	from	–	as	opposed
single	deterministic	solution.	Each	of	the	Pareto	solutions	represents	a	different	tradeoff
between	the	μJ	and	σJ	objectives.

6. 	Observation:	Obtaining	the	partial	derivatives	for	the	above	expressions	for	the	first	order
Taylor	series	approximation	can	be	tedious.	The	MATLAB	Symbolic	Toolbox	was	used	in
case	to	ease	the	burden.	In	addition,	note	that	the	objectives	are	of	different	magnitudes,
scaling	may	be	needed.



Figure	16.8.	Two-Bar	Truss	Results

Next	is	the	final	step	of	the	uncertainty-based	optimizations	as	shown	in	Fig.	16.2.	Once	we
have	the	solutions,	how	do	we	interpret	them?

16.8 	STEP	5:	How	to	Analyze	the	Results

This	section	presents	a	series	of	issues	that	are	important	in	analyzing	the	results.	These	include:
(1)mean	 performance	 and	 robustness	 tradeoff,	 (2)	 deterministic	 vs.	 robust	 solution,	 (3)
constraint	tradeoffs,	(4)	final	design	choice,	and	(5)	multiobjective	problems	under	uncertainty:
decision	making	problem.

16.8.1 	Mean	Performance	and	Robustness	Trade-off



The	mean	performance	and	the	variation	in	performance	are	usually	conflicting,	and	a	tradeoff
decision	must	be	made.	Several	researchers	have	studied	how	to	model	this	tradeoff	[7,	47]
using	multiobjective	formulations.	Constraint	satisfaction	also	affects	these	tradeoff	decisions.

Example:	Figure	16.8(a)	presents	the	Pareto	frontier	for	the	two	bar	truss	RDO	problem,
reflects	the	tradeoff	between	the	mean	performance	and	the	robustness	objectives.	The	Pareto
frontier	provided	in	Fig.	16.8(a)	has	been	generated	using	the	normalized	normal	constraint
method	[59],	which	is	described	in	detail	in	Chapter	17.	Use	of	the	weighted	sum	method
this	problem	cannot	generate	the	complete	representation	of	the	Pareto	frontier.

Next,	we	compare	the	robust	solutions	with	the	deterministic	solution.

16.8.2 	Deterministic	vs.	Robust	Solutions

The	deterministic	optimization	does	not	consider	uncertainty	explicitly,	and	not	a	good	choice
for	the	final	design	when	uncertainty	is	important.	If	the	deterministic	design	was	chosen	as	the
final	design,	a	small	change	in	the	design	variable	values	will	likely	push	the	constraints	into	the
infeasible	region,	or	yield	a	higher	standard	deviation	for	 the	objective	function.	 Instead,
uncertainty-based	methods	take	the	uncertainty	into	account	to	minimize	constraint	violations.

Example:	Assume	that	the	deterministic	optimum	is	used	for	the	truss	design.	Now	assume
that	the	design	variables	are	uncertain,	with	σai	=	0.005	and	σb	=	6	in.	Assume	the	deterministic
optimum	to	be	the	mean	design	variable	vector,	and	use	the	above	standard	deviation	values
the	design	variables.	Compute	the	constraint	violation	for	the	S1	constraint	using	a	Monte
simulation.	Since	the	deterministic	solution	did	not	take	uncertainty	into	account,	the	failure
probability	for	the	S1	constraint	is	0.53,	which	is	a	constraint	violation.

When	the	violation	of	the	S1	constraint	about	the	robust	optima	is	computed,	the	failure
probabilities	 range	 from	 0.0008	 to	 0.0025.	 This	 is	 one	 of	 the	 primary	 advantages	 of
optimization	under	uncertainty.	Better	constraint	feasibility	is	obtained	by	accounting	for
uncertainties	beforehand.

Now	examine	how	the	robustness	of	the	objective	function	compares	for	the	deterministic
RDO	cases.	As	above,	use	the	deterministic	optimum	for	the	mean	design	variable	values
the	above	prescribed	standard	deviation	values.	If	the	robustness	metric	for	this	scenario,
computed,	a	value	of	σJ	=	3.8	in2	will	be	obtained.	This	implies	that	if	the	truss	is	designed
deterministically,	and	there	are	uncertainties	in	the	design	variables	as	given	above,	there
important	changes	in	the	deflection	of	the	node	P.	However,	if	the	robust	formulation	is	used,
the	output	σJ	is	explicitly	minimized,	thereby	ensuring	a	robust	design.	Note	that	the	least
the	RDO	formulation	along	the	Pareto	frontier	is	approximately	2.5	in2,	which	 is	more
desirable	than	the	deterministic	scenario	(see	Fig.	16.8(a)).

The	next	issue	of	interest	is	the	tradeoffs	 that	arise	between	constraint	satisfaction	and
objective	minimization.

16.8.3 	Constraint	Trade-offs

The	RDO	formulation	usually	formulates	the	inequality	constraints	by	shifting	 them	(i.e.,



making	them	stricter	than	does	the	deterministic	formulation).	While	doing	so	can	reduce	the
constraint	violations	under	uncertainty,	it	also	usually	makes	the	RDO	mean	objective	worse
the	deterministic	objective.	The	higher	the	desired	constraint	satisfaction,	the	worse	the	RDO
mean	objective.	Similarly,	for	equality	constraints,	the	constraint	satisfaction	under	uncertainty
can	be	increased	only	if	a	deteriorated	mean	performance	is	acceptable.	The	approximate
moment	matching	method	is	generally	more	suitable	for	exploring	equality	constraint	tradeoffs.
Engineering	problems	display	this	kind	of	tradeoff	between	constraint	satisfaction	and	objective
minimization.

Example:	For	the	two	bar	truss	RDO	formulation,	note	that	as	you	increase	the	inequality
constraint	shift	from	three	to	six	standard	deviations,	you	will	observe	that	the	estimated	
probability	for	the	S1	constraint	is	reduced	to	zero	along	the	Pareto	frontier.	However,	this
improved	failure	probability	also	results	in	the	worsening	of	the	μJ	and/or	σJ,	as	shown	by
hollow	circles	in	Fig.	16.8(b).	As	the	shift	increases,	the	Pareto	frontier	shifts	into	the	northeast
region	of	the	design	space.	This	is	an	interesting	tradeoff	in	optimization	problems	under
uncertainty.

16.8.4 	Final	Design	Choice

The	various	tradeoff	studies	and	trends	regarding	constraint	satisfaction	and	robustness	metrics
have	been	presented.	Now	that	a	set	of	candidate	solutions	have	been	generated,	how	do	we
choose	one	desirable	design?	This	final	choice	entails	some	subjectivity,	and	is	usually	made
after	an	extensive	design	space	exploration	has	been	conducted.	Visualization	techniques	can
help	understand	the	tradeoffs	graphically	[60,	61].

16.8.5 	Multiobjective	Problems	Under	Uncertainty:	Decision-Making	Problem

The	problem	formulations	discussed	thus	far	considered	only	a	single	deterministic	objective
function.	Design	problems	are	often	multiobjective	in	nature,	and	can	be	challenging	to	model
in	the	robust	domain.	Managing	the	tradeoffs	due	to	constraint	satisfaction,	robustness,	and	mean
performance	objectives	of	a	single	objective	problem	can	be	a	complicated	task	by	itself.	If
there	are	multiple	design	objectives,	the	tradeoff	scenario	can	be	very	challenging.	Interested
readers	in	this	topic	are	referred	to	[7,	47].

16.9 	Other	Popular	Methods

This	section	introduces	two	other	popular	approaches	used	for	robust	design	and	optimization
under	uncertainty:	(1)	The	Taguchi	Method,	and	(2)	Stochastic	Programming.

16.9.1 	Taguchi’s	Robust	Design	Methods

Taguchi	defines	robustness	as	“the	state	where	the	product	or	process	design	is	minimally
sensitive	to	factors	causing	variability,	at	 the	 lowest	cost”	 [62].	Taguchi’s	product	design
approach	consists	of	three	stages:	system	design,	parameter	design,	and	tolerance	design.	System
design	is	the	conceptual	design	stage.	Parameter	design,	also	known	as	the	robust	design,



enhances	the	robustness	of	the	design	by	identifying	factors	that	reduce	the	design’s	sensitivity
to	noise.	Tolerance	design	is	the	phase	where	appropriate	tolerances	for	parameter	values	are
specified.	Taguchi	methods	use	metrics,	such	as	signal-to-noise	ratio	and	quality	loss	functions,
to	perform	parameter	design.	However,	within	the	basic	Taguchi	method,	constraints	are	not
incorporated.	 Further	 enhancements	 of	 the	 Taguchi	 method	 can	 be	 found	 in	 these
references	[63,	64].

16.9.2 	Stochastic	Programming

Stochastic	 programming	 and	 similar	 techniques	 are	 used	 extensively	 in	 the	 fields	 of
mathematics,	finance,	and	artificial	intelligence.	Many	ideas	and	issues	that	were	studied	in	this
chapter	provide	the	building	blocks	for	these	approaches	as	well.	Interested	readers	are	pointed
to	the	following	references	in	stochastic	programming	[65,		66,	67,	68].

16.10 	Summary

This	chapter	provided	an	introductory	presentation	of	the	issues	involved	in	design	optimization
under	uncertainty.	This	area	is	an	active	field	of	research,	and	this	chapter	provides	a	summary
of	the	popular	methods	available,	with	references	to	more	detailed	information	for	interested
readers.	Optimization	under	uncertainty	is	a	process	that	can	be	defined	as	including	five	main
steps	as	defined	in	Fig.	16.2.	We	explained	the	basics	of	each	of	the	five	steps	involved,	and
provided	examples	to	illustrate	the	discussion.	Using	a	truss	example,	optimization	problems
under	uncertainty	were	presented	as	decision	making	problems,	where	a	tradeoff	must	be	made
among	multiple	conflicting	issues	of	interest.

16.11 	Problems

Intermediate	Problems

16.1 Derive	the	equations	for	the	stresses	S1	and	S2	for	the	truss	problem	shown	in	Eqs.16.8
and	16.9.

16.2 Using	MATLAB,	duplicate	the	deterministic	two	bar	truss	results	presented	in	Sec.16.2

16.3 Duplicate	the	results	found	in	Fig.16.4	using	the	normplot	and	normrnd	commands	in
MATLAB.

16.4 Consider	the	results	of	Sec.16.6.1.

(1) Duplicate	the	results	of	the	example	discussion	of	Sec.16.6.1.

(2) Now	let	the	number	of	samples	be	10.	Estimate	the	failure	probability	for	this
case.	Run	your	program	10	different	times	and	observe	the	results.	Do	all	the
10	runs	match?	Explain.

(3) Increase	the	number	of	samples	to	1,000,	10,000,	and	1,000,000.	For	each	case,
run	your	program	10	times	and	record	the	probability	of	failure	values.	As	the
number	 of	 samples	 increase,	 report	 your	 observations	 regarding	 the	 failure
probability	values	of	the	multiple	runs.



16.5 	Explore	the	histfit	command	in	MATLAB.	Understand	what	the	X-axis	and	Y-axis
values	of	the	plot	represent.

(1) For	each	case	of	number	of	samples	given	in	Problem	16.4,	plot	the	histogram
of	the	stress	values	and	 label	your	plot.	Observe	 the	change	 in	 the	shape	and
position	of	the	histogram	as	you	increase	the	number	of	samples.	Explain	your
observations.

(2) Where	 does	 the	maximum	 allowable	 stress,	Smax,	 lie	 on	 the	 plot?	 Show	 the
failure	region	on	the	plot.

(3) Comment	as	to	why	the	failure	probability	in	this	case	appears	sensible	using
the	histogram	plot	and	the	Smax	value.

16.6 Repeat	Parts	(2)	through	(3)	of	Problem	16.4	with	a	mean	A1	of	1.8	in,	and	the	standard
deviation	given	in	Sec.16.6.1.	How	do	the	values	of	the	failure	probabilities	change
when	compared	to	Problem	16.4?

16.7 Our	objective	is	to	minimize	the	failure	probability	obtained	in	Sec.16.6.1.	Setup	an
optimization	problem	that	uses	the	mean	of	A1	as	a	design	variable.	Assume	that	the
standard	deviation	of	A1	is	as	prescribed	in	Sec.16.6.1.	Solve	the	optimization	problem
to	find	the	value	of	the	mean	of	A1	that	yields	the	least	failure	probability	for	the	S1
constraint.	(Hint:	Each	iteration	of	your	objective	function	requires	one	Monte	Carlo
simulation.	Use	a	sample	size	of	100,000.)

16.8 Repeat	Problem	16.5	using	the	assumptions	in	Problem	16.6.

(1) Observe	the	change	in	the	shape	and	position	of	the	histogram	when	compared
to	 those	obtained	 in	Problem	16.5.	What	 do	 you	observe?	 (Hint:	 Pay	 special
attention	 to	 the	 tails	 of	 the	 histogram	 distribution,	 and	 compare	 it	 with	 the
maximum	allowable	stress	value.)

(2) Identify	the	failure	regions	on	the	plot.	Justify	the	failure	probability	values	for
this	case	using	the	histogram	plot.

16.9 Consider	the	stress	S2	given	in	Eq.16.9.	Assume	that	A2	is	normally	distributed	with	
mean	of	1	in,	and	a	standard	deviation	of	0.1	in.	Assume	that	θ	=	60°,β	=	30°.	Derive	the
expression	for	S2	based	on	the	data	given	above.	Repeat	Questions	(2)	through	(3)	of
Problem	16.4.

16.10 In	the	previous	problem,	the	failure	probability	of	S2	was	very	high.	What	can	be	done
reduce	 its	 value?	What	 are	 the	 parameters	 you	 can	 change	 to	 reduce	 the	 failure
probability?	Discuss	how	optimization	can	help	in	this	context.

16.11 Setup	an	optimization	problem	that	uses	the	mean	of	A2	as	a	design	variable.	Assume
the	standard	deviation	of	A2	is	as	prescribed	in	Problem	16.9.	Solve	the	optimization
problem	to	find	the	value	of	the	mean	of	A2	that	yields	the	least	failure	probability	for	the
S2	constraint.	(Hint:	Each	iteration	of	your	objective	function	requires	one	Monte	Carlo
simulation.	Use	a	sample	size	of	100,000.)



16.12 Consider	the	equation	h	=	 + ,	which	is	part	of	the	equality	constraint	of	the	truss
problem.	This	expression	denotes	the	structural	volume	of	the	truss.	Assume	that	A1	
A2	are	normal	random	variables	with	mean	values	of	2.4	and	1.5	 in,	and	standard
deviations	of	0.1	and	0.1,	 respectively.	Assume	that	b	 =	L.	 Using	 a	Monte	Carlo
simulation,	estimate	the	mean	and	standard	deviation	of	the	structural	volume.

16.13 Using	the	histfit	command,	plot	the	histogram	of	the	structural	volume	from	the
previous	problem.

(1) In	 the	 constraint	 shown	 in	 Eq.16.5,	 observe	 that	 the	 structural	 volume	 is
restricted	to	be	4,000	in3.	Show	this	value	on	your	histogram	plot.	Comment	on
the	failure	region	of	the	constraint.

(2) How	does	 the	 failure	 region	of	 the	 equality	 constraint	differ	 from	 that	of	 the
inequality	constraint	studied	in	the	earlier	examples?

(3) What	can	we	possibly	change	in	the	given	data	to	reduce	the	failure	region	for
the	equality	constraint?	How	can	optimization	help	in	this	context?

