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Preface
Big	data	has	become	a	popular	buzzword	across	many	industries.	An	increasing	number	of
people	have	been	exposed	to	the	term	and	are	looking	at	how	to	leverage	big	data	in	their
own	businesses,	to	improve	sales	and	profitability.	However,	collecting,	aggregating,	and
visualizing	data	is	just	one	part	of	the	equation.	Being	able	to	extract	useful	information
from	data	is	another	task,	and	much	more	challenging.

Traditionally,	most	researchers	perform	statistical	analysis	using	historical	samples	of
data.	The	main	downside	of	this	process	is	that	conclusions	drawn	from	statistical	analysis
are	limited.	In	fact,	researchers	usually	struggle	to	uncover	hidden	patterns	and	unknown
correlations	from	target	data.	Aside	from	applying	statistical	analysis,	machine	learning
has	emerged	as	an	alternative.	This	process	yields	a	more	accurate	predictive	model	with
the	data	inserted	into	a	learning	algorithm.	Through	machine	learning,	the	analysis	of
business	operations	and	processes	is	not	limited	to	human-scale	thinking.	Machine-scale
analysis	enables	businesses	to	discover	hidden	values	in	big	data.

The	most	widely	used	tool	for	machine	learning	and	data	analysis	is	the	R	language.	In
addition	to	being	the	most	popular	language	used	by	data	scientists,	R	is	open	source	and
is	free	for	use	for	all	users.	The	R	programming	language	offers	a	variety	of	learning
packages	and	visualization	functions,	which	enable	users	to	analyze	data	on	the	fly.	Any
user	can	easily	perform	machine	learning	with	R	on	their	dataset	without	knowing	every
detail	of	the	mathematical	models	behind	the	analysis.

Machine	Learning	with	R	Cookbook	takes	a	practical	approach	to	teaching	you	how	to
perform	machine	learning	with	R.	Each	of	the	12	chapters	are	introduced	to	you	by
dividing	this	topic	into	several	simple	recipes.	Through	the	step-by-step	instructions
provided	in	each	recipe,	the	reader	can	construct	a	predictive	model	by	using	a	variety	of
machine	learning	packages.

In	this	book,	readers	are	first	directed	how	to	set	up	the	R	environment	and	use	simple	R
commands	to	explore	data.	The	next	topic	covers	how	to	perform	statistical	analysis	with
machine	learning	analysis	and	assessing	created	models,	which	are	covered	in	detail	later
on	in	the	book.	There	is	also	content	on	learning	how	to	integrate	R	and	Hadoop	to	create
a	big	data	analysis	platform.	The	detailed	illustrations	provide	all	the	information	required
to	start	applying	machine	learning	to	individual	projects.

With	Machine	Learning	with	R	Cookbook,	users	will	feel	that	machine	learning	has	never
been	easier.



What	this	book	covers
Chapter	1,	Practical	Machine	Learning	with	R,	describes	how	to	create	a	ready-to-use	R
environment.	Furthermore,	we	cover	all	the	basic	R	operations,	from	reading	data	into	R,
manipulating	data,	and	performing	simple	statistics,	to	visualizing	data.

Chapter	2,	Data	Exploration	with	RMS	Titanic,	provides	you	an	opportunity	to	perform
exploratory	analysis	in	R.	In	this	chapter,	we	walk	you	through	the	process	of
transforming,	analyzing,	and	visualizing	the	RMS	Titanic	data.	We	conclude	by	creating	a
prediction	model	to	identify	the	possible	survivors	of	the	Titanic	tragedy.

Chapter	3,	R	and	Statistics,	begins	with	an	emphasis	on	data	sampling	and	probability
distribution.	Subsequently,	the	chapter	demonstrates	how	to	perform	descriptive	statistics
and	inferential	statistics	on	data.

Chapter	4,	Understanding	Regression	Analysis,	analyzes	the	linear	relationship	between	a
dependent	(response)	variable	and	one	or	more	independent	(predictor)	sets	of	explanatory
variables.	You	will	learn	how	to	use	different	regression	models	to	make	sense	of	numeric
relationships,	and	further	apply	a	fitted	model	to	data	for	continuous	value	prediction.

Chapter	5,	Classification	(I)	–	Tree,	Lazy,	Probabilistic,	teaches	you	how	to	fit	data	into	a
tree-based	classifier,	k-nearest	neighbor	classifier,	logistic	regression	classifier,	or	the
Naïve	Bayes	classifier.	In	order	to	understand	how	classification	works,	we	provide	an
example	with	the	purpose	of	identifying	possible	customer	churns	from	a	telecom	dataset.

Chapter	6,	Classification	(II)	–	Neural	Network,	SVM,	introduces	two	complex	but
powerful	classification	methods:	neural	networks	and	support	vector	machines.	Despite
the	complex	nature	of	these	methods,	this	chapter	shows	how	easy	it	is	to	make	an
accurate	prediction	using	these	algorithms	in	R.

Chapter	7,	Model	Evaluation,	reveals	some	measurements	that	you	can	use	to	evaluate	the
performance	of	a	fitted	model.	With	these	measurements,	we	can	select	the	optimum
model	that	accurately	predicts	responses	for	future	subjects.

Chapter	8,	Ensemble	Learning,	introduces	how	to	use	the	power	of	ensemble	learners	to
produce	better	classification	and	regression	results,	as	compared	to	a	single	learner.	As	an
ensemble	learner	is	frequently	the	winning	approach	in	many	data	prediction
competitions;	you	should	know	how	to	apply	ensemble	learners	to	your	projects.

Chapter	9,	Clustering,	explores	different	types	of	clustering	methods.	Clustering	can	group
similar	points	of	data	together.	In	this	chapter,	we	demonstrate	how	to	apply	the	clustering
technique	to	segment	customers	and	further	compare	differences	between	each	clustering
method.

Chapter	10,	Association	Analysis	and	Sequence	Mining,	exposes	you	to	the	common
methods	used	to	discover	associated	items	and	underlying	frequent	patterns	from
transaction	data.	This	chapter	is	a	must	read	for	those	of	you	interested	in	finding	out	how
researchers	discovered	the	famous	association	between	customers	that	purchase	beer	and
those	who	purchase	diapers.



Chapter	11,	Dimension	Reduction,	teaches	you	how	to	select	and	extract	features	from
original	variables.	With	this	technique,	we	can	remove	the	effect	from	redundant	features,
and	reduce	the	computational	cost	to	avoid	overfitting.	For	a	more	concrete	example,	this
chapter	reveals	how	to	compress	and	restore	an	image	with	the	dimension	reduction
approach.

Chapter	12,	Big	Data	Analysis	(R	and	Hadoop),	reveals	how	you	can	use	RHadoop,	which
allows	R	to	leverage	the	scalability	of	Hadoop,	so	as	to	process	and	analyze	big	data.	We
cover	all	the	steps,	from	setting	up	the	RHadoop	environment	to	actual	big	data	processing
and	machine	learning	on	big	data.	Lastly,	we	explore	how	to	deploy	an	RHadoop	cluster
using	Amazon	EC2.

Appendix	A,	Resources	for	R	and	Machine	Learning,	will	provide	you	with	all	the
resources	for	R	and	machine	learning.

Appendix	B,	Dataset	–	Survival	of	Passengers	on	the	Titanic,	shows	you	the	dataset	for
survival	of	passengers	on	the	Titanic.





What	you	need	for	this	book
To	follow	the	book’s	examples,	you	will	need	a	computer	with	access	to	the	Internet	and
the	ability	to	install	the	R	environment.	You	can	download	R	from	http://www.cran.r-
project.org/.	Detailed	installation	instructions	are	available	in	the	first	chapter.

The	examples	provided	in	this	book	were	coded	and	tested	with	R	Version	3.1.2	on	a
computer	with	Microsoft	Windows	installed	on	it.	These	examples	should	also	work	with
any	recent	version	of	R	installed	on	either	MAC	OSX	or	a	Unix-like	OS.

http://www.cran.r-project.org/




Who	this	book	is	for
This	book	is	ideal	for	those	of	you	who	want	to	learn	how	to	use	R	for	machine	learning
and	gain	insights	from	data.	Regardless	of	your	level	of	experience,	this	book	covers	the
basics	of	applying	R	to	machine	learning	through	advanced	techniques.	While	it	is	helpful
if	you	are	familiar	with	basic	programming	or	machine	learning	concepts,	you	do	not
require	prior	experience	to	benefit	from	this	book.





Sections
In	this	book,	you	will	find	several	headings	that	appear	frequently	(Getting	ready,	How	to
do	it,	How	it	works,	There’s	more,	and	See	also).

To	give	clear	instructions	on	how	to	complete	a	recipe,	we	use	these	sections	as	follows:



Getting	ready
This	section	tells	you	what	to	expect	in	the	recipe,	and	describes	how	to	set	up	any
software	or	any	preliminary	settings	required	for	the	recipe.



How	to	do	it…
This	section	contains	the	steps	required	to	follow	the	recipe.



How	it	works…
This	section	usually	consists	of	a	detailed	explanation	of	what	happened	in	the	previous
section.



There’s	more…
This	section	consists	of	additional	information	about	the	recipe	in	order	to	make	the	reader
more	knowledgeable	about	the	recipe.



See	also
This	section	provides	helpful	links	to	other	useful	information	for	the	recipe.





Conventions
This	book	contains	a	number	of	styles	of	text	that	distinguish	between	different	kinds	of
information.	Here	are	some	examples	of	these	styles,	and	an	explanation	of	their	meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“Use	the
rpart	function	to	build	a	classification	tree	model.”

A	block	of	code	is	set	as	follows:

>	churn.rp	=	rpart(churn	~	.,	data=trainset)

Any	command-line	input	or	output	is	written	as	follows:

$	sudo	R	CMD	INSTALL	rmr2_3.3.0.tar.gz

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	in
menus	or	dialog	boxes	for	example,	appear	in	text	in	the	following	format:	“In	R,	a
missing	value	is	noted	with	the	symbol	NA	(not	available),	and	an	impossible	value	is
NaN	(not	a	number).”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.





Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors




Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.



Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support


Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support


Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com


Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com




Chapter	1.	Practical	Machine	Learning
with	R
In	this	chapter,	we	will	cover	the	following	topics:

Downloading	and	installing	R
Downloading	and	installing	RStudio
Installing	and	loading	packages
Reading	and	writing	data
Using	R	to	manipulate	data
Applying	basic	statistics
Visualizing	data
Getting	a	dataset	for	machine	learning



Introduction
The	aim	of	machine	learning	is	to	uncover	hidden	patterns,	unknown	correlations,	and	find
useful	information	from	data.	In	addition	to	this,	through	incorporation	with	data	analysis,
machine	learning	can	be	used	to	perform	predictive	analysis.	With	machine	learning,	the
analysis	of	business	operations	and	processes	is	not	limited	to	human	scale	thinking;
machine	scale	analysis	enables	businesses	to	capture	hidden	values	in	big	data.

Machine	learning	has	similarities	to	the	human	reasoning	process.	Unlike	traditional
analysis,	the	generated	model	cannot	evolve	as	data	is	accumulated.	Machine	learning	can
learn	from	the	data	that	is	processed	and	analyzed.	In	other	words,	the	more	data	that	is
processed,	the	more	it	can	learn.

R,	as	a	dialect	of	GNU-S,	is	a	powerful	statistical	language	that	can	be	used	to	manipulate
and	analyze	data.	Additionally,	R	provides	many	machine	learning	packages	and
visualization	functions,	which	enable	users	to	analyze	data	on	the	fly.	Most	importantly,	R
is	open	source	and	free.

Using	R	greatly	simplifies	machine	learning.	All	you	need	to	know	is	how	each	algorithm
can	solve	your	problem,	and	then	you	can	simply	use	a	written	package	to	quickly
generate	prediction	models	on	data	with	a	few	command	lines.	For	example,	you	can
either	perform	Naïve	Bayes	for	spam	mail	filtering,	conduct	k-means	clustering	for
customer	segmentation,	use	linear	regression	to	forecast	house	prices,	or	implement	a
hidden	Markov	model	to	predict	the	stock	market,	as	shown	in	the	following	screenshot:

Stock	market	prediction	using	R

Moreover,	you	can	perform	nonlinear	dimension	reduction	to	calculate	the	dissimilarity	of



image	data,	and	visualize	the	clustered	graph,	as	shown	in	the	following	screenshot.	All
you	need	to	do	is	follow	the	recipes	provided	in	this	book.

A	clustered	graph	of	face	image	data

This	chapter	serves	as	an	overall	introduction	to	machine	learning	and	R;	the	first	few
recipes	introduce	how	to	set	up	the	R	environment	and	integrated	development
environment,	RStudio.	After	setting	up	the	environment,	the	following	recipe	introduces
package	installation	and	loading.	In	order	to	understand	how	data	analysis	is	practiced
using	R,	the	next	four	recipes	cover	data	read/write,	data	manipulation,	basic	statistics,	and
data	visualization	using	R.	The	last	recipe	in	the	chapter	lists	useful	data	sources	and
resources.





Downloading	and	installing	R
To	use	R,	you	must	first	install	it	on	your	computer.	This	recipe	gives	detailed	instructions
on	how	to	download	and	install	R.



Getting	ready
If	you	are	new	to	the	R	language,	you	can	find	a	detailed	introduction,	language	history,
and	functionality	on	the	official	website	(http://www.r-project.org/).	When	you	are	ready
to	download	and	install	R,	please	access	the	following	link:	http://cran.r-project.org/.

http://www.r-project.org
http://cran.r-project.org/


How	to	do	it…
Please	perform	the	following	steps	to	download	and	install	R	for	Windows	and	Mac	users:

1.	 Go	to	the	R	CRAN	website,	http://www.r-project.org/,	and	click	on	the	download	R
link,	that	is,	http://cran.r-project.org/mirrors.html):

2.	 You	may	select	the	mirror	location	closest	to	you:

CRAN	mirrors

3.	 Select	the	correct	download	link	based	on	your	operating	system:

http://www.r-project.org/
http://cran.r-project.org/mirrors.html


Click	on	the	download	link	based	on	your	OS

As	the	installation	of	R	differs	for	Windows	and	Mac,	the	steps	required	to	install	R	for
each	OS	are	provided	here.

For	Windows	users:

1.	 Click	on	Download	R	for	Windows,	as	shown	in	the	following	screenshot,	and	then
click	on	base:

Go	to	“Download	R	for	Windows”	and	click	“base”

2.	 Click	on	Download	R	3.x.x	for	Windows:



Click	“Download	R	3.x.x	for	Windows”

3.	 The	installation	file	should	be	downloaded.	Once	the	download	is	finished,	you	can
double-click	on	the	installation	file	and	begin	installing	R:

4.	 The	Windows	installation	of	R	is	quite	straightforward;	the	installation	GUI	may
instruct	you	on	how	to	install	the	program	step	by	step	(public	license,	destination
location,	select	components,	startup	options,	startup	menu	folder,	and	select
additional	tasks).	Leave	all	the	installation	options	as	the	default	settings	if	you	do
not	want	to	make	any	changes.

5.	 After	successfully	completing	the	installation,	a	shortcut	to	the	R	application	will



appear	in	your	Start	menu,	which	will	open	the	R	Console:

The	Windows	R	Console

For	Mac	OS	X	users:

1.	 Go	to	Download	R	for	(Mac)	OS	X,	as	shown	in	this	screenshot.
2.	 Click	on	the	latest	version	(.pkg	file	extension)	according	to	your	Mac	OS	version:



3.	 Double-click	on	the	downloaded	installation	file	(.pkg	extension)	and	begin	to	install
R.	Leave	all	the	installation	options	as	the	default	settings	if	you	do	not	want	to	make
any	changes:

4.	 Follow	the	onscreen	instructions,	Introduction,	Read	Me,	License,	Destination
Select,	Installation	Type,	Installation,	Summary,	and	click	on	continue	to
complete	the	installation.



5.	 After	the	file	is	installed,	you	can	use	Spotlight	Search	or	go	to	the	application
folder	to	find	R:

Use	“Spotlight	Search”	to	find	R

6.	 Click	on	R	to	open	R	Console:



As	an	alternative	to	downloading	a	Mac	.pkg	file	to	install	R,	Mac	users	can	also	install	R
using	Homebrew:

1.	 Download	XQuartz-2.X.X.dmg	from	https://xquartz.macosforge.org/landing/.
2.	 Double-click	on	the	.dmg	file	to	mount	it.
3.	 Update	brew	with	the	following	command	line:

$	brew	update

4.	 Clone	the	repository	and	symlink	all	its	formulae	to	homebrew/science:

$	brew	tap	homebrew/science

5.	 Install	gfortran:

$	brew	install	gfortran

https://xquartz.macosforge.org/landing/


6.	 Install	R:

$	brew	install	R

For	Linux	users,	there	are	precompiled	binaries	for	Debian,	Red	Hat,	SUSE,	and	Ubuntu.
Alternatively,	you	can	install	R	from	a	source	code.	Besides	downloading	precompiled
binaries,	you	can	install	R	for	Linux	through	a	package	manager.	Here	are	the	installation
steps	for	CentOS	and	Ubuntu.

Downloading	and	installing	R	on	Ubuntu:

1.	 Add	the	entry	to	the	/etc/apt/sources.list	file:

$	sudo	sh	-c	"echo	'deb	http://	cran.stat.ucla.edu/bin/linux/ubuntu	

precise/'	>>	/etc/apt/sources.list"

2.	 Then,	update	the	repository:

$	sudo	apt-get	update

3.	 Install	R	with	the	following	command:

$	sudo	apt-get	install	r-base

4.	 Start	R	in	the	command	line:

$	R

Downloading	and	installing	R	on	CentOS	5:

1.	 Get	rpm	CentOS5	RHEL	EPEL	repository	of	CentOS5:

$	wget	http://dl.fedoraproject.org/pub/epel/5/x86_64/epel-release-5-

4.noarch.rpm

2.	 Install	CentOS5	RHEL	EPEL	repository:

$	sudo	rpm	-Uvh	epel-release-5-4.noarch.rpm

3.	 Update	the	installed	packages:

$	sudo	yum	update

4.	 Install	R	through	the	repository:

$	sudo	yum	install	R

5.	 Start	R	in	the	command	line:

$	R

Downloading	and	installing	R	on	CentOS	6:

1.	 Get	rpm	CentOS5	RHEL	EPEL	repository	of	CentOS6:

$	wget	http://dl.fedoraproject.org/pub/epel/6/x86_64/epel-release-6-



8.noarch.rpm

2.	 Install	the	CentOS5	RHEL	EPEL	repository:

$	sudo	rpm	-Uvh	epel-release-6-8.noarch.rpm

3.	 Update	the	installed	packages:

$	sudo	yum	update

4.	 Install	R	through	the	repository:

$	sudo	yum	install	R

5.	 Start	R	in	the	command	line:

$	R



How	it	works…
CRAN	provides	precompiled	binaries	for	Linux,	Mac	OS	X,	and	Windows.	For	Mac	and
Windows	users,	the	installation	procedures	are	straightforward.	You	can	generally	follow
onscreen	instructions	to	complete	the	installation.	For	Linux	users,	you	can	use	the
package	manager	provided	for	each	platform	to	install	R	or	build	R	from	the	source	code.



See	also
For	those	planning	to	build	R	from	the	source	code,	refer	to	R	Installation	and
Administration	(http://cran.r-project.org/doc/manuals/R-admin.html),	which
illustrates	how	to	install	R	on	a	variety	of	platforms.

http://cran.r-project.org/doc/manuals/R-admin.html




Downloading	and	installing	RStudio
To	write	an	R	script,	one	can	use	R	Console,	R	commander,	or	any	text	editor	(EMACS,
VIM,	or	sublime).	However,	the	assistance	of	RStudio,	an	integrated	development
environment	(IDE)	for	R,	can	make	development	a	lot	easier.

RStudio	provides	comprehensive	facilities	for	software	development.	Built-in	features
such	as	syntax	highlighting,	code	completion,	and	smart	indentation	help	maximize
productivity.	To	make	R	programming	more	manageable,	RStudio	also	integrates	the	main
interface	into	a	four-panel	layout.	It	includes	an	interactive	R	Console,	a	tabbed	source
code	editor,	a	panel	for	the	currently	active	objects/history,	and	a	tabbed	panel	for	the	file
browser/plot	window/package	install	window/R	help	window.	Moreover,	RStudio	is	open
source	and	is	available	for	many	platforms,	such	as	Windows,	Mac	OS	X,	and	Linux.	This
recipe	shows	how	to	download	and	install	RStudio.



Getting	ready
RStudio	requires	a	working	R	installation;	when	RStudio	loads,	it	must	be	able	to	locate	a
version	of	R.	You	must	therefore	have	completed	the	previous	recipe	with	R	installed	on
your	OS	before	proceeding	to	install	RStudio.



How	to	do	it…
Perform	the	following	steps	to	download	and	install	RStudio	for	Windows	and	Mac	users:

1.	 Access	RStudio’s	official	site	by	using	the	following	URL:
http://www.rstudio.com/products/RStudio/.

2.	 For	a	desktop	version	installation,	click	on	Download	RStudio	Desktop
(http://www.rstudio.com/products/rstudio/download/)	and	choose	the	RStudio
recommended	for	your	system.	Download	the	relevant	packages:

http://www.rstudio.com/products/RStudio/
http://www.rstudio.com/products/rstudio/download/


3.	 Install	RStudio	by	double-clicking	on	the	downloaded	packages.	For	Windows	users,
follow	the	onscreen	instruction	to	install	the	application:



4.	 For	Mac	users,	simply	drag	the	RStudio	icon	to	the	Applications	folder:

5.	 Start	RStudio:



The	RStudio	console

Perform	the	following	steps	for	downloading	and	installing	RStudio	for	Ubuntu/Debian
and	RedHat/Centos	users:

For	Debian(6+)/Ubuntu(10.04+)	32-bit:

$	wget	http://download1.rstudio.org/rstudio-0.98.1091-i386.deb

$	sudo	gdebi	rstudio-0.98.	1091-i386.deb

For	Debian(6+)/Ubuntu(10.04+)	64-bit:

$	wget	http://download1.rstudio.org/rstudio-0.98.	1091-amd64.deb

$	sudo	gdebi	rstudio-0.98.	1091-amd64.deb

For	RedHat/CentOS(5,4+)	32	bit:

$	wget	http://download1.rstudio.org/rstudio-0.98.	1091-i686.rpm

$	sudo	yum	install	--nogpgcheck	rstudio-0.98.	1091-i686.rpm

For	RedHat/CentOS(5,4+)	64	bit:

$	wget	http://download1.rstudio.org/rstudio-0.98.	1091-x86_64.rpm

$	sudo	yum	install	--nogpgcheck	rstudio-0.98.	1091-x86_64.rpm



How	it	works
The	RStudio	program	can	be	run	on	the	desktop	or	through	a	web	browser.	The	desktop
version	is	available	for	Windows,	Mac	OS	X,	and	Linux	platforms	with	similar	operations
across	all	platforms.	For	Windows	and	Mac	users,	after	downloading	the	precompiled
package	of	RStudio,	follow	the	onscreen	instructions,	shown	in	the	preceding	steps,	to
complete	the	installation.	Linux	users	may	use	the	package	management	system	provided
for	installation.



See	also
In	addition	to	the	desktop	version,	users	may	install	a	server	version	to	provide	access
to	multiple	users.	The	server	version	provides	a	URL	that	users	can	access	to	use	the
RStudio	resources.	To	install	RStudio,	please	refer	to	the	following	link:
http://www.rstudio.com/ide/download/server.html.	This	page	provides	installation
instructions	for	the	following	Linux	distributions:	Debian	(6+),	Ubuntu	(10.04+),
RedHat,	and	CentOS	(5.4+).
For	other	Linux	distributions,	you	can	build	RStudio	from	the	source	code.

http://www.rstudio.com/ide/download/server.html




Installing	and	loading	packages
After	successfully	installing	R,	users	can	download,	install,	and	update	packages	from	the
repositories.	As	R	allows	users	to	create	their	own	packages,	official	and	non-official
repositories	are	provided	to	manage	these	user-created	packages.	CRAN	is	the	official	R
package	repository.	Currently,	the	CRAN	package	repository	features	6,379	available
packages	(as	of	02/27/2015).	Through	the	use	of	the	packages	provided	on	CRAN,	users
may	extend	the	functionality	of	R	to	machine	learning,	statistics,	and	related	purposes.
CRAN	is	a	network	of	FTP	and	web	servers	around	the	world	that	store	identical,	up-to-
date	versions	of	code	and	documentation	for	R.	You	may	select	the	closest	CRAN	mirror
to	your	location	to	download	packages.



Getting	ready
Start	an	R	session	on	your	host	computer.



How	to	do	it…
Perform	the	following	steps	to	install	and	load	R	packages:

1.	 To	load	a	list	of	installed	packages:

>	library()

2.	 Setting	the	default	CRAN	mirror:

>	chooseCRANmirror()

R	will	return	a	list	of	CRAN	mirrors,	and	then	ask	the	user	to	either	type	a	mirror	ID	to
select	it,	or	enter	zero	to	exit:

1.	 Install	a	package	from	CRAN;	take	package	e1071	as	an	example:

>	install.packages("e1071")

2.	 Update	a	package	from	CRAN;	take	package	e1071	as	an	example:

>	update.packages("e1071")

3.	 Load	the	package	the	package:

>	library(e1071)

4.	 If	you	would	like	to	view	the	documentation	of	the	package,	you	can	use	the	help
function:

>	help(package	="e1071")

5.	 If	you	would	like	to	view	the	documentation	of	the	function,	you	can	use	the	help
function:

>	help(svm,	e1071)

6.	 Alternatively,	you	can	use	the	help	shortcut,	?,	to	view	the	help	document	for	this
function:

>	?e1071::svm

7.	 If	the	function	does	not	provide	any	documentation,	you	may	want	to	search	the
supplied	documentation	for	a	given	keyword.	For	example,	if	you	wish	to	search	for
documentation	related	to	svm:

>	help.search("svm")

8.	 Alternatively,	you	can	use	??	as	the	shortcut	for	help.search:

>	??svm

9.	 To	view	the	argument	taken	for	the	function,	simply	use	the	args	function.	For
example,	if	you	would	like	to	know	the	argument	taken	for	the	lm	function:

>	args(lm)



10.	 Some	packages	will	provide	examples	and	demos;	you	can	use	example	or	demo	to
view	an	example	or	demo.	For	example,	one	can	view	an	example	of	the	lm	package
and	a	demo	of	the	graphics	package	by	typing	the	following	commands:

>	example(lm)

>	demo(graphics)

11.	 To	view	all	the	available	demos,	you	may	use	the	demo	function	to	list	all	of	them:

>	demo()



How	it	works
This	recipe	first	introduces	how	to	view	loaded	packages,	install	packages	from	CRAN,
and	load	new	packages.	Before	installing	packages,	those	of	you	who	are	interested	in	the
listing	of	the	CRAN	package	can	refer	to	http://cran.r-
project.org/web/packages/available_packages_by_name.html.

When	a	package	is	installed,	documentation	related	to	the	package	is	also	provided.	You
are,	therefore,	able	to	view	the	documentation	or	the	related	help	pages	of	installed
packages	and	functions.	Additionally,	demos	and	examples	are	provided	by	packages	that
can	help	users	understand	the	capability	of	the	installed	package.

http://cran.r-project.org/web/packages/available_packages_by_name.html


See	also
Besides	installing	packages	from	CRAN,	there	are	other	R	package	repositories,
including	Crantastic,	a	community	site	for	rating	and	reviewing	CRAN	packages,	and
R-Forge,	a	central	platform	for	the	collaborative	development	of	R	packages.	In
addition	to	this,	Bioconductor	provides	R	packages	for	the	analysis	of	genomic	data.
If	you	would	like	to	find	relevant	functions	and	packages,	please	visit	the	list	of	task
views	at	http://cran.r-project.org/web/views/,	or	search	for	keywords	at
http://rseek.org.

http://cran.r-project.org/web/views/
http://rseek.org




Reading	and	writing	data
Before	starting	to	explore	data,	you	must	load	the	data	into	the	R	session.	This	recipe	will
introduce	methods	to	load	data	either	from	a	file	into	the	memory	or	use	the	predefined
data	within	R.



Getting	ready
First,	start	an	R	session	on	your	machine.	As	this	recipe	involves	steps	toward	the	file	IO,
if	the	user	does	not	specify	the	full	path,	read	and	write	activity	will	take	place	in	the
current	working	directory.

You	can	simply	type	getwd()	in	the	R	session	to	obtain	the	current	working	directory
location.	However,	if	you	would	like	to	change	the	current	working	directory,	you	can	use
setwd("<path>"),	where	<path>	can	be	replaced	as	your	desired	path,	to	specify	the
working	directory.



How	to	do	it…
Perform	the	following	steps	to	read	and	write	data	with	R:

1.	 To	view	the	built-in	datasets	of	R,	type	the	following	command:

>	data()

2.	 R	will	return	a	list	of	datasets	in	a	dataset	package,	and	the	list	comprises	the	name
and	description	of	each	dataset.

3.	 To	load	the	dataset	iris	into	an	R	session,	type	the	following	command:

>	data(iris)

4.	 The	dataset	iris	is	now	loaded	into	the	data	frame	format,	which	is	a	common	data
structure	in	R	to	store	a	data	table.

5.	 To	view	the	data	type	of	iris,	simply	use	the	class	function:

>	class(iris)

[1]	"data.frame"

6.	 The	data.frame	console	print	shows	that	the	iris	dataset	is	in	the	structure	of	data
frame.

7.	 Use	the	save	function	to	store	an	object	in	a	file.	For	example,	to	save	the	loaded	iris
data	into	myData.RData,	use	the	following	command:

>	save(iris,	file="myData.RData")

8.	 Use	the	load	function	to	read	a	saved	object	into	an	R	session.	For	example,	to	load
iris	data	from	myData.RData,	use	the	following	command:

>	load("myData.RData")

9.	 In	addition	to	using	built-in	datasets,	R	also	provides	a	function	to	import	data	from
text	into	a	data	frame.	For	example,	the	read.table	function	can	format	a	given	text
into	a	data	frame:

>	test.data	=	read.table(header	=	TRUE,	text	=	"

+	a	b

+	1	2

+	3	4

+	")

10.	 You	can	also	use	row.names	and	col.names	to	specify	the	names	of	columns	and
rows:

>	test.data	=	read.table(text	=	"

+	1	2

+	3	4",	

+	col.names=c("a","b"),

+	row.names	=	c("first","second"))

11.	 View	the	class	of	the	test.data	variable:

>	class(test.data)



[1]	"data.frame"

12.	 The	class	function	shows	that	the	test.data	variable	contains	a	data	frame.
13.	 In	addition	to	importing	data	by	using	the	read.table	function,	you	can	use	the

write.table	function	to	export	data	to	a	text	file:

>	write.table(test.data,	file	=	"test.txt"	,	sep	=	"	")

14.	 The	write.table	function	will	write	the	content	of	test.data	into	test.txt	(the
written	path	can	be	found	by	typing	getwd()),	with	a	separation	delimiter	as	white
space.

15.	 Similar	to	write.table,	write.csv	can	also	export	data	to	a	file.	However,
write.csv	uses	a	comma	as	the	default	delimiter:

>	write.csv(test.data,	file	=	"test.csv")

16.	 With	the	read.csv	function,	the	csv	file	can	be	imported	as	a	data	frame.	However,
the	last	example	writes	column	and	row	names	of	the	data	frame	to	the	test.csv	file.
Therefore,	specifying	header	to	TRUE	and	row	names	as	the	first	column	within	the
function	can	ensure	the	read	data	frame	will	not	treat	the	header	and	the	first	column
as	values:

>	csv.data	=	read.csv("test.csv",	header	=	TRUE,	row.names=1)

>	head(csv.data)

		a	b

1	1	2

2	3	4



How	it	works
Generally,	data	for	collection	may	be	in	multiple	files	and	different	formats.	To	exchange
data	between	files	and	RData,	R	provides	many	built-in	functions,	such	as	save,	load,
read.csv,	read.table,	write.csv,	and	write.table.

This	example	first	demonstrates	how	to	load	the	built-in	dataset	iris	into	an	R	session.	The
iris	dataset	is	the	most	famous	and	commonly	used	dataset	in	the	field	of	machine
learning.	Here,	we	use	the	iris	dataset	as	an	example.	The	recipe	shows	how	to	save	RData
and	load	it	with	the	save	and	load	functions.	Furthermore,	the	example	explains	how	to
use	read.table,	write.table,	read.csv,	and	write.csv	to	exchange	data	from	files	to	a
data	frame.	The	use	of	the	R	IO	function	to	read	and	write	data	is	very	important	as	most
of	the	data	sources	are	external.	Therefore,	you	have	to	use	these	functions	to	load	data
into	an	R	session.



See	also
For	the	load,	read.table,	and	read.csv	functions,	the	file	to	be	read	can	also	be	a
complete	URL	(for	supported	URLs,	use	?url	for	more	information).

On	some	occasions,	data	may	be	in	an	Excel	file	instead	of	a	flat	text	file.	The	WriteXLS
package	allows	writing	an	object	into	an	Excel	file	with	a	given	variable	in	the	first
argument	and	the	file	to	be	written	in	the	second	argument:

1.	 Install	the	WriteXLS	package:

>	install.packages("WriteXLS")

2.	 Load	the	WriteXLS	package:

>	library("WriteXLS")

3.	 Use	the	WriteXLS	function	to	write	the	data	frame	iris	into	a	file	named	iris.xls:

>	WriteXLS("iris",	ExcelFileName="iris.xls")





Using	R	to	manipulate	data
This	recipe	will	discuss	how	to	use	the	built-in	R	functions	to	manipulate	data.	As	data
manipulation	is	the	most	time	consuming	part	of	most	analysis	procedures,	you	should
gain	knowledge	of	how	to	apply	these	functions	on	data.



Getting	ready
Ensure	you	have	completed	the	previous	recipes	by	installing	R	on	your	operating	system.



How	to	do	it…
Perform	the	following	steps	to	manipulate	the	data	with	R.

Subset	the	data	using	the	bracelet	notation:

1.	 Load	the	dataset	iris	into	the	R	session:

>	data(iris)

2.	 To	select	values,	you	may	use	a	bracket	notation	that	designates	the	indices	of	the
dataset.	The	first	index	is	for	the	rows	and	the	second	for	the	columns:

>	iris[1,"Sepal.Length"]

[1]	5.1

3.	 You	can	also	select	multiple	columns	using	c():

>	Sepal.iris	=	iris[,	c("Sepal.Length",	"Sepal.Width")]

4.	 You	can	then	use	str()	to	summarize	and	display	the	internal	structure	of
Sepal.iris:

>	str(Sepal.iris)

'data.frame':		150	obs.	of		2	variables:

	$	Sepal.Length:	num		5.1	4.9	4.7	4.6	5	5.4	4.6	5	4.4	4.9…

	$	Sepal.Width	:	num		3.5	3	3.2	3.1	3.6	3.9	3.4	3.4	2.9	3.1	..

