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Introduction

’ love NoSQL both as a movement and as a technology. It’s a fast-paced,
constantly changing area. Barely a week goes by without a new NoSQL
database being created to handle a specific real-life problem.

As a movement, NoSQL is interesting in that it started wholly independently
of any commercial organization. In fact, it was the brainchild of interested
individuals who grouped together and shared ideas. Some core ideas
certainly came from large commercial organizations, including the Bigtable
paper from Google and the key-value store paper from Amazon, but NoSQL
was popularized as open source.

The normal process in software development is that several commercial
companies form and compete with one another and gradually the field
narrows. Then, once the remaining companies prove their worth, they’re
gobbled up by big boys like Oracle, IBM, and Microsoft. Open-source
alternatives appear only during the later phases of this cycle.

That’s not the case with NoSQL. Sure, there were a few early commercial
players (very early in MarkLogic’s case — way back in 2001). However, the
majority of publicly available NoSQL products were created in the open
before companies incorporated them into their commercial products.

This book encourages a practical approach to evaluating NoSQL as a set

of technologies and products. The book tells you how to determine which
ones might meet your needs and how select the most appropriate ones. This
information enables you to spot business and technical problems that NoSQL
databases can solve.

After reading this book, not only will you be able to identify which type of
NoSQL database to use, but perhaps more importantly, you’ll know the ques-
tions to ask vendors about their software and services prior to purchasing one.

This book discusses NoSQL in terms of real-life, complex mission-critical
applications. Understanding complex enterprise applications allows you
to see the flaws and benefits of each NoSQL database, and within contexts
similar to the ones you see in your workplace.

This book guides you through this exciting area of technology and high-
lights how you and your organization can achieve similar benefits to those
described. I hope you enjoy the journey!
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Foolish Assumptions

My main aim for the book is to expose many NoSQL databases and point out
their common features and specific use cases.

My other aim is to point out that NoSQL databases are ready for the big time!
[ have gone to pains to point out where things can be configured to support
this, or where gaps still exist in offerings.

[ hope that large enterprises that have not yet widely adopted NoSQL will be
reassured by this book. I also hope that it will act as a call to action to NoSQL
database vendors in hardening their offerings to support the key needs of
each business sector and use cases in such systems.

As this book is considering enterprise classes of problems, I have to be aware
of things like long-term development plans, resilient systems, support, and
availability of services.

I've chosen to cover the following NoSQL databases (plus one search engine):

v Riak: A key-value store

1 MongoDB: An aggregate (document) database that primarily stores
JSON

v Apache Cassandra: A column store (Bigtable clone)
v Neo4j: A triple and graph store

v MarkLogic Server: Primarily stores XML documents, also JSON, binary,
text. Also provides in memory column indexes, a triple store and a
search engine

v Redis: An in-memory only key-value store

v Elasticsearch: An Open Source search engine used with many NoSQL
databases

[ was keen to give a background to a breadth of databases in this book. I also
needed to make sure I wasn’t covering the same subject multiple times. I
decided to cover one database that primarily manages each data type
(document, keys/values, column/tables, triple/graph).

I'm keen to ensure that [ don’t give you the impression that each database
in each data type area is created equal. Although I concentrate on just one
database of each type, I also mention areas where other similar databases
are stronger or weaker where appropriate.
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[ threw in a couple of wildcards. | want to cover Redis as an in memory
database. Although in-memory databases have been around for years,
Redis provides a NoSQL version of this which is applicable to a different set
of problems.

[ also cover a commercial NoSQL solution: MarkLogic Server. I include
this database for two reasons. Firstly, and most importantly, MarkLogic
Server can handle multiple data types whereas the others in my list only
concentrate on one particular domain.

Secondly, I love MarkLogic Server — so much so, I joined MarkLogic as a
Senior Sales Engineer. MarkLogic Server is also the market leader by software
sales in NoSQL databases. (Most companies behind Open Source NoSQL
databases only sell extensions to open source software and services, so this
is perhaps to be expected!)

Although not strictly a database, Elasticsearch does use NoSQL approaches
to its search engine design. NoSQL databases are often used to store semi-
structured and unstructured data. This means search engines are an appro-
priate area to cover. Indeed, Elasticsearch (and Solr/Lucene) are commonly
integrated with Open Source NoSQL databases to provide more advanced
information retrieval and indexing services.

lcons Used in This Book

Throughout the book, you'll see these little graphic icons to identify useful
paragraphs.

3

The Tip icon marks tips and shortcuts that you can take to make a specific
task easier.

The Remember icon marks the information that’s especially important to
know.

The Technical Stuff icon marks information of a highly technical nature that
you can safely skip over with impunity.

The Warning icon tells you to watch out! It marks important information that
may save you headaches. Warning: Don’t skip over these icons!
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Beyond the Book

NoSQL For Dummies includes the following goodies online for easy download:

1 Cheat Sheet: You can find the Cheat Sheet for this book here:
www .dummies.com/cheatsheet/nosql
v Extras: | provide a few extra articles here:

www.dummies .com/extras/nosql

Where to Go from Here

With this book, you have all the information you need to get started on your
journey. You can start with Chapter 1, or you can take a look at the table of
contents and start with a topic that most interests you.


http://www.dummies.com/cheatsheet/nosql
http://www.dummies.com/extras/nosql

Part |
Getting Started with NoSQL

getting started
with

NoSQL



http://www.dummies.com

In this part . . .

v Discover exactly what NoSQL is.
v |dentifying terminology.
v Categorizing technology.

v Visit www.dummies . com for great Dummies content
online.
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Chapter 1

Introducing NoSQL:
The Big Picture

In This Chapter
Examining the past
Recognizing changes

Applying capabilities

rle data landscape has changed. During the past 15 years, the explosion
of the World Wide Web, social media, web forms you have to fill in, and
greater connectivity to the Internet means that more than ever before a vast
array of data is in use.

New and often crucial information is generated hourly, from simple tweets
about what people have for dinner to critical medical notes by healthcare
providers. As a result, systems designers no longer have the luxury of
closeting themselves in a room for a couple of years designing systems

to handle new data. Instead, they must quickly create systems that store
data and make information readily available for search, consolidation, and
analysis. All of this means that a particular kind of systems technology is
needed.

The good news is that a huge array of these kinds of systems already

exists in the form of NoSQL databases. The not-so-good news is that many
people don’t understand what NoSQL databases do or why and how to use
them. Not to worry, though. That’s why I wrote this book. In this chapter,

[ introduce you to NoSQL and help you understand why you need to consider
this technology further now.
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Part I: Getting Started with NoSQL

A Brief History of NoSOL

The perception of the term NoSQL has evolved since it was launched in 1998.
So, in this section, | want to explain how NoSQL is currently defined, and
then propose a more appropriate definition for it. I even cover NoSQL history
background in the side bars.

Amazon and Google papers

NoSQL isn’t a single technology invented by a couple of guys in a garage or a
mathematician theorizing about data structures. The concepts behind NoSQL
developed slowly over several years. Independent groups then took those
ideas and applied them to their own data problems, thereby creating the vari-
ous NoSQL databases that exist today.

Google Bigtable paper

In 2006, Google released a paper that described its Bigtable distributed struc-
tured database. Google described Bigtable as follows: “Bigtable is a distrib-

uted storage system for managing structured data that is designed to scale to
a very large size: petabytes of data across thousands of commodity servers.”

Similar to an RDBMS model at first sight, Bigtable stores rows with a single
key and stores data in the rows within related column families. Therefore,
accessing all related data is as easy as retrieving a record by using an ID
rather than a complex join, as in relational database SQL.

This model also means that distributing data is more straightforward than
with relational databases. By using simple keys, related data — such as all
pages on the same website (given as an example in Google’s paper) — can
be grouped together, which increases the speed of analysis. You can think
of Bigtable as an alternative to many tables with relationships. That is, with
Bigtable, column families allow related data to be stored in a single record.

Bigtable is designed to be distributed on commodity servers, a common
theme for all NoSQL databases created after the information explosion
caused by the adoption of the World Wide Web. A commodity server is one
without complex bells and whistles — for example, Dell or HP servers with
perhaps 2 CPUs, 8 to 16 cores, and 32 to 96GB of RAM. Nothing fancy, lots of
them, and cheaper than buying one big server (which is like putting all your
eggs in one expensive basket).
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The first NoSQL “meetup”

The first documented use of the term NoSQL
was by Carlo Strozzi in 1998. He was visiting
San Francisco and wanted to get some people
together to talk about his lightweight, relational
database.

Relational database management systems
(RDBMS) are the dominant database today. If
you ask computer scientists who have gradu-
ated within the past 20 years what a database
is, odds are they will describe a relational
database.

Carlo used the term NoSQL because his data-
base was accessed via shell scripts, rather
than through use of the standard Structured
Query Language (SQL). The original meaning
was “No SQL.” That is, instead of using SQL,
it used a query mechanism closer to the devel-
oper’s source environment — in Carlo’s case,
the UNIX scripting world.

The use of this term shows a frustration
amongst the developer community with using
SQL. Although an open standard with massive
common support in the prevalent Relational
Databases of the time, the term NoSQL shows
a desire to find a better way. Or at least, a
way better for the poor old developer reading
through complex and long SQL queries.

Carlo’s meeting in San Francisco came and
went. Developers continued to experiment
with alternate query mechanisms. Technology
appeared to abstract complex queries away
from the developer. A prime example is the
Hibernate library in Java, which is driven
by configuration and enables the automatic
generation of value objects that map directly
onto database tables, which means develop-

ers don't have to worry so much about how
the underlying database is structured —
developers just call functions on objects.

There's a cost to using SQL. Complex queries
are hard to debug, and it's even harder to make
them perform well, which increases the cost
of development, administration, and testing.
Finding an alternative mechanism, or a library
to hide the complexities at least, looked like a
good way to reduce costs and make it easier to
adopt best practices.

Abstraction gets you only so far, though.
Eventually, data problems will emerge that
require a completely different way of thinking.
Existing relational technology didn’t work well
with such problems, and the explosion of the
growth of the Internet and World Wide Web
would give rise to these issues.

Moreover, other key things were happening.
In 1991, the first public web page was created,
just seven years before the NoSQL “meetup.”
Yahoo and Amazon were founded in 1994. In
comparison, Google, which we tend to think has
always existed, wasn't founded until 1998. Yes,
there was a web before Google — and before
Google, remember AltaVista (which was even-
tually purchased and shut down by Yahoo!) and
Ask Jeeves (now known as Ask.com)?

The specification for the language used for
system-to-system communication — XML —
was released as a recommendation in 1997. The
XSLT specification — used to transform XML
between formats — came in 1999. The web was
young, wild, and people were still just trying to
figure out how to make money with it. It had not
yet changed the world.

9
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Amazon Dynamo paper

Amazon released a paper of its own in 2007 describing its Dynamo data stor-
age application. In Amazon’s words: “Dynamo is used to manage the state of
services that have very high reliability requirements and need tight control

over the tradeoffs between availability, consistency, cost-effectiveness and

performance.”

The paper goes on the describe how a lot of Amazon data is stored by use
of a primary key, how consistent hashing is used to partition and distribute
data, and how object versioning is used to maintain consistency across data

centers.

The Dynamo paper basically describes the first globally distributed key-value

store used at Amazon. Here the keys are logical IDs, and the values can be
any binary value of interest to the developer. A very simple model, indeed.

The second NoSQL “meetup”

Many open-source NoSQL databases had
emerged by 2009. Riak, MongoDB, HBase,
Accumulo, Hypertable, Redis, Cassandra, and
Neo4j were all created between 2007 and 2009.
These are just a few NoSQL databases cre-
ated during this time, so as you can see, a lot
of systems were produced in a short period of
time. However, even now, innovation moves at
a breakneck speed.

This rapidly changing environment led Eric
Evans from Rackspace and Johan Oskarsson
from Last.fm to organize the first modern NoSQL
meetup. Needing a title for the meeting that
could be distributed easily on social media, they
chose the #NoSQL tag.

The #NoSQL hashtag is the first modern use of
what we today all regard as the term NoSQL.
The description from the meeting is well worth
reading in full — as the sentiment remains
accurate today.

“This meetup is about ‘open source, distributed,
non relational databases’,

Have you run into limitations with traditional
relational databases? Don’t mind trading a
query language for scalability? Or perhaps
you just like shiny new things to try out?
Either way this meetup is for you.

Join us in figuring out why these newfan-
gled Dynamo clones and BigTables have
become so popular lately. We have gath-
ered presenters from the most interesting
projects around to give us all an introduc-
tion to the field.

This meetup included speakers from LinkedIn,
Facebook, Powerset, Stumbleupon, ZVents,
and couch.io who discussed Voldemort,
Cassandra, Dynamite, HBase, Hypertable, and
CouchDB, respectively.

This meeting represented the first time that
people came together to discuss these differ-
ent approaches to nonrelational databases and
to brand them as NoSQL.
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These two papers inspired many different organizations to create their
NoSQL databases. There were so many variations that some people thought
it necessary to meet and discuss the various approaches being taken

(see “The second NoSQL ‘meetup’” sidebar).

What NoSOL means today

Today the NoSQL movement includes hundreds of NoSQL database products,
which has led to a variety of definitions for the term — some with very
common tenets, and others not so common. I cover these tenets in detail in
Chapter 2.

This explosion of databases happened because nonrelational approaches
have been applied to a wide range of problems where an RDBMS has
traditionally been weak (as this book covers in detail). NoSQL databases
were also created for data structures and models that in an RDBMS required
considerable management or shredding and the reconstitution of data in
complex plumbing code.

Each problem resulted in its own solution — and its own NoSQL database,
which is why so many new databases emerged. Similarly, existing products
providing NoSQL features discovered and adopted the NoSQL label, which
makes the jobs of architects, CIOs, and IT purchasers difficult because it’s
unlikely that one NoSQL database can solve all the issues in a particular
business area.

So, how can you know whether NoSQL will help you, or which NoSQL
database to choose? The answer to these questions consume the remainder
of Part I of this book by discussing the variety of NoSQL databases and the
business problems they can solve, beginning with the following section that
covers NoSQL features.

Features of NoSOL

NoSQL books and blogs offer different opinions on what a NoSQL database is.
This section highlights the common opinions, misconceptions, and hype and
fringe opinions.

11
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Common features

Four core features of NoSQL, shown in the following list, apply to most
NoSQL databases. The list compares NoSQL to traditional relational DBMS:

1 Schema agnostic: A database schema is the description of all possible
data and data structures in a relational database. With a NoSQL data-
base, a schema isn’t required, giving you the freedom to store informa-
tion without doing up-front schema design.

+ Nonrelational: Relations in a database establish connections between
tables of data. For example, a list of transaction details can be con-
nected to a separate list of delivery details. With a NoSQL database, this
information is stored as an aggregate — a single record with everything
about the transaction, including the delivery address.

v Commodity hardware: Some databases are designed to operate best (or
only) with specialized storage and processing hardware. With a NoSQL
database, cheap off-the-shelf servers can be used. Adding more of these
cheap servers allows NoSQL databases to scale to handle more data.

1+~ Highly distributable: Distributed databases can store and process a
set of information on more than one device. With a NoSQL database, a
cluster of servers can be used to hold a single large database.

Next, I take you through the preceding terms and describe why NoSQL
databases have each one and when it’s helpful and when it’s not.

Schema agnostic

NoSQL databases are schema agnostic. You aren’t required to do a lot of
up-front design work before you can store data in NoSQL databases. You can
start coding and store and retrieve data without knowing how the database
stores and works internally. (If and when you need advanced functionality,
then you can manually add further indexes or tweak data storage structures.)
Schema agnosticism may be the most significant difference between NoSQL
and relational databases.

An alternative interpretation of schema agnostic is schema on read. You need
to know how the data is stored only when constructing a query (a coded
question that retrieves information from the database), so for practical
purposes, this feature is exactly what it says: You need to know the schema
on read.

The great benefit to a schema agnostic database is that development time is
shortened. This benefit increases as you go through multiple development
releases and need to alter the internal data structures in the database.
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For example, in a traditional RDBMS, you go through a process of schema
redesign. The schema instructs the database on what data to expect. Change
the data stored, or structures, and you must reinstruct the database using a
modified schema. If you were to make a change, you’d have to spend a lot of
time deciding how to re-architect the existing data. In NoSQL databases, you
simply store a different data structure. There’s no need to tell the database
beforehand.

You may have to modify your queries accordingly, maybe add the occasional
specific index (such as an integer range index to allow less than and greater
than data-type specific queries), but the whole process is much less painful
than it is with an RDBMS.

Developers allowed to do whatever they want with a database! This sends
shivers down the spines of CIOs and DBAs. Lack of control is perceived as
inherent risk. But it’s a lack of control only if you let developers change
production systems without first going through a process of development,
functional testing, and user-acceptance testing. I'm not aware that this
process is ever bypassed, so just consider this as a theoretical risk.

RDBMS took off because of its flexibility and because, by using SQL, it sped
up changing a query. NoSQL databases provide this flexibility for changing
both the schema and the query, which is one of the key reasons that they will
be increasingly adopted over time.

Even on query, you may not need to worry too much about knowing the
schema changes — consider an index over a field account number, where
account number can be located anywhere in a document that is stored in a
NoSQL database. You can change the structure and relocate where account
number is stored, and if the element has the same name elsewhere in the
document, it’s still available for query without changes to your query
mechanism.

Sometimes, you'll also find the term schema-less mentioned, which is a
stretch, because there aren’t many occasions when you can do a general
query without knowing that particular fields are present — for example, a
query that is purely full-text search doesn’t restrict itself to a particular field.

Note that not all NoSQL databases are fully schema agnostic. Some, such as
HBase, require you to stop the database to alter column definitions. They’'re
still considered NoSQL databases because not all defined fields (columns in
this case) are required to be known in advance for each record — just the
column families.

RDBMS allows individual fields in records to be identified as null values
(no defined value). The problem with an RDBMS is that stored data size and
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performance are negatively affected when storage is reserved for null values
just in case the record may at some future time have a value in that column.
In Cassandra, you simply don’t provide that column’s data, which solves the
problem.

Nonrelational

Relational database management systems have been the dominant way to
store application data for more than 20 years. A great deal of mathematical
work was done to prove the theory that underpins them.

This underpinning describes how tables relate to each other. A single Order
row may relate to many Delivery Address rows, but each Delivery Address
row also relates to multiple Order rows. This is a many-to-many relationship.

NoSQL databases don’t have this concept of relationships between their
records. They instead denormalize data. This means that in a NoSQL data-
base would have an Order structure with the Delivery Address embedded.
This means the delivery address is duplicated in every Order row that uses
it. This approach has the advantage of not requiring complex query time
joins across multiple data structures (tables) though.

NoSQL databases don’t store information about how individual records
relate to other records in the database, which may sound like a limitation.
However, NoSQL databases are more flexible in terms of the data structures
you can store.

Consider an order from an online retailer. The order could include product
codes, quantities, item prices, and item descriptions, as well as information
about the person ordering, such as delivery address and payment
information.

Relational database bhasics

Relational databases are designed on the must use a mechanism to join tables together
understanding that a row in one table can be asrequired at runtime in order to fit them into a
related to one or more rows in another table. single result structure.

It's possible, therefore, to build up complex

. This joining mechanism is well understood and
interrelated structures.

generally predictable from a performance point
Queries, on the other hand, are returned as  of view.
a single set of rows. This means that a query
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Rather than insert ten rows in a variety of tables in a relational database, you
can instead store a single structure for all of this order information — say, as
a JSON or XML document.

This brings up the question, “Do you really need relationships if all your data
is stored in a single record?” For a lot of applications, especially ones that
need to store exact state for a point in time, such as financial transactions,
the answer is often “No.” However, if you're experienced with relational data-
bases, you may have stored the same information more than once, so there’s
an obvious drawback to storing information in this way.

In relational database theory, the goal is to normalize your data (that is,
to organize the fields and tables to remove duplicate data). In NoSQL
databases — especially Document or Aggregate databases — you often
deliberately denormalize data, storing some data multiple times.

You can store, for example, “Customer Delivery Address” multiple times
across many orders a customer makes over time, rather than store it once
and refer to it in multiple orders. Doing so requires extra storage space, and
a little forethought in managing in your application. So why do it?

There are two advantages to storing data multiple times:

v Easy storage and retrieval: Just save and get a single record.

* Query speed: In relational databases, you join information and add
constraints across tables at query time. This may require the database
engine to evaluate many tables. The more query constraints you have
across different tables, the more you reduce your query speed. (This is
why an RDBMS has precomputed views.) In a NoSQL database, all the
information you need to evaluate your query is in a single document.
Therefore, you can quickly determine the list of matching documents.

Relational views and NoSQL denormalizations are different approaches to the
problem of data spread across records. In NoSQL, you may have to maintain

multiple denormalizations representing different views of the same data. This
approach increases the cost of storage but gives you much better query time.

Given the ever-reducing cost of storage and the increased speed of develop-
ment and querying, denormalized data (aka materialized views) isn’t a Killer

reason to discount NoSQL solutions. It’s just a different way to approach the
same problem, with its own advantages and disadvantages.

Again, there is an exception to this rule! Triple stores and graph databases
have the basic concept of relationships. The difference is that every single
record (a triple consisting of three things — subject, predicate, and object —
such as “Adam likes Cheese™) contains a relationship.
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NoSQL is a fundamentally different approach to related data, very much dif-
ferent from an RDBMS. Hence, the term nonrelational is shorthand for Non-
Relational Mathematics Theory.

Highly distributable and uses commodity hardware

In many NoSQL databases, a key design decision is to use multiple computers
to store data for a single database, rather than have the whole database on a
single server.

Storing data across multiple machines and allowing it to be queried is dif-
ficult. You must send the query to all the servers and wait for a reply.
Hopefully, you set up the machines so that they’re fast enough to talk to each
other to handle distributed queries!

The main advantage of this approach is in the case of very large datasets,
because for some storage requirements, even the largest available single
server couldn’t store or process all the data you need. Consider all the
messages on Twitter and Facebook. You need a distributed mechanism to
effectively manage all that data, even if it’'s mostly about what people had for
breakfast and cute cat videos.

An advantage of distributing your database is that you can use cheaper serv-
ers, called commodity servers, which are cheaper than single very powerful
servers. (However, a decent one will still cost you $10,000!) Even for smaller
datasets, it may be cheaper to buy three commodity servers instead of a
single, higher-powered server.

Another key advantage is that adding high availability is easier; you're
already halfway there by distributing your data. If you replicate your data
once or twice across other servers in the cluster, your data will still be acces-
sible, even if one of the servers crashes, burns, and dies.

Not all open-source databases support high availability unless you buy the
supported, paid-for version of the database from the company that develops it.

An exception to the highly distributable rule is that of graph databases.

In order to effectively answer certain graph queries in a timely fashion, data
needs to be stored on a single server. No one has solved this particular
issue yet.

Carefully consider whether you need a triple store or a graph store. Triple
stores are generally distributable, whereas graph stores aren’t. Which one
you need depends on the queries you must support. You find more on Triple
and Graph Stores in Chapter 2.
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Not-so-common features

Although some features are fairly common to NoSQL databases (for example,
schema agnosticism and non-relational structure), it’s not uncommon for a
database to lack one or more of the following features and still qualify as a
modern NoSQL database.

Open-source

NoSQL software is unique because the open-source movement has driven
development rather than follow a set of commercial companies. You there-
fore can find a host of open-source NoSQL products to suit every need. When
developers couldn’t find a NoSQL database for their needs, they created one,
and published it initially as open-source.

[ didn’t include this in the earlier “Common features” section because the
majority of popular NoSQL solutions are driven by commercial companies,
with the open source variant lacking the key features required for mission
critical use in large enterprises.

The difference between open-source NoSQL vendors and these wholly com-

mercial companies is that open-source vendors have a business model simi-
lar to the Red Hat model. Basically, they release an open-source product and
also sell enterprise add-on features, support, and implementation services.

This isn’t a bad thing! It’s worth noting, though, that people at NoSQL aren’t
driven purely, or even mainly, by open-source developers working in their
spare time — instead, they work for the commercial companies behind the
products.

Buyer beware! When it comes to selecting a NoSQL database, remember
“total cost of ownership.” Many organizations acquired open-source prod-
ucts only to find that they need a high-priced subscription in order to get the
features they want.

BASE versus ACID

Prior to 2014, the majority of NoSQL definitions didn’t include ACID transac-
tion support as a defining feature of NoSQL databases. This is no longer true.

17
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ACID-compliant transaction means the database is designed so it absolutely
will not lose data:

v Each operation moves the database from one valid state to another
(Atomic).

v Everyone has the same view of the data at any point in time
(Consistent).

v Operations on the database don’t interfere with each other (/solation).

v When a database says it has saved data, you know the data is safe
(Durable).

Not many NoSQL databases have ACID transactions. Exceptions to that norm
are FoundationDB, Neo4j, and MarkLogic Server, which do provide fully seri-
alizable ACID transactions.

So why do I include ACID compliance as a not-so-common feature? When the
Oracle RDBMS was released, it didn’t provide ACID compliance either. It took
seven versions before ACID compliance was supported across multiple data-
base updates and tables.

Similarly, if you look at the roadmaps of all the NoSQL databases, you'll see
that all of them refer to work on transactional consistency. MongoDB, for
example, raised $150 million in the fall of 2013 specifically to address this and
other enterprise issues. MongoDB has announced a new ACID compliant stor-
age engine. The ACID versus BASE debate is an interesting one, and I cover it
in detail in Chapter 3.

Enterprise NoSOL

Let me say up front that I've sold enterprise software for nine years and have
implemented it even longer, so as you might guess, I'm passionate on the
subject. Over time, I've witnessed its strong focus on development and sup-
port, both of which are reassuring to major companies looking to make huge
investments in mission-critical software.

How to tell enterprise grade software from popular software — that’s the
hard bit! It’s like those TV shows where they take an old car or motorbike and
refit it completely for its owners. Maybe install a plasma TV, some lightning
decals down the side, and a bopping stereo system. The result looks awe-
some, and the smiling owners jump in ready to drive away. The problem is
that the shiny exterior may be masking some real internal engine problems.
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This book’s definition of NoSQL

| apply the highly scientific duck test to my
definition of NoSQL: /f it looks like a duck,
quacks like a duck, ... then it's probably a
duck! This approach will likely be very familiar
to duck-type language developers, but my
apologies to strictly scientific-minded types.

A piece of software is a NoSQL database if it
adheres to the following:

v Doesn't require a stringent schema for
every record created.

v s distributable on commodity hardware.

v Doesn't use relational database mathemat-
ical theory.

| can just see a few jaws dropping because of
this wide-ranging definition! However, many

different approaches to database design
and theory are prevalent in today’s NoSQL
ecosystem, and as author of this book, | feel
duty-bound to cover them.

This book introduces you to both the mainstream
and the edge cases so that you understand the
boundaries of NoSQL use cases. Consequently,
| cover many databases, some of which you
may decide to use and others you may decide
simply aren’t for you. In my humble opinion,
that's what makes this book stand out from
others (no names and titles, of course, or their
lawyers might chew me up — and none of us
deserves the indigestion that might cause).

19

The same is true of software. Some software is easy to start using, but will be
unreliable in large-scale installations. This is just one example of something
to look out for that I include in this book.

The following list identifies the requisite features that large enterprises look
for (or should look for) when investing in software products that run the core
of their system.

v High availability: Fault tolerance when a single server goes down

v~ Disaster recovery: For when a datacenter goes down, or more likely
someone digs up a network cable just outside the datacenter

+* Support: Someone to stand behind a product when it goes wrong (or it’s
used incorrectly!)

v Services: Product experts who can advise on best practices and help
determine how to use a product to address new or unusual business needs

v Ecosystem: Availability of partners, experienced developers, and prod-
uct information — to avoid being locked into a single vendor’s expensive
support and services contract
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Many NoSQL databases are used by enterprises. Just visit the website of

any of the NoSQL companies, and you'll see a list of them. But there is a
difference between being used by an enterprise, and being a piece of mission-
critical enterprise software.

NoSQL databases are often used as high-speed caches for web-accessible
data on mission-critical systems. If one of these NoSQL systems goes down,
though, you lose only a copy of the data — the mission-critical store is often
an RDBMS! Seriously question enterprise case studies and references to be
sure the features mentioned in the preceding list of enterprise features exist
in a particular NoSQL product.

NoSQL databases have come of age and are being used in major systems by
some of the largest companies. As always, though, the bar needs to be con-
stantly raised. This book is for the many people who are looking for a new
way to deliver mission-critical systems, such as CIOs, software developers,
and software purchasers in large enterprises.

In this book, you find the downsides of particular NoSQL approaches and
databases that aren’t developed sufficiently to produce products of truly
enterprise grade. The information in this book helps to separate propaganda
from fact, which will enable you to make key architecture decisions about
information technology.

Beginning with the following section (and, in fact, in the rest of this book), I
talk about NoSQL in terms of the problems related to mission-critical enter-
prise systems and the solutions to those problems.

Why You Should Care about NoSOL

If you're wondering whether NoSQL is just a niche solution or an increasingly
mainstream one, the answer lies in the following discussion. So, it’s time to
talk about recent trends and how you can use NoSQL databases over and
above the traditional RDBMS approach.

Recent trends in IT

Since the advent of the World Wide Web and the explosion of Internet-
connected devices, information sharing has dramatically increased. Details
of our everyday lives are shared with friends and family, whether they’re
close or continents away. Much of this data is unstructured text; moreover
the structures of data are constantly evolving, making it hard to quantify.
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There are simply no end of things to keep track of (for example, you can’t
predict when a website or newsfeed will be updated, or in what format).

It’s true that search engines help you find potentially useful information;
however, search engines are limited because they can’t distinguish the
nuances of how you search or what you're aiming for.

Furthermore, simply storing, managing, and making use of this information is
a massive task. What’s needed is a set of database solutions that can handle
current and emerging data problems, which leads us back to NoSQL, the
problems, and the possibilities.

Although there’s been an outpouring of enthusiasm by the development
community about NoSQL databases, not many killer applications have been
created and put on the market. These applications will take time to emerge —
right now, NoSQL databases are being used to solve problems that emerge in
conventional approaches.

Problems with conventional approaches

During the initial phases of a new project, people often think, “I need to store
data, and I have an Enterprise License Agreement for an RDBMS, so I'll just
use it.” True, relational DBMS have provided great value over the past 25
years and will continue to do so. Relational databases are great for things
that fit easily into rows and columns. I like to call this kind of data Excel data,
and anything that you can put in a Microsoft Excel spreadsheet, you easily
store in an RDBMS.

However, some problems require a different approach. Not everything fits
well into rows and columns — for example, a book with a tree structure of
cover, parts, chapters, main headings, and subheadings. Likewise, what if a
particular record has a field that could contain two or more values? Breaking
this out into another sheet or table is a bit of overkill, and makes it harder to
work with the data as a single unit.

There are also scenarios in which the relationships themselves can hold their
own metadata. An RDBMS doesn’t handle those situations at all; an RDBMS
just relates records in tables using structures about the relationships known
at design time.

Each of the preceding scenarios has a type of NoSQL database that
overcomes the limitations of an RDBMS for those data types: key-value,
columnar, and triple stores, respectively. Turn to Chapter 2 for more on
those types of NoSQL database.

21
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Many of the problems are because the main type of data being managed
today — unstructured data — is fundamentally different from data in tradi-
tional applications, as you'll see in the following sections.

Schema redesign overhead

Consider a retail website. The original design has a single order with a single
set of delivery information. What if the retailer now needs to package the
products into potentially multiple deliveries?

With a relational system, you now have to spend a lot of time deciding how
best to handle this redesign. Do you create an Order Group concept, with
each group related to a different delivery schedule? Do you instead create a
Delivery Schedule containing delivery information and relate that to Order
Items?

You also have to decide what to do with historical structures. Do you keep
them as they are, perhaps adding a flag for “Order Structure version number”
so that you can decide how to process them?

Developers also must restructure every single one of their queries. Database
administrators have to rework all the views. In short, it’s a massive and
costly undertaking.

If you use a document NoSQL database instead, you can start storing your
new structure immediately. Queries on indexes still work because the same
data is stored in a single document, just elsewhere within it. You have two
sets of display logic for viewing historical orders, but plugging a new view
into an application is a lot easier than redesigning the entire application
stack’s data model. (A stack consists of a database, business application tier,
and user interface.)

Managing feeds of external datasets you cannot control is a similar issue.
Consider the many and varied ways Twitter applications create tweets.
Believe it or not, a simple tweet involves a lot of data, some of it application-
specific and some of it general across all tweets.

Or perhaps you must store and manage XML documents across different
versions of the same XML schema. It’s still a variety problem. You may have
to support both structures at the same time. This is a common situation

in financial services, insurance and public sectors (including federal
government metadata catalogues for libraries), and information-sharing
repositories.

In financial services, FpML is an XML document format used extensively
for managing trades. Some trades, especially in the derivatives market, last
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weeks or months and involve many institutions. Each bank uses its own
particular version of FpML with its own custom tags.

The same is true for retail insurance. Each insurance company has its own
fields and terms, or subset thereof, even if it obeys the same standard, such
as those from the ACORD insurance standards organization.

This is where the schema agnostic, or schema on read, feature of NoSQL
databases really pays for itself — being able to handle any form of data. If the
preceding sentences sound familiar, [ highly recommend that you evaluate a
NoSQL solution to manage your data.

Unstructured data explosion

I started working in sales engineering for FileNet, an enterprise content
management company that’s now part of IBM. I was struck at the time by a
survey concluding that 80 percent of organizations’ data was unstructured

in nature, and that this percentage was increasing. That statistic is still used
today, nine years later, though the proportion is bound to be more now.
Many organizations I've encountered since then still aren’t arranging their
data holistically in a coherent way in order to answer complex questions that
span an entire organization.

Increasingly the focus of organizations has been to use publicly available
data alongside their own to gain greater business insight — for example,
using government-published open data to discover patterns of disease,
research disease outbreak, or to mine Twitter to find how well a particular
product is received.

Whatever the motivation, there is a need to bring together a variety of data,
much of which is unstructured, and use it to answer business questions. A lot
of this data is stored in plain text fields. From tweets to medical notes, having
a computer evaluate what is important within text is really, really hard.

For storing this data and discovering relevant information presents issues,
too. Databases evaluate queries over indexes. Search engines do the same
thing. In NoSQL, there is an ever-increasingly blurred line between where
the database ends and the search engine begins. This enables unstructured
information to be managed in the same way as more regular (albeit rapidly
changing) information. It’s even possible to build in stored searches that
are used to trigger entity extraction and entity enrichment activities in
unstructured data.

Consider a person tweeting about a product. You may have a list of products,
list of medical issues, and list of positive and negative phrases. Being able to
write “If a new tweet arrives that mentions Ibuprofen, flag it as a medication”
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enables you to see how frequently particular medications are used or
to specify that you only want to see records mentioning the medication
Ibuprofen. This process is called entity extraction.

Similarly, if the opinion “really cool” is mentioned, you flag it as an opinion
with a property of positive or negative attached. Flagging data and then
adding extra information is called entity enrichment.

Entity enrichment is a common pattern used when a NoSQL database and
search-alerting techniques are combined (turn to Chapters 3 and 16 for more
on this topic).

The sparse data problem

As I've mentioned, relational databases can suffer from a sparse data prob-
lem — this is where it’s possible for columns to have particular values, but
often the columns are blank.

Consider a contact management system, which may have a field for home
phone, cell phone, twitter ID, email, and other contact fields. If your phone is
anything like mine, usually you have only one or two of these fields present.

Using an RDBMS requires a null value be placed into unused columns.
Potentially, there could be 200 different fields, 99 percent with blank null
values.

An RDBMS will still allocate disk space for these columns, though, because
they potentially could have a value after future edits of the contact data. This
is a great waste of resources. It’s also inefficient to retrieve 198 null values
over SQL in a result set.

NoSQL databases are designed to bypass this problem. They store and index
only what is provided by the client application. No nulls stored, and no
storage space previously allocated, but unused. You just store what you need
to use.

Dynamically changing relationships

You may discover facts and relationships over time. Consider LinkedIn where
someone may be a second-level connection (a friend of a friend). You realize
you know the person, so you add her as a first level relationship by inserting
a single fact or relationship in the application.

You could go one step further and define subclasses of these relationships,
such as worked with, friends with, or married to. You may even add metadata
to these relationships, such as a “known since” date.
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Relational databases aren’t great at managing these things dynamically. Sure
you could model the above relationships, but what if you discover or infer a
new class of relationship between entities or subjects that wasn’t considered
during the original system design?

Using an RDBMS for this would require an ever-increasing storm of many-to-
many relationships and linking tables, one table schema for each relationship
class. This approach would be hard to keep up with and maintain.

Another aspect of complex relationships is on the query side. What if you
want to know all people within three degrees of separation of a person? This
is a common statistic on LinkedIn.

Just writing the SQL gives you a headache. “Return all people who are related
to Personl, or have a relationship with Person2 who is related to Personl, or
is related to Person3, who is related to Person4, who is related to Personl.
Oh, and make sure there are no duplicates, would you please?” Ouch!

These self-referencing queries where the same table references itself are very
difficult to construct a query for in an RDBMS, and typically run poorly.