16.14 Consider	a	linear	function	P	=	2X1+3X2+4X3,	where	X1,X2,	and	X3	have	means	of	0.1,
0.4,	and	1,	respectively;	and	standard	deviations	of	0.01,	0.01,	and	0.01,	respectively.
Estimate	the	moments	of	P	using	a	first	order	Taylor	series	approximation.

16.15 Consider	a	nonlinear	function,	f	=	5X12-X	2X3+cos(X4),	where	X1,X2,X3,X4	have	means
1,	1,	1,	0,	and	standard	deviations	of	0.1,	0.1,	0.05,	0.1,	 respectively.	Estimate	 the
moments	of	f	using	first	order	Taylor	series	approximation.

16.16 Duplicate	 the	 results	 discussed	 in	 Sec.16.6.3	 for	 the	 truss	 problem.	 Derive	 the
expressions	shown	in	Eqs.16.16	and	16.17.

16.17 We	are	interested	in	finding	the	estimates	of	the	mean	and	standard	deviations	of	the
S2	of	the	truss	problem.	In	Eq.16.9,	assume	that	A2	is	normally	distributed	with	a	mean	of
1	in,	and	a	standard	deviation	of	0.1	in.	Assume	that	θ	=	60°,β	=	30°.	Estimate	the	mean
and	standard	deviation	of	S2	using	a	first	order	Taylor	series	expansion.

16.18 Consider	the	equation	h	=	 + ,	which	is	part	of	the	equality	constraint	of	the	truss
problem.	This	expression	denotes	the	structural	volume	of	the	truss.	Assume	that	A1	
A2	are	normal	random	variables	with	mean	values	of	2.4	and	1.5	 in,	and	standard
deviations	of	0.1	and	0.1,	respectively.	Assume	that	b	=	L.	Find	the	mean	and	standard
deviation	of	h	using	a	first	order	Taylor	series	approximation.

16.19 Read	the	following	paper	and	prepare	a	2-page	summary	of	its	key	contributions.	The
paper	reference	is:	Messac,	A.,	and	Ismail-Yahaya,	A.,	“Multiobjective	Robust	Design
Using	Physical	Programming,”	Structural	and	Multidisciplinary	Optimization	Journal
of	the	International	Society	of	Structural	and	Multidisciplinary	Optimization	(ISSMO),
Springer,	Vol.	23,	No.	5,	2002,	pp.	357-371.

16.20 Implement	the	RDO	formulation	for	the	two-bar	truss	problem	in	MATLAB	shown	in
Eqs.16.20	 through	16.24.	Using	 this	MATLAB	code,	 generate	 the	 results	 shown	 in
Sec.16.8.2	for	the	deterministic	case.



16.21 Duplicate	the	deterministic	case	results	shown	in	Sec.16.8.3.

16.22 Duplicate	the	deterministic	case	results	shown	in	Sec.16.8.1.
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17

Methods	for	Pareto	Frontier
Generation/Representation

17.1 	Overview

Multiobjective	optimization	plays	an	 important	 role	 in	engineering	design,	management,
and	 decision	 making	 in	 general.	 In	 Chapter	 6,	 the	 formulation	 of	 multiobjective
optimization	 problems	 and	 the	 concept	 of	 Pareto	 frontier	 were	 introduced.	 Several
approaches	 to	obtain	Pareto	solutions,	 including	 the	weighted	sum	method,	 compromise
programming,	 goal	 programming,	 and	 physical	 programming,	 were	 introduced	 in
Chapter	6.

In	 this	 chapter,	 new	 approaches	 used	 to	 obtain	 Pareto	 solutions	 are	 presented.	 These
approaches	can	generate	an	evenly	spaced	set	of	Pareto	points	 in	 the	design	space,	with
the	objective	of	capturing	the	entire	Pareto	frontier.	This	chapter	 is	structured	as	 follows.
Section	17.2	presents	 the	requisite	mathematical	preliminaries.	Section	17.3	presents	 the
Normal	 Boundary	 Intersection	 (NBI)	 method.	 In	 Sec.	 17.4,	 the	 normalized	 Normal
Constraint	 (NC)	method	 is	 introduced.	 Section	 17.5	 develops	 the	 Pareto	 filter	 concept,
which	 eliminates	 dominated	 solutions	 from	 the	 generated	 set	 of	 points.	 Numerical
examples	 are	 provided	 in	 Sec.	 17.6,	while	 the	 summary	 of	 this	 chapter	 is	 presented	 in
Sec.	17.7.

17.2 	Mathematical	Preliminaries

This	section	provides	 the	requisite	mathematical	preliminaries.	A	generic	 formulation	 of
the	multiobjective	 optimization	 problem	 is	 defined	 as	 follows.	 This	 problem	 is	 named
Problem	P1.

(17.1)

subject	to

(17.2)
(17.3)
(17.4)

The	vector	x	denotes	the	design	variables	and	μi	denotes	the	ith	generic	design	objective.
Equation	17.2	and	17.3	denote	the	inequality	and	equality	constraints,	 respectively,	while
Eq.	17.4	denotes	the	side	constraint.	The	above	problem	does	not	generally	yield	a	unique
solution.

Before	the	approaches	used	to	obtain	Pareto	frontiers	are	introduced,	several	definitions



need	to	be	introduced.

Anchor	point	(μi*):	The	generic	ith	anchor	point	(or	end	point	of	the	Pareto	frontier)	is
obtained	 when	 the	 generic	 ith	 objective	 is	 minimized	 independently.	 When	 the	 global
optimum	is	 not	 unique,	 the	 one	 non-dominated	 is	 chosen.	 It	 is	 also	 called	 an	 optimum
vertex.

Utopia	line:The	line	joining	two	anchor	points	in	bi-objective	cases	is	called	the	Utopia
line.

Utopia	 hyperplane:	 The	 plane	 that	 comprises	 all	 the	 anchor	 points	 in	 the
multiobjective	case	is	called	the	Utopia	hyperplane.

Utopia	point:	It	is	defined	by	a	vector	where	it’s	generic	ith	components	is	the	value	of
the	design	objective	minimum	obtained	by	minimizing	only	 the	corresponding	 ith	design
objective.

The	word	Utopia	is	used	here	to	indicate	that	the	plane	contains	the	n	optimum	vertices,
components	 of	 which	 form	 the	 Utopia	 point.	 We	 note	 that	 since	 the	 Utopia	 point	 is
generally	unattainable,	it	is	not	part	of	the	Utopia	plane.	If	the	optimization	problem	has	n
objectives,	it	 involves	n	anchor	points.	The	 ith	anchor	points	can	be	obtained	by	solving
Problem	PUi,	which	is	defined	as	follows:

(17.5)

subject	to

(17.6)
(17.7)
(17.8)

We	 now	 define	 the	 following	 quantities,	 which	 result	 from	 solving	 the	 above	 PUi
problem:

xi*	: Optimal	decision	vector	(xi*∈	Rnx	);
μi*	: Generic	ith	optimal	objective	-	specifically,	μi*	=	μi(xi*)(μ	i*∈	R);

μu	: Utopia	Point	μu	=	[μ1*,μ	2*,…,μ	n*]T(μu	∈	Rn);

μi*	: ith	Anchor	Point	μi*	=	[μ1(xi*),μ	2(xi*),…,μ	n(xi*)]T,	(μi*∈	Rn);

Pu	: Utopia	Plane.	Hyperplane	in	n-dimensions	that	comprises	the	n	anchor	points,	μi*(i	=
1,…,n).

We	 provide	 a	 Pareto	 frontier	 of	 a	 bi-objective	 optimization	 problem	 in	 Fig.	 17.1.
Anchor	points	and	the	Utopia	point	are	illustrated	in	the	figure.	Please	note	that	the	design
space	is	not	normalized.



Figure	17.1.	General	Design	Objective	Space	for	a	Bi-Objective	Case

17.3 	Normal	Boundary	Intersection	Method

This	section	introduces	the	Normal	Boundary	Intersection	(NBI)	Method	[1,	2]	for	finding
several	Pareto	optimal	points	for	a	general	nonlinear	multiobjective	optimization	problem.
This	method	 is	successful	 in	producing	an	evenly	distributed	set	of	 points	 in	 the	 Pareto
frontier,	 and	 it	 method	 can	 be	 applied	 to	 optimization	 problems	 with	 more	 than	 two
objectives.

In	Section	17.2,	the	Utopia	point	μu	and	the	anchor	point	μi*are	defined.	We	define	 the
pay-off	matrix,	Φ,	as	follows:	Φ	is	an	n	×	n	function	whose	ith	column	is	μi*-μu.	The	pay-
off	matrix	has	the	following	form:

Φ	=	

(17.9)

The	 pay-off	matrix	 translates	 anchor	 points	 in	 the	 design	 objective	 space.	 For	 a	 bi-
objective	 design	 space,	 Fig.	 17.2	 shows	 the	 following:	 (i)	 in	 the	 translated	 coordinate
system	of	the	design	objective	space,	the	Utopia	point	is	at	the	origin,	(ii)	the	two	anchor
points	 lie	 on	 the	 axes	 lines,	 and	 (iii)	 the	 coordinates	 of	 the	 two	 anchor	 points	 are
determined	by	their	distances	from	the	Utopia	point.	For	optimization	problems	with	more
than	 two	 design	 objectives,	 in	 the	 translated	 coordinate	 system	 of	 the	 design	 objective
space,	the	Utopia	point	is	at	the	origin.	One	coordinate	of	each	anchor	point	is	0,	and	 the
other	coordinates	are	determined	by	the	distance	between	the	anchor	point	and	the	Utopia
point.



Figure	17.2.	Translated	Design	Objective	Space	for	a	Bi-Objective	Case

Using	the	pay-off	matrix,	the	convex	combinations	of	μi*-μu	are	{Φβ	:	β	∈	Rn,∑	i=1nβ	i	=
1,βi	≥	0}.	For	a	bi-objective	optimization	problem,	Φβ	are	 the	points	on	 its	Utopia	 line.
For	 an	 optimization	 problem	 with	 more	 than	 two	 objectives,	 Φβ	 are	 the	 points	 on	 its
Utopia	hyperplane.

In	the	translated	design	objective	space,	let	 	denote	the	unit	normal	to	the	points	on	the
Utopia	line	(bi-objective)	or	the	Utopia	hyperplane	(more	than	two	objectives)	toward	the
origin;	 then,	 Φβ	 +t ,t	∈	 R	 represents	 the	 set	 of	 points	 on	 that	 normal.	 The	 point	 of
intersection	 of	 the	 normal	 and	 the	 Pareto	 frontier	 is	 the	 solution	 to	 the	 following
subproblem:

(17.10)

subject	to

(17.11)
(17.12)
(17.13)
(17.14)

The	steps	of	the	NBI	method	are:

1. Evaluate	all	the	anchor	points,	μ1*	to	μn*,	by	solving	Problem	PUi	(i	=	1,	2,…,n).

2. Generate	the	pay-off	matrix	using	Eq.	17.9.

3. Generate	 the	 weights,	 β,	 so	 that	 Φβ	 samples	 the	 Utopia	 line	 for	 a	 bi-objective
optimization	problem,	or	samples	the	Utopia	hyperplane	for	an	optimization	problem
with	more	than	two	objectives.

4. For	 each	 set	 of	 weights,	 solve	 the	 optimization	 problem	 defined	 by	 Eq.	 17.10	 to
Eq.	17.14.



Please	refer	to	Section.	17.6	for	examples.

17.4 	Normalized	Normal	Constraint	Method

This	 section	 provides	 the	 analytical	 development	 of	 the	 normalized	 normal	 constraint
method	 [3]	 for	 multiobjective	 optimization	 problems.	 This	 section	 is	 divided	 into	 two
subsections:	 bi-objective	 and	 multiobjective	 cases.	 This	 separation	 of	 the	 bi-objective
from	 the	 general	 multiobjective	 case	 is	 intended	 to	 promote	 clarity	 and	 simplicity	 of
presentation.

Normalized	Normal	Constraint	for	Bi-objective	Case

Figure	17.3	represents	 the	normalized	Pareto	frontier	 in	 the	normalized	design	space.	 In
the	normalized	objective	space,	all	 the	anchor	points	are	one	unit	away	from	the	Utopia
point,	 and	 the	 Utopia	 point	 is	 at	 the	 origin.	 A	 bar	 over	 a	 variable	 implies	 that	 it	 is
normalized.

Figure	17.3.	Normalized	Design	Objective	Space	for	a	Bi-Objective	Case

We	 begin	with	 a	 graphical	 perspective	 of	 the	 normalized	 normal	 constraint	 method.
Figure	17.1	illustrates	the	non-normalized	design	space	and	the	Pareto	frontier	of	a	generic
bi-objective	 problem.	 Figure	 17.3	 represents	 the	 normalized	 Pareto	 frontier	 in	 the
normalized	design	space.	In	the	normalized	objective	space,	all	the	anchor	points	are	one
unit	away	from	the	Utopia	point,	and	the	Utopia	point	is	at	the	origin	by	definition.

We	 now	 present	 the	 normalized	 normal	 constraint	 method	 by	 defining	 a	 seven-step
process	for	its	application.	To	understand	the	idea	of	the	NC	method,	consider	Figs.	17.4
and	17.5	for	 the	bi-objective	case.	 In	 Fig.	 17.4,	we	 observe	 the	 feasible	 region	 and	 the
corresponding	 Pareto	 frontier.	We	 also	 note	 that	 the	 two	 anchor	 points	 are	 obtained	 by



successively	 minimizing	 the	 first	 and	 second	 design	 metrics	 (Problem	 PUi).	 A	 line
joining	the	 two	anchor	points	 is	drawn,	and	 is	called	 the	Utopia	 line.	The	Utopia	 line	 is
divided	into	m1	-	1	segments,	resulting	in	m1	points.	In	Fig.	17.5,	one	of	the	generic	points
intersecting	the	segments	is	used	to	define	a	normal	to	the	Utopia	line.	This	normal	line	is
used	 as	 an	 additional	 constraint	 that	 progressively	 reduces	 the	 feasible	 region,	 and
generates	successive	Pareto	 solutions,	 as	 indicated	 in	 Fig.	 17.5.	 If	we	minimize	μ2,	 the
resulting	 optimum	 point	 is	 μ*.	 By	 translating	 the	 normal	 line,	 a	 corresponding	 set	 of
solutions	will	be	generated.

Figure	17.4.	A	Set	of	Evenly	Spaced	Points	on	the	Utopia	Line	for	a	Bi-Objective	Problem



Figure	17.5.	Graphical	Representation	of	the	Normalized	Normal	Constraint	Method	for	Bi-Objective	Problems

Importantly,	we	note	that	the	generation	of	the	set	of	Pareto	points	 is	performed	 in	 the
normalized	objective	space,	 resulting	 in	 critically	 beneficial	 scaling	 properties.	We	 now
proceed	to	define	the	seven-step	process	that	formalizes	the	preceding	description.

1. ANCHOR	POINTS.	Obtain	 the	 two	anchor	points,	denoted	by	μ1*	and	μ2*,	 resulting
from	solving	Problem	PU1	and	PU2,	respectively.	The	line	joining	these	two	points	is
the	Utopia	line.