5.	 To	subset	data	with	the	rows	of	given	indices,	you	can	specify	the	indices	at	the	first
index	with	the	bracket	notation.	In	this	example,	we	show	you	how	to	subset	data
with	the	top	five	records	with	the	Sepal.Length	column	and	the	Sepal.Width
selected:

>	Five.Sepal.iris	=	iris[1:5,	c("Sepal.Length",	"Sepal.Width")]

>	str(Five.Sepal.iris)

'data.frame':	 5	obs.	of		2	variables:

	$	Sepal.Length:	num		5.1	4.9	4.7	4.6	5

	$	Sepal.Width	:	num		3.5	3	3.2	3.1	3.6

6.	 It	is	also	possible	to	set	conditions	to	filter	the	data.	For	example,	to	filter	returned
records	containing	the	setosa	data	with	all	five	variables.	In	the	following	example,
the	first	index	specifies	the	returning	criteria,	and	the	second	index	specifies	the
range	of	indices	of	the	variable	returned:

>	setosa.data	=	iris[iris$Species=="setosa",1:5]

>	str(setosa.data)

'data.frame':	 50	obs.	of		5	variables:

	$	Sepal.Length:	num		5.1	4.9	4.7	4.6	5	5.4	4.6	5	4.4	4.9…

	$	Sepal.Width	:	num		3.5	3	3.2	3.1	3.6	3.9	3.4	3.4	2.9	3.1…

	$	Petal.Length:	num		1.4	1.4	1.3	1.5	1.4	1.7	1.4	1.5	1.4	1.5…

	$	Petal.Width	:	num		0.2	0.2	0.2	0.2	0.2	0.4	0.3	0.2	0.2	0.1…

	$	Species					:	Factor	w/	3	levels	"setosa","versicolor",..:	1	1	1	1	1	

1	1	1	1	1…

7.	 Alternatively,	the	which	function	returns	the	indexes	of	satisfied	data.	The	following



example	returns	indices	of	the	iris	data	containing	species	equal	to	setosa:

>	which(iris$Species=="setosa")

	[1]		1		2		3		4		5		6		7		8		9	10	11	12	13	14	15	16	17	18

[19]	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36

[37]	37	38	39	40	41	42	43	44	45	46	47	48	49	50

8.	 The	indices	returned	by	the	operation	can	then	be	applied	as	the	index	to	select	the
iris	containing	the	setosa	species.	The	following	example	returns	the	setosa	with	all
five	variables:

>	setosa.data	=	iris[which(iris$Species=="setosa"),1:5]

>	str(setosa.data)

'data.frame':	 50	obs.	of		5	variables:

	$	Sepal.Length:	num		5.1	4.9	4.7	4.6	5	5.4	4.6	5	4.4	4.9…

	$	Sepal.Width	:	num		3.5	3	3.2	3.1	3.6	3.9	3.4	3.4	2.9	3.1…

	$	Petal.Length:	num		1.4	1.4	1.3	1.5	1.4	1.7	1.4	1.5	1.4	1.5…

	$	Petal.Width	:	num		0.2	0.2	0.2	0.2	0.2	0.4	0.3	0.2	0.2	0.1…

	$	Species					:	Factor	w/	3	levels	"setosa","versicolor",..:	1	1	1	1	1	

1	1	1	1	1…

Subset	data	using	the	subset	function:

1.	 Besides	using	the	bracket	notation,	R	provides	a	subset	function	that	enables	users	to
subset	the	data	frame	by	observations	with	a	logical	statement.

2.	 First,	subset	species,	sepal	length,	and	sepal	width	out	of	the	iris	data.	To	select	the
sepal	length	and	width	out	of	the	iris	data,	one	should	specify	the	column	to	be	subset
in	the	select	argument:

>	Sepal.data	=	subset(iris,	select=c("Sepal.Length",	"Sepal.Width"))

>	str(Sepal.data)

'data.frame':	150	obs.	of		2	variables:

	$	Sepal.Length:	num		5.1	4.9	4.7	4.6	5	5.4	4.6	5	4.4	4.9…

	$	Sepal.Width	:	num		3.5	3	3.2	3.1	3.6	3.9	3.4	3.4	2.9	3.1…

This	reveals	that	Sepal.data	contains	150	objects	with	the	Sepal.Length	variable	and
Sepal.Width.

1.	 On	the	other	hand,	you	can	use	a	subset	argument	to	get	subset	data	containing	setosa
only.	In	the	second	argument	of	the	subset	function,	you	can	specify	the	subset
criteria:

>	setosa.data	=	subset(iris,	Species	=="setosa")

>	str(setosa.data)

'data.frame':	50	obs.	of		5	variables:

	$	Sepal.Length:	num		5.1	4.9	4.7	4.6	5	5.4	4.6	5	4.4	4.9…

	$	Sepal.Width	:	num		3.5	3	3.2	3.1	3.6	3.9	3.4	3.4	2.9	3.1…

	$	Petal.Length:	num		1.4	1.4	1.3	1.5	1.4	1.7	1.4	1.5	1.4	1.5…

	$	Petal.Width	:	num		0.2	0.2	0.2	0.2	0.2	0.4	0.3	0.2	0.2	0.1…

	$	Species					:	Factor	w/	3	levels	"setosa","versicolor",..:	1	1	1	1	1	

1	1	1	1	1…

2.	 Most	of	the	time,	you	may	want	to	apply	a	union	or	intersect	a	condition	while



subsetting	data.	The	OR	and	AND	operations	can	be	further	employed	for	this
purpose.	For	example,	if	you	would	like	to	retrieve	data	with	Petal.Width	>=0.2
and	Petal.Length	<	=	1.4:

>	example.data=	subset(iris,	Petal.Length	<=1.4	&	Petal.Width	>=	0.2,	

select=Species	)

>	str(example.data)

'data.frame':	21	obs.	of		1	variable:

	$	Species:	Factor	w/	3	levels	"setosa","versicolor",..:	1	1	1	1	1	1	1	

1	1	1…

Merging	data:	merging	data	involves	joining	two	data	frames	into	a	merged	data	frame
by	a	common	column	or	row	name.	The	following	example	shows	how	to	merge	the
flower.type	data	frame	and	the	first	three	rows	of	the	iris	with	a	common	row	name
within	the	Species	column:

>	flower.type	=	data.frame(Species	=	"setosa",	Flower	=	"iris")

>	merge(flower.type,	iris[1:3,],	by	="Species")

		Species	Flower	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width

1		setosa			iris										5.1									3.5										1.4									0.2

2		setosa			iris										4.9									3.0										1.4									0.2

3		setosa			iris										4.7									3.2										1.3									0.2

Ordering	data:	the	order	function	will	return	the	index	of	a	sorted	data	frame	with	a
specified	column.	The	following	example	shows	the	results	from	the	first	six	records	with
the	sepal	length	ordered	(from	big	to	small)	iris	data

>	head(iris[order(iris$Sepal.Length,	decreasing	=	TRUE),])

				Sepal.Length	Sepal.Width	Petal.Length	Petal.Width			Species

132										7.9									3.8										6.4									2.0	virginica

118										7.7									3.8										6.7									2.2	virginica

119										7.7									2.6										6.9									2.3	virginica

123										7.7									2.8										6.7									2.0	virginica

136										7.7									3.0										6.1									2.3	virginica

106										7.6									3.0										6.6									2.1	virginica



How	it	works
Before	conducting	data	analysis,	it	is	important	to	organize	collected	data	into	a	structured
format.	Therefore,	we	can	simply	use	the	R	data	frame	to	subset,	merge,	and	order	a
dataset.	This	recipe	first	introduces	two	methods	to	subset	data:	one	uses	the	bracket
notation,	while	the	other	uses	the	subset	function.	You	can	use	both	methods	to	generate
the	subset	data	by	selecting	columns	and	filtering	data	with	the	given	criteria.	The	recipe
then	introduces	the	merge	function	to	merge	data	frames.	Last,	the	recipe	introduces	how
to	use	order	to	sort	the	data.



There’s	more…
The	sub	and	gsub	functions	allow	using	regular	expression	to	substitute	a	string.	The	sub
and	gsub	functions	perform	the	replacement	of	the	first	and	all	the	other	matches,
respectively:

>	sub("e",	"q",	names(iris))

[1]	"Sqpal.Length"	"Sqpal.Width"		"Pqtal.Length"	"Pqtal.Width"		"Spqcies"					

>	gsub("e",	"q",	names(iris))

[1]	"Sqpal.Lqngth"	"Sqpal.Width"		"Pqtal.Lqngth"	"Pqtal.Width"		"Spqciqs"





Applying	basic	statistics
R	provides	a	wide	range	of	statistical	functions,	allowing	users	to	obtain	the	summary
statistics	of	data,	generate	frequency	and	contingency	tables,	produce	correlations,	and
conduct	statistical	inferences.	This	recipe	covers	basic	statistics	that	can	be	applied	to	a
dataset.



Getting	ready
Ensure	you	have	completed	the	previous	recipes	by	installing	R	on	your	operating	system.



How	to	do	it…
Perform	the	following	steps	to	apply	statistics	on	a	dataset:

1.	 Load	the	iris	data	into	an	R	session:

>	data(iris)

2.	 Observe	the	format	of	the	data:

>	class(iris)

		[1]	"data.frame"

3.	 The	iris	dataset	is	a	data	frame	containing	four	numeric	attributes:	petal	length,
petal	width,	sepal	width,	and	sepal	length.	For	numeric	values,	you	can	perform
descriptive	statistics,	such	as	mean,	sd,	var,	min,	max,	median,	range,	and	quantile.
These	can	be	applied	to	any	of	the	four	attributes	in	the	dataset:

>	mean(iris$Sepal.Length)

[1]	5.843333

>	sd(iris$Sepal.Length)

[1]	0.8280661

>	var(iris$Sepal.Length)

[1]	0.6856935

>	min(iris$Sepal.Length)

[1]	4.3

>	max(iris$Sepal.Length)

[1]	7.9

>	median(iris$Sepal.Length)

[1]	5.8

>	range(iris$Sepal.Length)

[1]	4.3	7.9

>	quantile(iris$Sepal.Length)

		0%		25%		50%		75%	100%	

	4.3		5.1		5.8		6.4		7.9

4.	 The	preceding	example	demonstrates	how	to	apply	descriptive	statistics	on	a	single
variable.	In	order	to	obtain	summary	statistics	on	every	numeric	attribute	of	the	data
frame,	one	may	use	sapply.	For	example,	to	apply	the	mean	on	the	first	four
attributes	in	the	iris	data	frame,	ignore	the	na	value	by	setting	na.rm	as	TRUE:

>	sapply(iris[1:4],	mean,	na.rm=TRUE)

Sepal.Length		Sepal.Width	Petal.Length		Petal.Width	

				5.843333					3.057333					3.758000					1.199333	

5.	 As	an	alternative	to	using	sapply	to	apply	descriptive	statistics	on	given	attributes,	R
offers	the	summary	function	that	provides	a	full	range	of	descriptive	statistics.	In	the
following	example,	the	summary	function	provides	the	mean,	median,	25th	and	75th
quartiles,	min,	and	max	of	every	iris	dataset	numeric	attribute:

>	summary(iris)

Sepal.Length				Sepal.Width					Petal.Length				Petal.Width				Species		

	Min.			:4.300			Min.			:2.000			Min.			:1.000			Min.			:0.100			setosa				

:50		

	1st	Qu.:5.100			1st	Qu.:2.800			1st	Qu.:1.600			1st	Qu.:0.300			



versicolor:50		

	Median	:5.800			Median	:3.000			Median	:4.350			Median	:1.300			

virginica	:50		

	Mean			:5.843			Mean			:3.057			Mean			:3.758			Mean			:1.199																		

	3rd	Qu.:6.400			3rd	Qu.:3.300			3rd	Qu.:5.100			3rd	Qu.:1.800																		

	Max.			:7.900			Max.			:4.400			Max.			:6.900			Max.			:2.500

6.	 The	preceding	example	shows	how	to	output	the	descriptive	statistics	of	a	single
variable.	R	also	provides	the	correlation	for	users	to	investigate	the	relationship
between	variables.	The	following	example	generates	a	4x4	matrix	by	computing	the
correlation	of	each	attribute	pair	within	the	iris:

>	cor(iris[,1:4])

													Sepal.Length	Sepal.Width	Petal.Length	Petal.Width

Sepal.Length				1.0000000		-0.1175698				0.8717538			0.8179411

Sepal.Width				-0.1175698			1.0000000			-0.4284401		-0.3661259

Petal.Length				0.8717538		-0.4284401				1.0000000			0.9628654

Petal.Width					0.8179411		-0.3661259				0.9628654			1.0000000

7.	 R	also	provides	a	function	to	compute	the	covariance	of	each	attribute	pair	within	the
iris:

>	cov(iris[,1:4])

													Sepal.Length	Sepal.Width	Petal.Length	Petal.Width

Sepal.Length				0.6856935		-0.0424340				1.2743154			0.5162707

Sepal.Width				-0.0424340			0.1899794			-0.3296564		-0.1216394

Petal.Length				1.2743154		-0.3296564				3.1162779			1.2956094

Petal.Width					0.5162707		-0.1216394				1.2956094			0.5810063

8.	 Statistical	tests	are	performed	to	access	the	significance	of	the	results;	here	we
demonstrate	how	to	use	a	t-test	to	determine	the	statistical	differences	between	two
samples.	In	this	example,	we	perform	a	t.test	on	the	petal	width	an	of	an	iris	in	either
the	setosa	or	versicolor	species.	If	we	obtain	a	p-value	less	than	0.5,	we	can	be	certain
that	the	petal	width	between	the	setosa	and	versicolor	will	vary	significantly:

>	t.test(iris$Petal.Width[iris$Species=="setosa"],	

+								iris$Petal.Width[iris$Species=="versicolor"])

		Welch	Two	Sample	t-test

data:		iris$Petal.Width[iris$Species	==	"setosa"]	and	

iris$Petal.Width[iris$Species	==	"versicolor"]

t	=	-34.0803,	df	=	74.755,	p-value	<	2.2e-16

alternative	hypothesis:	true	difference	in	means	is	not	equal	to	0

95	percent	confidence	interval:

	-1.143133	-1.016867

sample	estimates:

mean	of	x	mean	of	y	

				0.246					1.326

9.	 Alternatively,	you	can	perform	a	correlation	test	on	the	sepal	length	to	the	sepal	width
of	an	iris,	and	then	retrieve	a	correlation	score	between	the	two	variables.	The
stronger	the	positive	correlation,	the	closer	the	value	is	to	1.	The	stronger	the
negative	correlation,	the	closer	the	value	is	to	-1:



>	cor.test(iris$Sepal.Length,	iris$Sepal.Width)

		Pearson's	product-moment	correlation

data:		iris$Sepal.Length	and	iris$Sepal.Width

t	=	-1.4403,	df	=	148,	p-value	=	0.1519

alternative	hypothesis:	true	correlation	is	not	equal	to	0

95	percent	confidence	interval:

	-0.27269325		0.04351158

sample	estimates:

							cor	

-0.1175698	



How	it	works…
R	has	a	built-in	statistics	function,	which	enables	the	user	to	perform	descriptive	statistics
on	a	single	variable.	The	recipe	first	introduces	how	to	apply	mean,	sd,	var,	min,	max,
median,	range,	and	quantile	on	a	single	variable.	Moreover,	in	order	to	apply	the
statistics	on	all	four	numeric	variables,	one	can	use	the	sapply	function.	In	order	to
determine	the	relationships	between	multiple	variables,	one	can	conduct	correlation	and
covariance.	Finally,	the	recipe	shows	how	to	determine	the	statistical	differences	of	two
given	samples	by	performing	a	statistical	test.



There’s	more…
If	you	need	to	compute	an	aggregated	summary	statistics	against	data	in	different	groups,
you	can	use	the	aggregate	and	reshape	functions	to	compute	the	summary	statistics	of	data
subsets:

1.	 Use	aggregate	to	calculate	the	mean	of	each	iris	attribute	group	by	the	species:

>	aggregate(x=iris[,1:4],by=list(iris$Species),FUN=mean)

2.	 Use	reshape	to	calculate	the	mean	of	each	iris	attribute	group	by	the	species:

>		library(reshape)

>		iris.melt	<-	melt(iris,id='Species')

>		cast(Species~variable,data=iris.melt,mean,

					subset=Species	%in%	c('setosa','versicolor'),

					margins='grand_row')			

For	information	on	reshape	and	aggregate,	refer	to	the	help	documents	by	using	?reshape
or	?aggregate.





Visualizing	data
Visualization	is	a	powerful	way	to	communicate	information	through	graphical	means.
Visual	presentations	make	data	easier	to	comprehend.	This	recipe	presents	some	basic
functions	to	plot	charts,	and	demonstrates	how	visualizations	are	helpful	in	data
exploration.



Getting	ready
Ensure	that	you	have	completed	the	previous	recipes	by	installing	R	on	your	operating
system.



How	to	do	it…
Perform	the	following	steps	to	visualize	a	dataset:

1.	 Load	the	iris	data	into	the	R	session:

>	data(iris)

2.	 Calculate	the	frequency	of	species	within	the	iris	using	the	table	command:

>	table.iris	=	table(iris$Species)

>	table.iris

				setosa	versicolor		virginica	

								50									50									50	

3.	 As	the	frequency	in	the	table	shows,	each	species	represents	1/3	of	the	iris	data.	We
can	draw	a	simple	pie	chart	to	represent	the	distribution	of	species	within	the	iris:

>	pie(table.iris)

The	pie	chart	of	species	distribution

4.	 The	histogram	creates	a	frequency	plot	of	sorts	along	the	x-axis.	The	following
example	produces	a	histogram	of	the	sepal	length:

>	hist(iris$Sepal.Length)



The	histogram	of	the	sepal	length

5.	 In	the	histogram,	the	x-axis	presents	the	sepal	length	and	the	y-axis	presents	the	count
for	different	sepal	lengths.	The	histogram	shows	that	for	most	irises,	sepal	lengths
range	from	4	cm	to	8	cm.

6.	 Boxplots,	also	named	box	and	whisker	graphs,	allow	you	to	convey	a	lot	of
information	in	one	simple	plot.	In	such	a	graph,	the	line	represents	the	median	of	the
sample.	The	box	itself	shows	the	upper	and	lower	quartiles.	The	whiskers	show	the
range:

>	boxplot(Petal.Width	~	Species,	data	=	iris)



The	boxplot	of	the	petal	width

7.	 The	preceding	screenshot	clearly	shows	the	median	and	upper	range	of	the	petal
width	of	the	setosa	is	much	shorter	than	versicolor	and	virginica.	Therefore,	the	petal
width	can	be	used	as	a	substantial	attribute	to	distinguish	iris	species.

8.	 A	scatter	plot	is	used	when	there	are	two	variables	to	plot	against	one	another.	This
example	plots	the	petal	length	against	the	petal	width	and	color	dots	in	accordance	to
the	species	it	belongs	to:

>	plot(x=iris$Petal.Length,	y=iris$Petal.Width,	col=iris$Species)



The	scatter	plot	of	the	sepal	length

9.	 The	preceding	screenshot	is	a	scatter	plot	of	the	petal	length	against	the	petal	width.
As	there	are	four	attributes	within	the	iris	dataset,	it	takes	six	operations	to	plot	all
combinations.	However,	R	provides	a	function	named	pairs,	which	can	generate
each	subplot	in	one	figure:

>	pairs(iris[1:4],	main	=	"Edgar	Anderson's	Iris	Data",	pch	=	21,	bg	=	

c("red",	"green3",	"blue")[unclass(iris$Species)])



Pairs	scatterplot	of	iris	data



How	it	works…
R	provides	many	built-in	plot	functions,	which	enable	users	to	visualize	data	with	different
kinds	of	plots.	This	recipe	demonstrates	the	use	of	pie	charts	that	can	present	category
distribution.	A	pie	chart	of	an	equal	size	shows	that	the	number	of	each	species	is	equal.	A
histogram	plots	the	frequency	of	different	sepal	lengths.	A	box	plot	can	convey	a	great
deal	of	descriptive	statistics,	and	shows	that	the	petal	width	can	be	used	to	distinguish	an
iris	species.	Lastly,	we	introduced	scatter	plots,	which	plot	variables	on	a	single	plot.	In
order	to	quickly	generate	a	scatter	plot	containing	all	the	pairs	of	iris	data,	one	may	use	the
pairs	command.



See	also
ggplot2	is	another	plotting	system	for	R,	based	on	the	implementation	of	Leland
Wilkinson’s	grammar	of	graphics.	It	allows	users	to	add,	remove,	or	alter	components
in	a	plot	with	a	higher	abstraction.	However,	the	level	of	abstraction	results	is	slow
compared	to	lattice	graphics.	For	those	of	you	interested	in	the	topic	of	ggplot,	you
can	refer	to	this	site:	http://ggplot2.org/.

http://ggplot2.org/




Getting	a	dataset	for	machine	learning
While	R	has	a	built-in	dataset,	the	sample	size	and	field	of	application	is	limited.	Apart
from	generating	data	within	a	simulation,	another	approach	is	to	obtain	data	from	external
data	repositories.	A	famous	data	repository	is	the	UCI	machine	learning	repository,	which
contains	both	artificial	and	real	datasets.	This	recipe	introduces	how	to	get	a	sample
dataset	from	the	UCI	machine	learning	repository.



Getting	ready
Ensure	that	you	have	completed	the	previous	recipes	by	installing	R	on	your	operating
system.



How	to	do	it…
Perform	the	following	steps	to	retrieve	data	for	machine	learning:

1.	 Access	the	UCI	machine	learning	repository:	http://archive.ics.uci.edu/ml/.

UCI	data	repository

2.	 Click	on	View	ALL	Data	Sets.	Here	you	will	find	a	list	of	datasets	containing	field
names,	such	as	Name,	Data	Types,	Default	Task,	Attribute	Types,	#	Instances,	#
Attributes,	and	Year:

3.	 Use	Ctrl	+	F	to	search	for	Iris:

http://archive.ics.uci.edu/ml/


4.	 Click	on	Iris.	This	will	display	the	data	folder	and	the	dataset	description:

5.	 Click	on	Data	Folder,	which	will	display	a	directory	containing	the	iris	dataset:



6.	 You	can	then	either	download	iris.data	or	use	the	read.csv	function	to	read	the
dataset:

>	iris.data	=	read.csv(url("http://archive.ics.uci.edu/ml/machine-

learning-databases/iris/iris.data"),	header	=	FALSE,		col.names	=	

c("Sepal.Length",	"Sepal.Width",	"Petal.Length",	"Petal.Width",	

"Species"))

>	head(iris.data)

		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width			Species

1									5.1									3.5										1.4									0.2	Iris-setosa

2									4.9									3.0										1.4									0.2	Iris-setosa

3									4.7									3.2										1.3									0.2	Iris-setosa

4									4.6									3.1										1.5									0.2	Iris-setosa

5									5.0									3.6										1.4									0.2	Iris-setosa

6									5.4									3.9										1.7									0.4	Iris-setosa



How	it	works…
Before	conducting	data	analysis,	it	is	important	to	collect	your	dataset.	However,	to	collect
an	appropriate	dataset	for	further	exploration	and	analysis	is	not	easy.	We	can,	therefore,
use	the	prepared	dataset	with	the	UCI	repository	as	our	data	source.	Here,	we	first	access
the	UCI	dataset	repository	and	then	use	the	iris	dataset	as	an	example.	We	can	find	the	iris
dataset	by	using	the	browser’s	find	function	(Ctrl	+	F),	and	then	enter	the	file	directory.
Last,	we	can	download	the	dataset	and	use	the	R	IO	function,	read.csv,	to	load	the	iris
dataset	into	an	R	session.



See	also
KDnuggets	(http://www.kdnuggets.com/datasets/index.html)	offers	a	resourceful	list
of	datasets	for	data	mining	and	data	science.	You	can	explore	the	list	to	find	the	data
that	satisfies	your	requirements.

http://www.kdnuggets.com/datasets/index.html




Chapter	2.	Data	Exploration	with	RMS
Titanic
In	this	chapter,	we	will	cover	the	following	recipes:

Reading	a	Titanic	dataset	from	a	CSV	file
Converting	types	on	character	variables
Detecting	missing	values
Imputing	missing	values
Exploring	and	visualizing	data
Predicting	passenger	survival	with	a	decision	tree
Validating	the	power	of	prediction	with	a	confusion	matrix
Assessing	performance	with	the	ROC	curve



Introduction
Data	exploration	helps	a	data	consumer	to	focus	on	searching	for	information,	with	a	view
to	forming	a	true	analysis	from	the	gathered	information.	Furthermore,	with	the
completion	of	the	steps	of	data	munging,	analysis,	modeling,	and	evaluation,	users	can
generate	insights	and	valuable	points	from	their	focused	data.

In	a	real	data	exploration	project,	there	are	six	steps	involved	in	the	exploration	process.
They	are	as	follows:

1.	 Asking	the	right	questions.
2.	 Data	collection.
3.	 Data	munging.
4.	 Basic	exploratory	data	analysis.
5.	 Advanced	exploratory	data	analysis.
6.	 Model	assessment.

A	more	detailed	explanation	of	these	six	steps	is	provided	here:

1.	 Asking	the	right	questions:	When	the	user	presents	their	question,	for	example
“What	are	my	expected	findings	after	the	exploration	is	finished?”,	or	“What	kind	of
information	can	I	extract	through	the	exploration?,”	different	results	will	be	given.
Therefore,	asking	the	right	question	is	essential	in	the	first	place,	for	the	question
itself	determines	the	objective	and	target	of	the	exploration.

2.	 Data	collection:	Once	the	goal	of	exploration	is	determined,	the	user	can	start
collecting	or	extracting	relevant	data	from	the	data	source,	with	regard	to	the
exploration	target.	Mostly,	data	collected	from	disparate	systems	appears	unorganized
and	diverse	in	format.	Clearly,	the	original	data	may	be	from	different	sources,	such
as	files,	databases,	or	the	Internet.	To	retrieve	data	from	these	sources	requires	the
assistance	of	the	file	IO	function,	JDBC/ODBC,	web	crawler,	and	so	on.	This
extracted	data	is	called	raw	data,	which	is	because	it	has	not	been	subjected	to
processing,	or	been	through	any	other	manipulation.	Most	raw	data	is	not	easily
consumed	by	the	majority	of	analysis	tools	or	visualization	programs.

3.	 Data	munging:	The	next	phase	is	data	munging	(or	wrangling),	a	step	to	help	map
raw	data	into	a	more	convenient	format	for	consumption.	During	this	phase,	there	are
many	processes,	such	as	data	parsing,	sorting,	merging,	filtering,	missing	value
completion,	and	other	processes	to	transform	and	organize	the	data,	and	enable	it	to
fit	into	a	consume	structure.	Later,	the	mapped	data	can	be	further	utilized	for	data
aggregation,	analysis,	or	visualization.

4.	 Basic	exploratory	data	analysis:	After	the	data	munging	phase,	users	can	conduct
further	analysis	toward	data	processing.	The	most	basic	analysis	is	to	perform
exploratory	data	analysis.	Exploratory	data	analysis	involves	analyzing	a	dataset	by
summarizing	its	characteristics.	Performing	basic	statistical,	aggregation,	and	visual
methods	are	also	crucial	tasks	to	help	the	user	understand	data	characteristics,	which
are	beneficial	for	the	user	to	capture	the	majority,	trends,	and	outliers	easily	through



plots.
5.	 Advanced	exploratory	data	analysis:	Until	now,	the	descriptive	statistic	gives	a

general	description	of	data	features.	However,	one	would	like	to	generate	an
inference	rule	for	the	user	to	predict	data	features	based	on	input	parameters.
Therefore,	the	application	of	machine	learning	enables	the	user	to	generate	an
inferential	model,	where	the	user	can	input	a	training	dataset	to	generate	a	predictive
model.	After	this,	the	prediction	model	can	be	utilized	to	predict	the	output	value	or
label	based	on	given	parameters.

6.	 Model	assessment:	Finally,	to	assess	whether	the	generating	model	performs	the	best
in	the	data	estimation	of	a	given	problem,	one	must	perform	a	model	selection.	The
selection	method	here	involves	many	steps,	including	data	preprocessing,	tuning
parameters,	and	even	switching	the	machine	learning	algorithm.	However,	one	thing
that	is	important	to	keep	in	mind	is	that	the	simplest	model	frequently	achieves	the
best	results	in	predictive	or	exploratory	power;	whereas	complex	models	often	result
in	over	fitting.

For	the	following	example,	we	would	like	to	perform	a	sample	data	exploration	based	on
the	dataset	of	passengers	surviving	the	Titanic	shipwreck.	The	steps	we	demonstrate	here
follow	how	to	collect	data	from	the	online	source,	Kaggle;	clean	data	through	data
munging;	perform	basic	exploratory	data	analysis	to	discover	important	attributes	that
might	give	a	prediction	of	the	survival	rate;	perform	advanced	exploratory	data	analysis
using	the	classification	algorithm	to	predict	the	survival	rate	of	the	given	data;	and	finally,
perform	model	assessment	to	generate	a	prediction	model.





Reading	a	Titanic	dataset	from	a	CSV	file
To	start	the	exploration,	we	need	to	retrieve	a	dataset	from	Kaggle
(https://www.kaggle.com/).	We	had	look	at	some	of	the	samples	in	Chapter	1,	Practical
Machine	Learning	with	R.	Here,	we	introduce	methods	to	deal	with	real-world	problems.

https://www.kaggle.com/


Getting	ready
To	retrieve	data	from	Kaggle,	you	need	to	first	sign	up	for	a	Kaggle	account
(https://www.kaggle.com/account/register).	Then,	log	in	to	the	account	for	further
exploration:

Kaggle.com

https://www.kaggle.com/account/register


How	to	do	it…
Perform	the	following	steps	to	read	the	Titanic	dataset	from	the	CSV	file:

1.	 Go	to	http://www.kaggle.com/c/titanic-gettingStarted/data	to	retrieve	the	data	list.
2.	 You	can	see	a	list	of	data	files	for	download,	as	shown	in	the	following	table:

Filename Available	formats

train .csv	(59.76	kb)

genderclassmodel .py	(4.68	kb)

myfirstforest .csv	(3.18	kb)

myfirstforest .py	(3.83	kb)

gendermodel .csv	(3.18	kb)

genderclassmodel .csv	(3.18	kb)

test .csv	(27.96	kb)

gendermodel .py	(3.58	kb)

3.	 Download	the	training	data	(https://www.kaggle.com/c/titanic-
gettingStarted/download/train.csv)	to	a	local	disk.

4.	 Then,	make	sure	the	downloaded	file	is	placed	under	the	current	directory.	You	can
use	the	getwd	function	to	check	the	current	working	directory.	If	the	downloaded	file
is	not	located	in	the	working	directory,	move	the	file	to	the	current	working	directory.
Or,	you	can	use	setwd()	to	set	the	working	directory	to	where	the	downloaded	files
are	located:

>	getwd()

[1]	"C:/Users/guest"

5.	 Next,	one	can	use	read.csv	to	load	data	into	the	data	frame.	Here,	one	can	use	the
read.csv	function	to	read	train.csv	to	frame	the	data	with	the	variable	names	set
as	train.data.	However,	in	order	to	treat	the	blank	string	as	NA,	one	can	specify	that
na.strings	equals	either	"NA"	or	an	empty	string:

>	train.data	=	read.csv("train.csv",	na.strings=c("NA",	""))

6.	 Then,	check	the	loaded	data	with	the	str	function:

>	str(train.data)

'data.frame':	891	obs.	of		12	variables:

	$	PassengerId:	int		1	2	3	4	5	6	7	8	9	10…

	$	Survived			:	int		0	1	1	1	0	0	0	0	1	1…

	$	Pclass					:	int		3	1	3	1	3	3	1	3	3	2…

	$	Name							:	Factor	w/	891	levels	"Abbing,	Mr.	Anthony",..:	109	191	

358	277	16	559	520	629	417	581…

http://www.kaggle.com/c/titanic-gettingStarted/data
https://www.kaggle.com/c/titanic-gettingStarted/download/train.csv


	$	Sex								:	Factor	w/	2	levels	"female","male":	2	1	1	1	2	2	2	2	1	

1…

	$	Age								:	num		22	38	26	35	35	NA	54	2	27	14…

	$	SibSp						:	int		1	1	0	1	0	0	0	3	0	1…

	$	Parch						:	int		0	0	0	0	0	0	0	1	2	0…

	$	Ticket					:	Factor	w/	681	levels	"110152","110413",..:	524	597	670	

50	473	276	86	396	345	133…

	$	Fare							:	num		7.25	71.28	7.92	53.1	8.05…

	$	Cabin						:	Factor	w/	148	levels	"","A10","A14",..:	1	83	1	57	1	1	

131	1	1	1…

	$	Embarked			:	Factor	w/	4	levels	"","C","Q","S":	4	2	4	4	4	3	4	4	4	2…



How	it	works…
To	begin	the	data	exploration,	we	first	downloaded	the	Titanic	dataset	from	Kaggle,	a
website	containing	many	data	competitions	and	datasets.	To	load	the	data	into	the	data
frame,	this	recipe	demonstrates	how	to	apply	the	read.csv	function	to	load	the	dataset
with	the	na.strings	argument,	for	the	purpose	of	converting	blank	strings	and	"NA"	to
NA	values.	To	see	the	structure	of	the	dataset,	we	used	the	str	function	to	compactly
display	train.data;	you	can	find	the	dataset	contains	demographic	information	and
survival	labels	of	the	passengers.	The	data	collected	here	is	good	enough	for	beginners	to
practice	how	to	process	and	analyze	data.



There’s	more…
On	Kaggle,	much	of	the	data	on	science	is	related	to	competitions,	which	mostly	refer	to
designing	a	machine	learning	method	to	solve	real-world	problems.

Most	competitions	on	Kaggle	are	held	by	either	academia	or	corporate	bodies,	such	as
Amazon	or	Facebook.	In	fact,	they	create	these	contests	and	provide	rewards,	such	as
bonuses,	or	job	prospects	(see	https://www.kaggle.com/competitions).	Thus,	there	are
many	data	scientists	who	are	attracted	to	registering	for	a	Kaggle	account	to	participate	in
competitions.	A	beginner	in	a	pilot	exploration	can	participate	in	one	of	these
competitions,	which	will	help	them	gain	experience	by	solving	real-world	problems	with
their	machine	learning	skills.

To	create	a	more	challenging	learning	environment	as	a	competitor,	a	participant	needs	to
submit	their	output	answer	and	will	receive	the	assessment	score,	so	that	each	one	can
assess	their	own	rank	on	the	leader	board.

https://www.kaggle.com/competitions




Converting	types	on	character	variables
In	R,	since	nominal,	ordinal,	interval,	and	ratio	variable	are	treated	differently	in	statistical
modeling,	we	have	to	convert	a	nominal	variable	from	a	character	into	a	factor.



Getting	ready
You	need	to	have	the	previous	recipe	completed	by	loading	the	Titanic	training	data	into
the	R	session,	with	the	read.csv	function	and	assigning	an	argument	of	na.strings	equal
to	NA	and	the	blank	string	(””).	Then,	assign	the	loaded	data	from	train.csv	into	the
train.data	variables.