Triple and graph store NoSQL databases are designed with dynamically
changing relationships in mind. They specifically use a simpler data model
but at terrific scale to ensure these questions can be answered quickly.

Global distribution and access

We live in an interconnected world, but these interconnects don’t have
infinite bandwidth or even guaranteed connectivity. To provide a globally
high-performance service across continents requires a certain amount of
replication of data. For example, a tweet from someone in Wisconsin may
result in a cached copy being written in Ireland or New Zealand. This is to
make read performance better globally.

Many NoSQL databases provide the capability to replicate information to
distributed servers intelligently so as to provide this service. This is gener-
ally built in at the database level and includes management settings and APIs
to tweak for your particular needs. A lot of the time, though, this replication
requires that global copies may have a slightly outdated view of the overall
data. This approach is called an eventual consistency model, which means
you can’t guarantee that a person in Singapore sees all of a person’s tweets if
that person just tweeted in Wisconsin.

For tweets, this lag time is fine. For billion dollar financial transactions, not so
much. Care is needed to manage this (turn to Chapter 3, for more on mission-
critical issues).
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NoSOL benefits and precautions

There’s more to NoSQL than simply being the gleam in the eye of agile web
developers. Real business value can be realized by using a NoSQL database
solution.

NoSQL vendors have focused strongly on ease of development. A technology
can be adopted rapidly only if the development team views it as a lower-cost
alternative. This perspective results in streamlined development processes
or quicker ways to beat traditionally knotty problems, like those in tradi-
tional approaches mentioned in this chapter.

Lower total cost of ownership (TCO) is always a favorite with chief informa-
tion officers. Being able to use commodity hardware and rapidly churn out
new services and features are core features of a NoSQL implementation.
More so with NoSQL than relational DBMS, iterative improvements can be
made quickly and easily, thanks to schema agnosticism.

It’s not all about lower cost or making developers’ lives easier though. A
whole new set of data types and information management problems can be
solved by applying NoSQL approaches.

Hopefully, this chapter has whetted your appetite to find out not just what
NoSQL is good for, but also how these features are provided in different
NoSQL databases.



Chapter 2

NoSQL Database Design
and Terminology

In This Chapter
Identifying and handling different types of data
Describing NoSQL and its terminology
Encompassing the range of consistency options available

Integrating related technologies

N ew data management challenges have triggered a new database
technology — NoSQL. NoSQL thinking and technology mark a shift
away from traditional data management technologies. With all the new terms
and techniques and the wide variety of options, it’s not easy to come up with
a succinct description of NoSQL.

NoSQL databases aren’t a mere layer on top of existing technologies used
to address a slightly different use case. They're different beasts entirely.
Each type of NoSQL database is designed to manage different types of data.
Understanding the data you want to manage will help you apply the right
NoSQL solution.

The popularity of NoSQL databases lies largely in the speed they provide for
developers. NoSQL solutions are quicker to build, update, and deploy than
their relational forerunners. Their design is tuned to ensure fast response
times to particular queries and how data is added to them.

This speed comes with tradeoffs in other areas, including ensuring data
consistency — that is, data that has just been added or updated may not be
immediately available for all users. Understanding where consistency should
and shouldn’t be applied is important when deciding to deploy a NoSQL
solution.
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Modern computer systems don’t exist in a vacuum; they're always
communicating with someone or something. NoSQL databases are commonly
paired with particular complementary computer software, from search
engines to semantic web technologies and Hadoop. Leveraging these
technologies can make deployment of NoSQL more productive and useful.

Managing Different Data Types

[ like to think in lists. When describing something, I list its properties and the
values for those properties. When describing a set of objects, | use a table
with a row for each object and a column for each property. You probably do
something similar, for example, when you use Microsoft Excel or a similar
program to store important information about a set of objects.

Sometimes some of these properties relate objects to other objects. Perhaps
you have a set of drop-down lists, such as Expense Type, on your personal
finance sheet. This Expense Type drop-down list is defined in another sheet
called Reference. This linking, therefore, represents a relationship between
two sheets, or tables.

The relational database management system (RDBMS) was introduced in the
1970s to handle this exact type of data. Today, the RDBMS underpins most
organizations’ applications. Examples of such systems include customer
relationship management (CRM) systems that hold details on prospects, cus-
tomers, products, and sales; and banking systems that include a list of trans-
actions on your bank accounts.

NoSQL databases aren’t restricted to a rows-and-columns approach. They
are designed to handle a great variety of data, including data whose structure
changes over time and whose interrelationships aren’t yet known.

NoSQL databases come in four core types — one for each type of data the
database is expected to manage:

v Columnar: Extension to traditional table structures. Supports variable
sets of columns (column families) and is optimized for column-wide
operations (such as count, sum, and mean average).

v Key-value: A very simple structure. Sets of named keys and their
value(s), typically an uninterpreted chunk of data. Sometimes that
simple value may in fact be a JSON or binary document.

v~ Triple: A single fact represented by three elements:

¢ The subject you're describing
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e The name of its property or relationship to another subject

e The value — either an intrinsic value (such as an integer) or the
unique ID of another subject (if it’s a relationship)

For example, Adam likes Cheese. Adam is the subject, likes is the predi-
cate, and Cheese is the object.

v Document: XML, JSON, text, or binary blob. Any treelike structure can
be represented as an XML or JSON document, including things such as
an order that includes a delivery address, billing details, and a list of
products and quantities.

Some document NoSQL databases support storing a separate list (or
document) of properties about the document, too.

Most data problems can be described in terms of the preceding data struc-
tures. Indeed, nearly all computer programs ever written fall into these
categories. It is therefore important to understand how you can best store,
retrieve and query that data.

The good news is that there’s now a set of databases to properly manage
each different type of data, so you don’t have to shred data into a fixed rela-
tional schema (by shred, I mean convert complex data structures to simple
excel like table structures with relationships, which has always seemed like
the wrong thing to do). I don’t like writing plumbing code just to store and
retrieve data — and that’s despite my father being a plumber!

In addition to the preceding NoSQL data types, here are two other develop-
ments worth mentioning:

v Search engines: If you're storing information that has a variable struc-
ture or copious text, you need a common way across structures to find
relevant information, which search engines provide.

v Hybrid NoSQL databases: These databases provide a mix of the core
features of multiple NoSQL database types — such as key-value, docu-
ment, and triple stores — all in the same product.

Several search engines and hybrid databases apply general themes present
in NoSQL products — namely, allowing variable data types and being hori-
zontally scalable on commodity hardware. As the internal designs of search
engines and hybrid NoSQL databases are similar and complementary, 'm
including them in this book. (For information on what I'm not covering, see
the upcoming sidebar named, you guessed it, “What I'm not covering.”)
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What I'm not covering

Because the NoSQL world is awash with a similar functionality, which is why these
range of products, | had to carefully select guys aren’tincluded. | do mention single-
which products to include and which to exclude. product commercial NoSQL software
Conversely, | wanted to provide more content such as Oracle NoSQL, MarkLogic,
than you might find in other NoSQL books. Microsoft's Document DB, and IBM

I mention several products in each type of NoSQL Cliwekus, Eiouelts

database and complementary technologies. »~ NewSQL: This is a new database access
| had to draw the line somewhere, though, so paradigm. It applies the software design
here’s what I'm not covering, and why: lessons of NoSQL to RDBMS, creating a
new breed of products, which is a great
idea, but fundamentally these products
still use traditional relational math and
structures, which is why they aren’t
included. Hopefully, someone will write
a For Dummies book about these new
databases!

v+ In-memory and flash databases: Some
great advances have been made in real-
time online transaction processing (OLTP)
and analytics using in-memory databases.
In-memory databases are very specialized
and are targeted to particular problem
domains. | have, though, mentioned NoSQL
databases that take advantage of flash or  »~ Every possible NoSQL database out there:
memory caching to aid real-time analytics. Finally, there are just too many. | picked
the ones you're most likely to come across
or that | believe provide the most promise
for solving mission-critical enterprise
problems. | do mention the key differences
among many products in each NoSQL
category, but | concentrate on one or two
real-world examples for each to show their
business value.

v Complex proprietary stacks: Large
multinational vendors may be inclined
to think they have a solution that fits in
this book. Typically, this solution involves
integrating multiple products. | want to
cover NoSQL databases that provide a
platform, not technical jigsaw pieces that
you have to cobble together to provide

Columnar

Column stores are similar at first appearance to traditional relational DBMS.
The concepts of rows and columns are still there. You also define column
families before loading data into the database, meaning that the structure of
data must be known in advance.

However, column stores organize data differently than relational databases do.
Instead of storing data in a row for fast access, data is organized for fast column
operations. This column-centric view makes column stores ideal for running
aggregate functions or for looking up records that match multiple columns.
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|
Figure 2-1:
Column
families at
work.
|

Aggregate functions are data combinations or analysis functions. They can
be as simple as counting the number of results, summing them, or calculat-
ing their mean average. They could be more complex, though — for example,
returning a complex value describing an overarching range of time.

Column stores are also sometimes referred to as Big Tables or Big Table
clones, reflecting their common ancestor, Google’s Bigtable.

Perhaps the key difference between column stores and a traditional RDBMS
is that, in a column store, each record (think row in an RDBMS) doesn’t
require a single value per column. Instead, it’s possible to model column
families. A single record may consist of an ID field, a column family for “cus-
tomer” information, and another column family for “order item” information.

Each one of these column families consists of several fields. One of these
column families may have multiple “rows” in its own right. Order item infor-
mation, for example, has multiple rows — one for each line item. These rows
will contain data such as item ID, quantity, and unit price.

A key benefit of a column store over an RDBMS is that column stores don’t
require fields to always be present and don’t require a blank padding null
value like an RDBMS does. This feature prevents the sparse data problem I
mentioned in Chapter 1, preserving disk space. An example of a variable and
sparse data set is shown in Figure 2-1.

Order Table
4 N\
4 - ~ N\
Family: Customer Family: ltems Family: Delivery
X Notes
FirstName Surname Item-4 Item-9 -
RowKey Adam Fowler 9 1 L'\e‘ayeh\gwth
127698 Gignbor
MemberlD Status Item-43 ETA
631642 Premi 8 2014-12-23
remier 09:00
N\ /
4 N\
Family: Customer Family: ltems Family: Delivery
RowK FirstName Surname Item-72
owRey Joe Bloggs 2
895482
ETA
Item-32 2015-01-03
1 14:00
N\ /
Ny /
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The great thing about column stores is that you can retrieve all related
information using a single record ID, rather than using the complex
Structured Query Language (SQL) join as in an RDBMS. Doing so does require
a little upfront modeling and data analysis, though.

In the example in Figure 2-1, I can retrieve all order information by selecting
a single column store row, which means the developer doesn’t need to be
aware of the exact complex join syntax of a query in a column store, unlike
they would have to be using complex SQL joins in an RDBMS.

So, for complex and variable relational data structures, a column store may
be more efficient in storage and less error prone in development than its
RDBMS ancestors.

Note that, in my item column family, each item’s ID is represented within the
key, and the value is the quantity ordered. This setup allows for fast lookup
of all orders containing this item ID. You can find more on structuring your
data for fast lookup in Chapters 9 and 10.

If you know the data fields involved up front and need to quickly retrieve
related data together as a single record, then consider a column store.

Key-value stores

Key-value stores also have a record with an ID field — the key in key-value
stores — and a set of data. This data can be one of the following:

v An arbitrary piece of data that the application developer interprets (as
opposed to the database)

v Any set of name-value pairs (called bins)

Think of it as a shared mailbox in an apartment building. All you see from the
outside is a set of numbered holes. Using a key, you access whatever is in the
mailbox. After looking at the mail, you decide what to do with it (probably
just throw it away, if it’s junk like most of my mail).

In this way, key-value stores are similar to column stores in that it’s possible
to store varying data structures in the same logical record set. Key-value
stores are the simplest type of storage in the NoSQL world — you're just stor-
ing keys for the data you provide.

Some key-value stores support typing (such as integers, strings, and
Booleans) and more complex structures for values (such as maps and lists).
This setup aids developers because they don’t have to hand-code or decode
string data held in a key-value store.
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In computer science, a “list” is zero or more data values. These values may
or may not be stored in a sorted representation that allows for fast match
processing.

Maps are a simple type of key-value storage. A unique key in a map has a
single arbitrary value associated with it. The value could be a list of another
map. So, it’s possible to store tree structures within key-value stores, if
you're willing to do the data processing yourself.

If you have numerous maps in your key-value store, consider a document
store instead, which will likely minimize the amount of code required to
operate on your data and make search and retrieval easier.

MBER
‘3‘& Key-value stores are optimized for speed of ingestion and retrieval. If you need

very high ingest speed on a limited numbers of nodes and can afford to sacri-
fice complex ad hoc query support, then a key-value store may be for you.

Triple and graph stores

Although it’s just now becoming prominent, the concept of triples has been
around since 1998, thanks to the World Wide Web Consortium (W3C) and Sir
Tim Berners-Lee (one of my British heroes).

Before reading this book you may not have heard of triple (or graph) stores,
but if you're experienced with LinkedIn or Facebook, you're probably familiar
with the term social graph.

Under the hood of these approaches is a simple concept: every fact (or more
correctly, assertion) is described as a triple of subject, predicate, and object:

v A subject is the thing you’re describing. It has a unique ID called an IRI. It
may also have a type, which could be a physical object (like a person) or
a concept (like a meeting).

v A predicate is the property or relationship belonging to the subject. This
again is a unique IRI that is used for all subjects with this property.

v An object is the intrinsic value of a property (such as integer or Boolean,
text) or another subject IRI for the target of a relationship.

Figure 2-2 illustrates a single subject, predicate, object triple.

Therefore, Adam likes Cheese is a triple. You can model this data more
descriptively, as shown here:
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Adam Fowler: Person I likes I Cheese: Foodstuff

AdamFowler is a Person
AdamFowler likes Cheese
Cheese is a Foodstuff

More accurately, though, such triple information is conveyed with full IRI
information in a format such as Turtle, like this:

<http://www.mydomain.org/people#AdamFowler> a <http://www.mydomain.
org/rdftypes#Person> .

<http://www.mydomain.org/people#AdamFowler> <http://www.mydomain.
org/predicates#likes> <http://www.mydomain.org/
foodstuffs#Cheese> .

<http://www.mydomain.org/foodstuffs#Cheese> a <http://www.mydomain.
org/rdftypes#Foodstuff> .

The full Turtle example shows a set of patterns in a single information
domain for the URIs of RDF types, people, relationships, and foodstuffs. A
single information domain is referred to as an onfology. Multiple ontologies
can coexist in the same triple store.

It’s even possible for the same subject to have multiple IRIs, with a sameAs
triple asserting that both subjects are equivalent.

You can quickly build this simple data structure into a web of facts, which
is called a directed graph in computer science. I could be a friend_of Jon
Williams or married_to Wendy Fowler. Wendy Fowler may or may not have a
knows relationship with Jon Williams.

These directed graphs can contain complex and changing webs of relation-
ships, or triples. Being able to store and query them efficiently, either on
their own or as part of a larger multi-data structure application, is very useful
for solving particular data storage and analytics problems.

Figure 2-3 shows an example of a complex web of interrelated facts.
I focus on triple stores in this book rather than graph stores. I think of graph

stores as a subset of triple stores that are optimized for queries of relation-
ships, rather than just the individual assertions, or facts, themselves.


HTTP://WWW.MYDOMAIN.ORG/RDFTYPES#PERSON
HTTP://WWW.MYDOMAIN.ORG/RDFTYPES#PERSON
HTTP://WWW.MYDOMAIN.ORG/FOODSTUFFS#CHEESE
HTTP://WWW.MYDOMAIN.ORG/FOODSTUFFS#CHEESE
HTTP://WWW.MYDOMAIN.ORG/RDFTYPES#FOODSTUFF
HTTP://WWW.MYDOMAIN.ORG/RDFTYPES#FOODSTUFF
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Graph math is complex and specialized and may not be required in all
situations where storing triples are required. Throughout this book, I point
out where the difference matters. The query types supported also affect the
design of a graph store, which I talk about in Chapter 19.

If you need to store facts, dynamically changing relationships, or provenance
information, then consider a triple store. If you need to know statistics

about the graph (such as how many degrees of separation are between two
subjects or how many third level social connections a person has), then you
should consider a graph store.

Document

Document databases are sometimes called aggregate databases because they
tend to hold documents that combine information in a single logical unit — an
aggregate. You might have a document that includes a TV episode, series, chan-
nel, brand, and scheduling and availability information, which is the total set of
result data you expect to see when you search an online TV catch-up service.

Retrieving all information from a single document is easier with a database
(no complex joins as in an RDBMS) and is more logical for applications (less
complex code).

The world is awash with documents. Documents are important as they are
generally created for a high-value purpose. Unfortunately many of them are
tax documents and bills, but that’s totally out of my control. I just help orga-
nizations manage the things!

Loosely, a document is any unstructured or tree-structured piece of informa-
tion. It could be a recipe (for cheesecake, obviously), financial services trade,
PowerPoint file, PDF, plain text, or JSON or XML document.

Although an online store’s orders and the related delivery and payment
addresses and order items can be thought of as a tree structure, you may
instead want to use a column store for these. This is because the data struc-
tures are known up front, and it’s likely they won’t vary and that you’ll want
to do column operations over them. Most of the time, a column store is a
better fit for this data.

Some NoSQL databases provide the best of both worlds — poly-structured doc-
ument storage and fast field (column) operations (see the “Hybrid NoSQL data-
bases” section in this chapter, for details on heterogeneous data management).

This makes a document database a bit of a catchall. Interestingly, because of
its treelike nature, an effective document store is also capable of storing sim-
pler data structures.
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A table, for example, can be modeled as a very flat XML document — that is,
one with only a single set of elements, and no sub-element hierarchies. A set
of triples (aka subgraph) can be stored within a single document, or across
documents, too. The utility of doing so depends, of course, on the indexing
and query mechanisms supported. There’s no point storing triples in docu-
ments if you can’t query them.

Search engines

It may seem strange to include search engines in this chapter, but many of
today’s search engines use an architecture very similar to NoSQL databases.
Their indexes and query processing are highly distributed. Many search engines
are even capable of acting as a key-value or document store in their own right.

NoSQL databases are often used to store unstructured data, documents, or
data that may be stored in a variety of structures, such as social media posts
or web pages. The structures of this indexed data vary greatly.

Also, document databases are appropriate in cases where system administra-
tors or developers frequently don’t have control of the structures. This situ-
ation is common in publishing, where one storefront receives feeds of new
books and their metadata from many publishers.

Although publishers use similar standards such as PDF and ePub for docu-
ments and ONIX XML files for metadata, they all produce documents in
slightly different ways. As a result, consistent handling of data is difficult, and
publishing is a great use case for a Document database.

Similar problems occur in the defense and intelligence realms. An agency
may receive data from an ally or a terrorist’s hard disk in a variety of formats.
Waiting six months to develop a revised relational database schema to
handle a new type of target is not viable! This is where document NoSQL
databases can be used.

Storing many structures in a single database necessitates a way to provide a
standard query mechanism over all content. Search engines are great for that
purpose. Consider search as a key requirement to unstructured data manage-
ment with NoSQL Document databases.

Search technology is different from traditional query database interface
technology. SQL is not a search technology; it’s a query language. Search deals
with imperfect matches and relevancy scoring, whereas query deals with
Boolean exact matching logic (that is, all results of a query are equally relevant).

37
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Hybrid NoSOL databases

Given the range of data types being managed by NoSQL databases, you're for-
given if you think you need three different databases to manage all your data.
However, although each NoSQL database has its core audience, several can
be used to manage two or more of the previously mentioned data structures.
Some even provide search on top of this core all-data platform.

A recent claim in relational circles is that NoSQL databases cannot manage a
range of NoSQL data types. Throughout this book, I explain the core capabili-
ties of each type of NoSQL database. Use this information to separate vendor
claims from facts.

Hybrid databases can easily handle document and key-value storage needs,
while also allowing fast aggregate operations similar to how column stores
work. Typically, this goal is achieved by using search engine term indexes,
rather than tabular field indexes within a table column in the database
schema design itself.

The functionality provided, though, is often the same as in column stores. So,
these products have three or four of the preceding types covered: key-value,
document, and column stores, as well as search engines.

Many databases are moving in this direction. In Part 7, I highlight the data-
bases that are leading the way.

Available NoSQL products

At my last count, there were more than 250 databases described by analysts
in the NoSQL field. With so many (and because of this book’s page count,
plus the risk of repetitive strain injury), I had to select only a few of them.
Here is a condensed list of the leaders in providing NoSQL databases:

v Columnar: DataStax, Apache Cassandra, HBase, Apache Accumulo,
Hypertable
1 Key-value: Basho Riak, Redis, Voldemort, Aerospike, Oracle NoSQL

v Triple/graph: Neo4j, Ontotext’s GraphDB (formerly OWLIM), MarkLogic,
OrientDB, AllegroGraph, YarcData

v Document: MongoDB, MarkLogic, CouchDB, FoundationDB, IBM
Cloudant, Couchbase
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v Search engine: Apache Solr, Elasticsearch, MarkLogic
v Hybrid: OrientDB, MarkLogic, ArangoDB

In Parts Il through VII, I deal with each type of NoSQL database in turn,
describing the key unique features of each option and reviewing one product
of each type in detail.

Describing NoSOL

If you studied databases in school, you may have been indoctrinated in a
relational way of thinking. Say database to most people, and they think rela-
tional database management system. This is natural because during the past
30 years, the RDBMS has been so dominant.

Getting your head around NoSQL can be a bit hard, but this book was created
to make it as easy as possible.

\‘&MBER
& To aid you on this journey, | want to introduce some key terms that are prev-
alent in the following chapters, as well as what they mean when applied to
NoSQL databases.

1+ Database construction

e Database: A single logical unit, potential spread over multiple
machines, into which data can be added and that can be queried
for data it contains.

The relational term tablespace could also be applied to a NoSQL
database or collection.

e Data farm: A term from RDBMS referring to a set of read-only rep-
lica sets stored across a managed cluster of machines.

In an RDBMS, these typically can’t have machines added without
down time. In NoSQL clusters, it’s desirable to quickly scale out.

e Partition: A set of data to be stored together on a single node for
processing efficiency, or to be replicated.

Could also be used for querying. In this case, it can be thought of
as a collection.

1 Database structure

e Collection: A set of records, typically documents, that are grouped
together. This is based not on a property within the record set, but
within its metadata. Assigning a record to a collection is usually
done at creation or update time.

39
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e Schema: In RDBMS and to a certain extent column stores. The
structure of the data must be configured in the database before
any data is loaded.

In document databases, although any structure can be stored, it
is sometimes better to limit the structures by enforcing schema,
such as in an XML Schema Definition. NoSQL generally, though, is
regarded as schema-free, or as supporting variable schema.

+” Records

® Record: A single atomic unit of data representation in the particular
database being described.

In an RDBMS, this would be a row, as it is in column stores. This
could also be a value in a key-value store, a document in a docu-
ment store, or a subject (not triple) in a triple store.

e Row: Atomic unit of record in an RDBMS or column store.

Could be modeled as an element within a document store or as a
map in a key-value store.

e Field: A single field within a record. A column in an RDBMS.

May not be present in all records, but when present should be of
the same type or structure.

e Table: A single class of record. In Bigtable, they are also called
tables. In a triple store, they may be called subject RDF types or
named be graphs, depending on the context. In a document store,
they may be collections. I'm using record type generically to refer
to this concept.

+” Record associations

® Primary key: A guaranteed unique value in a particular table that
can be used to always reference a record. A key in a key-value
store, URI in a document store, or IRl in a triple or graph store.

e Foreign key: A data value that indicates a record is related to a
record in a different table or record set. Has the same value as the
primary key in the related table.

¢ Relationship: A link, or edge in graph theory, that indicates two
records have a semantic link. The relationship can be between two
records in the same or different tables.

In RDBMS, it’s normally other tables, whereas in a triple store it’s
common to relate subjects of the same type (people in a social
graph, for example). Some databases, mainly graph stores, support
adding metadata to the relationships.



Chapter 2: NoSQL Database Design and Terminology

1 Storage organization

e Server: A single computer node within a cluster. Typically runs a
single instance of a database server’s code.

e Cluster: A physical grouping or servers that are managed together
in the same data center to provide a single service. May replicate
its databases to clusters in other data centers.

e Normal form: A method of normalizing, or minimizing duplication,
in data in an RDBMS.

NoSQL databases typically lead to a denormalized data structure in
order to provide faster querying or data access.

+ Replication technology

e Disk replication: Transparent replication of data between nodes in
a single cluster to provide high-availability resilience in the case of
a failure of a single node.

¢ Database replication: Replication between databases in different
clusters. Replicates all data in update order from one cluster to
another. Always unidirectional.

e Flexible replication: Provides application controlled replication
of data between databases in different clusters. Updates may not
arrive in the same order they were applied to the first database.
Typically involves some custom processing, such as prioritization
of data updates to be sent next. Can be bi-directional with appro-
priate update conflict resolution code.

v Search tools
¢ Index: An ordered list of values present in a particular record.

® Reverse index: An ordered list of values (terms), and a list of pri-
mary keys of records that use these terms.

Provides for efficient unstructured text search and rapid aggrega-
tion functions and sorting when cached in memory.

® Query: A set of criteria that results in a list of records that match
the query exactly, returned in order of particular field value(s).

e Search: A set of criteria that results in a relevancy-ordered list that
match the query.

The search criteria may not require an exact match, instead return-
ing a relevancy calculation weighted by closeness of the match to
the criteria. This is what Google does when you perform a search.
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Applying Consistency Methods

The consistency property of a database means that once data is written to

a database successfully, queries that follow are able to access the data and
get a consistent view of the data. In practice, this means that if you write a
record to a database and then immediately request that record, you're guar-
anteed to see it. It’s particularly useful for things like Amazon orders and
bank transfers.

Consistency is a sliding scale, though, and a subject too deep to cover here.
However, in the NoSQL world, consistency generally falls into one of two
camps:

v+ ACID Consistency (ACID stands for Atomicity, Consistency, Isolation,
Durability): ACID means that once data is written, you have full consis-
tency in reads.

v Eventual Consistency (BASE): BASE means that once data is written, it
will eventually appear for reading.

A battle has been raging between people who believe strong consistency
in a database isn’t required and those who believe it absolutely is required
(translate people to NoSQL companies’ marketing departments!).

The reality is somewhere in between. Does it matter that a person’s Facebook
post isn’t seen by all his friends for five minutes? No, probably not. Change
“Facebook post” to “billion-dollar-financial transaction,” though, and your
attitude changes rapidly! Which consistency approach you pick depends

on the situation. In my experience, though, strong consistency is always the
choice in mission-critical enterprise system situations.

When you finish this book, one of the things I hope you take away is the dif-
ference between eventual consistency (BASE) and strong consistency (ACID),
which I cover next.

MBER
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ACID

ACID is a general set of principles for transactional systems, not something
linked purely to relational systems, or even just databases, so it’s well worth
knowing about. ACID basically means, “This database has facilities to stop you
from corrupting or losing data,” which isn’t a given for all databases. In fact,
the vast majority of NoSQL databases don’t provide ACID guarantees.
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Foundation DB, MarkLogic, and Neo4j are notable exceptions. Some NoSQL
databases provide a lower-grade guarantee called Check and Set that verifies
whether someone else has altered a document before allowing a transaction
to complete. This behavior is usually limited because it tends to be imple-
mented on a single-record basis.

MongoDB is a notable database that provides Check and Set capabilities.
With MongoDB, an entire node-worth of data can be locked during an update,
thereby preventing all read and all write operations until the operation com-
pletes. The company is working on removing this limitation, though.

How ACID works

ACID is a four-letter acronym, as explained
here:

v Atomicity: Each operation affects the
specified data, and no other data, in the
database.

v~ Consistency: Each operation moves the
database from one consistent state to
another.

v~ lsolation: One operation in-flight does not
affect the others.

v~ Durability: The database will not lose
your data once the transaction reports
success.

ACID transactional consistency can be
provided various ways:

v In the locking model, you stop data from
being read or written on the subset of
information being accessed until the
transaction is complete, which means
that during longer-running transactions,
the data won't be available until all of the
update is committed.

v An alternative mechanism is multiversion
concurrency control (MVCC), which bears
no resemblance to document versioning;
instead, it's a way of adding new data
without read locking.

In MVCC, each record gets a creation
and deletion timestamp. When a record is
created, it's given a creation timestamp.
When a new transaction starts that alters
that record, a new record is created with
different information — the original data
isn't altered or locked.

This behavior means the original can still
be read with all original values, even during
a long-running transaction. Only when the
transaction completes is the old record
given a deletion timestamp.

The database shows only the latest
undeleted record at the time you start
your query. Therefore, transactions don't
interfere with each other. MVCC provides
for fully serializable transactions, which is
a hard beast to implement!

The downside is that your database
periodically needs a merge operation
to remove deleted records, although
this is usually managed automatically,
so generally only a small storage price
is paid for rapid ingestions or updates.
This approach, however, does require
that the database administrator plan for
this occasional extra read and write load
when sizing the hardware required for a
particular NoSQL database application.

43



b4

Part I: Getting Started with NoSQL

BASE

BASE means that rather than make ACID guarantees, the database has a tun-
able balance of consistency and data availability. This is typically the case
when nodes in a given database cluster act as primary managers of a part of
the database, and other nodes hold read-only replicas.

To ensure that every client sees all updates (that is, they have a consistent
view of the data), a write to the primary node holding the data needs to lock
until all read replicas are up to date. This is called a two-phase commit — the
change is made locally but applied and confirmed to the client only when all
other nodes are updated.

BASE relaxes this requirement, requiring only a subset of the nodes holding
the same data to be updated in order for the transaction to succeed.
Sometime after the transaction is committed, the read-only replica is updated.

The advantage of this approach is that transactions are committed faster.
Having readable live replicas also means you can spread your data read load,
making reading quicker.

The downside is that clients connecting to some of the read replicas may see
out-of-date information for an unspecified period of time. In some scenarios,
this state is fine. If you post a new message on Facebook and some of your
friends don’t see it for a couple of minutes, it’s not a huge loss. If you send a
payment order to your bank, though, you may want an immediate transaction.

An alternative approach to read-only replicas is to have a shared-nothing
cluster in which only one node on a cluster always serves a particular part of
the database.

Shared-nothing doesn’t mean you lose replication, though. Databases that
employ this method typically do replicate their data to a secondary area on
another primary node or nodes — but only one node is the master for reads
and writes at any time.

Shared-nothing clusters have the advantage of a simpler consistency model
but require a two-phase commit to replicas. This fact means the transaction
locks while all replicas are updated. (An internal lock plus locking for other
nodes gives you two phases.)

This typically has less impact than shared data clusters with read-only rep-
licas, though, because shared-nothing replica data areas don’t receive read
requests for that part of the database. Therefore, two-phase commits are
faster on a shared-nothing cluster than on a cluster with readable replicas.
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Choosing ACID or BASE?

As you might expect, much of the argument is because NoSQL vendors can
differentiate themselves from their competitors by claiming a different,
unique approach. It’s interesting to note, however, the number of NoSQL ven-
dors with ACID-compliance on their roadmap.

Some NoSQL databases have ACID-compliance on their roadmap, even
though they are proponents of BASE, which shows how relevant ACID guar-
antees are to enterprise, mission-critical systems.

Many companies use BASE-consistency products when testing ideas because
they are free but then migrate to an ACID-compliant paid-for database when
they want to go live on a mission-critical system.

The easiest way to decide whether you need ACID is to consider the interac-
tions people and other systems have with your data. For example, if you add
or update data, is it important that the very next query is able to see the
change? In other words, are important decisions hanging on the current state
of the database? Would seeing slightly out-of-date data mean that those deci-
sions could be fatally flawed?

In financial services, the need for consistency is obvious. Think of traders
purchasing stock. They need to check the cash balance before trading to
ensure that they have the money to cover the trade. If they don’t see the cor-
rect balance, they will decide to spend money on another transaction. If the
database they’re querying is only eventually consistent, they may not see a
lack of sufficient funds, thus exposing their organization to financial risk.

Similar cases can be built for ACID over BASE in health care, defense,
intelligence, and other sectors. It all boils down to the data, though, and the
importance of both timeliness and data security.

Availability approaches

Consistency is a sliding scale, not an absolute. Many NoSQL databases allow
tuning between levels of consistency and availability, which relates to the
CAP theorem.

The CAP theorem is a computer science conjecture, now proven, that shows
the list of options as to how the balance between consistency, availability,
and partitioning can be maintained in a BASE database system.
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Eric Brewer has a lot to answer for! He came up with the CAP conjecture

in 2000. It was later proved in 2002, and so is now a theorem. The CAP
theorem in computer science is fundamental to how many NoSQL databases
manage data.

CAP stands for Consistency, Availability, and Partitioning, which are aspects
of data management in databases. Here are some questions to consider when
considering a BASE and thus CAP approach:

1 Consistency: Is the database fully (ACID) consistent, or eventually con-
sistent, or without any consistency guarantees?

v~ Availability: During a partition, is all data still available (that is, can a
partitioned node still successfully respond to requests)?

v~ Partitioning: If some parts of the same database cluster aren’t commu-
nicating with each other, can the database still function separately and
correct itself when communication is restored?

The CAP theorem states that you cannot have all features of all three at the
same time. Most of the time, this is claimed to mean that you can have only
two of the three. The reality is that each is a sliding scale. You may be able to
trade off a little of one for more of another.

A traditional RDBMS typically provides strong consistency. Some clustered
RDBMS also provide good availability, but they don’t provide partitioning.

Availability in the CAP theorem is a different concept from high availability as
used to describe services. In CAP, I'm talking about data availability.

Also, remember that the definition of consistency in ACID isn’t the same defi-
nition as in CAP:

v+ In ACID, it means that the database is always in a consistent state.

v~ In CAP, it means that a single copy of the data has been updated.
Therefore, in CAP, a system that supports BASE can be consistent.

On the other hand, some NoSQL products, such as Cassandra, are partition-
tolerant. Each part of the database continues to operate if one is not
communicating with the rest of the nodes. This typically occurs because

of networking outages rather than outright system failure.

When you allow part of a database to be updated when partitioned,
you're saying that the other part of the database cannot see this update.
Consequently, allowing partitioning means you always lose some consistency.



Chapter 2: NoSQL Database Design and Terminology 4 7

Typically, the tradeoff is between consistency and partitioning when you talk
about cross data-center database replication use. A particular NoSQL data-
base generally provides either

v CA (consistency and availability)
v AP (availability and partition tolerance)

<P A pragmatic approach to this problem is to allow a data center to operate at
full consistency but to make the other data centers’ replicas lag their primary
stores, thus becoming eventually consistent. In the real world, this setup is the
best you can hope for — even permanent fiber cables get dug up by humans!

Within a single data center, you can trade consistency and availability. Some
NoSQL databases allow you to tune consistency, usually by adding read-only
replicas of data on additional nodes. Replicas are updated outside the trans-
action boundary and, therefore, are eventually consistent. The upside to this
approach is improved read performance and greater availability (at least for
read, not write).

Some NoSQL databases don’t relax the consistency model when performing
this local disk replication between nodes. The MarkLogic NoSQL database,
for example, updates its replicas in the local data center within a transac-
tion boundary using a two-phase commit. This means the replicas are always
consistent, so if an outage occurs that affects the primary node for data, the
secondary node takes over and provides ACID consistency and availability
for both write and read operations.

These replicas in MarkLogic are held on nodes that manage their own pri-
mary data. Other NoSQL databases’ same data-center replicas are stored on
nodes that are only for failover — they are read replicas only. As a result,
more hardware is needed in these products, just in case of an outage.

It’s worth taking into account how NoSQL databases provide local data repli-
cas, as well as how (or if) they have data management or catalog nodes, par-
ticularly in terms of their support for high availability and also cost. In this
case, you could have three primary nodes and two replicas for each, with a
total of nine systems. In this way, you basically triple your computing costs!
These are important points when comparing apparently low-cost options to
other databases. Don’t worry, though, in Parts Il through VII, you find out
about these and other enterprise issues you need to be aware of.
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Developing applications on NoSQOL

One of the most common conclusions about the emergence of NoSQL data-
bases is that of polyglot persistence. Polyglot persistence means that, in order
to write a single complete application, the application’s developer must use
multiple types of databases, each for its most appropriate data type.

[ am a polyglot persistence sceptic because I think multiple databases are
only required because hybrid NoSQL databases are in their infancy, which
I'm not convinced will last; however, people are practicing implementing
polyglot persistence now, and no discussion of NoSQL’s relevance is com-
plete without including this topic. Moreover, this discussion may influence
decisions you make about which software to purchase over the next 5 to
25 years.

Martin Fowler (no relation to me, honest!) writes in his book with Pramod
Sadalage, NoSQL Distilled, about the era of polyglot persistence. In this book
he describes how he believes that polyglot persistence will be a long-term
need in enterprise systems. Whatever the truth turns out to be, you need to
be aware of the current limitations to data type handling in NoSQL databases.

Polyglot persistence

The database world has gone through a steady evolution over the last 40
years. When relational databases first became popular, developers wondered
if they would replace mainframe systems and would require them to write
applications using data from both types of systems, or replace them entirely.