2. OBJECTIVES	 MAPPING/Normalization.	 To	 avoid	 scaling	 deficiencies,	 the
optimization	 takes	 place	 in	 the	 normalized	 design	 metric	 space	 (design	 objective
space).	Let	μ	be	the	normalized	form	of	μ.	We	define	the	Utopia	point,	μu,	as

μu	=	[μ	1(x1*)	μ	2(x2*)]T (17.15)

and	we	let	l1	and	l2	be	the	distances	between	μ2*	and	μ1*,	and	 the	Utopia	point,	μu,
respectively.	We	have

(17.16)

(17.17)

Using	the	above	definitions,	the	normalized	design	metrics	can	be	evaluated	as

μ	=	 (17.18)

Following	 the	 normalization	 of	 the	 design	 metrics,	 we	 can	 generate	 the	 Pareto



points,	as	indicated	in	Figs.	17.4	and	17.5.

3. UTOPIA	LINE	VECTOR.	Define	N1	as	the	vector	from	μ1*	to	μ2*,	yielding

N1	=	μ2*-μ1* (17.19)

4. NORMALIZED	 INCREMENTS.	 Compute	 a	 normalized	 increment,	 δ1,	 along	 the
direction	of	N1	for	a	prescribed	number	of	solutions,	m1,	as

δ1	=	 (17.20)

5. GENERATE	UTOPIA	LINE	POINTS.	Evaluate	a	set	of	evenly	distributed	points	on
the	Utopia	line	as	(see	Fig.	17.4)

Xpj	=	α1jμ1*	+	α	2jμ2* (17.21)

where

(17.22)

(17.23)

Please	note	 that	αij	 is	 incremented	by	δ1	between	0	and	1	(Fig.	17.4),	and	we	 use
values	of	j	where	j	∈{1,	2,…,m1}.

6. PARETO	POINTS	GENERATION.	Using	 the	set	of	evenly	distributed	points	on	 the
Utopia	line,	generate	a	corresponding	set	of	Pareto	points	by	solving	a	succession	of
optimization	runs	of	Problem	P2.	Each	optimization	run	corresponds	to	a	point	on	the
Utopia	line.	Specifically,	for	each	generated	point	on	the	Utopia	line,	solve	for	 the	 jth
point.

Problem	P2	(for	jth	point)	is	defined	as	follows:

(17.24)

subject	to

(17.25)
(17.26)
(17.27)
(17.28)
(17.29)

7. PARETO	DESIGN	METRICS	VALUES.	Evaluate	the	non-normalized	design	metrics
that	correspond	to	each	Pareto	point.	This	evaluation	can	be	done	 in	 two	ways.	First,
since	 the	function	μ(x)	 is	known,	a	direct	evaluation	 is	possible.	Alternatively,	 if	 the



normalized	design	metrics	were	saved	from	Step	6,	the	non-normalized	design	metrics
can	be	obtained	through	an	inverse	mapping	of	(12)	by	using	the	relation

μ	=	[μ1l1	+	μ1(x1*)	μ	2l2	+	μ2(x2*)]T (17.30)

Up	 to	 this	 point,	 we	 have	 not	 considered	 the	 possibility	 that	 some	 of	 the	 points
generated	in	some	pathological	cases	might	be	dominated	by	other	points	in	 the	set.	This
important	situation	is	examined	in	Sec.	17.5,	where	a	Pareto	filter	is	developed.

Normalized	Normal	Constraint	for	n-Objective	Case

In	this	section,	the	development	of	the	normalized	normal	constraint	method	 is	presented
for	a	general	multiobjective	case.	This	development	will	be	terse	 to	avoid	repetition	with
respect	 to	 the	bi-objective	 case.	 The	 basic	 steps	 are	 similar	 to	 those	 of	 the	 bi-objective
case.

1. ANCHOR	 POINTS.	 Obtain	 the	 anchor	 points,	 μi.	 for	 i	∈	 {1,	 2,…,	 n},	 which	 are
obtained	by	solving	Problem	PUi.	We	define	 the	hyperplane,	which	 is	comprised	of
all	 the	 anchor	 points.	 This	 plane	 is	 called	 the	Utopia	 hyperplane	 (or	Utopia	 plane).
Figure	 17.6	 illustrates	 the	 Utopia	 plane	 for	 three	 design	 metrics.	 Recall	 that	 the
optimum	design	variables	obtained	from	solving	Problem	PUi	are	denoted	by	xi*.

Figure	17.6.	Utopia	Hyperplane	for	a	Three-Objective	Case

2. OBJECTIVES	 MAPPING/Normalization.	 To	 avoid	 scaling	 deficiencies,	 the
optimization	is	performed	in	the	normalized	design	metric	space.	In	order	to	obtain	the
required	mapping	parameters,	we	need	to	define	two	points:	 the	Utopia	point	and	 the



Nadir	point,	which	are	respectively	evaluated	as	follows:

(17.31)

(17.32)

where

(17.33)

We	define	the	matrix	L	as

L	=	 	=	μN	-	μu (17.34)

which	leads	to	the	normalized	design	metrics	as

μi	=	 ,i	=	1,	2,…,n (17.35)

3. UTOPIA	 PLANE	VECTORS.	Define	 the	 direction,	Nk	 from	μk*to	μn*for	 k	∈{1,	 2,
…,n-1}	as

Nk	=	μn*-μk* (17.36)

4. NORMALIZED	 INCREMENTS.	 Compute	 a	 normalized	 increment,	 δk,	 along	 the
direction	 Nk	 for	 a	 prescribed	 number	 of	 solutions,	 mk,	 along	 the	 associated	 Nk
direction.

δk	=	 ,	(1	≤	k	≤	n	-	1) (17.37)

Care	must	be	taken	in	choosing	the	number	of	points,	mk,	for	each	direction	Nk.	To
ensure	an	even	distribution	of	points	on	the	n-dimensional	Utopia	plane,	the	following
relationship	can	be	used.	Given	a	specified	number	of	points,	m1,	along	the	vector	N1,
mk	is	given	as

mk	=	 (17.38)

5. GENERATE	HYPERPLANE	POINTS.	Evaluate	a	set	of	evenly	distributed	points	on
the	Utopia	hyperplane	as

Xpj	=	∑	k=1nα	kjμk* (17.39)



where

(17.40)

Figure	17.6	describes	how	generic	points	are	generated	 in	 the	Utopia	plane,	where
two	 planes	 serve	 as	 constraints	 (see	 Eq.	 17.45).	 Figure	 17.7	 shows	 the	 resulting
uniformly	distributed	points	on	 the	Utopia	plane	for	 a	 three-dimensional	 case	 in	 the
normalized	objective	space.

Figure	17.7.	Evenly	Spaced	Points	on	the	Utopia	Plane	for	a	Three-Objective	Case

6. PARETO	 POINTS	 GENERATION.	 We	 generate	 a	 set	 of	 well-distributed	 Pareto
solutions	in	the	normalized	objective	space.	For	each	value	of	Xpj	generated	in	Step	5,
we	obtain	the	corresponding	Pareto	solution	by	solving	Problem	P3:

(17.41)

subject	to

(17.42)
(17.43)
(17.44)
(17.45)
(17.46)



In	 solving	 Problem	 P3	 using	 a	 gradient-based	 algorithm,	 the	 initial	 point	 used
contributes	 to	 the	 efficiency	 of	 the	 Pareto	 frontier	 generation.	 In	 the	 case	 of	 the
normalized	normal	constraint	method,	a	good	choice	for	a	starting	point	 is	 the	 point
Xpj.	This	automated	scheme	works	well	in	practice.

7. PARETO	DESIGN	METRICS	VALUES.	 The	 design	 metrics	 values	 for	 the	 Pareto
solutions	obtained	in	Step	6	can	be	obtained	using	the	unscaling	equation

μi	=	μili	+	μi(xi*),i	=	1,	2,…,n (17.47)

17.5 	Pareto	Filter

As	 indicated	 earlier,	 under	 certain	 circumstances,	 the	 normal	 constraint	 method	 can
generate	non-Pareto	solutions.	This	 unfortunate	 situation	 can	 occur,	 for	 example,	 in	 the
case	of	a	feasible	region	depicted	 in	Fig.	17.8.	 In	such	cases,	we	propose	using	a	Pareto
filter.	A	Pareto	filter	is	an	algorithm	that,	given	a	set	of	points	in	objective	space,	produces
a	subset	of	the	given	points	 for	which	none	will	be	dominated	by	any	other.	That	 is,	 the
filter	eliminates	all	dominated	points	from	the	given	set.

Figure	17.8.	Normal	Constraint	Generates	a	Non-Pareto	Solution	Under	a	Contrived	Feasible	Region

To	facilitate	the	ensuing	discussion,	it	is	important	to	differentiate	between	local	Pareto
optimality	and	global	Pareto	optimality.	We	note	that	a	global	Pareto	optimal	point	is	also
a	local	Pareto	optimal	point,	but	the	reverse	is	not	typically	true.	Two	important	definitions
based	on	the	concept	of	weak	domination	follow.

Definition	1:	A	design	metric	vector	μ*	is	globally	Pareto	optimal	if	there	does	not	exist
another	design	metric	vector	μ	such	that	μj	≤	μj*	for	all	j	∈{1,	2,…,n},	and	μj	<	μj*	 for	at
least	one	index	of	j,	j	∈{1,	2,…,n}	in	the	feasible	design	space.



Definition	2:	A	design	metric	vector	μ*	is	locally	Pareto	optimal	if	there	does	not	exist
another	design	metric	vector	μ	such	that	μj	≤	μj*	for	all	j	∈{1,	2,…,n},	and	μj	<	μj*,	for	at
least	one	index	of	j,	j	∈{1,	2,…,n}	in	a	neighborhood	of	μ*.
Consider	Fig.	17.8,	in	which	a	highly	concave	feasible	region	is	depicted.	Arcs	AB	and

FG	represent	 the	(global)	Pareto	frontier.	Regions	BC	and	DE	are	 local	Pareto	frontiers.
Arcs	CD	and	EF	are	neither	globally	nor	locally	Pareto.	We	now	make	the	important	note
that	generating	Pareto	points	using	the	normal	constraint	method	with	the	anchor	points	A
and	G	will	yield	non-Pareto	solutions.	Point	S,	for	example,	a	non-Pareto	solution,	would
be	generated	by	 the	normal	constraint	method	when	 the	Line	NU	is	 used	 as	 the	 normal
constraint.	Using	a	different	 optimization	 starting	 point	 in	 a	 gradient-based	 scheme,	we
could	 obtain	 the	 point	 R.	 The	 NBI	 method	 would	 also	 suffer	 from	 this	 deleterious
behavior.

In	 light	of	 the	 fact	 that	 certain	methods	 yield	 non-Pareto	 solutions,	 it	 is	 important	 to
develop	a	means	to	avoid	retaining	dominated	points	in	the	set	of	solutions	from	which	an
optimum	will	be	chosen.	The	Pareto	filter	does	just	that.	The	filter	works	by	comparing	a
point	on	 the	 Pareto	 frontier	with	 every	 other	 generated	 point.	 If	 a	 point	 is	 not	 globally
Pareto	optimal,	it	is	eliminated.

Figure	17.9	provides	a	functional	diagram	of	the	Pareto	filter.	A	four-step	process	of	the
Pareto	filter	algorithm	is	presented	in	the	following	pseudo-code.

Figure	17.9.	Pareto	Filter



Figure	17.10.	Flow	Diagram	of	Pareto	Filter

1. Initialize

Initialize	 the	algorithm	indices	and	variables:	 i	=	0,	 j	=	0,	k	=	1,	and	m=	 number	 of
generated	solutions;	m	=	f(mk).

2. Set	i	=	i+	1;	j	=	0.

3. (enclosed	 in	 the	 dashed	 box):	 Eliminate	 non-global	 Pareto	 points	 by	 doing	 the
following:	j	=	j+	1

If	i	=	j	go	to	the	beginning	of	Step	3

Else	continue

If	μi	⁄=	μj	and	(μi-	μj)	s	≥	0,∀s

then	μi	is	not	a	global	Pareto	point.



Go	to	Step	4.

Else	if	j	=	m

Then	i	is	a	global	Pareto	point.	
				pk	=	μi	
				k	=	k+	1	
				Go	to	Step	4.	
Else	go	to	the	beginning	of	Step	3.

4. If	i	≠	m,	go	to	Step	2,	else	end.

17.6 	Examples

In	 this	 section,	 we	 use	 the	 normalized	 normal	 constraint	 method	 to	 generate	 Pareto
frontiers	in	three	examples.

The	 first	 example	 deals	 with	 scaling	 issues	 when	 one	 design	 metric	 is	 orders	 of
magnitude	larger	than	the	other,	and	compares	the	NC	and	(Weighted	Sum)	WS	methods.
The	second	example	demonstrates	a	case	 in	which	non-Pareto	points	are	 generated,	 and
compares	 the	behaviors	of	 the	NC	and	NBI	methods	for	 the	same	 problem.	 In	 the	 third
example,	a	 truss	problem	is	 used,	 in	which	we	 deal	with	 a	 concave	 Pareto	 frontier	 and
compare	the	relative	behaviors	of	the	NC	and	WS	methods.

Example:	Consider	the	multiobjective	optimization	problem	below.	Generate	its	Pareto
frontier	using	the	normalized	normal	constraint	method.

(17.48)

subject	to

(17.49)
(17.50)
(17.51)

The	 normalized	 normal	 constraint	 method	 leads	 to	 the	 following	 single	 criterion
optimization	problem:

(17.52)

subject	to

(17.53)
(17.54)
(17.55)
(17.56)

The	following	MATLAB	code	generates	21	evenly	distributed	points	on	 the	Pareto	frontier



(included	in	the	book	website	www.cambridge.org/Messac).

1. Main	file
clear;clc;		

		%Define	side-constraints		

		lb=[];ub=[];		

		%Define	initial	guess		

		x0=[20	1];		

		%Numbers	of	evenly	distributed	points		

		m=21;		

		%Define	options	for	FMINCON		

		options=optimset(’display’,’on’,’algorithm’,’active-set’);		

				

		%Initialize	points	for	normalized	NC	Method		

		xp=[0,0];		

		N=[1,1];		

		%Optimization	for	separate	objectives		

		x1=fmincon(@NNC_obj1_eg1,x0,[],[],[],[],lb,ub,	…		

						@NNC_con_eg1,options,xp,N);		

		x2=fmincon(@NNC_obj2_eg1,x0,[],[],[],[],lb,ub,	…		

						@NNC_con_eg1,options,xp,N);		

				

		A1=NNC_obj1_eg1(x1,xp,N);B1=NNC_obj2_eg1(x1,xp,N);		

		A2=NNC_obj1_eg1(x2,xp,N);B2=NNC_obj2_eg1(x2,xp,N);		

		N=[A2-A1	B2-B1];		

		delta=1/(m-1);		

				

		%initial	index		

		k=1;		

		for	i=0:m-1		

				alpha=i*delta;		

				xp=[alpha*A1+(1-alpha)*A2,alpha*B1+(1-alpha)*B2];		

				x=fmincon(@NNC_obj2_eg1,x0,[],[],[],[],lb,ub,	…		

								@NNC_con_eg1,options,xp,N);		

				x0=x;		

				A(k)=abs(N(1))*NNC_obj1_eg1(x,xp,N);		

				B(k)=abs(N(2))*NNC_obj2_eg1(x,xp,N);		

				k=k+1;		

		end		

		%%%%%%%%%%%	Plot	Pareto	Frontier	%%%%%%%%%%%%%		

		figure		

		plot(A,B,’.’)		

		axis([-1	20	-.05	1])		

		xlabel(’\mu1’)		

		ylabel(’\mu2’)

1. First	Objective	function	file
function	f=NNC_obj1_eg1(x,xp,N)		

		f=x(1)/abs(N(1));	%Normalized	Form		

		end

1. Second	Objective	function	file
function	f=NNC_obj2_eg1(x,xp,N)		

		f=x(2)/abs(N(2));	%Normalized	Form		

		end

http://www.cambridge.org/Messac


1. Constraint	function	file
function	[c,ceq]=NNC_con_eg1(x,xp,N)		

		x1=x(1);		

		x2=x(2);		

		c(1)=((x1-20)/20)^8+((x2-1)/1)^8-1;		

		ceq=[];		

		if	xp(1)~=0		

		c(2)=[1,-1]*(([x1	x2]-xp)./abs(N))’;		

		end

Figure	17.11	shows	the	Pareto	frontier	generated	by	the	above	MATLAB	code.