How	to	do	it…
Perform	the	following	steps	to	convert	the	types	on	character	variables:

1.	 Use	the	str	function	to	print	the	overview	of	the	Titanic	data:

>	str(train.data)

'data.frame':		891	obs.	of		12	variables:

	$	PassengerId:	int		1	2	3	4	5	6	7	8	9	10…

	$	Survived			:	int		0	1	1	1	0	0	0	0	1	1…

	$	Pclass					:	int		3	1	3	1	3	3	1	3	3	2…

	$	Name							:	Factor	w/	891	levels	"Abbing,	Mr.	Anthony",..:	109	191	

358	277	16	559	520	629	417	581…

	$	Sex								:	Factor	w/	2	levels	"female","male":	2	1	1	1	2	2	2	2	1	

1…

	$	Age								:	num		22	38	26	35	35	NA	54	2	27	14…

	$	SibSp						:	int		1	1	0	1	0	0	0	3	0	1…

	$	Parch						:	int		0	0	0	0	0	0	0	1	2	0…

	$	Ticket					:	Factor	w/	681	levels	"110152","110413",..:	524	597	670	

50	473	276	86	396	345	133…

	$	Fare							:	num		7.25	71.28	7.92	53.1	8.05…

	$	Cabin						:	Factor	w/	147	levels	"A10","A14","A16",..:	NA	82	NA	56	

NA	NA	130	NA	NA	NA…

	$	Embarked			:	Factor	w/	3	levels	"C","Q","S":	3	1	3	3	3	2	3	3	3	1…

2.	 To	transform	the	variable	from	the	int	numeric	type	to	the	factor	categorical	type,
you	can	cast	factor:

>	train.data$Survived	=	factor(train.data$Survived)

>	train.data$Pclass	=	factor(train.data$Pclass)

3.	 Print	out	the	variable	with	the	str	function	and	again,	you	can	see	that	Pclass	and
Survived	are	now	transformed	into	the	factor	as	follows:

>	str(train.data)

'data.frame':		891	obs.	of		12	variables:

	$	PassengerId:	int		1	2	3	4	5	6	7	8	9	10…

	$	Survived			:	Factor	w/	2	levels	"0","1":	1	2	2	2	1	1	1	1	2	2…

	$	Pclass					:	Factor	w/	3	levels	"1","2","3":	3	1	3	1	3	3	1	3	3	2…

	$	Name							:	Factor	w/	891	levels	"Abbing,	Mr.	Anthony",..:	109	191	

358	277	16	559	520	629	417	581…

	$	Sex								:	Factor	w/	2	levels	"female","male":	2	1	1	1	2	2	2	2	1	

1…

	$	Age								:	num		22	38	26	35	35	NA	54	2	27	14…

	$	SibSp						:	int		1	1	0	1	0	0	0	3	0	1…

	$	Parch						:	int		0	0	0	0	0	0	0	1	2	0…

	$	Ticket					:	Factor	w/	681	levels	"110152","110413",..:	524	597	670	

50	473	276	86	396	345	133…

	$	Fare							:	num		7.25	71.28	7.92	53.1	8.05…

	$	Cabin						:	Factor	w/	147	levels	"A10","A14","A16",..:	NA	82	NA	56	

NA	NA	130	NA	NA	NA…

	$	Embarked			:	Factor	w/	3	levels	"C","Q","S":	3	1	3	3	3	2	3	3	3	1…



How	it	works…
Talking	about	statistics,	there	are	four	measurements:	nominal,	ordinal,	interval,	and	ratio.
Nominal	variables	are	used	to	label	variables,	such	as	gender	and	name;	ordinal	variables,
and	are	measures	of	non-numeric	concepts,	such	as	satisfaction	and	happiness.	Interval
variables	shows	numeric	scales,	which	tell	us	not	only	the	order	but	can	also	show	the
differences	between	the	values,	such	as	temperatures	in	Celsius.	A	ratio	variable	shows	the
ratio	of	a	magnitude	of	a	continuous	quantity	to	a	unit	magnitude.	Ratio	variables	provide
order,	differences	between	the	values,	and	a	true	zero	value,	such	as	weight	and	height.	In
R,	different	measurements	are	calculated	differently,	so	you	should	perform	a	type
conversion	before	applying	descriptive	or	inferential	analytics	toward	the	dataset.

In	this	recipe,	we	first	display	the	structure	of	the	train	data	using	the	str	function.	From
the	structure	of	data,	you	can	find	the	attribute	name,	data	type,	and	the	first	few	values
contained	in	each	attribute.	From	the	Survived	and	Pclass	attribute,	you	can	see	the	data
type	as	int.	As	the	variable	description	listed	in	Chart	1	(Preface),	you	can	see	that
Survived	(0	=	No;	1	=	Yes)	and	Pclass	(1	=	1st;	2	=	2nd;	3	=	3rd)	are	categorical
variables.	As	a	result,	we	transform	the	data	from	a	character	to	a	factor	type	via	the
factor	function.



There’s	more…
Besides	factor,	there	are	more	type	conversion	functions.	For	numeric	types,	there	are
is.numeric()	and	as.numeric();	for	character,	there	are:	is.character()	and
as.character().	For	vector,	there	are:	is.vector()	and	as.vector();	for	matrix,	there
are	is.matrix()	and	as.matrix().	Finally,	for	data	frame,	there	are:	is.data.frame()
and	as.data.frame().





Detecting	missing	values
Missing	values	reduce	the	representativeness	of	the	sample,	and	furthermore,	might	distort
inferences	about	the	population.	This	recipe	will	focus	on	detecting	missing	values	within
the	Titanic	dataset.



Getting	ready
You	need	to	have	completed	the	previous	recipes	by	the	Pclass	attribute	and	Survived	to
a	factor	type.

In	R,	a	missing	value	is	noted	with	the	symbol	NA	(not	available),	and	an	impossible
value	is	NaN	(not	a	number).



How	to	do	it…
Perform	the	following	steps	to	detect	the	missing	value:

1.	 The	is.na	function	is	used	to	denote	which	index	of	the	attribute	contains	the	NA
value.	Here,	we	apply	it	to	the	Age	attribute	first:

>	is.na(train.data$Age)

2.	 The	is.na	function	indicates	the	missing	value	of	the	Age	attribute.	To	get	a	general
number	of	how	many	missing	values	there	are,	you	can	perform	a	sum	to	calculate
this:

>	sum(is.na(train.data$Age)	==	TRUE)

[1]	177

3.	 To	calculate	the	percentage	of	missing	values,	one	method	adopted	is	to	count	the
number	of	missing	values	against	nonmissing	values:

>	sum(is.na(train.data$Age)	==	TRUE)	/		length(train.data$Age)

[1]	0.1986532

4.	 To	get	a	percentage	of	the	missing	value	of	the	attributes,	you	can	use	sapply	to
calculate	the	percentage	of	all	the	attributes:

>	sapply(train.data,	function(df)	{

+															sum(is.na(df)==TRUE)/	length(df);

+											})	

PassengerId				Survived						Pclass								Name									Sex									Age	

0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.198653199	

						SibSp							Parch						Ticket								Fare							Cabin				Embarked	

0.000000000	0.000000000	0.000000000	0.000000000	0.771043771	0.002244669	

5.	 Besides	simply	viewing	the	percentage	of	missing	data,	one	may	also	use	the	Amelia
package	to	visualize	the	missing	values.	Here,	we	use	install.packages	and
require	to	install	Amelia	and	load	the	package.	However,	before	the	installation	and
loading	of	the	Amelia	package,	you	are	required	to	install	Rcpp,	beforehand:

>	install.packages("Amelia")

>	require(Amelia)

6.	 Then,	use	the	missmap	function	to	plot	the	missing	value	map:

>	missmap(train.data,	main="Missing	Map")



Missing	map	of	the	Titanic	dataset



How	it	works…
In	R,	a	missing	value	is	often	noted	with	the	"NA"	symbol,	which	stands	for	not	available.
Most	functions	(such	as	mean	or	sum)	may	output	NA	while	encountering	an	NA	value	in
the	dataset.	Though	you	can	assign	an	argument	such	as	na.rm	to	remove	the	effect	of	NA,
it	is	better	to	impute	or	remove	the	missing	data	in	the	dataset	to	prevent	propagating	the
effect	of	the	missing	value.	To	find	out	the	missing	value	in	the	Titanic	dataset,	we	first
sum	up	all	the	NA	values	and	divide	them	by	the	number	of	values	within	each	attribute,
Then,	we	apply	the	calculation	to	all	the	attributes	with	sapply.

In	addition	to	this,	to	display	the	calculation	results	using	a	table,	you	can	utilize	the
Amelia	package	to	plot	the	missing	value	map	of	every	attribute	on	one	chart.	The
visualization	of	missing	values	enables	users	to	get	a	better	understanding	of	the	missing
percentage	within	each	dataset.	From	the	preceding	screenshot,	you	may	have	observed
that	the	missing	value	is	beige	colored,	and	its	observed	value	is	dark	red.	The	x-axis
shows	different	attribute	names,	and	the	y-axis	shows	the	recorded	index.	Clearly,	most	of
the	cabin	shows	missing	data,	and	it	also	shows	that	about	19.87	percent	of	the	data	is
missing	when	counting	the	Age	attribute,	and	two	values	are	missing	in	the	Embarked
attribute.



There’s	more…
To	handle	the	missing	values,	we	introduced	Amelia	to	visualize	them.	Apart	from	typing
console	commands,	you	can	also	use	the	interactive	GUI	of	Amelia	and	AmeliaView,
which	allows	users	to	load	datasets,	manage	options,	and	run	Amelia	from	a	windowed
environment.

To	start	running	AmeliaView,	simply	type	AmeliaView()	in	the	R	Console:

>	AmeliaView()

AmeliaView





Imputing	missing	values
After	detecting	the	number	of	missing	values	within	each	attribute,	we	have	to	impute	the
missing	values	since	they	might	have	a	significant	effect	on	the	conclusions	that	can	be
drawn	from	the	data.



Getting	ready
This	recipe	will	require	train.data	loaded	in	the	R	session	and	have	the	previous	recipe
completed	by	converting	Pclass	and	Survived	to	a	factor	type.



How	to	do	it…
Perform	the	following	steps	to	impute	the	missing	values:

1.	 First,	list	the	distribution	of	Port	of	Embarkation.	Here,	we	add	the	useNA	=
"always"	argument	to	show	the	number	of	NA	values	contained	within	train.data:

>	table(train.data$Embarked,	useNA	=	"always")

			C				Q				S	<NA>	

	168			77		644				2	

2.	 Assign	the	two	missing	values	to	a	more	probable	port	(that	is,	the	most	counted
port),	which	is	Southampton	in	this	case:

>	train.data$Embarked[which(is.na(train.data$Embarked))]	=	'S';

>	table(train.data$Embarked,	useNA	=	"always")

			C				Q				S	<NA>	

	168			77		646				0	

3.	 In	order	to	discover	the	types	of	titles	contained	in	the	names	of	train.data,	we	first
tokenize	train.data$Name	by	blank	(a	regular	expression	pattern	as	"\\s+"),	and
then	count	the	frequency	of	occurrence	with	the	table	function.	After	this,	since	the
name	title	often	ends	with	a	period,	we	use	the	regular	expression	to	grep	the	word
containing	the	period.	In	the	end,	sort	the	table	in	decreasing	order:

>	train.data$Name	=	as.character(train.data$Name)

>	table_words	=	table(unlist(strsplit(train.data$Name,	"\\s+")))

>	sort(table_words	[grep('\\.',names(table_words))],	decreasing=TRUE)

						Mr.					Miss.						Mrs.			Master.	

						517							182							125								40	

						Dr.						Rev.						Col.				Major.	

								7									6									2												2	

				Mlle.					Capt.	Countess.				Don.	

								2									1									1																1	

Jonkheer.								L.					Lady	.						Mme.	

								1									1									1									1	

						Ms.						Sir.	

								1									1	

4.	 To	obtain	which	title	contains	missing	values,	you	can	use	str_match	provided	by	the
stringr	package	to	get	a	substring	containing	a	period,	then	bind	the	column
together	with	cbind.	Finally,	by	using	the	table	function	to	acquire	the	statistics	of
missing	values,	you	can	work	on	counting	each	title:

>	library(stringr)	

>	tb	=	cbind(train.data$Age,	str_match(train.data$Name,	"	[a-zA-

Z]+\\."))

>	table(tb[is.na(tb[,1]),2])

					Dr.		Master.				Miss.						Mr.					Mrs.	

							1								4												36							119							17	



5.	 For	a	title	containing	a	missing	value,	one	way	to	impute	data	is	to	assign	the	mean
value	for	each	title	(not	containing	a	missing	value):

>	mean.mr	=	mean(train.data$Age[grepl("	Mr\\.",	train.data$Name)	&	

!is.na(train.data$Age)])

>	mean.mrs	=	mean(train.data$Age[grepl("	Mrs\\.",	train.data$Name)	&	

!is.na(train.data$Age)])

>	mean.dr	=	mean(train.data$Age[grepl("	Dr\\.",	train.data$Name)	&	

!is.na(train.data$Age)])

>	mean.miss	=	mean(train.data$Age[grepl("	Miss\\.",	train.data$Name)	&	

!is.na(train.data$Age)])

>	mean.master	=		mean(train.data$Age[grepl("	Master\\.",	

train.data$Name)	&	!is.na(train.data$Age)])

6.	 Then,	assign	the	missing	value	with	the	mean	value	of	each	title:

>	train.data$Age[grepl("	Mr\\.",	train.data$Name)	&	

is.na(train.data$Age)]	=	mean.mr

>	train.data$Age[grepl("	Mrs\\.",	train.data$Name)	&	

is.na(train.data$Age)]	=	mean.mrs

>	train.data$Age[grepl("	Dr\\.",	train.data$Name)	&	

is.na(train.data$Age)]	=	mean.dr

>	train.data$Age[grepl("	Miss\\.",	train.data$Name)	&	

is.na(train.data$Age)]	=	mean.miss

>	train.data$Age[grepl("	Master\\.",	train.data$Name)	&	

is.na(train.data$Age)]	=	mean.master



How	it	works…
To	impute	the	missing	value	of	the	Embarked	attribute,	we	first	produce	the	statistics	of	the
embarked	port	with	the	table	function.	The	table	function	counts	two	NA	values	in
train.data.	From	the	dataset	description,	we	recognize	C,	Q,	and	S(C	=	Cherbourg,	Q	=
Queenstown,	S	=	Southampton).	Since	we	do	not	have	any	knowledge	about	which
category	these	two	missing	values	are	in,	one	possible	way	is	to	assign	the	missing	value
to	the	most	likely	port,	which	is	Southampton.

As	for	another	attribute,	Age,	though	about	20	percent	of	the	value	is	missing,	users	can
still	infer	the	missing	value	with	the	title	of	each	passenger.	To	discover	how	many	titles
there	are	within	the	name	of	the	dataset,	we	suggest	the	method	of	counting	segmented
words	in	the	Name	attribute,	which	helps	to	calculate	the	number	of	missing	values	of	each
given	title.	The	resultant	word	table	shows	common	titles	such	as	Mr,	Mrs,	Miss,	and
Master.	You	may	reference	an	English	honorific	entry	from	Wikipedia	to	get	the
description	of	each	title.

Considering	the	missing	data,	we	reassign	the	mean	value	of	each	title	to	the	missing
value	with	the	corresponding	title.	However,	for	the	Cabin	attribute,	there	are	too	many
missing	values,	and	we	cannot	infer	the	value	from	any	referencing	attribute.	Therefore,
we	find	it	does	not	work	by	trying	to	use	this	attribute	for	further	analysis.



There’s	more…
Here	we	list	the	honorific	entry	from	Wikipedia	for	your	reference.	According	to	it
(http://en.wikipedia.org/wiki/English_honorific):

Mr:	This	is	used	for	a	man,	regardless	of	his	marital	status
Master:	This	is	used	for	young	men	or	boys,	especially	used	in	the	UK
Miss:	It	is	usually	used	for	unmarried	women,	though	also	used	by	married	female
entertainers
Mrs:	It	is	used	for	married	women
Dr:	It	is	used	for	a	person	in	the	US	who	owns	his	first	professional	degree

http://en.wikipedia.org/wiki/English_honorific




Exploring	and	visualizing	data
After	imputing	the	missing	values,	one	should	perform	an	exploratory	analysis,	which
involves	using	a	visualization	plot	and	an	aggregation	method	to	summarize	the	data
characteristics.	The	result	helps	the	user	gain	a	better	understanding	of	the	data	in	use.	The
following	recipe	will	introduce	how	to	use	basic	plotting	techniques	with	a	view	to	help
the	user	with	exploratory	analysis.



Getting	ready
This	recipe	needs	the	previous	recipe	to	be	completed	by	imputing	the	missing	value	in	the
age	and	Embarked	attribute.



How	to	do	it…
Perform	the	following	steps	to	explore	and	visualize	data:

1.	 First,	you	can	use	a	bar	plot	and	histogram	to	generate	descriptive	statistics	for	each
attribute,	starting	with	passenger	survival:

>	barplot(table(train.data$Survived),	main="Passenger	Survival",		

names=	c("Perished",	"Survived"))

Passenger	survival

2.	 We	can	generate	the	bar	plot	of	passenger	class:

>	barplot(table(train.data$Pclass),	main="Passenger	Class",		names=	

c("first",	"second",	"third"))



Passenger	class

3.	 Next,	we	outline	the	gender	data	with	the	bar	plot:

>	barplot(table(train.data$Sex),	main="Passenger	Gender")

Passenger	gender

4.	 We	then	plot	the	histogram	of	the	different	ages	with	the	hist	function:

>	hist(train.data$Age,	main="Passenger	Age",	xlab	=	"Age")



Passenger	age

5.	 We	can	plot	the	bar	plot	of	sibling	passengers	to	get	the	following:

>	barplot(table(train.data$SibSp),	main="Passenger	Siblings")

Passenger	siblings

6.	 Next,	we	can	get	the	distribution	of	the	passenger	parch:

>	barplot(table(train.data$Parch),	main="Passenger	Parch")



Passenger	parch

7.	 Next,	we	plot	the	histogram	of	the	passenger	fares:

>	hist(train.data$Fare,	main="Passenger	Fare",	xlab	=	"Fare")

Passenger	fares

8.	 Finally,	one	can	look	at	the	port	of	embarkation:

>	barplot(table(train.data$Embarked),	main="Port	of	Embarkation")



Port	of	embarkation

9.	 Use	barplot	to	find	out	which	gender	is	more	likely	to	perish	during	shipwrecks:

>	counts	=	table(	train.data$Survived,	train.data$Sex)

>	barplot(counts,		col=c("darkblue","red"),	legend	=	c("Perished",	

"Survived"),	main	=	"Passenger	Survival	by	Sex")

Passenger	survival	by	sex



10.	 Next,	we	should	examine	whether	the	Pclass	factor	of	each	passenger	may	affect	the
survival	rate:

>	counts	=	table(	train.data$Survived,	train.data$Pclass)

>	barplot(counts,		col=c("darkblue","red"),	legend	=c("Perished",	

"Survived"),	main=	"Titanic	Class	Bar	Plot"	)

Passenger	survival	by	class

11.	 Next,	we	examine	the	gender	composition	of	each	Pclass:

>	counts	=	table(	train.data$Sex,	train.data$Pclass)

>	barplot(counts,		col=c("darkblue","red"),	legend	=	rownames(counts),	

main=	"Passenger	Gender	by	Class")



Passenger	gender	by	class

12.	 Furthermore,	we	examine	the	histogram	of	passenger	ages:

>	hist(train.data$Age[which(train.data$Survived	==	"0")],	main=	

"Passenger	Age	Histogram",	xlab="Age",	ylab="Count",	col	="blue",	

breaks=seq(0,80,by=2))

>	hist(train.data$Age[which(train.data$Survived	==	"1")],	col	="red",	

add	=	T,	breaks=seq(0,80,by=2))

Passenger	age	histogram



13.	 To	examine	more	details	about	the	relationship	between	the	age	and	survival	rate,	one
can	use	a	boxplot:

>	boxplot(train.data$Age	~	train.data$Survived,	

+									main="Passenger	Survival	by	Age",

+									xlab="Survived",	ylab="Age")

Passenger	survival	by	age

14.	 To	categorize	people	with	different	ages	into	different	groups,	such	as	children
(below	13),	youths	(13	to	19),	adults	(20	to	65),	and	senior	citizens	(above	65),
execute	the	following	commands:

>train.child	=	train.data$Survived[train.data$Age	<	13]

>	length(train.child[which(train.child	==	1)]	)	/	length(train.child)

	[1]	0.5797101

>	train.youth	=	train.data$Survived[train.data$Age	>=	15	&	

train.data$Age	<	25]

>	length(train.youth[which(train.youth	==	1)]	)	/	length(train.youth)

[1]	0.4285714

>	train.adult		=	train.data$Survived[train.data$Age	>=	20	&	

train.data$Age	<	65]

>	length(train.adult[which(train.adult	==	1)]	)	/	length(train.adult)

	[1]	0.3659218

>	train.senior		=	train.data$Survived[train.data$Age	>=	65]

>	length(train.senior[which(train.senior	==	1)]	)	/	

length(train.senior)

[1]	0.09090909



How	it	works…
Before	we	predict	the	survival	rate,	one	should	first	use	the	aggregation	and	visualization
method	to	examine	how	each	attribute	affects	the	fate	of	the	passengers.	Therefore,	we
begin	the	examination	by	generating	a	bar	plot	and	histogram	of	each	attribute.

The	plots	from	the	screenshots	in	the	preceding	list	give	one	an	outline	of	each	attribute	of
the	Titanic	dataset.	As	per	the	first	screenshot,	more	passengers	perished	than	survived
during	the	shipwreck.	Passengers	in	the	third	class	made	up	the	biggest	number	out	of	the
three	classes	on	board,	which	also	reflects	the	truth	that	the	third	class	was	the	most
economical	class	on	the	Titanic	(step	2).	For	the	sex	distribution,	there	were	more	male
passengers	than	female	(step	3).	As	for	the	age	distribution,	the	screenshot	in	step	4	shows
that	most	passengers	were	aged	between	20	to	40.	According	to	the	screenshot	in	step	5,
most	passengers	had	one	or	fewer	siblings.	The	screenshot	in	step	6	shows	that	most	of	the
passengers	have	0	to	2	parch.

In	the	screenshot	in	step	7,	the	fare	histogram	shows	there	were	fare	differences,	which
may	be	as	a	result	of	the	different	passenger	classes	on	the	Titanic.	At	last,	the	screenshot
in	step	8	shows	that	the	boat	made	three	stops	to	pick	up	passengers.

As	we	began	the	exploration	from	the	sex	attribute,	and	judging	by	the	resulting	bar	plot,
it	clearly	showed	that	female	passengers	had	a	higher	rate	of	survival	than	males	during
the	shipwreck	(step	9).	In	addition	to	this,	the	Wikipedia	entry	for	RMS	Titanic
(http://en.wikipedia.org/wiki/RMS_Titanic)	explains	that	‘A	disproportionate	number	of
men	were	left	aboard	because	of	a	“women	and	children	first”	protocol	followed	by	some
of	the	officers	loading	the	lifeboats’.	Therefore,	it	is	reasonable	that	the	number	of	female
survivors	outnumbered	the	male	survivors.	In	other	words,	simply	using	sex	can	predict
whether	a	person	will	survive	with	a	high	degree	of	accuracy.

Then,	we	examined	whether	the	passenger	class	affected	the	survival	rate	(step	10).	Here,
from	the	definition	of	Pclass,	the	fares	for	each	class	were	priced	accordingly	with	the
quality;	high	fares	for	first	class,	and	low	fares	for	third	class.	As	the	class	of	each
passenger	seemed	to	indicate	their	social	and	financial	status,	it	is	fair	to	assume	that	the
wealthier	passengers	may	have	had	more	chances	to	survive.

Unfortunately,	there	was	no	correlation	between	the	class	and	survival	rate,	so	the	result
does	not	show	the	phenomenon	we	assumed.	Nevertheless,	after	we	examined	sex	in	the
composition	of	pclass	(step	11),	the	results	revealed	that	most	third-class	passengers	were
male;	the	assumption	of	wealthy	people	tending	to	survive	more	may	not	be	that	concrete.

Next,	we	examined	the	relationship	between	the	age	and	passenger	fate	through	a
histogram	and	box	plot	(step	12).	The	bar	plot	shows	the	age	distribution	with	horizontal
columns	in	which	red	columns	represent	the	passengers	that	survived,	while	blue	columns
represent	those	who	perished.	It	is	hard	to	tell	the	differences	in	the	survival	rate	from	the
ages	of	different	groups.	The	bar	plots	that	we	created	did	not	prove	that	passengers	in
different	age	groups	were	more	likely	to	survive.	On	the	other	hand,	the	plots	showed	that
most	people	on	board	were	aged	between	20	to	40,	but	does	not	show	whether	this	group
was	more	likely	to	survive	compared	to	elderly	or	young	children	(step	13).	Here,	we

http://en.wikipedia.org/wiki/RMS_Titanic


introduced	a	box	plot,	which	is	a	standardized	plotting	technique	that	displays	the
distribution	of	data	with	information,	such	as	minimum,	first	quartile,	median,	third
quartile,	maximum,	and	outliers.

Later,	we	further	examined	whether	age	groups	have	any	relation	to	passenger	fates,	by
categorizing	passenger	ages	into	four	groups.	The	statistics	show	the	the	children	group
(below	13)	was	more	likely	to	survive	than	the	youths	(13	to	20),	adults	(20	to	65),	and
senior	citizens	(above	65).	The	results	showed	that	people	in	the	younger	age	groups	were
more	likely	to	survive	the	shipwreck.	However,	we	noted	that	this	possibly	resulted	from
the	‘women	and	children	first’	protocol.



There’s	more…
Apart	from	using	bar	plots,	histograms,	and	boxplots	to	visualize	data,	one	can	also	apply
mosaicplot	in	the	vcd	package	to	examine	the	relationship	between	multiple	categorical
variables.	For	example,	when	we	examine	the	relationship	between	the	Survived	and
Pclass	variables,	the	application	is	performed	as	follows:

>	mosaicplot(train.data$Pclass	~	train.data$Survived,	

+											main="Passenger	Survival	Class",	color=TRUE,		

+		xlab="Pclass",	ylab="Survived")

Passenger	survival	by	class



See	also
For	more	information	about	the	shipwreck,	one	can	read	the	history	of	RMS	Titanic
(please	refer	to	the	entry	Sinking	of	the	RMS	Titanic	in	Wikipedia
http://en.wikipedia.org/wiki/Sinking_of_the_RMS_Titanic),	as	some	of	the	protocol
practiced	at	that	time	may	have	substantially	affected	the	passenger	survival	rate.

http://en.wikipedia.org/wiki/Sinking_of_the_RMS_Titanic




Predicting	passenger	survival	with	a
decision	tree
The	exploratory	analysis	helps	users	gain	insights	into	how	single	or	multiple	variables
may	affect	the	survival	rate.	However,	it	does	not	determine	what	combinations	may
generate	a	prediction	model,	so	as	to	predict	the	passengers’	survival.	On	the	other	hand,
machine	learning	can	generate	a	prediction	model	from	a	training	dataset,	so	that	the	user
can	apply	the	model	to	predict	the	possible	labels	from	the	given	attributes.	In	this	recipe,
we	will	introduce	how	to	use	a	decision	tree	to	predict	passenger	survival	rates	from	the
given	variables.



Getting	ready
We	will	use	the	data,	train.data,	that	we	have	already	used	in	our	previous	recipes.



How	to	do	it…
Perform	the	following	steps	to	predict	the	passenger	survival	with	the	decision	tree:

1.	 First,	we	construct	a	data	split	split.data	function	with	three	input	parameters:
data,	p,	and	s.	The	data	parameter	stands	for	the	input	dataset,	the	p	parameter
stands	for	the	proportion	of	generated	subset	from	the	input	dataset,	and	the	s
parameter	stands	for	the	random	seed:

>	split.data	=	function(data,	p	=	0.7,	s	=	666){

+					set.seed(s)

+					index	=	sample(1:dim(data)[1])

+					train	=	data[index[1:floor(dim(data)[1]	*	p)],	]

+					test	=	data[index[((ceiling(dim(data)[1]	*	p))	+	1):dim(data)

[1]],	]

+					return(list(train	=	train,	test	=	test))

+	}	

2.	 Then,	we	split	the	data,	with	70	percent	assigned	to	the	training	dataset	and	the
remaining	30	percent	for	the	testing	dataset:

>	allset=	split.data(train.data,	p	=	0.7)	

>	trainset	=	allset$train	

>	testset	=	allset$test

3.	 For	the	condition	tree,	one	has	to	use	the	ctree	function	from	the	party	package;
therefore,	we	install	and	load	the	party	package:

>	install.packages('party')

>	require('party')

4.	 We	then	use	Survived	as	a	label	to	generate	the	prediction	model	in	use.	After	that,
we	assign	the	classification	tree	model	into	the	train.ctree	variable:

>	train.ctree	=	ctree(Survived	~	Pclass	+	Sex	+	Age	+	SibSp	+	Fare	+	

Parch	+	Embarked,	data=trainset)

>	train.ctree

			Conditional	inference	tree	with	7	terminal	nodes

Response:		Survived	

Inputs:		Pclass,	Sex,	Age,	SibSp,	Fare,	Parch,	Embarked	

Number	of	observations:		623	

1)	Sex	==	{male};	criterion	=	1,	statistic	=	173.672

		2)	Pclass	==	{2,	3};	criterion	=	1,	statistic	=	30.951

				3)	Age	<=	9;	criterion	=	0.997,	statistic	=	12.173

						4)	SibSp	<=	1;	criterion	=	0.999,	statistic	=	15.432

								5)*		weights	=	10	

						4)	SibSp	>	1

								6)*		weights	=	11	

				3)	Age	>	9

						7)*		weights	=	282	

		2)	Pclass	==	{1}

				8)*		weights	=	87	



1)	Sex	==	{female}

		9)	Pclass	==	{1,	2};	criterion	=	1,	statistic	=	59.504

				10)*		weights	=	125	

		9)	Pclass	==	{3}

				11)	Fare	<=	23.25;	criterion	=	0.997,	statistic	=	12.456

						12)*		weights	=	85	

				11)	Fare	>	23.25

						13)*		weights	=	23	

5.	 We	use	a	plot	function	to	plot	the	tree:

>	plot(train.ctree,	main="Conditional	inference	tree	of	Titanic	

Dataset")

Conditional	inference	tree	of	the	Titanic	dataset



How	it	works…
This	recipe	introduces	how	to	use	a	conditional	inference	tree,	ctree,	to	predict	passenger
survival.	While	the	conditional	inference	tree	is	not	the	only	method	to	solve	the
classification	problem,	it	is	an	easy	method	to	comprehend	the	decision	path	to	predict
passenger	survival.

We	first	split	the	data	into	a	training	and	testing	set	by	using	our	implemented	function,
split.data.	So,	we	can	then	use	the	training	set	to	generate	a	prediction	model	and	later
employ	the	prediction	model	on	the	testing	dataset	in	the	recipe	of	the	model	assessment.
Then,	we	install	and	load	the	party	package,	and	use	ctree	to	build	a	prediction	model,
with	Survived	as	its	label.	Without	considering	any	particular	attribute,	we	put	attributes
such	as	Pclass,	Sex,	Age,	SibSp,	Parch,	Embarked,	and	Fare	as	training	attributes,	except
for	Cabin,	as	most	of	this	attribute’s	values	are	missing.

After	constructing	the	prediction	model,	we	can	either	print	out	the	decision	path	and	node
in	a	text	mode,	or	use	a	plot	function	to	plot	the	decision	tree.	From	the	decision	tree,	the
user	can	see	what	combination	of	variables	may	be	helpful	in	predicting	the	survival	rate.
As	per	the	preceding	screenshot,	users	can	find	a	combination	of	Pclass	and	Sex,	which
served	as	a	good	decision	boundary	(node	9)	to	predict	the	survival	rates.	This	shows
female	passengers	who	were	in	first	and	second	class	mostly	survived	the	shipwreck.	Male
passengers,	those	in	second	and	third	class	and	aged	over	nine,	almost	all	perished	during
the	shipwreck.	From	the	tree,	one	may	find	that	attributes	such	as	Embarked	and	Parch	are
missing.	This	is	because	the	conditional	inference	tree	regards	these	attributes	as	less
important	during	classification.

From	the	decision	tree,	the	user	can	see	what	combination	of	variables	may	be	helpful	in
predicting	the	survival	rate.	Furthermore,	a	conditional	inference	tree	is	helpful	in
selecting	important	attributes	during	the	classification	process;	one	can	examine	the	built
tree	to	see	whether	the	selected	attribute	matches	one’s	presumption.



There’s	more…
This	recipe	covers	issues	relating	to	classification	algorithms	and	conditional	inference
trees.	Since	we	do	not	discuss	the	background	knowledge	of	the	adapted	algorithm,	it	is
better	for	the	user	to	use	the	help	function	to	view	the	documents	related	to	ctree	in	the
party	package,	if	necessary.

There	is	a	similar	decision	tree	based	package,	named	rpart.	The	difference	between
party	and	rpart	is	that	ctree	in	the	party	package	avoids	the	following	variable	selection
bias	of	rpart	and	ctree	in	the	party	package,	tending	to	select	variables	that	have	many
possible	splits	or	many	missing	values.	Unlike	the	others,	ctree	uses	a	significance	testing
procedure	in	order	to	select	variables,	instead	of	selecting	the	variable	that	maximizes	an
information	measure.

Besides	ctree,	one	can	also	use	svm	to	generate	a	prediction	model.	To	load	the	svm
function,	load	the	e1071	package	first,	and	then	use	the	svm	build	to	generate	this
prediction:

>	install.packages('e1071')

>	require('e1071')

>	svm.model	=	svm(Survived	~	Pclass	+	Sex	+	Age	+	SibSp	+	Fare	+	Parch	+	

Embarked,	data	=	trainset,	probability	=	TRUE)

Here,	we	use	svm	to	show	how	easy	it	is	that	you	can	immediately	use	different	machine
learning	algorithms	on	the	same	dataset	when	using	R.	For	further	information	on	how	to
use	svm,	please	refer	to	Chapter	6,	Classification	(II)	–	Neural	Network,	SVM.





Validating	the	power	of	prediction	with	a
confusion	matrix
After	constructing	the	prediction	model,	it	is	important	to	validate	how	the	model
performs	while	predicting	the	labels.	In	the	previous	recipe,	we	built	a	model	with	ctree
and	pre-split	the	data	into	a	training	and	testing	set.	For	now,	users	will	learn	to	validate
how	well	ctree	performs	in	a	survival	prediction	via	the	use	of	a	confusion	matrix.



Getting	ready
Before	assessing	the	prediction	model,	first	be	sure	that	the	generated	training	set	and
testing	dataset	are	within	the	R	session.



How	to	do	it…
Perform	the	following	steps	to	validate	the	prediction	power:

1.	 We	start	using	the	constructed	train.ctree	model	to	predict	the	survival	of	the
testing	set:

>	ctree.predict	=	predict(train.ctree,	testset)

2.	 First,	we	install	the	caret	package,	and	then	load	it:

>	install.packages("caret")

>	require(caret)

3.	 After	loading	caret,	one	can	use	a	confusion	matrix	to	generate	the	statistics	of	the
output	matrix:

>	confusionMatrix(ctree.predict,	testset$Survived)

Confusion	Matrix	and	Statistics

										Reference

Prediction			0			1

									0	160		25

									1		16		66

																																										

															Accuracy	:	0.8464										

																	95%	CI	:	(0.7975,	0.8875)

				No	Information	Rate	:	0.6592										

				P-Value	[Acc	>	NIR]	:	4.645e-12							

																																										

																		Kappa	:	0.6499										

	Mcnemar's	Test	P-Value	:	0.2115										

																																										

												Sensitivity	:	0.9091										

												Specificity	:	0.7253										

									Pos	Pred	Value	:	0.8649										

									Neg	Pred	Value	:	0.8049										

													Prevalence	:	0.6592										

									Detection	Rate	:	0.5993										

			Detection	Prevalence	:	0.6929										

						Balanced	Accuracy	:	0.8172										

																																										

							'Positive'	Class	:	0



How	it	works…
After	building	the	prediction	model	in	the	previous	recipe,	it	is	important	to	measure	the
performance	of	the	constructed	model.	The	performance	can	be	assessed	by	whether	the
prediction	result	matches	the	original	label	contained	in	the	testing	dataset.	The
assessment	can	be	done	by	using	the	confusion	matrix	provided	by	the	caret	package	to
generate	a	confusion	matrix,	which	is	one	method	to	measure	the	accuracy	of	predictions.

To	generate	a	confusion	matrix,	a	user	needs	to	install	and	load	the	caret	package	first.
The	confusion	matrix	shows	that	purely	using	ctree	can	achieve	accuracy	of	up	to	84
percent.	One	may	generate	a	better	prediction	model	by	tuning	the	attribute	used,	or	by
replacing	the	classification	algorithm	to	SVM,	glm,	or	random	forest.



There’s	more…
A	caret	package	(Classification	and	Regression	Training)	helps	make	iterating	and
comparing	different	predictive	models	very	convenient.	The	package	also	contains	several
functions,	including:

Data	splits
Common	preprocessing:	creating	dummy	variables,	identifying	zero-	and	near-zero-
variance	predictors,	finding	correlated	predictors,	centering,	scaling,	and	so	on
Training	(using	cross-validation)
Common	visualizations	(for	example,	featurePlot)





Assessing	performance	with	the	ROC
curve
Another	measurement	is	by	using	the	ROC	curve	(this	requires	the	ROCR	package),	which
plots	a	curve	according	to	its	true	positive	rate	against	its	false	positive	rate.	This	recipe
will	introduce	how	we	can	use	the	ROC	curve	to	measure	the	performance	of	the
prediction	model.