Of course, mainframes still run many more financial transactions than rela-
tional databases do. These mainframes are generally hidden under corporate
systems, away from the prying eyes of application developers. Both RDBMS
and mainframe systems are used in modern systems such as online banking.
The mainframe systems manage bank account balances whereas the RDBMS
manage online banking user preferences and application form filling data.

Using both mainframe and RDBMS databases in the same application is what
we term polyglot persistence.

On the other hand, you rarely see four or five different relational databases
for the same application. Even when used together, they are typically hidden
under a data access layer, so an application developer learns how to set up
communication with, for example, two SOAP (Simple Object Access protocol)
web services, not two different database systems.
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Polyglot persistence explained

If you need to store a web of facts, a set of documents, and shopping cart
datasets, you can’t do so in one NoSQL database. Or when you can store
them, it’s hard to retrieve all data with a single query. Instead, you must use
a single data access layer to handle the various data storage demands, and
that’s where polyglot persistence comes in.

Polyglot persistence is the idea that a single application that uses different
types of data needs to use multiple databases behind that application.
Nobody sat down and decided that polyglot persistence was the way
forward. It’s currently the case that no single database provides all the
functionality of a column, key-value, document, or triple store.

Unlike the relational database world where the structural support hasn’t
changed much in years (except for XML field support), NoSQL databases are
gradually crossing over and covering multiple data types. For example, the
Elasticsearch search engine is positioning itself as a JSON document store.
MongoDB, CouchDB, and MarkLogic have the concept of primary keys or
URIs. In this way, they act as key-value stores — the value is just a document.

If you look closely at document NoSQL databases, you can see that they
provide some or a majority of the functionality you expect from a column or
key-value store.

v If you're considering a key-value store but some features are missing
that handle specifics of the data, then consider a column store.

v If a column store can’t handle a very complex structure in your applica-
tion, then consider a document store.

v If you need to manage relationships or facts in your data, then you need
features of a triple store, too.

MarkLogic and OrientDB are interesting because they work as a document
store and also act as triple and key-value stores. Traditional relational data-
base rows and modern NoSQL column families can be represented easily as a
document (JSON or XML).

Column stores are very good at holding a lexicon of data for a field across all
record instances. These lexicons can then be used to calculate aggregation
values quickly — for example, statistical operations like mean average, stan-
dard deviation, or even just listing unique values and their counts.

Some document databases expose their internal field indexes for similar
operations. MarkLogic, for example, allows a search to be executed with
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faceted results returned. These facets are normally just counts of the
frequency of mentions of values within search results, and are used to power
search applications. Custom user-defined functions (UDFs) and statistical
aggregate operations are also supported, though, just as with column stores.

Document databases achieve fast aggregate operations by allowing you to
index the structure (XML element or JSON property name and location) and
the value of data within a document, which expands the database capabilities
beyond just doing a search.

These indexes may be held or cached in memory, making the speed of
statistical operations equivalent to those in a column store. If you have data
structures that could be held in a document store but that you want to
perform calculations for, don’t discount document databases without looking
at their lexicon and index functions. You may find a single database to
answer multiple business problems.

You can take this scenario even further. If you apply search engine technol-
ogy over your indexes and provide a well-designed query planner, then you
can limit your aggregate functions using query terms efficiently.

If these indexes and queries are handled across a cluster, then you have a
very fast in-database MapReduce capability that is efficient for high-speed
operational database workloads, as well as for analytic workloads.

NoSQL databases are progressively improving their internal search support.
In this regard, document databases and search engines in particular are
strongly linked technologies.

NoSQL vendors are trying to add all the preceding features to their products.
MarkLogic, for example, already provides these functions within a single
product.

[ fully expect all NoSQL databases to follow suit. Once this happens, there
will be little reason to use multiple databases for non-relational workloads. I
predict that by 2017, polyglot persistence in NoSQL will largely be a thing of
the past.

The death of the RDBMS?

It’s tempting to think that once NoSQL databases evolve to handle more data
and query types, the RDBMS will no longer be needed. Nothing could be fur-
ther from the truth because NoSQL databases can’t provide all the functional-
ity of a relational database.
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When [ was just a glint in my father’s eye, a lot of the world’s data was stored
on hierarchical mainframe systems. These days, you're forgiven if you think
that all major systems use relational databases to store their data. Actually
this isn’t the case. The financial services industry is powered today by main-
frame systems. They are the core of all banking transactions that happen
today. They haven’t been replaced by relational databases because main-
frames are better suited for these particular loads.

The same will happen with relational databases. Those applications that are
better served by using NoSQL will migrate to those databases. An RDBMS
will still run structured, known data loads. Sales force management platforms
like Siebel, Salesforce, and Sugar CRM are good examples. Each sales cycle
has opportunities, accounts, deal teams, and product line items. There’s no
need for a schema agnostic approach in these systems. So why would people
migrate from a relational database to a NoSQL database?

The answer is, they won’t. The majority of today’s applications will stay on
relational databases. On the other hand, NoSQL databases can be used for
the following:

v New business problems
v Data loads where the schema isn’t known upfront or varies wildly

v~ Situations where existing relational databases aren’t providing the per-
formance required for the data being managed

Therefore, polyglot persistence’s outlook is similar to the state of affairs for
today’s traditional applications. You may have polyglot persistence over
mainframe, relational, and NoSQL systems, but you won’t have multiple types
of each database for each type of data store.

Some organizations do have legacy systems, though. So, they may have a
corporate direction to use Oracle’s relational database but still run IBM’s DB2
as well. It’s possible, therefore, that some applications do run polyglot per-
sistence over the same type of database, which reflects the slow pace of data
migrations, not the fact that each database is designed for a different data type.

Integrating Related Technologies

As I mentioned, NoSQL databases are adapting to support more data types.
As this is happening, their capabilities around this data will also expand.

These trends will allow organizations to simplify their overall architectures.
By analyzing their needs early, organizations can find a single product to meet
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all their needs, rather than use three products that they must glue together.
For example, some current products may provide basic text-search function-
ality but not all the functionality, such as word stemming, that a full-fledged
search engine provides. Understanding your own needs first allows you to
select the correct product, or product set, for solving your business needs.

Nothing exists in a vacuum. Pizza needs cheese. Hardware needs software.
NoSQL databases are no different. Consequently, in this section, I cover a few
complementary technologies that you can consider using in NoSQL projects.
[ mention them here because they’re fundamental to some of the NoSQL data-
bases I discuss later in this book.

Search engine techniques

NoSQL databases are used to manage volumes of unstructured content. Be
they long string fields, tweet content (all 140 characters), XML medical notes,
or plain text and PDF files. As a result, search functionality is important.
Whether the functionality is built in (for example, by embedding Lucene),
developed through an optimized search engine, or provided by links to exter-
nal search platforms (such as Solr or Elasticsearch) varies according to each
NoSQL vendor’s strategy.

People generally associate search engines only with full-text searches.
However, there are many other uses for search engines.

MarkLogic, for example, comes with a built-in search engine developed spe-
cifically for the data it was designed to store — documents. The database
indexes are the same as those used for full-text search. MarkLogic includes a
universal index. As well as indexing text content, it indexes exact field values,
XML and JSON elements, and attribute and property names, and it maintains
document ID (URIs in MarkLogician-speak) and collection lexicons.

Range indexes can be added to this mix after data is loaded and explored.
Range indexes enable you to take advantage of less-than and greater-than
style queries with integers and times, as well as more complex mathematics
such as geospatial searches.

Range index support enables MarkLogic to have one set of indexes to satisfy
simple document metadata queries, full-text content queries, or complex
search queries, including geospatial or bi-temporal queries.

Other NoSQL databases, though, are often linked to search engines. The most
common reason to do so is for full-text search, so it’s no surprise that search
engines are often integrated to the document NoSQL databases.
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Some NoSQL databases embed the common Apache Lucene engine to add
full-text indexes for string fields. In some situations, this is enough; but in
others, a full-featured distributed search engine is required to run alongside
your distributed NoSQL database.

Solr is a distributed search platform that uses Lucene internally to do the
indexes. Solr developers have applied many horizontal scalability tricks that
NoSQL databases are known for.

Solr can also be used as a simple document store, saving and indexing JSON
documents natively, similar to MarkLogic’s database.

The lines will continue to be blurred between document NoSQL databases
and distributed search platforms, which is why I include search engines
alongside the core types of NoSQL search.

Business Intelligence, dashboarding,
and reporting

Storing data is all very well and good, but it’d be nice to reuse it for strategic
work as well as for operational workloads. In the RDBMS world, an entire second
tier of databases is used to allow this type of historical analytics and reporting.

I'm speaking of course of data warehouses. These warehouses hold the same
information as an operational system but in a structure that’s more useful for
reporting tools to query.

The problem with this approach is that the source system and the ware-
house are never up to date. Typically, this report required an overnight
batch update, but sometimes the update occurs only once a week. You might
think this isn’t a big deal. However, with today’s fast pace, institutions are
finding that even a 24-hour lag is too slow. Financial services, in particular,
must answer questions from regulators on the same day, sometimes within
five minutes of being asked!

So, there’s a need to perform business intelligence-style queries of data
held in operational data stores, showing the current real-time state of the
database (for example, “What’s my current risk exposure to Dodgy Banking,
Incorporated?”).

In NoSQL column stores, data is still held in tables, rows, and column fami-
lies in a structure suited for the operational system, not a warehousing one.
Column databases, though, often provide the capability to update aggrega-
tions on the fly.
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Logging databases are a good example. Cassandra has been used to store log
files from systems as events occur. These live events are aggregated auto-
matically to provide hourly, daily, weekly, and monthly statistics.

Document NoSQL databases take a different approach. They store primary
copies of data but allow data transformation on query and allow denormaliza-
tions to be computed on the fly (see Chapter 14 for more on providing alter-
native structures of data held in a document NoSQL database).

Regardless of the approach taken, NoSQL databases can be used simultane-
ously because both the operational data store and for warehousing workloads.

Naturally, you don’t want 25 Business Intelligence (BI) reporting users
retrieving vast copies of the data on an operational system. This use case
can be achieved by using a Bl tool that understands the internal NoSQL
databases structure. Tableau, for example, has native connectors to several
NoSQL databases.

Alternatively, you can create read-only replicas of your NoSQL database. You
can allow your reporting users to query that database rather than the live one.

In many situations, though, reporting needs are a lot less complex than
people might like to think. Many people simply want a solid operational view
of the current state of the world — in other words, dashboards.

You can create dashboards by using aggregate functions over indexes of
column or document stores. You can use search to restrict which data is
aggregated — for example, just give aggregates of sales from the Pacific
Northwest.

Having a NoSQL database with a rich REST (REpresentational State Transfer —
a simple way of invoking networked services) API that you can rapidly plug into
web widgets is advantageous when building out dashboarding apps, and it’s
even better if internal data structures (like search results, for example) are
supported by a NoSQL vendors’ JavaScript API. Using these APl removes a lot
of the plumbing code you will need to write to power a dashboard.

Batch processing with Hadoop
Map/Reduce

Hadoop technology is designed for highly distributed data management and
batch analysis. The batch analysis part is called map/reduce. The idea is that
any operation, or chained operations, consists of two parts:



Chapter 2: NoSQL Database Design and Terminology

v The map phase fetches data stored in a record that matches a request.

v The reduce phase boils the data down to a single answer, which is
done by distributing the query to all nodes that contain relevant data.
Consequently, the work is massively parallelized.

Map/reduce is a way to spread workloads across nodes, assimilate them, and
boil them down to unique data before passing it to the client.

In a database context, this means farming a query to all the nodes that hold
data for that database and then merging data and removing duplicates when
they arrive.

A lot of the time, though, these queries only extract a subset of the data

to return as the answer to the caller or perform an aggregate match over
the data. Examples are typically counts, sums, and averages of elements

or values within each record (whether it’s a Bigtable column or a document
element).

Many NoSQL database vendors provide an in-database map/reduce-like
capability for farming out queries within the cluster and performing similar
analyses. In this way, they can take advantage of distributed querying with-
out always having to process all the data on the servers; instead in-memory
indexes are evaluated, making index-driven NoSQL databases faster than
map/reduce process-driven HBase.

Hadoop HDFS

Hadoop uses a storage technology called the Hadoop Distributed File System
(HDFS). This functionality is particularly applicable to NoSQL.

NoSQL databases are highly distributed operational data stores, usually
with indexing. Hadoop is a highly distributed store, too, but currently is best
suited to batch processing.

The HDFS file system is a great way to use distributed storage and is a
cheaper alternative to SANs and NAS storage. You achieve a cost reduction
by using commodity servers without expensive RAID disk arrays.

RAID stands for Redundant Array of mexpensive Disks. It means data is dis-
tributed among disks such that if one disk fails, the system can continue to
operate. True enough, the disks are inexpensive, but the RAID controller can
be costly!
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Although the HDFS approach is slower in terms of query-processing, for long-
tail historical data, the tradeoff in cost of storage versus retrieval time may
be acceptable.

A NoSQL database that supports automated data tiering based on values can
help organizations manage the movement of information during its lifecycle,
from being added, updated during use (say financial data in the same
quarter), moved to low cost storage for historical low volume reporting,

and deletion.).

NoSQL vendors are moving to support HDFS in order to provide operational
databases to replace HBase. Accumulo, MongoDB, and MarkLogic are just
three examples of these products.

The trend, therefore, is for NoSQL databases to support Hadoop HDFS as
one of many types of storage tier while providing their own optimized query
processing. As long as the query returns the data you ask for, you don’t need
to be concerned about whether it uses Hadoop map/reduce or a database’s
internal query engine — as long as it fast!

Semantics

Semantic technology is a pet love of mine. Weirdly, it predates NoSQL by
years! Sir Tim Berners-Lee came up with the principles of the semantic web
way back in 1998.

The concept models distributed data in such a way that computers can tra-
verse links among datasets on the web much like users traverse hyperlinks
among web pages.

Technologies like RDF and SPARQL are used to model and query shared data,
respectively. Resource Description Framework (RDF) is a common mecha-
nism for modeling assertions (known as triples). The query language SPARQL
is designed to be to triples what Structured Query Language (SQL) is to rela-
tional databases. These triples are stored in a triple store or a graph store.

These technologies have particular relevance for NoSQL. In an RDBMS,
people are used to querying across tables using relationships. NoSQL data-
bases don’t provide this construct.

However, triple stores provide relationships that can be dynamic, sub-
classed, and described in their own right, and where the relationships pos-
sible among records may not be known at the time a database is designed.
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Triple stores, therefore, provide the flexibility in storing relationships that
other NoSQL databases provide for the data itself — namely, schema agnosti-
cism and the ability to store different data and relationships without schema
definition up front.

So, graph and triple stores hold the promise of providing the answer to
cross-record joins currently lacking in other NoSQL databases. A particularly
good, albeit not widely used, example is OrientDB.

OrientDB allows you to define document attributes whose value may relate
to another document. This is similar to the primary/foreign key relationships
from the relational database world. What OrientDB does, though, is to auto-
matically generate the triples to describe this relationship when it recognizes
the data in documents.

Furthermore, OrientDB allows you to query this data and dynamically gener-
ate a merged document from the result of a set of relationships held in its
triple store. It’s a very cool approach that other NoSQL vendors are sure to
begin applying to their own databases.

Semantic technology also holds the promise of providing more context
around search. Rather than return documents that mention “Thatcher,” you
may want to say “Job Role: Thatcher” or “Politician (subclass of Person):
Thatcher.” This provides disambiguation of search terms.

Several products exist, including Temis, Smartlogic, and Open Calais, that
use text analytics to extract entities (people, places, and so on) and gener-
ate semantic assertions so they can be stored in a triple store, linked to the
source text it describes in the NoSQL database.

Public cloud

Something worth considering alongside adoption of NoSQL technology is the
public cloud. Companies like Amazon and Microsoft offer flexible infrastruc-
ture that can be provisioned and shut down rapidly, on demand. A cloud
approach aligns well with NoSQL because of NoSQL’s ability to scale across
many commodity systems.

Adopting NoSQL means you will have a database that naturally fits in a cloud
environment. Many NoSQL database products can have nodes added and
removed from a cluster dynamically with no down time, which means that
during periods of peak usage, you can deploy the hardware dynamically
using Amazon Web Services, for example, and also add extra database stor-
age or query capacity on demand, too.
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Although many NoSQL databases have their roots in open-source, enterprise
features — including cloud management utilities — these database features
though are available only as commercial add-ons.

Some databases may be able to scale to any number of nodes, but providing
that extra capability may require the database to shut down, or at least nega-
tively affect short-term performance.

These concerns and others are detailed alongside the products in Parts Il
through VII of this book.



Chapter 3
Evaluating NoSQL

In This Chapter
Balancing technical requirements
Assessing costs

Maintaining database systems

S) you’ve decided you need a NoSQL solution, but there are oh so many
options out there. How to decide?

Well, you begin by writing a Request for Information (RFI) and send it to
potential suppliers. You're not a NoSQL expert, but you know what you like!
Unfortunately, you also know that the vendors’ responses to all your ques-
tions will be, “Yes, we can do that!”

So, your job is to separate the wheat from the chaff, and that’s the purpose
of this chapter. My intention is to help you identify the differences among the
many options and to make your post-RFI analysis much easier.

The Technical Evaluation

When performing a technical evaluation of products, it’s tempting to create
a one-size-fits-all matrix of features and functions against which you evaluate
all products.

When assessing NoSQL options, though, this approach rapidly falls apart.
NoSQL is too broad a category. With traditional relational database
management systems, you can request things like “SQL support” or “Allows
modifying the schema without system restart.”
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The range of NoSQL databases means one database may be strong
in managing documents, whereas another is strong in query
performance. You may determine that you need multiple products,
rather than carrying out a simple one-size-fits-all box-ticking

beauty pageant.

This section narrows your focus before embarking on the creation
of a compliance matrix for your evaluations. By doing so, you can
ask the right questions about the right products and do a high-

value evaluation.

Table 3-1

NoSQL Data Management Use Cases

Data to Manage

NoSQOL Database

Trade documents (FpML), Retail
insurance policies (ACORD), healthcare
messages, e-form data

Document database with XML support

Monthly data dumps in text delimited
(CSV, TSV) files, or system/web log files

Bigtable clone for simple structures

Document database for very complex
structures

Office documents, emails, PowerPoint

Document database with binary
document text and metadata extraction
support

Web application persistent data
(JavaScript Object Notation — JSON)

Document database with JSON
support and a RESTful API

Metadata catalog of multiple other
systems (for example, library systems)

Bigtable for simple list of related fields
and values

Document database for complex data
structures or full text information

Uploaded images and documents for
later retrieval by unique 1D

Key-value store for simple store/
retrieval

Document store with binary text
extraction and search for more
complex requirements

RDF, N-Triples, N3, or other linked
(open) data

Triple store to store and query facts
(assertions) about subjects

Graph store to query and analyze
relationships between these subjects

Mix of data types in this table

Hybrid NoSQL database




Chapter 3: Evaluating NoSOL

Which type of NoSOL is for you?

The first question is what does your data look like? Unlike relational data-
bases, where it’s a given that the data model includes tables, rows, columns,
and relationships, NoSQL databases can contain a wide variety of data types.

Table 3-1 matches data types with the NoSQL database you may want to
consider.

Search features

You can narrow the field of databases if you consider how data is managed
and how it’s revealed to users and other systems.

Query versus search

An entire book can be filled on discussing query versus search. However,
requirements tend to fit on a sliding scale of functionality from simple to
complex:

+* Any NoSQL database should be able to handle basic queries. Retrieving
arecord by an exact property, value, or ID match is the minimum func-
tionality you need in a database. This is what key-value stores provide.
These basic queries match exact values, such as

¢ By the record’s unique ID in the database
* By a metadata property associated with the record
¢ By a field within the record

v Comparison queries, also commonly called range queries, find a stored
value within a range of desired values. This can include dates, numbers,
and even 2D geospatial coordinates, such as searching:

¢ By several matching fields, or fields within a range of values

¢ By whether a record contains a particular field at all (query on
structure)

Comparison queries typically require a reverse index, where target
values are stored in sequence, and record IDs are listed against them.
This is called a Term List.

v Handling of free text, including more advanced handling such as
language selection, stemming, and thesaurus queries, which are
typically done by search engines. In the NoSQL world (especially
document NoSQL databases), handling unstructured or poly-structured

01
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data is the norm, so this functionality is very desirable for such a use
case, including support for searching:

¢ By a free text query

¢ By a stemmed free text query (both cat and cats stem to the word
cat) or by a thesaurus

¢ By a complex query (for example, geospatial query) across mul-
tiple fields in a record

¢ By calculating a comparison with a query value and the value
within a record’s data (for example, calculated distance of five
miles based on a point within a record, and the center of a
City — Finding hotels in London.)

Some databases have these search functions built in, whereas others
integrate an Apache Lucene-based search index or an engine such
as Solr.

v In the world of analytics, you calculate summaries based on the data in
matching records, and perhaps as compared to the search criteria. It’s
common to calculate relevancy based on distance from a point, instead
of simply returning all records within a point and radius geospatial
query. So, too, is returning a heat map of the data rather than all
matching data. These tools are useful for complex searches such as the
following:

* By calculating the above while returning a summary of all results
(for example, heat map, facetted search navigation, co-occurrence
of fields within records)

¢ By an arbitrarily complex set of AND / OR / NOT queries combining
any of the previously mentioned query terms

¢ By including the above terms in a giant OR query, returning a
higher relevancy calculation based on the number of matches and
varying weights of query terms

<P v Facetted search navigation where you show, for example, the total
number of records with a value of Sales in the Department field is also
useful. This might be shown as “Department — Sales (17)” in a link
within a user interface. Faceting is particularly useful when your result
list has 10,000 items and you need to provide a way to visually narrow
the results, rather than force the user to page through 10,000 records.

Timeliness

Search engines were originally developed to over time index changes of data
sources that the search engine didn’t control. Engines like Google aren’t
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informed when every web page is updated, so they automatically index web-
sites based on a schedule, for example:

v Rapidly changing and popular websites like BBC News and CNN may be
indexed every few minutes.

v The index of an average person’s blog may be updated weekly.

The timeliness of indexes’ updates is very important for some organiza-
tions. Financial regulators, for example, now need a near-live view of banks’
exposure to credit risks — an overnight update of this vital information is no
longer sufficient.

If your information retrieval requirements are nearer the search end of the
spectrum than the basic query end, then you need to seriously consider time-
liness. If this describes you, I suggest considering two products:

v A NoSQL database for data

v A separate search engine like Solr or Elasticsearch for your search
requirements

Having these two products installed separately may not be sufficient to
guarantee timely access to new data. Even if you can use a NoSQL database
distribution that comes with Solr integrated, the indexes may not be updated
often enough for your needs. Be sure to check for this functionality when
talking to vendors.

When timely updating of search indexes is required, consider a hybrid
NoSQL solution that includes advanced search functionality, and definitely
ACID compliance in a single product. Sometimes, this may be a case for using
Solr built on Lucene as a document store, but many organizations need a full-
blown commercial system like MarkLogic with both advanced data manage-
ment and search capabilities built in.

ACID compliance means the database provides a consistent view over the
data — so there’s no lag between the time the data is saved and the time it’s
accessible. Without an ACID compliant fully consistent view, the search index
can never be real time.

A NoSQL database with indexes that are used by both the database and
the search functionality means that when a document is saved, the search
indexes are already up to date, in real time.
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RF] questions

The following sample questions identify key required features about information
retrieval, ranging from simple to advanced query and search functionality.

In this chapter, | use some common conventions for vendor specification
questions:
v | use these common abbreviations:
e TSSS =The System Should Support
e TSSP =The System Should Provide
e TSSE =The System Should Ensure

v [ use the term “record,” but you may change it to “document,” “row,
“subgraph” or “subject” when appropriate.

”

General data storage question examples:

1 TSSS storing and retrieving a record by a unique key

v TSSS indexes over record fields for fast single-key retrieval of matching
records

v TSSS not requiring additional compound indexes for retrieval of records
by multiple keys

Forcing the creation of additional compound indexes can adversely
affect storage, and means you need to consider up front every possible
query combination of fields.

v TSSS indexing a range of intrinsic field types (such as Boolean, text,
integer, and date)

v TSSS word, stem, and phrase full-text searching across a record

v TSSS word, stem and phrase full-text searching limited to a set of fields
in a record

v TSSS range queries, such as dates or integers within a particular range

v TSSS returning part of a record as a match (as an alternative to return-
ing a complete, long record)

v TSSS queries including multiple query terms

v TSSS limiting a query (or query terms) to a specific subset of a record
(normally for complex document NoSQL stores — for example, just the
“patient summary” section)

v TSSS returning configurable text snippets along with matches of a query

v TSSS custom snippeting to return matching data segments, not limited
to just text matches (for example, returning a three-minute partial
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description of a five-hour video’s metadata that matches the query,
rather than returning the whole five hour video and forcing the user to
find the segment manually)

v TSSS, a configurable Google-like grammar for searches beyond simple
word queries (for example, NoSQL. AND author:Adam Fowler AND
(publication GT 2013))

v TSSS queries with compound terms (terms containing multiple terms)
down to an arbitrary depth

v TSSS geospatial queries for points held within records that match an area
defined by a bounding box, point-radius, and arbitrarily complex polygon

For timeliness, include these questions:

v TSSE that search indexes are up to date within a guaranteed x minute
window of time from the time a record is updated

v TSSE that search indexes are up to date at the same time as the record
update transaction is reported as complete (that is, real-time indexing)

v TSSS updating multiple records within the boundary of a single ACID
transaction

Be sure the vendor guarantees that all sizing and performance figures quoted
are for systems that ensure ACID transactions and real-time indexing. Many
vendors often ascertain their quotes with these features turned off, which
leads to inaccurate estimates of performance for NoSQL databases on the web.

Scaling NoSQL

One common feature of NoSQL systems is their ability to scale across many
commodity servers. These relatively cheap platforms mean that you can
scale up databases by adding a new server rather than replace old hardware
with new, more powerful hardware in a single shot.

There are high-volume use cases that will quickly force you to scale out.
These include

+” You receive status reports and log messages from across an IT land-
scape. This scenario requires fast ingest times, but it probably doesn’t
require advanced analysis support.

+* You want high-speed caching for complex queries. Maybe you want
to get the latest news stories on a website. Here, read caches take
prominence over query or ingest speeds.
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The one thing common to the performance of all NoSQL databases is that
you can’t rely on published data — none of it — to figure out what the
performance is likely to be on your data, for your own use case.

You certainly can’t rely on a particular database vendor’s promise on perfor-
mance! Many vendors quote high ingest speeds against an artificial use case that
is not a realistic use of their database, as proof of their database’s supremacy.

However, the problem is that these same studies may totally ignore query
speed. What’s the point in storing data if you never use it?

These studies may also be done on systems where key features are disabled.
Security indexes may not be enabled, or perhaps ACID transaction support
is turned off during the study so that data is stored quickly, but there’s no
guarantee that it’s safe.

This all means that you must do your own testing, which is easy enough, but
be sure that the test is as close to your final system as possible. For example,
there’s no point in testing a single server if you plan to scale to 20 servers.

In particular, be sure to have an accurate mix of ingesting, modifying, and
querying data.

Consider asking your NoSQL vendor these questions:

v Can you ensure that all sizing and performance figures quoted are for
systems that ensure ACID transactions during ingest that support real-time
indexing, and that include a realistic mix of ingest and read/query requests?

v Does your product provide features that make it easy to increase a
server’s capacity?

v Does your product provide features that make it easy to remove unused
server capacity?

v Is your product’s data query speed limited by the amount of information
that has to be cached in RAM?

v Does your product use a memory map strategy that requires all indexes
to be held in RAM for adequate performance (memory mapped means
the maximum amount of data stored is the same as the amount of physi-
cal RAM installed)?

v Can your database maintain sub-second query response times while
receiving high-frequency updates?

v Does the system ensure that no downtime is required to add or remove
server capacity?

v Does the system ensure that information is immediately available for
query after it is added to the database?
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v Does the system ensure that security of data is maintained without
adversely affecting query speed?

v Does the system ensure that the database’s scale-out and scale-back capa-
bilities are scriptable and that they will integrate to your chosen server pro-
visioning software (for example, VMWare and Amazon Cloud Formation)?

Keeping data safe

As someone who has an interest in databases, I'm sure you're used to dealing
with relational database management systems. So, you trust that your data is
safe once the database tells you it’s saved. You know about journal logs, redun-
dant hard disks, disaster recovery log shipping, and backup and restore features.

However, in actuality, not all databases have such functionality in their basic
versions, right out of the box. In fact, very few NoSQL databases do so in
their basic versions. These functions tend to be reserved only for enterprise
or commercial versions.

So, here are a few guidelines that can help you decide which flavor of a
NoSQL database to use:

v If you choose open-source software, you'll be buying the enterprise
version, which includes the preceding features, so you might as well
compare it to commercial-only NoSQL databases.

v The total cost of these systems is potentially related more to their
day-to-day manageability (in contrast to traditional relational data-
base management systems) — for example, how many database
administrators will you need? How many developers are required to
build your app?

» You need to be very aware of how data is kept safe in these databases,
and challenge all vendor claims to ensure that no surprises crop up
during implementation.

The web is awash with stories from people who assumed NoSQL databases
had all of these data safety features built in, only to find out the hard way
that they didn’t.

Sometimes the problems are simply misunderstandings or misconfigurations
by people unfamiliar with a given NoSQL database. Other times, though, the
database actually doesn’t have the features needed to handle the workload
and the system it’s used on.

A common example relates to MongoDB’s capability for high-speed data
caching. Its default settings work well for this type of load. However, if you're
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running a mission-critical database on MongoDB, as with any database, you
need to be sure that it’s configured properly for the job, and thoroughly tested.

Here are some thoughts that can help you discover the data safety features
in NoSQL databases:

v The vendor should ensure that all sizing and performance figures
quoted are for systems that ensure strongly consistent (ACID)
transactions during ingest, real time indexing, and a real-life mix
between ingest and read/query requests.

v Vendor should provide information about cases in which the database is
being used as the primary information store in a mission-critical system.
This should not include case studies where a different database held the
primary copy, or backup copy, of the data being managed.

v TSSE that, once the database confirms data is saved, it will be recoverable
(not from backups) if the database server it’s saved on fails in the next
CPU clock cycle after the transaction is complete.

v Does the database ensure data is kept safe (for example, using journal
logs or something similar)?

v Does the system support log shipping to an alternative DR site?

v~ TSSE that the DR site’s database is kept up to date. How does your database
ensure this? For example, is the DR site kept up to date synchronously or
asynchronously? If asynchronously, what is the typical delay?

v TTSP audit trails so that both unauthorized access and system problems
can be easily diagnosed and resolved.

v What level of transactional consistency does your database provide by
default (for example, eventual consistency, check and set, repeatable
read, fully serializable)?

v What other levels of transactional consistency can your database be
configured to use (for example, eventual consistency, check and set,
repeatable read, fully serializable)? Do they include only the vendor’s
officially supported configurations?

v What is the real cost of a mission-critical system?

¢ Ask the vendor to denote which versions of its product fully sup-
port high availability, disaster recovery, strong transactional con-
sistency, and backup and restore tools.

¢ Ask the vendor to include the complete list price for each product
version that achieves the preceding requirements for five physical
Intel 64 bit servers with 16 cores, with each running on Red Hat
Enterprise Linux. This provides an even playing field for comparing
total cost of ownership.
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Visualizing NoSOL

Storing and retrieving large amounts of data and doing so fast is great, and
once you have your newly managed data in NoSQL, you can do great things,
as | explain next.

Entity extraction and enrichment

You can use database triggers, alert actions, and external systems to ana-
lyze source data. Perhaps it’s mostly free text but mentions known subjects.
These triggers and alert actions could highlight the text as being a Person
or Organization, effectively tagging the content itself, and the document it
lays within.

A good example is the content in a news article. You can use a tool like
Apache Stanbol or OpenCalais to identify key terms. These tools may see
“President Putin” and decide this relates to a person called Vladimir Putin,
who is Russian, and is the current president of the Russian Federation.

Other examples include disease and medication names, organizations, topics
of conversation, products mentioned, and whether a comment was positive
or negative.

These are all examples of entity extraction (which is the process of
automatically extracting types of objects from their textual names).

By identifying key terms, you can tag them or wrap them in an XML element,
which helps you to search content more effectively.

Entity enrichment means adding information based on the original text
in addition to identifying it. In the Putin example, you can turn the plain
text word “Putin” into <Person uid="Vladimir-Putin”>President
Putin</Persons>. Alternatively, you can turn “London” into <Place
lon="-0.15" lat="52.5">London</Places.

You can show this data in a user interface as highlighted text with a link to
further information about each subject.

You can provide enrichment by using free-text search, alerting, database triggers,
and integrations to external software such as TEMIS Luxid and SmartLogic.

Search and alerting

Once you store your information, you may want to search it. Free-text search
is straightforward, but after performing entity extraction, you have more
options. You can specifically search for a person named “Orange” (as in
William of Orange) rather than search records that mention the term

orange — which, of course, is also a color and a fruit.
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Doing so results in a more granular search. It also allows faceted navigation.
If you go to Amazon and search for Harry Potter, you'll see categories for
books, movies, games, and so on. The product category is an example of a
facet, which shows you an aspect of data within the search results — that is,
the most common values of each facet across all search results, even those
not on the current page.

User interfaces can support rich explorations into data (as well as basic
Google-esque searches). Users can also utilize them to save and load previ-
ous searches.

You can set up saved search criteria so that alerts are activated when
newly added records match that criteria. So, if a new record arrives

that matches your search criteria, an action occurs. Perhaps “Putin”
becomes <Person>Putin</Person, or perhaps an email lets you know a new
scientific article has been published.

Not all search engines are capable of making every query term an alert. Some
are limited to text fields; others can’t do geospatial criteria. Be sure yours
can handle the alerts you need to configure.

Aggregate functions

Once you find relevant information, you may want to dig deeper. Depending
on the source, you might ask how many countries have a GDP of greater
than $400 billion, or what’s the average age of all the members in your family
tree, or where do the most snake bites occur in Australia. These examples
illustrate how analytics are performed over a set of search results. These are
count, mean average, and geospatial heat map calculations, respectively.

Being able to make such calculations next to the data offers several
advantages. The first advantage is that you can use the indexes to speed
things up. Secondly, these indexes are likely to be cached in memory, making
them even faster. Thirdly, in memory indexes are particularly useful for a
NoSQL database using Hadoop File System (HDFS) storage. HDFS doesn’t do
native indexing or in-memory column stores for fast aggregation calculations
itself — it requires a NoSQL database on top to do this.

Facetted navigation is an example of count-based aggregations over search
results that show up in a user interface. The same is true for a timeline
showing the number of records that mention a particular point in time.

For example, do you want to show results from this year, this month, or
this hour?

If you want this functionality, be sure your database has the ability to
calculate aggregates efficiently next to the data. Most NoSQL databases do,
but some don’t.
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Charting and business intelligence

The next obvious user-interface extension involves charting and viewing
table summaries for live management information and historical business
intelligence analysis.

Most NoSQL databases provide an easy-to-integrate REST API in their
databases. This means you can plug in a range of application tiers, or even
directly connect JavaScript applications to these databases. A variety of
excellent charting libraries are available for JavaScript. You can even use the
R Ecosystem to create charts based on data held in these databases, after
installing an appropriate database connector.

Some NoSQL databases even provide an ODBC or JDBC relational data-

base plug-in. Creating indexes within a given record and showing them as a
relational view is a neat way to turn unstructured data in a NoSQL document
database into data that can be analyzed with a business intelligence tool.

Check whether your NoSQL database vendor provides visualization tools
or has business partners with tools than can connect to these databases.

In vogue tools include Tableau Server, which is a modern shared business
intelligence server that supports publishing interactive reports over data in
a variety of databases, including NoSQL databases.

Extending your data layer

A database does one thing very well: It stores data. However, because all
applications need additional software to be complete, it’s worth ensuring
that your selected NoSQL database has the tools and partner software that
provide the extended functionality you require.

Not ensuring that extended functionality is supported will mean you will

end up installing several NoSQL databases at your organization. This means
additional cost in terms of support, training and infrastructure. It’s better

to be sure you select a NoSQL database that can meet the scope of your
goals, either through its own features or through a limited number of partner
software products.

The ability to extend NoSQL databases varies greatly. In fact, you might think
that open-source software is easy to extend; however, just because its API is
public, doesn’t mean it’s documented well enough to extend.

Whether you select open-source or commercial software, be sure the
developer documentation and training are first rate. You may find, for
example, that commercial software vendors have clearer and more detailed
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published API documentation, and well-documented partner applications
from which you can buy compatible software and support.

These software extensions can be anything useful to your business, but
typically they are on either the ingest side or the information analysis side

of data management rather than purely about storage. For example, extract,
transform, and load (ETL) tools from the relational database world are being
slowly (slowly) updated for NoSQL databases. Also partner end user applica-
tions are emerging with native connectors. The Tableau Business Intelligence
(BD) tool, for example, includes native connectors for NoSQL databases.