Figure	17.11.	Pareto	Frontier	Using	Normalized	Normal	Constraint

Example:	Consider	the	multiobjective	optimization	problem	below.	Use	the	normalized
normal	constraint	method	and	the	Pareto	filter	to	generate	the	Pareto	frontier.

(17.57)

subject	to

(17.58)
(17.59)
(17.60)

The	NBI	method	is	used	to	generate	points	on	the	Pareto	frontier.	A	 total	of	60	evenly
spaced	 points	 on	 the	Utopia	 line	 are	 used.	 Figure	 17.12(a)	 depicts	 the	 points	 on	 the
Pareto	frontier.	In	the	figure,	some	points	are	not	globally	Pareto	optimal.





Figure	17.12.	Pareto	Frontier	Generated	Using	Normal	Boundary	Intersection	and	Normalized	Normal	Constraint

1. Main	file
clear;clc;		

		%Define	side-constraints		

		lb=[0	0	-inf];ub=[5	5	inf];		

		%Define	initial	guess		

		x0=[5	0	1];		

		%Numbers	of	evenly	distributed	points		

		m=61;		

		%Define	options	for	FMINCON		

		options=optimset(’display’,’off’,’algorithm’,’active-set’);		

				

		%Initialize	points	for	NC	Method		

		xp=[0,0];		

		N=[1,1];		

		%Optimization	for	separate	objectives		

		x1=fmincon(@NNC_obj1_eg2,x0,[],[],[],[],lb,ub,	…		

				@NNC_con_eg2,options,xp,N);		

	x2=fmincon(@NNC_obj2_eg2,x0,[],[],[],[],lb,ub,	…		

				@NNC_con_eg2,options,xp,N);		

	

		A1=NNC_obj1_eg2(x1,xp,N);		

		B1=NNC_obj2_eg2(x1,xp,N);		

		A2=NNC_obj1_eg2(x2,xp,N);		

		B2=NNC_obj2_eg2(x2,xp,N);		

		N=[A2-A1	B2-B1];		

		delta=1/(m-1);		

				

		k=1;			%initial	index		

		for	i=0:m-1		

				alpha=i*delta;		

				xp=[alpha*A1+(1-alpha)*A2,alpha*B1+(1-alpha)*B2];		

				x=fmincon(@NNC_obj2_eg2,x0,[],[],[],[],lb,ub,	…		

								@NNC_con_eg2,options,xp,N);		

				x0=x;		

				A(k)=NNC_obj1_eg2(x,xp,N);		

				B(k)=NNC_obj2_eg2(x,xp,N);		

				k=k+1;		

		end		

		figure		

		plot(A,B,’.’);		

		xlabel(’\mu1’);		

		ylabel(’\mu2’);		

		title(’Normal	Boundary	Intersection’);

2. First	Objective	function	file
function	f=NNC_obj1_eg2(x,xp,N)		

		f=x(1);		

		end

3. Second	Objective	function	file



function	f=NNC_obj2_eg2(x,xp,N)		

		f=x(2);		

		end

4. Objective	function	file	for	subproblem
function	f=NNC_obj3_eg2(x,xp,N)		

		t=x(3);		

		f=-t;		

		end

5. Constraint	function	file
function	[c,ceq]=NNC_con_eg2(x,xp,N)		

		x1=x(1);		

		x2=x(2);		

		t=x(3);		

		c(1)=5*exp(-x1)+2*exp(-0.5*(x1-3)^2)-x2;		

		ceq=[];		

		if	xp~=0		

		ceq=xp+t.*[-1,	N(1)/N(2)]-[NNC_obj1_eg2(x,xp,N),	…		

		NNC_obj2_eg2(x,xp,N)];		

		end

This	 example	 can	 also	 be	 solved	 by	 the	 normalized	 normal	 constraint	method,	with	 or
without	using	the	Pareto	filter.	Figures	17.6	and	17.6	are	generated	using	 the	normalized
normal	constraint	method.	Figure	17.6	shows	the	points	generated	before	the	Pareto	filter
is	used.	Some	points	are	not	globally	Pareto	optimal.	Figure	17.6	shows	the	points	on	the
Pareto	frontier	after	the	Pareto	filter	 is	used.	The	points	on	Fig.	17.6	are	globally	Pareto
optimal.

1. Main	file
clear;clc;		

		%Define	side-constraints		

		lb=[0	0];ub=[5	5];		

		%Define	initial	guess		

		x0=[5	0];		

		%Numbers	of	evenly	distributed	points		

		m=61;		

		%Define	options	for	FMINCON		

		options=optimset(’display’,’off’,’algorithm’,’active-set’);		

				

		%Initialize	points	for	NC	Method		

		xp=[0,0];		

		N=[1,1];		

		%Optimization	for	separate	objectives		

		x1=fmincon(@NNC_obj1_eg2,x0,[],[],[],[],lb,ub,	…		

						@NNC_con_eg2,options,xp,N);		

		x2=fmincon(@NNC_obj2_eg2,x0,[],[],[],[],lb,ub,	…		

				@NNC_con_eg2,options,xp,N);		

	

		A1=NNC_obj1_eg2(x1,xp,N);B1=NNC_obj2_eg2(x1,xp,N);		

		A2=NNC_obj1_eg2(x2,xp,N);B2=NNC_obj2_eg2(x2,xp,N);		

		N=[A2-A1	B2-B1];		

		delta=1/(m-1);		

				



		k=1;			%initial	index		

		for	i=0:m-1		

				alpha=i*delta;		

				xp=[alpha*A1+(1-alpha)*A2,alpha*B1+(1-alpha)*B2];		

				x=fmincon(@NNC_obj2_eg2,x0,[],[],[],[],lb,ub,	…		

								@NNC_con_eg2,options,xp,N);		

				x0=x;		

				A(k)=abs(N(1))*NNC_obj1_eg2(x,xp,N);		

				B(k)=abs(N(2))*NNC_obj2_eg2(x,xp,N);		

				k=k+1;		

		end		

		figure		

		plot(A,B,’.’);		

		xlabel(’\mu1’);		

		ylabel(’\mu2’);		

		title(’Normal	Constraint	Method	without	Using	Pareto		

							Filter’);		

		%%%%%%%%%%%	Pareto	Filtering	%%%%%%%%%%%%%%%%%		

		[mA,mB]=pareto_filter(A,B);		

		%%%%%%%%%%%	Plot	Pareto	Frontier	%%%%%%%%%%%%%		

		figure		

		plot(mA,mB,’.’);		

		xlabel(’\mu1’);		

		ylabel(’\mu2’);		

		title(’Normal	Constraint	Method	Using	Pareto	Filter’);

2. First	Objective	function	file
function	f=NNC_obj1_eg2(x,xp,N)		

		f=x(1)/abs(N(1));	%Normalized	Form		

		end

3. Second	Objective	function	file
function	f=NNC_obj2_eg2(x,xp,N)		

		f=x(2)/abs(N(2));	%Normalized	Form		

		end

4. Constraint	function	file
function	[c,ceq]=NNC_con_eg2(x,xp,N)		

		f1=x(1);f2=x(2);		

		c(1)=5*exp(-x(1))+2*exp(-0.5*(x(1)-3)^2)-x(2);		

		ceq=[];		

		if	xp~=0		

		c(2)=[1,-1]*(([f1	f2]-xp)./abs(N))’;		

		end

5. Pareto	Filter
function	[mA,mB]=pareto_filter(A,B)		

		k=1;		

		m=length(A);		

		for	i=1:m		

				for	j=i+1:m		

								if	A(i)<A(j)||B(i)>B(j)		

											break;		

								end		

				end		



				if	j==m		

								p(k)=i;		

								k=k+1;		

				end		

		end		

		mA=A(p);		

		mB=B(p);

17.7 	Summary

This	 chapter	 presents	 two	 Pareto	 frontier	 generation	 methods:	 the	 normal	 boundary
intersection	(NBI)	method	 and	 the	 normalized	 normal	 constraint	 (NNC)	method.	 These
two	methods	have	 the	ability	 to	generate	a	well	distributed	 set	 of	 Pareto	 points	 even	 in
numerically	demanding	(illconditioned)	situations.	It	is	shown	that,	in	non-convex	Pareto
frontier	cases,	 the	NBI	method	may	 generate	 non-Pareto	 point	where	 the	NNC	method
will	 avoid	 these	 points.	All	 Pareto	 points	 generated	 by	 NBI	 will	 also	 be	 generated	 by
NNC.	 In	 addition,	 NBI	 involves	 equality	 constraints	 while	 NNC	 involves	 inequality
constraints,	which	are	generally	computationally	 favorable.	 This	 chapter	 also	 introduces
the	notion	of	a	Pareto	filter,	which	performs	the	function	of	eliminating	all	but	 the	global
Pareto	solutions	when	given	a	set	of	candidate	solutions.

17.8 	Problems

17.1 Consider	 the	 first	 multiobjective	 optimization	 problem	 given	 in	 Sec.	 17.6.
Reproduce	the	results	using	the	normalized	normal	constraint	method.	Also	solve	it
using	the	weighted	sum	method.	Show	the	figures	of	 the	Pareto	frontier	generated
by	the	two	methods.	Turn	in	your	M-file	and	results.

17.2 Consider	 the	 second	 multiobjective	 optimization	 problem	 given	 in	 Sec.	 17.6.
Reproduce	 the	 results	 using	 the	 normalized	 normal	 constraint	 method	 and	 the
Pareto	filter.	Turn	in	your	M-file	and	results.

17.3 Solve	the	following	three-bar	truss	optimization	problem.

We	consider	a	three-bar	truss	structure	from	the	following	paper	written	by	J	Koski
in	 1985:	 Defectiveness	 of	 weighting	 methods	 in	 multicriterion	 optimization	 of
structures.	Commun.	Appl.	Numer.	Methods	1,	333..C337.

The	structure	and	the	loading	conditions	of	 the	problem	is	provided	 in	Fig.	17.13.
For	this	particular	problem,	the	design	metrics	are:	(1)	the	volume	of	the	structure,
and	(2)	a	linear	combination	of	the	displacements	at	node	P,	Δ.	The	design	metrics
are	to	be	minimized.



Figure	17.13.	Three-Bar	Truss	Under	Static	Loading

The	cross	sectional	areas	of	the	three-bar	 truss	are	 the	design	variables,	which	are
allowed	to	vary	between	0.1	and	2	cm2.	The	stresses	in	each	bar	are	limited	to	200
MPa.	The	length	L	is	fixed	to	100	cm.	The	forces,	F,	which	are	applied	at	node	P,
have	the	same	value	of	20	kN.	The	modulus	of	elasticity	of	the	material	used	is	200
GPa.	Koski	(1985)	used	a	linear	combination	of	the	displacement	design	metric,	Δ,
at	node	P	 to	yield	nonconvexity.	The	coefficients	of	δ1	and	δ2	are	0.25	 and	 0.75,
respectively.

Generate	 the	Pareto	frontier	using	 the	 normalized	 normal	 constraint	method	with
the	Pareto	filter.

17.4 Understand	how	the	normalized	normal	constraint	method	[3]	works,	and	use	 that
method	to	duplicate	the	Pareto	frontier	shown	in	Fig.	16.8(a)	from	Chapter	16.

17.5 Solve	Problem	17.4	using	a	new	version	of	 the	NNC	method	recently	 reported	 in
Ref.	[4].	Discuss	any	possible	benefits	or	drawbacks.
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18

Physical	Programming	for	Multiobjective
Optimization

18.1 	Overview

Engineering	 design	 problems	 are	 multiobjective	 in	 nature.	 These	 problems	 usually
optimize	 two	 or	 more	 conflicting	 objectives	 –	 simultaneously.	 An	 approach	 to
multiobjective	 problem	 formulation	 combines	 the	 multiple	 objectives	 into	 a	 single
objective	function,	also	known	as	the	Aggregate	Objective	Function	(AOF).	This	AOF	is
solved	 to	 obtain	 one	 Pareto	 solution.	 One	 of	 several	 challenges	 in	 the	 area	 of
multiobjective	optimization	 is	 to	 judiciously	construct	an	AOF	that	satisfactorily	models
the	designer’s	preferences.	This	chapter	provides	 a	 concise	 presentation	 of	 the	Physical
Programming	 method,	 which	 defines	 a	 framework	 to	 effectively	 incorporate	 the
designer’s	preferences	into	the	AOF	(Ref.	[1]).

Several	methods	to	solve	multiobjective	optimization	problems	have	been	discussed	 in
Chapter	 6,	 such	 as	 the	 weighted	 sum	 method,	 compromise	 programming,	 and	 goal
programming.	These	weight-based	approaches	require	 the	designer	 to	 specify	 numerical
weights	in	defining	the	AOF.	This	process	can	be	ambiguous.	For	example,	consider	 the
following:	(1)	How	does	the	designer	specify	weights	in	weight-based	approaches?	(2)	Do
the	 weights	 reflect	 the	 designer’s	 preferences	 accurately?	 If	 the	 designer	 chooses	 to
increase	the	importance	of	a	particular	objective,	by	how	much	should	he/she	increase	the
weight?	 Is	 25%	 adequate?	 Or	 is	 200%	 adequate?	 (3)	 Does	 the	 AOF	 denote	 a	 true
mathematical	representation	of	the	designer’s	preferences?

The	above	questions	begin	to	explain	 that	 the	problem	of	determining	“good	weights”
can	be	difficult	and	dubious.	Because	 of	 this	 ambiguity,	 the	weight	 selection	 process	 is
often	 a	 computational	 bottleneck	 in	 large	 scale	 multiobjective	 design	 optimization
problems.	The	above	discussion	paves	 the	way	for	a	multiobjective	problem	formulation
framework	 that	 alleviates	 these	 ambiguities:	Physical	 Programming	 (PP)	 developed	 by
Messac	[2].

Physical	 Programming	 systematically	 develops	 an	 AOF	 that	 effectively	 reflects	 the
designer’s	wishes.	This	approach	eliminates	 the	need	 for	 iterative	weight	 setting,	which
alleviates	 the	 above	 discussed	 ambiguities.	 Instead	 of	 choosing	 weights,	 the	 designer
chooses	ranges	of	desirability	for	each	objective.	The	PP	method	formulates	the	AOF	from
these	ranges	of	desirability,	while	yielding	interesting	and	useful	properties	for	the	AOF.

The	PhysPro	software	embodies	the	Physical	Programming	method,	which	is	described
below	and	fully	presented	in	Refs.	[2,	3].	For	information	regarding	PhysPro,	please	visit
www.physpro.com	(Ref.	[4]).