Getting	ready
Before	applying	the	ROC	curve	to	assess	the	prediction	model,	first	be	sure	that	the
generated	training	set,	testing	dataset,	and	built	prediction	model,	ctree.predict,	are
within	the	R	session.



How	to	do	it…
Perform	the	following	steps	to	assess	prediction	performance:

1.	 Prepare	the	probability	matrix:

>	train.ctree.pred	=	predict(train.ctree,	testset)

>	train.ctree.prob	=		1-	unlist(treeresponse(train.ctree,	testset),	

use.names=F)[seq(1,nrow(testset)*2,2)]

2.	 Install	and	load	the	ROCR	package:

>	install.packages("ROCR")

>	require(ROCR)

3.	 Create	an	ROCR	prediction	object	from	probabilities:

>	train.ctree.prob.rocr	=	prediction(train.ctree.prob,	

testset$Survived)

4.	 Prepare	the	ROCR	performance	object	for	the	ROC	curve	(tpr=true	positive
rate,	fpr=false	positive	rate)	and	the	area	under	curve	(AUC):

>	train.ctree.perf	=	performance(train.ctree.prob.rocr,	"tpr","fpr")

>	train.ctree.auc.perf	=		performance(train.ctree.prob.rocr,	measure	=	

"auc",	x.measure	=	"cutoff")

5.	 Plot	the	ROC	curve,	with	colorize	as	TRUE,	and	put	AUC	as	the	title:

>	plot(train.ctree.perf,	col=2,colorize=T,	main=paste("AUC:",	

train.ctree.auc.perf@y.values))

ROC	of	the	prediction	model



How	it	works…
Here,	we	first	create	the	prediction	object	from	the	probabilities	matrix,	and	then	prepare
the	ROCR	performance	object	for	the	ROC	curve	(tpr=true	positive	rate,	fpr=false
positive	rate)	and	the	AUC.	Lastly,	we	use	the	plot	function	to	draw	the	ROC	curve.

The	result	drawn	in	the	preceding	screenshot	is	interpreted	in	the	following	way:	the	larger
under	the	curve	(a	perfect	prediction	will	make	AUC	equal	to	1),	the	better	the	prediction
accuracy	of	the	model.	Our	model	returns	a	value	of	0.857,	which	suggests	that	the	simple
conditional	inference	tree	model	is	powerful	enough	to	make	survival	predictions.



See	also
To	get	more	information	on	the	ROCR,	you	can	read	the	paper	Sing,	T.,	Sander,	O.,
Berenwinkel,	N.,	and	Lengauer,	T.	(2005).	ROCR:	visualizing	classifier	performance
in	R.	Bioinformatics,	21(20),	3940-3941.





Chapter	3.	R	and	Statistics
In	this	chapter,	we	will	cover	the	following	topics:

Understanding	data	sampling	in	R
Operating	a	probability	distribution	in	R
Working	with	univariate	descriptive	statistics	in	R
Performing	correlations	and	multivariate	analysis
Operating	linear	regression	and	a	multivariate	analysis
Conducting	an	exact	binomial	test
Performing	student’s	t-test
Performing	the	Kolmogorov-Smirnov	test
Understanding	the	Wilcoxon	Rank	Sum	and	Signed	Rank	test
Working	with	Pearson’s	Chi-squared	test
Conducting	a	one-way	ANOVA
Performing	a	two-way	ANOVA



Introduction
The	R	language,	as	the	descendent	of	the	statistics	language,	S,	has	become	the	preferred
computing	language	in	the	field	of	statistics.	Moreover,	due	to	its	status	as	an	active
contributor	in	the	field,	if	a	new	statistical	method	is	discovered,	it	is	very	likely	that	this
method	will	first	be	implemented	in	the	R	language.	As	such,	a	large	quantity	of	statistical
methods	can	be	fulfilled	by	applying	the	R	language.

To	apply	statistical	methods	in	R,	the	user	can	categorize	the	method	of	implementation
into	descriptive	statistics	and	inferential	statistics:

Descriptive	statistics:	These	are	used	to	summarize	the	characteristics	of	the	data.
The	user	can	use	mean	and	standard	deviation	to	describe	numerical	data,	and	use
frequency	and	percentages	to	describe	categorical	data.
Inferential	statistics:	Based	on	the	pattern	within	a	sample	data,	the	user	can	infer
the	characteristics	of	the	population.	The	methods	related	to	inferential	statistics	are
for	hypothesis	testing,	data	estimation,	data	correlation,	and	relationship	modeling.
Inference	can	be	further	extended	to	forecasting,	prediction,	and	estimation	of
unobserved	values	either	in	or	associated	with	the	population	being	studied.

In	the	following	recipe,	we	will	discuss	examples	of	data	sampling,	probability
distribution,	univariate	descriptive	statistics,	correlations	and	multivariate	analysis,	linear
regression	and	multivariate	analysis,	Exact	Binomial	Test,	student’s	t-test,	Kolmogorov-
Smirnov	test,	Wilcoxon	Rank	Sum	and	Signed	Rank	test,	Pearson’s	Chi-squared	Test,
One-way	ANOVA,	and	Two-way	ANOVA.





Understanding	data	sampling	in	R
Sampling	is	a	method	to	select	a	subset	of	data	from	a	statistical	population,	which	can	use
the	characteristics	of	the	population	to	estimate	the	whole	population.	The	following
recipe	will	demonstrate	how	to	generate	samples	in	R.



Getting	ready
Make	sure	that	you	have	an	R	working	environment	for	the	following	recipe.



How	to	do	it…
Perform	the	following	steps	to	understand	data	sampling	in	R:

1.	 In	order	to	generate	random	samples	of	a	given	population,	the	user	can	simply	use
the	sample	function:

>	sample(1:10)

2.	 To	specify	the	number	of	items	returned,	the	user	can	set	the	assigned	value	to	the
size	argument:

>	sample(1:10,	size	=	5)

3.	 Moreover,	the	sample	can	also	generate	Bernoulli	trials	by	specifying	replace	=
TRUE	(default	is	FALSE):

>	sample(c(0,1),	10,	replace	=	TRUE)



How	it	works…
As	we	saw	in	the	preceding	demonstration,	the	sample	function	can	generate	random
samples	from	a	specified	population.	The	returned	number	from	records	can	be	designated
by	the	user	simply	by	specifying	the	argument	of	size.	Assigning	the	replace	argument
to	TRUE,	you	can	generate	Bernoulli	trials	(a	population	with	0	and	1	only).



See	also
In	R,	the	default	package	provides	another	sample	method,	sample.int,	where	both	n
and	size	must	be	supplied	as	integers:

>	sample.int(20,	12)





Operating	a	probability	distribution	in	R
Probability	distribution	and	statistics	analysis	are	closely	related	to	each	other.	For
statistics	analysis,	analysts	make	predictions	based	on	a	certain	population,	which	is
mostly	under	a	probability	distribution.	Therefore,	if	you	find	that	the	data	selected	for
prediction	does	not	follow	the	exact	assumed	probability	distribution	in	experiment
design,	the	upcoming	results	can	be	refuted.	In	other	words,	probability	provides	the
justification	for	statistics.	The	following	examples	will	demonstrate	how	to	generate
probability	distribution	in	R.



Getting	ready
Since	most	distribution	functions	originate	from	the	stats	package,	make	sure	the	library
stats	are	loaded.



How	to	do	it…
Perform	the	following	steps:

1.	 For	a	normal	distribution,	the	user	can	use	dnorm,	which	will	return	the	height	of	a
normal	curve	at	0:

>	dnorm(0)

[1]	0.3989423

2.	 Then,	the	user	can	change	the	mean	and	the	standard	deviation	in	the	argument:

>	dnorm(0,mean=3,sd=5)

[1]	0.06664492

3.	 Next,	plot	the	graph	of	a	normal	distribution	with	the	curve	function:

>	curve(dnorm,-3,3)

Standard	normal	distribution

4.	 In	contrast	to	dnorm,	which	returns	the	height	of	a	normal	curve,	the	pnorm	function
can	return	the	area	under	a	given	value:

>	pnorm(1.5)

[1]	0.9331928

5.	 Alternatively,	to	get	the	area	above	a	certain	value,	you	can	specify	the	option,
lower.tail,	to	FALSE:

>	pnorm(1.5,	lower.tail=FALSE)



[1]	0.0668072

6.	 To	plot	the	graph	of	pnorm,	the	user	can	employ	a	curve	function:

>	curve(pnorm(x),	-3,3)

Cumulative	density	function	(pnorm)

7.	 To	calculate	the	quantiles	for	a	specific	distribution,	you	can	use	qnorm.	The	function,
qnorm,	can	be	treated	as	the	inverse	of	pnorm,	which	returns	the	Z-score	of	a	given
probability:

>	qnorm(0.5)

[1]	0

>	qnorm(pnorm(0))

[1]	0

8.	 To	generate	random	numbers	from	a	normal	distribution,	one	can	use	the	rnorm
function	and	specify	the	number	of	generated	numbers.	Also,	one	can	define	optional
arguments,	such	as	the	mean	and	standard	deviation:

>	set.seed(50)

>	x	=	rnorm(100,mean=3,sd=5)

>	hist(x)



Histogram	of	a	normal	distribution

9.	 To	calculate	the	uniform	distribution,	the	runif	function	generates	random	numbers
from	a	uniform	distribution.	The	user	can	specify	the	range	of	the	generated	numbers
by	specifying	variables,	such	as	the	minimum	and	maximum.	For	the	following
example,	the	user	generates	100	random	variables	from	0	to	5:

>	set.seed(50)

>	y	=	runif(100,0,5)

>	hist(y)



Histogram	of	a	uniform	distribution

10.	 Lastly,	if	you	would	like	to	test	the	normality	of	the	data,	the	most	widely	used	test
for	this	is	the	Shapiro-Wilks	test.	Here,	we	demonstrate	how	to	perform	a	test	of
normality	on	both	samples	from	the	normal	and	uniform	distributions,	respectively:

>	shapiro.test(x)

		Shapiro-Wilk	normality	test

data:		x	

W	=	0.9938,	p-value	=	0.9319

>	shapiro.test(y)

		Shapiro-Wilk	normality	test

data:		y	

W	=	0.9563,	p-value	=	0.002221



How	it	works…
In	this	recipe,	we	first	introduce	dnorm,	a	probability	density	function,	which	returns	the
height	of	a	normal	curve.	With	a	single	input	specified,	the	input	value	is	called	a	standard
score	or	a	z-score.	Without	any	other	arguments	specified,	it	is	assumed	that	the	normal
distribution	is	in	use	with	a	mean	of	zero	and	a	standard	deviation	of	one.	We	then
introduce	three	ways	to	draw	standard	and	normal	distributions.

After	this,	we	introduce	pnorm,	a	cumulative	density	function.	The	function,	pnorm,	can
generate	the	area	under	a	given	value.	In	addition	to	this,	pnorm	can	be	also	used	to
calculate	the	p-value	from	a	normal	distribution.	One	can	get	the	p-value	by	subtracting	1
from	the	number,	or	assigning	True	to	the	option,	lower.tail.	Similarly,	one	can	use	the
plot	function	to	plot	the	cumulative	density.

In	contrast	to	pnorm,	qnorm	returns	the	z-score	of	a	given	probability.	Therefore,	the
example	shows	that	the	application	of	a	qnorm	function	to	a	pnorm	function	will	produce
the	exact	input	value.

Next,	we	show	you	how	to	use	the	rnrom	function	to	generate	random	samples	from	a
normal	distribution,	and	the	runif	function	to	generate	random	samples	from	the	uniform
distribution.	In	the	function,	rnorm,	one	has	to	specify	the	number	of	generated	numbers
and	we	may	also	add	optional	augments,	such	as	the	mean	and	standard	deviation.	Then,
by	using	the	hist	function,	one	should	be	able	to	find	a	bell-curve	in	figure	3.	On	the
other	hand,	for	the	runif	function,	with	the	minimum	and	maximum	specifications,	one
can	get	a	list	of	sample	numbers	between	the	two.	However,	we	can	still	use	the	hist
function	to	plot	the	samples.	It	is	clear	that	the	output	figure	(shown	in	the	preceding
figure)	is	not	in	a	bell-shape,	which	indicates	that	the	sample	does	not	come	from	the
normal	distribution.

Finally,	we	demonstrate	how	to	test	data	normality	with	the	Shapiro-Wilks	test.	Here,	we
conduct	the	normality	test	on	both	the	normal	and	uniform	distribution	samples,
respectively.	In	both	outputs,	one	can	find	the	p-value	in	each	test	result.	The	p-value
shows	the	changes,	which	show	that	the	sample	comes	from	a	normal	distribution.	If	the
p-value	is	higher	than	0.05,	we	can	conclude	that	the	sample	comes	from	a	normal
distribution.	On	the	other	hand,	if	the	value	is	lower	than	0.05,	we	conclude	that	the
sample	does	not	come	from	a	normal	distribution.



There’s	more…
Besides	the	normal	distribution,	you	can	obtain	a	t	distribution,	binomial	distribution,	and
Chi-squared	distribution	by	using	the	built-in	functions	of	R.	You	can	use	the	help
function	to	access	further	information	about	this:

For	a	t	distribution:

>	help(TDist)

For	a	binomial	distribution:

>help(Binomial)

For	the	Chi-squared	distribution:

>help(Chisquare)

To	learn	more	about	the	distributions	in	the	package,	the	user	can	access	the	help	function
with	the	keyword	distributions	to	find	all	related	documentation	on	this:

>	help(distributions)





Working	with	univariate	descriptive
statistics	in	R
Univariate	descriptive	statistics	describes	a	single	variable	for	unit	analysis,	which	is	also
the	simplest	form	of	quantitative	analysis.	In	this	recipe,	we	introduce	some	basic
functions	used	to	describe	a	single	variable.



Getting	ready
We	need	to	apply	descriptive	statistics	to	a	sample	data.	Here,	we	use	the	built-in	mtcars
data	as	our	example.



How	to	do	it…
Perform	the	following	steps:

1.	 First,	load	the	mtcars	data	into	a	data	frame	with	a	variable	named	mtcars:

>	data(mtcars)

2.	 To	obtain	the	vector	range,	the	range	function	will	return	the	lower	and	upper	bound
of	the	vector:

>	range(mtcars$mpg)

[1]	10.4	33.9

3.	 Compute	the	length	of	the	variable:

>	length(mtcars$mpg)

[1]	32

4.	 Obtain	the	mean	of	mpg:

>	mean(mtcars$mpg)

[1]	20.09062

5.	 Obtain	the	median	of	the	input	vector:

>	median(mtcars$mpg)

[1]	19.2

6.	 To	obtain	the	standard	deviation	of	the	input	vector:

>	sd(mtcars$mpg)

[1]	6.026948

7.	 To	obtain	the	variance	of	the	input	vector:

>	var(mtcars$mpg)

[1]	36.3241

8.	 The	variance	can	also	be	computed	with	the	square	of	standard	deviation:

>	sd(mtcars$mpg)	^	2

[1]	36.3241

9.	 To	obtain	the	Interquartile	Range	(IQR):

>	IQR(mtcars$mpg)

[1]	7.375

10.	 To	obtain	the	quantile:

>	quantile(mtcars$mpg,0.67)

	67%	

21.4

11.	 To	obtain	the	maximum	of	the	input	vector:

>	max(mtcars$mpg)

[1]	33.9



12.	 To	obtain	the	minima	of	the	input	vector:

>	min(mtcars$mpg)

[1]	10.4

13.	 To	obtain	a	vector	with	elements	that	are	the	cumulative	maxima:

>	cummax(mtcars$mpg)

	[1]	21.0	21.0	22.8	22.8	22.8	22.8	22.8	24.4	24.4	24.4	24.4	24.4	24.4	

24.4	24.4	24.4

[17]	24.4	32.4	32.4	33.9	33.9	33.9	33.9	33.9	33.9	33.9	33.9	33.9	33.9	

33.9	33.9	33.9

14.	 To	obtain	a	vector	with	elements	that	are	the	cumulative	minima:

>	cummin(mtcars$mpg)

	[1]	21.0	21.0	21.0	21.0	18.7	18.1	14.3	14.3	14.3	14.3	14.3	14.3	14.3	

14.3	10.4	10.4

[17]	10.4	10.4	10.4	10.4	10.4	10.4	10.4	10.4	10.4	10.4	10.4	10.4	10.4	

10.4	10.4	10.4

15.	 To	summarize	the	dataset,	you	can	apply	the	summary	function:

>	summary(mtcars)

16.	 To	obtain	a	frequency	count	of	the	categorical	data,	take	cyl	of	mtcars	as	an
example:

>	table(mtcars$cyl)

	4		6		8

11		7	14

17.	 To	obtain	a	frequency	count	of	numerical	data,	you	can	use	a	stem	plot	to	outline	the
data	shape;	stem	produces	a	stem-and-leaf	plot	of	the	given	values:

>	stem(mtcars$mpg)

		The	decimal	point	is	at	the	|

		10	|	44

		12	|	3

		14	|	3702258

		16	|	438

		18	|	17227

		20	|	00445

		22	|	88

		24	|	4

		26	|	03

		28	|	

		30	|	44

		32	|	49

18.	 You	can	use	a	histogram	of	ggplot	to	plot	the	same	stem-and-leaf	figure:

>	library(ggplot2)

>	qplot(mtcars$mpg,	binwidth=2)



Histogram	of	mpg	of	mtcars



How	it	works…
Univariate	descriptive	statistics	generate	the	frequency	distribution	of	datasets.	Moreover,
they	can	be	used	to	identify	the	obvious	patterns	in	the	data	and	the	characteristics	of	the
variates	to	provide	a	better	understanding	of	the	data	from	a	holistic	viewpoint.
Additionally,	they	can	provide	information	about	the	central	tendency	and	descriptors	of
the	skewness	of	individual	cases.	Therefore,	it	is	common	to	see	that	univariate	analysis	is
conducted	at	the	beginning	of	the	data	exploration	process.

To	begin	the	exploration	of	data,	we	first	load	the	dataset,	mtcars,	to	an	R	session.	From
the	data,	we	apply	range,	length,	mean,	median,	sd,	var,	IQR,	quantile,	min,	max,	cumin,
and	cumax	to	obtain	the	descriptive	statistic	of	the	attribute,	mpg.	Then,	we	use	the	summary
function	to	obtain	summary	information	about	mtcars.

Next,	we	obtain	a	frequency	count	of	the	categorical	data	(cyl).	To	obtain	a	frequency
count	of	the	numerical	data,	we	use	a	stem	plot	to	outline	the	data	shape.	Lastly,	we	use	a
histogram	with	the	binwidth	argument	in	2	to	generate	a	plot	similar	to	the	stem-and-leaf
plot.



There’s	more…
One	common	scenario	in	univariate	descriptive	statistics	is	to	find	the	mode	of	a	vector.	In
R,	there	is	no	built-in	function	to	help	the	user	obtain	the	mode	of	the	data.	However,	one
can	implement	the	mode	function	by	using	the	following	code:

>	mode	=	function(x)	{

+	temp	=	table(x)

+	names(temp)[temp	==	max(temp)]

+	}

By	applying	the	mode	function	on	the	vector,	mtcars$mpg,	you	can	find	the	most
frequently	occurring	numeric	value	or	category	of	a	given	vector:

>	x	=	c(1,2,3,3,3,4,4,5,5,5,6)

>	mode(x)

[1]	"3"	"5"





Performing	correlations	and	multivariate
analysis
To	analyze	the	relationship	of	more	than	two	variables,	you	would	need	to	conduct
multivariate	descriptive	statistics,	which	allows	the	comparison	of	factors.	Additionally,	it
prevents	the	effect	of	a	single	variable	from	distorting	the	analysis.	In	this	recipe,	we	will
discuss	how	to	conduct	multivariate	descriptive	statistics	using	a	correlation	and
covariance	matrix.



Getting	ready
Ensure	that	mtcars	has	already	been	loaded	into	a	data	frame	within	an	R	session.



How	to	do	it…
Perform	the	following	steps:

1.	 Here,	you	can	get	the	covariance	matrix	by	inputting	the	first	three	variables	in
mtcars	to	the	cov	function:

>	cov(mtcars[1:3])

													mpg								cyl							disp

mpg				36.324103		-9.172379		-633.0972

cyl				-9.172379			3.189516			199.6603

disp	-633.097208	199.660282	15360.7998

2.	 To	obtain	a	correlation	matrix	of	the	dataset,	we	input	the	first	three	variables	of
mtcars	to	the	cor	function:

>	cor(mtcars[1:3])

												mpg								cyl							disp

mpg			1.0000000	-0.8521620	-0.8475514

cyl		-0.8521620		1.0000000		0.9020329

disp	-0.8475514		0.9020329		1.0000000



How	it	works…
In	this	recipe,	we	have	demonstrated	how	to	apply	correlation	and	covariance	to	discover
the	relationship	between	multiple	variables.

First,	we	compute	a	covariance	matrix	of	the	first	three	mtcars	variables.	Covariance	can
measure	how	variables	are	linearly	related.	Thus,	a	positive	covariance	(for	example,	cyl
versus	mpg)	indicates	that	the	two	variables	are	positively	linearly	related.	On	the	other
hand,	a	negative	covariance	(for	example,	mpg	versus	disp)	indicates	the	two	variables	are
negatively	linearly	related.	However,	due	to	the	variance	of	different	datasets,	the
covariance	score	of	these	datasets	is	not	comparable.	As	a	result,	if	you	would	like	to
compare	the	strength	of	the	linear	relation	between	two	variables	in	a	different	dataset,
you	should	use	the	normalized	score,	that	is,	the	correlation	coefficient	instead	of
covariance.

Next,	we	apply	a	cor	function	to	obtain	a	correlation	coefficient	matrix	of	three	variables
within	the	mtcars	dataset.	In	the	correlation	coefficient	matrix,	the	numeric	element	of	the
matrix	indicates	the	strength	of	the	relationship	between	the	two	variables.	If	the
correlation	coefficient	of	a	variable	against	itself	scores	1,	the	variable	has	a	positive
relationship	against	itself.	The	cyl	and	mpg	variables	have	a	correlation	coefficient	of
-0.85,	which	means	they	have	a	strong,	negative	relationship.	On	the	other	hand,	the	disp
and	cyl	variables	score	0.90,	which	may	indicate	that	they	have	a	strong,	positive
relationship.



See	also
You	can	use	ggplot	to	plot	the	heatmap	of	the	correlation	coefficient	matrix:

>	library(reshape2)

>	qplot(x=Var1,	y=Var2,	data=melt(cor(mtcars[1:3])),	fill=value,	

geom="tile")

The	correlation	coefficient	matrix	heatmap





Operating	linear	regression	and
multivariate	analysis
Linear	regression	is	a	method	to	assess	the	association	between	dependent	and
independent	variables.	In	this	recipe,	we	will	cover	how	to	conduct	linear	regression	for
multivariate	analysis.



Getting	ready
Ensure	that	mtcars	has	already	been	loaded	into	a	data	frame	within	an	R	session.



How	to	do	it…
Perform	the	following	steps:

1.	 To	fit	variables	into	a	linear	model,	you	can	use	the	lm	function:

>	lmfit	=	lm(mtcars$mpg	~	mtcars$cyl)

>	lmfit

Call:

lm(formula	=	mtcars$mpg	~	mtcars$cyl)

Coefficients:

(Intercept)			mtcars$cyl		

					37.885							-2.876	

2.	 To	get	detailed	information	on	the	fitted	model,	you	can	use	the	summary	function:

>	summary(lmfit)

Call:

lm(formula	=	mtcars$mpg	~	mtcars$cyl)

Residuals:

				Min						1Q		Median						3Q					Max	

-4.9814	-2.1185		0.2217		1.0717		7.5186	

Coefficients:

												Estimate	Std.	Error	t	value	Pr(>|t|)				

(Intercept)		37.8846					2.0738			18.27		<	2e-16	***

mtcars$cyl			-2.8758					0.3224			-8.92	6.11e-10	***

---

Signif.	codes:		0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1

Residual	standard	error:	3.206	on	30	degrees	of	freedom

Multiple	R-squared:		0.7262,		Adjusted	R-squared:		0.7171	

F-statistic:	79.56	on	1	and	30	DF,		p-value:	6.113e-10

3.	 To	create	an	analysis	of	a	variance	table,	one	can	employ	the	anova	function:

>	anova(lmfit)

Analysis	of	Variance	Table

Response:	mtcars$mpg

											Df	Sum	Sq	Mean	Sq	F	value				Pr(>F)				

mtcars$cyl		1	817.71		817.71		79.561	6.113e-10	***

Residuals		30	308.33			10.28																						

---

Signif.	codes:		0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1

4.	 To	plot	the	regression	line	on	a	scatter	plot	of	two	variables,	you	first	plot	cyl	against
mpg	in	it,	then	use	the	abline	function	to	add	a	regression	line	on	the	plot:

>	lmfit	=	lm(mtcars$mpg	~	mtcars$cyl)

>	plot(mtcars$cyl,	mtcars$mpg)

>	abline(lmfit)



The	regression	plot	of	cyl	against	mpg



How	it	works…
In	this	recipe,	we	apply	the	linear	model	function,	lm,	which	builds	a	linear	fitted	model	of
two	variables	and	returns	the	formula	and	coefficient.	Next,	we	apply	the	summary
function	to	retrieve	the	detailed	information	(including	F-statistic	and	P-value)	of	the
model.	The	purpose	of	F-statistic	is	to	test	the	statistical	significance	of	the	model.	It
produces	an	F-value,	which	is	the	ratio	of	the	model	mean	square	to	the	error	mean	square.
Thus,	a	large	F-value	indicates	that	more	of	the	total	variability	is	accounted	for	by	the
regression	model.	Then,	we	can	use	the	F-value	to	support	or	reject	the	null	hypothesis
that	all	of	the	regression	coefficients	are	equal	to	zero.	In	other	words,	the	null	hypothesis
is	rejected	if	the	F-value	is	large	and	shows	that	the	regression	model	has	a	predictive
capability.	On	the	other	hand,	P-values	of	each	attribute	test	the	null	hypothesis	that	the
coefficient	is	equal	to	zero	(no	effect	on	the	response	variable).	In	other	words,	a	low	p-
value	can	reject	a	null	hypothesis	and	indicates	that	a	change	in	the	predictor’s	value	is
related	to	the	value	of	the	response	variable.

Next,	we	apply	the	anova	function	on	the	fitted	model	to	determine	the	variance.	The
function	outputs	the	sum	of	squares,	which	stands	for	the	variability	of	the	model’s
predicted	value.	Further,	to	visualize	the	linear	relationship	between	two	variables,	the
abline	function	can	add	a	regression	line	on	a	scatter	plot	of	mpg	against	cyl.	From	the
preceding	figure,	it	is	obvious	that	the	mpg	and	cyl	variables	are	negatively	related.



See	also
For	more	information	on	how	to	perform	linear	and	nonlinear	regression	analysis,
please	refer	to	the	Chapter	4,	Understanding	Regression	Analysis





Conducting	an	exact	binomial	test
While	making	decisions,	it	is	important	to	know	whether	the	decision	error	can	be
controlled	or	measured.	In	other	words,	we	would	like	to	prove	that	the	hypothesis	formed
is	unlikely	to	have	occurred	by	chance,	and	is	statistically	significant.	In	hypothesis
testing,	there	are	two	kinds	of	hypotheses:	null	hypothesis	and	alternative	hypothesis	(or
research	hypothesis).	The	purpose	of	hypothesis	testing	is	to	validate	whether	the
experiment	results	are	significant.	However,	to	validate	whether	the	alternative	hypothesis
is	acceptable,	it	is	deemed	to	be	true	if	the	null	hypothesis	is	rejected.

In	the	following	recipes,	we	will	discuss	some	common	statistical	testing	methods.	First,
we	will	cover	how	to	conduct	an	exact	binomial	test	in	R.



Getting	ready
Since	the	binom.test	function	originates	from	the	stats	package,	make	sure	the	stats
library	is	loaded.



How	to	do	it…
Perform	the	following	step:

1.	 Assume	there	is	a	game	where	a	gambler	can	win	by	rolling	the	number-six-on	a
dice.	As	part	of	the	rules,	gamblers	can	bring	their	own	dice.	If	a	gambler	tried	to
cheat	in	a	game,	he	would	use	a	loaded	dice	to	increase	his	chance	of	winning.
Therefore,	if	we	observe	that	the	gambler	won	92	out	of	315	games,	we	could
determine	whether	the	dice	was	fair	by	conducting	an	exact	binomial	test:

>	binom.test(x=92,	n=315,	p=1/6)

		Exact	binomial	test

data:		92	and	315

number	of	successes	=	92,	number	of	trials	=	315,	p-value	=	3.458e-08

alternative	hypothesis:	true	probability	of	success	is	not	equal	to	

0.1666667

95	percent	confidence	interval:

	0.2424273	0.3456598

sample	estimates:

probability	of	success	

													0.2920635	



How	it	works…
A	binomial	test	uses	the	binomial	distribution	to	find	out	whether	the	true	success	rate	is
likely	to	be	P	for	n	trials	with	the	binary	outcome.	The	formula	of	the	probability,	P,	can
be	defined	in	following	equation:

Here,	X	denotes	the	random	variables,	counting	the	number	of	outcomes	of	the	interest;	n
denotes	the	number	of	trials;	k	indicates	the	number	of	successes;	p	indicates	the
probability	of	success;	and	q	denotes	the	probability	of	failure.

After	we	have	computed	the	probability,	P,	we	can	then	perform	a	sign	test	to	determine
whether	the	success	probability	is	similar	to	what	we	expected.	If	the	probability	is	not
equal	to	what	we	expected,	we	can	reject	the	null	hypothesis.

By	definition,	the	null	hypothesis	is	a	skeptical	perspective	or	a	statement	about	the
population	parameter	that	will	be	tested.	The	null	hypothesis	is	denoted	by	H0.	An
alternative	hypothesis	is	represented	by	a	range	of	population	values,	which	are	not
included	in	the	null	hypothesis.	The	alternative	hypothesis	is	denoted	by	H1.	In	this	case,
the	null	and	alternative	hypothesis,	respectively,	are	illustrated	as:

H0	(null	hypothesis):	The	true	probability	of	success	is	equal	to	what	we	expected
H1	(alternative	hypothesis):	The	true	probability	of	success	is	not	equal	to	what	we
expected

In	this	example,	we	demonstrate	how	to	use	a	binomial	test	to	determine	the	number	of
times	the	dice	is	rolled,	the	frequency	of	rolling	the	number	six,	and	the	probability	of
rolling	a	six	from	an	unbiased	dice.	The	result	of	the	t-test	shows	that	the	p-value	=
3.458e-08	(lower	than	0.05).	For	significance,	at	the	five	percent	level,	the	null	hypothesis
(the	dice	is	unbiased)	is	rejected	as	too	many	sixes	were	rolled	(the	probability	of	success
=	0.2920635).



See	also
To	read	more	about	the	usage	of	the	exact	binomial	test,	please	use	the	help	function
to	view	related	documentation	on	this:

>	?binom.test





Performing	student’s	t-test
A	one	sample	t-test	enables	us	to	test	whether	two	means	are	significantly	different;	a	two
sample	t-test	allows	us	to	test	whether	the	means	of	two	independent	groups	are	different.
In	this	recipe,	we	will	discuss	how	to	conduct	one	sample	t-test	and	two	sample	t-tests
using	R.



Getting	ready
Ensure	that	mtcars	has	already	been	loaded	into	a	data	frame	within	an	R	session.	As	the
t.test	function	originates	from	the	stats	package,	make	sure	the	library,	stats,	is
loaded.



How	to	do	it…
Perform	the	following	steps:

1.	 First,	we	visualize	the	attribute,	mpg,	against	am	using	a	boxplot:

>	boxplot(mtcars$mpg,	mtcars$mpg[mtcars$am==0],	ylab	=	"mpg",	

names=c("overall","automobile"))

>	abline(h=mean(mtcars$mpg),lwd=2,	col="red")

>	abline(h=mean(mtcars$mpg[mtcars$am==0]),lwd=2,	col="blue")

The	boxplot	of	mpg	of	the	overall	population	and	automobiles

2.	 We	then	perform	a	statistical	procedure	to	validate	whether	the	average	mpg	of
automobiles	is	lower	than	the	average	of	the	overall	mpg:

>	mpg.mu	=	mean(mtcars$mpg)

>	mpg_am	=	mtcars$mpg[mtcars$am	==	0]

>	t.test(mpg_am,mu	=	mpg.mu)

		One	Sample	t-test

data:		mpg_am

t	=	-3.3462,	df	=	18,	p-value	=	0.003595

alternative	hypothesis:	true	mean	is	not	equal	to	20.09062

95	percent	confidence	interval:

	15.29946	18.99528

sample	estimates:

mean	of	x	

	17.14737	



3.	 We	begin	visualizing	the	data	by	plotting	a	boxplot:

>boxplot(mtcars$mpg~mtcars$am,ylab='mpg',names=c('automatic','manual'))

>	abline(h=mean(mtcars$mpg[mtcars$am==0]),lwd=2,	col="blue")

>	abline(h=mean(mtcars$mpg[mtcars$am==1]),lwd=2,	col="red")

The	boxplot	of	mpg	of	automatic	and	manual	transmission	cars

4.	 The	preceding	figure	reveals	that	the	mean	mpg	of	automatic	transmission	cars	is
lower	than	the	average	mpg	of	manual	transmission	vehicles:

>	t.test(mtcars$mpg~mtcars$am)

		Welch	Two	Sample	t-test

data:		mtcars$mpg	by	mtcars$am

t	=	-3.7671,	df	=	18.332,	p-value	=	0.001374

alternative	hypothesis:	true	difference	in	means	is	not	equal	to	0

95	percent	confidence	interval:

	-11.280194		-3.209684

sample	estimates:

mean	in	group	0	mean	in	group	1	

							17.14737								24.39231	



How	it	works…
Student’s	t-test	is	where	the	test	statistic	follows	a	normal	distribution	(the	student’s	t
distribution)	if	the	null	hypothesis	is	true.	It	can	be	used	to	determine	whether	there	is	a
difference	between	two	independent	datasets.	Student’s	t-test	is	best	used	with	the
problems	associated	with	an	inference	based	on	small	samples.

In	this	recipe,	we	discuss	one	sample	student’s	t-test	and	two	sample	student’s	t-tests.	In
the	one	sample	student’s	t-test,	a	research	question	often	asked	is,	“Is	the	mean	of	the
population	different	from	the	null	hypothesis?”	Thus,	in	order	to	test	whether	the	average
mpg	of	automobiles	is	lower	than	the	overall	average	mpg,	we	first	use	a	boxplot	to	view
the	differences	between	populations	without	making	any	assumptions.	From	the	preceding
figure,	it	is	clear	that	the	mean	of	mpg	of	automobiles	(the	blue	line)	is	lower	than	the
average	mpg	(red	line)	of	the	overall	population.	Then,	we	apply	one	sample	t-test;	the
low	p-value	of	0.003595	(<	0.05)	suggests	that	we	should	reject	the	null	hypothesis	that
the	mean	mpg	for	automobiles	is	less	than	the	average	mpg	of	the	overall	population.

As	a	one	sample	t-test	enables	us	to	test	whether	two	means	are	significantly	different,	a
two	sample	t-test	allows	us	to	test	whether	the	means	of	two	independent	groups	are
different.	Similar	to	a	one	sample	t-test,	we	first	use	a	boxplot	to	see	the	differences
between	populations	and	then	apply	a	two-sample	t-test.	The	test	results	shows	the	p-value
=	0.01374	(p<	0.05).	In	other	words,	the	test	provides	evidence	that	rejects	the	null
hypothesis,	which	shows	the	mean	mpg	of	cars	with	automatic	transmission	differs	from
the	cars	with	manual	transmission.