Ingestion connectors to take information from Twitter, SharePoint, virtual file
systems, and combine this data may be useful. Your own organization’s data can
be combined with reference data from open data systems (for example, data.
gov, data.gov.uk, geonames, and dbpedia websites). These systems typically use
XML, JSON or RDF as open data formats, facilitating easier data sharing.

Integration with legacy apps is always a problem. How do you display your
geospatially enriched documents within a GIS tool? It’s tricky. Open stan-
dards are key to this integration and are already widely supported. Examples
are GeoJSON, OGC WFS, and WMS mapping query connectors.

File-based applications are always a bit of a problem. It’s a logical next step
to present a document database as a file system. Many NoSQL databases
support the old and clunky WebDAV protocol. Alas, as of yet, no file system
driver has become prevalent. Some NoSQL databases are bound to go this
way, though.

Ask your NoSQL vendors about their supported partner applications and
extensions. These may cost less than building an extended solution yourself,
or paying for vendors’ professional services.

The Business Evaluation

Technical skills are very necessary in order for you to build a successful
application. What is as important, but all too often given much lower priority,
is the business evaluation.

Writing the code is one thing, but selecting a database which has a
community of followers, proven mission critical success, and people and
organizations to call on for help when you need it is just as important.

In this section, I describe some of the areas of the non-technical, or business
evaluation, you should consider when evaluating NoSQL databases.
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Developing skills

NoSQL is such a fast-growing area that the skills required to use it can’t keep
up, and with so many different systems, there aren’t any open standards
equivalent to those for SQL in the relational database world.

Therefore, it’s a good idea to find and employ or contract, at the right price,
those people who have expertise in the database you select. Also, be sure
that you can find online or in-person training. In doing so, don’t accept,
outright, people’s LinkedIn profiles in which experience with MongoDB is
listed — sometimes it’s listed only because it’s a very popular database and
the person is looking for a job when in fact they haven’t any proven delivery
experience with that database. So, you want to be sure they’re actually
skilled in the database you’re using.

Getting value quickly

NoSQL databases make it easy to load data, and they can add immediate
value. For example, if early on you solve a few high-value business cases,
you may get financial and management backing for larger projects. With this
background, you will be able to deploy new applications quickly —
potentially stealing a march on your competitors and having fun with
awesome new databases in the process!

So, start by identifying high-value solutions for a few difficult, well-scoped,
business problems and perform some short-term research projects on them.
Use a selection of NoSQL databases during the project’s initial phases, and
check whether vendor-specific extensions can help you achieve your aims. In
NoSQL, vendor lock-in is a given because every product is so different — you
may as well embrace the database that best fits your needs.

Having said this, the situation is improving. XML and JSON are the defacto
information interchange formats now. In the semantic technology space
standards like RDF and SPARQL are the predominant standards. Adopting
these long term enables you to switch vendors, but at the moment the
fragmented nature of implementation of some of these standards means you
may well be better off adopting database specific extensions.

Finding help

With any software product, there comes a point where you need to ask for
help. Finding answers on StackOverflow.com is one thing, but in a real-life
project, you may come upon a knotty problem that’s unique to your business.

/3
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In this situation, web searches probably can’t help you. You need an expert
on the database you're using. Before selecting a database, be sure you can
get help when you need it. This could be from freelance consultants or
NoSQL software vendors themselves.

V?\‘\\NG! Check the price tag, though, before selecting a database — some vendors are
S charging double the day rate of others for a consultant to be on site. By hand-
ing software out for free or very cheaply they have to make their money
somewhere!

24 hour, 7 day, 365 day a year dedicated support is also a very good idea for
mission critical solutions. “Follow the sun” problem resolution models will
also help fix problems quickly. Some vendors’ support staff are less technical
IT support people, whereas other vendors use actually engineers able to take
your problem through to resolution themselves. This is quicker than having
to wait for the right time zone for a few third level support engineers to get to
work in the morning.

Deciding on open-source versus
commercial software

Many people are attracted to open-source software because of the price tag
and the availability of online communities of expertise. | use open-source
software every day in my job — it’s essential for me, and it may well be
essential for you, too.

The good news is that you can find a lot of open-source NoSQL vendors and
commercial companies that sell support, services, and enterprise versions of
their software.

Here are a few reasons to use open-source software in the first place:

v~ Freely available software: This kind of software has been downloaded
and tried by others, so some developers are at least familiar with it; and
people spend time contributing only to the development of software
they consider valuable or are passionate about.

v~ Sites like StackOverflow.com: Sites like StackOverflow.com are
full of fixes, and someone has probably approached these sites with
problems you're likely to encounter.

v+ Try before you buy: With open-source software, you can become
familiar with a free version of software before sinking your annual
budget into purchasing an enterprise, fully supported version.
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Conversely, there are several good reasons for buying and using commercial
NoSQL databases instead:

v Documentation: Product documentation is usually much more complete
and in-depth than open-source software.

v Support: These companies may offer global 24/7 support and will have
trainers, consultants, and sales engineers that can travel to your office
to show you how their software can help you — good for getting support
for internal proof of concept and business cases.

+~ Rationale: These companies make money by selling software, not
consulting services — their day rates may be lower than those selling
add-ons and support for open source databases, which can reduce the
cost of implementation.

v Products: Products usually have many more built-in enterprise features
than open-source ones do, which means you need fewer add-on modules
and services.

1 Freebies: Because of the overwhelming number of open-source options,
commercial companies now offer free or discounted training and free,
downloadable versions of their products that you can use and evaluate.

Building versus buying

As I alluded to earlier, many open-source NoSQL vendors make their money
by offering commercial support and services rather than by selling software.

Many open-source NoSQL products are also very new, so not all the features
you may need are readily available in the software. As a result, you are likely
to spend money on paying for services to add this functionality.

Many organizations have internal technical teams, especially in financial
services companies and in some defense and media organizations. Because
financial services companies take any advantage they can get to make a
profit, so they hire very capable staff.

Your organization may also have a skilled staff. If so, “Congratulations,”
because you're the exception rather than the rule! If you're in this situation,
you may be able to add the extra features yourself, rather than buy expensive
services.

However, most organizations aren’t in this position, so it’s worth checking
out the “additional” features in commercial software, even if they don’t
provide every single feature you want of the box, but allow you to build those
features faster.



76

Part I: Getting Started with NoSQL

3

It’s easy to burn money paying for software to be built to fix deficiencies in
open source software. Consider the total cost of ownership of any future
NoSQL database.

Evaluating vendor capabilities

Whom to trust? Trusting no one, like Fox Mulder (remember, The X-Files)
only gets you so far. Eventually, you must take the plunge and choose a firm
to help you in your endeavors.

Small companies may be local, independent consultancies or smaller NoSQL
vendors. They offer a couple of advantages:

v Small vendors may be more tuned into your industry or geography.
They’re particularly useful in small countries or sectors where large
commercial companies don’t often venture.

v+ Small vendors tend to be flexible — because you’re likely to be a major
percentage of their annual income, as well as a useful addition to their
portfolio.

Small vendors may be prone to financial troubles and downturns. Also, they
may not have enough personnel to service and support your organization’s
expanded use of a NoSQL database.

Large (usually commercial) software companies typically have their own
strengths:

v Large companies have a greater reach and more resources — both
human and financial — to call on.

v~ If you have a problem that needs to be solved fast, these companies may
be better placed to help you than smaller companies are.

Large companies have broader experiences than smaller companies
have, which means the bigger companies have probably dealt with
unique edge cases. So, if you have a unique requirement, these compa-
nies may have people who’ve dealt with similar problems.

Finding support worldwide

You want to find out whether local support is available, as either service
consultants or engineering and product support personnel. Be sure you can
contact them in your time zone and that they speak your language fluently.
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Perhaps you can request a meeting with their local support leader before
signing a contract.

In government organizations, security is paramount. In some countries,

a support person who’s reviewing log files and handling support calls for
public sector systems must have proper security clearance, and this is true
even for unclassified civilian systems. Usually, these stringent requirements
are due to government organizations having suffered data losses or theft in
the past. Be sure these people are available if you work in the public sector.

Expanding to the cloud

Many organizations outsource the delivery and support of their IT services to
a third party. When provisioning new hardware or applications, this process
is typically ongoing. It can also prove costly.

NoSQL databases often are used to solve emerging problems rapidly. Agile
development is the norm in delivering the solutions to these problems. This
is particularly the case when systems need to go into production within six
months or so.

Many organizations are now moving to the cloud for their provisioning and
servicing needs in order to make delivery of new IT systems less expensive
and more agile. Be sure your NoSQL database can be used in these environ-
ments.

Several NoSQL products have specific management features in a cloud envi-
ronment. Their management APIs can be scripted and integrated with exist-
ing systems management tools. Ask your vendor what support it has with the
cloud environment you choose.

A\

Getting Support

All sophisticated IT systems have features that become acutely important if
they’re being used for business or mission-critical jobs. This section details
many enterprise class features that you may want to consider if you're run-
ning business critical workloads.
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Business or mission-critical features

If your organization’s reputation or its financial situation will suffer if your
system fails, then your system is, by definition, an enterprise class system.

A good example of such a system in the financial services world is a trade
management system. Billions of dollars are traded in banks every day. In this
case, if your system were to go down for a whole day, then the financial and
reputational costs would be huge — and potentially fatal to your business.

The consequences of a failure in a government system might be politically
embarrassing, to both executives and those implementing the systems! A
possible and more serious side effect, though, might be the risk of life and
limb. For example, take a military system monitoring advancing troops. If it
were to fail for a day, troops might be put in harm’s way.

In the civilian sphere, certainly in the UK and the European Union, primary
healthcare systems manage critical information. In the UK, there are what’s
called Summary Care Records in which patient information is held and
shared if needed — for example, information about allergies and medications.
If a person is rushed to a hospital, this record is consulted. Without this
information on hand, it’s possible that improper care might be given.

Uendor claims

Often, people confuse a large enterprise customer with a large enterprise
system. Amazon, for example, is definitely a large-enterprise organization.
Everyone is familiar with this organization, so naturally vendors will men-
tion Amazon in their marketing material if they have sold their software to
Amazon. If this software is for printing labels on HR folders though, it’s not a
mission critical enterprise system. Treat vendor claims with suspicion unless
you know exactly how these organizations are using the NoSQL databases
you are considering.

It’s worth reading the small print of these vendors’ customer success stories:

v~ If a database is used to store customer orders and transactions, then it’s
a mission-critical enterprise system.

v~ If a database is used behind an internal staff car sharing wiki page, then
it’s most definitely not a mission-critical application.

Some systems fall in between the preceding definitions of enterprise and non-
enterprise systems. Consider, for example, a database that caches thumbnail
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images of products on an e-commerce website. Technically, an e-commerce
app is mission-critical. If the images weren’t available for a full day, that
company might well have a major problem. In this scenario, it doesn’t take
much to imagine that the retailer’s reputation might be damaged.

But back to Amazon. If you’re buying this book from Amazon (and please do),
you probably don’t care about thumbnail images. If the database storing just
the thumbnail images were to fail, you would still be able to place orders;
therefore, this aspect of the system isn’t really mission-critical, unlike the
preceding situation with the e-commerce retailer’s system.

Vendors who mention a minor system and an enterprise customer in the same
breath aren’t trying to deceive you. It’s perfectly natural for a software
vendor to want to shout about a large enterprise customer from the
rooftops . . . not that you’d listen! It’s more an issue with the English language.

So, when selecting a NoSQL database, be aware of the difference between

an enterprise customer and an enterprise system. Ask vendors exactly how
their customers use their database software and how critical that part of the
system is to the large enterprise’s bottom line.

Enterprise system issues

When you’re trying to figure out whether a database will work in a mission
critical-system, certain issues are obvious — for example, when running a
large cluster in which one server fails, the service as a whole is still available.

In this section, I cover these types of system maintenance issues along with
disaster recovery and backups.

Perhaps less obvious enterprise issues are about how particular parts of the
system work. Two main factors in an enterprise system are durability and
security:

v Durability relates to a database’s ability to avoid the loss of data. (You
may think a database shouldn’t be called a database unless it guarantees
that you can’t lose data, but in the NoSQL world durability isn’t a given.)

v Security is essential to many customers. Think, here, about health records
or military intelligence systems, as I mentioned earlier in the chapter.

This section treats these issues as being equally important with high
availability and disaster recovery because they are as important, if not vital,
for the organizations that need them. I include examples of databases which
support these features in each subsection so you can decide which one
might meet your requirements.
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Security

Although security is a concern for all applications, it’s a particular concern
for certain types of applications. Earlier I talked about how a failed system
can harm financial services and government entities; the same is true in
terms of security for their databases.

When it comes to dealing with security-related issues, you can choose from
a variety approaches. In this section, I cover issues and approaches related
particularly to the security of NoSQL databases.

If you think that you can implement security in a layer of an application layer
rather than in the database, you're right. However, why spend the time,
effort, and money required to do so if you can purchase a database with
built-in security features?

Doing otherwise will risk making security an afterthought, with programmers
instead spending most of their time on end-user features rather than funda-
mental system architecture like ensuring security of data.

Given the amount of money you would spend writing in security features
and the risks to your reputation and finances if you were to have a security
breach, I recommend a security in depth approach. That is, buy a product
with security features you need built in, rather than try to develop them
yourself or rely on application developers to do so.

Role-based access control

One of the most common methods of securing data is to assign each record
(or document or graph, depending on your database type) with a set of per-
missions linked to roles. This is role-based access control, or RBAC for short.

Consider a news release for a website that is being stored in a document
(aggregate) NoSQL database. The editor role may have update permissions
for the document, whereas a more public role may have only read
permissions.

This use case requires assigning role permissions, not user permissions.
Users can be assigned to one or more roles. Thus, users inherit permissions
based on the sum of their roles.

Having to create a role in order to give a user permission to perform a par-
ticular function may seem like extra work, but this approach is very useful.
Consider a user who moves to another department or who leaves entirely.
You don’t want to have to look manually for every document whose permis-
sions mention this user and change or remove them. Instead just change that



Chapter 3: Evaluating NoSOL 8’

user’s role assignments in a single operation. Using role-based access control
(RBAC) is much easier for long-term maintenance of security permissions.

Watch how databases handle permissions and role inheritance. Consider
underwriters in an insurance company, where there may be trainee, junior,
and senior underwriters, each with increasing access to different types of
information.

You could assign the junior underwriters the permissions the trainees are
assigned, plus a few more. Then you could assign all the junior underwrit-
ers’ permissions to senior underwriters, plus a few more, again. If you want
to add extra permissions to all these roles, though, you have to make three
identical changes.

If you have five levels of roles, that’s five copies. Also, every system will have
a multitude of roles like these. Personally, I'm far too lazy to perform the
same mundane task over and over again. Plus, it wastes an employee’s time
and the organization’s money.

There is a better way: Role inheritance.

Some systems include role inheritance. In this case, the JuniorUnderwriter
role inherits from the TraineeUnderwriter role, and the SeniorUnderwriter
role inherits from the JuniorUnderwiter role. Now all you need to do to add
a permission to all roles is to add it to only the TraineeUnderwriter role (the
lowest level of inheritance), and all roles will inherit the permission. Role
inheritance is much easier to understand and maintain.

Role permission logic is generally implemented with OR logic. That is, if
you assign three roles — RoleA, RoleB, and RoleC — to a record with a read
permission, a user has this permission if he has RoleA OR RoleB, OR RoleC.
If you don’t assign role read permissions to a record, then no user has read
permissions on that record (inheritance aside, of course).

Compartment security

For the vast majority of systems, OR logic is fine. There are some instances,
however, where you want to use AND logic. In other words, a user must have
all of the TopSecret, OperationBuyANoSQLDatabase and UKManagement
roles in order to read a particular document.

This capability is variously referred to as compartment security (MarkLogic
Server) or cell level security (Apache Accumulo).

In government systems, you may have several compartments. Examples
include classification, nationality, operation, and organizational unit.
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Each compartment has several roles. Classification, for example, may
have unclassified, confidential, secret and top secret roles linked to this
compartment.

A record is compartmentalized if it requires one or more roles that are
members of a compartment to have a permission on the record. A record
may have TopSecret:Read assigned to its permissions. Another record may
have only British:Read assigned. A third record, though, may require both
TopSecret:Read and British:Read.

Compartment security is different from normal RBAC permissions in that you
must have both TopSecret and British roles to receive the read permission
(AND logic). Normal RBAC requires only one of these roles (OR logic).

Although compartment security may sound like a very useful feature, and it’s
probably vital for military systems, many systems are implemented without
requiring this feature.

Attribute-based access control (ABAC)

A useful pattern for security is to apply permissions based on data within a
record rather than separately assign permissions to the record. This could
be based on either metadata, individual column (Bigtable clones), or element
(Aggregate NoSQL databases) values.

A good example is a customer name being mentioned within a document. You
may want to restrict access to all the documents mentioning that customer
to only those people with access to this customer’s information. You can
restrict access to these documents by processing the data within the docu-
ment, and applying the relevant security permissions based on the value of
that data.

No NoSQL databases provide this capability right out of the box. That’s
because permissions must be assigned to the record after the data is saved
by the application but before it’s available for retrieval by other applications
or users. So, this permission assignment must occur within the transaction
boundary.

Also, very few NoSQL databases support ACID-compliant transactions
(MarkLogic, FoundationDB, and Neo4j, do for example). You can find
examples of ACID compliant NoSQL databases in Chapters 4 and 21, where
[ provide a broader discussion about ACID compliance.

If a database doesn’t support out-of-the-box assignment of permissions
based on data within a document but does support ACID transactions and
pre-commit triggers, then an easy workaround is possible.
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It’s generally easy to write a trigger that checks for the presence of a value
within a record and to modify permissions based on its value. As long as a
database supports doing so during the commit process, and not after the
commit, then you know your data is made secure by using a simple pre-
commit trigger.

As an example, MarkLogic Server supports fully serializable ACID
transactions and pre-commit triggers. Following is a simple XML document
that [ want to support for attribute-based access control:

<MeetingReport>
<SalesPerson>jbloggs</SalesPerson>
<Customer>ACME</Customers
<Notes>Lorem Ipsum Dolar Sit Amet...</Notes>
</MeetingReport>

MarkLogic Server’s triggers use the W3C XQuery language. The following
XQuery example is a simple trigger that, when installed in MarkLogic, assigns
read and write permissions:

xquery version "1.0-ml";
import module namespace
trgr = 'http://marklogic.com/xdmp/triggers'’
at '/MarkLogic/triggers.xqy';
declare variable $trgr:uri as xs:string external;
declare variable $trgr:trigger as node() external;
if (“ACME” = fn:doc (Strgr:uri)/MeetingReport/Customer)
then
xdmp : document -set -permissions ($trgr-uri,
(xdmp :permission (“seniorsales”, "update”),
xdmp : permission (“sales”, "read”)
)
)

else ()

Once the trigger is installed in the file setperms.xqy in a MarkLogic Server
Modules Database, execute the following code in the web coding application
for MarkLogic - Query Console to enable the trigger. On a default MarkLogic
Server installation, you can find the Query Console at the URL: http://
localhost:8000/gconsole.

Here is code showing how to install the trigger using Query Console:

xquery version "1.0-ml";

import module namespace
trgr="'http://marklogic.com/xdmp/triggers'’
at '/MarkLogic/triggers.xqy';

trgr:create-trigger ("setperms",


HTTP://LOCALHOST:8000/QCONSOLE
HTTP://LOCALHOST:8000/QCONSOLE
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"Set Sales Doc Permissions",

trgr:trigger-data-event (
trgr:collection-scope ("meetingreports"),
trgr:document-content ("modify"),
trgr:pre-commit ()

), trgr:trigger-module (
xdmp : database ("Modules"), "/triggers/",
"setperms.xqy"

), fn:true(),

xdmp:default-permissions (),

fn:false()

Identity and Access Management (1dAM)

Authorizing a user for access to information or database functionality is
one thing, but before you can do that, you must be sure that the system
“knows” that the user is who she says she is. This is where authentication
comes in. Authentication can happen within a particular database, or it can
be delegated to an external service — thus the term Identity and Access
Management (IdAM).

When relational databases were introduced, there were only a few standards
around authentication — that’s why most relational databases are still used
with internal database usernames and passwords. Most NoSQL databases take
this approach, with only a few supporting external authentication standards.

The most common modern standard is the Lightweight Directory Access
Protocol (LDAP). Interestingly, most LDAP systems are built on top of rela-
tional databases that hold the systems’ information!

NoSQL databases are a modern invention. They appeared at a time when
existing authentication and authorization mechanisms and standards exist,
and so many have some way of integrating with them.

Where to start, though? Do you integrate your NoSQL database with just a
single IdAM product, or do you try to write a lot of (potentially unused) secu-
rity integrations, and risk doing them badly? It’s tempting to expect NoSQL
databases to be ahead of the curve here — but let’s be realistic. No software
developer can possibly support all the different security systems out there.

Instead, each NoSQL database has its own internal authentication scheme,
and usually support for plugging in your own custom provider. NoSQL data-
bases provide a plugin mechanism as a first step before using this mecha-
nism to implement specific standards.

Although a lack of security system integrations is a weakness from the stand-
point of a box-ticking exercise, providing a plugin mechanism actually allows
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these databases to be flexible enough to integrate with any security system
you need.

Fortunately, LDAP is one of the first options that NoSQL vendors integrate.
On the Java platform, this may be presented as support for the Java
Authentication and Authorization Standard (JAAS). This is a pluggable
architecture, and one of its commonly used plug-ins is LDAP directory server
support.

When selecting a NoSQL database, don’t get hung up that some don’t support
your exact authentication service. As long as the software can be adapted
relatively quickly using the database’s security plugin mechanism, that will
be fine. The product’s capabilities are more important, as long as they sup-
port security plug-ins.

This is where it’s useful to have the resources of a commercial company sup-
porting your NoSQL database — writing these security integrations yourself
may take your software engineers longer, and they might even introduce
security bugs. Commercial companies have the resources and experience of
providing these integrations to customers.

External authentication and Single Sign-On

A NoSQL database supporting a pluggable architecture, rather than a limited
set of prebuilt plug-ins for authentication and authorization, can sometimes
be beneficial.

This is especially true in the world of Single Sign-On (SSO). SSO allows you

to enter a single name and password in order to access any service you use
on a corporate network. It means your computer or application session is
recognized without you having to type in yet another password. Think of it as
“authentication for the password-memory-challenged.”

You're probably already familiar with such systems. For example, did you
ever log on to Gmail, then visit YouTube and wonder why you’re logged on
there, too? It’s because both services use a single, independent logon
service — your Google account. Well, that’s SSO at work.

SSO is an absolute joy on corporate networks. Most of us need access to
many systems — in my case, dozens unfortunately — to do our daily jobs.

Explaining exactly how this works in detail is beyond the scope of this book,
but typically when you first log on to a site, you receive a token. Rather than
have your computer send your password to every single website (eek!), it
passes this token. Alone, the token means nothing, so passing it along is not a
security breach.
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The token allows an application to ask the security system that created the
token a question, usually something like this: “Is this token valid, and does this
guy have access to use this service? If so, who is he and what roles does he
have?” Basically, behind-the-scene services do the legwork, and not the user.

The most common SSO on corporate networks is one provided on Microsoft
Windows machines and Microsoft Active Directory on the server-side that
works automatically out of the box. Active Directory can issue Kerberos
tokens to you when you log on at the start of your working day. After logging
on, when you access any service that supports Kerberos SSO on the corpo-
rate network, you aren’t prompted again for a username and password.

The downside is that not all software services support every type of SSO
software, and they certainly don’t do it automatically out of the box. If you're
planning on building a set of applications that a single user may need access
to using a NoSQL database then consider using an SSO product (who knows,
you might prevent someone’s meltdown).

Often, though, SSO token validation is handled by the application stack,
not by the underlying database. If you're assigning roles and permissions
for records held in a NoSQL databases, you can reduce hassles during
development by having the database use the same tokens, too.

Needing SSO support is especially true of use cases involving document
(aggregate) NoSQL databases. These types of records (documents) generally
are the types that have a variety of permissions. Most relational- or table-
based (for example, Bigtable) systems give the same role based access to all
rows in a table. Documents tend to be a lot more fluid, though, changing from
instance to instance, and even between minor revisions.

Having support for SSO in the database, or at least allowing external authenti-
cation security plug-ins to be added, is a good idea for document databases.

Security accreditations

The best yardstick for assessing any product — from databases to delivery
companies — is this: “Where have you done this before?” In some instances,
this information is commercially or security sensitive. The next best yard-
stick is, “Has anyone done due diligence on your product?”

When it comes to security, especially for government systems, organizations
are very unwilling to share exact technical knowledge. Even within the same
government! In this scenario, an independent assessment is the next best
thing to talking with someone who previously implemented the product.
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If software vendors have significant footprints in government agencies,
their products will eventually be used in systems that require independent
verification for either

v A particular implementation — for example, information assurance (IA)
testing for a federal high-security system

v A reference implementation of the product, its documentation, code
reviews, and security testing

Government agencies have their own standards for accreditation, and a vari-
ety of testing labs available to do this. In the U.S., a common standard to look
for is accreditation to Common Criteria (CC). Products are tested against
specific levels, depending on what they’re used for. A good yardstick for the
latest CC standard is EAL2 accreditation. This means that the software has
been tested in accordance with accepted commercial best practices.

You can find a good introduction to Common Criteria assurance levels and
their equivalents on the CESG website, the UK’s IA Technical Authority

for Information Assurance, at www.cesg.gov.uk/servicecatalogue/
Common-Criteria/Pages/Common-Criteria-Assurance-Levels.
aspx.

Generally, enterprise systems do their own security testing before going live.
These days it’s even commonplace for them to do so when handling material
that has a relatively low-level classification, such as a database holding many
confidential documents, even for civilian government departments.

If the release of information your system is holding could result in a great risk to
reputation, financial stability, or life and limb, have your system independently
accredited — no matter which database you're using — before it goes live.

Durability

It’s tempting to assume that a database — that is, a system that’s designed
to hold data — always does so in a manner that maintains the integrity of
the data. The problem is, data isn’t either safe or unsafe; its durability is on a
sliding scale.

Durability is absolutely vital to any mission-critical system. Specific require-
ments depend on a number of factors:

v Using a database that is ACID-compliant is necessary on mission-critical
systems.

v Using an ACID-compliant database reduces development costs in the
short-term and maintenance costs over the long-term.
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v If many records need to be updated in a single batch (with only either
All or Zero updates succeeding), then use a database that supports
transactions across multiple updates. (These NoSQL databases are lim-
ited in number.)

Never use a database that reports a transaction is complete, when the
data may not be safe or the transaction applied. Several databases’
default consistency setting will allow you to send data to the database
with it being held just in RAM, without guaranteeing it hits disk. This
means if the server’s motherboard fails in the next few seconds you run
the risk of losing data.

Preparing for failure

The relational database management system revolution provided us with a
very reliable system for storing information. In many ways, we take those
management features for granted now.

For NoSQL databases, though, assume nothing! The vast majority of NoSQL
databases have been around only since 2005 or later. The developers of these
databases remain mostly concerned about building out data storage and
query functionality, not about systems maintenance features.

Resilience is when commercial NoSQL vendors, or commercial companies
offering an expanded enterprise version of an open-source NoSQL product,
come into their own. These paid-for versions typically include more of the
management niceties that system administrators are used to in large data-
base systems. Weigh the cost of these enterprise editions against the ease of
recovery from a backup, and don’t reject commercial software out of hand,
because the cost of a long outage could be much greater than the cost of a
software license.

When selecting a NoSQL database that needs to be resilient to individual
hardware failures, watch for the following features.

High availability (HA)

HA refers to the ability for a service to stay online if part of a system fails.
In a NoSQL database, this typically means the ability for a database cluster
to stay online, continuing to service all user requests if a single (or limited
number of) database servers within a cluster fail. Some users may have to
repeat their actions, but the entire service doesn’t die.

Typically, HA requires either a shared storage system (like a NAS or a SAN)
or stored replicas of the data. A Hadoop cluster, for example, stores all data



Chapter 3: Evaluating NoSOL 89

NG/
&“Q‘“

locally but typically replicates data twice (resulting in three copies) so that,

if the primary storage node fails, the data is still accessible. MarkLogic Server
can operate using shared storage or local replicated storage. Some NoSQL
databases that provide sharding don’t replicate their data, or they replicate it
just for read-only purposes. Therefore, losing a single node means some data
can’t be updated until the node is repaired.

Disaster recovery (DR)

DR is dramatically described as recovering from a nuke landing on your
primary data center. More likely, though, an excavator driver just cut your
data center’s Internet cable in half.

No matter the cause, having a hot standby data center with up-to-date copies
of your data ready to go within minutes is a must if your system is mission-
critical. Typically, the second cluster is an exact replica of your primary data
center cluster.

I've seen people specify fewer servers for a DR cluster than for their primary
cluster. However, doing so increases your chance of a double failure! After
all, if your primary service goes down for 20 minutes, when the cluster goes
back online you’ll probably have the normal daily usage plus a backlog of
users ready to hit your DR cluster. So, specify equal or more hardware for a
DR center — not less. The shorter the downtime (under a couple of minutes
should be possible), the more likely you can use the exact configuration in
your primary and DR sites.

Scaling up

NoSQL databases were designed with considerable scalability in mind. So,
the vast majority of them implement clusters across many systems. Not all
NoSQL databases are born equal, though, so you need to be aware of scalabil-
ity issues beyond the basics.

In the following subsections, I promise to avoid really techie explanations
(like the intricacies of particular cluster query processing algorithms) and
discuss only issues about scalability that affect costs in time and money.

Query scalability

Some NoSQL databases are designed to focus more on query scalability than
data scalability. By that, | mean they sacrifice the maximum amount of data
that can be stored for quicker query processing. Graph databases are good
examples.
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A very complex graph query like “Find me the sub graphs of this graph that
most closely match these subjects” requires comparing links between many
stored data entities (or subjects in graph speak). Because the query needs
data about the links between items, having this data stored across many
nodes results in a lot of network traffic.

So, many graph databases store the entire graph on a single node. This
makes queries fast but means that the only multiserver scalabilities you get
are multiple read-only copies of the data to assist multiple querying systems.

Conversely, a document database like MongoDB or MarkLogic may hold
documents on a variety of servers (or database nodes). Because a query
returns a set of documents, and each document exists only on a single node
(not including failover replicas, of course), it’s easy to pass a query to each of
the 20 database nodes and correlate the results together afterward with mini-
mum networking communication.

Each document is self-contained and evaluated against the query by only the
database node it’s stored on. This is the same MapReduce distributed query
pattern used by Hadoop MapReduce.

Storing your information at the right level means that the queries can be
evaluated at speed. Storing information about a program that deals with its
scheduling, genre, channel, series, and brand in a single document is easier
to query than doing complex joins at query time.

This is the old “materialized views versus joins” argument from relational
database theory reimagined in the NoSQL world.

In a document database, you can denormalize the individual documents
around series, programs, channels, and genres into a single document per
combination. So, you have a single document saying, for example, “Doctor
Who Series 5, Episode 1 will be shown on BBC 1 at 2000 on the March 3,
2015,” rather than a complex relational web of records with links that must
be evaluated at query time.

For an Internet catchup TV service, querying the denormalized document set
is as simple as saying “Return me all documents that mention ‘Doctor Who’
and ‘Series 5’ where the current time is after the airing time.”” No mention of
joins, or going off and looking across multiple record (in this case document)
boundaries.

Denormalization does, correctly, imply duplication. This is simply a tradeoff
between storage and update speed versus query speed. It’s the same tradeoff
you're used to when creating views in relational databases, and it should be
understood in the same way — that is, as a way to increase query perfor-
mance, not a limitation of the database software itself.
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Cluster scalability

What do you do if your data grows beyond expectation? What if you release
a new product on a particular day, and your orders go through the roof? How
do you respond to this unforeseen situation rapidly enough without going
over the top and wasting resources?

Some NoSQL databases have scale-out and scale-back support. This is par-
ticularly useful for software as a service (SaaS) solutions on a public cloud
like Amazon or Microsoft Azure.

Scale out is the ability to start up a new database instance and join it to a
cluster automatically when a certain system metric is reached. An example
might be CPU usage on query nodes going and staying above 80 percent for
ten minutes.

Cluster horizontal scaling support should include automated features (rather
than just alerts for system administrators) and integration to cloud manage-
ment software like AWS. The database should also be capable of scaling on a
live cluster without any system downtime.

Perhaps the hardest part of horizontal scaling is rebalancing data once

the new node is started. Starting a new node doesn’t get you very far with

a query processing issue unless you share the data across all your nodes
equally. If you don’t rebalance data then the server with little or no data will
be lightning fast and others will be slow. Support for auto-rebalancing data
transparently while the system is in use solves this problem rapidly, and
without administrator intervention.

Auto-rebalancing can be reliably implemented only on NoSQL databases with
ACID compliance. If you implement it on a non-ACID-compliant database, you
run the risk that your queries will detect duplicate records, or miss records
entirely, while rebalancing is occurring.

So, now you’ve solved the high-usage issue and are running twice the amount
of hardware as you were before. Your sale ends, along with the hype, and
system usage reduces — but you're still paying for all that hardware!

Support for automatic scale-back helps. It can, for example, reduce the
number of nodes when 20 percent of the CPU is being used across nodes

in the cluster. This implies rebalancing support (to move data from nodes
about to be shut down to those that will remain online). Having this feature
greatly reduces costs on the public cloud.

Scale-back is a complex feature to implement and is still very rare. At the
time of this writing, only MarkLogic Server can perform automatic scale-back
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on Amazon. MarkLogic Server also has an API that you can use to plug in
scale-out/scale-back functionality with other public and private cloud man-
agement software.

Acceptance testing

News websites are frequently mentioning stories about large systems where
an “update” caused major chaos. These happen in government and banking
systems. When they do happen, they happen very publicly and to a great
cost to the reputation of the organization at fault.

These issues can often be avoided through a significant investment in
testing, particularly User Acceptance Testing (UAT), before going live. Even
something that you may think is a minor update can irritate and alienate
customers.

Vg‘“‘NG! Don’t be tempted to reduce your testing in order to meet deadlines. If
S anything, increase your testing. Missing development deadlines means the
job was likely more complex than you originally thought. This means you
should test even more, not less.

The Y2K bug deadline was one that absolutely could not be moved. The vast
majority of systems, though, even important national systems, are given
artificial timelines of when people want systems to be working, not when IT
professionals are sure the systems will work.

Trust your IT professionals or the consultants you have brought in to work
on a project. Delays happen for many reasons (often because IT profession-
NBER als are trying to make things work better).

When it comes to testing, the old adage is true — you only get one chance to
make a first impression.

Monitoring

Your system is built, and it’s gone live. Now, we can all retire, right? Wrong!
It may seem counterintuitive, but just like an old, decrepit body, software
breaks down over time.

Perhaps an upgrade happens that makes a previously working subsystem
unreliable. Maybe you fix a bug only to find an issue with performance after
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the patch goes live. Or even some system runs out of support and needs
replacing entirely.

It all means extra work. You can spot problems in one of two ways:

» You get an angry phone call from a user or customer because something
critical to them failed.

v Your own system monitoring software spots a potential issue before it
becomes a critical one.

Monitoring comes in two broad forms:

v Systems monitoring watches components such as databases, storage,
and network connectivity. This is the first form that you can enable with-
out any database- or application-specific work.

v Application monitoring spots potential performance issues before they
bring a system down.

As an example, a “simple bug fix” could test fine, but when put live, it
may cause performance issues.

The only way to spot what is causing a performance issue in part of

the database is to be monitoring the application. Perhaps the bug fix
changed how a particular query was performed. Maybe what was one
application query resulting in one database query is now generating five
database queries for the same action.

This issue results in lower performance, but you can’t link the perfor-
mance issue with the bug fix if you don’t know precisely where the faulty
code is in the application. Diagnosing the issue will be impossible with-
out some form of application monitoring.

Many NoSQL databases are still playing catchup when it comes to advanced
application monitoring. Open-source NoSQL databases often have no features
for this issue. To get these features, you have to buy expensive support from
the commercial vendor that develops the software.

Ideally, you want at least a way to determine

v What queries or internal processes are taking the longest to complete
v What application or user asked for these queries or processes to be
executed

Also ideally, a monitoring dashboard that allows you to tunnel down into
particular application queries on particular database nodes is helpful. In
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this way, you may be able to list the queries in-flight on a single node of a
highly distributed database. Viewing the process details (for example, the full
query or trigger module being executed) at that point can greatly reduce live
system debugging time.

Quick debugging results in your application team spotting potential issues
and rolling back bad updates, for example, before your users give you a ring.
In extreme cases, effective monitoring will keep a system that was performing
well from grinding to a halt during peak periods.

Once you find an issue, to prevent a repeat situation, it’s important to advise
your testing team to incorporate a test for that issue in the next bug-fix test-
ing cycle.

Over time, detailed monitoring pays for itself many times over, although put-
ting an exact number on money saved is a hard thing to do, and you certainly
can’t really quantify this number upfront.

I've worked for a variety of software vendors and have seen many customers
who didn’t pay for monitoring or support until they had a major, and some-
times public, failure. However, from that point on, they all made sure they
did so.
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Chapter 4

Common Features of Key-Value
Stores

In This Chapter
Ensuring that your data is always available
Deciding on how to add keys to your data

Managing your data in a key-value store

K ey-value stores are no frills stores that generally delegate all value-
handling to the application code itself. Like other types of NoSQL
databases, they are highly distributed across a cluster of commodity servers.