Next,	Linear	Physical	Programming	(LPP)	 is	studied	 in	detail,	 followed	by	Nonlinear
Physical	Programming	(NPP).

http://www.physpro.com


18.2 	Linear	Physical	Programming	(LPP)
18.2.1 	Classification	of	Preferences:	Soft	and	Hard

Using	 Physical	 Programming,	 the	 designer	 can	 express	 preferences	 for	 each	 design
objective	with	more	flexibility,	as	opposed	to	specifying	maximize,	minimize,	greater	than,
less	than,	or	equal	 to,	which	are	 the	only	choices	available	 in	conventional	optimization
approaches.	Using	 the	 PP	 approach,	 a	 designer	 can	 express	 preferences	with	 respect	 to
each	design	objective	using	four	different	classes.

Figure	18.1	illustrates	the	four	classes	available	in	LPP.	A	generic	design	objective,	μi,	is
represented	on	the	horizontal	axis,	and	the	function	to	be	minimized	for	that	objective,	zi,
henceforth	 called	 the	 preference	 function	 or	 the	 class	 function,	 is	 represented	 on	 the
vertical	 axis.	 Each	 class	 consists	 of	 two	 subclasses,	 hard	 and	 soft,	 referring	 to	 the
sharpness	 of	 the	 preference.	 These	 subclasses	 are	 also	 illustrated	 in	 Fig.	 18.1,	 and	 are
characterized	as	follows:



Figure	18.1.	LPP	Ranges	of	Preferences	for	Soft	Classes

1. Soft	Classes:

a) Class	1S:	Smaller-is-better	(minimization)



b) Class	2S:	Larger-is-better	(maximization)

c) Class	3S:	Value-is-better

d) Class	4S:	Range-is-better

2. Hard	Classes:

a) Class	1H:	Must	be	smaller

b) Class	2H:	Must	be	larger

c) Class	3H:	Must	be	equal

d) Class	4H:	Must	be	in	range

Physical	 Programming	 offers	 a	 flexible	 lexicon	 to	 express	 ranges	 of	 desirability	 for
both	hard	and	soft	classes.	The	lexicon	consists	of	six	ranges	of	desirability	for	classes	1S
and	2S,	ten	ranges	for	the	class	3S,	and	eleven	ranges	for	the	class	4S.

18.2.2 	Ranges	of	Desirability	for	Various	Classes

Following	are	the	definitions	of	the	differing	ranges	of	desirability	under	LPP,	with	which
a	designer	can	express	his/her	preferences.	To	explain,	consider	the	case	of	class	1S	shown
in	 Fig.	 18.1.	 The	 ranges	 of	 desirability	 are	 defined	 as	 follows	 in	 order	 of	 decreasing
preference.

1. Ideal	Range	(μi	≤	ti1+)	 (Range	1):	A	range	over	which	every	value	of	 the	criterion	 is
ideal,	or	the	most	desirable	possible.	Any	two	points	in	this	range	are	of	equal	value	to
the	designer	(see	discussion	in	[3]).	For	example,	consider	a	hypothetical	beam	design
problem,	where	the	design	objectives	are	to	minimize	the	mass	and	deflection	subject
to	certain	constraints.	The	ideal	range	for	the	mass	of	the	beam	could	be	specified	as	M
≤	2,	000	kg.

2. Desirable	Range	(ti1+	≤	μi	≤	ti2+)	(Range	2):	An	acceptable	range	that	is	desirable	(for
example,	the	desirable	range	for	the	mass	of	the	beam	could	be	specified	as	2,	000	kg
≤	M	≤	3,	000	kg).

3. Tolerable	Range	(ti2+	≤	μi	≤	ti3+)	(Range	3):	This	is	an	acceptable,	tolerable	range	(for
example,	3,	000	kg	≤	M	≤	3,	500	kg	could	be	specified	 as	 a	 tolerable	 range	 for	 the
mass	of	the	beam).

4. Undesirable	 Range	 (ti3+	 ≤	 μi	 ≤	 ti4+)	 (Range	 4):	 A	 range	 that,	 while	 acceptable,	 is
undesirable	 (for	 example,	 the	 undesirable	 range	 for	 the	mass	 of	 the	 beam	 could	 be
specified	as	3,	500	kg	≤	M	≤	4,	000	kg).

5. Highly	 Undesirable	 Range	 (ti4+	 ≤	 μi	 ≤	 ti5+)	 (Range	 5):	 A	 range	 that,	 while	 still
acceptable,	 is	highly	undesirable	 (for	example,	4,	000	kg	≤	M	≤	4,	 500	 kg	 could	 be
specified	as	the	highly	undesirable	range	for	the	mass	of	the	beam).

6. Unacceptable	 Range	 (μi	 ≥	 ti5+)	 (Range	 6):	 The	 range	 of	 values	 that	 the	 design
objective	 must	 not	 take	 (the	 range	 M	 ≥	 4,	 500	 kg	 could	 be	 specified	 as	 the



unacceptable	range	for	the	mass	of	the	beam).

The	 range-defining	 parameters	 ti1+	 through	 ti5+,	 defined	 above	 for	 soft	 classes,	 are
physically	 meaningful	 constants	 that	 are	 specified	 by	 the	 designer	 to	 quantify	 the
preferences	 associated	with	 the	 ith	 design	 objective.	 For	 example,	 the	 set	 of	 tij+	 values
specified	above	for	the	mass	of	the	beam	are	[2,	000,	3,	000,	3,	500,	4,	000,	4,	500].

In	the	case	of	hard	classes,	only	two	ranges	are	defined,	acceptable	and	unacceptable.
All	soft	class	functions	become	constituent	components	of	the	AOF	to	be	minimized,	and
all	the	hard	class	functions	simply	appear	as	constraints	in	the	LPP	problem	formulation.

The	 preference	 functions	 map	 the	 design	 objectives	 into	 non-dimensional,	 strictly
positive	real	numbers.	This	mapping	transforms	disparate	design	objectives	with	different
physical	meanings	onto	a	dimensionless	scale	 through	a	unimodal	convex	 function.	 The
preference	 functions	 are	 piecewise	 linear	 and	 convex	 in	 the	 LPP	 method,	 as	 seen	 in
Fig.	18.1.

18.2.3 	Inter-Criteria	Preferences:	OVO	Rule

Specifying	 intra-criterion	 preferences	 (preferences	within	 one	 objective)	 using	 Physical
Programming		[3]	has	been	explained.	In	order	to	completely	formulate	the	multiobjective
optimization	 problem,	 the	 designer	 also	 needs	 to	 specify	 the	 inter-criteria	 preferences
(preferences	among	several	objectives).	The	PP	method	operates	within	an	 inter-criteria
heuristic	rule,	called	the	One	vs.	Others	rule	(OVO).	The	inter-criteria	preference	for	each
soft	criterion,	μi,	is	defined	as	follows.	Consider	the	following	two	options:

1. Full	improvement	of	μi	across	a	given	range	of	preference,	and

2. Full	reduction	of	all	the	other	criteria	across	the	next	better	range	of	preference.

The	PP	method	 then	formulates	 the	AOF	so	 that	Option	1	 is	preferred	over	Option	2.
The	OVO	rule	has	a	built-in	preemptive	nature	whereby	 the	worst	 criterion	 tends	 to	 be
minimized	first.

For	example,	consider	a	multiobjective	problem	with	 ten	objectives.	According	 to	 the
OVO	rule,	it	is	preferable	for	a	single	objective	to	improve	over	a	full	tolerable	range,	than
it	is	for	the	remaining	nine	objectives	 to	 improve	over	 the	full	desirable	 range.	The	next
subsection	explains	how	the	OVO	rule	is	implemented	in	the	LPP	method.

18.2.4 	LPP	Class	Function	Definition

The	class	function	maps	the	design	objectives	 into	non-dimensional,	strictly	positive	real
numbers	 that	 reflect	 the	 designer’s	 preferences.	 To	 accomplish	 the	 above,	 the	 class
function,	zi,	is	required	to	possess	the	following	properties.

1. 	A	 lower	 value	 of	 the	 class	 function	 is	 preferred	 over	 a	 higher	 value	 thereof	 (see
Fig.	18.1).	Irrespective	of	the	class	of	a	criterion	(1S,	2S,	3S,	or	4S),	the	ideal	value	of
the	criterion	always	corresponds	to	the	minimum	value	of	the	class	function,	which	is
zero.



2. 	A	class	function	is	strictly	positive	(zi	≥	0).

3. 	A	class	function	is	continuous,	piecewise	linear,	and	convex.

4. 	The	value	of	 the	class	 function	 at	 a	 given	 range	 limit,	 zi(tis+),	 is	 always	 fixed	 (see
Fig.	18.1).	From	criterion	to	criterion,	only	the	location	of	the	limits	(tis+)	changes,	but
not	the	corresponding	zi	values.	Because	of	this	property,	as	one	travels	across	all	 the
criteria,	and	observes	a	given	range	 type,	 the	change	 in	 the	class	 function	 value,	 	 i,
will	 always	 be	 of	 the	 same	 magnitude	 (see	 Fig.	 18.1).	 This	 property	 of	 the	 class
function	results	in	a	normalizing	effect,	eliminating	numerical	conditioning	problems
that	 arise	 because	 of	 improper	 scaling	 between	 design	 objectives	 of	 disparate
magnitudes.

5. The	magnitude	of	the	class	function’s	vertical	excursion	across	any	range	must	satisfy
the	OVO	rule.	(This	property	is	represented	in	Eq.	18.3).	Observe	in	Fig.	18.1	that	the
value	of	 	2	(desirable)	is	less	than	that	of	 	5	 (highly	undesirable).	This	 is	 in	keeping
with	the	OVO	rule.

Based	on	the	above	properties,	the	mathematical	relations	used	in	the	LPP	algorithm	are
now	presented.	From	Property	(4.),	the	following	relation	holds

(18.1)

where	 s	 and	 i	 denote	 a	 generic	 range	 intersection	 and	 the	 soft	 criterion	 number,
respectively.

The	change	in	zi	across	the	sth	range	is	given	by

s	=	zs	-	zs–1;			(2	≤	s	≤	5);			z1	=	0 (18.2)

The	OVO	rule	is	enforced	by	the	equation

s	>	(n	sc	-	1) 	s–1;			(3	≤	s	≤	5);			(n	sc	>	1) (18.3)

or,

	s	=	β(n	sc	-	1) 	s–1;			(3	≤	s	≤	5);			n	sc	>	1;	β	>	1 (18.4)

where	nsc	denotes	the	number	of	soft	criteria,	and	β	 is	used	as	a	convexity	parameter.	To
use	Eq.	18.4,	 the	value	of	 	2	needs	 to	 be	 specified.	Assume	 	 2	 to	 be	 equal	 to	 a	 small
positive	number	(say	0.1)	in	practice.	Eq.	18.4	by	itself	does	not	guarantee	convexity	of	the
class	function.	The	convexity	also	depends	on	the	targets	chosen	by	the	decision	maker.

The	relations	that	specifically	enforce	convexity	of	the	class	function	are	defined	by	the
following	quantities:

(18.5)
(18.6)



Note	 that	 the	 above	 equations	 define	 the	 length	 of	 the	 sth	 range	 of	 the	 ith	 criterion.
Using	the	above	definition,	the	magnitude	of	the	slope	of	the	class	function	is	given	by

(18.7)

(18.8)

Note	that	these	slopes	change	from	range	to	range,	and	from	criterion	 to	criterion.	The
convexity	requirement	can	be	enforced	by	using	the	relation

(18.9)

where

(18.10)
(18.11)
(18.12)

The	quantities	 is+	and	 is–	defined	above	are	the	slope	increments	of	the	class	function
between	 the	 different	 ranges	 of	 desirability.	 Equation	 18.9	 implies	 that	 if	 all	 the
incremental	weights	 are	 positive,	 the	 class	 function	 (which	 is	 piecewise	 linear)	 will	 be
convex.	 The	 LPP	weight	 algorithm	 can	 be	 used	 to	 define	 the	 class	 function	 using	 the
equations	given	in	this	subsection.

18.2.5 	LPP	Weight	Algorithm

The	LPP	weight	algorithm	is	given	below.

1. Initialize:	β	=	1.1;	wi1–	=	wi1+	=	0;	 	2	=	small	positive	number,	say	0.1.	
i	=	0;	s	=	1;	nsc	=	number	of	soft	criteria.

2. Set	i	=	i+	1.

3. Set	s	=	s+	1.

4. Evaluate	in	the	same	order:	 s,	 is+,	 is–,	wis+,	wis–,	 is+,	 is–,	and	 min.

5. If	 min	is	less	than	some	chosen	small	positive	value	(say	0.01),	increase	β.	Set	i	=	0,	s
=	1,	and	go	to	Step	2..

6. If	s	≠	5,	go	to	Step	3..

7. If	i	=	nsc,	terminate.	Otherwise,	go	to	Step	2..

A	 MATLAB	 code	 that	 uses	 this	 algorithm	 to	 compute	 weights,	 given	 the	 preference
values	for	each	criterion,	is	given	in	the	book	website	(www.cambridge.org/Messac).	Once
the	weights	are	obtained	from	the	above	algorithm,	the	piecewise	linear	class	function	can
be	defined	for	each	criterion.

http://www.cambridge.org/Messac


The	 formulation	 of	 the	 LPP	 problem	 involves	 the	 presence	 of	 numerous	 weights
because	of	 the	piecewise	 linear	nature	of	 the	class	 function.	However,	 the	designer	need
not	choose	these	weights.	All	the	required	weights	are	automatically	evaluated	by	the	LPP
weight	 algorithm.	 The	 LPP	 AOF	 is	 defined	 using	 deviational	 variables,	 denoted	 by
dis–and	dis+.	A	deviational	variable	 is	defined	as	 the	deviation	of	 the	 ith	design	criterion
from	its	sth	range	intersection.	The	class	 function	for	soft	classes	can	 then	be	defined	 in
terms	of	the	deviational	variables	as

(18.13)

18.2.6 	LPP	Problem	Formulation

The	LPP	application	procedure	consists	of	four	distinct	steps.

1. Specify	the	class	type	for	each	design	objective	(1S-4H).

2. Provide	the	ranges	of	desirability	 (tis+,	or	 tis–,	or	both)	 for	each	class	 (see	Fig.	18.1).
The	designer	specifies	five	limits	for	classes	1S	or	2S,	nine	limits	for	the	class	3S,	and
ten	limits	for	the	class	4S.	For	hard	classes,	the	designer	specifies	one	limit	for	classes
1H,	2H,	and	3H,	and	two	limits	for	4H	(see	Fig.	18.1).

3. Use	the	LPP	weight	algorithm	to	obtain	the	incremental	weights,	 is+	and	 is–.	Note	that
the	designer	does	not	need	to	explicitly	define	the	class	function	zi.

4. Solve	the	following	linear	programming	problem.

(18.14)

subject	to

(18.15)
(18.16)
(18.17)
(18.18)
(18.19)
(18.20)
(18.21)

where	i	=	{1,	2,…,nsc},	s	=	{2,…,	5},	j	=	{1,	2,…,nhc},	nhc	is	the	number	of	hard	classes,	x
is	the	design	variable	vector,	and	μi	=	μi(x).

A	 recent	 application	 of	 LPP	 is	 provided	 in	 Ref.	 [5].The	 Nonlinear	 Physical
Programming	(NPP)	method	is	described	next.