See	also
To	read	more	about	the	usage	of	student’s	t-test,	please	use	the	help	function	to	view
related	documents:

>	?t.test





Performing	the	Kolmogorov-Smirnov	test
A	one-sample	Kolmogorov-Smirnov	test	is	used	to	compare	a	sample	with	a	reference
probability.	A	two-sample	Kolmogorov-Smirnov	test	compares	the	cumulative
distributions	of	two	datasets.	In	this	recipe,	we	will	demonstrate	how	to	perform	the
Kolmogorov-Smirnov	test	with	R.



Getting	ready
Ensure	that	mtcars	has	already	been	loaded	into	a	data	frame	within	an	R	session.	As	the
ks.test	function	is	originated	from	the	stats	package,	make	sure	the	stats	library	is
loaded.



How	to	do	it…
Perform	the	following	steps:

1.	 Validate	whether	the	dataset,	x	(generated	with	the	rnorm	function),	is	distributed
normally	with	a	one-sample	Kolmogorov-Smirnov	test:

>	x	=	rnorm(50)

>	ks.test(x,"pnorm")

		One-sample	Kolmogorov-Smirnov	test

data:		x

D	=	0.1698,	p-value	=	0.0994

alternative	hypothesis:	two-sided

2.	 Next,	you	can	generate	uniformly	distributed	sample	data:

>	set.seed(3)

>	x	=	runif(n=20,	min=0,	max=20)

>	y	=	runif(n=20,	min=0,	max=20)

3.	 We	first	plot	ecdf	of	two	generated	data	samples:

>	plot(ecdf(x),	do.points	=	FALSE,	verticals=T,	xlim=c(0,	20))

>	lines(ecdf(y),	lty=3,	do.points	=	FALSE,	verticals=T)

The	ecdf	plot	of	two	generated	data	samples

4.	 Finally,	we	apply	a	two-sample	Kolmogorov-Smirnov	test	on	two	groups	of	data:



>	ks.test(x,y)

		Two-sample	Kolmogorov-Smirnov	test

data:		x	and	y

D	=	0.3,	p-value	=	0.3356

alternative	hypothesis:	two-sided



How	it	works…
The	Kolmogorov-Smirnov	test	(K-S	test)	is	a	nonparametric	and	statistical	test,	used	for
the	equality	of	continuous	probability	distributions.	It	can	be	used	to	compare	a	sample
with	a	reference	probability	distribution	(a	one	sample	K-S	test),	or	it	can	directly	compare
two	samples	(a	two	sample	K-S	test).	The	test	is	based	on	the	empirical	distribution
function	(ECDF).	Let	 	be	a	random	sample	of	size,	n;	the	empirical	distribution

function,	 ,	is	defined	as:

Here,	 	is	the	indicator	function.	If	 ,	the	function	equals	to	1.	Otherwise,	the
function	equals	to	0.

The	Kolmogorov-Smirnov	statistic	(D)	is	based	on	the	greatest	(where	supx	denotes	the
supremum)	vertical	difference	between	F(x)	and	Fn(x).	It	is	defined	as:

H0	is	the	sample	follows	the	specified	distribution.	H1	is	the	sample	does	not	follow	the
specified	distribution.

If	Dn	is	greater	than	the	critical	value	obtained	from	a	table,	then	we	reject	H0	at	the	level
of	significance	α.

We	first	test	whether	a	random	number	generated	from	a	normal	distribution	is	normally
distributed.	At	the	5	percent	significance	level,	the	p-value	of	0.0994	indicates	that	the
input	is	normally	distributed.

Then,	we	plot	an	empirical	cumulative	distribution	function	(ecdf)	plot	to	show	how	a
two-sample	test	calculates	the	maximum	distance	D	(showing	0.3),	and	apply	the	two-
sample	Kolmogorov-Smirnov	test	to	discover	whether	the	two	input	datasets	possibly
come	from	the	same	distribution.

The	p-value	is	above	0.05,	which	does	not	reject	the	null	hypothesis.	In	other	words,	it
means	the	two	datasets	are	possibly	from	the	same	distribution.



See	also
To	read	more	about	the	usage	of	the	Kolmogorov-Smirnov	test,	please	use	the	help
function	to	view	related	documents:

>	?ks.test

As	for	the	definition	of	an	empirical	cumulative	distribution	function,	please	refer	to
the	help	page	of	ecdf:

>	?ecdf





Understanding	the	Wilcoxon	Rank	Sum
and	Signed	Rank	test
The	Wilcoxon	Rank	Sum	and	Signed	Rank	test	(or	Mann-Whitney-Wilcoxon)	is	a
nonparametric	test	of	the	null	hypothesis,	which	shows	that	the	population	distribution	of
two	different	groups	are	identical	without	assuming	that	the	two	groups	are	normally
distributed.	This	recipe	will	show	how	to	conduct	the	Wilcoxon	Rank	Sum	and	Signed
Rank	test	in	R.



Getting	ready
Ensure	that	mtcars	has	already	been	loaded	into	a	data	frame	within	an	R	session.	As	the
wilcox.test	function	is	originated	from	the	stats	package,	make	sure	the	library,	stats,
is	loaded.



How	to	do	it…
Perform	the	following	steps:

1.	 We	first	plot	the	data	of	mtcars	with	the	boxplot	function:

>	

boxplot(mtcars$mpg~mtcars$am,ylab='mpg',names=c('automatic','manual'))

The	boxplot	of	mpg	of	automatic	cars	and	manual	transmission	cars

2.	 Next,	we	still	perform	a	Wilcoxon	Rank	Sum	test	to	validate	whether	the	distribution
of	automatic	transmission	cars	is	identical	to	that	of	manual	transmission	cars:

>	wilcox.test(mpg	~	am,	data=mtcars)

		Wilcoxon	rank	sum	test	with	continuity	correction

data:		mpg	by	am

W	=	42,	p-value	=	0.001871

alternative	hypothesis:	true	location	shift	is	not	equal	to	0

Warning	message:

In	wilcox.test.default(x	=	c(21.4,	18.7,	18.1,	14.3,	24.4,	22.8,		:

		cannot	compute	exact	p-value	with	ties



How	it	works…
In	this	recipe,	we	discuss	a	nonparametric	test	method,	the	Wilcoxon	Rank	Sum	test	(also
known	as	the	Mann-Whitney	U-test).	For	student’s	t-test,	it	is	assumed	that	the	differences
between	the	two	samples	are	normally	distributed	(and	it	also	works	best	when	the	two
samples	are	normally	distributed).	However,	when	the	normality	assumption	is	uncertain,
one	can	adopt	the	Wilcoxon	Rank	Sum	Test	to	test	a	hypothesis.

Here,	we	used	a	Wilcoxon	Rank	Sum	test	to	determine	whether	the	mpg	of	automatic	and
manual	transmission	cars	in	the	dataset,	mtcars,	is	distributed	identically.	From	the	test
result,	we	see	that	the	p-value	=	0.001871	(<	0.05)	rejects	the	null	hypothesis,	and	also
reveals	that	the	distribution	of	mpg	in	automatic	and	manual	transmission	cars	is	not
identical.	When	performing	this	test,	you	may	receive	the	warning	message,	“cannot
compute	exact	p-value	with	ties”,	which	indicates	that	there	are	duplicate	values	within
the	dataset.	The	warning	message	will	be	cleared	once	the	duplicate	values	are	removed.



See	also
To	read	more	about	the	usage	of	the	Wilcoxon	Rank	Sum	and	Signed	Rank	Test,
please	use	the	help	function	to	view	the	concerned	documents:

>	?	wilcox.test





Working	with	Pearson’s	Chi-squared	test
In	this	recipe,	we	introduce	Pearson’s	Chi-squared	test,	which	is	used	to	examine	whether
the	distributions	of	categorical	variables	of	two	groups	differ.	We	will	discuss	how	to
conduct	Pearson’s	Chi-squared	Test	in	R.



Getting	ready
Ensure	that	mtcars	has	already	been	loaded	into	a	data	frame	within	an	R	session.	Since
the	chisq.test	function	is	originated	from	the	stats?	package,	make	sure	the	library,
stats,	is	loaded.



How	to	do	it
Perform	the	following	steps:

1.	 To	make	the	counting	table,	we	first	use	the	contingency	table	built	with	the	inputs	of
the	transmission	type	and	number	of	forward	gears:

>	ftable	=	table(mtcars$am,	mtcars$gear)

>	ftable

			

					3		4		5

		0	15		4		0

		1		0		8		5

2.	 We	then	plot	the	mosaic	plot	of	the	contingency	table:

>	mosaicplot(ftable,	main="Number	of	Forward	Gears	Within	Automatic	and	

Manual	Cars",	color	=	TRUE)

Number	of	forward	gears	in	automatic	and	manual	cars

3.	 Next,	we	perform	the	Pearson’s	Chi-squared	test	on	the	contingency	table	to	test
whether	the	numbers	of	gears	in	automatic	and	manual	transmission	cars	is	the	same:

>	chisq.test(ftable)

		Pearson's	Chi-squared	test

data:		ftable

X-squared	=	20.9447,	df	=	2,	p-value	=	2.831e-05



Warning	message:

In	chisq.test(ftable)	:	Chi-squared	approximation	may	be	incorrect



How	it	works…
Pearson’s	Chi-squared	test	is	a	statistical	test	used	to	discover	whether	there	is	a
relationship	between	two	categorical	variables.	It	is	best	used	for	unpaired	data	from	large
samples.	If	you	would	like	to	conduct	Pearson’s	Chi-squared	test,	you	need	to	make	sure
that	the	input	samples	satisfy	two	assumptions:	firstly,	the	two	input	variables	should	be
categorical.	Secondly,	the	variable	should	include	two	or	more	independent	groups.

In	Pearson’s	Chi-squared	test,	the	assumption	is	that	we	have	two	variables,	A	and	B;	we
can	illustrate	the	null	and	alternative	hypothesis	in	the	following	statements:

H0:	Variable	A	and	variable	B	are	independent
H1:	Variable	A	and	variable	B	are	not	independent

To	test	whether	the	null	hypothesis	is	correct	or	incorrect,	the	Chi-squared	test	takes	these
steps.

It	calculates	the	Chi-squared	test	statistic,	 :

Here,	r	is	the	number	of	rows	in	the	contingency	table,	c	is	the	number	of	columns	in	the
contingency	table,	Oi,j	is	the	observed	frequency	count,	Ei,j	is	the	expected	frequency
count.

It	determines	the	degrees	of	freedom,	df,	of	that	statistic.	The	degree	of	freedom	is	equal
to:

Here,	r	is	the	number	of	levels	for	one	variable,	and	c	is	the	number	of	levels	for	another
variable.

It	compares	 	to	the	critical	value	from	the	Chi-squared	distribution	with	the	degrees	of
freedom.

In	this	recipe,	we	use	a	contingency	table	and	mosaic	plot	to	illustrate	the	differences	in
count	numbers.	It	is	obvious	that	the	number	of	forward	gears	is	less	in	automatic
transmission	cars	than	in	manual	transmission	cars.

Then,	we	perform	the	Pearson’s	Chi-squared	test	on	the	contingency	table	to	determine
whether	the	gears	in	automatic	and	manual	transmission	cars	are	the	same.	The	output,	p-
value	=	2.831e-05	(<	0.05),	refutes	the	null	hypothesis	and	shows	the	number	of	forward



gears	is	different	in	automatic	and	manual	transmission	cars.	However,	the	output	message
contains	a	warning	message	that	Chi-squared	approximation	may	be	incorrect,	which	is
because	the	number	of	samples	in	the	contingency	table	is	less	than	five.



There’s	more…
To	read	more	about	the	usage	of	the	Pearson’s	Chi-squared	test,	please	use	the	help
function	to	view	the	related	documents:

>	?	chisq.test

Besides	some	common	hypothesis	testing	methods	mentioned	in	previous	examples,	there
are	other	hypothesis	methods	provided	by	R:

The	Proportional	test	(prop.test):	It	is	used	to	test	whether	the	proportions	in
different	groups	are	the	same
The	Z-test	(simple.z.test	in	the	UsingR	package):	It	compares	the	sample	mean
with	the	population	mean	and	standard	deviation
The	Bartlett	Test	(bartlett.test):	It	is	used	to	test	whether	the	variance	of	different
groups	is	the	same
The	Kruskal-Wallis	Rank	Sum	Test	(kruskal.test):	It	is	used	to	test	whether	the
distribution	of	different	groups	is	identical	without	assuming	that	they	are	normally
distributed
The	Shapiro-Wilk	test	(shapiro.test):	It	is	used	test	for	normality





Conducting	a	one-way	ANOVA
Analysis	of	variance	(ANOVA)	investigates	the	relationship	between	categorical
independent	variables	and	continuous	dependent	variables.	It	can	be	used	to	test	whether
the	means	of	several	groups	are	equal.	If	there	is	only	one	categorical	variable	as	an
independent	variable,	you	can	perform	a	one-way	ANOVA.	On	the	other	hand,	if	there	are
more	than	two	categorical	variables,	you	should	perform	a	two-way	ANOVA.	In	this
recipe,	we	discuss	how	to	conduct	a	one-way	ANOVA	with	R.



Getting	ready
Ensure	that	mtcars	has	already	been	loaded	into	a	data	frame	within	an	R	session.	Since
the	oneway.test	and	TukeyHSD	functions	originated	from	the	stats	package,	make	sure
the	library,	stats,	is	loaded.



How	to	do	it…
Perform	the	following	steps:

1.	 We	begin	exploring	by	visualizing	the	data	with	a	boxplot:

>	boxplot(mtcars$mpg~factor(mtcars$gear),xlab='gear',ylab='mpg')

Comparison	of	mpg	of	different	numbers	of	forward	gears

2.	 Next,	we	conduct	a	one-way	ANOVA	to	examine	whether	the	mean	of	mpg	changes
with	different	numbers	of	forward	gears.	We	use	the	function,	oneway.test:

>	oneway.test(mtcars$mpg~factor(mtcars$gear))

		One-way	analysis	of	means	(not	assuming	equal	variances)

data:		mtcars$mpg	and	factor(mtcars$gear)

F	=	11.2848,	num	df	=	2.000,	denom	df	=	9.508,	p-value	=	0.003085

3.	 In	addition	to	oneway.test,	a	standard	function,	aov,	is	used	for	the	ANOVA
analysis:

>	mtcars.aov	=	aov(mtcars$mpg	~	as.factor(mtcars$gear))

>	summary(mtcars.aov)

																							Df	Sum	Sq	Mean	Sq	F	value			Pr(>F)				

as.factor(mtcars$gear)		2		483.2		241.62				10.9	0.000295	***

Residuals														29		642.8			22.17																					

---

Signif.	codes:		0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1



4.	 The	model	generated	by	the	aov	function	can	also	generate	a	summary	as	a	fitted
table:

>	model.tables(mtcars.aov,	"means")

Tables	of	means

Grand	mean

									

20.09062	

	as.factor(mtcars$gear)	

								3					4					5

				16.11	24.53	21.38

rep	15.00	12.00		5.00

5.	 For	the	aov	model,	one	can	use	TukeyHSD	for	a	post	hoc	comparison	test:

>	mtcars_posthoc	=TukeyHSD(mtcars.aov)

>	mtcars_posthoc

		Tukey	multiple	comparisons	of	means

				95%	family-wise	confidence	level

Fit:	aov(formula	=	mtcars$mpg	~	as.factor(mtcars$gear))

$`as.factor(mtcars$gear)`

									diff								lwr							upr					p	adj

4-3		8.426667		3.9234704	12.929863	0.0002088

5-3		5.273333	-0.7309284	11.277595	0.0937176

5-4	-3.153333	-9.3423846		3.035718	0.4295874

6.	 Further,	we	can	visualize	the	differences	in	mean	level	with	a	plot	function:

The	Tukey	mean-difference	plot	of	groups	with	different	numbers	of	gears





How	it	works…
In	order	to	understand	whether	cars	with	a	different	number	of	forward	gears	have
different	means	in	mpg,	we	first	plot	the	boxplot	of	mpg	by	the	numbers	of	forward	gears.
This	offers	a	simple	indication	if	cars	with	a	different	number	of	forward	gears	have
different	means	of	mpg.	We	then	perform	the	most	basic	form	of	ANOVA,	a	one-way
ANOVA,	to	test	whether	the	populations	have	different	means.

In	R,	there	are	two	functions	to	perform	the	ANOVA	test:	oneway.test	and	aov.	The
advantage	of	oneway.test	is	that	the	function	applies	a	Welch	correction	to	address	the
nonhomogeneity	of	a	variance.	However,	it	does	not	provide	as	much	information	as	aov,
and	it	does	not	offer	a	post	hoc	test.	Next,	we	perform	oneway.test	and	aov	on	the
independent	variable,	gear,	with	regard	to	the	dependent	variable,	mpg.	Both	test	results
show	a	small	p-value,	which	rejects	the	null	hypothesis	that	the	mean	between	cars	with	a
different	number	of	forward	gears	have	the	same	mpg	mean.

As	the	results	of	ANOVA	only	suggest	that	there	is	a	significant	difference	in	the	means
within	overall	populations,	you	may	not	know	which	two	populations	differ	in	terms	of
their	mean.	Therefore,	we	apply	the	TukeyHSD	post	hoc	comparison	test	on	our	ANOVA
model.	The	result	shows	that	cars	with	four	forward	gears	and	cars	with	three	gears	have
the	largest	difference,	as	their	confidence	interval	is	the	furthest	to	the	right	within	the
plot.



There’s	more…
ANOVA	relies	on	an	F-distribution	as	the	basis	of	all	probability	distribution.	An	F	score
is	obtained	by	dividing	the	between-group	variance	by	the	in-group	variance.	If	the	overall
F	test	was	significant,	you	can	conduct	a	post	hoc	test	(or	multiple	comparison	tests)	to
measure	the	differences	between	groups.	The	most	commonly	used	post	hoc	tests	are
Scheffé‘s	method,	the	Tukey-Kramer	method,	and	the	Bonferroni	correction.

In	order	to	interpret	the	output	of	ANOVA,	you	need	to	have	a	basic	understanding	of
certain	terms,	including	the	degrees	of	freedom,	the	sum	of	square	total,	the	sum	of	square
groups,	the	sum	of	square	errors,	the	mean	square	errors,	and	the	F	statistic.	If	you	require
more	information	about	these	terms,	you	may	refer	to	Using	multivariate	statistics	(Fidell,
L.	S.,	&	Tabachnick,	B.	G.	(2006)	Boston:	Allyn	&	Bacon.),	or	refer	to	the	Wikipedia
entry	of	Analysis	of	variance	(http://en.wikipedia.org/wiki/Analysis_of_variance#cite_ref-
31).

http://en.wikipedia.org/wiki/Analysis_of_variance#cite_ref-31




Performing	a	two-way	ANOVA
A	two-way	ANOVA	can	be	viewed	as	the	extension	of	a	one-way	ANOVA,	for	the
analysis	covers	more	than	two	categorical	variables	rather	than	one.	In	this	recipe,	we	will
discuss	how	to	conduct	a	two-way	ANOVA	in	R.



Getting	ready
Ensure	that	mtcars	has	already	been	loaded	into	a	data	frame	within	an	R	session.	Since
the	twoway.test,	TukeyHSD	and	interaction.plot	functions	are	originated	from	the
stats	package,	make	sure	the	library,	stats,	is	loaded.



How	to	do	it…
Perform	the	following	steps:

1.	 First	we	plot	the	two	boxplots	of	factor	gears	in	regard	to	mpg,	with	the	plot
separated	from	the	transmission	type:

>	par(mfrow=c(1,2))

>	boxplot(mtcars$mpg~mtcars$gear,subset=(mtcars$am==0),xlab='gear',	

ylab	=	"mpg",main='automatic')

>	boxplot(mtcars$mpg~mtcars$gear,subset=(mtcars$am==1),xlab='gear',	

ylab	=	"mpg",	main='manual')

The	boxplots	of	mpg	by	the	gear	group	and	the	transmission	type

2.	 Also,	you	may	produce	a	boxplot	of	mpg	by	the	number	of	forward	gears	*
transmission	type,	with	the	use	of	the	*	operation	in	the	boxplot	function:

>	boxplot(mtcars$mpg~factor(mtcars$gear)*	factor(mtcars$am),xlab='gear	

*	transmission',	ylab	=	"mpg",main='Boxplot	of	mpg	by	gear	*	

transmission')



The	boxplot	of	mpg	by	the	gear	*	transmission	type

3.	 Next,	we	use	an	interaction	plot	to	characterize	the	relationship	between	variables:

>	interaction.plot(mtcars$gear,	mtcars$am,	mtcars$mpg,	type="b",	

col=c(1:3),leg.bty="o",	leg.bg="beige",	lwd=2,	pch=c(18,24,22),	

xlab="Number	of	Gears",	ylab="Mean	Miles	Per	Gallon",	main="Interaction	

Plot")



Interaction	between	the	transmission	type	and	the	number	of	gears	with	the	main
effects,	mpg

4.	 We	then	perform	a	two-way	ANOVA	on	mpg	with	a	combination	of	the	gear	and
transmission-type	factors:

>	mpg_anova2	=	aov(mtcars$mpg~factor(mtcars$gear)*factor(mtcars$am))

>	summary(mpg_anova2)	

																				Df	Sum	Sq	Mean	Sq	F	value			Pr(>F)				

factor(mtcars$gear)		2		483.2		241.62		11.869	0.000185	***

factor(mtcars$am)				1			72.8			72.80			3.576	0.069001	.		

Residuals											28		570.0			20.36																					

---

Signif.	codes:		0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1

5.	 Similar	to	a	one-way	ANOVA,	we	can	perform	a	post	hoc	comparison	test	to	see	the
results	of	the	two-way	ANOVA	model:

>	TukeyHSD(mpg_anova2)

		Tukey	multiple	comparisons	of	means

				95%	family-wise	confidence	level

Fit:	aov(formula	=	mtcars$mpg	~	factor(mtcars$gear)	*	

factor(mtcars$am))

$`factor(mtcars$gear)`

									diff								lwr							upr					p	adj

4-3		8.426667		4.1028616	12.750472	0.0001301

5-3		5.273333	-0.4917401	11.038407	0.0779791

5-4	-3.153333	-9.0958350		2.789168	0.3999532



$`factor(mtcars$am)`

								diff							lwr					upr					p	adj

1-0	1.805128	-1.521483	5.13174	0.2757926

6.	 We	then	visualize	the	differences	in	mean	levels	with	the	plot	function:

>	par(mfrow=c(1,2))

>	plot(TukeyHSD(mpg_anova2))

The	comparison	plot	of	differences	in	mean	levels	by	the	transmission	type	and	the
number	of	gears



How	it	works…
In	this	recipe,	we	perform	a	two-way	ANOVA	to	examine	the	influences	of	the
independent	variables,	gear	and	am,	on	the	dependent	variable,	mpg.	In	the	first	step,	we
use	a	boxplot	to	examine	the	mean	of	mpg	by	the	number	of	gears	and	the	transmission
type.	Secondly,	we	apply	an	interaction	plot	to	visualize	the	change	in	mpg	through	the
different	numbers	of	gears	with	lines	separated	by	the	transmission	type.

The	resulting	plot	shows	that	the	number	of	gears	does	have	an	effect	on	the	mean	of	mpg,
but	does	not	show	a	positive	relationship	either.	Thirdly,	we	perform	a	two-way	ANOVA
with	the	aov	function.	The	output	shows	that	the	p-value	of	the	gear	factor	rejects	the	null
hypothesis,	while	the	factor,	transmission	type,	does	not	reject	the	null	hypothesis.	In
other	words,	cars	with	different	numbers	of	gears	are	more	likely	to	have	different	means
of	mpg.	Finally,	in	order	to	examine	which	two	populations	have	the	largest	differences,
we	perform	a	post	hoc	analysis,	which	reveals	that	cars	with	four	gears	and	three	gears,
respectively,	have	the	largest	difference	in	terms	of	the	mean,	mpg.



See	also
For	multivariate	analysis	of	variances,	the	function,	manova,	can	be	used	to	examine
the	effect	of	multiple	independent	variables	on	multiple	dependent	variables.	Further
information	about	MANOVA	is	included	within	the	help	function	in	R:

>	?MANOVA





Chapter	4.	Understanding	Regression
Analysis
In	this	chapter,	we	will	cover	the	following	recipes:

Fitting	a	linear	regression	model	with	lm
Summarizing	linear	model	fits
Using	linear	regression	to	predict	unknown	values
Generating	a	diagnostic	plot	of	a	fitted	model
Fitting	a	polynomial	regression	model	with	lm
Fitting	a	robust	linear	regression	model	with	rlm
Studying	a	case	of	linear	regression	on	SLID	data
Applying	the	Gaussian	model	for	generalized	linear	regression
Applying	the	Poisson	model	for	generalized	linear	regression
Applying	the	Binomial	model	for	generalized	linear	regression
Fitting	a	generalized	additive	model	to	data
Visualizing	a	generalized	additive	model
Diagnosing	a	generalized	additive	model



Introduction
Regression	is	a	supervised	learning	method,	which	is	employed	to	model	and	analyze	the
relationship	between	a	dependent	(response)	variable	and	one	or	more	independent
(predictor)	variables.	One	can	use	regression	to	build	a	prediction	model,	which	can	first
be	used	to	find	the	best	fitted	model	with	minimum	squared	errors	of	the	fitted	values.	The
fitted	model	can	then	be	further	applied	to	data	for	continuous	value	predictions.

There	are	many	types	of	regression.	If	there	is	only	one	predictor	variable,	and	the
relationship	between	the	response	variable	and	independent	variable	is	linear,	we	can
apply	a	linear	model.	However,	if	there	is	more	than	one	predictor	variable,	a	multiple
linear	regression	method	should	be	used.	When	the	relationship	is	nonlinear,	one	can	use	a
nonlinear	model	to	model	the	relationship	between	the	predictor	and	response	variables.

In	this	chapter,	we	introduce	how	to	fit	a	linear	model	into	data	with	the	lm	function.	Next,
for	distribution	in	other	than	the	normal	Gaussian	model	(for	example,	Poisson	or
Binomial),	we	use	the	glm	function	with	an	appropriate	link	function	correspondent	to	the
data	distribution.	Finally,	we	cover	how	to	fit	a	generalized	additive	model	into	data	using
the	gam	function.





Fitting	a	linear	regression	model	with	lm
The	simplest	model	in	regression	is	linear	regression,	which	is	best	used	when	there	is
only	one	predictor	variable,	and	the	relationship	between	the	response	variable	and	the
independent	variable	is	linear.	In	R,	we	can	fit	a	linear	model	to	data	with	the	lm	function.



Getting	ready
We	need	to	prepare	data	with	one	predictor	and	response	variable,	and	with	a	linear
relationship	between	the	two	variables.



How	to	do	it…
Perform	the	following	steps	to	perform	linear	regression	with	lm:

1.	 You	should	install	the	car	package	and	load	its	library:

>	install.packages("car")

>	library(car)

2.	 From	the	package,	you	can	load	the	Quartet	dataset:

>	data(Quartet)

3.	 You	can	use	the	str	function	to	display	the	structure	of	the	Quartet	dataset:

>	str(Quartet)

'data.frame':			11	obs.	of		6	variables:

	$	x	:	int		10	8	13	9	11	14	6	4	12	7…

	$	y1:	num		8.04	6.95	7.58	8.81	8.33…

	$	y2:	num		9.14	8.14	8.74	8.77	9.26	8.1	6.13	3.1	9.13	7.26…

	$	y3:	num		7.46	6.77	12.74	7.11	7.81…

	$	x4:	int		8	8	8	8	8	8	8	19	8	8…

	$	y4:	num		6.58	5.76	7.71	8.84	8.47	7.04	5.25	12.5	5.56	7.91…

4.	 Draw	a	scatter	plot	of	the	x	and	y	variables	with	plot,	and	append	a	fitted	line
through	the	lm	and	abline	function:

>	plot(Quartet$x,	Quartet$y1)

>	lmfit	=	lm(y1~x,	Quartet)	

>	abline(lmfit,	col="red")		

A	simple	regression	plot	fitted	by	lm

5.	 To	view	the	fit	model,	execute	the	following:



>	lmfit

Call:

lm(formula	=	y1	~	x,	data	=	Quartet)

Coefficients:

(Intercept)												x		

					3.0001							0.5001	



How	it	works…
The	regression	model	has	the	response	~	terms	form,	where	response	is	the	response
vector,	and	terms	is	a	series	of	terms	that	specifies	a	predictor.	We	can	illustrate	a	simple
regression	model	in	the	formula	y=α+βx,	where	α	is	the	intercept	while	the	slope,	β,
describes	the	change	in	y	when	x	changes.	By	using	the	least	squares	method,	we	can

estimate	 	and	 	(where	 	indicates	the	mean	value	of	y	and	
denotes	the	mean	value	of	x).

To	perform	linear	regression,	we	first	prepare	the	data	that	has	a	linear	relationship
between	the	predictor	variable	and	response	variable.	In	this	example,	we	load
Anscombe’s	quartet	dataset	from	the	package	car.	Within	the	dataset,	the	x	and	y1
variables	have	a	linear	relationship,	and	we	prepare	a	scatter	plot	of	these	variables.	To
generate	the	regression	line,	we	use	the	lm	function	to	generate	a	model	of	the	two
variables.	Further,	we	use	abline	to	plot	a	regression	line	on	the	plot.	As	per	the	previous
screenshot,	the	regression	line	illustrates	the	linear	relationship	of	x	and	y1	variables.	We
can	see	that	the	coefficient	of	the	fitted	model	shows	the	intercept	equals	3.0001	and
coefficient	equals	0.5001.	As	a	result,	we	can	use	the	intercept	and	coefficient	to	infer	the
response	value.	For	example,	we	can	infer	the	response	value	when	x	at	3	is	equal	to
4.5103	(3	*	0.5001	+	3.0001).



There’s	more…
Besides	the	lm	function,	you	can	also	use	the	lsfit	function	to	perform	simple	linear
regression.	For	example:

>	plot(Quartet$x,	Quartet$y1)

>	lmfit2	=	lsfit(Quartet$x,Quartet$y1)

>	abline(lmfit2,	col="red")

A	simple	regression	fitted	by	the	lsfit	function.





Summarizing	linear	model	fits
The	summary	function	can	be	used	to	obtain	the	formatted	coefficient,	standard	errors,
degree	of	freedom,	and	other	summarized	information	of	a	fitted	model.	This	recipe
introduces	how	to	obtain	overall	information	on	a	model	through	the	use	of	the	summary
function.



Getting	ready
You	need	to	have	completed	the	previous	recipe	by	computing	the	linear	model	of	the	x
and	y1	variables	from	the	quartet,	and	have	the	fitted	model	assigned	to	the	lmfit
variable.



How	to	do	it…
Perform	the	following	step	to	summarize	linear	model	fits:

1.	 Compute	a	detailed	summary	of	the	fitted	model:

>	summary(lmfit)

Call:

lm(formula	=	y1	~	x)

Residuals:

					Min							1Q			Median							3Q						Max	

-1.92127	-0.45577	-0.04136		0.70941		1.83882	

Coefficients:

												Estimate	Std.	Error	t	value	Pr(>|t|)			

(Intercept)			3.0001					1.1247			2.667		0.02573	*	

Quartet$x					0.5001					0.1179			4.241		0.00217	**

---

Signif.	codes:		0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1

Residual	standard	error:	1.237	on	9	degrees	of	freedom

Multiple	R-squared:		0.6665,				Adjusted	R-squared:		0.6295	

F-statistic:	17.99	on	1	and	9	DF,		p-value:	0.00217



How	it	works…
The	summary	function	is	a	generic	function	used	to	produce	summary	statistics.	In	this
case,	it	computes	and	returns	a	list	of	the	summary	statistics	of	the	fitted	linear	model.
Here,	it	will	output	information	such	as	residuals,	coefficient	standard	error	R-squared,	f-
statistic,	and	a	degree	of	freedom.	In	the	Call	section,	the	function	called	to	generate	the
fitted	model	is	displayed.	In	the	Residuals	section,	it	provides	a	quick	summary	(min,	1Q,
median,	3Q,	max)	of	the	distribution.

In	the	Coefficients	section,	each	coefficient	is	a	Gaussian	random	variable.	Within	this
section,	Estimate	represents	the	mean	distribution	of	the	variable;	Std.Error	displays	the
standard	error	of	the	variable;	the	t	value	is	Estimate	divided	by	Std.Error	and	the	p
value	indicates	the	probability	of	getting	a	value	larger	than	the	t	value.	In	this	sample,	the
p	value	of	both	intercepts	(0.002573)	and	x	(0.00217)	have	a	95	percent	level	of
confidence.

Residual	standard	error	outputs	the	standard	deviation	of	residuals,	while	the	degree	of
freedom	indicates	the	differences	between	the	observation	in	training	samples	and	the
number	used	in	the	model.	Multiple	R-squared	is	obtained	by	dividing	the	sum	of	squares.
One	can	use	R-squared	to	measure	how	close	the	data	is	to	fit	into	the	regression	line.
Mostly,	the	higher	the	R-squared,	the	better	the	model	fits	your	data.	However,	it	does	not
necessarily	indicate	whether	the	regression	model	is	adequate.	This	means	you	might	get	a
good	model	with	a	low	R-squared	or	you	can	have	a	bad	model	with	a	high	R-squared.
Since	multiple	R-squared	ignore	a	degree	of	freedom,	the	calculated	score	is	biased.	To
make	the	calculation	fair,	an	adjusted	R-squared	(0.6295)	uses	an	unbiased	estimate,	and
will	be	slightly	less	than	multiple	R-squared	(0.6665).	F-statistic	is	retrieved	by
performing	an	f-test	on	the	model.	A	p	value	equal	to	0.00217	(<	0.05)	rejects	the	null
hypothesis	(no	linear	correlation	between	variables)	and	indicates	that	the	observed	F	is
greater	than	the	critical	F	value.	In	other	words,	the	result	shows	that	there	is	a	significant
positive	linear	correlation	between	the	variables.



See	also
For	more	information	on	the	parameters	used	for	obtaining	a	summary	of	the	fitted
model,	you	can	use	the	help	function	or	?	to	view	the	help	page:

>	?summary.lm

Alternatively,	you	can	use	the	following	functions	to	display	the	properties	of	the
model:

>		coefficients(lmfit)	#	Extract	model	coefficients

>		confint(lmfit,	level=0.95)		#	Computes	confidence	intervals	for	

model	parameters.

>		fitted(lmfit)	#	Extract	model	fitted	values

>		residuals(lmfit)	#	Extract	model	residuals	

>		anova(lmfit)	#	Compute	analysis	of	variance	tables	for	fitted	model	

object

>		vcov(lmfit)	#	Calculate	variance-covariance	matrix	for	a	fitted	

model	object

>		influence(lmfit)	#	Diagnose	quality	of	regression	fits





Using	linear	regression	to	predict
unknown	values
With	a	fitted	regression	model,	we	can	apply	the	model	to	predict	unknown	values.	For
regression	models,	we	can	express	the	precision	of	prediction	with	a	prediction	interval
and	a	confidence	interval.	In	the	following	recipe,	we	introduce	how	to	predict	unknown
values	under	these	two	measurements.



Getting	ready
You	need	to	have	completed	the	previous	recipe	by	computing	the	linear	model	of	the	x
and	y1	variables	from	the	quartet	dataset.



How	to	do	it…
Perform	the	following	steps	to	predict	values	with	linear	regression:

1.	 Fit	a	linear	model	with	the	x	and	y1	variables:

>	lmfit	=	lm(y1~x,	Quartet)

2.	 Assign	values	to	be	predicted	into	newdata:

>	newdata	=	data.frame(x	=	c(3,6,15))

3.	 Compute	the	prediction	result	using	the	confidence	interval	with	level	set	as	0.95:

>	predict(lmfit,	newdata,	interval="confidence",	level=0.95)

								fit						lwr							upr

1		4.500364	2.691375		6.309352

2		6.000636	4.838027		7.163245

3	10.501455	8.692466	12.310443

4.	 Compute	the	prediction	result	using	this	prediction	interval:

>	predict(lmfit,	newdata,	interval="predict")

								fit						lwr							upr

1		4.500364	1.169022		7.831705

2		6.000636	2.971271		9.030002

3	10.501455	7.170113	13.832796



How	it	works…
We	first	build	a	linear	fitted	model	with	x	and	y1	variables.	Next,	we	assign	values	to	be
predicted	into	a	data	frame,	newdata.	It	is	important	to	note	that	the	generated	model	is	in
the	form	of	y1	~	x.