A particular benefit of key-value stores is their simplicity. Redis, for example,
is only 20,000 lines of code! It can be embedded into an application easily and
quickly.

Throughput is the name of the game. Many using a key-value store will
sacrifice database features to gain better performance. Key-value stores lack
secondary indexes, and many of them eschew synchronized updates (thus
also eschewing guaranteed transactional consistency) to their data’s replicas
in order to maximize throughput.

In this chapter, I cover how to configure a key-value store to ensure that no
matter what happens to the database servers in your cluster, your data is
always available.

Key-value stores also place some constraints on how you model your data for
storage. I talk about the best strategies for this, including information on set-
ting appropriate keys for your data records, and indexing strategies.
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Managing Availability

\\3

As with other NoSQL database types, with key-value stores, you can trade
some consistency for some availability. Key-value stores typically provide
a wide range of consistency and durability models — that is, between
availability and partition tolerance and between consistent and partition
tolerance.

Some key-value stores go much further on the consistency arm, abandoning
BASE for full ACID transactional consistency support. Understanding where
to draw the line can help you shorten the list of potential databases to
consider for your use case.

Trading consistency

Key-value stores typically trade consistency in the data (that is, the ability to
always read the latest copy of a value immediately after an update) in order
to improve write times.

Voldemort, Riak, and Oracle NoSQL are all eventually consistent key-value
stores. They use a method called read repair. Here are the two steps involved
in read repair:

1. At the time of reading a record, determine which of several available
values for a key is the latest and most valid one.

2. If the most recent value can’t be decided, then the database client is
presented with all value options and is left to decide for itself.

Good examples for using eventually consistent key-value stores include
sending social media posts and delivering advertisements to targeted users.
If a tweet arrives late or a five-minute-old advertisement is shown, there’s no
catastrophic loss of data.
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Implementing ACID support

Aerospike and Redis are notable exceptions to eventual consistency. Both
use shared-nothing clusters, which means each key has the following:

v A master node: Only the masters provide answers for a single key,
which ensures that you have the latest copy.

* Multiple slave replica nodes: These contain copies of all data on a
master node. Aerospike provides full ACID transactional consistency
by allowing modifications to be flushed immediately to disk before the
transaction is flagged as complete to the database client.

Aerospike manages to do that at very high speeds (which refutes claims that
having ACID decreases write speed). Aerospike natively handles raw SSDs for
data-writing by bypassing slower operating systems’ file system support.

Of course, more SSDs mean higher server costs. You may decide that using
Redis (configured to flush all data to disk as it arrives) is fast enough and
guarantees sufficient durability for your needs. The default setting in Redis is
to flush data to disk every few seconds, leaving a small window of potential
data loss if a server fails.

Here are some examples of when you may need an ACID-compliant key-value
store:

» When receiving sensor data that you need for an experiment.
v In a messaging system where you must guarantee receipt.

Redis, for example, provides a Publish/Subscribe mechanism that acts
as a messaging server back end. This feature combined with ACID
support allows for durable messaging.

Managing Keys

Key-value stores’ fast read capabilities stem from their use of well-defined
keys. These keys are typically hashed, which gives a key-value store a very
predictable way of determining which partition (and thus server) data
resides on. A particular server manages one or more partitions.

A good key enables you to uniquely identify the single record that answers a
query without having to look at any values within that record. A bad key will
require that your application code interprets your record to determine if it
does, in fact, match the query.
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If you don’t design your key well, you may end up with one server having

a disproportionately heavier load than the others, leading to poor perfor-
mance. Using the current system-time as a key, for example, pushes all new
data onto the last node in the cluster, which leads to a nightmare scenario of
rebalancing. (Similar to what happens to me when I eat a burger. The more I
place into the same large bucket — my mouth — the slower I get!)

Partitioning

Partition design is important because some key-value stores, such as Oracle
NoSQL, do not allow the number of partitions to be modified once a cluster is
created. Their distribution across servers, though, can be modified. So start
with a large number of partitions that you can spread out in the future.

One example of partitioning is Voldemort’s consistent hashing approach, as
shown in Figure 4-1. Here you see the same partitions spread across three
servers initially and then across four servers later. The number of partitions
stays the same, but their allocation is different across servers. The same is
true of their replicas.

(St (Sde

2/31-1'0 2731-10
A C
B A
12 partitions, 3 nodes 12 partitions, 4 nodes
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Accessing data on partitions

Key-value stores are highly distributed with no single point of
failure. This means there’s no need for a master coordinating node
to keep track of servers within a cluster. Cluster management

is done automatically by a chat protocol between nodes in the
server.

You can use a trick in the client driver to squeeze maximum
performance out of retrieving and storing keys and values — the
client driver keeps track of which servers hold which range of
keys. So the client driver always knows which server to talk to.

Most databases, NoSQL included, pass a request on to all members
of a cluster. That cluster either accepts the write internally or
passes it one under the hood to the correct node. This setup
means an extra network trip between nodes is possible, which can
add to latency.

In order to avoid discovery latency, most key-value stores’ client
drivers maintain a metadata list of the current nodes in a cluster
and which partition key ranges each nod manages. In this way,
the client driver can contact the correct server, which makes
operations faster.

If a new node is added to a cluster and the metadata is out of
date, the cluster informs the client driver, which then downloads
the latest cluster metadata before resending the request to the
correct node. This way maximum throughput is maintained with a
minimum of overhead during development. Another side benefit is
that there’s no need for a load balancer to pass queries on to the
next available, or least-busy, server — only one server (or read
replica server) ever receives a client request, so there’s no need
for load balancing.

Managing Data

Once you manage the keys appropriately, you're ready to design
how to store data and ensure that it’s safe and always accessible
for the work you need to do, which I explain in this section.
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Data types in key-value stores

Key-value stores typically act as “buckets” for binary data. Some databases
do provide strong internal data typing and even schema support. Others
simply provide convenient helper functions in their client drivers for serial-
izing common application data structures to a key-value store. Examples
include maps, lists, and sorted sets.

Oracle NoSQL can operate in two modes:

v Simple binary store

v Highly structured Avro schema support
An Avro schema is akin to a relational database schema — enforcing a very
stringent set of format rules on JavaScript Object Notation (JSON) data
stored within the database, as illustrated here:

{username: “afowler”, sessionid: 13452673, since: 1408318745, theme: “bluesky"}

You define an Avro schema using a JSON document. This is an example of the
Avro schema for the stored data shown previously:

{“type”: “record”, ‘namespace”: “com.example”,“name”: ‘UserSession”, “fields”: [
{“name”: “username”, “type”: [“string","null"]},
{“name”: “sessionid”, “type”: “int”},
{“name”: “since”, “type”: “long”},
{“name”: “theme”, “type”: [“string”, ”null”]}

1}

An Avro schema provides very strong typing in the database for when schema
is important. In the preceding example, you see string data, a numeric session
id, a date (milliseconds, since the Unix Time Epoch, as a long integer), and a
personalization setting for the theme to use on the website.

Also notice that the type of username and theme has two options — string
and null, which is how you instruct Oracle NoSQL that null values are
allowed. I could have left theme as a string and provided an additional con-
figuration parameter of “default”: “bluesky”.

Other NoSQL databases provide secondary indexes on any arbitrary prop-
erty of a value that has JSON content. Riak, for example, provides secondary
indexes based on document partitioning — basically, a known property within
a JSON document is indexed with a type. This allows for range queries (less
than or greater than) in addition to simple equal and not equal comparisons.
Riak manages to provide range queries without a stringent schema — just
simple index definition. If the data is there, it’s added to the index.
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Replicating data

Storing multiple copies of the same data in other servers, or even racks of
servers, helps to ensure availability of data if one server fails. Server failure
happens primarily in the same cluster.

You can operate replicas two main ways:

1 Master-slave: All reads and writes happen to the master. Slaves take
over and receive requests only if the master fails.

Master-slave replication is typically used on ACID-compliant key-value
stores. To enable maximum consistency, the primary store is written
to and all replicas are updated before the transaction completes. This
mechanism is called a two-phase commit and creates extra network and
processing time on the replicas.

1 Master-master: Reads and writes can happen on all nodes managing a
key. There’s no concept of a “primary” partition owner.

Master-master replicas are typically eventually consistent, with the clus-
ter performing an automatic operation to determine the latest value for
a key and removing older, stale values.

In most key-value stores, this happens slowly — at read time. Riak is the
exception here because it has an anti-entropy service checking for con-
sistency during normal operations.

Versioning data

In order to enable automatic conflict resolution, you need a mechanism to
indicate the latest version of data. Eventually consistent key-value stores
achieve conflict resolution in different ways.

Riak uses a vector-clock mechanism to predict which copy is the most recent
one. Other key-value stores use simple timestamps to indicate staleness.
When conflicts cannot be resolved automatically, both copies of data are sent
to the client. Conflicting data being sent to the client can occur in the follow-
ing situation:

1. Client 1 writes to replica A ‘Adam: {likes: Cheese}’.

2. Replica A copies data to replica B.
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3. Client 1 updates data on replica A to ‘Adam: {likes: Cheese, hates:
sunlight}’.

At this point, replica A doesn’t have enough time to copy the latest data
to replica B.

4. Client 2 updates data on replica B to ‘Adam: {likes: Dogs, hates:
kangaroos}’.

At this point, replica A and replica B are in conflict and the database
cluster cannot automatically resolve the differences.

An alternative mechanism is to use time stamps and trust them to indicate
the latest data. In such a situation, it’'s common sense for the application to
check that the time stamps read the latest value before updating the value.
They are checking for the check and set mechanism, which basically means
‘If the latest version is still version 2, then save my version 3. This mechanism
is sometimes referred to as read match update (RMU) or read match write
(RMW). This mechanism is the default mechanism employed by Oracle
NoSQL, Redis, Riak, and Voldemort.



Chapter 5

Key-Value Stores in the
Enterprise

In This Chapter
Ensuring you have enough space for your data

Achieving faster time to value in implementations

K ey-value stores are all about fast storage and retrieval. If you need a
key-value store, then by definition you need to scale out — massively —
and ensure maximum performance of your database. This high speed comes
at the cost of more-advanced database features — features that would add to
each request’s processing time.

Being designed for high speed means that key-value stores have a straight-
forward architecture that allows you to quickly create applications. Knowing
some easy approaches can greatly reduce the time you spend deploying
them. For large-scale enterprise systems these features are a must.

In this chapter, I cover how to ensure that not only is your key-value store
fast, but that you can achieve productivity (and cost savings) quicker. I also
mention how to do this while being frugal with resources, such as disk space.

Scaling

Scaling is important to ensure that as your application and business grows,
you can handle the new users and data that come online. Some aspects of
scaling are difficult to pull off at the same time — for example, the ability to
handle high-speed data ingestion while simultaneously maximizing the speed
of reading.
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Key-value stores are great for high-speed data ingestion. If you have a known,
predictable primary key, you can easily store and retrieve data with that key.
It’s even better if the key is designed to ensure an even distribution of new
data across all servers in the cluster.

Avoid traditional approaches of an incremented number. Instead, use a
Universal Unique Identifier (UUID). A UUID is a long alphanumeric string that
is statistically unlikely to already be in use.

Using a UUID means that statistically the partitions you create over the key
will each receive an even amount of new data. This approach evens out the
ingestion load across a cluster. One partition will have keys starting with, for
example, 0000 to 1999.

Unfortunately, the more records you have, the more likely your keys will
clash, even when using UUIDs. This is where you can use a timestamp —
concatenated to after the UUID — to help ensure uniqueness.

Without complex indexing or query features, key-value stores ensure the
maximum ingestion speed of data. The databases needed to accomplish fast
storage are relatively simple, but you need to consider hardware such as the
following:

»* Memory: Many databases write to an in-memory storage area first and
only checkpoint data to disk every so often.

Writing to RAM is fast, so it’s a good idea to choose a database that does
in-memory writing to provide more throughput.

v SSD: High-speed flash storage is great for storing large synchronous
writes — for example, large in-memory chunks of new data that are
offloaded to disk so that RAM can be reserved for new data. Using
high-quality SSDs take advantage of this write speed advantage. Some
databases, such as Aerospike, natively support SSD storage to provide
maximum throughput.

v~ Disk arrays: It’s always better to have more spindles (that is, more
discs) with less capacity than one large disk. Use 10K RPM spinning
discs as your final tier and consider a high-performance RAID card using
RAID 10. RAID 10 allows newly written data to be split across many
discs, maximizing throughput. It also has the handy benefit of keeping
an extra copy of your data in case a hard disk fails.
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Simple data model — fast retrieval

Storing all the data you need for an operation against a single key means
that if you need the data, you have to perform only one read of the database.
Minimizing the number of reads you need to perform a specific task reduces
the load on your database cluster and speeds up your application.

If you need to retrieve data by its content, use an index bucket. Suppose you
want to retrieve all orders dispatched from Warehouse 13. (Assuming, of
course, you're not worried about the supernatural content of the package!)

Key-value stores aren’t known for their secondary index capabilities. It’s
sometimes better to create your own “term list” store for these lookups.
Using the warehouse ID as a key and a list containing order IDs as the value
allows you to quickly look up all orders for a given warehouse.

In-memory caching

If you're offering all website visitors the current top-ten songs according to
their sales, many of your queries will look the same. Moreover, choosing a
database that has an in-memory value cache will improve repeated reading of
the top-ten songs information.

Aerospike is notable for giving you the ability to dynamically reprioritize its
use of memory, depending on whether you have a high ingest load or a high
query load. If your load varies during the day, you may want to consider
using Aerospike.

You can also use Redis or a similar key-value store as a secondary layer just
for caching. Redis is used frequently in conjunction with NoSQL databases
that don’t provide their own high-speed read caching.

Having a cache in front of your primary database is generally good practice. If
you suffer a distributed denial of service (DDoS) attack, the cache will be hit
hard, but the underlying database will carry on as normal.

Reducing Time to Value

Time to value is the amount of time required from starting an IT project to
being able to realize business benefit. This can be tangible benefits in cost
reduction or the ability to transact new business, or intangible benefits like
providing better customer service or products.
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Key-value stores are the simplest NoSQL databases with regards to data
model. So, you can quickly build applications, especially if you apply a few
key principles, including reviewing how you manage data structures, which [
cover next.

Using simple structures

Key-value stores are more flexible than relational databases in terms of the
format of data. Use this flexibility to your advantage to maximize the rate of
your application’s throughput. For example, if you're storing map tiles, store
them in hex format so that they can be rendered immediately in a browser.

In your application, store easy-to-use structures that don’t require scores of
processing time. These structures can be simple intrinsic types like integers,
strings, and dates, or more sophisticated structures like lists, sorted sets, or
even JSON documents stored as a string.

Because it can be interpreted directly by a JavaScript web application, use
JSON for simple web app status or preference storage. If you're storing log
data, store it in the format most appropriate for retrieval and analysis.

Use the most appropriate structure for your application, not your database
administrator. Also consider the effects of time on your database. Will you
want to modify data structures in the future to support new features?

Data structures change over time. A flexible JSON document is better than a
CSV data file or fixed-width data file because JSON structures can easily vary
over time without needing to consider new or deleted properties. Change a
column in a CSV file stored in a key-value store, and you must update all of
your application’s code! This isn’t the case with a JSON document, where
older code simply ignores new properties.

Complex structure handling

If you have complex interrelated data sets, give careful thought to the data
structures in your key-value store. My best advice is to store data sets in a
way that allows easy retrieval. Rather than store eight items separately that
will require eight reads, denormalize the data — write the data to the same
record at ingestion time — so that only one read is needed later. This does
mean some data will be stored multiple times. An example is storing cus-
tomer name in an order document. Although this stores the customer name
across many orders, it means when showing a summary of the order you
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don’t have to discover that the value customer_number=12 means Mr A Fowler —
preventing an additional read request.

Denormalization consumes more disk space than relational databases’
normal form, but greatly increases query throughput. It’s the NoSQL equiva-
lent of a materialized view in a relational database. You're sacrificing storage
space for speed — the classic computer science tradeoff.

For computer scientists of my generation, it’s considered heresy to keep mul-
tiple copies of the same data. It’s simply inefficient. Our relational database
lecturers would eat us for breakfast!

However, with the current low cost of storage and the increasing demands
of modern applications, it’s much better to sacrifice storage for speed in
reading data. So, consider denormalization as a friend.
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Chapter 6
Key-Value Use Cases

In This Chapter
Handling transient user information

Managing high-speed caching of your data

K ey-value stores can scale prodigiously, and this capability is reflected
in the various ways that they’re used. Maybe you need to deliver
hundreds of thousands of targeted web advertisements every second,
perhaps to users in different countries, in different languages, and to different
categories of websites. Speed is critical. You want your ads to appear as the
web page appears so that the ad doesn’t slow down the user’s experience.
When people visit a blog looking for information, they want to see the blog,
not wait for the ads.

On the other hand, maybe you have a globally distributed web application
and need to store session information or user preferences, but you don’t
want to clog up your transactional database systems with this data. Or
perhaps your requirements are even simpler. You just need to cache data
from another system but serve it at a very high speed.

Whatever your needs for high-speed retrieval, key-value NoSQL stores can help.

Managing User Information

There’s mission-critical data, and there’s supporting data. It’s okay if your
mission-critical data appears a little slowly because you want to be sure it’s
safe and properly managed. But you don’t want the supporting data of your
application to hinder overall transactions and user experiences. Although the
supporting data may be lower in value, its need to scale up is great — typically
by providing delivery of query responses in less than ten milliseconds. Much
of this supporting data helps users access a system, tailor a service to their
needs, or find other available services or products.
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Delivering web advertisements

Although advertisements are critical to companies marketing their wares or
services on the web, they aren’t essential to many users’ web-browsing expe-
riences. However, the loading time of web pages is important to them, and as
soon as a slowly delivered ad starts adding to a page’s load time, users start
moving to alternative, faster, websites.

Serving advertisements fast is, therefore, a key concern. Doing so isn’t a
simple business, though. Which advertisement is shown to which user
depends on a very large number of factors, often determined by such factors
as the user’s tracked activity online, language, and location.

Companies that target their advertisements to the right customers receive
more click-throughs, and thus more profit. However, the business of targeted
advertising is increasingly scientific.

Key-value stores are used mainly by web advertisement companies. (You can
find case studies about such usage on key-value NoSQL vendors’ websites.)
Utilizing their proprietary software, these companies use a combination of
factors to determine what a user wants or is interested in so that they can
target advertisements to that user effectively. You can think of this combina-
tion of factors as being a key, and it’s this composite key that points to the
most compelling advertisement. Everything that is needed to serve the adver-
tisement is kept as the value within a key-value store.

If you need to serve data fast based on a set of known factors, then a key-value
store is an excellent match. All you need to do is set up the key effectively.

To set up the key, perform some offline analysis of which advertisements will
be relevant to each combined profile of people. If the information you have
on the visiting user is country, language, and favorite category of purchases
on Amazon, then perhaps an appropriate key would be UK-english-guitars.

This prevents having to do any complex queries at ad serving time — just instead
concatenate these fields together to form a key and ask for the value of that key.

Handling user sessions

You can spend all the money you want on a state-of-the-art datacenter for
your transactional data, but if your website is slow, people will say that your
entire service is slow. In fact, when companies and governments launch new
online services that can’t handle the load placed on them, the press eats
them for breakfast.
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Typically, the problem isn’t that a primary processing system goes down,;
rather, it’s because the users’ identities or sessions are handled poorly.
Perhaps the username isn’t cached, or every request requires opening a new
session from the application server instead of than caching this information
between requests.

A user session may track how a user walks through an application, adding
data on each page. The data can then be saved at the end of this journey in a
single hit to the database, rather than in a sequence of small requests across
many page requests. Users often don’t mind waiting a couple of seconds after
clicking a save button. Providing an effective user session on a website that
has low latency has a couple of benefits:

v The user (soon to be customer!) receives good service.

v Partially complete data doesn’t get saved to your main back-end
transactional database.

Websites use a cookie to track the user’s interaction with a website. A cookie
is a small file linked to a unique ID, just like a record in a key-value store. The
server uses these cookies to identify that it already knows a user on their
second or subsequent requests, so the server needs to fetch a session using
this data quickly. In this way, when users log in, the websites recognize who
they are, which pages they visit, and what information they’re looking for.

This unique ID is typically a random number, perhaps our old friend, the
Universally Unique Identifier (UUID). The website may need to store various
types of data. Typically, this data is short-lived — the length of a user’s
session, perhaps just a few minutes.

Key-value stores are, therefore, ideal for storing and retrieving session data
at high speeds. The ability to tombstone (that is delete) data once a time-
stamp is exceeded is also useful. In this way, the application doesn’t need to
check the timestamp of the session on each request — if the session isn’t in
the database, it’s been tombstoned. So the session is no longer valid, which
removes some of the application programmer’s administrative burden.

Supporting personalization

Similar to the user-session requirement, but longer-lived, is the concept of
user service personalization. This is where the front-end application is
configured by users for their specific needs.

Again, this is a front-end secondary type of data, not the primary transac-
tional data within a system. For example, imagine that you have a primary
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database showing the work levels for all your team, the current case files
they’re working on, and all the related data. This is the primary data of
the application. Perhaps it’s stored in an Oracle relational database or a
MarkLogic NoSQL document database.

Use of the data can vary. For instance, one user may want to view a summary
of only his team’s workload, whereas a manager might want to track all
employees on a team.

These users are receiving different personalized views of the same data.
These view preferences need to be saved somewhere. You probably don’t
want to overload your case database with this personalization data; it’s
specific to the front-end application, not the core case-management system.

Using a key-value store with a composite key containing user id (not
session id) and the service name allows you to store the personalization
settings as a value, which makes lookups very quick and prevents the
performance of your primary systems from being negatively affected.

High-Speed Data Caching

Imagine you are a bank teller with three other colleagues working. You each
have a line of people to be served. One of the customers, though, keeps get-
ting in line to ask if his check has been cashed yet and the amount credited
to his account. When you answer him, instead of leaving he joins the back of
the line again.

This small query repeating increases your workload, and so the line keeps
increasing in size, until all customers are unhappy about the amount of time
they are waiting around for their query.

The same analogy is true of NoSQL databases. Imagine each bank teller is
instead a partition of data within a NoSQL database cluster. Asking the same
question over and over again — whether the data exists or not — stresses
systems as much as the re-queuing customer. Better instead for him to check
his internet banking on his phone. The application cashes the customer’s
recent bank balance and transactions processed, taking load off of the tellers
and the core banking systems.

High-speed in-memory caching provides this caching capability without the
need for a separate application level caching layer. This reduces total cost of
ownership and makes developing well-performing applications quicker and
easier.
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Lowering latency in financial services

Many complex financial transaction processing systems are built on top of mainframe or relational
databases. Banks that operate proprietary mainframes are usually charged for the amount
of processing they do, so they must watch their total processing, particularly if they're using a
mainframe system. By caching all general responses to common queries, the impact and cost of
mainframe use is minimized.

Consider a list of the latest interest rates calculated by the banks for interbank lending. Caching
these rates with a staleness timeout— or tombstone — of one minute means they're deleted when
stale. If a system has thousands of transactions per minute, this approach may cut the primary
system'’s processing by 99 percent. That's a lot less mainframe instructions processed, or fewer
expensive Oracle server licenses required.

Using the same information you use in a Structured Query Language “where” clause as the key
allows fast access. If the information isn't present, then query the back-end database and cache
the result for a minute.

So, in the relational database application, if you have

select ExchangeRate from ExchangeRateTable where
FromCurrency="GBP” and ToCurrency="EUR”;

you can model it with a key-value model of

Bucket: ExchangeRateTable
Key: GBP:EUR, Value: 1.8

In this case, secondary indexes and complex “where” clauses aren't required; you're simply
fetching a single unique key value from a single bucket.

115
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Chapter 7
Key-Value Store Products

In This Chapter
Ensuring data is retrieved as fast as possible
Taking advantage of flash storage speed
Using pluggable storage engines underneath your key-value store
Separating data storage and distribution across a cluster

Handling partitions when networks fail

S)me applications require storage of information at high speeds for
later analysis or access. Others are all about responding as quickly as

possible to requests for data. Whatever your use case, when speed is key,
key-value stores reign. Their simple processing and data models adapt to a
range of use cases.

You can find many NoSQL key-value stores, each with its own niche.
Understanding these niches and the unique benefits of each option is the
path to selecting the best solution for your particular business problem.

In this chapter, I introduce the main vendors in the key-value NoSQL
database space by describing use cases they are each uniquely useful for.
This contrasts against the general use cases in the previous chapter that all
key-value stores can address.
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The Amazon Dynamo paper

Amazon came up with the modern concept of
a NoSQL key-value store when it created the
Dynamo DB. This database, and its accompa-
nying published paper, introduced the world to
highly scalable distributed key-value stores.

Dynamo incorporated the ideas of storing all
information by a single primary key, using con-
sistent hashing to spread data throughout a
cluster and using object versioning to manage

Dynamo introduced a gossip intercommunica-
tion protocol between key-value servers and
replication techniques between servers, all
with a simple data access APl. Dynamo was
designed to allow tradeoffs between consis-
tency, availability, and cost-effectiveness of a
data store.

These have all since become standard features
of key-value stores.

consistency.

High-Speed Key Access

Key-value stores are all about speed. You can use various techniques to
maximize that speed, from caching data, to having multiple copies of data, or
using the most appropriate storage structures.

Caching data in memory

Because data is easily accessed when it’s stored in random access memory
(RAM), choosing a key-value store that caches data in RAM can significantly
speed up your access to data, albeit at the price of higher server costs.

Often, though, this tradeoff is worth making. You can easily calculate what
percentage of your stored data is requested frequently. If you know five percent
is generally requested every few minutes, then take five percent of your data size
and add that number as spare RAM space across your database servers.

Bear in mind that the operating system, other applications, and the database
server have memory requirements, too.

Replicating data to slaves

In key-value stores, a particular key is stored on one of the servers in the
cluster. This process is called key partitioning. This means that, if this key is
constantly requested, this node will receive the bulk of requests. This node,
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therefore, will be slower than your average request speed, potentially
affecting the quality of service to your users.

To avoid this situation, some key-value stores support adding read-only
replicas, also referred to as slaves. Redis, Riak, and Aerospike are good
examples. Replication allows the key to be stored multiple times across
several servers, which increases response speed but at the cost of more
hardware.

Some key-value stores guarantee that the replicas of the key will always have
the same value as the master. This guarantee is called being fully consistent.
If an update happens on the master server holding the key, all the replicas
are guaranteed to be up to date. Not all key-value stores guarantee this
status (Riak, for example), so if it’s important to be up to date to the milli-
second, then choose a database whose replicas are fully consistent (such as
Aerospike).

Data modeling in key-value stores

Many key-value stores support only basic structures for their value types,
leaving the application programmer with the job of interpreting the data.
Simple data type support typically includes strings, integers, JSON, and
binary values.

For many use cases, this works well, but sometimes a slightly more granular
access to data is useful. Redis, for example, supports the following data value

types:
v String
v List
1 Set
v Sorted set
v Hash maps
v Bit arrays
v Hyperlog logs
Sorted sets can be queried for matching ranges of values — much like

querying an index of values sorted by date, which is very useful for searching
for a subset of typed data.
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Operating on data

Redis includes operations to increment and decrement key values directly,
without having to do a read-modify-update (RMU) set of steps. You can do so
within a single transaction to ensure that no other application changes the
value during an update. These data-type specific operations include adding
and removing items to lists and sets, too.

You can even provide autocomplete functionality on an application’s user
interface by using the Redis ZRANGEBYLEX command. This command
retrieves a set of keys which partially matches a string. So, if you were to
type “NoSQL for” in the search bar of an application built on Redis, you
would see the suggestion “NoSQL For Dummies.”

Evaluating Redis

Redis prides itself on being a very lightweight but blazingly fast key-value
store. It was originally designed to be an in-memory key-value store, but now
boasts disk-based data storage.

You can use Redis to safeguard data by enabling AOF (append only file)
mode and instructing Redis to force data to disk on each query (known as
forced fsync flushing). AOF does slow down writes, of course, but it provides a
higher level of durability for data. Be aware, though, that it’s still possible to
lose up to one second of commands.

Also, Redis only recently added support for clustering. In fact, at the time

of this writing, Redis’s clustering support is in the beta testing phase.
Fortunately, Redis uses a shared-nothing cluster model, with masters for
particular keys and slaves that are never directly written to by a client; only
the master does so. Providing shared-nothing clustering should make it
easier for Redis to implement reliable clustering than it is for databases that
allow writes to all replicas.

If you want a very high-speed, in-memory caching layer in front of another
database — MongoDB or Riak are commonly used with Redis — then
evaluate Redis as an option. As support for clustering and data durability
evolves, perhaps Redis can overtake other back-end databases.
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Taking Advantage of Flash

When you need incredibly fast writes, flash storage is called for (as opposed
to calling for Flash Gordon). This comes at the cost of using RAM space, of
course. Writing to RAM will get you, well, about as far as the size of your
RAM. So having a very high-speed storage option immediately behind your
server’s RAM is a good idea. This way, when a checkpoint operation to flush
the data to disk is done, it clears space in RAM as quickly as possible.

Spending money for speed

Flash is expensive — more so than traditional spinning disk and RAM. It’s
possible to make do without flash by using RAID 10 spinning disk arrays, but
these will get you only so far.

Alogical approach is to look at how fast data streams into your database.
Perhaps provisioning 100 percent of the size of your store data for a spinning
disk, 10 percent for flash, and one percent for RAM. These figures will vary
depending on your application’s data access profile, and how often that same
data is accessed.

Of course, if you're in an industry where data ages quickly and you absolutely
need to guarantee write throughput, then an expensive all-flash infrastructure
could be for you.

To give you an idea about the possible scale achievable in a key-value store
that supports native flash, Aerospike claims that, with native flash for data
and RAM for indexes, 99.9 percent of reads and writes are completed within
one millisecond.

Context computing

Aerospike espouses a concept called context-aware computing. Context-aware
computing is where you have a very short window of time to respond to a
request, and the correct response is dictated by some properties of the user,
such as age or products purchased. These properties could include:

v~ Identity: Session IDs, cookies, IP addresses

v Attributes: Demographic or geographic

+* Behavior: Presence (swipe, search, share), channels (web, phone),
services (frequency, sophistication)
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1 Segments: Attitudes, values, lifestyle, history

v+~ Transactions: Payments, campaigns

The general idea is to mine data from a transactional system to determine the
most appropriate advertisement or recommendation for a customer based
on various factors. You can do so by using a Hadoop map/reduce job, for
example, on a transactional Oracle relational database.

The outputs are then stored in Aerospike so that when a particular customer
arrives on your website and they have a mixture of the preceding list of
factors (modeled as a composite key), the appropriate advertisement or
recommendation is immediately given to the customer.

Evaluating Aerospike

Aerospike is the king of flash support. Rather than use the operating system’s
file system support on top of flash, as other databases do (that is, they basically
treat a flash disk as any other hard disk), Aerospike natively accesses the flash.

This behavior provides Aerospike with maximum throughput, because it
doesn’t have to wait for operating system function calls to be completed; it
simply accesses the raw flash blocks directly. Moreover, Aerospike can take
advantage of the physical attributes of flash storage in order to eke out every
last bit of performance.

Aerospike is one of my favorite NoSQL databases. [ was very close to using it
in this book as the primary example of key-value stores, instead of Riak.
However, I didn’t because Riak is currently more prevalent (and [ wanted to
sell books).

[ fully expect Aerospike to start overtaking Riak in large enterprises and
mission-critical use cases, though. It has enterprise-level features lacking in
other databases, including the following:

v+~ Full ACID consistency: Ensures data is safe and consistent.

v Shared-nothing cluster: Has synchronous replication to keep data
consistent.

1 Automatic rebalancing: Automatically moves some data to new nodes,
evening out read times and allowing for scale out and scale back in a
cluster.

v Support for UDFs and Hadoop: User defined functions can run next to
the data for aggregation queries, and Hadoop Map/Reduce is supported
for more complex requirements.
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1 Secondary indexes: Adds indexes on data value fields for fast querying.

1 Large data types: Supports custom and large data types; allows for
complex data models and use cases.

1 Automatic storage tier flushing on writes: Flushes RAM to flash storage
(SSDs) and disk when space on the faster tier is nearly exhausted.

Whether or not you need blazing-fast flash support, these other features
should really interest people with mission-critical use cases. If you're
evaluating Riak for a mission-critical system, definitely evaluate Aerospike
as well.

Using Pluggable Storage

There are times when you want to provide key-value style high speed access
to data held in a relational database. This database could be, for example,
Berkeley DB (Java Edition for Voldemort) or MySQL.

Providing key-value like access to data requires a key-value store to be
layered directly over one of these other databases. Basically, you use another
database as the storage layer, rather than a combination of a file system for
storage and an ingestion pipeline for copying data from a relational database.

This process simplifies providing a high speed key-value store while using a
traditional relational database for storage.

Changing storage engines

Different workloads require different storage engines and performance
characteristics. Aerospike is great for high ingest; Redis is great for high
numbers of reads. Each is built around a specific use case.

Voldemort takes a different approach. Rather than treating the key-value
store as a separate tier of data management, Voldemort treats the

key-value store as an API and adds an in-memory caching layer, which means
that you can plug into the back end that makes the most sense for your
particular needs. If you want a straightforward disk storage tier, you can use
the Berkeley DB Java Edition storage engine. If instead you want to store
relational data, you can use MySQL as a back-end to Voldemort.

This capability combined with custom data types allows you to use a
key-value store’s simple store/retrieve API to effectively pull back and
directly cache information in a different back-end store.
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This approach contrasts with the usual approach of having separate
databases — one in, say, Oracle for transactional data and another in your
key-value store (Riak, for example). With this two-tier approach, you have
to develop code to move data from one tier to the other for caching. With
Voldemort, there is one combined tier — your data tier — so the extra code
is redundant.

Caching data in memory

Voldemort has a built-in in-memory cache, which decreases the load on the
storage engine and increases query performance. No need to use a separate
caching layer such as Redis or Oracle’s Coherence Java application data
caching product on top.

The capability to provide high-speed storage tiering with caching is why
LinkedIn uses Voldemort for certain high-performance use cases.

With Voldemort, you get the best of both worlds — a storage engine for your
exact data requirements and a high-speed in-memory cache to reduce the
load on that engine. You also get simple key-value store store/retrieve
semantics on top of your storage engine.

Evaluating Voldemort

In the Harry Potter books Lord Voldemort held a lot of magic in him, both
good and bad, although he used it for terrorizing muggles. The Voldemort
database, as it turns out, can also store vast amounts of data, but can be
used for good by data magicians everywhere!

Voldemort is still a product in development. Many pieces are still missing, so
it doesn’t support the variety of storage engines you might expect. This focus
for Voldemort’s development community is likely because Voldemort is built
in the Java programming language, which requires a Java Native Interface
(JND connector to be built for integration to most C or C++ based databases.

Voldemort has good integration with serialization frameworks, though.
Supported frameworks include Java serialization, Avro, Thrift, and Protocol
Buffers. This means that the provided API wrappers match the familiar
serialization method of each programming language, making the development
of applications intuitive.

Voldemort doesn’t handle consistency as well as other systems do.
Voldemort uses the read repair approach, where inconsistent version
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numbers for the same record are fixed at read time, rather than being kept
consistent at write time.

There is also no secondary indexing or query support; Voldemort expects
you to use the facilities of the underlying storage engine to cope with that
use case. Also, Voldemort doesn’t have native database triggers or an
alerting or event processing framework with which to build one.

If you do need a key-value store that is highly available, is partition-tolerant,
runs in Java, and uses different storage back ends, then Voldemort may be
for you.

Separating Data Storage
and Distribution

Oracle Corporation is the dominant player in the relational database world.
It’s no surprise then that it’s at least dabbling in the NoSQL space.

Oracle’s approach is to plug the gaps in its current offerings. It has a highly
trusted, enterprise-level relational database product, which is what it’s
famous for. However, this approach doesn'’t fit every single data problem. For
certain classes of data problems, you need a different way of storing things —
that’s why [ wrote this book!

Oracle has a data-caching approach in Coherence. It also inherited the
Berkeley DB code. Oracle chose to use Berkeley DB to produce a distributed
key-value NoSQL database.

Using Berkeley DB for single node storage

Berkeley DB, as the name suggests, is an open-source project that started
at the University of California, Berkeley, between 1986 and 1994. It was
maintained by Sleepycat Software, which was later acquired by Oracle.

The idea behind Berkeley DB was to create a hash table store with the best
performance possible. Berkeley DB stores a set of keys, where each key
points to a value stored on disk that can be read and updated using a simple
key-value API.

Berkeley DB was originally used by the Netscape browser but can now be
found in a variety of embedded systems. Now you can use it for almost every
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coding platform and language. An SQL query layer is available for Berkeley
DB, too, opening it up to yet another use case.

Berkeley DB comes in three versions:

v The Berkeley DB version written in C is the one that’s usually embedded
in UNIX systems.

v The Java Edition is also commonly embedded, including in the
Voldemort key-value store.

v A C++ edition is available to handle the storage of XML data.