18.3 	Nonlinear	Physical	Programming	(NPP)

The	NPP	method	 can	 be	more	 advantageous	 than	 the	 LPP	 method	 for	 solving	 certain
optimization	problems.	The	piecewise	linear	nature	of	the	class	function	in	LPP	may	lead
to	computational	difficulties	because	of	the	discontinuities	in	the	class	function	derivatives
at	 the	 intersection	 of	 the	 range	 limits.	 The	 NPP	 method	 alleviates	 this	 difficulty	 by
defining	a	class	function	that	is	smooth	across	all	range	limits.	However,	the	NPP	method
can	 be	 computationally	 expensive,	 since	 it	 is	 formulated	 as	 a	 nonlinear	 optimization
problem.

This	section	provides	a	brief	discussion	of	the	NPP	method.	Interested	readers	can	refer
to	 [2]	 for	 a	 more	 detailed	 description	 of	 the	 NPP	 method.	 First,	 the	 similarities	 and
differences	between	LPP	and	NPP	will	be	identified.

18.3.1 	LPP	vs.	NPP

The	LPP	and	NPP	methods	share	certain	similarities,	as	listed	below.

1. The	class	and	the	subclass	definitions	are	the	same	in	LPP	and	NPP.

2. The	PP	 lexicon	and	 the	classification	of	preferences	are	 the	same	for	NPP	 and	 LPP,
with	one	exception;	the	analog	of	 ideal	 (LPP)	 is	highly	desirable	 (NPP).	Figure	18.2
provides	 the	 classification	 of	 the	 design	 objectives,	 and	 the	 ranges	 of	 differing
preferences	for	soft	classes	in	NPP.



Figure	18.2.	NPP	Ranges	of	Preferences	for	Soft	Classes

3. The	OVO	rule	is	defined	in	the	same	manner	in	LPP	and	NPP.

The	difference	between	NPP	and	LPP	can	be	observed	by	comparing	the	class	function



plot	in	Fig.	18.2	with	that	in	Fig.	18.1.	In	the	case	of	LPP,	the	class	functions	are	piecewise
linear.	For	NPP,	they	are	nonlinear	and	smooth.

The	 class	 functions	 in	 NPP	 are	 defined	 using	 a	 special	 class	 of	 splines.	 A	 detailed
discussion	regarding	the	mathematical	development	of	these	splines	can	be	found	in	[2].	A
summary	of	the	mathematical	background	for	NPP	is	presented	next.

18.3.2 	NPP	Class	Function	Definition

A	suitable	class	function	in	NPP	must	possess	the	following	properties.

1. All	soft	class	functions	must:

a) be	strictly	positive,

b) have	continuous	first	derivatives,	and

c) have	strictly	positive	second	derivatives	(implying	convexity	of	the	class	function).

2. All	the	above	defined	properties	must	hold	for	any	practical	choice	of	range	limits.

The	 NPP	 class	 function	 (Fig.	 18.2)	 in	 the	 highly	 desirable	 range	 is	 defined	 by	 a
decaying	 exponential	 function;	 while	 in	 all	 the	 other	 ranges,	 the	 class	 functions	 are
defined	by	spline	segments	[2].	A	detailed	description	of	the	class	function	properties	and
definition	is	provided	in	[2].

18.3.3 	NPP	Problem	Model

The	following	steps	are	used	to	generate	the	NPP	problem.

1. Specify	the	class	type	for	each	design	objective	(1S	-	4H).

2. Provide	the	ranges	of	desirability	for	each	design	objective	(see	Fig.	18.2).

3. Solve	the	constrained	nonlinear	minimization	problem	that	is	given	by

(18.22)

subject	to

(18.23)
(18.24)
(18.25)

(18.26)
(18.27)
(18.28)
(18.29)
(18.30)



where	 ti,min,	 ti,max,	 and	 ti,val	 represent	 the	 specified	 preferences	 values	 for	 the	 ith	 hard
objective;	 and	 xj,min	 and	 xj,max	 are	 the	 minimum	 and	 the	 maximum	 values	 for	 xj,
respectively.	The	ranges	of	desirability,	ti5+	and	ti5–,	are	provided	by	the	designer,	and	nsc	is
the	number	of	soft	objectives.	The	hard	classes	are	 treated	as	constraints,	while	 the	 soft
classes	 are	 part	 of	 the	 objective	 function.	 Plans	 are	 for	 a	 limited	 edition	 of	 the	 NPP
software	to	be	provided	in	the	book	website	(www.cambridge.org/Messac).

18.4 	Comparison	of	LPP	with	Goal	Programming

The	 flexibility	 offered	 by	 the	 LPP	 method	 is	 now	 compared	 to	 that	 offered	 by	 goal
programming,	previously	discussed	 in	Chapter	6.	As	shown	in	Fig	18.3,	 the	GP	method
offers	 limited	flexibility,	with	 the	option	of	choosing	 two	weights	and	a	 target	 value	 for
each	 objective.	 The	 LPP	method,	 in	 contrast,	 allows	 the	 designer	 to	 choose	 up	 to	 ten
physically	meaningful	 target	 values	 or	 ranges	 of	 desirability	 for	 each	 design	 objective.
While	the	designer	is	required	to	choose	 the	weights	 in	 the	GP	method,	 the	LPP	method
completely	eliminates	the	often	ambiguous	task	of	choosing	weights.

Figure	18.3.	GP	vs.	LPP—Comparison

In	 Fig.	 18.4,	 three-dimensional	 visualizations	 of	 the	 AOF	 for	 the	 GP	 and	 the	 LPP
methods	 are	 presented.	 The	XY	 plane	 of	 each	 figure	 provides	 the	 contour	 plots	 of	 the

http://www.cambridge.org/Messa


AOF	for	each	method.	In	typical	GP	form,	 there	are	 two-sided	goals/criteria,	yielding	an
intersection	 of	 four	 planes.	 Also,	 note	 that	 the	 contour	 plots	 of	 the	 GP	 AOF	 are
quadrilaterals.

Figure	18.4.	GP	vs.	LPP—AOF	Visualization

The	AOF	 surface	 for	 LPP	 is	 obtained	 by	 the	 intersection	 of	 81	 planes	 (for	 the	 4-S
criterion),	which	reflects	a	more	realistic	preference.	Observe	 the	multi-faceted	contours
of	the	AOF	for	the	LPP	method.

The	 effectiveness	 of	 LPP	 comes	 from	 the	 well	 defined	 class	 function,	 which	 tailors
itself	 to	 the	complex	nature	of	 the	designer’s	choices.	A	numerical	example	 to	 illustrate
the	LPP	approach	is	presented.

18.5 	Numerical	Example



This	example	solves	 the	optimization	problem	using	 the	LPP	method,	and	compares	 the
results	to	those	obtained	by	the	GP	method.	A	company	manufactures	two	products,	A	and
B.	 The	 ideal	 production	 levels	 per	 month	 for	 A	 and	 B	 are	 25	 units	 and	 10	 units,
respectively.	The	profit	per	unit	sold	for	A	and	B	are	$12k	and	$10k,	 respectively.	Under
these	conditions,	the	total	monthly	profit	is	$400k.	The	company	needs	to	make	a	profit	of
at	 least	 $580k	 to	 stay	 in	 business.	 The	 designer	 has	 certain	 target	 preferences	 for	 the
production	 levels	 for	A	and	B,	given	 in	Table	18.1.	Define	μ1	and	μ2	 as	 the	 two	 design
criteria,	which	denote	the	production	levels	of	products	A	and	B,	 respectively.	The	profit
constraint	function	is	given	as

12μ1	+	10μ2	≥	580 (18.31)

Table	18.1.	Preference	Ranges	for	μ1	and	μ2

Preference	level μ1 μ2

Ideal <	25 <	10
Desirable 25	-	31 10	-	18
Tolerable 31	-	36 18	-26
Undesirable 36	-	44 26	-	33
Highly	Undesirable 44	-	50 33	-	40
Unacceptable >	50 >	40

18.5.1 	Goal	Programming	Solution

The	details	for	formulating	a	GP	problem	are	given	in	Chapter	6.	The	GP	formulation	for
this	problem	is	given	by

(18.32)

subject	to

(18.33)
(18.34)
(18.35)
(18.36)
(18.37)
(18.38)

The	slopes	of	 the	preference	functions	for	 the	GP	formulation	are	specified	by	wGP1+

and	wGP2+.	The	target	for	μ1	is	25,	and	the	target	for	μ2	 is	10.	The	results	obtained	using
GP	are	shown	in	Fig.	18.5	(a),	(b),	and	(c).	The	 three	solutions	obtained	with	GP	are	 for



the	cases	where	 the	ratio	of	slopes	wGP1+⁄w	GP2+	 is	 less	 than,	 equal	 to,	 and	 greater	 than
12⁄10	=	1.2.

Figure	18.5.	GP	vs.	LPP—Example	Results

In	Fig.	18.5,	the	shaded	area	represents	the	feasible	region,	and	the	solid	dots	represent
the	optimum	solutions.	The	solution	when	wGP1+⁄w	GP2+	<	1.2	is	the	point	P	=(40,	10)	 in
Fig.	18.5	(a).	The	solution	when	wGP1+⁄w	GP2+	>	1.2	is	the	point	Q	=	(25,	28)	in	Fig.	18.5
(c).	In	Fig.	18.5	(b),	when	wGP1+⁄w	GP2+	=	1.2,	the	slope	of	the	objective	function	given	in
Eq.	18.32	is	equal	to	that	of	the	constraint	given	 in	Eq.	18.35.	There	are	 infinitely	many
solutions	along	the	straight	line	segment	shown	by	the	thick	line	in	Fig.	18.5	(b).	We	now
examine	how	LPP	can	be	used	to	solve	this	problem.

18.5.2 	Linear	Physical	Programming	Solution

From	the	values	of	the	preferences	provided	in	Table	18.1,	note	 that	μ1	and	μ2	belong	 to
the	class	1S.	The	LPP	model	is	formulated	using	the	linear	programming	model,	given	in
Sec.	18.2.6,	Eq.	18.14.	The	solution	obtained	is	R	=	(31,	20.8),	as	shown	in	Fig.	18.5	(d).

Compare	the	solutions	P	and	Q	obtained	by	the	GP	method,	and	the	solution	R	obtained
by	 the	 LPP	method.	 The	 solution	 obtained	 with	 GP	 is	 highly	 sensitive	 to	 the	 weights
chosen	for	each	objective.	 For	 the	 point	 P	 =	 (40,	 10)	 (see	 Fig.	 18.5	 (a)),	μ1	 lies	 in	 the
undesirable	 range,	while	μ2	 lies	 in	 the	 desirable	 range.	 For	 the	 point	Q	 =	 (25,	 28)	 (see
Fig.	18.5	(c)),	μ1	 lies	 in	 the	desirable	 range,	while	μ2	 lies	 in	 the	 undesirable	 range.	 The



solutions	P	and	Q	lie	in	the	undesirable	ranges	because	the	GP	problem	formulation	does
not	fully	represent	the	designer’s	preferences	given	in	Table	18.1.	The	LPP	method,	on	the
other	hand,	utilizes	all	the	information	provided	by	the	designer	in	Table	18.1	to	formulate
the	 problem.	 With	 the	 LPP	 method,	 observe	 that	 the	 optimum	 point	 R	 =	 (31,	 20.8)
(Fig.	 18.5	 (d))	 lies	 on	 the	 desirable/tolerable	 boundary	 for	μ1,	 and	 within	 the	 tolerable
range	for	μ2.

In	addition,	it	is	interesting	to	contrast	the	contours	of	the	LPP	AOF	against	those	of	the
GP	 AOF	 in	 Fig.	 18.5.	 The	 shape	 and	 the	 number	 of	 sides	 of	 these	 contours	 are
significantly	different.	These	observations	can	be	better	understood	from	Fig.	18.4,	where
a	three-dimensional	representation	is	provided.

18.6 	Summary

Most	numerical	optimization	algorithms	are	developed	for	application	 to	single	objective
problems.	 To	 pose	 the	 multiobjective	 problem	 in	 a	 single	 objective	 framework,	 the
designer	needs	to	effectively	aggregate	the	criteria	into	a	single	AOF.	In	doing	so,	he/she
has	 to	model	 the	 intra-criterion	and	 inter-criteria	preferences	 into	 the	AOF.	This	 chapter
presented	 the	 Physical	 Programming	 framework	 for	 AOF	 formulation.	 The	 PP	 method
provides	a	 framework	 to	 unambiguously	 incorporate	 the	 designer’s	 preferences	 into	 the
AOF.	 The	 PP	 method	 precludes	 the	 need	 for	 the	 designer	 to	 specify	 physically
meaningless	weights.	The	PP	algorithm	generates	the	weights	of	the	class	 function	based
on	 the	 designer’s	 preferences,	 allowing	 the	 designer	 to	 focus	 on	 specifying	 physically
meaningful	preference	values	for	each	objective.	This	renders	the	PP	method	unique,	and
provides	an	effective	framework	for	multiobjective	decision-making.	The	PP	method	has
been	 applied	 to	 a	 wide	 variety	 of	 applications,	 such	 as	 product	 design,	 multiobjective
robust	 design,	 production	 planning,	 and	 aircraft	 structure	 optimization	 (see
Refs.	[6,	7,	8,	9,	10,	11]).

18.7 	Problems

Graduate	Level	Problems

18.1 Read	the	paper:	Messac,	A.,	“From	Dubious	Construction	of	Objective	Functions	to
the	 Application	 of	 Physical	 Programming”	 (Ref.	 [12]).	 Prepare	 a	 two	 page
summary	 of	 this	 paper	 in	 your	 own	 words,	 emphasizing	 the	 key	 messages	 and
approach.
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19

Evolutionary	Algorithms

19.1 	Overview

This	book	has	presented	various	algorithms	and	applications	where	the	optimizer	was	primarily
gradient-based	(i.e.,	the	search	direction	is	governed	by	gradient	and/or	Hessian	information).
This	chapter	 introduces	 an	 entirely	 different	 class	 of	 optimization	 algorithms	 called	 the
evolutionary	algorithms	(EA).	Evolutionary	algorithms	imitate	natural	selection	processes	to
develop	powerful	computational	algorithms	to	select	optimal	solutions.	Genetic	algorithms
(GA),	simulated	annealing	(SA),	ant	colony	optimization	(ACO),	particle	swarm	optimization
(PSO),	and	tabu	search	(TS)	are	some	of	the	popular	techniques	that	fall	under	the	umbrella	of
evolutionary	algorithms.

The	motivation	for	using	biologically-inspired	computational	approaches	stems	from	two
key	observation.	First,	the	mathematical	optimization	algorithms	in	solving	complex	problems
in	engineering,	computing,	and	other	fields	suffer	strong	limitations.	The	common	challenges
these	areas	revolve	around	the	lack	of	mathematical	models	that	define	the	physical	phenomena,
discontinuous	functions,	and	high	nonlinearity.	Second,	many	complex	problems	encountered
engineering	already	exist	in	nature	in	some	relevant	form.	Optimization	is	inherent	in	nature,
such	as	in	the	process	of	adaptation	performed	by	biological	organisms	in	order	to	survive.
Engineers	and	scientists	continue	to	explore	the	various	efficient	problem-solving	techniques
employed	by	nature	to	optimize	natural	systems.

The	relative	advantages	and	limitations	of	EAs	vs.	traditional	optimization	methods	are	as
follows:

1. Traditional	algorithms	typically	generate	a	single	candidate	optimum	at	each	iteration	that
progresses	toward	the	optimal	solution.	Evolutionary	algorithms	generate	a	population	of
points	at	each	iteration.	The	best	point	in	the	population	approaches	an	optimal	solution.

2. Traditional	algorithms	calculate	the	candidate	optimal	point	at	 the	next	 iteration	by	a
deterministic	computation.	EAs	usually	select	the	next	population	by	a	combination	of
operations	that	use	random	number	generators.