Next,	we	compute	the	prediction	result	using	a	confidence	interval	by	specifying
confidence	in	the	argument	interval.	From	the	output	of	row	1,	we	get	fitted	y1	of	the	x=3
input,	which	equals	to	4.500364,	and	a	95	percent	confidence	interval	(set	0.95	in	the
level	argument)	of	the	y1	mean	for	x=3	is	between	2.691375	and	6.309352.	In	addition	to
this,	row	2	and	3	give	the	prediction	result	of	y1	with	an	input	of	x=6	and	x=15.

Next,	we	compute	the	prediction	result	using	a	prediction	interval	by	specifying
prediction	in	the	argument	interval.	From	the	output	of	row	1,	we	can	see	fitted	y1	of	the
x=3	input	equals	to	4.500364,	and	a	95	percent	prediction	interval	of	y1	for	x=3	is	between
1.169022	and	7.831705.	Row	2	and	3	output	the	prediction	result	of	y1	with	an	input	of
x=6	and	x=15.



See	also
For	those	who	are	interested	in	the	differences	between	prediction	intervals	and
confidence	intervals,	you	can	refer	to	the	Wikipedia	entry	contrast	with	confidence
intervals	at
http://en.wikipedia.org/wiki/Prediction_interval#Contrast_with_confidence_intervals.

http://en.wikipedia.org/wiki/Prediction_interval#Contrast_with_confidence_intervals




Generating	a	diagnostic	plot	of	a	fitted
model
Diagnostics	are	methods	to	evaluate	assumptions	of	the	regression,	which	can	be	used	to
determine	whether	a	fitted	model	adequately	represents	the	data.	In	the	following	recipe,
we	introduce	how	to	diagnose	a	regression	model	through	the	use	of	a	diagnostic	plot.



Getting	ready
You	need	to	have	completed	the	previous	recipe	by	computing	a	linear	model	of	the	x	and
y1	variables	from	the	quartet,	and	have	the	model	assigned	to	the	lmfit	variable.



How	to	do	it…
Perform	the	following	step	to	generate	a	diagnostic	plot	of	the	fitted	model:

1.	 Plot	the	diagnostic	plot	of	the	regression	model:

>	par(mfrow=c(2,2))

>	plot(lmfit)

Diagnostic	plots	of	the	regression	model



How	it	works…
The	plot	function	generates	four	diagnostic	plots	of	a	regression	model:

The	upper-left	plot	shows	residuals	versus	fitted	values.	Within	the	plot,	residuals
represent	the	vertical	distance	from	a	point	to	the	regression	line.	If	all	points	fall
exactly	on	the	regression	line,	all	residuals	will	fall	exactly	on	the	dotted	gray	line.
The	red	line	within	the	plot	is	a	smooth	curve	with	regard	to	residuals,	and	if	all	the
dots	fall	exactly	on	the	regression	line,	the	position	of	the	red	line	should	exactly
match	the	dotted	gray	line.
The	upper-right	shows	the	normal	of	residuals.	This	plot	verifies	the	assumption	that
residuals	were	normally	distributed.	Thus,	if	the	residuals	were	normally	distributed,
they	should	lie	exactly	on	the	gray	dash	line.
The	Scale-Location	plot	on	the	bottom-left	is	used	to	measure	the	square	root	of	the
standardized	residuals	against	the	fitted	value.	Therefore,	if	all	dots	lie	on	the
regression	line,	the	value	of	y	should	be	close	to	zero.	Since	it	is	assumed	that	the
variance	of	residuals	does	not	change	the	distribution	substantially,	if	the	assumption
is	correct,	the	red	line	should	be	relatively	flat.
The	bottom-right	plot	shows	standardized	residuals	versus	leverage.	The	leverage	is	a
measurement	of	how	each	data	point	influences	the	regression.	It	is	a	measurement	of
the	distance	from	the	centroid	of	regression	and	level	of	isolation	(measured	by
whether	it	has	neighbors).	Also,	you	can	find	the	contour	of	Cook’s	distance,	which	is
affected	by	high	leverage	and	large	residuals.	You	can	use	this	to	measure	how
regression	would	change	if	a	single	point	is	deleted.	The	red	line	is	smooth	with
regard	to	standardized	residuals.	For	a	perfect	fit	regression,	the	red	line	should	be
close	to	the	dashed	line	with	no	points	over	0.5	in	Cook’s	distance.



There’s	more…
To	see	more	of	the	diagnostic	plot	function,	you	can	use	the	help	function	to	access
further	information:

>	?plot.lm

In	order	to	discover	whether	there	are	points	with	large	Cook’s	distance,	one	can	use	the
cooks.distance	function	to	compute	the	Cook’s	distance	of	each	point,	and	analyze	the
distribution	of	distance	through	visualization:

>	plot(cooks.distance(lmfit))

A	plot	of	Cook’s	distance

In	this	case,	where	the	point	on	index	3	shows	greater	Cook’s	distance	than	other	points,
one	can	investigate	whether	this	point	might	be	an	outlier.





Fitting	a	polynomial	regression	model
with	lm
Some	predictor	variables	and	response	variables	may	have	a	non-linear	relationship,	and
their	relationship	can	be	modeled	as	an	nth	order	polynomial.	In	this	recipe,	we	introduce
how	to	deal	with	polynomial	regression	using	the	lm	and	poly	functions.



Getting	ready
Prepare	the	dataset	that	includes	a	relationship	between	the	predictor	and	response
variable	that	can	be	modeled	as	an	nth	order	polynomial.	In	this	recipe,	we	will	continue
to	use	the	Quartet	dataset	from	the	car	package.



How	to	do	it…
Perform	the	following	steps	to	fit	the	polynomial	regression	model	with	lm:

1.	 First,	we	make	a	scatter	plot	of	the	x	and	y2	variables:

>	plot(Quartet$x,	Quartet$y2)

Scatter	plot	of	variables	x	and	y2

2.	 You	can	apply	the	poly	function	by	specifying	2	in	the	argument:

>	lmfit	=	lm(Quartet$y2~poly(Quartet$x,2))

>	lines(sort(Quartet$x),	lmfit$fit[order(Quartet$x)],	col	=	"red")



A	quardratic	fit	example	of	the	regression	plot	of	variables	x	and	y2



How	it	works
We	can	illustrate	the	second	order	polynomial	regression	model	in	formula,	
,	where	α	is	the	intercept	while	β,	illustrates	regression	coefficients.

In	the	preceding	screenshot	(step	1),	the	scatter	plot	of	the	x	and	y2	variables	does	not	fit
in	a	linear	relationship,	but	shows	a	concave	downward	curve	(or	convex	upward)	with	the
turning	point	at	x=11.	In	order	to	model	the	nonlinear	relationship,	we	apply	the	poly
function	with	an	argument	of	2	to	fit	the	independent	x	variable	and	the	dependent	y2
variable.	The	red	line	in	the	screenshot	shows	that	the	model	perfectly	fits	the	data.



There’s	more…
You	can	also	fit	a	second	order	polynomial	model	with	an	independent	variable	equal	to
the	formula	of	the	combined	first	order	x	variable	and	the	second	order	x	variable:

>	plot(Quartet$x,	Quartet$y2)

>	lmfit	=	lm(Quartet$y2~	I(Quartet$x)+I(Quartet$x^2))





Fitting	a	robust	linear	regression	model
with	rlm
An	outlier	in	the	dataset	will	move	the	regression	line	away	from	the	mainstream.	Apart
from	removing	it,	we	can	apply	a	robust	linear	regression	to	fit	datasets	containing
outliers.	In	this	recipe,	we	introduce	how	to	apply	rlm	to	perform	robust	linear	regression
to	datasets	containing	outliers.



Getting	ready
Prepare	the	dataset	that	contains	an	outlier	that	may	move	the	regression	line	away	from
the	mainstream.	Here,	we	use	the	Quartet	dataset	loaded	from	the	previous	recipe.



How	to	do	it…
Perform	the	following	steps	to	fit	the	robust	linear	regression	model	with	rlm:

1.	 Generate	a	scatter	plot	of	the	x	variable	against	y3:

>	plot(Quartet$x,	Quartet$y3)

Scatter	plot	of	variables	x	and	y3

2.	 Next,	you	should	import	the	MASS	library	first.	Then,	you	can	apply	the	rlm	function
to	fit	the	model,	and	visualize	the	fitted	line	with	the	abline	function:

>	library(MASS)

>	lmfit	=	rlm(Quartet$y3~Quartet$x)

>	abline(lmfit,	col="red")



Robust	linear	regression	to	variables	x	and	y3



How	it	works
As	per	the	preceding	screenshot	(step	1),	you	may	encounter	datasets	that	include	outliers
away	from	the	mainstream.	To	remove	the	effect	of	an	outlier,	we	demonstrate	how	to
apply	a	robust	linear	regression	(rlm)	to	fit	the	data.	In	the	second	screenshot	(step	2),	the
robust	regression	line	ignores	the	outlier	and	matches	the	mainstream.



There’s	more…
To	see	the	effect	of	how	an	outlier	can	move	the	regression	line	away	from	the
mainstream,	you	may	replace	the	rlm	function	used	in	this	recipe	to	lm,	and	replot	the
graph:

>	plot(Quartet$x,	Quartet$y3)

>	lmfit	=	lm(Quartet$y3~Quartet$x)

>	abline(lmfit,	col="red")

Linear	regression	on	variables	x	and	y3

It	is	obvious	that	outlier	(x=13)	moves	the	regression	line	away	from	the	mainstream.





Studying	a	case	of	linear	regression	on
SLID	data
To	summarize	the	contents	of	the	previous	section,	we	explore	more	complex	data	with
linear	regression.	In	this	recipe,	we	demonstrate	how	to	apply	linear	regression	to	analyze
the	Survey	of	Labor	and	Income	Dynamics	(SLID)	dataset.



Getting	ready
Check	whether	the	car	library	is	installed	and	loaded,	as	it	is	required	to	access	thedataset
SLID.



How	to	do	it…
Follow	these	steps	to	perform	linear	regression	on	SLID	data:

1.	 You	can	use	the	str	function	to	get	an	overview	of	the	data:

>	str(SLID)

'data.frame':		7425	obs.	of		5	variables:

	$	wages				:	num		10.6	11	NA	17.8	NA…

	$	education:	num		15	13.2	16	14	8	16	12	14.5	15	10…

	$	age						:	int		40	19	49	46	71	50	70	42	31	56…

	$	sex						:	Factor	w/	2	levels	"Female","Male":	2	2	2	2	2	1	1	1	2	1…

	$	language	:	Factor	w/	3	levels	"English","French",..:	1	1	3	3	1	1	1	1	

1	1	..

2.	 First,	we	visualize	the	variable	wages	against	language,	age,	education,	and	sex:

>	par(mfrow=c(2,2))

>	plot(SLID$wages	~	SLID$language)

>	plot(SLID$wages	~	SLID$age)

>	plot(SLID$wages	~	SLID$education)

>	plot(SLID$wages	~	SLID$sex)

Plot	of	wages	against	multiple	combinations

3.	 Then,	we	can	use	lm	to	fit	the	model:

>	lmfit	=	lm(wages	~	.,	data	=	SLID)

4.	 You	can	examine	the	summary	of	the	fitted	model	through	the	summary	function:

>	summary(lmfit)



Call:

lm(formula	=	wages	~	.,	data	=	SLID)

Residuals:

				Min						1Q		Median						3Q					Max	

-26.062		-4.347		-0.797			3.237		35.908	

Coefficients:

																Estimate	Std.	Error	t	value	Pr(>|t|)				

(Intercept)				-7.888779			0.612263	-12.885			<2e-16	***

education							0.916614			0.034762		26.368			<2e-16	***

age													0.255137			0.008714		29.278			<2e-16	***

sexMale									3.455411			0.209195		16.518			<2e-16	***

languageFrench	-0.015223			0.426732		-0.036				0.972				

languageOther			0.142605			0.325058			0.439				0.661				

---

Signif.	codes:		0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1

Residual	standard	error:	6.6	on	3981	degrees	of	freedom

		(3438	observations	deleted	due	to	missingness)

Multiple	R-squared:		0.2973,	 Adjusted	R-squared:		0.2964	

F-statistic:	336.8	on	5	and	3981	DF,		p-value:	<	2.2e-16

5.	 Drop	the	language	attribute,	and	refit	the	model	with	the	lm	function:

>	lmfit	=	lm(wages	~	age	+	sex	+	education,	data	=	SLID)

>	summary(lmfit)

Call:

lm(formula	=	wages	~	age	+	sex	+	education,	data	=	SLID)

Residuals:

				Min						1Q		Median						3Q					Max	

-26.111		-4.328		-0.792			3.243		35.892	

Coefficients:

													Estimate	Std.	Error	t	value	Pr(>|t|)				

(Intercept)	-7.905243			0.607771		-13.01			<2e-16	***

age										0.255101			0.008634			29.55			<2e-16	***

sexMale						3.465251			0.208494			16.62			<2e-16	***

education				0.918735			0.034514			26.62			<2e-16	***

---

Signif.	codes:		0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1

Residual	standard	error:	6.602	on	4010	degrees	of	freedom

		(3411	observations	deleted	due	to	missingness)

Multiple	R-squared:		0.2972,	 Adjusted	R-squared:		0.2967	

F-statistic:	565.3	on	3	and	4010	DF,		p-value:	<	2.2e-16

6.	 We	can	then	draw	a	diagnostic	plot	of	lmfit:

>	par(mfrow=c(2,2))

>	plot(lmfit)



Diagnostic	plot	of	fitted	model

7.	 Next,	we	take	the	log	of	wages	and	replot	the	diagnostic	plot:

>	lmfit	=	lm(log(wages)	~	age	+	sex	+	education,	data	=	SLID)

>	plot(lmfit)

Diagnostic	plot	of	adjusted	fitted	model



8.	 Next,	you	can	diagnose	the	multi-colinearity	of	the	regression	model	using	the	vif
function:

>	vif(lmfit)

						age							sex	education	

	1.011613		1.000834		1.012179	

>	sqrt(vif(lmfit))	>	2

						age							sex	education	

				FALSE					FALSE					FALSE

9.	 Then,	you	can	install	and	load	the	lmtest	package	and	diagnose	the
heteroscedasticity	of	the	regression	model	with	the	bptest	function:

>	install.packages("lmtest")

>	library(lmtest)

>	bptest(lmfit)

		studentized	Breusch-Pagan	test

data:		lmfit

BP	=	29.0311,	df	=	3,	p-value	=	2.206e-06

10.	 Finally,	you	can	install	and	load	the	rms	package.	Then,	you	can	correct	standard
errors	with	robcov:

>	install.packages("rms")

>	library(rms)

>	olsfit	=	ols(log(wages)	~	age	+	sex	+	education,	data=	SLID,	x=	TRUE,	

y=	TRUE)

>	robcov(olsfit)

Linear	Regression	Model

ols(formula	=	log(wages)	~	age	+	sex	+	education,	data	=	SLID,	

				x	=	TRUE,	y	=	TRUE)

Frequencies	of	Missing	Values	Due	to	Each	Variable

log(wages)								age								sex		education	

						3278										0										0								249	

																Model	Likelihood					Discrimination				

																			Ratio	Test											Indexes								

Obs					4014				LR	chi2			1486.08				R2							0.309				

sigma	0.4187				d.f.												3				R2	adj			0.309				

d.f.				4010				Pr(>	chi2)	0.0000				g								0.315				

Residuals

					Min							1Q			Median							3Q						Max	

-2.36252	-0.27716		0.01428		0.28625		1.56588	

										Coef			S.E.			t					Pr(>|t|)

Intercept	1.1169	0.0387	28.90	<0.0001	



age							0.0176	0.0006	30.15	<0.0001	

sex=Male		0.2244	0.0132	16.96	<0.0001	

education	0.0552	0.0022	24.82	<0.0001



How	it	works…
This	recipe	demonstrates	how	to	conduct	linear	regression	analysis	on	the	SLID	dataset.
First,	we	load	the	SLID	data	and	display	its	structure	through	the	use	of	the	str	function.
From	the	structure	of	the	data,	we	know	that	there	are	four	independent	variables	that	will
affect	the	wages	of	the	dependent	variable.

Next,	we	explore	the	relationship	of	each	independent	variable	to	the	dependent	variable,
wages,	through	visualization;	the	visualization	result	is	shown	in	the	preceding	screenshot
(step	2).	In	the	upper-left	section	of	this	screenshot,	you	can	find	the	box	plot	of	three
different	languages	against	wages;	the	correlation	between	the	languages	and	wages	is	not
obvious.	The	upper-right	section	of	the	screenshot	shows	that	the	age	appears	to	have	a
positive	relationship	with	the	dependent	variable,	wages.	In	the	bottom-left	of	the
screenshot,	it	is	shown	that	education	also	appears	to	have	a	positive	relationship	with
wages.	Finally,	the	box	plot	in	the	bottom-right	section	of	the	screenshot	shows	that	the
wages	of	males	are	slightly	higher	than	females.

Next,	we	fit	all	the	attributes	except	for	wages	to	the	model	as	predictor	variables.	By
summarizing	the	model,	it	is	shown	that	education,	age,	and	sex	show	a	significance	(p-
value	<	0.05).	As	a	result,	we	drop	the	insignificant	language	attribute	(which	has	a	p-
value	greater	than	0.05)	and	fit	the	three	independent	variables	(education,	sex,	and	age)
with	regard	to	the	dependent	variable	(wages)	in	the	linear	model.	This	accordingly	raises
the	f-statistic	from	336.8	to	565.3.

Next,	we	generate	the	diagnostic	plot	of	the	fitted	model.	Within	the	diagnostic	plot,	all
the	four	plots	indicate	that	the	regression	model	follows	the	regression	assumption.
However,	from	residuals	versus	fitted	and	scale-location	plot,	residuals	of	smaller	fitted
values	are	biased	toward	the	regression	model.	Since	wages	range	over	several	orders	of
magnitude,	to	induce	the	symmetry,	we	apply	a	log	transformation	to	wages	and	refit	the
data	into	a	regression	model.	The	red	line	of	residuals	versus	fitted	values	plot	and	the
Scale-Location	plot	are	now	closer	to	the	gray	dashed	line.

Next,	we	would	like	to	test	whether	multi-colinearity	exists	in	the	model.	Multi-colinearity
takes	place	when	a	predictor	is	highly	correlated	with	others.	If	multi-colinearity	exists	in
the	model,	you	might	see	some	variables	have	a	high	R-squared	value	but	are	shown	as
variables	insignificant.	To	detect	multi-colinearity,	we	can	calculate	the	variance	inflation
and	generalized	variance	inflation	factors	for	linear	and	generalized	linear	models	with	the
vif	function.	If	multi-colinearity	exists,	we	should	find	predictors	with	the	square	root	of
variance	inflation	factor	above	2.	Then,	we	may	remove	redundant	predictors	or	use	a
principal	component	analysis	to	transform	predictors	to	a	smaller	set	of	uncorrelated
components.

Finally,	we	would	like	to	test	whether	heteroscedasticity	exists	in	the	model.	Before
discussing	the	definition	of	heteroscedasticity,	we	first	have	to	know	that	in	classic
assumptions,	the	ordinary	regression	model	assumes	that	the	variance	of	the	error	is
constant	or	homogeneous	across	observations.	On	the	contrary,	heteroscedasticity	means
that	the	variance	is	unequal	across	observations.	As	a	result,	heteroscedasticity	may	be



biased	toward	the	standard	errors	of	our	estimates	and,	therefore,	mislead	the	testing	of	the
hypothes.	To	detect	and	test	heteroscedasticity,	we	can	perform	the	Breusch-Pagan	test
for	heteroscedasticity	with	the	bptest	function	within	the	lmtest	package.	In	this	case,
the	p-value	shows	2.206e-06	(<0.5),	which	rejects	the	null	hypothesis	of	homoscedasticity
(no	heteroscedasticity).	Here,	it	implies	that	the	standard	errors	of	the	parameter	estimates
are	incorrect.	However,	we	can	use	robust	standard	errors	to	correct	the	standard	error	(do
not	remove	the	heteroscedasticity)	and	increase	the	significance	of	truly	significant
parameters	with	robcov	from	the	rms	package.	However,	since	it	only	takes	the	fitted
model	from	the	rms	series	as	an	input,	we	have	to	fit	the	ordinary	least	squares	model
beforehand.



See	also
For	more	information	about	the	SLID	dataset,	you	can	use	the	help	function	to	view
the	related	documentation:

>		?SLID





Applying	the	Gaussian	model	for
generalized	linear	regression
Generalized	linear	model	(GLM)	is	a	generalization	of	linear	regression,	which	can
include	a	link	function	to	make	a	linear	prediction.	As	a	default	setting,	the	family	object
for	glm	is	Gaussian,	which	makes	the	glm	function	perform	exactly	the	same	as	lm.	In	this
recipe,	we	first	demonstrate	how	to	fit	the	model	into	the	data	using	the	glm	function,	and
then	show	that	glm	with	a	Gaussian	model	performs	exactly	the	same	as	lm.



Getting	ready
Check	whether	the	car	library	is	installed	and	loaded	as	we	require	the	SLID	dataset	from
this	package.



How	to	do	it…
Perform	the	following	steps	to	fit	a	generalized	linear	regression	model	with	the	Gaussian
model:

1.	 Fit	the	independent	variables,	age,	sex,	and	education,	and	dependent	variable
wages	to	glm:

>	lmfit1	=	glm(wages	~	age	+	sex	+	education,	data	=	SLID,	

family=gaussian)

>	summary(lmfit1)

Call:

glm(formula	=	wages	~	age	+	sex	+	education,	family	=	gaussian,	

				data	=	SLID)

Deviance	Residuals:	

				Min							1Q			Median							3Q						Max		

-26.111			-4.328			-0.792				3.243			35.892		

Coefficients:

													Estimate	Std.	Error	t	value	Pr(>|t|)				

(Intercept)	-7.905243			0.607771		-13.01			<2e-16	***

age										0.255101			0.008634			29.55			<2e-16	***

sexMale						3.465251			0.208494			16.62			<2e-16	***

education				0.918735			0.034514			26.62			<2e-16	***

---

Signif.	codes:		0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1

(Dispersion	parameter	for	Gaussian	family	taken	to	be	43.58492)

				Null	deviance:	248686		on	4013		degrees	of	freedom

Residual	deviance:	174776		on	4010		degrees	of	freedom

		(3411	observations	deleted	due	to	missingness)

AIC:	26549

Number	of	Fisher	Scoring	iterations:	2

2.	 Fit	the	independent	variables,	age,	sex,	and	education,	and	the	dependent	variable
wages	to	lm:

>	lmfit2	=	lm(wages	~	age	+	sex	+	education,	data	=	SLID)

>	summary(lmfit2)

Call:

lm(formula	=	wages	~	age	+	sex	+	education,	data	=	SLID)

Residuals:

				Min						1Q		Median						3Q					Max	

-26.111		-4.328		-0.792			3.243		35.892	

Coefficients:

													Estimate	Std.	Error	t	value	Pr(>|t|)				

(Intercept)	-7.905243			0.607771		-13.01			<2e-16	***

age										0.255101			0.008634			29.55			<2e-16	***



sexMale						3.465251			0.208494			16.62			<2e-16	***

education				0.918735			0.034514			26.62			<2e-16	***

---

Signif.	codes:		0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1

Residual	standard	error:	6.602	on	4010	degrees	of	freedom

		(3411	observations	deleted	due	to	missingness)

Multiple	R-squared:		0.2972,	 Adjusted	R-squared:		0.2967	

F-statistic:	565.3	on	3	and	4010	DF,		p-value:	<	2.2e-16

3.	 Use	anova	to	compare	the	two	fitted	models:

>	anova(lmfit1,	lmfit2)

Analysis	of	Deviance	Table

Model:	gaussian,	link:	identity

Response:	wages

Terms	added	sequentially	(first	to	last)

										Df	Deviance	Resid.	Df	Resid.	Dev

NULL																							4013					248686

age								1				31953						4012					216733

sex								1				11074						4011					205659

education		1				30883						4010					174776



How	it	works…
The	glm	function	fits	a	model	to	the	data	in	a	similar	fashion	to	the	lm	function.	The	only
difference	is	that	you	can	specify	a	different	link	function	in	the	parameter,	family	(you
may	use	?family	in	the	console	to	find	different	types	of	link	functions).	In	this	recipe,	we
first	input	the	independent	variables,	age,	sex,	and	education,	and	the	dependent	wages
variable	to	the	glm	function,	and	assign	the	built	model	to	lmfit1.	You	can	use	the	built
model	for	further	prediction.

Next,	to	determine	whether	glm	with	a	Gaussian	model	is	exactly	the	same	as	lm,	we	fit
the	independent	variables,	age,	sex,	and	education,	and	the	dependent	variable,	wages,	to
the	lm	model.	By	applying	the	summary	function	to	the	two	different	models,	it	reveals	that
the	residuals	and	coefficients	of	the	two	output	summaries	are	exactly	the	same.

Finally,	we	further	compare	the	two	fitted	models	with	the	anova	function.	The	result	of
the	anova	function	shows	that	the	two	models	are	similar,	with	the	same	residual	degrees
of	freedom	(Res.DF)	and	residual	sum	of	squares	(RSS	Df).



See	also
For	a	comparison	of	generalized	linear	models	with	linear	models,	you	can	refer	to
Venables,	W.	N.,	&	Ripley,	B.	D.	(2002).	Modern	applied	statistics	with	S.	Springer.





Applying	the	Poisson	model	for
generalized	linear	regression
Generalized	linear	models	allow	response	variables	that	have	error	distribution	models
other	than	a	normal	distribution	(Gaussian).	In	this	recipe,	we	demonstrate	how	to	apply
Poisson	as	a	family	object	within	glm	with	regard	to	count	data.



Getting	ready
The	prerequisite	of	this	task	is	to	prepare	the	count	data,	with	all	the	input	data	values	as
integers.



How	to	do	it…
Perform	the	following	steps	to	fit	the	generalized	linear	regression	model	with	the	Poisson
model:

1.	 Load	the	warpbreaks	data,	and	use	head	to	view	the	first	few	lines:

>	data(warpbreaks)

>	head(warpbreaks)

		breaks	wool	tension

1					26				A							L

2					30				A							L

3					54				A							L

4					25				A							L

5					70				A							L

6					52				A							L

2.	 We	apply	Poisson	as	a	family	object	for	the	independent	variable,	tension,	and	the
dependent	variable,	breaks:

>	rs1	=	glm(breaks	~	tension,	data=warpbreaks,	family="poisson")

>	summary(rs1)

Call:

glm(formula	=	breaks	~	tension,	family	=	"poisson",	data	=	warpbreaks)

Deviance	Residuals:	

				Min							1Q			Median							3Q						Max		

-4.2464		-1.6031		-0.5872			1.2813			4.9366		

Coefficients:

												Estimate	Std.	Error	z	value	Pr(>|z|)				

(Intercept)		3.59426				0.03907		91.988		<	2e-16	***

tensionM				-0.32132				0.06027		-5.332	9.73e-08	***

tensionH				-0.51849				0.06396		-8.107	5.21e-16	***

---

Signif.	codes:		0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1

(Dispersion	parameter	for	Poisson	family	taken	to	be	1)

				Null	deviance:	297.37		on	53		degrees	of	freedom

Residual	deviance:	226.43		on	51		degrees	of	freedom

AIC:	507.09

Number	of	Fisher	Scoring	iterations:	4



How	it	works…
Under	the	assumption	of	a	Poisson	distribution,	the	count	data	can	be	fitted	to	a	log-linear
model.	In	this	recipe,	we	first	loaded	a	sample	count	data	from	the	warpbreaks	dataset,
which	contained	data	regarding	the	number	of	warp	breaks	per	loom.	Next,	we	applied	the
glm	function	with	breaks	as	a	dependent	variable,	tension	as	an	independent	variable,	and
Poisson	as	a	family	object.	Finally,	we	viewed	the	fitted	log-linear	model	with	the
summary	function.



See	also
To	understand	more	on	how	a	Poisson	model	is	related	to	count	data,	you	can	refer	to
Cameron,	A.	C.,	&	Trivedi,	P.	K.	(2013).	Regression	analysis	of	count	data	(No.	53).
Cambridge	university	press.





Applying	the	Binomial	model	for
generalized	linear	regression
For	a	binary	dependent	variable,	one	may	apply	a	binomial	model	as	the	family	object	in
the	glm	function.



Getting	ready
The	prerequisite	of	this	task	is	to	prepare	a	binary	dependent	variable.	Here,	we	use	the	vs
variable	(V	engine	or	straight	engine)	as	the	dependent	variable.



How	to	do	it…
Perform	the	following	steps	to	fit	a	generalized	linear	regression	model	with	the	Binomial
model:

1.	 First,	we	examine	the	first	six	elements	of	vs	within	mtcars:

>	head(mtcars$vs)

[1]	0	0	1	1	0	1

2.	 We	apply	the	glm	function	with	binomial	as	the	family	object:

>	lm1	=	glm(vs	~	hp+mpg+gear,data=mtcars,	family=binomial)

>	summary(lm1)

Call:

glm(formula	=	vs	~	hp	+	mpg	+	gear,	family	=	binomial,	data	=	mtcars)

Deviance	Residuals:	

					Min								1Q				Median								3Q							Max		

-1.68166		-0.23743		-0.00945			0.30884			1.55688		

Coefficients:

												Estimate	Std.	Error	z	value	Pr(>|z|)		

(Intercept)	11.95183				8.00322			1.493			0.1353		

hp										-0.07322				0.03440		-2.129			0.0333	*

mpg										0.16051				0.27538			0.583			0.5600		

gear								-1.66526				1.76407		-0.944			0.3452		

---

Signif.	codes:		0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1

(Dispersion	parameter	for	binomial	family	taken	to	be	1)

				Null	deviance:	43.860		on	31		degrees	of	freedom

Residual	deviance:	15.651		on	28		degrees	of	freedom

AIC:	23.651

Number	of	Fisher	Scoring	iterations:	7



How	it	works…
Within	the	binary	data,	each	observation	of	the	response	value	is	coded	as	either	0	or	1.
Fitting	into	the	regression	model	of	the	binary	data	requires	a	binomial	distribution
function.	In	this	example,	we	first	load	the	binary	dependent	variable,	vs,	from	the	mtcars
dataset.	The	vs	is	suitable	for	the	binomial	model	as	it	contains	binary	data.	Next,	we	fit
the	model	into	the	binary	data	using	the	glm	function	by	specifying	binomial	as	the	family
object.	Last,	by	referring	to	the	summary,	we	can	obtain	the	description	of	the	fitted
model.



See	also
If	you	specify	the	family	object	in	parameters	only,	you	will	use	the	default	link	to	fit
the	model.	However,	to	use	an	alternative	link	function,	you	can	add	a	link	argument.
For	example:

>	lm1	=	glm(vs	~	hp+mpg+gear,data=mtcars,	

family=binomial(link="probit"))

If	you	would	like	to	know	how	many	alternative	links	you	can	use,	please	refer	to	the
family	document	via	the	help	function:

	>	?family





Fitting	a	generalized	additive	model	to
data
Generalized	additive	model	(GAM),	which	is	used	to	fit	generalized	additive	models,
can	be	viewed	as	a	semiparametric	extension	of	GLM.	While	GLM	holds	the	assumption
that	there	is	a	linear	relationship	between	dependent	and	independent	variables,	GAM	fits
the	model	on	account	of	the	local	behavior	of	data.	As	a	result,	GAM	has	the	ability	to
deal	with	highly	nonlinear	relationships	between	dependent	and	independent	variables.	In
the	following	recipe,	we	introduce	how	to	fit	regression	using	a	generalized	additive
model.



Getting	ready
We	need	to	prepare	a	data	frame	containing	variables,	where	one	of	the	variables	is	a
response	variable	and	the	others	may	be	predictor	variables.



How	to	do	it…
Perform	the	following	steps	to	fit	a	generalized	additive	model	into	data:

1.	 First,	load	the	mgcv	package,	which	contains	the	gam	function:

>	install.packages("mgcv")

>	library(mgcv)

2.	 Then,	install	the	MASS	package	and	load	the	Boston	dataset:

>	install.packages("MASS")

>	library(MASS)

>	attach(Boston)

>	str(Boston)

3.	 Fit	the	regression	using	gam:

>	fit	=	gam(dis	~	s(nox))

4.	 Get	the	summary	information	of	the	fitted	model:

>	summary(fit)

Family:	gaussian	

Link	function:	identity	

Formula:

dis	~	s(nox)

Parametric	coefficients:

												Estimate	Std.	Error	t	value	Pr(>|t|)				

(Intercept)		3.79504				0.04507			84.21			<2e-16	***

---

Signif.	codes:		0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1

Approximate	significance	of	smooth	terms:

									edf	Ref.df			F	p-value				

s(nox)	8.434		8.893	189		<2e-16	***

---

Signif.	codes:		0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1

R-sq.(adj)	=		0.768			Deviance	explained	=	77.2%

GCV	=	1.0472		Scale	est.	=	1.0277				n	=	506



How	it	works
GAM	is	designed	to	maximize	the	prediction	of	a	dependent	variable,	y,	from	various
distributions	by	estimating	the	nonparametric	functions	of	the	predictors	that	link	to	the
dependent	variable	through	a	link	function.	The	notion	of	GAM	is	

,	where	an	exponential	family,	E,	is	specified	for	y,
along	with	the	g	link	function;	f	denotes	the	link	function	of	predictors.

The	gam	function	is	contained	in	the	mgcv	package,	so,	install	this	package	first	and	load	it
into	an	R	session.	Next,	load	the	Boston	dataset	(Housing	Values	in	the	Suburbs	of	Boston)
from	the	MASS	package.	From	the	dataset,	we	use	dis	(the	weighted	mean	of	the	distance
to	five	Boston	employment	centers)	as	the	dependent	variable,	and	nox	(nitrogen	oxide
concentration)	as	the	independent	variable,	and	then	input	them	into	the	gam	function	to
generate	a	fitted	model.

Similar	to	glm,	gam	allows	users	to	summarize	the	gam	fit.	From	the	summary,	one	can	find
the	parametric	parameter,	significance	of	smoothed	terms,	and	other	useful	information.



See	also
Apart	from	gam,	the	mgcv	package	provides	another	generalized	additive	model,	bam,
for	large	datasets.	The	bam	package	is	very	similar	to	gam,	but	uses	less	memory	and
is	relatively	more	efficient.	Please	use	the	help	function	for	more	information	on	this
model:

	>	?	bam

For	more	information	about	generalized	additive	models	in	R,	please	refer	to	Wood,
S.	(2006).	Generalized	additive	models:	an	introduction	with	R.	CRC	press.





Visualizing	a	generalized	additive	model
In	this	recipe,	we	demonstrate	how	to	add	a	gam	fitted	regression	line	to	a	scatter	plot.	In
addition,	we	visualize	the	gam	fit	using	the	plot	function.



Getting	ready
Complete	the	previous	recipe	by	assigning	a	gam	fitted	model	to	the	fit	variable.



How	to	do	it…
Perform	the	following	steps	to	visualize	the	generalized	additive	model:

1.	 Generate	a	scatter	plot	using	the	nox	and	dis	variables:

>	plot(nox,	dis)

Scatter	plot	of	variable	nox	against	dis

2.	 Add	the	regression	to	the	scatter	plot:

>	x	=	seq(0,	1,	length	=	500)

>	y	=	predict(fit,	data.frame(nox	=	x))

>	lines(x,	y,	col	=	"red",	lwd	=	2)



Fitted	regression	of	gam	on	a	scatter	plot

3.	 Alternatively,	you	can	plot	the	fitted	model	using	the	plot	function:

>	plot(fit)

Plot	of	fitted	gam



How	it	works…
To	visualize	the	fitted	regression,	we	first	generate	a	scatter	plot	using	the	dis	and	nox
variables.	Then,	we	generate	the	sequence	of	x-axis,	and	respond	y	through	the	use	of	the
predict	function	on	the	fitted	model,	fit.	Finally,	we	use	the	lines	function	to	add	the
regression	line	to	the	scatter	plot.