Berkeley DB typically acts as a single-node database.

Distributing data

Oracle built a set of data distribution and high-availability code using NoSQL
design ideas on top of Berkeley DB. This approach makes Oracle NoSQL a
highly distributed key-value store that uses many copies of the tried-and-true
Berkeley DB code as the primary storage system.

Oracle NoSQL is most commonly used alongside the Oracle relational
database management systems (RDBMS) and Oracle Coherence.

Oracle Coherence is a mid-tier caching layer, which means it lives in the
application server with application business code. Applications can offload
the storage of data to Coherence, which in turn distributes the data across
the applications’ server clusters. Coherence works purely as a cache.

Oracle Coherence can use Oracle NoSQL as a cache storage engine, providing
persistence beneath Oracle Coherence and allowing some of the data to be
offloaded from RAM to disk when needed.

Oracle Coherence is commonly used to store data that may have been
originally from an Oracle RDBMS, to decrease the operational load on the
RDBMS. Using Oracle NoSQL with Coherence or directly in your application
mid-tier, you can achieve a similar caching capability.

Evaluating Oracle NoSOL

Despite claims that Oracle NoSQL is an ACID database product, by default,
it’s an eventually consistent — non-ACID — database. This means data read
from read replica nodes can potentially be stale.
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The client driver can alleviate this situation by requesting only the absolute
latest data, which not surprisingly is called absolute consistency mode. This
setting reads only data from the master node for a particular key. Doing so for all
requests effectively means that the read replicas are never actually read from —
they’re just there for high availability, taking over if the master should crash.

It’s also worth noting that in the default mode (eventually consistent),
because of the lack of a consistency guarantee, application developers must
perform a check-and-set (CAS) or read-modify-update (RMU) set of steps to
ensure that an update to data is applied properly.

In addition, unlike Oracle’s RDBMS product, Oracle NoSQL doesn’t have a
write Journal. Most databases write data to RAM, but write the description
of the change to a Journal file on disk. Journal writes are much smaller than
writing the entire change to stored data, allowing higher throughput; and
because the journal is written to disk, data isn’t lost if the system crashes
and loses the data stored in RAM.

If there’s a system failure and data held in RAM is lost, this journal can be
replayed on the data store. Oracle NoSQL doesn’t have this feature, which
means either that you run the risk of losing data or that you slow down your
writes by always flushing to disk on every update. Although small, this write
penalty is worth testing before going live or purchasing a license.

Oracle is plugging Oracle NoSQL into its other products. Oracle NoSQL
provides a highly scalable layer for Oracle Coherence. Many financial services
firms, though, are looking at other NoSQL options to replace Coherence.

Another product that may be useful in the future is RDF Graph for Oracle
NoSQL. This product will provide an RDF (Resource Description Format —
triple data, as discussed in Chapter 19) persistence and query layer on top of
Oracle NoSQL and will use the open-source Apache Jena APIs for graph query
and persistence operations.

The concept of major and minor keys is one of my favorite Oracle NoSQL
features. These keys provide more of a two-layer tree model than a single
layer key-value model. So, I could store adam:age=33 and adam:nationality=uk.
I could pull back all the information on Adam using the “adam” major key, or
just the age using the adam:age key. This is quite useful and avoids the need
to use denormalization or migrating to a NoSQL document database if your
application has simple requirements.

Oracle NoSQL is also the only key-value store in this book that allows you
to actively enforce a schema. You can provide an Avro schema document,
which is a JSON document with particular elements, to restrict what keys,
values, and types are allowed in your Oracle NoSQL database.
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If you want a key-value store that works with Oracle Coherence or want to
fine-tune availability and consistency guarantees, then Oracle NoSQL may be
for you. Oracle’s marketing messaging is a little hard to navigate — because
so many products can be used in combination. So, it’s probably better to
chat with an Oracle sales representative for details on whether Oracle NoSQL
is for you. One commercial note of interest is that Oracle sells support for
the Community (free) Edition — that is, you don’t have to buy the Enterprise
Edition to get Oracle support. If cost is an issue, you may want to consider
the Community Edition.

Handling Partitions

The word partition is used for two different concepts in NoSQL land. A data
partition is a mechanism for ensuring that data is evenly distributed across
a cluster. On the other hand, a network partition occurs when two parts of
the same database cluster cannot communicate. Here, I talk about network
partitions.

On very large clustered systems, it’s increasingly likely that a failure of one
piece of equipment will happen. If a network switch between servers in a
cluster fails, a phenomenon referred to as (in computer jargon) split brain
occurs. In this case, individual servers are still receiving requests, but they
can’t communicate with each other. This scenario can lead to inconsistency
of data or simply to reduced capacity in data storage, as the network
partition with the least servers is removed from the cluster (or “voted off”
in true Big Brother fashion).

Tolerating partitions

You have two choices when a network partition happens:

v Continue, at some level, to service read and write operations.

v “Vote off” one part of the partition and decide to fix the data later when
both parts can communicate. This usually involves the cluster voting a
read replica as the new master for each missing master partition node.

Riak allows you to determine how many times data is replicated (three
copies, by default — that is, n=3) and how many servers must be queried in
order for a read to succeed. This means that, if the primary master of a key is
on the wrong side of a network partition, read operations can still succeed if
the other two servers are available (that is, r=2 read availability).
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Riak handles writes when the primary partition server goes down by using a
system called hinted handoff. When data is originally replicated, the first node
for a particular key partition is written to, along with (by default) two of the
following neighbor nodes.

If the primary can’t be written to, the next node in the ring is written to.
These writes are effectively handed off to the next node. When the primary
server comes back up, the writes are replayed to that node before it takes
over primary write operations again.

In both of these operations, versioning inconsistencies can happen because
different replicas may be in different version states, even if only for a few
milliseconds.

Riak employs yet another system called active anti-entropy to alleviate this
problem. This system trawls through updated values and ensures that
replicas are updated at some point, preferably sooner rather than later. This
helps to avoid conflicts on read while maintaining a high ingestion speed,
which avoids a two-phase commit used by other NoSQL databases with
master-slave, shared-nothing clustering support.

If a conflict on read does happen, Riak uses read repair to attempt to return
only the latest data. Eventually though, and depending on the consistency
and availability settings you use, the client application may be presented
with multiple versions and asked to decide for itself.

In some situations, this tradeoff is desirable, and many applications may
intuitively know, based on the data presented, which version to use and
which version to discard.

Secondary indexing

Secondary indexes are indexes on specific data within a value. Most
key-value stores leave this indexing up to the application. However, Riak is
different, employing a scheme called document-based partitioning that allows
for secondary indexing.

Document-based partitioning assumes that you're writing JSON structures
to the Riak database. You can then set up indexes on particular named
properties within this JSON structure, as shown in Listing 7-1.
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Listing 7-1:  JSON Order Structure

{
“order-id”: 5001,
“customer-id”: 1429857,
“order-date”: “2014-09-24",
“total”: 134.24

}

If you have an application that’s showing a customer’s orders for the
previous month, then you want to query all the records, as shown in
Listing 7-1, where the customer id is a fixed value (1429857) and the order-
date is within a particular range (the beginning and end of the month).

In most key-value stores, you create another bucket whose key is the
combined customer number and month and the value is a list of order ids.
However, in Riak, you simply add a secondary index on both customer-id
(integer) and order-date (date), which does take up extra storage space but
has the advantage of being transparent to the application developer.

These indexes are also updated live — meaning there’s no lag between
updating a document value in Riak and the indexes being up to date. This
live access to data is more difficult to pull off than it seems. After all, if the
indexes are inconsistent, you’ll never find the consistently held data!

Evaluating Riak

Basho, the commercial entity behind Riak, says that its upcoming version 2.0
NoSQL database always has strong consistency, a claim that other NoSQL
vendors make. The claim by NoSQL vendors to always have strong
consistency is like claiming to be a strong vegetarian . . . except on Sundays
when you have roast beef.

Riak is not an ACID-compliant database. Its configuration cannot be altered
such that it runs in ACID compliance mode. Clients can get inconsistent data
during normal operations or during network partitions. Riak trades absolute
consistency for increased availability and partition tolerance.

Running Riak in strong consistency mode means that its read replicas are
updated at the same time as the primary master. This involves a two-phase
commit — basically, the master node writing to the other nodes before it
confirms that the write is complete.
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At the time of this writing, Riak’s strong consistency mode doesn’t support
secondary indexes or complex data types (for example, JSON). Hopefully,
Basho will fix this issue in upcoming releases of the database.

Riak Search (a rebranded and integrated Apache Solr search engine uses an
eventually consistent update model) may produce false positives when using
strong consistency. This situation occurs because data may be written and
then the transaction abandoned, but the data is still used for indexing —
leaving a "false positive" search result — the result isn’t actually any longer
valid for the search query.

Riak also uses a separate sentinel process to determine which node becomes
a master in failover conditions. This process, however, isn’t highly available,
which means that for a few seconds, it’s possible that, while a new copy of
the sentinel process is brought online, a new node cannot be added or a new
master elected. You need to be aware of this possibility in high-stress failover
conditions.

Riak does have some nice features for application developers, such as
secondary indexing and built-in JSON value support. Database replication
for disaster recovery to other datacenters is available only in the paid for
version, whose price can be found on their website (rental prices shown,
perpetual license prices given on application only).

The Riak Control cluster monitoring tool also isn’t highly regarded because
of its lag time when monitoring clusters. Riak holds a lot of promise, and

[ hope that Basho will add more enterprise-level cluster-management facilities
in future versions. It will become a best-in-class product if it does.
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Chapter 8

Riak and Basho

In This Chapter
Selecting a key-value store for your needs

Finding commercial companies providing support for Riak

R iak is the highest praised and most-used NoSQL key-value store.
Its customers range from public health services in Europe to web
advertisement agencies the world over.

Basho Technologies, the makers of Riak, has offices worldwide and is the
go-to place for support, which it offers 24/7.

In this chapter, I talk about issues you need to consider when selecting a
key-value store. These include finding support for your key-value store based
development efforts.

Choosing a Key-Ualue Store

As I've mentioned in Chapter 2, key-value stores are relatively simple
database designs. The operations they provide are largely the same, with
only a few providing extra features for application developers.

Most of the choices relate to whether you want an ACID-compliant database,
one with secondary indexes, or one that supports a very specific, niche
feature, such as native support for flash storage.

Being able to create well-built applications also means you need to find
well-trained personnel and support services. You'll also need to consider
integrating the key-value store with existing complementary technology, and
how to handle storage of the data formats required by your application.
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Ensuring skill availability

Skill availability is a major reason for using key-value stores. Being able to
construct keys effectively and use special buckets to mimic indexes are very
specific skills. Finding people who have proven these skills in the field rather
than merely downloaded and ran through a tutorial for the database is a
good idea!

Each key-value store also has different client libraries, each with a difference
in feature support. Many are straightforward and use common semantics.
Each, for instance, provides a store, get, and delete operation for keys. Ensure
your developers are not only familiar with the database, but also conversant
in the programming language API chosen for your project.

The application programming model of key-value stores is pretty
straightforward. Application developers still may need to do some work
on indexing and deserialization of the value returned by a key-value store,
especially when the chosen NoSQL database doesn’t support secondary
indexes natively.

People who are familiar with an organization’s programming language should
be able to understand these semantics quickly. It’s much easier to learn key-
value semantics than it is to learn the Structured Query Language (SQL) of
relational database systems.

Integrating with Hadoop Map/Reduce

Normally in a Hadoop Map/Reduce job, the Hadoop Distributed File System
(HDFS) is the input source and output destination of an operation’s data. It’s
possible, though, to use Riak as input, or output, or both.

Using Riak as an input means that you can specify a set of keys, a secondary
index query, or a Riak Search query to execute which returns a list of keys
for the records that Hadoop needs to process. When Hadoop requests these
records by key, Riak fetches each of them, iterating through all the matching
records.

When Riak is used as an output destination for map/reduce jobs, Riak’s Java
client library uses annotations to determine how to best store the output
generated. You need, of course, to specify which bucket the output goes into.
This Hadoop output mechanism supports secondary index tags, links, and
metadata.
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Using Riak as an output may be particularly useful when you’re implementing
context computing, which I describe in Chapter 7. For example, say that you
write the output as “If you see a customer with these attributes, then serve
this advertisement.” The web application then uses the fast Riak key-value
store to quickly determine which advertisement to show.

Meanwhile, map/reduce can batch-process customer information overnight
to determine the best advertisements to show, updating Riak as an output
data storage destination each day with the latest analysis.

Using JSON

JSON is short for JavaScript Object Notation. JavaScript programmers
“discovered” this format. They realized that a subset of JavaScript object
definition features could be used to store and pass data. Now, it’s used
extensively behind web applications for data serialization.

The following code shows an order modeled as a JSON document:

{

“order-id”: 5001,

“customer” : {
“customer-id”: 1429857,
“‘name” : “Adam Fowler”,
“address”: {
“1linel”: “some house”,
“1line2”: “some place”,
“city”: “some city”

}

b

“order-date”: “2014-09-24",

“total”: 134.24,

“items”: [

{vitem-id”: 567, “quantity”: 5, “unit-price”: 3.60},
{vitem-id”: 643, “quantity”: 1, “unit-price”: 116.23}
1

Key-value stores don’t tend to operate on complex values. (After all,
document NoSQL databases are about dealing with documents.) A JSON
order document, such as the preceding one, is a complex treelike structure.
You can see that the JSON object includes a customer object, which in turn
includes an address object.

Riak, however, can handle JSON documents natively. For example, in the pre-
ceding code, you can add secondary indexes to customer-id, item-id,
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and order-date. Doing so enables fast querying for a variety of order
records. A good example is providing a summary of a customer’s orders for a
particular month.

Riak supports its own internal map/reduce engine, which is not the same
as Hadoop Map/Reduce. The difference is that Riak uses JavaScript as the
processing language and allows for processing data across Riak nodes
without the need for a full Hadoop Map/Reduce installation.

Riak Search is a Solr-based (see Chapter 27) add-on that allows for full text
searches. Note that, even though it’s tightly integrated with Riak, unlike
Riak’s built-in secondary indexes, Riak Search’s indexes aren’t updated in
real time. However, if you need free text search for Riak-held data (which
is especially useful if you're storing JSON documents containing lots of free
text), then Riak Search may be a good option.

Riak also supports multi-datacenter replication, which you can purchase
from Basho. This feature allows asynchronous updates from a master cluster
to one or more secondary (read-only) clusters. These updates are typically
configured to occur as soon as possible, but are asynchronous so as not to
affect the speed of operations on the primary datacenter.

Finding Riak Support (Basho)

A key aspect to selecting a vendor to bet a mission-critical application on

is ensuring you have expert support when you need to. Perhaps you need
support for a major live system outage, or maybe just best practice guidance
when developing an application or sizing a cluster.

Basho was founded in 2008, and as I mentioned earlier, is the maker of
Riak. This worldwide company is the primary consultant for Riak, and the
contributions to Riak’s code come primarily from Basho employees.

Enabling cloud service

Basho provides a rental option for cloud services known as Riak CS (Basho
publishes the latest price on its website). Basho also sells the Enterprise
version of Riak on a perpetual license basis — that is, with an upfront fee
followed by a smaller annual maintenance and support. The price of this fee
is available only upon application to Basho’s sales team.
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This cloud service supports Amazon S3 storage, a simple distributed storage
API at affordable pricing. Riak CS also supports OpenStack and the Keystone
authentication service.

Having Riak available on Amazon is particularly helpful if you need rapid
scale out or scale back of the cluster. These services are typically seasonal
and peak a few weeks out of each year, especially during the Christmas and
tax-filing seasons.

Handling disasters

To ensure that your data remains available when an entire datacenter goes
down (often caused by workers mechanically digging up network cables!),
you need to have a second datacenter with the latest possible information.

You can do so with Riak by purchasing Basho’s Riak Enterprise. This edition
supports asynchronous or timed replication of data from a primary master
site to one or more secondary replica sites. If the primary site goes down,
you can switch your customers and applications to one of the replica sites.
Because replication is asynchronous, it’s still possible to lose some data,
but this is the typical replication method used between datacenters across
all types of database software. Asynchronous cluster-to-cluster replication
provides the best tradeoff between primary cluster performance and data
durability and consistency.

Evaluating Basho

Basho also offers expert consultation services for the Riak database. In the
UK, Basho offers perpetual licenses, support, and consultation on the UK
government’s G-Cloud store, and you can find the government’s prices online
by searching for Riak at https://www.digitalmarketplace.service.
gov.uk.

Basho also claims to have several high-profile customers, including Best Buy,
the Braintree payments service, Comcast, and Google (in its Bump service).
Various media and advertisement companies, including Rovio Entertainment,
creator of Angry Birds, are customers, too.

At the time of this writing, Basho has offices in Washington, D.C., London,
and Tokyo.
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Chapter 9
Common Features of Bigtables

In This Chapter
Structuring your data
Manipulating data
Managing large applications

Ensuring optimum performance

’ n previous chapters, I've focused on RDBMS features. Now, [ want to talk
about the useful features provided by Bigtables and how to improve the
performance of your Bigtable applications.

Bigtables clones are a type of NoSQL database that emerged from Google’s
seminal Bigtable paper. Bigtables are a highly distributed way to manage
tabular data. These tables of data are not related to each other like they
would be in a traditional Relational Database Management System (RDBMS).

Bigtables encourage the use of denormalisation — copying summary data in
to several records — for fast read speed, rather than using relationships that
require CPU-costly data reconstitution work at query time.

In Chapter 11, I cover the use of Bigtables; however, to make the best use
of them, you first need to understand how they organize data and how to
structure data for its optimal use. That’s the purpose of this chapter.

In this chapter, I describe how Bigtable clones based on Google’s original
Bigtable are different from RDBMS technology. I also discuss the mindset
needed to understand and best use Bigtable NoSQL databases.
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Storing Data in Bigtables

A Bigtable has tables just like an RDBMS does, but unlike an RDBMS, a
Bigtable tables generally don’t have relationships with other tables. Instead,
complex data is grouped into a single table.

A table in a Bigtable consists of groups of columns, called column families,
and a row key. These together enable fast lookup of a single record of data
held in a Bigtable. I discuss these elements and the data they allow to be
stored in the following sections.

Using row keys

Every row needs to be uniquely identified. This is where a row key comes in.
A row key is a unique string used to reference a single record in a Bigtable.
You can think of them as being akin to a primary key or like a social security
number for Bigtables.

Many Bigtables don’t provide good secondary indexes (indexes over column
values themselves), so designing a row key that enables fast lookup of
records is crucial to ensuring good performance.

A well-designed row key allows a record to be located without having to have
your application read and check the applicability of each record yourself. It’s
faster for the database to do this.

Row keys are also used by most Bigtables to evenly distribute records
between servers. A poorly designed row key will lead to one server in your
database cluster receiving more load (requests) than the other servers, slow-
ing user-visible performance of your whole database service.

Creating column families

A column family is a logical grouping of columns. Although Bigtables allow
you to vary the number of columns supported in any table definition at run-
time, you must specify the allowed column families up front. These typically
can’t be modified without taking the server offline. As an example, an address
book application may use one family for Home Address. This could con-

tain the columns Address Line 1, Address Line 2, Area, City, County, State,
Country, and Zip Code.
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Not all addresses will have data in all the fields. For example, Address Line 2,
Area, and County may often be blank. On the other hand, you may have data
only in Address Line 1 and Zip Code. These two examples are both fine in the
same Home Address column family.

Having varying numbers of columns has its drawbacks. If you want to HBase,
for example, to list all columns within a particular family, you must iterate
over all rows to get the complete list of columns! So, you need to keep track
of your data model in your application with a Bigtable clone to avoid this
performance penalty.

Using timestamps

Each value within a column can typically store different versions. These
versions are referenced by using a timestamp value.

Values are never modified — a different value is added with a different time-
stamp. To delete a value, you add a tombstone marker to the value, which
basically is flagging that the value is deleted at a particular point in time.

All values for the same row key and column family are stored together, which
means that all lookups or version decisions are taken in a single place where
all the relevant data resides.

Handling binary values

In Bigtables, values are simply byte arrays. For example, they can be text,
numbers, or even images. What you store in them is up to you.

Only a few Bigtable clones support value-typing. Hypertable, for example,
allows you to set types and add secondary indexes to values. Cassandra also
allows you to define types for values, but its range-query indexes (less-than
and greater-than operations for each data type) are limited to speeding up
key lookup operations, not value comparison operations.

Working with Data

NoSQL databases are designed to hold terabytes and petabytes of
information. You can use several techniques to handle this amount of
information efficiently.



144 Partui:Bigtable Clones

\\3

Such a large store of information places unique problems on your database
server infrastructure and applications:

v~ Effectively splitting data among several servers to ensure even ingestion
(adding of data) and query load

v Handling failure of individual servers in your cluster

v Ensuring fast data retrieval in your application without traditional
RDBMS query joins

This section looks at these issues in detail.

Partitioning your database

Each table in a Bigtable is divided into ordered sets of contiguous rows,
which are handled by different servers within the cluster. In order to distrib-
ute data effectively across all servers, you need to pick a row key strategy
that ensures a good spread of query load.

A good example of doing this is to use a random number as the start of your
partition key. As each tablet server (a single server in a Bigtable cluster)
will hold a specific range of keys, using a randomized start to a partition key
ensures even data distribution across servers.

A bad example of doing this can be found in a financial transaction data-
base or log file management database. Using the timestamp as a row key
means that new rows are added to the last tablet in the cluster — on a single
machine. This means one server becomes the bottleneck for writes of new
data.

Also, it’s possible most of your client applications query recent data more
often than historic data. If this is the case, then the same server will become
a bottleneck for reads because it holds the most up-to-date data.

Use some other mechanism to ensure that data is distributed evenly across
servers for both reads and writes. A good random number mechanism is to
use Universally Unique Identifiers (UUIDs). Many programming languages
come with a UUID class to assist with this. Using a Java application with
HBase, for example, means you have access to the Java UUID class to create
unique IDs for your rows.
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Clustering

NoSQL databases are well suited to very large datasets. Bigtable clones like
HBase are no exception. You'll likely want to use several inexpensive com-
modity servers in a single cluster rather than one very powerful machine.
This is because you can get overall better performance per dollar by using
many commodity servers, rather than a vastly more costly single, powerful
server.

In addition to being able to scale up quickly, inexpensive commodity servers
can also make your database service more resilient and thus help avoid hard-
ware failures. This is because you have other servers to take over the service
if a single server’s motherboard fails. This is not the case with a single large
server.

Figure 9-1 shows a highly available HBase configuration with an example of
data split among servers.

The diagram in Figure 9-1 shows two nodes (HRegionServers, which I talk
about in the upcoming section “Using tablets”) in a highly available setup,
each acting as a backup for the other.

/HRegionServer h
HRegion: Keys 000000-099999 HRegion: Keys 300000-399999
( Memstore | ( Memstore J
L
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File File File File File File
o J




’ 46 Part lll: Bigtable Clones

\NG/
&

In many production setups, you may want at least three nodes for high
availability to ensure two server failures close in time to one another can
be handled. This isn’t as rare as you’d think! Advice varies per Bigtable; for
example, HBase recommends five nodes as a minimum for a cluster:

v Each region server manages its own set of keys.

Designing a row key-allocation strategy is important because it dictates
how the load is spread across the cluster.

v Each region maintains its own write log and in-memory store.

In HBase, all data is written to an in-memory store, and later this store is
flushed to disk. On disk, these stores are called store files.

HBase interprets store files as single files, but in reality, they’re distrib-
uted in chunks across a Hadoop Distributed File System (HDFS). This
provides for high ingest and retrieval speed because all large I/O opera-
tions are spread across many machines.

To maximize data availability, by default, Hadoop maintains three copies of
each data file. Large installations have

v A primary copy

v A replica within the same rack

v Another replica in a different rack
Prior to Hadoop 2.0, Namenodes could not be made highly available. These

maintained a list of all active servers in the cluster. They were, therefore, a
single point of failure. Since Hadoop 2.0, this limit no longer exists.

Denormalizing

Rows in a particular table consist of several column families. Each column
family can contain many columns. What Bigtables cannot do is store multiple
values as a list in the same column for a row, which means that you must
choose to either

v Store a list within the value (and serialize and load it yourself in code).
v Use a composite value for the column name, such as email |work and

email | home.

Rather than normalize your data by having multiple tables that require
joining to get a picture of a person, you may want to use a single record with
multiple values copied (coalesced) in to a single record. This capability is



Chapter 9: Common Features of Bigtables ’4 7

WG/
g‘*‘“

\\3

called denormalization. Application developers find this approach easier to
deal with because they can store an entire object as a row.

A good example is an e-commerce order. You may have a column family for
billing information, a column family for delivery information, and a column
family for items within the order. Many order items are in a single order.
Applying denormalization means you can operate on all data about an order
as a single entity.

There are several benefits to this approach in a NoSQL database:
v Application developers can work with an entire order as a single entity

or object.

1 Read operations don’t need to do complex joins, as in SQL, on a rela-
tional DBMS.

v Write operations don’t require shredding of data (taking an aggregate
structure and spreading it across many tables), just writing of a single
aggregate structure to a single record.

Bigtables like HBase have alternative mechanisms to denormalization:

1 Use a version of a value to store each actual value.

The number of retained versions is set at the time a column family is
created, which means the number of items per order is limited.

v Store the Order Items object as an aggregate, perhaps in JSON or XML.
v Flatten some of the model keys and use composite row keys.
This is similar to the way you’d store data with a relational database

with joins, but it enables fast scanning of all the data in an order.

For a full discussion of this modeling scenario, go to the online HBase
documentation, which you can find at http://hbase.apache.org/book.
html#schema.casestudies.custorder.

If you find yourself storing many data values as JSON or XML “dumb” binary
columns, consider a document database that supports secondary indexes.
These document NoSQL databases are a much better fit for tree data models.



]148 Partii:Bigtable Clones

Managing Data

Once data is written to a database, you need to be able to manage it effi-
ciently and ensure that it’s always in a consistent, known state. You also
need to be able to alter the storage structure over time as data needs to be
rebalanced across a cluster.

There are several techniques available to manage data within Bigtable clones,
and I discuss those next.

Locking data

Row locking means a record cannot have any field accessed while another
process is accessing it. Row locking is an apt feature for a record that may be
updated. Consider a situation where two clients are trying to update informa-
tion at the same time. Without a row lock, one client could successfully write
information that is immediately overwritten by the second process before
the next read.

In this situation, a read-modify-update (RMU) sequence is helpful. This pro-
cess requires that the database lock an entire row for edits until the first edit-
ing process is complete. However, doing so is particularly tricky if you need
to either update or create a row but your application doesn’t yet know if that
row already exists. Should you create or update a row? The good news is that
databases like HBase allow locking on any row key, including those that don’t
yet exist.

Using tablets

A tablet server is a server within a Bigtable cluster that can manage one or
more tablets. HBase calls these HRegionServers. You use these servers to
store rows of data that belong to a particular subset of a table. These subsets
are contiguous rows as judged by their row key values.

A typical tablet server can store from 10 to 1,000 tablets. In turn, these tab-
lets hold a number of rows within a particular table. Tablets, therefore, hold
a group of records (called rows in Bigtables) for a single table within a single
database.
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A tablet is managed by a particular tablet server. If that server goes down,
another tablet server is assigned to manage that tablet’s data. Thus, a tablet
is the unit of persistence within a Bigtable.

Alternative names for this mechanism exist across different Bigtable clones.
HBase, for example, supports multiple regions per region server and multiple
stores per region.

Configuring replication

Replication is an overloaded term in NoSQL land. It can mean one of several
things:

v Copying data between multiple servers in case of disk failure.
v Ensuring that read replicas have copies of the latest data.

1 Keeping a disaster recovery cluster up to date with the live primary
cluster.

This definition is the one that most people will recognize as replication.
I call this disaster recovery (DR) replication to avoid confusion.

All DR functionality works on the premise that you don’t want to block data
writes on the primary site in order to keep the DR site up to date. So, DR
replication is asynchronous. However, the changes are applied in order

so that the database can replay the edit logs in the correct sequence. As a
result, it’s possible to lose some data if the primary site goes down before the
DR site is updated.

This state of affairs applies to all traditional relational DBMS DR replication.
The advantage, on the other hand, is very fast writes in the primary cluster.

Waiting for another server to confirm that it’s updated before the client is
told that the transaction is complete is called a two-phase commit. It’s
considered two phases because the local commit and all configured remote
commits must happen before the client is informed of a transaction’s
success.

Replication means that data changes are sent from a primary site to a
secondary site. You can configure replication to send changes to multiple
secondary sites, too.

Replication happens between tablets or regions, not at the database level.
This means that updates happen quickly and that the load is spread across
both the primary and secondary clusters.
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Improving Performance

Depending on how they’re used, you must tweak the configuration of data-
bases to ensure that they perform as needed. In this section, I talk about
some common options to keep in mind when you’re tuning a Bigtable clone.

Compressing data

All of the Bigtable clones that I looked at in detail for this book — HBase,
Hypertable, Accumulo, and Cassandra — support block compression, which
keeps data values in a compressed state to reduce the amount of disk space
used. Because, in general, Bigtables don’t store typed values, this compres-
sion is simple binary compression.

Several algorithms are typically supported, usually at least gzip and LZO
compression. HBase and Cassandra, in particular, support several
algorithms.

Cassandra stores its data in the SSTable format, which is the same format

as Google’s original Bigtable. This format has the advantage of using an
append-only model. So, rather than update data in place — which requires
uncompressing the current data, modifying it, and recompressing — data can
simply be appended to the SSTable. This single compression activity makes
updates fast.

Caching data

NoSQL databases generally use an append-only model to increase the perfor-
mance of write operations. New data is added to the storage structure, and
old data is marked for later deletion. Over time, merges happen to remove
old data. Compaction is another word for this process.

For write-heavy systems, this model can lead to a lot of merges, increasing
the CPU load and lowering data write speed. Some Bigtable systems, such
as Hypertable, provide an in-memory write cache, which allows some of the
merges to happen in RAM, reducing the load on the disk and ensuring better
performance for write operations.

For read-heavy systems, reading the same data from disk repeatedly is expen-
sive in terms of disk access (seek) times. Hypertable provides a read cache to
mitigate this problem. Under heavy loads, Hypertable automatically expands
this cache to use more of a system’s RAM.
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Filtering data

Retrieving all records where a value is in a particular range comes at the
expense of data reading bandwidth. Typically, a hashing mechanism on the
row key is used to avoid reading a lot of data just to filter it, you instead
search just a smaller portion of the database. Searching this value space is
I/O-intensive as data increases to billions of records.

Because “billions of records” isn’t an unusual case in NoSQL, a different
approach is required. One of the most common techniques is called a Bloom
filter, named after Burton Howard Bloom who first proposed this technique in
1970.

A Bloom filter uses a predictable and small index space while greatly
reducing requirements for disk access. This state is achieved because a
Bloom filter is probabilistic; that is, it returns either Value may be in set or
Value is definitely not in set, rather than a traditional Value is definitely in set.

Exact value matches can then be calculated based on the results from the
Bloom filter — a much reduced key space to search. The disk I/O is still
greatly reduced, as compared to a traditional simple hashing mechanism that
scans the entire table.

HBase, Accumulo, Cassandra, and Hypertable all support Bloom filters.
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Chapter 10
Bigtable in the Enterprise

In This Chapter
Protecting your data when a server crashes
Predicting reliability of your database service’s components

Growing your database service as your business grows

Businesses are risk-adverse operations, and mission-critical systems
rely on safeguard after safeguard, along with plan B and plan C, in case
disaster strikes.

Distributed Bigtable-like databases are no exception, which requires Bigtable
enthusiasts to prove that this newfangled way of managing data is reliable for
high-speed and mission-critical workloads.

Thankfully, the people working on Bigtable clones are also intimately famil-
iar with how relational database management systems (RDBMS) provide
mission-critical data storage. They’ve been busily applying these lessons to
Bigtables.

In this chapter, I talk about the issues that large enterprises will encounter
when installing, configuring, and maintaining a mission-critical Bigtable data-
base service.

Managing Multiple Data Centers

If all goes horribly, horribly wrong — or someone accidentally turns off
all the lights in a city — you’ll need an entire backup data center, which is
referred to as a disaster recovery site.

In this section, I talk about the features commonly available in Bigtable
clones that help guarantee a second data center backup in case of disaster.
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Active-active clustering

Perhaps your organization does “live” business in many locations in the
world. If so, you need high-speed local writes to your nearest data center —
so all data centers must be writable. In this scenario, all data centers are pri-
mary active data centers for their own information.

Active-active clustering writes can happen at any location. All data centers
are live all the time. Data is replicated between active sites, too, in order to
provide for traditional disaster recovery.

However, if the same data record is overwritten in multiple locations, you
may be faced with having to choose between two options:

v Wait for the site to write this data to all data centers, slowing down your
transaction times.

This option is shown in part A of Figure 10-1.

v Replicate this data asynchronously, potentially losing some of the latest
data if it wasn’t replicated before an outage at one site.

v This option is shown in part B of Figure 10-1.

In my experience, it’s unusual to have a situation where the same record
must be updated from multiple data centers. Normally, writing a new record
locally and pushing that to the other sites asynchronously is sufficient. In
this model, each site does accept writes, but only for a fixed number of parti-
tions (primary keys). This still allows a global view to be generated locally,
with a small chance of inconsistency only with the remote replicated data.
This option is show in part C of Figure 10-1.

When you absolutely need fast local data center writes across the world, a
globally distributed database that supports full active-active clustering is
needed. Cassandra is a Bigtable database that supports global active-active
clusters while preserving as much speed as possible on ingest.

Managing time

Many Bigtable databases rely on identifying the latest record by a timestamp.
Of course, time is different across the world, and coming up with a reliable,
globally synchronized clock is incredibly difficult. Most computer systems
are accurate individually to the millisecond, with synchronization lag of a few
milliseconds. For most systems this is fine, but for very large systems a more
accurate time stamp mechanism is required.
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A. Full cross-data center consistency through 2 phase commit remotely
1. Write arrives 2. Not acknowledged until both local and remote replicas are updated

Data Center 1 Data Center 2

B. 2 phase commit locally, asynchronous eventually consistent replication remotely
1. Write arrives 3. Data replicated to remote cluster

2. Local replica updated
before acknowledgemerit

Data Center 1 Data Center 2

C. Local and remote replicas updated asynchronously, always eventually consistent

1. Write arrives 2. Acknowledged immediately. Replicas only updated sometime later

Data Center 1 Data Center 2

An out-of-sync clock means that one site thinks it has the latest version of
arecord, whereas in fact another site somewhere in the world wrote an
update just after the local write. Only a very few applications, though, are
affected by this time difference to the extent that data becomes inconsistent.
Most records are updated by the same application, process, or local team of
people that wrote it in the first place. Where this isn’t the case (like in global
financial services where trades can be processed anywhere), synchronization
is an issue.

Google recently came up with a mechanism for a reliable global timestamp
called the Google TrueTime API, and it’s at the heart of the Spanner NewSQL
relational database, which stores its data in the Bigtable NoSQL columnar
database.

This API depicts the concept of uncertainty in terms of current time. It uses

a time interval that’s guaranteed to include the time at which an operation
happened. This approach better clarifies when an operation definitely or may
have happened. The time synchronization uses atomic clocks or GPS signals.

Many Bigtable databases, except Google Bigtable itself, support the concept
of a record timestamp. These time stamps don’t rise quite to the level of sci-
ence that Google’s TrueTime API does, but they provide a close approxima-
tion that may suffice in your particular use case. Notably, Accumulo has its
own distributed time API within a cluster.
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Reliability

Reliability refers to a service that’s available and can respond to your
requests. It means you're able to access the service and your data, no matter
what’s going on internally in a cluster.

Conversely, if you can’t communicate with the server in the cluster and can’t
access the data in the server, your database needs to handle the lack of com-
munication.

The database also needs to handle failures. What happens if the disk drive
dies? How about a single server’s motherboard? How about the network
switch covering a quarter of your database cluster? These are the kinds of
things that keep database administrators up at night (and employed, come to
think of it).

In this section, I discuss how Bigtable databases provide features that allevi-
ate database cluster reliability issues.

Being Google

In Google’s Bigtable paper, which I introduced in Chapter 1, its authors dis-
cuss their observations on running a large distributed database. Bigtable
powers Google Analytics, Google Earth, Google Finance, Orkut, and
Personalized Search. These are large systems, and Googles’ observations
regarding such systems are interesting. In particular, they spotted various
causes for system problems, as shown here:

1+ Memory corruption: Where a system’s memory state becomes invalid
1 Network corruption: Where data is modified while in transit

v Large clock skew: Where servers disagree on the “current” time

1+ Hung machines: Where some machines don’t respond while others do

v Extended and asymmetric network partitions: Where long network
lags occur, and also “split brains,” which is where a cluster of nodes is
divided into two (or more) clusters unevenly, each receiving requests as
if the whole cluster was still operational and communicative

+* Bugs in other systems Google used: For example, dependent services
like the distributed Chubby file-lock mechanism
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v Overflow of GFS quotas: Effectively running out of disk space

v Planned and unplanned hardware maintenance: Where workloads
in the cluster are affected

These problems affect a wide variety of distributed databases, and when
assessing a particular database for its reliability in enterprise applica-
tions, you need to find out how they handle the preceding situations.