3. Traditional	algorithms	require	gradient	and/or	Hessian	information	to	proceed,	while	EAs
usually	require	only	function	values.	As	a	result,	EAs	can	solve	a	variety	of	optimization
problems	in	which	the	objective	function	is	not	smooth	and	potentially	discontinuous.

4. To	their	disadvantage,	EAs	often	require	more	function	evaluations	than	do	gradient-based
methods,	particularly	for	single-objective	optimization.	The	computation	time	associated
with	EAs	is	longer	than	that	of	the	gradient-based	methods.

5. Evolutionary	algorithms	are	stochastic	methods	that	typically	involve	random	choices.
Therefore,	different	runs	of	the	same	EA	code	may	yield	different	optimal	solutions.

6. Evolutionary	algorithms	do	not	have	proofs	of	convergence	to	an	optimal	solution;	unlike
gradient	based	methods,	where	at	least	a	local	optimum	is	guaranteed	upon	convergence.



has	been	observed	in	practice	that	evolutionary	algorithms,	if	employed	with	careful	settings,
have	the	potential	to	yield	globally	optimal	solutions.	Because	of	the	inherent	randomness
the	search	process	of	EAs,	a	much	larger	solution	space	is	generally	explored	when	compared
to	traditional	methods,	which	are	limited	in	their	search	scope.

This	chapter	focusses	on	genetic	algorithms	(Sec.	19.2)	because	they	are	the	most	popular
evolutionary	algorithms	used	 in	 the	 design	 optimization	 community.	Using	 a	 simplified
example,	the	basic	concept	of	a	genetic	algorithm	is	explained.	Multiobjective	optimization
with	GAs	is	discussed	in	Sec.	19.3	using	an	example.	A	brief	overview	of	other	evolutionary
algorithms	is	provided	with	pertinent	references	in	Sec.	19.4.	A	summary	of	the	chapter	is
provided	in	Sec.	19.5.

19.2 	Genetic	Algorithms

This	section	explains	the	basics	of	how	a	GA	works.	Practical	software	implementations	are
outside	the	scope	of	this	introductory	chapter.	MATLAB	provides	the	“Genetic	Algorithms	and
Direct	Search	Solvers”	that	provides	software	implementations	of	optimization	using	GAs.
Genetic	algorithms	have	been	used	to	solve	a	wide	range	of	problems	involving	continuous
discrete	variables.	For	example,	the	use	of	GAs	is	popular	for	the	optimization	of	laminate
composite	structures	[1],	multiobjective	optimization	(presented	 later),	and	structural	and
design	problems.	A	simplified	version	of	a	GA	is	demonstrated	next	using	an	example.

19.2.1 	Basics	of	Genetic	Algorithms

A	genetic	algorithm	repeatedly	modifies	a	set	or	population	of	solutions	or	individuals	in	the
course	of	its	entire	run.	At	each	step,	the	genetic	algorithm	selects	individuals	from	the	current
population	to	be	parents	based	on	certain	criteria	(discussed	shortly).	The	parents	are	then	used
to	produce	the	next	generation	of	individuals,	called	children.	Over	successive	generations,
population	“evolves”	toward	an	optimal	solution,	or	a	set	of	Pareto	optimal	solutions	(in	the
of	a	multiobjective	problem).

This	section	describes	how	GAs	work	by	minimizing	the	function	f(x) = x2,	0 < x < 40.	
objective	function	is	also	known	as	the	fitness	function	in	the	GA	literature.	A	similar	example
further	helps	us	to	understand	how	GAs	work	is	available	in	Ref.	[2].

In	its	simplest	form,	a	GA	implementation	involves	the	following	tasks.

1. Encoding:	Encoding	is	a	method	that	represent	individuals	in	evolutionary	algorithms.
Typically,	individuals	are	coded	as	a	fixed	length	string	(e.g.,	a	binary	number	with	0’s	
This	string	is	also	known	as	a	chromosome.	Other	variable	string	length	encodings	are	also
possible	[3,		2].	Coding	is	a	representation	of	a	number	as	a	string	of	0’s	and	1’s.

Example:	We	could	use	a	string	length	of	5	to	code	a	number	in	binary	(e.g.,	10001).
string	can	be	de-coded	into	a	base	10	decimal	number	as

1	×	24	+	0	×	23	+	0	×	22	+	0	×	21	+	1	×	20	=	16	+	1	=	17 (19.1)

2. Initial	population:	The	algorithm	begins	by	generating	a	 random	 initial	 population.
Important	initialization	choices,	such	as	the	number	of	individuals	in	each	population	and



number	of	bits	in	the	encoding,	must	be	made	by	 the	user.	These	choices	govern	 the
performance	of	the	GA.	A	detailed	discussion	can	be	found	in	[2].

Example:	Assume	six	individuals	in	the	population	for	the	present	example.	Each
individual	(represented	by	a	row	in	Fig.	19.1)	is	randomly	generated	by	a	series	of
coin	flips,	heads=1	and	tails=0.	Note	that	five	coin	flips	are	needed	because	we	chose
encode	each	individual	using	a	5-bit	binary	string.	Say	the	initial	population	generated
10101,	11001,	01001,	11101,	10111,	and	10000	(Column	2	in	Fig.	19.1).	In	the	decimal
system,	the	initial	population	is	the	following	set	of	numbers	{21,	25,	9,	29,	23,	16
(Column	3	in	Fig.	19.1).	Now	evaluate	the	fitness	function	value	(f(x)	=	x2)	at	each
individuals	in	the	initial	population.	The	fitness	function	value	set	is	{441,	625,	81,
529,	256}	(Column	4	in	Fig.	19.1).

Figure	19.1.	Basics	of	Genetic	Algorithms

Now	proceed	to	the	next	step.

3. Reproduction:	A	new	generation,	called	child,	in	the	genetic	algorithm	is	created	by
reproduction	from	the	previous	generation,	called	the	parent.	The	notion	of	“survival	of	the
fittest”	is	usually	used	in	genetic	algorithms.	There	are	three	main	mechanisms	used	to	
new	generation.	Different	implementations	of	GAs	use	different	combinations	of	the	three
ideas	below.

a) Elitism:	In	this	approach,	the	individuals	with	the	best	fitness	values	in	the	current	generation
are	guaranteed	to	survive	in	the	next	generation.

Example:	In	the	example	considered	earlier,	of	the	five	individuals	in	the	parent
population,	{10101,	11001,	01001,	11101,	10111},	the	third	individual,	01001,	had
lowest	 function	 value	 for	 the	 current	minimization	 problem.	 This	 individual	 is
considered	elite,	and	will	become	part	of	the	next	generation.

b) Crossover:	In	this	technique,	some	bits	of	the	encoded	string	of	one	parent	individual
exchanged	with	the	corresponding	bits	of	another	parent	individual.	A	series	of	random
choices	are	made	for	this	mechanism,	which	are	explained	with	the	following	example.

Example:	Assume	that	the	elite	individual,	01001,	is	part	of	the	next	generation.	First,
choose	which	individual	is	to	be	crossed	over	with	which	individual	(e.g.,	Individual
with	Individual	2,	Individual	1	with	Individual	3,	or	Individual	1	with	Individual	4).
choice	is	usually	made	randomly.	Assume	that	Individual	1,	10101,	is	crossed	over
Individual	2,	11001;	and	Individual	4,	11101,	is	crossed	over	with	Individual	5,	10111.

Next,	decide	how	many	bits	in	the	individuals	will	be	exchanged.	For	example,	will
2,	3,	or	4	bits?	This	choice	is	also	made	randomly.	Assume	that	3	bits	in	the	string	
exchanged	for	Individuals	1	and	2,	and	one	bit	will	be	exchanged	for	Individuals	4



(shown	by	the	grey	shaded	regions	in	Rows	1,	2,	4,	and	5	in	Fig.	19.1).

The	final	choice	to	be	made	(again	implemented	using	random	numbers)	is	the	positions
of	the	bits.	For	example,	exchange	the	first	three	bits	or	the	last	three	bits.	For	this	
the	first	three	bits	will	be	exchanged	for	Individuals	1	and	2,	and	Bit	2	for	Individuals
5	(shown	by	the	grey	shaded	regions	in	Rows	1,	2,	4,	and	5	in	Fig.	19.1).

c) Mutation:	Unlike	the	crossover	operation	(which	requires	two	parents),	mutation	children
are	generated	from	a	single	parent	by	randomly	reversing	some	bits	from	0	to	1,	or	vice
In	most	GA	implementations,	a	probability	value	for	a	mutation	to	occur	is	assumed.

Example:	Make	the	random	choice	that	Individual	6	goes	through	a	mutation	on	Bits
and	3.	As	shown	in	Fig.	19.1,	the	bits	are	reversed	for	these	two	positions,	leading	
child	(noted	by	the	grey	shaded	regions	in	the	last	row	in	Fig.	19.1).

Column	7	 in	Fig.	19.1	presents	 the	child	population	generated	 by	 the	 above	 three
mechanisms.	The	decimal	equivalents	are	reported	in	Column	8.

4. The	function	values	of	the	new	population	that	is	generated	are	computed,	as	shown	in
Fig.	19.1.	Using	a	combination	of	the	above	reproduction	options,	the	algorithm	proceeds
further	until	a	desired	stopping	criterion	is	achieved.	Examples	of	stopping	criteria	include
the	number	of	generations,	time	limit,	and	function	tolerance.

Example:	Observe	the	function	values	of	the	child	population	presented	in	the	last
column	of	Fig.	19.1.	The	best	individual	in	the	child	generation	shows	a	decrease	in
function	value	when	compared	to	the	parent	generation.

Options	available	in	the	MATLAB	Genetic	Algorithm	and	Direct	Search	Solvers	are	specified
within	the	Global	Optimization	Toolbox.	The	GA	Solver	will	be	used	to	demonstrate	how	a
software	implementation	of	GA	works.

19.2.2 	Options	in	MATLAB

The	 MATLAB	 GA	 Solver,	 within	 the	 Global	 Optimization	 Toolbox,	 has	 software
implementations	of	several	GA	capabilities.	The	ga	command	provides	nonlinear	constrained
optimization	 capabilities,	 and	 the	 gamultiobj	 command	 allows	 for	 multiobjective
optimization	(we	will	study	this	later).	In	this	subsection,	we	will	solve	an	example	problem
using	the	traditional	gradient	based	solvers	in	MATLAB	(fmincon)	and	the	genetic	algorithm
routine.

We	note	that	the	genetic	algorithm	by	itself	allows	only	for	unconstrained	optimization.
Nonlinear	constraints	are	usually	incorporated	using	penalty	schemes,	which	were	discussed
Chapter	13.	Consider	the	following	constrained	optimization	problem.

(19.2)

subject	to

(19.3)
(19.4)
(19.5)



Let	us	now	discuss	how	this	problem	can	be	setup	 in	MATLAB.	There	are	 two	options
possible:	(1)	we	can	invoke	the	ga	command	from	the	graphical	user	interface	of	the	GA	Solver
(we	will	explore	this	option	in	the	next	section),	or	(2)	we	can	call	the	ga	command	from	an
file.	We	will	need	to	generate	three	M-files:	a	main	file,	an	objective	function	file,	and	a
constraint	function	file.	Note	that	this	file	structure	is	similar	to	the	one	we	used	with	fmincon
The	main.m	file	contains	the	initializations,	bounds,	options,	and	the	ga	command.	The	confun.m
file	contains	the	nonlinear	inequality	and	equality	constraints.	The	objfun.m	file	contains	the
objective	or	the	fitness	function	definition.	The	files	are	shown	below.

1. Main	file
clc		

clear	all		

close	all		

global	fcount			%	to	count	function	evaluations		

lb=[-5	-5];					%Lower	bound		

ub=[5	5];							%Upper	bound		

A	=	[];									%LHS	matrix	for	linear	inequalities		

b	=	[];									%RHS	vector	for	linear	inequalities		

Aeq	=	[];							%LHS	matrix	for	linear	equalities		

beq	=	[];							%RHS	vector	for	linear	equalities		

%If	you	do	not	specify	options,	defaults	are	used.		

fcount	=	0;					%Initialize	function	count		

nvars	=	2;						%	Number	of	design	variables		

	

[x,fval]	=	ga(@objfun,nvars,A,b,Aeq,beq,lb,ub,@confun);		

%	More	arguments	are	available,	check	\Matlab\	help		

	

display(fcount)		

display(x)

2. Objective	function	file
function	f=	objfun(x)		

global	fcount		

fcount	=	fcount+1;		

f=	x(1)^2+10*x(2)^2-3*x(1)*x(2);

3. Constraint	function	file
function	[c,ceq]=	confun(x)		

c(1)	=	4-2*x(1)-x(2);		

c(2)	=	-5	-	x(1)	-	x(2);		

ceq	=	[];

Some	important	observations	that	can	be	made	from	this	example	are:

1. Each	run	of	the	genetic	algorithm	may	yield	a	slightly	different	result.	This	is	to	be	expected,
since	the	genetic	algorithm	is	stochastic	in	nature	and	involves	random	operators.	Multiple
runs	are	required	to	build	confidence	in	the	solution.	The	solution	for	this	problem	is	x1
1.825,x2	 =	 0.3593,	 and	 is	 generated	 correctly	 by	 the	GA.	 Interestingly,	 solving	 this
optimization	problem	using	fmincon	yields	the	same	results.	(Think	of	why	that	might	be?)

2. GAs	 require	 a	 large	 number	 of	 function	 evaluations.	 For	 this	 example,	 ga	 requires
approximately	4,000	function	evaluations,	while	fmincon	requires	only	16	evaluations.	
this	is	a	relatively	simple	problem,	the	issue	of	function	evaluations	may	seem	trivial.	In



computationally	expensive	models,	however,	the	associated	burden	can	become	significant.

3. There	are	 several	 settings	within	 the	 ga	 command	 in	MATLAB	 that	 can	 improve	 the
computational	performance	of	the	ga.

Another	popular	application	of	GAs	is	to	obtain	Pareto	optimal	sets	 for	multiobjective
problems,	which	we	discuss	next.

19.3 	Multiobjective	Optimization	Using	Genetic	Algorithms

Several	 approaches	 for	 solving	multiobjective	 optimization	 problems	were	 discussed	 in
Chapter	6.	Most	of	the	previously	studied	methods	involved	the	weight-based	aggregation	of	the
objectives	into	a	single	function.	One	of	the	most	significant	drawbacks	of	the	weight-based
methods	is	the	need	to	specify	appropriate	weights,	which	is	often	a	significant	challenge.

The	motivation	for	using	evolutionary	algorithms	to	solve	multiobjective	problems	is	two-
fold:	(1)	EAs	work	with	a	population	of	candidate	solutions,	and	use	the	concept	of	non-
domination;	thereby	allowing	for	a	series	of	Pareto	solutions	to	be	found	in	one	converged	
This	in	in	contrast	to	applying	traditional	techniques	where	the	Pareto	solutions	are	found
sequentially,	one	run	at	a	time.	(2)	EAs	are	significantly	less	sensitive	to	the	shape	of	the	Pareto
frontier	(convex	or	concave)	or	to	discontinuous	Pareto	fronts.