Besides	using	the	lines	to	add	fitted	regression	lines	on	the	scatter	plot,	gam	has	a	plot
function	to	visualize	the	fitted	regression	lines	containing	the	confidence	region.	To	shade
the	confidence	region,	we	assign	shade	=	TRUE	within	the	function.



There’s	more…
The	vis.gam	function	is	used	to	produce	perspective	or	contour	plot	views	of	the	gam
model	predictions.	It	is	helpful	to	observe	how	response	variables	interact	with	two
predictor	variables.	The	following	is	an	example	of	a	contour	plot	on	the	Boston	dataset:

>	fit2=gam(medv~crim+zn+crim:zn,	data=Boston)

>	vis.gam(fit2)

A	sample	contour	plot	produced	by	vis.gam





Diagnosing	a	generalized	additive	model
GAM	also	provides	diagnostic	information	about	the	fitting	procedure	and	results	of	the
generalized	additive	model.	In	this	recipe,	we	demonstrate	how	to	plot	diagnostic	plots
through	the	gam.check	function.



Getting	ready
Ensure	that	the	previous	recipe	is	completed	with	the	gam	fitted	model	assigned	to	the	fit
variable.



How	to	do	it…
Perform	the	following	step	to	diagnose	the	generalized	additive	model:

1.	 Generate	the	diagnostic	plot	using	gam.check	on	the	fitted	model:

>	gam.check(fit)

Method:	GCV			Optimizer:	magic

Smoothing	parameter	selection	converged	after	7	iterations.

The	RMS	GCV	score	gradient	at	convergence	was	8.79622e-06	.

The	Hessian	was	positive	definite.

The	estimated	model	rank	was	10	(maximum	possible:	10)

Model	rank	=		10	/	10	

Basis	dimension	(k)	checking	results.	Low	p-value	(k-index<1)	may

indicate	that	k	is	too	low,	especially	if	edf	is	close	to	k'.

										k'			edf	k-index	p-value

s(nox)	9.000	8.434			0.397							0

Diagnostic	plot	of	fitted	gam



How	it	works…
The	gam.check	function	first	produces	the	smoothing	parameter	estimation	convergence
information.	In	this	example,	the	smoothing	parameter,	GCV/UBRE	(Generalized	Cross
Validation/	Unbiased	Risk	Estimator)	score	converges	after	seven	iterations.	The	mean
absolute	gradient	of	the	GCV/UBRE	function	at	the	minimum	is	8.79622e-06	and	the
estimated	rank	is	10.	The	dimension	check	is	to	test	whether	the	basis	dimension	for	a
smooth	function	is	adequate.	From	this	example,	the	low	p-value	indicates	that	the	k	is	set
too	low.	One	may	adjust	the	dimension	choice	for	smooth	by	specifying	the	argument,	k,
by	fitting	gam	to	the	data.

In	addition	to	providing	information	regarding	smoothing	parameter	estimation
convergence,	the	function	returns	four	diagnostic	plots.	The	upper-left	section	of	the	plot
in	the	screenshot	shows	a	quantile-comparison	plot.	This	plot	is	useful	to	identify
outliers	and	heavy	tails.	The	upper-right	section	of	the	plot	shows	residuals	versus	linear
predictors,	which	are	useful	in	finding	nonconstant	error	variances.	The	bottom-left
section	of	the	plot	shows	a	histogram	of	the	residuals,	which	is	helpful	in	detecting	non-
normality.	The	bottom-right	section	shows	response	versus	the	fitted	value.



There’s	more…
You	can	access	the	help	function	for	more	information	on	gam.check.	In	particular,	this
includes	a	detailed	illustration	of	smoothing	parameter	estimation	convergence	and	four
returned	plots:

>	?gam.check

In	addition,	more	information	for	choose.k	can	be	accessed	by	the	following	command:

>	?choose.k





Chapter	5.	Classification	(I)	–	Tree,	Lazy,
and	Probabilistic
In	this	chapter,	we	will	cover	the	following	recipes:

Preparing	the	training	and	testing	datasets
Building	a	classification	model	with	recursive	partitioning	trees
Visualizing	a	recursive	partitioning	tree
Measuring	the	prediction	performance	of	a	recursive	partitioning	tree
Pruning	a	recursive	partitioning	tree
Building	a	classification	model	with	a	conditional	inference	tree
Visualizing	a	conditional	inference	tree
Measuring	the	prediction	performance	of	a	conditional	inference	tree
Classifying	data	with	a	k-nearest	neighbor	classifier
Classifying	data	with	logistic	regression
Classifying	data	with	the	Naïve	Bayes	classifier



Introduction
Classification	is	used	to	identify	a	category	of	new	observations	(testing	datasets)	based	on
a	classification	model	built	from	the	training	dataset,	of	which	the	categories	are	already
known.	Similar	to	regression,	classification	is	categorized	as	a	supervised	learning	method
as	it	employs	known	answers	(label)	of	a	training	dataset	to	predict	the	answer	(label)	of
the	testing	dataset.	The	main	difference	between	regression	and	classification	is	that
regression	is	used	to	predict	continuous	values.

In	contrast	to	this,	classification	is	used	to	identify	the	category	of	a	given	observation.	For
example,	one	may	use	regression	to	predict	the	future	price	of	a	given	stock	based	on
historical	prices.	However,	one	should	use	the	classification	method	to	predict	whether	the
stock	price	will	rise	or	fall.

In	this	chapter,	we	will	illustrate	how	to	use	R	to	perform	classification.	We	first	build	a
training	dataset	and	a	testing	dataset	from	the	churn	dataset,	and	then	apply	different
classification	methods	to	classify	the	churn	dataset.	In	the	following	recipes,	we	will
introduce	the	tree-based	classification	method	using	a	traditional	classification	tree	and	a
conditional	inference	tree,	lazy-based	algorithm,	and	a	probabilistic-based	method	using
the	training	dataset	to	build	up	a	classification	model,	and	then	use	the	model	to	predict
the	category	(class	label)	of	the	testing	dataset.	We	will	also	use	a	confusion	matrix	to
measure	the	performance.





Preparing	the	training	and	testing
datasets
Building	a	classification	model	requires	a	training	dataset	to	train	the	classification	model,
and	testing	data	is	needed	to	then	validate	the	prediction	performance.	In	the	following
recipe,	we	will	demonstrate	how	to	split	the	telecom	churn	dataset	into	training	and	testing
datasets,	respectively.



Getting	ready
In	this	recipe,	we	will	use	the	telecom	churn	dataset	as	the	input	data	source,	and	split	the
data	into	training	and	testing	datasets.



How	to	do	it…
Perform	the	following	steps	to	split	the	churn	dataset	into	training	and	testing	datasets:

1.	 You	can	retrieve	the	churn	dataset	from	the	C50	package:

>	install.packages("C50")

>	library(C50)

>	data(churn)

2.	 Use	str	to	read	the	structure	of	the	dataset:

>	str(churnTrain)

3.	 We	can	remove	the	state,	area_code,	and	account_length	attributes,	which	are	not
appropriate	for	classification	features:

>	churnTrain	=	churnTrain[,!	names(churnTrain)	%in%	c("state",	

"area_code",	"account_length")	]

4.	 Then,	split	70	percent	of	the	data	into	the	training	dataset	and	30	percent	of	the	data
into	the	testing	dataset:

>	set.seed(2)

>	ind	=	sample(2,	nrow(churnTrain),	replace	=	TRUE,	prob=c(0.7,	0.3))

>	trainset	=	churnTrain[ind	==	1,]

>	testset	=	churnTrain[ind	==	2,]

5.	 Lastly,	use	dim	to	explore	the	dimensions	of	both	the	training	and	testing	datasets:

>	dim(trainset)

[1]	2315			17

>	dim(testset)

[1]	1018			17



How	it	works…
In	this	recipe,	we	use	the	telecom	churn	dataset	as	our	example	data	source.	The	dataset
contains	20	variables	with	3,333	observations.	We	would	like	to	build	a	classification
model	to	predict	whether	a	customer	will	churn,	which	is	very	important	to	the	telecom
company	as	the	cost	of	acquiring	a	new	customer	is	significantly	more	than	retaining	one.

Before	building	the	classification	model,	we	need	to	preprocess	the	data	first.	Thus,	we
load	the	churn	data	from	the	C50	package	into	the	R	session	with	the	variable	name	as
churn.	As	we	determined	that	attributes	such	as	state,	area_code,	and	account_length
are	not	useful	features	for	building	the	classification	model,	we	remove	these	attributes.

After	preprocessing	the	data,	we	split	it	into	training	and	testing	datasets,	respectively.	We
then	use	a	sample	function	to	randomly	generate	a	sequence	containing	70	percent	of	the
training	dataset	and	30	percent	of	the	testing	dataset	with	a	size	equal	to	the	number	of
observations.	Then,	we	use	a	generated	sequence	to	split	the	churn	dataset	into	the	training
dataset,	trainset,	and	the	testing	dataset,	testset.	Lastly,	by	using	the	dim	function,	we
found	that	2,315	out	of	the	3,333	observations	are	categorized	into	the	training	dataset,
trainset,	while	the	other	1,018	are	categorized	into	the	testing	dataset,	testset.



There’s	more…
You	can	combine	the	split	process	of	the	training	and	testing	datasets	into	the	split.data
function.	Therefore,	you	can	easily	split	the	data	into	the	two	datasets	by	calling	this
function	and	specifying	the	proportion	and	seed	in	the	parameters:

>	split.data	=	function(data,	p	=	0.7,	s	=	666){

+			set.seed(s)

+			index	=	sample(1:dim(data)[1])

+			train	=	data[index[1:floor(dim(data)[1]	*	p)],	]

+			test	=	data[index[((ceiling(dim(data)[1]	*	p))	+	1):dim(data)[1]],	]

+			return(list(train	=	train,	test	=	test))

+	}	





Building	a	classification	model	with
recursive	partitioning	trees
A	classification	tree	uses	a	split	condition	to	predict	class	labels	based	on	one	or	multiple
input	variables.	The	classification	process	starts	from	the	root	node	of	the	tree;	at	each
node,	the	process	will	check	whether	the	input	value	should	recursively	continue	to	the
right	or	left	sub-branch	according	to	the	split	condition,	and	stops	when	meeting	any	leaf
(terminal)	nodes	of	the	decision	tree.	In	this	recipe,	we	will	introduce	how	to	apply	a
recursive	partitioning	tree	on	the	customer	churn	dataset.



Getting	ready
You	need	to	have	completed	the	previous	recipe	by	splitting	the	churn	dataset	into	the
training	dataset	(trainset)	and	testing	dataset	(testset),	and	each	dataset	should	contain
exactly	17	variables.



How	to	do	it…
Perform	the	following	steps	to	split	the	churn	dataset	into	training	and	testing	datasets:

1.	 Load	the	rpart	package:

>	library(rpart)

2.	 Use	the	rpart	function	to	build	a	classification	tree	model:

>	churn.rp	=	rpart(churn	~	.,	data=trainset)

3.	 Type	churn.rp	to	retrieve	the	node	detail	of	the	classification	tree:

>	churn.rp	

4.	 Next,	use	the	printcp	function	to	examine	the	complexity	parameter:

>	printcp(churn.rp)

Classification	tree:

rpart(formula	=	churn	~	.,	data	=	trainset)

Variables	actually	used	in	tree	construction:

[1]	international_plan												number_customer_service_calls

[3]	total_day_minutes													total_eve_minutes												

[5]	total_intl_calls														total_intl_minutes											

[7]	voice_mail_plan														

Root	node	error:	342/2315	=	0.14773

n=	2315	

								CP	nsplit	rel	error		xerror					xstd

1	0.076023						0			1.00000	1.00000	0.049920

2	0.074561						2			0.84795	0.99708	0.049860

3	0.055556						4			0.69883	0.76023	0.044421

4	0.026316						7			0.49415	0.52632	0.037673

5	0.023392						8			0.46784	0.52047	0.037481

6	0.020468					10			0.42105	0.50877	0.037092

7	0.017544					11			0.40058	0.47076	0.035788

8	0.010000					12			0.38304	0.47661	0.035993

5.	 Next,	use	the	plotcp	function	to	plot	the	cost	complexity	parameters:

>	plotcp(churn.rp)



Figure	1:	The	cost	complexity	parameter	plot

6.	 Lastly,	use	the	summary	function	to	examine	the	built	model:

>	summary(churn.rp)



How	it	works…
In	this	recipe,	we	use	a	recursive	partitioning	tree	from	the	rpart	package	to	build	a	tree-
based	classification	model.	The	recursive	portioning	tree	includes	two	processes:	recursion
and	partitioning.	During	the	process	of	decision	induction,	we	have	to	consider	a	statistic
evaluation	question	(or	simply	a	yes/no	question)	to	partition	the	data	into	different
partitions	in	accordance	with	the	assessment	result.	Then,	as	we	have	determined	the	child
node,	we	can	repeatedly	perform	the	splitting	until	the	stop	criteria	is	satisfied.

For	example,	the	data	(shown	in	the	following	figure)	in	the	root	node	can	be	partitioned
into	two	groups	with	regard	to	the	question	of	whether	f1	is	smaller	than	X.	If	so,	the	data
is	divided	into	the	left-hand	side.	Otherwise,	it	is	split	into	the	right-hand	side.	Then,	we
can	continue	to	partition	the	left-hand	side	data	with	the	question	of	whether	f2	is	smaller
than	Y:



Figure	2:	Recursive	partioning	tree

In	the	first	step,	we	load	the	rpart	package	with	the	library	function.	Next,	we	build	a
classification	model	using	the	churn	variable	as	a	classification	category	(class	label)	and
the	remaining	variables	as	input	features.

After	the	model	is	built,	you	can	type	the	variable	name	of	the	built	model,	churn.rp,	to
display	the	tree	node	details.	In	the	printed	node	detail,	n	indicates	the	sample	size,	loss
indicates	the	misclassification	cost,	yval	stands	for	the	classified	membership	(no	or	yes,
in	this	case),	and	yprob	stands	for	the	probabilities	of	two	classes	(the	left	value	refers	to
the	probability	reaching	label	no,	and	the	right	value	refers	to	the	probability	reaching
label,	yes).



Then,	we	use	the	printcp	function	to	print	the	complexity	parameters	of	the	built	tree
model.	From	the	output	of	printcp,	one	should	find	the	value	of	CP,	a	complexity
parameter,	which	serves	as	a	penalty	to	control	the	size	of	the	tree.	In	short,	the	greater	the
CP	value,	the	fewer	the	number	of	splits	there	are	(nsplit).	The	output	value	(the	rel
error)	represents	the	average	deviance	of	the	current	tree	divided	by	the	average	deviance
of	the	null	tree.	A	xerror	value	represents	the	relative	error	estimated	by	a	10-fold
classification.	xstd	stands	for	the	standard	error	of	the	relative	error.

To	make	the	CP	(cost	complexity	parameter)	table	more	readable,	we	use	plotcp	to
generate	an	information	graphic	of	the	CP	table.	As	per	the	screenshot	(step	5),	the	x-axis
at	the	bottom	illustrates	the	cp	value,	the	y-axis	illustrates	the	relative	error,	and	the	upper
x-axis	displays	the	size	of	the	tree.	The	dotted	line	indicates	the	upper	limit	of	a	standard
deviation.	From	the	screenshot,	we	can	determine	that	minimum	cross-validation	error
occurs	when	the	tree	is	at	a	size	of	12.

We	can	also	use	the	summary	function	to	display	the	function	call,	complexity	parameter
table	for	the	fitted	tree	model,	variable	importance,	which	helps	identify	the	most
important	variable	for	the	tree	classification	(summing	up	to	100),	and	detailed
information	of	each	node.

The	advantage	of	using	the	decision	tree	is	that	it	is	very	flexible	and	easy	to	interpret.	It
works	on	both	classification	and	regression	problems,	and	more;	it	is	nonparametric.
Therefore,	one	does	not	have	to	worry	about	whether	the	data	is	linear	separable.	As	for
the	disadvantage	of	using	the	decision	tree,	it	is	that	it	tends	to	be	biased	and	over-fitted.
However,	you	can	conquer	the	bias	problem	through	the	use	of	a	conditional	inference
tree,	and	solve	the	problem	of	over-fitting	through	a	random	forest	method	or	tree	pruning.



See	also
For	more	information	about	the	rpart,	printcp,	and	summary	functions,	please	use
the	help	function:

>	?rpart

>	?printcp

>	?summary.rpart

C50	is	another	package	that	provides	a	decision	tree	and	a	rule-based	model.	If	you
are	interested	in	the	package,	you	may	refer	to	the	document	at	http://cran.r-
project.org/web/packages/C50/C50.pdf.

http://cran.r-project.org/web/packages/C50/C50.pdf




Visualizing	a	recursive	partitioning	tree
From	the	last	recipe,	we	learned	how	to	print	the	classification	tree	in	a	text	format.	To
make	the	tree	more	readable,	we	can	use	the	plot	function	to	obtain	the	graphical	display
of	a	built	classification	tree.



Getting	ready
One	needs	to	have	the	previous	recipe	completed	by	generating	a	classification	model,	and
assign	the	model	into	the	churn.rp	variable.



How	to	do	it…
Perform	the	following	steps	to	visualize	the	classification	tree:

1.	 Use	the	plot	function	and	the	text	function	to	plot	the	classification	tree:

>	plot(churn.rp,	margin=	0.1)

>	text(churn.rp,	all=TRUE,	use.n	=	TRUE)

Figure	3:	The	graphical	display	of	a	classification	tree

2.	 You	can	also	specify	the	uniform,	branch,	and	margin	parameter	to	adjust	the	layout:

>	plot(churn.rp,	uniform=TRUE,	branch=0.6,	margin=0.1)

>	text(churn.rp,	all=TRUE,	use.n	=	TRUE)



Figure	4:	Adjust	the	layout	of	the	classification	tree



How	it	works…
Here,	we	demonstrate	how	to	use	the	plot	function	to	graphically	display	a	classification
tree.	The	plot	function	can	simply	visualize	the	classification	tree,	and	you	can	then	use
the	text	function	to	add	text	to	the	plot.

In	Figure	3,	we	assign	margin	=	0.1	as	a	parameter	to	add	extra	white	space	around	the
border	to	prevent	the	displayed	text	being	truncated	by	the	margin.	It	shows	that	the	length
of	the	branches	displays	the	relative	magnitude	of	the	drop	in	deviance.	We	then	use	the
text	function	to	add	labels	for	the	nodes	and	branches.	By	default,	the	text	function	will
add	a	split	condition	on	each	split,	and	add	a	category	label	in	each	terminal	node.	In	order
to	add	extra	information	on	the	tree	plot,	we	set	the	parameter	as	all	equal	to	TRUE	to	add	a
label	to	all	the	nodes.	In	addition	to	this,	we	add	a	parameter	by	specifying	use.n	=	TRUE
to	add	extra	information,	which	shows	that	the	actual	number	of	observations	fall	into	two
different	categories	(no	and	yes).

In	Figure	4,	we	set	the	option	branch	to	0.6	to	add	a	shoulder	to	each	plotted	branch.	In
addition	to	this,	in	order	to	display	branches	of	an	equal	length	rather	than	relative
magnitude	of	the	drop	in	deviance,	we	set	the	option	uniform	to	TRUE.	As	a	result,	Figure
4	shows	a	classification	tree	with	short	shoulders	and	branches	of	equal	length.



See	also
You	may	use	?plot.rpart	to	read	more	about	the	plotting	of	the	classification	tree.
This	document	also	includes	information	on	how	to	specify	the	parameters,	uniform,
branch,	compress,	nspace,	margin,	and	minbranch,	to	adjust	the	layout	of	the
classification	tree.





Measuring	the	prediction	performance	of
a	recursive	partitioning	tree
Since	we	have	built	a	classification	tree	in	the	previous	recipes,	we	can	use	it	to	predict	the
category	(class	label)	of	new	observations.	Before	making	a	prediction,	we	first	validate
the	prediction	power	of	the	classification	tree,	which	can	be	done	by	generating	a
classification	table	on	the	testing	dataset.	In	this	recipe,	we	will	introduce	how	to	generate
a	predicted	label	versus	a	real	label	table	with	the	predict	function	and	the	table
function,	and	explain	how	to	generate	a	confusion	matrix	to	measure	the	performance.



Getting	ready
You	need	to	have	the	previous	recipe	completed	by	generating	the	classification	model,
churn.rp.	In	addition	to	this,	you	have	to	prepare	the	training	dataset,	trainset,	and	the
testing	dataset,	testset,	generated	in	the	first	recipe	of	this	chapter.



How	to	do	it…
Perform	the	following	steps	to	validate	the	prediction	performance	of	a	classification	tree:

1.	 You	can	use	the	predict	function	to	generate	a	predicted	label	of	testing	the	dataset:

>	predictions	=	predict(churn.rp,	testset,	type="class")

2.	 Use	the	table	function	to	generate	a	classification	table	for	the	testing	dataset:

>	table(testset$churn,	predictions)

					predictions

						yes		no

		yes	100		41

		no			18	859

3.	 One	can	further	generate	a	confusion	matrix	using	the	confusionMatrix	function
provided	in	the	caret	package:

>	library(caret)

>	confusionMatrix(table(predictions,	testset$churn))

Confusion	Matrix	and	Statistics

											

predictions	yes		no

								yes	100		18

								no			41	859

																																										

															Accuracy	:	0.942											

																	95%	CI	:	(0.9259,	0.9556)

				No	Information	Rate	:	0.8615										

				P-Value	[Acc	>	NIR]	:	<	2.2e-16							

																																										

																		Kappa	:	0.7393										

	Mcnemar's	Test	P-Value	:	0.004181								

																																										

												Sensitivity	:	0.70922									

												Specificity	:	0.97948									

									Pos	Pred	Value	:	0.84746									

									Neg	Pred	Value	:	0.95444									

													Prevalence	:	0.13851									

									Detection	Rate	:	0.09823									

			Detection	Prevalence	:	0.11591									

						Balanced	Accuracy	:	0.84435									

																																										

							'Positive'	Class	:	yes													



How	it	works…
In	this	recipe,	we	use	a	predict	function	and	built	up	classification	model,	churn.rp,	to
predict	the	possible	class	labels	of	the	testing	dataset,	testset.	The	predicted	categories
(class	labels)	are	coded	as	either	no	or	yes.	Then,	we	use	the	table	function	to	generate	a
classification	table	on	the	testing	dataset.	From	the	table,	we	discover	that	there	are	859
correctly	predicted	as	no,	while	18	are	misclassified	as	yes.	100	of	the	yes	predictions	are
correctly	predicted,	but	41	observations	are	misclassified	into	no.	Further,	we	use	the
confusionMatrix	function	from	the	caret	package	to	produce	a	measurement	of	the
classification	model.



See	also
You	may	use	?confusionMatrix	to	read	more	about	the	performance	measurement
using	the	confusion	matrix
For	those	who	are	interested	in	the	definition	output	by	the	confusion	matrix,	please
refer	to	the	Wikipedia	entry,	Confusion_matrix
(http://en.wikipedia.org/wiki/Confusion_matrix)

http://en.wikipedia.org/wiki/Confusion_matrix




Pruning	a	recursive	partitioning	tree
In	previous	recipes,	we	have	built	a	complex	decision	tree	for	the	churn	dataset.	However,
sometimes	we	have	to	remove	sections	that	are	not	powerful	in	classifying	instances	to
avoid	over-fitting,	and	to	improve	the	prediction	accuracy.	Therefore,	in	this	recipe,	we
introduce	the	cost	complexity	pruning	method	to	prune	the	classification	tree.



Getting	ready
You	need	to	have	the	previous	recipe	completed	by	generating	a	classification	model,	and
assign	the	model	into	the	churn.rp	variable.



How	to	do	it…
Perform	the	following	steps	to	prune	the	classification	tree:

1.	 Find	the	minimum	cross-validation	error	of	the	classification	tree	model:

>	min(churn.rp$cptable[,"xerror"])

[1]	0.4707602

2.	 Locate	the	record	with	the	minimum	cross-validation	errors:

>	which.min(churn.rp$cptable[,"xerror"])

7	

3.	 Get	the	cost	complexity	parameter	of	the	record	with	the	minimum	cross-validation
errors:

>	churn.cp	=	churn.rp$cptable[7,"CP"]

>	churn.cp

[1]	0.01754386

4.	 Prune	the	tree	by	setting	the	cp	parameter	to	the	CP	value	of	the	record	with
minimum	cross-validation	errors:

>	prune.tree	=	prune(churn.rp,	cp=	churn.cp)

5.	 Visualize	the	classification	tree	by	using	the	plot	and	text	function:

>	plot(prune.tree,	margin=	0.1)

>	text(prune.tree,	all=TRUE	,	use.n=TRUE)

Figure	5:	The	pruned	classification	tree

6.	 Next,	you	can	generate	a	classification	table	based	on	the	pruned	classification	tree
model:



>	predictions	=	predict(prune.tree,	testset,	type="class")

>	table(testset$churn,	predictions)

					predictions

						yes		no

		yes		95		46

		no			14	863

7.	 Lastly,	you	can	generate	a	confusion	matrix	based	on	the	classification	table:

>	confusionMatrix(table(predictions,	testset$churn))

Confusion	Matrix	and	Statistics

			

								

predictions	yes		no

								yes		95		14

								no			46	863

																																										

															Accuracy	:	0.9411										

																	95%	CI	:	(0.9248,	0.9547)

				No	Information	Rate	:	0.8615										

				P-Value	[Acc	>	NIR]	:	2.786e-16							

																																										

																		Kappa	:	0.727											

	Mcnemar's	Test	P-Value	:	6.279e-05							

																																										

												Sensitivity	:	0.67376									

												Specificity	:	0.98404									

									Pos	Pred	Value	:	0.87156									

									Neg	Pred	Value	:	0.94939									

													Prevalence	:	0.13851									

									Detection	Rate	:	0.09332									

			Detection	Prevalence	:	0.10707									

						Balanced	Accuracy	:	0.82890									

																																										

							'Positive'	Class	:	yes													



How	it	works…
In	this	recipe,	we	discussed	pruning	a	classification	tree	to	avoid	over-fitting	and
producing	a	more	robust	classification	model.	We	first	located	the	record	with	the
minimum	cross-validation	errors	within	the	cptable,	and	we	then	extracted	the	CP	of	the
record	and	assigned	the	value	to	churn.cp.	Next,	we	used	the	prune	function	to	prune	the
classification	tree	with	churn.cp	as	the	parameter.	Then,	by	using	the	plot	function,	we
graphically	displayed	the	pruned	classification	tree.	From	Figure	5,	it	is	clear	that	the	split
of	the	tree	is	less	than	the	original	classification	tree	(Figure	3).	Lastly,	we	produced	a
classification	table	and	used	the	confusion	matrix	to	validate	the	performance	of	the
pruned	tree.	The	result	shows	that	the	accuracy	(0.9411)	is	slightly	lower	than	the	original
model	(0.942),	and	also	suggests	that	the	pruned	tree	may	not	perform	better	than	the
original	classification	tree	as	we	have	pruned	some	split	conditions	(Still,	one	should
examine	the	change	in	sensitivity	and	specificity).	However,	the	pruned	tree	model	is
more	robust	as	it	removes	some	split	conditions	that	may	lead	to	over-fitting.



See	also
For	those	who	would	like	to	know	more	about	cost	complexity	pruning,	please	refer
to	the	Wikipedia	article	for	Pruning	(decision_trees):
http://en.wikipedia.org/wiki/Pruning_(decision_trees

http://en.wikipedia.org/wiki/Pruning_(decision_trees




Building	a	classification	model	with	a
conditional	inference	tree
In	addition	to	traditional	decision	trees	(rpart),	conditional	inference	trees	(ctree)	are
another	popular	tree-based	classification	method.	Similar	to	traditional	decision	trees,
conditional	inference	trees	also	recursively	partition	the	data	by	performing	a	univariate
split	on	the	dependent	variable.	However,	what	makes	conditional	inference	trees	different
from	traditional	decision	trees	is	that	conditional	inference	trees	adapt	the	significance	test
procedures	to	select	variables	rather	than	selecting	variables	by	maximizing	information
measures	(rpart	employs	a	Gini	coefficient).	In	this	recipe,	we	will	introduce	how	to
adapt	a	conditional	inference	tree	to	build	a	classification	model.



Getting	ready
You	need	to	have	the	first	recipe	completed	by	generating	the	training	dataset,	trainset,
and	the	testing	dataset,	testset.



How	to	do	it…
Perform	the	following	steps	to	build	the	conditional	inference	tree:

1.	 First,	we	use	ctree	from	the	party	package	to	build	the	classification	model:

>	library(party)

>	ctree.model	=	ctree(churn	~	.	,	data	=	trainset)

2.	 Then,	we	examine	the	built	tree	model:

>	ctree.model



How	it	works…
In	this	recipe,	we	used	a	conditional	inference	tree	to	build	a	classification	tree.	The	use	of
ctree	is	similar	to	rpart.	Therefore,	you	can	easily	test	the	classification	power	using
either	a	traditional	decision	tree	or	a	conditional	inference	tree	while	confronting
classification	problems.	Next,	we	obtain	the	node	details	of	the	classification	tree	by
examining	the	built	model.	Within	the	model,	we	discover	that	ctree	provides	information
similar	to	a	split	condition,	criterion	(1	–	p-value),	statistics	(test	statistics),	and	weight
(the	case	weight	corresponding	to	the	node).	However,	it	does	not	offer	as	much
information	as	rpart	does	through	the	use	of	the	summary	function.



See	also
You	may	use	the	help	function	to	refer	to	the	definition	of	Binary	Tree	Class	and
read	more	about	the	properties	of	binary	trees:

	>	help("BinaryTree-class")





Visualizing	a	conditional	inference	tree
Similar	to	rpart,	the	party	package	also	provides	a	visualization	method	for	users	to	plot
conditional	inference	trees.	In	the	following	recipe,	we	will	introduce	how	to	use	the	plot
function	to	visualize	conditional	inference	trees.



Getting	ready
You	need	to	have	the	first	recipe	completed	by	generating	the	conditional	inference	tree
model,	ctree.model.	In	addition	to	this,	you	need	to	have	both,	trainset	and	testset,
loaded	in	an	R	session.



How	to	do	it…
Perform	the	following	steps	to	visualize	the	conditional	inference	tree:

1.	 Use	the	plot	function	to	plot	ctree.model	built	in	the	last	recipe:

>	plot(ctree.model)

Figure	6:	A	conditional	inference	tree	of	churn	data

2.	 To	obtain	a	simple	conditional	inference	tree,	one	can	reduce	the	built	model	with
less	input	features,	and	redraw	the	classification	tree:

>	daycharge.model	=	ctree(churn	~	total_day_charge,	data	=	trainset)

>	plot(daycharge.model)



Figure	7:	A	conditional	inference	tree	using	the	total_day_charge	variable	as	only
split	condition



How	it	works…
To	visualize	the	node	detail	of	the	conditional	inference	tree,	we	can	apply	the	plot
function	on	a	built	classification	model.	The	output	figure	reveals	that	every	intermediate
node	shows	the	dependent	variable	name	and	the	p-value.	The	split	condition	is	displayed
on	the	left	and	right	branches.	The	terminal	nodes	show	the	number	of	categorized
observations,	n,	and	the	probability	of	a	class	label	of	either	0	or	1.

Taking	Figure	7	as	an	example,	we	first	build	a	classification	model	using
total_day_charge	as	the	only	feature	and	churn	as	the	class	label.	The	built	classification
tree	shows	that	when	total_day_charge	is	above	48.18,	the	lighter	gray	area	is	greater
than	the	darker	gray	in	node	9,	which	indicates	that	the	customer	with	a	day	charge	of	over
48.18	has	a	greater	likelihood	to	churn	(label	=	yes).



See	also
The	visualization	of	the	conditional	inference	tree	comes	from	the	plot.BinaryTree
function.	If	you	are	interested	in	adjusting	the	layout	of	the	classification	tree,	you
may	use	the	help	function	to	read	the	following	document:

>	?plot.BinaryTree





Measuring	the	prediction	performance	of
a	conditional	inference	tree
After	building	a	conditional	inference	tree	as	a	classification	model,	we	can	use	the
treeresponse	and	predict	functions	to	predict	categories	of	the	testing	dataset,	testset,
and	further	validate	the	prediction	power	with	a	classification	table	and	a	confusion
matrix.



Getting	ready
You	need	to	have	the	previous	recipe	completed	by	generating	the	conditional	inference
tree	model,	ctree.model.	In	addition	to	this,	you	need	to	have	both	trainset	and	testset
loaded	in	an	R	session.



How	to	do	it…
Perform	the	following	steps	to	measure	the	prediction	performance	of	a	conditional
inference	tree:

1.	 You	can	use	the	predict	function	to	predict	the	category	of	the	testing	dataset,
testset:

>	ctree.predict	=	predict(ctree.model	,testset)

>	table(ctree.predict,	testset$churn)

													

ctree.predict	yes		no

										yes		99		15

										no			42	862

2.	 Furthermore,	you	can	use	confusionMatrix	from	the	caret	package	to	generate	the
performance	measurements	of	the	prediction	result:

>	confusionMatrix(table(ctree.predict,	testset$churn))

Confusion	Matrix	and	Statistics

													

ctree.predict	yes		no

										yes		99		15

										no			42	862

																																										

															Accuracy	:	0.944											

																	95%	CI	:	(0.9281,	0.9573)

				No	Information	Rate	:	0.8615										

				P-Value	[Acc	>	NIR]	:	<	2.2e-16							

																																										

																		Kappa	:	0.7449										

	Mcnemar's	Test	P-Value	:	0.0005736							

																																										

												Sensitivity	:	0.70213									

												Specificity	:	0.98290									

									Pos	Pred	Value	:	0.86842									

									Neg	Pred	Value	:	0.95354									

													Prevalence	:	0.13851									

									Detection	Rate	:	0.09725									

			Detection	Prevalence	:	0.11198									

						Balanced	Accuracy	:	0.84251									

																																										

							'Positive'	Class	:	yes													

3.	 You	can	also	use	the	treeresponse	function,	which	will	tell	you	the	list	of	class
probabilities:

>	tr	=	treeresponse(ctree.model,	newdata	=	testset[1:5,])

>	tr

[[1]]

[1]	0.03497409	0.96502591

[[2]]

[1]	0.02586207	0.97413793



[[3]]

[1]	0.02586207	0.97413793

[[4]]

[1]	0.02586207	0.97413793

[[5]]

[1]	0.03497409	0.96502591



How	it	works…
In	this	recipe,	we	first	demonstrate	that	one	can	use	the	prediction	function	to	predict	the
category	(class	label)	of	the	testing	dataset,	testset,	and	then	employ	a	table	function	to
generate	a	classification	table.	Next,	you	can	use	the	confusionMatrix	function	built	into
the	caret	package	to	determine	the	performance	measurements.

In	addition	to	the	predict	function,	treeresponse	is	also	capable	of	estimating	the	class
probability,	which	will	often	classify	labels	with	a	higher	probability.	In	this	example,	we
demonstrated	how	to	obtain	the	estimated	class	probability	using	the	top	five	records	of
the	testing	dataset,	testset.	The	treeresponse	function	returns	a	list	of	five	probabilities.
You	can	use	the	list	to	determine	the	label	of	instance.



See	also
For	the	predict	function,	you	can	specify	the	type	as	response,	prob,	or	node.	If	you
specify	the	type	as	prob	when	using	the	predict	function	(for	example,	predict(…
type="prob")),	you	will	get	exactly	the	same	result	as	what	treeresponse	returns.