With this information, you can identify higher-risk areas of your system,
including whether a single point of failure (SPoF) needs to be addressed.
SPoFs are the main cause of catastrophic service unavailability, so I
spend a lot of time throughout this book identifying them. | recommend
you address each one I talk about for a live production service.

Ensuring availability

A table in a Bigtable database is not a physical object. Instead, data is
held within tablets. These tablets are all tagged as being associated with
a table name. Tablets are distributed across many servers.

If a server managing a tablet fails, then this needs to be managed.
Typically, in Bigtable clones, another tablet server is elected to take over
as the primary master for the tablets on the failed server. These tablets
are shared between the remaining servers to prevent a single server
from becoming overloaded.

How these secondary servers are selected and how long it takes them to
take over operations on those tablets are important issues because they
can affect data and service availability, as shown here:

v Some Bigtable clones have a master process that monitors tablet
servers and then reallocates their tablets if the tablets fail or
become unresponsive. These masters are also responsible for data-
base changes like adding or removing tables, so these masters also
respond to limited client requests.

v On some databases (for example, Hypertable), these master pro-
cesses aren’t highly available, which means that, if the master also
dies, you might have a problem. Usually, you can start another
master within seconds, but it’s important to understand this needs
to be done to guarantee availability.
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v Other Bigtable clones (HBase, Accumulo) will have standby master pro-
cesses running, with failover happening immediately and without the
client knowing. Accumulo even goes so far as to have a feature — called
FATE, amusingly enough — that guarantees and replays any database
structure altering requests if the master fails during a modification. This
prevents schema corruption of the database.

v Other databases (Cassandra) use a chatter protocol between all mem-
bers of the cluster, avoiding a master process altogether. This gives
Cassandra the minimum number of components, and allows every
server in the cluster to look the same, all of which makes administration
and setup easier, while helping guarantee availability, too.

Scalability

Anyone can create a database that looks fast on a single machine while
loading and querying a handful of records. However, scaling to petabytes
requires a lot of work. In this section, therefore, I highlight features that can
help you scale read and write workloads.

The features covered in this chapter are specific to Bigtable clones
mentioned in this book. Many other strategies are possible to achieve
scalability, including:

v Use distributed file storage. Shares load across physical disks/servers,
which can be done in one of the following ways:

¢ Alocal RAID (Redundant Array of Inexpensive Disk) array
¢ A shared storage system such as HDFS (Hadoop File System)

+* Go native. Using a compiled programming language next to an operating
system like C++ is always faster than a bytecode or interpreted language
like Java.

Most Bigtable clones are implemented on top of Java, with Hypertable
being the notable C++ exception.

v~ Utilize fast networks. Use at least 10-Gbps switches for high-speed
operations, especially if you're using shared network storage.

1 Set up separate networks. Sometimes it’s useful to keep client-to-
database network loads separate from database-to-storage or database
intra-node chatter. On larger clusters, intra-node chatter can also start
flooding a data network if the network is shared. On very large clusters,
it’s best to have a secondary net for intra-server communication to
avoid this problem.
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1 Write to memory with journaling. Some databases can receive writes
in memory, which is very fast, while also writing a small record of the
changes, called a Journal, to disk to ensure that the data is durable if the
server fails. This Journal is smaller, and thus faster to save, than apply-
ing the change itself to all the database structures on disk.

Ingesting data in parallel

When writing large amounts of data to a database, spread the load. There’s
no point having a 2-petabyte database spread across 100 servers if 99 per-
cent of the new data is landing on only one of those servers, and doing so can
easily lead to poor performance when data is being ingested.

Bigtable databases solve this problem by spreading data based on its row
key (sometimes called a partition key). Adjacent row key values are kept near
each other in the same tablets.

To ensure that new data is spread across servers, choose a row key that guar-
antees new records aren’t located on the same tablet on a single server, but
instead are stored on many tablets spread across all servers.

v Accumulo allows you to plug in your own balancer implementations,
which enables you to specify that rows can be kept together or spread
across a cluster, depending on your needs.

v+ Accumulo and HBase also support locality groups, which keep particular
columns for the same row together. This is particularly useful for guar-
anteeing fast read speeds. Hypertable supports locality groups, too, with
a feature called access groups.

In-memory caching

A database system can experience extreme input and output load, as
described here:

v In many systems, the same data is often requested. Consider a news
site that shows the latest news stories across a range of segments. In
this case, it’s important to keep the latest stories cached, rather than go
back to disk to access them each time they’re requested.

» When high-speed writes are needed, the most efficient way to handle
them is to write all the data to an in-memory database file, and just write
the journal (a short description of the changes) to disk, which increases
throughput while maintaining durability in the event of a system failure.
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It’s best to have a system that can cope with managing both high-speed
writes and read caching natively and automatically. Hypertable is one such
database that proactively caches data, watching how the system is used and
changing memory priorities automatically.

Indexing

Like key-value stores, Bigtable clones are very good at keeping track of

a large number of keys across many, if not hundreds, of database serv-
ers. Client drivers for these databases cache these key range assignments
in order to minimize the lag between finding where the key is stored and
requesting its value from the tablet server.

Rather than store one value, a Bigtable stores multiple values, each in a
column, with columns grouped into column families. This arrangement
makes Bigtable clones more like a traditional database, where the database
manages stored fields.

However, Bigtables, like key-value stores, don’t generally look at or use the
data type of their values. No Bigtable database in this book supports — out of
the box — data types for values, though Cassandra allows secondary indexes
for values. However, these secondary indexes simply allow the column value
to be used for comparison in a “where” clause; they don’t speed up query
times like a traditional index does.

You can apply the same workaround to indexing used in key-value stores to
Bigtables. Figure 10-2 shows single and compound indexes.

The shown indexing method is limited, though, because you need to know in
advance what combinations of fields are required in order to build an index
table for each combination of query terms. The indexes are also consistent
only if the Bigtable database supports transactions, or real time updates of
the indexes during a write operation.

If the database doesn’t support automatic index table updates within a trans-
action boundary, then for a split second, the database will hold data but have
no index for it. Databases with transactions can update both the data table
and index table(s) in a single atomic transaction, ensuring consistency in
your database indexes. This is especially critical if the server you're writing
to dies after writing the value, but before writing the index — the row value
may never be searchable! In this case, you must check for data inconsisten-
cies manually on server failover.
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A. Single Product index linking to all orders
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Column Column Column
Row Key o o o
family:name family:name family:name
Product-1234 ‘Order-34
value: “-
Product-435 ‘Order-34 :Order-93
value: “- value: “-
Product-9342 *:Order-78
value: “-

B. Compound index on Product and County purchaser resided in

Column Column Column
Row Key o o o
family:name family:name family:name
Product-1234_County:Derbyshire :Ord?fﬁf‘
value: “-
Product-435_County:Derbyshire :Ord?ﬁ,‘l
value: “-
Product-435_County:Norfolk :Ord?f,-q,s
value: “-
Product-9342_County:Suffolk ‘Order-78
value: “-

Hypertable is a notable exception because it does provide limited key qualifier
indexes (used to check whether a column exists for a given row) and value
indexes (used for equals, starts with, and regular expression matches). These
indexes do not support ranged less-than or greater-than queries, though.

Other general-purpose indexing schemes are available for use with Bigtable
clones. One such project is Culvert (https://github.com/booz-allen-
hamilton/culvert). This project aimed to produce a general-purpose sec-
ondary indexing approach for multiple Bigtable implementations over HDFS.
HBase and Accumulo are supported.

This project has been dormant since January 2012, but the code still works.
In the future it may no longer work with the latest databases, requiring orga-
nizations to build their own version. This means knowing about Culvert’s
approach could help you design your own indexing strategy.

Commercial support vendors, such as Sqrrl Enterprise for Accumulo, pro-
vide their own proprietary secondary indexing implementations. If you need
this type of indexing, do consider those products. Similarly, the Solr search
engine has also been used on top of Bigtable clones.
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Using an additional search engine tier takes up much more storage (field values
are stored twice) and may not be transactionally consistent if it’s updated out-

side of a database transaction. Cassandra, which ensures consistent Solr index
updates, is the notable exception in the DataStax Enterprise version.

Solr is a useful option for full-text indexing of JSON documents stored as
values in Bigtables. But if you're storing documents, it’s better to consider a
document store.

Aggregating data

In transactional database systems, individual rows are created and updated,
whereas in analytical systems, they’re queried in batches and have calcula-
tions applied over them.

If you need to provide high-speed analytics for large amounts of data, then
you need a different approach. Ideally, you want the ability to run aggrega-
tion calculations close to the data itself, rather than send tons of information
over the network to the client application to process.

All Bigtable clones in this book support HDFS for storage and Hadoop Map/
Reduce for batch processing. Accumulo is prominent because it includes a
native extension mechanism that, in practice, may prove more efficient for
batch processing than Hadoop Map/Reduce.

Accumulo iterators are plug-in Java extensions that you can write yourself
and use to implement a variety of low-level query functionality. You can use
them to:

v Shard data across tablet servers.

v Sort data (for storing the most recent data first).

v Filter data (used for attribute-based access control).

v Aggregate data (sum, mean average, and so on).
HBase coprocessors introduced recently in HBase 0.92 also allow similar

functionality as Accumulo offers. They also will eventually allow HBase to
have similar security (visibility iterator) functionality as Accumulo.
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Configuring dynamic clusters

After you parallelize your data as much as possible, you may discover that
you need to add more servers to your cluster in order to handle the load.
This requires rebalancing the data across a cluster in order to even out the
query and ingest loads. This rebalancing is particularly important when you
need to increase the size of your cluster to take on larger application loads.

You can support cluster elasticity in Bigtable clones by adding more servers
and then instructing the master, or entire cluster for master-less Bigtable
clones like Cassandra, to redistribute the tablets across all instances. This
operation is similar to server failover in most Bigtable implementations.

The control of the HDFS area is moved to a new server, which then may have
to replay the journal (often called the write ahead log — WAL) if the changes
haven’t been flushed to HDFS. On some databases, like HBase, this process
can take ten minutes to finish.

Once you’ve scaled out, you may decide you want to scale back, especially

if during peak periods of data ingestion, you added more servers only to
receive more parallel information. This is common for systems where infor-
mation is submitted by a particular well known deadline, like for government
tax-return deadlines. Again, this requires redistribution of the tablets, revers-
ing the preceding scale out process.

Configuring and starting this process is in many cases a manual exercise. You
can’t join a Bigtable to a cluster and have that cluster magically reassign tab-
lets without issuing a command to the cluster. Some commercial enterprise
versions, such as DataStax Enterprise, do automate this process.
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Chapter 11
Bigtable Use Cases

In This Chapter
Restructuring data for storage in columns

Storing data for later analysis

Bigtable is used to manage very large amounts of data across many serv-
ers, up to petabytes of data and hundreds, if not thousands, of servers.

If you're using relational databases but having issues with them, you might
think that Bigtable clones are the natural place to start looking for help. After
all, they're tables, so they must be similar to relational databases, right?
Unfortunately, that’s not the case.

Bigtable clones handle some issues well that relational database don’t

solve — for example, with sparse data problems, where datasets contain
many different types of values, but only a handful of those values are used.
Bigtable clones are also able to analyze data while it’s in-flight, rather than in
overnight batches in a separate data warehouse.

This chapter shows how managing data in relational database differs from
managing the same data in a Bigtable. I also talk about how to store data
effectively for later analysis, and for providing historic summaries of data
analyzed.

Handling Sparse Data

At times, a relational database management system (RDBMS) may have a
table design (a schema) in which the columns don’t have a value. An example
is a social media site where someone hasn’t provided their photo yet.



’ 66 Part llI: Bigtable Clones

Using an RDBMS to store sparse data

Null values(as opposed to empty strings) in relational databases typically
consume a couple of bytes, which is fine normally because the field isn’t
filled — which when filled would be more like a 20-byte string for, say, storing
an uploaded a picture. Two bytes is better than 20 bytes.

In some situations, though, these two bytes per blank field can be a
significant amount of wasted space. Consider a contacts application that
supports usernames and phone numbers for every type of network — cell,
home, and office phone — and social networks like Twitter, Facebook, and
Baidu, with a column for each of the hundreds of options and addresses. This
means hundreds of bytes wasted per record.

If you're anything like me, each contact consumes a minimum of three fields
(see Figure 11-1). If you provide a contact management service, you may be
storing 297 null fields for the 300 fields you support. Scale this up to a shared
global application, and you’re looking at terabytes of wasted space.

Author: So you can’t scale up from global to worldwide, because they mean
the same thing — so the scale is the same.

That’s even before you consider doing a query on a single contact and pulling
back 300 columns, many of which are null. Those null columns 2 bytes mark-
ers are costly in space on the result set when being sent over the network
and processed at the client.

Using a Bigtable to manage sparse data instead of a relational database allevi-
ates this storage issue.

Contact ID Email1 Email2 CellPhone HomePhone Twitter

1234 a@a.org NULL NULL 555-4567 NULL

|
Figure 11-1: 5428 NULL NULL NULL NULL @somedude

Sparse

contacts 2353 b@c.com u@v.net NULL NULL NULL
table in an

RDBMS. 9724 NULL NULL NULL NULL NULL
|
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Figure 11-2:
Sparse data
in a Bigtable
clone.
|

Using a Bigtable

In a Bigtable, you can model the same contacts application with a
column family for each type of network (phone, social media, email, snail
mail) and a column for each one defined (home phone, cell phone, office
phone).

Bigtable stores only the columns you indicate on each record instance. If
you indicate three columns — email, home phone, and cell phone — then
Bigtable stores exactly those three column values. No nulls, and no wasted
space, as illustrated in Figure 11-2.

If you need to find all contacts with a phone number — say, at least one
column in the phone column family — then you need to consider that factor.
This scenario can happen if you're viewing all contacts in a phone in order
to make a call; there’s no point in showing contacts without phone numbers
here!

In this case, the database must support a column exists query for the column
family and column names. Some databases, such as Hypertable, allow you to
set up special qualifier indexes to ensure that these types of existential que-
ries will operate quickly over large datasets.

Also, keep in mind that some Bigtable clones don’t provide advanced match-
ing functions for values but store them instead as “dumb” binary data that
cannot be compared with data-type specific operations — for example,
searching for all contact names (a string field) starting with “Adam F”. This is
a starts with query that processes a string value. Most Bigtable clones provide
exact match functionality, but don’t natively support partial match or data-
type-specific range queries (less than and greater than).

Row Key Column Values
1234 email:1 = a@a.org phone:home = 555-4567
5428 social:twitter = @somedude
2353 email:1 = b@c.com email:2 = u@v.net
9724
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Hypertable’s value indexes do support exact match, starts with, and regular
expression matches. If you need this functionality regularly, Hypertable may
be for you.

Bigtable clones also don’t support relationships, preferring to store multiple
copies of data to minimize read-time processing. This is a process called
denormalization. Although, in some situations, this approach consumes more
disk space, it enables very efficient reads with higher throughput than most
relational databases can provide.

Analyzing Log Files

Log files are very common across a range of systems and applications. Being
able to record these files for later analysis is a valuable feature.

Log-file recording and analysis is a very complex business. It’s not unusual
for every system-to-system call in mission-critical Enterprise applications to
include tracking code. This code enables the app to check for errors, invalid
values, and security breaches, as well as the duration of each action.

This vast information is collected from hundreds of servers. It’s then ana-
lyzed in nearly real time in order to ensure that a system’s tracking capabili-
ties and condition are up to date. In this way, problems are discovered before
services to users are interrupted.

Analyzing data in-flight

The traditional relational database approach to analyzing data is to store it
during the day and then at regular intervals (normally overnight) to create a
different structure of that data in a data warehouse for analyzing the next day.

For your company’s current Enterprise software sales, daily data summaries
may be enough. On the other hand, in countries with highly regulated finan-
cial services, this information needs to be less than five minutes old. The
same can be said for system monitoring. There’s no point in having a view
that’s 24 hours or more out of date; you need summaries as soon as they're
available.

Bigtable clones are great for collecting this information. They can have flexi-
ble columns, so if a particular log entry doesn’t have data for a field, it simply
can’t be stored. (See Figure 11-3 for an example of a log entry.) Bigtable
clones also allow you to store data in multiple structures.
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Figure 11-3:
Atypical log
file entry.
|

Figure 11-4:
The same
log entry
indexed for
different
time
periods.
|

A. Typical log file data

Host Process Timestamp Type Function Duration

serverl jboss 2014-09-05T09:04:32 : Java RPC ; getCreditScore 12.3

B. Log file data modeled in a Bigtable clone

Row Key Column Values

host:name ; host:process gvent:time eventitype: java:function :event:duration
34BD7E44 . 2014-09-05 -

serverl jboss T09:04:32 Java RPC : getCreditScore 123

To build a quick picture of a day in five minute, one-hour, one-day chunks,
you can store the same data in alternative structures at the same time. This
is an application of the denormalization pattern commonly used in NoSQL
systems, as shown in Figure 11-4.

A. 5 minute log index

Column family:name
9014-09-05T09:05:00 Event-34B[EE344:duratlon
B. Hourly log index
Row Key Column family:name Column family:name
9014-09-05T10:00:00 Event-34B%E344:duratlon Event-7ZB%EéDf3:durat|on

The preceding denormalization approach enables quick searching for data
in different systems at different time intervals, which is useful for ad-hoc
querying and also for building data summaries, which I discuss next.

Building data summaries

Having extra index tables allows a daemon program to regularly and
efficiently recalculate the last five minutes, hour, and daily summaries.

Instead of requiring a range index or scanning all data rows to find the last
five minutes of data, you instead merely round the current time up to a
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five-minute interval and query for all data with that interval in your
log summary table.

Using specialized system iterators (as Accumulo does) or stored
procedures allows this calculation to happen within the database
very efficiently. (See Figure 11-5, which shows a summary table

being updated.)
|
Figure 11-5: Row Key Column family:name Column family:name
Calculated [ durationmean A duration:samples
summary | 2014-09-05T10:00:00 | g Hretion, sampres
table. ; ) :




Chapter 12

Bigtable Products

In This Chapter

Controlling data distribution
Maximizing security
Increasing performance

Distributing data around the world

R ight now, [ bet you're feeling like a kid in a candy store, knowing that
he can have only one kind of candy — but which one is the question!
You’'ve seen the future, and you know you want a Bigtable NoSQL database,
because, as the name implies, they’re big, and they’re tabular; and whether
your thing is ridiculously large datasets, government grade security, high
performance with data consistency, or global distribution of your data —
there’s a Bigtable out there for you!

In this chapter, I discuss each of these different use cases, to help you deter-
mine which Bigtable fits your needs.

History of Google Bigtable

Google published its Bigtable paper in 2006.
This paper described for the first time a set
of related technologies that Google had been
using to store and manage data under its
services.

Of particular interest was the design decision to
avoid joins between tables, preferring instead
a denormalization approach — that is, to keep
copies of certain data for different uses, such
as a summary record and a detail record both
having “patient name” columns.

Google's Bigtable was designed to be flexible
enough to use for a variety of Google's services.
As a result, Bigtable is a general-purpose data-
base, potentially applicable to a wide range of use
cases, much like its relational database forebears.

Bigtable was built on a number of building
blocks. The first was the distributed file system
called GFS — Google File System. This file
system is complemented by a distributed lock-
ing mechanism called Chubby, which ensures
that writes and reads to a single file are atomic.

(continued)
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(continued)

Today this design is applied in the open-source Bloom filters are special “space-efficient”
Hadoop Distributed File System (HDFS). The indexes that tell you either “this key defi-
SSTable file format for storing data is also used. nitely doesn't exist” or “this key may exist”
A number of today’s Bigtable clones share this in the database. Their use reduces disk I/0
capability. operations when you're looking up keys

A variety of architectural and mathematical T}/ eUERE

techniques are applied to Bigtable, too: Bigtable has inspired (sometimes along with
Dynamo in the key-value world) many open
source software developers to implement
v~ Sharding parts of a table (tablets) between highly scalable wide-column stores. These
multiple servers column stores are highly tolerant of patchy
sparse data and operate at extreme scale.

v Data compression

v Bloom filters

Managing Tabular Big Data

Many best practices, tricks, and tips are available for working with big data and
Bigtables. I've highlighted just a few, but forums are full of other options, too.

e«,ﬁ‘- STy, The term big data is overhyped. It refers to the management of very fast,

large, variable, or complex datasets, typically involving billions of records
(data) that are spread across many machines, and changing the structure of
that data, in order to store it.

Designing a row key

HBase and Cassandra distribute data by row key. Each region server
manages a different key space. This means that data distribution — and
therefore, ingest and query performance — depends on the key you choose.

Consider an application that manages log files. You may be tempted to use
the date and time of a message as the start of the row key. However, doing so
means that the latest information will reside on the single server managing
the highest row-key values.

All of your newly ingested data will hit this single server, slowing ingest
performance. It’s even worse if a set of monitoring dashboards are all
querying for the last five minutes worth of data, because this single server
will also have the highest query load. Performance suffers — and somebody
may shout at you!



Chapter 12: Bigtable Products 7 73

3

|
Figure 12-1:
Relational
employee
depart-
ment table
schema.
|

Instead, make the row key something that distributes well across machines.
A unique key with random values across the spectrum of possible values is a
good start. Java includes a Universally Unique Identifier (UUID) class to gen-
erate such an ID. Some Bigtables have this built-in capability, too.

Instead, model your key values that are used as lookups for column names
rather than row keys (you find more on this topic in the following section).

You need to be careful, though, because different key strategies create differ-
ent read and write tradeoffs in terms of performance. The more random the
key, the less likely adjacent rows will be stored together.

Using a very random key means you will have a faster write speed, but slower
read speed — as the database scans many partitions for related data in your
application. This may or may not be an issue depending on how interrelated
your rows are.

By using secondary indexes, you can alleviate this issue, because indexed
fields are stored outside the storage key, which gives you the best of both
worlds.

Key and value inversion

In a relational database, if you want to perform a quick lookup of table values,
you add a column index. This index keeps a list of which records have which
values, ordered by the value itself. This approach makes range queries (less-
than and greater-than) much quicker than scanning the entire database.

Most Bigtables — with the exception of Hypertable — don’t have such value
indexes. Instead, all indexes are performed on keys — be they row keys or
column keys (column names). This means you must get used to modeling
your data differently. You may also have to create your own index tables for
fast lookups. Consider the traditional relational database schema shown in
Figure 12-1.

EmpII[())yeeé Forename Surname SSN TaxPercent Department
"""" 1 Adem  Fower | W Sees
Css dmior | Baker | 623 20 Investments
3 Kely  Homeworker 812523 | 0 Engineering
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Figure 12-2:
Bigtable
employee
depart-
ment and
employee
implementa-
tion.
|

In this schema, adding an index in the department column allows you to
perform quick lookups. On Bigtable clones, this generally isn’t possible. Some
Bigtable clones provide secondary indexing that don’t speed up queries,
instead they just mark columns as being queriable. Apache Cassandra has
these sorts of indexes. Other Bigtables, like Hypertable, have true secondary
indexes which speed up queries, like their RDBMS relations.

Instead, you need an employee department index table, where you store the
department values as row keys and the employee numbers using one of two
methods:

v Column names with blank values: This is where you use the column
name as a “flag” on the record.

v Column families, with summary details in name and id: Allows a sum-
mary to be shown with no further lookups. Figure 12-2 shows an exam-
ple of denormalization.

A. Employee Table

Row Key Column Values
person:forename person:surname tax:SSN
Adam Fowler 123-444422
34BD7E44 .
employee:department employee:id tax:percent
Sales 1234 80
person:forename person:surname tax:SSN
Junior Banker 146-236563
27458BC8 .
employee:department employee:id tax:percent
Investments 5428 20
person:forename person:surname tax:SSN
Kelly Homeworker 834-125323
185CE732 :
employee:department employee:id tax:percent
Engineering 1253 0
B. Department Index Table, with denormalized summary information
Row Key Column Values
Sales 34BD7E44:name 34BD7E44:id
Adam Fowler 1234
Endineerin 185CE732:name 185CE732:id
g g Kelly Homeworker 1253
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This works because the keys are automatically indexed, and all data under a
row key for a particular column family are kept local to each other, making
lookups fast.

As an additional benefit, if an employee is in multiple departments, then this
model still works. The same cannot be said of the default relational model in
Figure 12-1.

Denormalization with Bigtables

A basic key-value inversion example leaves you with two tables in a database
that don’t support joins. So you have to execute two database requests to
fetch all employee information for those employees in departments.

If you often perform lookups in this manner, you may want to consider
another approach. For example, you always show a summary of the
employees when looking up via department. In this scenario, copy some
summary data from the employee details table into the employee department
table. This is called denormalization and is shown in section B of Figure 12-2.

Some Bigtable clones, such as Cassandra, provide automatic column name
ordering. In Figure 12-2, [ use the employee’s full name in a column name,
which means that [ don’t have to sort the resulting data. (I kept the row key
in case there are multiple John Smiths in the company!) In the application,

[ split the column name by semicolon when showing the name in the user
interface.

In my application, I can now provide very fast lookups of employees by
department and show a list of employees with summary information without
significant processing or application side sorting. The only cost is a slight
increase on storing this information in two ways in the same record (an
example of trading disk space for higher speed read operations).

Scanning large key sets — Bloom filters

Bigtable clones, like their key-value store brethren, store data by managing a
set of keys. These keys are usually hashed to balance data across a cluster.

When querying for a list of records where the key is of a particular value,
you have to pass the query off to all nodes. If each node manages millions of
records, then so can take some time.

This is where Bloom filters come in. You can add a Bloom filter onto column
names in all Bigtable products. Rather than exhaustively scanning the whole
database to answer the question “which rows have keys equaling this name,”
a Bloom filter tells you “this row may be in the results” or “this row definitely
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isn’t in the results.” This minimizes the key space that needs to be thor-
oughly searched, reducing disc I/O operations and query time.

Bloom filters use up memory storage space, but they are tunable. You can
tune the chance that a row matches. An incorrect match is called a false-
positive match. Changing the match weight from 0.01 to 0.1 could save you
half the RAM in the filter — so doing so is worth considering. In HBase, this
setting is io.hfile.bloom.error.rate, which defaults to 0.1. You can
also tune Cassandra by using the bloom filter fp chance parameter to
the decimal value desired.

Distributing data with HDFS

So you have a fantastic HBase installation that’s distributing data evenly
across the whole cluster. Good work!

Now, turn your attention to data durability. What happens if a disk fails? How
do you continually manage replicas? How do you perform fast appends to
internal table structures?

This is where HDFS comes in. HDFS (the Hadoop Distributed File System)
is based on the original Google File System. HDFS is great for ingesting very
large files and spreading data across a cluster of servers.

Also, by default, HDFS maintains three copies of your data, providing redun-
dancy across machines, and even racks of machines, in a data center.

What HDFS doesn’t do is maintain indexes or pointers to data stored within
those very large files. HDFS also doesn’t allow alteration of specific parts of
files stored on it. To provide indexing and support updates of data, you will
need a NoSQL database running on top of HDFS. Figure 12-3 shows how an
HBase cluster stores information on multiple Hadoop HDFS partitions spread
across a Hadoop cluster.

Rather than store many small table files, HBase stores fewer, very large
files one per row. New data is appended to these files. Changes are also
appended, so you don’t have to modify earlier parts of an existing table file.
This process fits well with the HDFS storage mechanism.

HBase provides HDFS with a way to index and find appropriate small records
within very large datasets. Hadoop provides HBase with a tried and true,
highly parallel, distributed file system in HDFS, as well as batch processing
through MapReduce.
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HRegionServer } HRegionServer

[Log][[ Region 1] [Region7] - j [Log] Regionz][aegions]..]

|
Figure 12-3:
How HBase
and HDFS
work

together e ~a
to manage [ File A ][ File B ][ File B ] [ Flle(l ][ File R ][ File S ]
data. HDFS Server HDFS Server
|

Batch processing Bigtable data

There are two types of database queries:

v The result needs to be known as soon as possible.

These are data analysis use cases like users searching or listing records
in a database.

v The result will take time to calculate.
These are long-running aggregations or analysis and reporting jobs.

These longer running jobs typically don’t involve a user sitting in front
of a screen waiting for an answer.

Answer sets may need to be processed, too, in order to generate a result,
and this process requires a different way of scheduling and managing jobs.
Thankfully, Hadoop MapReduce provides this functionality.

A simple Map/Reduce job typically consists of two operations:

1. The map task scans through a dataset and collates matching data in a
required format.

2. The reduce task takes this data and produces an answer for the query.
A reduce task’s output can also form the input of a map task, allowing
for chained analysis.

An example of a simple MapReduce job is analyzing citizen detail
records in a HBase database, producing the average height of citizens,
grouped by age.
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In this example, the map function returns a set of records with height and age
information. The reduce function tallies these by age and calculates a mean
average using the sum and count.

You can run more complex MapReduce jobs to feed a result from one
operation as an input to another. In this way, sophisticated chains of analysis

can be built.

HBase provides special table-oriented map and reduce operations. Guess
what they’re called? TableMapper and TableReducer, of course! The
TableMapper provides a row object, making it easy to operate on tabular

data in MapReduce.

The downside to MapReduce for simple operations such as count, sum, and
average is that a lot of data is shunted around to the querying MapReduce
Java code. Ideally, you want these results to be calculated right next to the

data, in the HBase runtime itself.

Coprocessors

HBase 0.92 introduced a coprocessors feature,
which will allow HBase to eventually include
built-in features like complex filtering and
access control.

For now, though, you can implement pre-
calculation routines with coprocessors. Rather
than execute aggregate operations at query
time, coprocessors provide observer instances
that execute when data is read or saved. This
effectively allows pre-calculation of results
prior to querying. Think of them as akin to a
relational database’s triggers. A variety of
observation points are provided, including

v preGet, postGet: Called before and
after a Get request.

V» preExists, postExists: Called
before and after an existence check via a
Get request.

» prePut, postPut: Called before and
after saving client data.

v preDelete, postDelete: Called
before and after a client deletes values.

Once these aggregates are calculated, HBase
needs a way to allow clients to request their
values. Custom endpoints can be created
to provide this data. Endpoints can commu-
nicate with any Observer instance, which
allows endpoints to access pre-calculated
aggregates.

Endpoints can be thought of as the equivalent of
stored procedures from the relational database
world. They are similar to client-side code that
actually runs on the server and can be called by
a range of clients.

Endpoints and Observers can perform any
operation within HBase, so be sure you know
what your code is doing before you deploy
it! Coprocessors should provide a way to
extend the inner workings of HBase in the
future.
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Assessing HBase

HBase is the original and best-known Bigtable clone in the NoSQL space
today, and it’s tightly linked to Hadoop, which makes it an obvious NoSQL
database candidate for any organization with a large Hadoop deployment.

However, if you're thinking about using HBase, you need to consider several
points. For example, HBase is written in Java, so it isn’t as fast as a database
implemented in C++.

Moreover, HBase isn’t transactionally consistent, so it may not be suitable for
some mission-critical workloads as a primary master store of data. Also, the
fact that HBase requires HDFS storage is a barrier for organizations that don’t
use Hadoop, so HBase adds more complexity to an application architecture,
and requires extra knowledge to deploy it.

Not all of the issues from the relational database world have been solved

in Bigtables. In a Bigtable, your data is still in a table structure, requiring at
least some up-front schema design for fast operation, and it takes time to
design this schema and get it right; making data fit in to a table storage model
also forces you to write “plumbing” code to convert data when reading and
writing to the database.

For example, HBase must be taken completely offline in order to create a
new column family or new tables. This is a major barrier to ongoing agile
development.

No dedicated commercial entity backs HBase. Cloudera is the only
commercial company you could say offers extensive HBase support, but it’s
currently selling support for three NoSQL databases on top of its Hadoop
distribution. The three are Accumulo, MongoDB, and HBase. On its website,
Cloudera is positioning HBase as an entry-level database for Hadoop.

Be sure that HBase has all the features you need and that you can find the
right level of support and development expertise for your rollout. You'll likely
want more of this support in-house with HBase, and be sure to confirm your
designs up front during rounds of proof of concept testing.

Securing Vour Data

Once the excitement of getting data in and out of a system has passed — and
it passes rapidly — you want to turn your attention to protecting your data.
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One of the ways to protect it is to secure access to it based on specific user
roles or privileges — for data such as medical records, employee addresses,
and billing details.

Some industry standards require that you protect records. Credit card
handling, for example, requires that after the entire card number is entered,
only the last four digits are shown on screens that follow (the full card
number is hidden in the application).

Cell-level security

Traditional approaches to security require that an application’s code handles
security, including authenticating users, discovering their roles, and

ensuring that they access only the records they're supposed to. This has
been the case with relational database management systems for years. The
same is true for many Bigtable clones, too.

Where this model breaks down is in the accreditation of the database
itself, with the likes of the DoD and regulators, and in the lack of a built-in
permissions model.

Accreditation and certification for public groups such as defense and
sensitive government agencies provide assurance to both the organizations
and to the public that best practice with regards writing secure code has
been followed. If security is implemented at the application level, then the
application and database are accredited together as a single system. This
may not be a problem for some, but if you're trying to justify the creation of a
new application built on a secure database, having an accredited database is
useful for providing information security assurances to the business.

Building a security model into your own code is not an easy task. You first
have to build a set of security plug-ins that allow you to authenticate users
and look up their roles in one or more existing corporate systems. Then you
need a way to assign privileges for particular records to users. None of this is
easy to build, maintain, or protect against intrusion.

Take the following summary care record example with individual user access
in which I assume data is secured at the record level. This is an anti-pattern —
a pattern you should not apply on a real system. It is an anti-pattern because
it is incomplete, as [ will discuss next when we build a complete security
model for health data.

Patient: Name: Leo Fowler, Address: 12 Swansea, DoB: 06/March/2014
Permissions: Dr Dye: read+write
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A summary care record is the minimum personal healthcare information
required to provide emergency room care to a patient. In the UK National
Health Service (NHS) this summary care record is accessible through a
combination of surname, birth date, and first line of an address. It can be
accessed by any emergency medical worker.

Role based access control

There are clear benefits to using a system that comes with built-in authen-
tication, authorization, and support for role based access control (RBAC).
RBAC allows privileges to be assigned not to users, but to roles, for actions
on a particular record.

Using roles is easier to manage than individual user access — for example,
if someone moves from one department to another. All you do is update a
single user-role list in your corporate security system rather than all
permissions attached to a single user. Your RBAC-based database then
automatically reflects the new roles when the user next accesses it.
Listing 12-1 shows a summary care record with Roles attached.

Listing 12-1: Summary Care Record (SCR) Information and RBAC Read/
Write Privileges

Patient: Name: Leo Fowler, Address: 12 Swansea, DoB: 06/March/2014
Permissions: Doctor: read+write, Nurse: read

External Directory System
Role Nurse: Nurse Ratchett
Role Doctor: Dr Dye, Dr A Trainee

This shows that a user with at least one of the doctor or nurse roles can
read the summary care record. This is OR Boolean logic between roles, and
it’s the default RBAC mechanism used by most security systems.

The problem with such an approach is that any doctor can see the informa-
tion. The roles are too wide. You can further refine them to make them more
specific. As you see in Listing 12-2, now only the general practice surgery
doctors can see the information.

Listing 12-2:  SCR with RBAC Privileges for Two ER Doctors

Patient: Name: Leo Fowler, Address: 12 Swansea, DoB: 06/March/2014
Permissions: BrimingtonSurgeryDoctor: read+write

External Directory System
Role BrimingtonSurgeryDoctor: Dr Dye, Dr A Trainee

181
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Now you have the opposite problem — being too specific. Now only local
doctors have access. You want ER doctors to have access, too. You need a
way to define exactly who has access to the record.

Compartment security
Ideally, you want to use Boolean logic as shown in Listing 12-3.

This use of AND logic on roles is typically managed through named
compartments. In Listing 12-3, you have a job role compartment and a depart-
ment compartment.

Listing 12-3: Doctor AND EmergencyRoom: read

Patient: Name: Leo Fowler, Address: 12 Swansea, DoB: 06/March/2014
Permissions: EmergencyRoom AND Doctor: read
BrimingtonSurgery AND Doctor: read+write

External Directory System

Role EmergencyRoom: Dr Kerse, Dr Shelby, Dr Death

Role Doctor: Dr Dye, Dr A Trainee, Dr Kerse, Dr Shelby, Dr Death
Role BrimingtonSurgery: Dr Dye, Dr A Trainee

Forcing all role assignments to use AND logic is very restrictive, so systems
instead use this logic: If any assigned roles are within a compartment, then
ensure that the user has ALL compartment roles; otherwise, ensure that the
user has ANY of the non-compartmentalized assigned roles.

Table 12-1 shows the roles needed in this scenario when using compartment
security. Here Jane the Junior Doctor who works in the Children’s Ward is
trying to access (read) documents.