There	are	many	implementations	of	multiobjective	genetic	algorithms	(MOGA)	available
the	literature	[4,	5,	6,	7,	8].	The	first	practical	implementation	of	a	MOGA	was	called	vector
evaluated	genetic	algorithm	(VEGA)	by	Schaffer	[9].	A	drawback	of	the	VEGA	approach	is	its
bias	toward	some	Pareto	solutions.	A	so-called	non-dominated	sorting	procedure	[5,	10]	was
later	implemented	by	several	researchers	to	overcome	the	drawbacks	of	VEGA.	A	ranking
procedure	is	adopted	to	rank	individuals	in	a	population.	An	individual,	a,	is	said	to	dominate
another	individual,	b,	if	a	is	strictly	better	than	b	in	at	least	one	objective,	and	a	is	no	worse	than
b	in	all	objectives.	A	distance	measure	is	used	to	compare	individuals	with	equal	rank.

MATLAB	provides	a	multiobjective	optimization	algorithm	based	on	GAs	called	gamultiobj
An	example	is	provided	to	illustrate	how	the	gamultiobj	works.

19.3.1 	Example

Recall	the	following	optimization	problem	from	the	exercises	of	Chapter	6	(Problem	6.2).	The
Pareto	frontier	for	this	problem	is	non-convex,	and	cannot	be	generated	using	a	weighted-sum
method.	This	multiobjective	problem	can	be	solved	using	the	MATLAB	Genetic	Algorithm	Solver.

(19.6)

subject	to

(19.7)

The	gamultiobj	accepts	only	linear	equality	constraints,	linear	inequality	constraints,	and
bounds	on	the	design	variables.	We	now	explore	the	graphical	user	interface	(GUI)	of	the
MATLAB	GA	Solver,	within	the	Global	Optimization	Toolbox.	Figure	19.2	provides	a	screen



of	 the	 optimization	 tool	 that	 has	 various	 options.	 This	 screen	 can	 be	 opened	 by	 typing
optimtool(′gamultiobj′)	in	the	Command	Window.	Alternatively,	you	can	type	optimtool
the	Command	Window,	followed	by	choosing	the	gamultiobj	solver	option	from	the	top	left
dropdown	menu.	Before	you	can	use	this	tool,	you	need	 to	create	a	 file	 that	contains	 the
objective	function	objsin.m	that	defines	the	two	objectives,	as	shown	below.
function	f	=	objsin(x)		

f(1)	=	sin(x);		

f(2)	=	1	-	sin(x)^7;

Figure	19.2.	The	MATLAB	Genetic	Algorithm	and	Direct	Search	Toolbox

In	the	GUI	for	the	GA	Solver,	the	user	can	provide	the	function	handle	for	the	fitness	function,
shown	in	Fig.	19.1.	Please	keep	in	mind	that	the	objsin.m	file	must	be	saved	in	the	current
in	MATLAB.	In	Fig.	19.2,	note	the	selections	highlighted	by	boxes.	There	are	several	other	options
in	the	window.	Based	on	these	options,	the	solutions	may	change.	For	the	latest	help	on	the
additional	features,	refer	to	MATLAB	help.

Figure	 19.3	 depicts	 the	 Pareto	 frontier	 for	 this	 problem	 as	 generated	 by	 the
MATLAB	Multiobjective	Genetic	Algorithm	Solver.	When	the	Parallel	Computing	Toolbox	is
available	in	the	GUI	for	the	GA	Solver,	it	is	possible	to	set	the	option	as	“in	parallel”	 for
evaluating	fitness	and	constraint	functions.	By	using	the	built-in	parallel	computing	capabilities
or	defining	a	custom	parallel	computing	implementation	of	the	optimization	problem,	it	is
possible	to	significantly	decrease	solution	time.



Figure	19.3.	Pareto	Front	for	Multiobjective	Genetic	Algorithm	Example

19.4 	Other	Evolutionary	Algorithms

This	section	summarizes	other	major	metaheuristic	and/or	non-gradient-based	algorithms.
Similar	to	Genetic	Algorithms,	some	of	these	algorithms	are	also	inspired	by	natural	phenomena
such	as	the	social	behavior	of	animals	(e.g.,	particle	swarm	optimization	(Sec.	19.4.4),	ant
colony	optimization	(Sec.	19.4.1),	and	predator-prey	optimization	[11,	12]).	These	algorithms
are	often	jointly	classified	as	evolutionary	algorithms	in	the	literature;	however,	all	of	them
not	necessarily	mimic	evolutionary	phenomena	(e.g.,	swarm-based	algorithms).	Thus,	a	more
technically	appropriate	name	for	this	class	of	algorithms	may	be	“nature-inspired	optimization
algorithms.”	There	also	exist	metaheuristic	algorithms	that	are	inspired	by	human	behavior
human-developed	 processes	 (e.g.,	 tabu	 search	 (Sec.	 19.4.3)	 and	 simulated	 annealing
(Sec.	19.4.2)).	Overall,	these	classes	of	algorithms	are	generally	 intended	 to	solve	highly
nonlinear	optimization	problems,	which	involve	non-convex,	discontinuous,	or	multi-modal
criteria	functions.	A	brief	 introduction	 to	 four	of	 these	major	metaheuristic	algorithms	 is
provided	below.

19.4.1 	Ant	Colony	Optimization

The	ant	colony	optimization	algorithm	(ACO),	introduced	by	Marco	Dorigo	in	1992	in	his
Ph.D.	thesis,	 is	a	probabilistic	 technique	for	solving	computational	problems	 that	can	be
reduced	to	finding	good	paths	through	graphs.	They	are	inspired	by	the	behavior	of	ants	in
finding	paths	from	the	colony	to	food.	In	their	path	to	search	for	food,	ants	deposit	a	substance
called	phermone	that	helps	them	smell	or	identify	the	path	for	later	use.	In	a	group	of	ants,	each
ant	goes	in	search	of	food	in	a	random	direction.	The	ant	that	finds	the	shortest	path	to	food
returns	to	the	colony	in	the	shortest	time.	Deciding	which	path	to	take	can	be	based	on	the
amount	of	phermone.	A	larger	phermone	concentration	along	a	path	usually	implies	that	a	higher
number	of	ants	used	 the	path,	 inferring	 that	 the	 path	 is	 likely	 shorter.	 Longer	 paths	 are
progressively	abandoned.	The	subsequent	ant	searches	then	use	the	phermone	along	the	shortest



path	to	direct	their	search.	More	details	and	examples	are	provided	in	[13].

19.4.2 	Simulated	Annealing

This	method	mimics	the	metallurgical	process	of	annealing:	heating	a	material	and	slowly
lowering	the	temperature	to	decrease	defects,	thus	minimizing	the	system	energy.	At	each
iteration	of	the	simulated	annealing	algorithm,	a	new	point	is	randomly	generated.	The	distance
of	the	new	point	from	the	current	point,	or	the	extent	of	the	search,	is	based	on	a	probability
distribution	with	a	scale	proportional	to	the	temperature.	The	algorithm	accepts	all	the	new
points	that	lower	the	objective	function;	but	also,	with	a	certain	probability,	points	that	raise	the
objective	function.	By	accepting	points	that	raise	the	objective	function,	the	algorithm	minimizes
the	likelihood	of	being	trapped	in	local	minima,	and	is	capable	of	greater	global	exploration.
annealing	schedule	is	selected	to	systematically	decrease	the	temperature	as	the	algorithm
proceeds.	As	the	temperature	decreases,	 the	algorithm	reduces	 the	extent	of	 its	search	 to
converge	to	a	minimum.	More	details	and	examples	are	provided	in	[14].

19.4.3 	Tabu	Search

Tabu	Search	is	a	mathematical	optimization	method	belonging	to	the	class	of	local	search
techniques.	Tabu	Search	enhances	the	performance	of	a	local	search	method	by	using	memory
structures:	once	a	potential	solution	has	been	determined,	it	is	marked	as	“taboo”	so	that	the
algorithm	does	not	visit	that	possibility	repeatedly.	More	details	and	examples	are	provided
in	[15].

19.4.4 	Particle	Swarm	Optimization	(PSO)

The	Particle	Swarm	Optimization	(PSO)	algorithm	imitates	the	dynamics	of	swarm	behavior
observed	in	nature	(e.g.,	a	flock	of	geese	or	a	swarm	of	bees).	In	PSO,	an	initial	set	of	randomly
generated	individuals	is	used,	with	each	as	a	candidate	solution.	These	individuals	are	also
known	 as	 particles;	 hence	 the	 name	 particle	 swarm.	Over	 a	 sequence	 of	 iterations,	 the
population	of	particles	searches	for	(or	ideally	converges	to)	the	global	optimum,	where	the
motion	of	each	particle	in	the	design	space	is	guided	by	a	velocity	update	equation	inspired	by
perceived	swarm	behavior.	In	this	strategy,	the	locations	of	best	fitness	are	remembered	or
recorded	by	each	individual.	An	individual’s	best	solution	or	success	is	called	the	particle	best,
and	this	information	is	shared	with	the	neighbors.	A	swarm	is	typically	modeled	by	particles
a	multidimensional	space,	where	each	particle	has	a	position	and	a	velocity	at	each	iteration.
details	and	examples	are	provided	in	[16,	14,	17].	With	the	above	basic	overview	of	certain
evolutionary	algorithms,	we	conclude	this	chapter.

19.5 	Summary

In	this	chapter,	we	presented	the	basics	of	popular	evolutionary	algorithms.	The	important
differences	between	 traditional	 optimization	 algorithms	 and	 evolutionary	 algorithms	 are
discussed.	We	primarily	focus	on	genetic	algorithms	because	of	their	popularity	in	the	design
optimization	community.	We	also	illustrate	the	use	of	the	MATLAB	genetic	algorithm	tools	for



single	objective	and	multiobjective	optimizaton	using	examples.	A	brief	review	of	other	popular
non-gradient-based	algorithms	is	also	presented.

19.6 	Problems

19.1 Using	 the	 MATLAB	 Genetic	 Algorithms	 Solver,	 reproduce	 the	 results	 shown	 in
Fig.	19.3.

19.2 Reproduce	the	results	presented	in	Sec.	19.2.2	using	both	 the	ga	and	 the	fmincon
commands.	Perform	the	comparison	for	the	number	of	function	evaluations.

19.3 Solve	the	following	problem	using	the	multiobjective	optimization	tool	in	the	GA	Solver
MATLAB.

(19.8)

where

(19.9)

(19.10)

subject	to

(19.11)

Try	solving	the	above	problem	using	the	weighted	sum	method	(Use	fmincon).	Can	
obtain	a	good	representation	of	the	Pareto	frontier?	Explain	why.

19.4 Recall	that	we	solved	the	following	problem	earlier.	Let	us	now	employ	GAs	to	solve
problem.

Figure	19.4.	Sandwich	Beam	Designed	with	Vibrating	Motor

A	vibratory	disturbance	(at	v	Hz)	is	imparted	from	the	motor	onto	the	beam.	The	beam	is
of	length,	L,	and	width,	b.	The	variables,	d1	and	d2,	respectively,	locate	the	contact	of
materials	one	and	two,	and	two	and	three.	The	variable,	d3,	locates	the	top	of	the	beam.
The	mass	density,	Young’s	modulus,	and	cost	per	unit	volume	for	materials	one,	two,	and



three,	are	respectively	denoted	by	the	triplets	(ρ1,	E1,	c1),	(ρ2,	E2,	c2),	and	(ρ3,	E3,	c3).

The	overall	objective	is	to	design	the	preceding	sandwich	beam	in	such	a	way	as	to
passively	minimize	the	vibration	of	the	beam	that	results	from	the	disturbance	(v	=
10Hz).	Minimizing	the	vibration	will	require	maximizing	the	fundamental	frequency,
of	the	beam.	The	optimal	solution	should	be	such	that	the	fundamental	frequency	is
maximized	economically	(i.e.,	at	minimum	cost,	c).	The	following	aggregate	objective
function	is	provided	to	you.

f	=	–50Fr2	+	100C2 (19.12)

In	the	design	of	the	plant,	the	quantities	of	interest	are	as	follows:

(19.13)
(19.14)
(19.15)
(19.16)
(19.17)
(19.18)
(19.19)
(19.20)

The	constraints	are	given	as	follows.

(19.21)
(19.22)
(19.23)
(19.24)
(19.25)
(19.26)
(19.27)
(19.28)
(19.29)

The	other	constants	are	ρ1	=	100	kg/m3,	ρ2	=	2,	770	kg/m3,	ρ3	=	7,	780	kg/m3,	E1	=
1.6×109	Pa,	E2	=	70×109	Pa,	E3	=	200×109	Pa,	c1	=	500	$/m3,	c2	=	1,	500	$/m3,	and	
800	$/m3.	

(1) Solve	the	above	optimization	problem	using	fmincon.

(2) Solve	the	optimization	problem	using	the	genetic	algorithm	solver	in	MATLAB.
Run	 the	 program	20	 times.	Do	you	obtain	 the	 same	 answer	 for	 all	 the	 runs?
Explain	why	or	why	not?

(3) You	may	have	noticed	that	for	some	runs,	ga	terminates	with	an	error	that	the
nonlinear	 constraint	 file	 is	 not	 returning	 a	 real	 value.	 Determine	 why	 that



happens	 by	 closely	 examining	 your	 code.	 How	 would	 you	 fix	 this	 issue?
Subsequently,	re-run	the	ga	 routine	 the	number	of	 times	needed	 to	ensure	 the
issue	has	been	fixed.

(4) As	 we	 studied	 in	 Chapter	 7,	 we	 need	 to	 be	 careful	 about	 numerical	 scaling
issues	 for	 the	 situations	 you	 encountered	 in	 the	 previous	 question.	 Examine
whether	 the	 current	 problem	 has	 such	 scaling	 issues.	 To	 make	 our	 program
more	robust,	fix	the	scaling	issue	as	discussed	in	Chapter	7.

(5) How	many	function	evaluations	does	 the	genetic	algorithm	need?	How	many
function	evaluations	does	fmincon	need?

19.5 Consider	 the	following	 optimization	 problem.	Note	 that	 the	 objective	 function	 is
discontinuous.

(19.30)

where

subject	to

(19.31)

	

(1) Plot	this	function	to	study	the	local/global	optima	for	this	problem.

(2) Use	fmincon	to	minimize	the	function.	Do	you	obtain	the	global	optimum?	Try
different	starting	points.

(3) Now	 try	 the	ga	command.	Do	 you	 obtain	 the	 global	minima?	Note	 that	 you
need	to	change	the	“initial	range”	option	to	help	the	ga	command.

(4) Compare	the	number	of	function	evaluations	for	each	optimization	as	required
by	the	genetic	algorithm	and	fmincon.

19.6 A	salesman	has	to	travel	through	several	cities	(to	sell	his/her	product)	in	such	a	way	that
the	total	traveling	expense	is	minimized.	In	this	case,	the	traveling	expense	is	directly
proportional	to	the	distance	traveled	(Traveling	Salesman	Problem).	Solve	the	Traveling
Salesman	Problem	(TSP)	using	the	MATLAB	GA	function,	for	a	particular	case	where	the
number	of	cities	is	equal	to	five,	as	shown	in	Fig.	19.5.	The	locations	of	the	cities	are
also	given	in	the	figure,	and	the	salesman	can	start	from	any	of	the	cities.



Figure	19.5.	Traveling	Salesman	Problem:	Locations	of	Cities

1. Formulate	the	optimization	problem.

2. Determine	the	optimum	route	for	the	traveling	salesman	(using	MATLAB	GA).

3. If	the	salesman	has	to	return	to	the	starting	city	at	the	end	of	his	journey,	will	the
optimum	route	change?	(Justify	the	answer	through	optimization)
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