Table 12-1 Roles Required When Using Compartment Security

Record General Department Job Role Result
Roles Compartment Compartment
HR Policy Employee - - Read
allowed
Charlie Child's Employee - Doctor Read
Ward Notes allowed
Children's Ward Employee Children’s - Read
Procedures Ward allowed
John Doe’s SCR Employee Emergency Doctor Read

Room denied
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This role assignment works well. When any role assignment includes one
with a compartment, roles are required — restricting who can read the
records. Where multiple compartments are mentioned, AND logic is forced —
the user must have both roles to access the summary care record.

Cell-level security in Accumulo

There may be situations where you don’t have a summary record — just the
main patient record. In this situation, you want to provide a summary care
record filter. This filter prevents certain fields — rather than entire records —
from being viewed by an unauthorized user.

Accumulo includes an extra field as part of its key. Along with the row key,
column family, and column name, Accumulo includes a visibility key. This is a
Boolean expression that you can use to limit visibility to certain roles defined
within the system.

This invisible key is for read security only. It’s possible, unless security
settings are configured properly, for a user who cannot see a particular value
to overwrite it. Thus the lack of visibility doesn’t prevent a user overwriting a
value. To ensure this doesn’t happen, be sure to correctly define table
visibility settings as well as cell value visibility.

Assessing Accumulo

Accumulo was originally created by the U.S. National Security Agency, so the
security system is pretty flexible. Of course, you need to manage that
flexibility to ensure there aren’t any gaping holes.

In particular, you can use a variety of plug-ins to link Accumulo to existing or
custom authentication and authorization technologies. Having these plugins
built into the database layer simplifies a system’s design and makes the
overall architecture easier to accredit from a security standpoint.

Unless it has a good reason not to, the U.S. Department of Defense is
mandated to use Accumulo for Bigtable workloads — not for all NoSQL use
cases (such as document, triple store, or key-value), contrary to popular
belief — although the NSA has been required to contribute its security and
other enhancements to other open-source projects, including HBase and
Cassandra.

Accumulo can also use HDFS storage, like HBase can, which fits the bill when
HBase-like functionality is needed in a more security-conscious setting.
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Like HBase, though, there are no larger companies providing dedicated
support. Cloudera again provides support for Accumulo as a higher-end
alternative to HBase.

Cloudera provides HBase, Accumulo, and MongoDB for its Hadoop offerings.
Be sure that your local Cloudera team understands and has implemented
Accumulo in similar organizations in the past, and where it should be used,
rather than MongoDB and HBase. There are advantages and disadvantages to
each database.

High-Performing Bigtables

In many situations that require high performance, moving to a Bigtable
solution provides the desired result. There are always extremes, though.
Sometimes you need to squeeze every last ounce of performance out of a
potential implementation.

Perhaps this is to reduce the hardware required, perhaps you're cataloging
the stars in the universe, or perhaps you simply want to get the most for your
money. Whatever the reason, there are options to assess.

Using a native Bigtable

Java is a great language, but it’s simply not as fast as C++. HBase, Accumulo,
and Cassandra are all built as Java applications. Java is the defacto language
for enterprise systems, so its status isn’t surprising.

Using C++ and operating system-provided APIs directly allows you to access
lower-level, higher-performing services than the Java tier. Hypertable is a
Bigtable database written in C++ from the ground up, and it provides a high
performance Bigtable implementation.

Indexing data

You've already seen that Bigtable clones index keys like key-value stores and
treat values as binary data. In some situations, though, you do in fact have to
index the values themselves. Or perhaps you're just too familiar with
relational databases and want your typed columns back!
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Having a database that provides strong typing on column values gives you
the ability to index values and to perform other typed operations, such as
sums and averages.

Hypertable provides secondary indexing for values and the column name
qualifiers. These indexes allow exact match or “starts with” matches. The
indexes are implemented internally by Hypertable automatically creating a
table with the same name, but preceded by a caret * symbol.

This approach is more convenient than updating index values yourself, and
ensures that index updates are transactionally consistent with the data these
indexes link to, but this approach does have limitations. You're limited to
Just three operations:

v Checking a column exists
v Checking exact value matches

v Checking prefix (starts with) matches

You can’t do data-specific range queries like finding all orders with an item
with a quantity greater than five. This limitation is potentially a big one if you
need to perform substantial analytics over the data. Still, some indexing is
always better than no indexing!

Ensuring data consistency

For mission-critical applications, it’s vital to ensure that, once written, data
remains durable. If you're using a Bigtable as the primary store of mission-
critical and high-value business information, then you need an ACID compli-
ant database.

Ensuring that data is durable, that writes are applied in the correct order,
and that information is replicated in the same order that it was updated in
the source database cluster are just a few of the desirable features in such

a system. Also, such systems need to ensure that your database supports
strong consistency or is ACID-compliant. So, be sure to ask your vendor how
its database ensures the safety of your data. Specifically, ask if it’s fully ACID-
compliant.

Some vendors use the term “strong consistency” because their products
aren’t capable of providing ACID compliance. However, there’s a big differ-
ence between the two.



’ 86 Part llI: Bigtable Clones

Hypertable is an ACID-compliant database for atomic operations. The only
thing it lacks is the ability to group multiple atomic operations in a single
transaction. In this case, if you need to modify several rows, perhaps one in
a data table and another in an index table, then your update will not be ACID-
compliant — each update occurs in its own window.

Assessing Hypertable

Right out of the box, Hypertable provides richer value indexing than other
Bigtable clones do. Hypertable also supports HDFS as well as other file
systems, including locally attached storage. Local disk storage is attractive
when you want a Bigtable NoSQL database but don’t want to manage a large
Hadoop cluster.

In my experience, many NoSQL implementations actually consist of three

to five servers. In such an environment, a large HDFS array is overkill. Not
everyone uses NoSQL to manage gazillions of bytes of information. Often,
they want the schema flexibility, speed of deployment, and cost savings
associated with using commodity hardware rather than traditional relational
database management systems like Oracle and Microsoft SQL Server.

Hypertable allows access group definition. Access groups tell the database
to group column families from the same rows together on the same server.
Consider a summary page that needs information from two or three column
families. Configuring an access group on these families allows them to be
retrieved quickly from the database.

Column families in Hypertable are optional, so you can ignore family names,
as you can in Cassandra. Or, when they're required, you can use them like
you can in HBase. Better still, you can mix and match approaches in the same
table definition!

I really like the approach Hypertable has taken. It provides a pragmatic set of
features that application programmers want in databases, without sticking to
the dogma that “values are just binary objects.”

One of my favorite features is adaptive memory allocation:

+* When Hypertable detects a heavy write load, more RAM is used as an
in-memory region. This speeds up reads because many are written to
RAM rather than to disk.

v When a significant amount of reads is detected, Hypertable automati-
cally switches to using RAM so that more RAM is used as a read cache,
which, again, minimizes disk access for reads.
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Hypertable isn’t as widely used as HBase, Accumulo, or Cassandra, though.
If you want the features of Hypertable, be sure you can find local expert
support and developers who are experienced with Bigtable clones like
Hypertable.

[ have a couple of concerns about Hypertable:

1 Region servers in Hypertable are highly available, with the Hypertable
master reallocating regions to another server when one goes down.
However, the master service isn’t highly available; it only has a standby.

This is similar to a disaster recovery approach, which means that it’s
possible for a master to go down, followed promptly by a region server
that isn’t replaced for a few seconds. This window of time is short, but
one you need be aware of, and prior to going live with the application,
you need to test failover. Data could become inaccessible if both the
master and the region server are on the same rack in a data center, and
the network fails on that rack.

v Hypertable is available under the more restrictive GPL version 3 license.
Although an open-source license, the GPL prevents Hypertable from
being embedded within a commercial product. If you want to create
“black box” software that embeds Hypertable and sell it, you must
obtain a commercial license from Hypertable, Inc.

The GPL is potentially restrictive. If you are a software development firm
with Hypertable experts, then you may not want or need to pay for
commercial support.

The GPL licensing issue is likely to affect only a few use cases, mainly
OEM partners. This licensing doesn’t stop organizations from building
and selling access to services that use Hypertable for storage.

Distributing Data Globally

If, like me, you have a vast collection of data spread over the world then you
would appreciate features in your database to perform this data distribution
for you, rather than having to code it in your application yourself. Writing
this code for several database clusters creates a lot of manual work.

In my case, | use replication for my enormous collection of food recipes, but
the need for replication can also happen in a variety of other situations:

v Financial transactions being done in several countries at the same
time — London, New York and Singapore, for example
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Figure 12-4:
Traditional
key-value
store versus
using a
Bigtable as
a key-value
store.
|

v International shop orders being placed in more local warehouses

v A globally distributed social network or email service with local servers,
but with globally shared contacts

Substituting a key-value store

Bigtable clones can be thought of as a specific subclass of key-value stores.
You can quite happily run key-value workloads on a Bigtable clone, too. If you
already have a Bigtable, then you may well want to consider doing so.

If you need blazing fast writes — in the order of 100,000 writes per second
or more — then a key-value store performs more quickly. In most situations,
though, you probably have lighter loads, and if this is the case and you
need Bigtable features only occasionally, then Cassandra may be for you.
Cassandra prides itself on having features of both Bigtable and key-value
stores, and takes its inspiration from both Amazon’s Dynamo and Google’s
Bigtable papers. Figure 12-4 shows the differences between the two models.

In a key-value store, you have to design your key carefully in order to ensure
evenly distributed data in a cluster and that lookups are fast. Bigtables have
these key hierarchies built in with its concept of column families and column
names.

Consider that you're using a key-value store to hold data pulled from a web-
site for later search indexing. You may want to store and retrieve data by the
website domain, page URL, and the timestamp you stored it.

In a key-value store, you can design a key like this:

Key: AB28C4F2-com.wiley.www-/index.html

Key-value store

Key Timestamp Value

Bigtable clone

Row Key Column Family Column Name Timestamp Value
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This uses a GUID or similar random string as the first part of the key to
ensure that, during ingest, the data is distributed across a cluster. This key
also uses a timestamp qualifier for the time the page was indexed.

Whereas, in a Bigtable, you could use the column family and name fields, too:
Key: AB28C4F2 Column Family: com.wiley.www Name: /index.html

This key allows you to be more flexible when querying, because you can
easily pull back all web pages for a domain or a specific page in a domain,
which you can do quickly because a query is based only on the exact value of
a key. This approach eliminates you having to trawl all keys for lexicographic
(partial string) matches.

Cassandra doesn’t support column family names. Instead, you merge the
preceding column family and page name or use two columns (the domain
with a blank value). Cassandra does, however, allow you to specify an index
of keys across values. So, in the preceding example, you could set up an
index over key, domain, and page name.

[ can ensure that entire domain content lookups are quick because the first
key is the partition key in Cassandra, which keeps all data together for all
pages in the same domain.

Inserting data fast

Cassandra manages its own storage, rather than farm it off to HDFS, like
HBase does. As a result Cassandra offers some advantages, with the first
being that it can manage and throttle compactions. A compaction, also called
a merge, occurs every so often as Cassandra appends data to its database
files and marks data for deletion. This deleted data builds up over time,
requiring compaction. The benefit is higher ingest rates. Another advantage
is that Cassandra doesn’t need to go over the network to access data storage.

With Cassandra, you also have the advantage of using local SSDs, perhaps
by writing the journal to an SSD and writing data to RAM and flushing it to a
spinning disk later. This, too, aids the speed of ingestion.

You can also run Cassandra with both spinning disk HDDs and SSD disks for
the same database. Perhaps some data is read more often and other data
less often. This differently accessed data may even be columns on the same
record. Storing these individual often-read columns on SSDs and the rest on a
spinning disk boosts speed, without you having to replace every disk with an
expensive SSD.
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Replicating data globally

Cassandra is unique in allowing a cluster to be defined across geographic
boundaries and providing tolerance of network partitions to ensure data is
available worldwide when needed.

A Cassandra ring is a list of servers across server racks and data centers.
You can configure Cassandra so that a replica is on the same rack, another
on a different rack (in case that rack’s network goes down), and maybe even
another two copies in other data centers.

This enables maximum replication and ensures that data can always be
accessed. However, note that all these replicated copies — whether in the
same data center or another one — are replicated synchronously. This
means it’s possible for the replicas to disagree on the current value of a data
item.

Consistency is guaranteed by configuring the client driver accessing
Cassandra. By using a setting of ONE, you indicate you don’t care about
consistency; you're happy with any copy.

By using a setting of LOCAL_QUARUM, you’re saying you want the value
agreed on and returned by, for example, two out of three servers within just
the local cluster. Specifying ALL requires that all servers in the cluster that
contain a copy of that value are in agreement.

There are a variety of other settings to consider. A full list of the consistency
settings their meaning can be found on the Apache Cassandra website:
http://cassandra.apache.org

Assessing Cassandra

Cassandra allows partitioning and writing data when its primary master

is unavailable. It’s, therefore, not an ACID-compliant database, so in some
cases, the data will be inconsistent or replicas will disagree on the correct
value.

You need to be aware of this issue when building an application on
Cassandra. A read repair feature is available to help with this issue, but when
you use it, there’s a potential ten-percent loss in performance. However, this
may well be a good tradeoff for your purposes.

Global master-master replication is a great feature to have, but given that it
can be used asynchronously, it doesn’t provide a true “always consistent”
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master-master replication that you may be familiar with in the relational
database world. Ensuring that the client uses full consistency leads to slower
usage times.

Cassandra also doesn’t support column families. This gives it a data model
somewhere in between a key-value store and a Bigtable. This may or may not
be an issue in your applications.

Cassandra’s CQL query language will be familiar to most people who are
familiar with the relational database and SQL world, which helps lower
barriers to entry for existing database developers.

Cassandra does manage local storage very well. SSDs are recommended for
at least part of the data managed. Using local SSD storage will always provide
faster storage and retrieval in comparison to delegating file system
management to a separate tier like HDFS.

Also, with no single points of failure anywhere in the architecture, Cassandra
is easy to install and maintain, and it’s capable of being very fast.

In Chapter 13, I discuss Apache Cassandra and the commercial company
DataStax that provides support for Cassandra.
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Chapter 13
Cassandra and DataStax

In This Chapter
Creating high-speed key access to data
Supporting Cassandra development

‘ assandra is the leading NoSQL Bigtable clone. Its popularity is based

on its speed and SQL-like query language for relational database type
people, and the fact it takes the best technological advances from the
Dynamo and Bigtable papers.

DataStax is the primary commercial company offering support and Enterprise
extensions for the Cassandra open-source Bigtable clone. DataStax is one

of the largest NoSQL companies in the world, having received more than

$106 million in investor funding in September 2014, and $84 million during
mid-2013.

In this chapter, I discuss both the Cassandra Bigtable NoSQL database and
the support that can be found from DataStax, its commercial backer.

Designing a Modern Bigtable

The Cassandra design team took the best bits from Amazon’s Dynamo paper
on key-value store design and Google’s Bigtable paper on wide column store
(also called extensible record store) design.

Cassandra, therefore, provides high-speed key access to data while also
providing flexible columns and a schema-free, join-free, wide column store.
Developers who have used the Structured Query Language (SQL) in relational
database management systems should find the Cassandra Query Language
(CQL) familiar.
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Clustering

The ability for a single ring (a Cassandra cluster) of Cassandra servers to be
spread across servers, racks of servers, and geographically dispersed data-
centers is a unique characteristic of Cassandra. Cassandra manages eventu-
ally consistent, asynchronous replicas of data automatically across each of
these types of boundaries. Different datacenters can even differ in the number
of replicas for each data set, which is useful for different scales at each site.

This treatment of every server holding the same data as a single dispersed
cluster, rather than independent but connected sets of clusters, takes a bit of
getting used to. It’s unique to the databases in this book.

Scaling a cluster out to add one-third more capacity may require some
thought, because you need to consider its position in the ring and how
adding capacity may affect the automatically managed replicas.

You configure your physical Cassandra architecture by using a Gossiping
Property File Snitch, which has nothing to do with Harry Potter’s Quidditch,
unfortunately. This is a configuration file that defines what servers are in
which racks and datacenters. This configuration mechanism is recommended
because it allows Cassandra to make the best use of the available physical
infrastructure.

Tuning consistency

Data consistency in Cassandra is tunable, that is, it doesn’t need to always
be eventually consistent across all replicas. The settings used are up to the
client API, though, and not the server.

By writing data using the ALL setting, you can be sure that all replicas will
have the same value of the data being saved. For mission-critical financial
systems, for example, this is the approach to take.

If you use the ALL setting for write consistency, be aware that a network
partition anywhere in your global cluster will cause the whole system to be
unavailable for writes!

Other settings are available — 11, in fact, for writes. These settings range
from ALL to ANY. ANY means that data will try to write to any of the replicas.
If no replicas for that key are online, Cassandra will use hinted-handoff, which
is to say that it will save the write on a node adjacent to a replica node that
is currently unavailable. This provides the highest service availability for the
lowest consistency guarantees.
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This flexibility is great if you need a single Bigtable implementation that
provides a range of consistency and availability guarantees for different
applications. You can use the same technology for all of these applications,
rather than having to resort to a different database for only a small number
of use cases.

Similarly, ten different read-consistency settings are available in the client
API These settings mirror the write levels, with the missing setting being
ANY, because ONE means the same thing as ANY for a read operation.

Analyzing data

Cassandra provides a great foundation for high-speed analytics based on
near-live data. This is how DataStax produced an entire integrated analytics
platform as an extension to Cassandra.

Datastax’s analytics extension enables rapid analysis in several situations,
including detection of fraud, monitoring of social media and communications
services, and analysis of advertisement campaigns, all running in real time
next to the data.

Batch analytics is also supported by integrating Hadoop Map/Reduce with
Cassandra. Cassandra uses its own local file system. DataStax provides a CFS
alternative to HDFS to work around the historic single points of failure in the
Hadoop ecosystem. This file system is compatible with Hadoop, and is acces-
sible directly by other Hadoop applications.

CFS is a Java subclass of the HadoopFileSystem class, providing the same low-
level interface, making it interchangeable with HDFS for Hadoop applications.

Searching data

With Cassandra, you can create indexes for values, which are implemented
as an internal table in Cassandra. In this way, you don’t have to maintain
your own manually created index tables.

A default Cassandra index will not help you in several situations:

+* Typed range queries or partial matches: Indexes are only for exact
matches.

v Unique Values: Where each unique value isn’t used more than once —
results in a very large read scan of the index, hitting query performance
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1 A frequently updated column: Cassandra has a limit of 100,000 time-
stamped versions of each record, so more than this number of updates
causes the index to fail.

v For queries across an entire partition: This requires communica-
tion with every server holding data. It’s best to limit data queried with
another field (for example, record owner ID).

For more complex situations, DataStax offers an enhanced search capability
based on Apache Solr. Unlike other NoSQL vendors’ implementations of Solr,
though, DataStax has overcome several general issues:

v Search indexes are updated in real time, rather than asynchronously like
most Solr integrations are.

v Data is protected. Lucene indexes (the underlying index layer of Solr)
can become corrupted. DataStax uses Cassandra under Solr to store
information, ensuring this doesn’t happen.

v Availability and scaling built in. Add a new Cassandra node, and you
have a new Solr node. There’s no need for a separate search engine
cluster with different storage requirements.

Solr provides hit highlighting, faceted search, range queries, and geospatial
search support. Part VI covers these features.

Securing Cassandra

DataStax Enterprise offers a range of security features for Cassandra. All
data communications are encrypted over SSL, be they internal gossip data or
international replication between servers.

Client-to-node encryption is also supported, along with Kerberos authentica-
tion communications and internally stored authentication information.

Particularly impressive is the built-in support for encryption of data at rest.
This feature has its limitations, though. The commit logs, for example, are not
encrypted; operating system-level encryption is required for this.

More seriously, the certificates used for encryption of data within the SSTable
structures are stored on the same file system rather than a security device.
Practically speaking, this means access to the underlying file system needs to
be secured anyway. In extreme scenarios, operating system-level or disk-level
management may be a better choice for encryption at rest.
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Finding Support for Cassandra

DataStax is the commercial entity providing Cassandra and big data support,
services, and extensions. It is a worldwide company with 350 employees
(a 100-percent increase from a year ago) spread across 50 countries.

DataStax’s leading product is DataStax Enterprise (DSE). DSE combines
a Hadoop distribution with Cassandra and additional tools to provide
analytics, search, monitoring, and backup.

Managing and monitoring Cassandra

The DataStax OpsCenter is a monitoring tool for Cassandra. It’s available in a
commercial version and also as a limited free version. This provides a visual
dashboard for the health and status of not only Cassandra but also the ana-
lytics and search extensions, too.

If you're adding new nodes to a cluster, DataStax OpsCenter gives you the
ability to set up automated handling of cluster rebalancing. This capability
greatly reduces the burden on database administrators.

Also, configurable alerts and notifications can be sent, based on a range
of activities in the cluster. OpsCenter allows alerts to be fired based on,
for example, when the CPU usage or data storage size on a particular node
breaches a defined performance target. This alerting helps to proactively
avoid cluster problems, which can degrade the overall service.

OpsCenter also supports planning for capacity through historical analysis.
Historical statistics help predict when new nodes will need to be added. This
analysis, too, is configurable visually, with live updates on the state of pro-
cessing once the cluster is activated.

OpsCenter also has its own API, which allows monitoring information to
be plugged into other tools. A good example is a private (internal) cloud-
management environment.

Active-active clustering

Most NoSQL databases in this book are either completely commercial or
have Enterprise features only in their paid-for, Enterprise version. Cassandra
is different. With Cassandra, the base version can do master-master
clustering across datacenters.
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Actually, it’s not so much master-master clustering as it is global data repli-
cation, which enables data to be replicated, asynchronously, to datacenters
spread throughout the world.

The flip side to a single-cluster, worldwide spread is that a “split brain syn-
drome” (also called a network partition) can develop when networks go down.
This situation requires repairing a replica server’s data when the network
comes back up. Cassandra supports a read-repair mechanism to alleviate this
problem, but data can become inconsistent if a split brain syndrome goes on
too long.
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Chapter 14

Common Features of
Document Databases

In This Chapter
Expanding tree structures
Emulating key-value stores

Creating partial updates

hierarchical structure of data that can contain substructures. This is
a more general term than being, for example, like Microsoft Word documents
or web pages, although they are certainly two types of documents that can
be managed in a document-oriented NoSQL database.

men talking about document databases, the word document refers to a

Documents can consist of only binary data or plain text. They can be semi-
structured when self-describing data formats like JavaScript Object Notation
(JSON) or Extensible Markup Language (XML) are used. They can even be
well-structured documents and always conform to a particular data model,
such as an XML Schema Definition (XSD).

Document NoSQL databases are flexible and schema agnostic, which means
you can load any type of document without the database needing to know
the document’s structure up front.

Document databases have many uses and share common features, which I
explain in the chapter. As you read this chapter, you may be surprised to find
out that a document NoSQL database will meet your needs over the other
types of NoSQL database mentioned in this book.
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Using a Tree-Based Data Model

Figure 14-1:
Example
structure

of an order
tableina
Bigtable
clone.
|

In Chapter 9, I explain that Bigtable databases require at least some informa-
tion about the data schema — at a minimum, the table name and column
families, although the columns can be variable.

In a document NoSQL database, you can load any type of data without the
database having prior knowledge of the data’s structure or what the values
mean. This flexibility makes these databases great both for prototyping a
solution in an “agile” development process and for permitting changes in the
stored data after a system goes live. No need for a complex schema redesign
within the database for every little change. This isn’t the case in traditional
relational database management systems (RDBMS).

Bigtable clones allow you to manage sets of data sets; that is, when a Bigtable
clone is given a row key, it returns a set of column families. When a Bigtable
receives a row key and a column family qualifier, it returns a set of columns,
each with a cell value (some with multiple cell values at different timestamps).

Bigtable clones effectively give you three levels of sets: row, family, and
column, which can be represented in a tree model. Figure 14-1 shows an
example of the online ordering application mentioned in Chapters 7 and 8
structured for a Bigtable clone.

Order Table
4 P \\
Family: Customer Family: ltems Family: Delivery
. Notes
FirstName Surname Item-4 Item-9 -
RowKey Adam Fowler 2 1 Lﬁg}/ehmt:]
127698 g
MemberlD Status Item-43 ETA
931642 Premi 6 2014-12-23
remier 09:00
N \ % J
4 N\
Family: Customer Family: Items Family: Delivery
FirstName Surname Item-72
ROWKey Joe Bloggs 2
895482
ETA
Item-32 2015-01-03
1 14:00
N\ /
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What if you want to go down another level? Or another still? This is where a
document database comes in, by providing the flexibility you need. Listing
14-1 is an example of an order document with enhanced information and
ample flexibility.

Listing 14-1: Order XML Document

<order id="1234">
<customer id="52”>Adam Fowler</customers>
<items>
<item gty="2" 1d="456" unit price="2.00" price="4.00”>Hammer</item>
<item gty="1" 1d="111" unit price="0.79" price="0.79”>Hammer Time</item>
</items>
<delivery address lon="-43.24" lat="54.12">
<street>Some Place</street>
<town>My City</town>

</delivery address>
</order>

Of course, you are free to use a less hierarchical, flatter, structure. Listing
14-2 shows a log file management as a tree structure.

Listing 14-2: A mock Log File in a JSON tree structure
{

“source”: {
“host”: “192.168.1.3", “process”: “tomcat”, “format”: “tomcat-error-log”
}. “entry”: {
“timestamp”: “2014-09-04T10:00:43z2", “level”: “error”,
“summary”: “Null Pointer Exception at com.package.MyClass:110:2",
“trace”: [
“com.package.MyClass:110:2",
“com.package.OtherClass:45:7",
“com.sun.util.HashtableImpl”

In this case, a stack trace error report can be a tree structure. You could, for
example, dump information about every live executing process into a file,
rather than just the section of code that reported the error. This approach is
particularly useful for parallel debugging.
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In a Bigtable clone, your application must manage converting the preced-
ing hierarchical document structure to and from a tree structure, whereas a
document database can manage it natively.

Storage of document data without “shredding” data across a set of tables is
potentially useful if you want to query for a count of error reports to see
which applications caused the most errors in a particular code module.
Doing so requires a batch analysis job in a Bigtable — but a simple aggrega-
tion query in a document database with element indexing enabled.

Handling article documents

Tree structures vary greatly. A semi-structured format like XHTML (the format
used by web pages) has, as its name implies, some structure, but you can
model the individual paragraphs, headings, and sections in a variety of ways.

A common practice in document databases is to index a property, or an ele-
ment, no matter where it occurs within a document. For example, you could
index all h1 (main headings) and h2 (subheadings) elements regardless of
where they occur. Both MarkLogic Server and Microsoft DocumentDB allow
this style of indexing.

Document databases are great at providing consistent query over these
variable structures. There are many real-life examples of querying over
document structures:

v~ Stack traces in log files may have a class name field at varying depths in
a tree structure.

v A patient’s medical records may mention a drug or condition anywhere
in the text notes field.

Managing trades in financial services

One of the most common document formats in the commercial industry is
the Financial products Markup Language (FpML). FpML documents are a
particular XML schema structure. They're used for trading in long-running
financial derivatives.
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There are a couple of reasons that FpML need an XML oriented document
database rather than a JSON oriented one, or need to be stored in a relational
database:

v JSON doesn’t work for storing FpML documents because it doesn’t sup-
port namespaces, and FpML documents always include elements using
the standard FpML namespace and a bank’s own internal information in
another element namespace — both in the same document.

v XML Schema Definitions (XSDs) can have parent-child inheritance. A
“place,” for example, could be a parent class of a “town” or “bridge,”
with the document mentioning the elements “town” or “bridge,” but not
“place.” This information isn’t available for JSON structures, so you can’t
infer inheritance in a JSON model.

JSON documents are the lingua franca of web applications, though. Having a
document NoSQL database that supports JSON documents natively, perhaps
alongside other formats like XML or plain text, is useful. Don’t discount XML
given the number of enterprise systems that use it as a native format.

Discovering document structure

Document databases tend to store documents in a compressed on-disk
format. In order to do so, the databases need to understand the format of
the documents they receive. When you submit JSON or XML documents, for
example, a database uses that structure to better manage the data on disk.

Here is an example of a JSON document that represents an online order:

{ _id: 1234, customer: 52, customer name: “Adam Fowler”, items: [

{aty: 2, item: {id: 456, title: “Hammer”, unit price: 2.00}, price: 4.00},
{gty: 1, item: {id: 111, title: “Hammer Time”, unit price: 0.79}, price: 0.79}
, delivery address: {street: “some place”, town: “My City”, .. }

]
J

MongoDB stores documents in its own BSON binary representation, which
is useful because JSON, like that in the preceding JSON example, has a lot
of text in property names. You can save space by compressing or manag-
ing these property names as simple numeric identifiers, rather than as
long strings.

MarkLogic Server takes a similar approach with XML documents — that is, it
stores a compressed representation. All elements and attributes are treated
as a term. Each term is assigned a unique ID. This allows MarkLogic to use its
own binary tree structure, which saves space when storing XML documents
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versus storing them as long strings. Listing 14-3 shows an XML representa-
tion of the same online order document.

Listing 14-3 An XML Document

<order id="1234">
<customer id="52”>Adam Fowler</customers>
<items>
<item gty="2" 1d="456" unit price="2.00" price="4.00”>Hammer</item>
<item gty="1" id="111" unit price="0.79" price="0.79”>Hammer Time</item>
</items>
<delivery address>
<street>Some Place</street>
<town>My City</town>

</delivery address>
</order>

Saving space is more important for XML than it is for JSON because XML has
closing and starting tags, as you can see in delivery address in the above
XML document.

Rather than simply compress data on disk, MarkLogic Server uses these term
ids within its search indexes, which are built automatically when a document
is written to MarkLogic Server. MarkLogic Server’s universal index indexes all
structures: elements and attributes, parent and child element relationships,
and exact element values.

The universal index indexes everything it finds. This speeds up querying for
documents where an element has a particular value, without you having to
add specific indexes or instructing the database about the document struc-
ture in advance. The universal index also indexes text (words, phrases, and
stems). You can find more on MarkLogic’s universal index in Part VII.

Microsoft’s DocumentDB is a JSON document NoSQL database that also
includes a universal index, but only for JSON documents.

Supporting unstructured documents

Fully unstructured information is actually rare. It’s more typical to use a
container format like JSON or XML and to store large quantities of plain text
in particular properties and elements.
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There are situations, though, when you receive a lot of text or binary data
(think about the average My Documents folder). Here are a couple of ways
to manage groups of documents collected from such a hierarchical storage
device:

v Collections of files may contain a combination of
e Structured files (such as CSV expense information)
¢ Semi-structured files (such as XML and saved HTML web pages)

¢ Unstructured files (such as JPEG images, movies, MP3s, word
documents, PDFs, and plain text files)

v In reality, unstructured formats are actually semi-structured; it’s just
that you don’t normally instruct your database to understand them.
However, you may be missing some useful information that you might
want to extract and search. For example, JPEG images may contain
metadata about

e The camera that took the images
* The prevailing conditions when the image was shot
e The GPS coordinates and elevation where the image was taken

v Some databases come with built-in support for extracting this metadata
and plain text from binary files. This is great for indexing the plain text
for search or to provide for more-structured management of the files’
metadata.

v MarkLogic Server, for example, includes support for more than 200
binary formats through its use of binary data extraction libraries. These
provide an XHTML output, using meta tags for metadata and the body
tag for text content. You can integrate other solutions with other docu-
ment databases to allow automatic extraction of information on ingest.

v Many document databases support the concept of a URI path as a pri-
mary key, or a unique document ID. Think of this path as being a file
system path with an innate hierarchy. Some document databases allow
you to list the documents stored under a particular, partial URL. In this
way, you can represent a file system in a document database. Some
NoSQL databases consider the unique ID as external to the document
(MarkLogic), whereas others (MongoDB and Microsoft DocumentDB)
use a special id property within the document.
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Document Databases as
Key-Ualue Stores

A\

Document databases make great key-value stores. You can use a document
URI path to represent a composite key like those in a key-value store. You
can use document properties/elements, or metadata fields, to control how
the database partitions data.

Document databases also provide a deeper level of data management func-
tionality. This comes at the cost of processing time, which is why key-value
stores are used for some JSON document storage use cases — where fast stor-
age and retrieval is more important than advanced management functionality.

Modeling values as documents

Values can be binary information stored as a document. In many uses of a
key-value store, though, values are JSON or XML structures. If you want to do
advanced processing or indexing of values in a JSON or XML document, then
a document database may be a better option.

Document databases provide in-memory read caches, with some (MongoDB)
even providing read-only replicas to allow greater parallel reads of the same
data. If you have data that’s read often, then a document database may
provide speedy access to documents that’s equivalent to key-value stores’
access speed.

Automatic caching of parts of the database is particularly useful if all your
data can’t fit in the memory of a key-value store, such as Redis.

Using value information

Once the elements/attributes (XML) or properties (JSON) — which I call
elements from now on to distinguish them from a document’s metadata — are
indexed, you can perform data queries and aggregation processes over them.

Document databases like MarkLogic Server and Microsoft DocumentDB
provide range queries for their typed indexes. This means that, rather than
being limited to “element equals X,” you can say “element is less than X” or
“between X and Y inclusive.”
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Both MarkLogic Server and Microsoft DocumentDB provide user-defined
functions (UDFs). These are server-side functions that take the set of docu-
ments matching a query and perform aggregation calculations on them.

These aggregations can be a mean average, a standard deviation, or any
other scalar output you devise. These operations are very fast, too, typically
operating on the indexes rather than opening each document. This operation
contrasts to the Hadoop or internal map/reduce mechanisms of other docu-
ment databases and key-value stores, which must load the data from disk to
perform these calculations.

You can also use these range indexes for fast sorting and filtering operations
on result sets. They are immensely useful and allow for more advanced func-
tionality. MarkLogic Server, for example, uses range indexes as the basis for
2D geospatial search.

Patching Documents

In some applications, rather than update and replace a whole document, you
may want to change part of it, or a single value. A read, modify, update (RMU)
operation on the entire content of a document is quite expensive in terms

of processing time, and in many NoSQL databases isn’t ACID — meaning
another operation could update the document between your application’s
read and update steps!

Supporting partial updates

A partial update is one where you are updating just one of two values in a
document, rather than replacing the whole thing. Perhaps there is a field that
holds the number of times a document has been read, or the current product
quantity in a warehouse.

Examples of partial updates may be as simple as replacing one element,
which is similar to how a RBMS works. Consider the following query:

UPDATE Pages SET view_count = view_count + 1 WHERE id = “Page2”

If the record is modeled as a document, then a similar patch operation in
MarkLogic Server might look like this:

<rapi:patch xmlns:rapi="http://marklogic.com/rest-api">
<rapi:replace select="/view count" apply="ml.add">1l</rapi:replace>
</rapi:patch>
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Or the equivalent in JSON might look like this:

{"patch": [
{"replace":
"select": "$.view_count",
"apply": "ml.add",
"content": 1

.
1)

Document NoSQL databases could be enhanced to implement this functional-
ity in their REST API layer rather than within the database. This implementa-
tion would do an internal read, modify, update operation within a transaction,
which could lead to a disk I/O penalty similar to an insert of the full document.
You want to ensure that these multiple requests per update won’t impact your
application’s performance by performing application load testing at the same
level of concurrent requests as the peak period will be in your future produc-
tion application.

Patching operations can also include appending elements to a parent element
within a tree structure. Consider a shopping cart document where a user on
a website adds an item to his cart. This could be an append operation at the
end of an orderItems element using a document patch.

Streaming changes

The append operation enables you to handle a range of streaming cases
efficiently. This operation will identify where in a document new data needs
adding, and insert the data. This prevents performance impacts caused by
the alternative read-modify-update approach.

For applications that require live information streaming with nearly real-time
analysis by an application or human expert, supporting append operations is
a potentially game-changing feature.

Consider a video recording that is being analyzed on the fly. Image that
you're receiving a video stream from a remotely controlled hexacopter. Along
with the video, you're receiving a metadata stream that includes the altitude,
position, viewing angle (multiple axes), and the camera’s zoom level. You can
index this metadata stream by time and append it to a video metadata docu-
ment’s metastream element. For very long videos, to load the whole docu-
ment and store it temporarily in your system’s memory for an update may
use up too much RAM — you must load, modify, and then update the whole
document’s content.
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Instead of a very RAM costly read-modify-update cycle, you can stream

the changes into the document using an append operation. Moreover, the
document is visible to queries in the system while it’s being streamed in live,
rather than having to wait until the entire stream activity is complete before
being made available for query.

Providing alternate structures in real time

NoSQL databases don’t use joins to other documents like relational data-
bases do, although some (MarkLogic Server, OrientDB) do allow building of a
merged view at the time a document is read.

Instead, an approach called denormalization is used. Denormalization
duplicates some information at ingestion time in order to provide access
to high-speed reads and queries. Duplication of data is done so that the
database doesn’t have to process joins at query time.

You may want to quickly produce alternative or merged views as new data
arrives in the database. Doings so requires you to use a database trigger to
spot the new document and to generate the one or more structures you need.

Relational database management systems provide a similar concept called
views. You can construct these on the fly or prebuild them. Prebuilt views are
called materialized views. These views trade the use of extra disk space for
the ability to save memory and processing power at query time. They are, in
practical terms, equivalent to adding extra denormalized documents in a
NoSQL document da