Classifying	data	with	the	k-nearest
neighbor	classifier
K-nearest	neighbor	(knn)	is	a	nonparametric	lazy	learning	method.	From	a
nonparametric	view,	it	does	not	make	any	assumptions	about	data	distribution.	In	terms	of
lazy	learning,	it	does	not	require	an	explicit	learning	phase	for	generalization.	The
following	recipe	will	introduce	how	to	apply	the	k-nearest	neighbor	algorithm	on	the
churn	dataset.



Getting	ready
You	need	to	have	the	previous	recipe	completed	by	generating	the	training	and	testing
datasets.



How	to	do	it…
Perform	the	following	steps	to	classify	the	churn	data	with	the	k-nearest	neighbor
algorithm:

1.	 First,	one	has	to	install	the	class	package	and	have	it	loaded	in	an	R	session:

>	install.packages("class")

>	library(class)

2.	 Replace	yes	and	no	of	the	voice_mail_plan	and	international_plan	attributes	in
both	the	training	dataset	and	testing	dataset	to	1	and	0:

>	levels(trainset$international_plan)	=	list("0"="no",	"1"="yes")

>	levels(trainset$voice_mail_plan)	=	list("0"="no",	"1"="yes")

>	levels(testset$international_plan)	=	list("0"="no",	"1"="yes")

>	levels(testset$voice_mail_plan)	=	list("0"="no",	"1"="yes")

3.	 Use	the	knn	classification	method	on	the	training	dataset	and	the	testing	dataset:

>	churn.knn		=	knn(trainset[,!	names(trainset)	%in%	c("churn")],	

testset[,!	names(testset)	%in%	c("churn")],	trainset$churn,	k=3)

4.	 Then,	you	can	use	the	summary	function	to	retrieve	the	number	of	predicted	labels:

>	summary(churn.knn)

yes		no

	77	941

5.	 Next,	you	can	generate	the	classification	matrix	using	the	table	function:

>	table(testset$churn,	churn.knn)

					churn.knn

						yes		no

		yes		44		97

		no			33	844

6.	 Lastly,	you	can	generate	a	confusion	matrix	by	using	the	confusionMatrix	function:

>	confusionMatrix(table(testset$churn,	churn.knn))

Confusion	Matrix	and	Statistics

					churn.knn

						yes		no

		yes		44		97

		no			33	844

																																										

															Accuracy	:	0.8723										

																	95%	CI	:	(0.8502,	0.8922)

				No	Information	Rate	:	0.9244										

				P-Value	[Acc	>	NIR]	:	1															

																																										

																		Kappa	:	0.339											

	Mcnemar's	Test	P-Value	:	3.286e-08							

																																										

												Sensitivity	:	0.57143									

												Specificity	:	0.89692									



									Pos	Pred	Value	:	0.31206									

									Neg	Pred	Value	:	0.96237									

													Prevalence	:	0.07564									

									Detection	Rate	:	0.04322									

			Detection	Prevalence	:	0.13851									

						Balanced	Accuracy	:	0.73417									

																																										

							'Positive'	Class	:	yes			



How	it	works…
knn	trains	all	samples	and	classifies	new	instances	based	on	a	similarity	(distance)
measure.	For	example,	the	similarity	measure	can	be	formulated	as	follows:

Euclidian	Distance:	

Manhattan	Distance:

In	knn,	a	new	instance	is	classified	to	a	label	(class)	that	is	common	among	the	k-nearest
neighbors.	If	k	=	1,	then	the	new	instance	is	assigned	to	the	class	where	its	nearest
neighbor	belongs.	The	only	required	input	for	the	algorithm	is	k.	If	we	give	a	small	k
input,	it	may	lead	to	over-fitting.	On	the	other	hand,	if	we	give	a	large	k	input,	it	may
result	in	under-fitting.	To	choose	a	proper	k-value,	one	can	count	on	cross-validation.

The	advantages	of	knn	are:

The	cost	of	the	learning	process	is	zero
It	is	nonparametric,	which	means	that	you	do	not	have	to	make	the	assumption	of
data	distribution
You	can	classify	any	data	whenever	you	can	find	similarity	measures	of	given
instances

The	main	disadvantages	of	knn	are:

It	is	hard	to	interpret	the	classified	result.
It	is	an	expensive	computation	for	a	large	dataset.
The	performance	relies	on	the	number	of	dimensions.	Therefore,	for	a	high
dimension	problem,	you	should	reduce	the	dimension	first	to	increase	the	process
performance.

The	use	of	knn	does	not	vary	significantly	from	applying	a	tree-based	algorithm
mentioned	in	the	previous	recipes.	However,	while	a	tree-based	algorithm	may	show	you
the	decision	tree	model,	the	output	produced	by	knn	only	reveals	classification	category
factors.	However,	before	building	a	classification	model,	one	should	replace	the	attribute
with	a	string	type	to	an	integer	since	the	k-nearest	neighbor	algorithm	needs	to	calculate
the	distance	between	observations.	Then,	we	build	up	a	classification	model	by	specifying
k=3,	which	means	choosing	the	three	nearest	neighbors.	After	the	classification	model	is
built,	we	can	generate	a	classification	table	using	predicted	factors	and	the	testing	dataset
label	as	the	input.	Lastly,	we	can	generate	a	confusion	matrix	from	the	classification	table.
The	confusion	matrix	output	reveals	an	accuracy	result	of	(0.8723),	which	suggests	that
both	the	tree-based	methods	mentioned	in	previous	recipes	outperform	the	accuracy	of	the
k-nearest	neighbor	classification	method	in	this	case.	Still,	we	cannot	determine	which
model	is	better	depending	merely	on	accuracy,	one	should	also	examine	the	specificity	and
sensitivity	from	the	output.



See	also
There	is	another	package	named	kknn,	which	provides	a	weighted	k-nearest	neighbor
classification,	regression,	and	clustering.	You	can	learn	more	about	the	package	by
reading	this	document:	http://cran.r-project.org/web/packages/kknn/kknn.pdf.

http://cran.r-project.org/web/packages/kknn/kknn.pdf




Classifying	data	with	logistic	regression
Logistic	regression	is	a	form	of	probabilistic	statistical	classification	model,	which	can	be
used	to	predict	class	labels	based	on	one	or	more	features.	The	classification	is	done	by
using	the	logit	function	to	estimate	the	outcome	probability.	One	can	use	logistic
regression	by	specifying	the	family	as	a	binomial	while	using	the	glm	function.	In	this
recipe,	we	will	introduce	how	to	classify	data	using	logistic	regression.



Getting	ready
You	need	to	have	completed	the	first	recipe	by	generating	training	and	testing	datasets.



How	to	do	it…
Perform	the	following	steps	to	classify	the	churn	data	with	logistic	regression:

1.	 With	the	specification	of	family	as	a	binomial,	we	apply	the	glm	function	on	the
dataset,	trainset,	by	using	churn	as	a	class	label	and	the	rest	of	the	variables	as
input	features:

>	fit	=	glm(churn	~	.,	data	=	trainset,	family=binomial)

2.	 Use	the	summary	function	to	obtain	summary	information	of	the	built	logistic
regression	model:

>	summary(fit)

Call:

glm(formula	=	churn	~	.,	family	=	binomial,	data	=	trainset)

Deviance	Residuals:	

				Min							1Q			Median							3Q						Max		

-3.1519			0.1983			0.3460			0.5186			2.1284		

Coefficients:

																																Estimate	Std.	Error	z	value	Pr(>|z|)

(Intercept)																				8.3462866		0.8364914			9.978		<	2e-16

international_planyes									-2.0534243		0.1726694	-11.892		<	2e-16

voice_mail_planyes													1.3445887		0.6618905			2.031	0.042211

number_vmail_messages									-0.0155101		0.0209220		-0.741	0.458496

total_day_minutes														0.2398946		3.9168466			0.061	0.951163

total_day_calls															-0.0014003		0.0032769		-0.427	0.669141

total_day_charge														-1.4855284	23.0402950		-0.064	0.948592

total_eve_minutes														0.3600678		1.9349825			0.186	0.852379

total_eve_calls															-0.0028484		0.0033061		-0.862	0.388928

total_eve_charge														-4.3204432	22.7644698		-0.190	0.849475

total_night_minutes												0.4431210		1.0478105			0.423	0.672367

total_night_calls														0.0003978		0.0033188			0.120	0.904588

total_night_charge												-9.9162795	23.2836376		-0.426	0.670188

total_intl_minutes													0.4587114		6.3524560			0.072	0.942435

total_intl_calls															0.1065264		0.0304318			3.500	0.000464

total_intl_charge													-2.0803428	23.5262100		-0.088	0.929538

number_customer_service_calls	-0.5109077		0.0476289	-10.727		<	2e-16

																																	

(Intercept)																			***

international_planyes									***

voice_mail_planyes												*		

number_vmail_messages												

total_day_minutes																

total_day_calls																		

total_day_charge																	

total_eve_minutes																

total_eve_calls																		

total_eve_charge																	

total_night_minutes														

total_night_calls																

total_night_charge															



total_intl_minutes															

total_intl_calls														***

total_intl_charge																

number_customer_service_calls	***

---

Signif.	codes:		0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1

(Dispersion	parameter	for	binomial	family	taken	to	be	1)

				Null	deviance:	1938.8		on	2314		degrees	of	freedom

Residual	deviance:	1515.3		on	2298		degrees	of	freedom

AIC:	1549.3

Number	of	Fisher	Scoring	iterations:	6

3.	 Then,	we	find	that	the	built	model	contains	insignificant	variables,	which	would	lead
to	misclassification.	Therefore,	we	use	significant	variables	only	to	train	the
classification	model:

>	fit	=	glm(churn	~	international_plan	+	

voice_mail_plan+total_intl_calls+number_customer_service_calls,	data	=	

trainset,	family=binomial)

>	summary(fit)

Call:

glm(formula	=	churn	~	international_plan	+	voice_mail_plan	+	

				total_intl_calls	+	number_customer_service_calls,	family	=	

binomial,	

				data	=	trainset)

Deviance	Residuals:	

				Min							1Q			Median							3Q						Max		

-2.7308			0.3103			0.4196			0.5381			1.6716		

Coefficients:

																														Estimate	Std.	Error	z	value

(Intercept)																				2.32304				0.16770		13.852

international_planyes									-2.00346				0.16096	-12.447

voice_mail_planyes													0.79228				0.16380			4.837

total_intl_calls															0.08414				0.02862			2.939

number_customer_service_calls	-0.44227				0.04451		-9.937

																														Pr(>|z|)				

(Intercept)																				<	2e-16	***

international_planyes										<	2e-16	***

voice_mail_planyes												1.32e-06	***

total_intl_calls															0.00329	**	

number_customer_service_calls		<	2e-16	***

---

Signif.	codes:		

0		es:				des:		**rvice_calls		<	'.		es:				de

(Dispersion	parameter	for	binomial	family	taken	to	be	1)

				Null	deviance:	1938.8		on	2314		degrees	of	freedom

Residual	deviance:	1669.4		on	2310		degrees	of	freedom

AIC:	1679.4



Number	of	Fisher	Scoring	iterations:	5

4.	 Then,	you	can	then	use	a	fitted	model,	fit,	to	predict	the	outcome	of	testset.	You
can	also	determine	the	class	by	judging	whether	the	probability	is	above	0.5:

>	pred	=	predict(fit,testset,	type="response")

>	Class	=	pred	>.5

5.	 Next,	the	use	of	the	summary	function	will	show	you	the	binary	outcome	count,	and
reveal	whether	the	probability	is	above	0.5:

>	summary(Class)

			Mode			FALSE				TRUE				NA's	

logical						29					989							0	

6.	 You	can	generate	the	counting	statistics	based	on	the	testing	dataset	label	and
predicted	result:

>	tb	=	table(testset$churn,Class)

>	tb					Class

						FALSE	TRUE

		yes				18		123

		no					11		866

7.	 You	can	turn	the	statistics	of	the	previous	step	into	a	classification	table,	and	then
generate	the	confusion	matrix:

>	churn.mod	=	ifelse(testset$churn	==	"yes",	1,	0)

>	pred_class	=	churn.mod

>	pred_class[pred<=.5]	=	1-	pred_class[pred<=.5]

>	ctb	=	table(churn.mod,	pred_class)

>	ctb

									pred_class

churn.mod			0			1

								0	866		11

								1		18	123

>	confusionMatrix(ctb)

Confusion	Matrix	and	Statistics

									pred_class

churn.mod			0			1

								0	866		11

								1		18	123

																																										

															Accuracy	:	0.9715										

																	95%	CI	:	(0.9593,	0.9808)

				No	Information	Rate	:	0.8684										

				P-Value	[Acc	>	NIR]	:	<2e-16										

																																										

																		Kappa	:	0.8781										

	Mcnemar's	Test	P-Value	:	0.2652										

																																										

												Sensitivity	:	0.9796										

												Specificity	:	0.9179										

									Pos	Pred	Value	:	0.9875										



									Neg	Pred	Value	:	0.8723										

													Prevalence	:	0.8684										

									Detection	Rate	:	0.8507										

			Detection	Prevalence	:	0.8615										

						Balanced	Accuracy	:	0.9488										

																																										

							'Positive'	Class	:	0		



How	it	works…
Logistic	regression	is	very	similar	to	linear	regression;	the	main	difference	is	that	the
dependent	variable	in	linear	regression	is	continuous,	but	the	dependent	variable	in	logistic
regression	is	dichotomous	(or	nominal).	The	primary	goal	of	logistic	regression	is	to	use
logit	to	yield	the	probability	of	a	nominal	variable	is	related	to	the	measurement	variable.
We	can	formulate	logit	in	following	equation:	ln(P/(1-P)),	where	P	is	the	probability	that
certain	event	occurs.

The	advantage	of	logistic	regression	is	that	it	is	easy	to	interpret,	it	directs	model	logistic
probability,	and	provides	a	confidence	interval	for	the	result.	Unlike	the	decision	tree,
which	is	hard	to	update	the	model,	you	can	quickly	update	the	classification	model	to
incorporate	new	data	in	logistic	regression.	The	main	drawback	of	the	algorithm	is	that	it
suffers	from	multicollinearity	and,	therefore,	the	explanatory	variables	must	be	linear
independent.	glm	provides	a	generalized	linear	regression	model,	which	enables	specifying
the	model	in	the	option	family.	If	the	family	is	specified	to	a	binomial	logistic,	you	can	set
the	family	as	a	binomial	to	classify	the	dependent	variable	of	the	category.

The	classification	process	begins	by	generating	a	logistic	regression	model	with	the	use	of
the	training	dataset	by	specifying	Churn	as	the	class	label,	the	other	variables	as	training
features,	and	family	set	as	binomial.	We	then	use	the	summary	function	to	generate	the
model’s	summary	information.	From	the	summary	information,	we	may	find	some
insignificant	variables	(p-values	>	0.05),	which	may	lead	to	misclassification.	Therefore,
we	should	consider	only	significant	variables	for	the	model.

Next,	we	use	the	fit	function	to	predict	the	categorical	dependent	variable	of	the	testing
dataset,	testset.	The	fit	function	outputs	the	probability	of	a	class	label,	with	a	result
equal	to	0.5	and	below,	suggesting	that	the	predicted	label	does	not	match	the	label	of	the
testing	dataset,	and	a	probability	above	0.5	indicates	that	the	predicted	label	matches	the
label	of	the	testing	dataset.	Further,	we	can	use	the	summary	function	to	obtain	the	statistics
of	whether	the	predicted	label	matches	the	label	of	the	testing	dataset.	Lastly,	in	order	to
generate	a	confusion	matrix,	we	first	generate	a	classification	table,	and	then	use
confusionMatrix	to	generate	the	performance	measurement.



See	also
For	more	information	of	how	to	use	the	glm	function,	please	refer	to	Chapter	4,
Understanding	Regression	Analysis,	which	covers	how	to	interpret	the	output	of	the
glm	function





Classifying	data	with	the	Naïve	Bayes
classifier
The	Naïve	Bayes	classifier	is	also	a	probability-based	classifier,	which	is	based	on
applying	the	Bayes	theorem	with	a	strong	independent	assumption.	In	this	recipe,	we	will
introduce	how	to	classify	data	with	the	Naïve	Bayes	classifier.



Getting	ready
You	need	to	have	the	first	recipe	completed	by	generating	training	and	testing	datasets.



How	to	do	it…
Perform	the	following	steps	to	classify	the	churn	data	with	the	Naïve	Bayes	classifier:

1.	 Load	the	e1071	library	and	employ	the	naiveBayes	function	to	build	the	classifier:

>	library(e1071)	

>	classifier=naiveBayes(trainset[,	!names(trainset)	%in%	c("churn")],	

trainset$churn)

2.	 Type	classifier	to	examine	the	function	call,	a-priori	probability,	and	conditional
probability:

>	classifier

Naive	Bayes	Classifier	for	Discrete	Predictors

Call:

naiveBayes.default(x	=	trainset[,	!names(trainset)	%in%	c("churn")],	

				y	=	trainset$churn)

A-priori	probabilities:

trainset$churn

						yes								no	

0.1477322	0.8522678	

Conditional	probabilities:

														international_plan

trainset$churn									no								yes

											yes	0.70467836	0.29532164

											no		0.93512418	0.06487582

3.	 Next,	you	can	generate	a	classification	table	for	the	testing	dataset:

>	bayes.table	=	table(predict(classifier,	testset[,	!names(testset)	

%in%	c("churn")]),	testset$churn)

>	bayes.table

					

						yes		no

		yes		68		45

		no			73	832

4.	 Lastly,	you	can	generate	a	confusion	matrix	from	the	classification	table:

>	confusionMatrix(bayes.table)

Confusion	Matrix	and	Statistics

					

						yes		no

		yes		68		45

		no			73	832

																																										

															Accuracy	:	0.8841										

																	95%	CI	:	(0.8628,	0.9031)

				No	Information	Rate	:	0.8615										

				P-Value	[Acc	>	NIR]	:	0.01880									



																																										

																		Kappa	:	0.4701										

	Mcnemar's	Test	P-Value	:	0.01294									

																																										

												Sensitivity	:	0.4823										

												Specificity	:	0.9487										

									Pos	Pred	Value	:	0.6018										

									Neg	Pred	Value	:	0.9193										

													Prevalence	:	0.1385										

									Detection	Rate	:	0.0668										

			Detection	Prevalence	:	0.1110										

						Balanced	Accuracy	:	0.7155										

																																										

							'Positive'	Class	:	yes				



How	it	works…
Naive	Bayes	assumes	that	features	are	conditionally	independent,	which	the	effect	of	a
predictor(x)	to	class	(c)	is	independent	of	the	effect	of	other	predictors	to	class(c).	It
computes	the	posterior	probability,	P(c|x),	as	the	following	formula:

Where	P(x|c)	is	called	likelihood,	p(x)	is	called	the	marginal	likelihood,	and	p(c)	is	called
the	prior	probability.	If	there	are	many	predictors,	we	can	formulate	the	posterior
probability	as	follows:

The	advantage	of	Naïve	Bayes	is	that	it	is	relatively	simple	and	straightforward	to	use.	It	is
suitable	when	the	training	set	is	relative	small,	and	may	contain	some	noisy	and	missing
data.	Moreover,	you	can	easily	obtain	the	probability	for	a	prediction.	The	drawbacks	of
Naïve	Bayes	are	that	it	assumes	that	all	features	are	independent	and	equally	important,
which	is	very	unlikely	in	real-world	cases.

In	this	recipe,	we	use	the	Naïve	Bayes	classifier	from	the	e1071	package	to	build	a
classification	model.	First,	we	specify	all	the	variables	(excluding	the	churn	class	label)	as
the	first	input	parameters,	and	specify	the	churn	class	label	as	the	second	parameter	in	the
naiveBayes	function	call.	Next,	we	assign	the	classification	model	into	the	variable
classifier.	Then,	we	print	the	variable	classifier	to	obtain	information,	such	as	function
call,	A-priori	probabilities,	and	conditional	probabilities.	We	can	also	use	the	predict
function	to	obtain	the	predicted	outcome	and	the	table	function	to	retrieve	the
classification	table	of	the	testing	dataset.	Finally,	we	use	a	confusion	matrix	to	calculate
the	performance	measurement	of	the	classification	model.

At	last,	we	list	a	comparison	table	of	all	the	mentioned	algorithms	in	this	chapter:

Algorithm Advantage Disadvantage

Recursive
partitioning
tree

Very	flexible	and	easy	to	interpret
Works	on	both	classification	and
regression	problems
Nonparametric

Prone	to	bias	and	over-fitting

Conditional
inference	tree

Very	flexible	and	easy	to	interpret
Works	on	both	classification	and
regression	problems
Nonparametric Prone	to	over-fitting



Less	prone	to	bias	than	a	recursive
partitioning	tree

K-nearest
neighbor
classifier

The	cost	of	the	learning	process	is	zero
Nonparametric
You	can	classify	any	data	whenever	you
can	find	similarity	measures	of	any	given
instances

Hard	to	interpret	the	classified	result
Computation	is	expensive	for	a	large	dataset
The	performance	relies	on	the	number	of
dimensions

Logistic
regression

Easy	to	interpret
Provides	model	logistic	probability
Provides	confidence	interval
You	can	quickly	update	the	classification
model	to	incorporate	new	data

Suffers	multicollinearity
Does	not	handle	the	missing	value	of
continuous	variables
Sensitive	to	extreme	values	of	continuous
variables

Naïve	Bayes

Relatively	simple	and	straightforward	to
use
Suitable	when	the	training	set	is	relative
small
Can	deal	with	some	noisy	and	missing
data
Can	easily	obtain	the	probability	for	a
prediction

Assumes	all	features	are	independent	and
equally	important,	which	is	very	unlikely	in
real-world	cases
Prone	to	bias	when	the	number	of	training	sets
increase



See	also
To	learn	more	about	the	Bayes	theorem,	you	can	refer	to	the	following	Wikipedia
article:	http://en.wikipedia.org/wiki/Bayes’_theorem

http://en.wikipedia.org/wiki/Bayes'_theorem




Chapter	6.	Classification	(II)	–	Neural
Network	and	SVM
In	this	chapter,	we	will	cover	the	following	recipes:

Classifying	data	with	a	support	vector	machine
Choosing	the	cost	of	a	support	vector	machine
Visualizing	an	SVM	fit
Predicting	labels	based	on	a	model	trained	by	a	support	vector	machine
Tuning	a	support	vector	machine
Training	a	neural	network	with	neuralnet
Visualizing	a	neural	network	trained	by	neuralnet
Predicting	labels	based	on	a	model	trained	by	neuralnet
Training	a	neural	network	with	nnet
Predicting	labels	based	on	a	model	trained	by	nnet



Introduction
Most	research	has	shown	that	support	vector	machines	(SVM)	and	neural	networks
(NN)	are	powerful	classification	tools,	which	can	be	applied	to	several	different	areas.
Unlike	tree-based	or	probabilistic-based	methods	that	were	mentioned	in	the	previous
chapter,	the	process	of	how	support	vector	machines	and	neural	networks	transform	from
input	to	output	is	less	clear	and	can	be	hard	to	interpret.	As	a	result,	both	support	vector
machines	and	neural	networks	are	referred	to	as	black	box	methods.

The	development	of	a	neural	network	is	inspired	by	human	brain	activities.	As	such,	this
type	of	network	is	a	computational	model	that	mimics	the	pattern	of	the	human	mind.	In
contrast	to	this,	support	vector	machines	first	map	input	data	into	a	high	dimension	feature
space	defined	by	the	kernel	function,	and	find	the	optimum	hyperplane	that	separates	the
training	data	by	the	maximum	margin.	In	short,	we	can	think	of	support	vector	machines
as	a	linear	algorithm	in	a	high	dimensional	space.

Both	these	methods	have	advantages	and	disadvantages	in	solving	classification	problems.
For	example,	support	vector	machine	solutions	are	the	global	optimum,	while	neural
networks	may	suffer	from	multiple	local	optimums.	Thus,	choosing	between	either
depends	on	the	characteristics	of	the	dataset	source.	In	this	chapter,	we	will	illustrate	the
following:

How	to	train	a	support	vector	machine
Observing	how	the	choice	of	cost	can	affect	the	SVM	classifier
Visualizing	the	SVM	fit
Predicting	the	labels	of	a	testing	dataset	based	on	the	model	trained	by	SVM
Tuning	the	SVM

In	the	neural	network	section,	we	will	cover:

How	to	train	a	neural	network
How	to	visualize	a	neural	network	model
Predicting	the	labels	of	a	testing	dataset	based	on	a	model	trained	by	neuralnet
Finally,	we	will	show	how	to	train	a	neural	network	with	nnet,	and	how	to	use	it	to
predict	the	labels	of	a	testing	dataset





Classifying	data	with	a	support	vector
machine
The	two	most	well	known	and	popular	support	vector	machine	tools	are	libsvm	and
SVMLite.	For	R	users,	you	can	find	the	implementation	of	libsvm	in	the	e1071	package
and	SVMLite	in	the	klaR	package.	Therefore,	you	can	use	the	implemented	function	of
these	two	packages	to	train	support	vector	machines.	In	this	recipe,	we	will	focus	on	using
the	svm	function	(the	libsvm	implemented	version)	from	the	e1071	package	to	train	a
support	vector	machine	based	on	the	telecom	customer	churn	data	training	dataset.



Getting	ready
In	this	recipe,	we	will	continue	to	use	the	telecom	churn	dataset	as	the	input	data	source	to
train	the	support	vector	machine.	For	those	who	have	not	prepared	the	dataset,	please	refer
to	Chapter	5,	Classification	(I)	–	Tree,	Lazy,	and	Probabilistic,	for	details.



How	to	do	it…
Perform	the	following	steps	to	train	the	SVM:

1.	 Load	the	e1071	package:

>	library(e1071)

2.	 Train	the	support	vector	machine	using	the	svm	function	with	trainset	as	the	input
dataset,	and	use	churn	as	the	classification	category:

>	model		=	svm(churn~.,	data	=	trainset,	kernel="radial",	cost=1,	gamma	

=	1/ncol(trainset))

3.	 Finally,	you	can	obtain	overall	information	about	the	built	model	with	summary:

>	summary(model)

Call:

svm(formula	=	churn	~	.,	data	=	trainset,	kernel	=	"radial",	cost	=	1,	

gamma	=	1/ncol(trainset))

Parameters:

			SVM-Type:		C-classification	

	SVM-Kernel:		radial	

							cost:		1	

						gamma:		0.05882353	

Number	of	Support	Vectors:		691

	(	394	297	)

Number	of	Classes:		2	

Levels:	

	yes	no



How	it	works…
The	support	vector	machine	constructs	a	hyperplane	(or	set	of	hyperplanes)	that	maximize
the	margin	width	between	two	classes	in	a	high	dimensional	space.	In	these,	the	cases	that
define	the	hyperplane	are	support	vectors,	as	shown	in	the	following	figure:

Figure	1:	Support	Vector	Machine

Support	vector	machine	starts	from	constructing	a	hyperplane	that	maximizes	the	margin
width.	Then,	it	extends	the	definition	to	a	nonlinear	separable	problem.	Lastly,	it	maps	the
data	to	a	high	dimensional	space	where	the	data	can	be	more	easily	separated	with	a	linear
boundary.

The	advantage	of	using	SVM	is	that	it	builds	a	highly	accurate	model	through	an
engineering	problem-oriented	kernel.	Also,	it	makes	use	of	the	regularization	term	to
avoid	over-fitting.	It	also	does	not	suffer	from	local	optimal	and	multicollinearity.	The
main	limitation	of	SVM	is	its	speed	and	size	in	the	training	and	testing	time.	Therefore,	it
is	not	suitable	or	efficient	enough	to	construct	classification	models	for	data	that	is	large	in
size.	Also,	since	it	is	hard	to	interpret	SVM,	how	does	the	determination	of	the	kernel	take
place?	Regularization	is	another	problem	that	we	need	tackle.

In	this	recipe,	we	continue	to	use	the	telecom	churn	dataset	as	our	example	data	source.
We	begin	training	a	support	vector	machine	using	libsvm	provided	in	the	e1071	package.
Within	the	training	function,	svm,	one	can	specify	the	kernel	function,	cost,	and	the	gamma
function.	For	the	kernel	argument,	the	default	value	is	radial,	and	one	can	specify	the
kernel	to	a	linear,	polynomial,	radial	basis,	and	sigmoid.	As	for	the	gamma	argument,	the
default	value	is	equal	to	(1/data	dimension),	and	it	controls	the	shape	of	the	separating
hyperplane.	Increasing	the	gamma	argument	usually	increases	the	number	of	support
vectors.

As	for	the	cost,	the	default	value	is	set	to	1,	which	indicates	that	the	regularization	term	is
constant,	and	the	larger	the	value,	the	smaller	the	margin	is.	We	will	discuss	more	on	how
the	cost	can	affect	the	SVM	classifier	in	the	next	recipe.	Once	the	support	vector	machine



is	built,	the	summary	function	can	be	used	to	obtain	information,	such	as	calls,	parameters,
number	of	classes,	and	the	types	of	label.



See	also
Another	popular	support	vector	machine	tool	is	SVMLight.	Unlike	the	e1071	package,
which	provides	the	full	implementation	of	libsvm,	the	klaR	package	simply	provides	an
interface	to	SVMLight	only.	To	use	SVMLight,	one	can	perform	the	following	steps:

1.	 Install	the	klaR	package:

>	install.packages("klaR")

>	library(klaR)

2.	 Download	the	SVMLight	source	code	and	binary	for	your	platform	from
http://svmlight.joachims.org/.	For	example,	if	your	guest	OS	is	Windows	64-bit,	you
should	download	the	file	from
http://download.joachims.org/svm_light/current/svm_light_windows64.zip.

3.	 Then,	you	should	unzip	the	file	and	put	the	workable	binary	in	the	working	directory;
you	may	check	your	working	directory	by	using	the	getwd	function:

>	getwd()

4.	 Train	the	support	vector	machine	using	the	svmlight	function:

>	model.light		=	svmlight(churn~.,	data	=	trainset,	kernel="radial",	

cost=1,	gamma	=	1/ncol(trainset))

http://svmlight.joachims.org/
http://download.joachims.org/svm_light/current/svm_light_windows64.zip




Choosing	the	cost	of	a	support	vector
machine
The	support	vector	machines	create	an	optimum	hyperplane	that	separates	the	training
data	by	the	maximum	margin.	However,	sometimes	we	would	like	to	allow	some
misclassifications	while	separating	categories.	The	SVM	model	has	a	cost	function,	which
controls	training	errors	and	margins.	For	example,	a	small	cost	creates	a	large	margin	(a
soft	margin)	and	allows	more	misclassifications.	On	the	other	hand,	a	large	cost	creates	a
narrow	margin	(a	hard	margin)	and	permits	fewer	misclassifications.	In	this	recipe,	we
will	illustrate	how	the	large	and	small	cost	will	affect	the	SVM	classifier.



Getting	ready
In	this	recipe,	we	will	use	the	iris	dataset	as	our	example	data	source.



How	to	do	it…
Perform	the	following	steps	to	generate	two	different	classification	examples	with
different	costs:

1.	 Subset	the	iris	dataset	with	columns	named	as	Sepal.Length,	Sepal.Width,
Species,	with	species	in	setosa	and	virginica:

>	iris.subset	=	subset(iris,	select=c("Sepal.Length",	"Sepal.Width",	

"Species"),	Species	%in%	c("setosa","virginica"))

2.	 Then,	you	can	generate	a	scatter	plot	with	Sepal.Length	as	the	x-axis	and	the
Sepal.Width	as	the	y-axis:

>	plot(x=iris.subset$Sepal.Length,y=iris.subset$Sepal.Width,	

col=iris.subset$Species,	pch=19)

Figure	2:	Scatter	plot	of	Sepal.Length	and	Sepal.Width	with	subset	of	iris	dataset

3.	 Next,	you	can	train	SVM	based	on	iris.subset	with	the	cost	equal	to	1:

>	svm.model	=	svm(Species	~	.,	data=iris.subset,	kernel='linear',	

cost=1,	scale=FALSE)

4.	 Then,	we	can	circle	the	support	vector	with	blue	circles:

>	points(iris.subset[svm.model$index,c(1,2)],col="blue",cex=2)



Figure	3:	Circling	support	vectors	with	blue	ring

5.	 Lastly,	we	can	add	a	separation	line	on	the	plot:

>	w	=	t(svm.model$coefs)	%*%	svm.model$SV

>	b	=	-svm.model$rho

>	abline(a=-b/w[1,2],	b=-w[1,1]/w[1,2],	col="red",	lty=5)

Figure	4:	Add	separation	line	to	scatter	plot

6.	 In	addition	to	this,	we	create	another	SVM	classifier	where	cost	=	10,000:



>	plot(x=iris.subset$Sepal.Length,y=iris.subset$Sepal.Width,	

col=iris.subset$Species,	pch=19)

>	svm.model	=	svm(Species	~	.,	data=iris.subset,	type='C-

classification',	kernel='linear',	cost=10000,	scale=FALSE)

>	points(iris.subset[svm.model$index,c(1,2)],col="blue",cex=2)

>	w	=	t(svm.model$coefs)	%*%	svm.model$SV

>	b	=	-svm.model$rho

>	abline(a=-b/w[1,2],	b=-w[1,1]/w[1,2],	col="red",	lty=5)

Figure	5:	A	classification	example	with	large	cost



How	it	works…
In	this	recipe,	we	demonstrate	how	different	costs	can	affect	the	SVM	classifier.	First,	we
create	an	iris	subset	with	the	columns,	Sepal.Length,	Sepal.Width,	and	Species
containing	the	species,	setosa	and	virginica.	Then,	in	order	to	create	a	soft	margin	and
allow	some	misclassification,	we	use	an	SVM	with	small	cost	(where	cost	=	1)	to	train
the	support	of	the	vector	machine.	Next,	we	circle	the	support	vectors	with	blue	circles
and	add	the	separation	line.	As	per	Figure	5,	one	of	the	green	points	(virginica)	is
misclassified	(it	is	classified	to	setosa)	to	the	other	side	of	the	separation	line	due	to	the
choice	of	the	small	cost.

In	addition	to	this,	we	would	like	to	determine	how	a	large	cost	can	affect	the	SVM
classifier.	Therefore,	we	choose	a	large	cost	(where	cost	=	10,000).	From	Figure	5,	we
can	see	that	the	margin	created	is	narrow	(a	hard	margin)	and	no	misclassification	cases
are	present.	As	a	result,	the	two	examples	show	that	the	choice	of	different	costs	may
affect	the	margin	created	and	also	affect	the	possibilities	of	misclassification.



See	also
The	idea	of	soft	margin,	which	allows	misclassified	examples,	was	suggested	by
Corinna	Cortes	and	Vladimir	N.	Vapnik	in	1995	in	the	following	paper:	Cortes,	C.,
and	Vapnik,	V.	(1995).	Support-vector	networks.	Machine	learning,	20(3),	273-297.





Visualizing	an	SVM	fit
To	visualize	the	built	model,	one	can	first	use	the	plot	function	to	generate	a	scatter	plot	of
data	input	and	the	SVM	fit.	In	this	plot,	support	vectors	and	classes	are	highlighted
through	the	color	symbol.	In	addition	to	this,	one	can	draw	a	contour	filled	plot	of	the
class	regions	to	easily	identify	misclassified	samples	from	the	plot.



Getting	ready
In	this	recipe,	we	will	use	two	datasets:	the	iris	dataset	and	the	telecom	churn	dataset.
For	the	telecom	churn	dataset,	one	needs	to	have	completed	the	previous	recipe	by
training	a	support	vector	machine	with	SVM,	and	to	have	saved	the	SVM	fit	model.



How	to	do	it…
Perform	the	following	steps	to	visualize	the	SVM	fit	object:

1.	 Use	SVM	to	train	the	support	vector	machine	based	on	the	iris	dataset,	and	use	the
plot	function	to	visualize	the	fitted	model:

>	data(iris)

>	model.iris		=	svm(Species~.,	iris)

>	plot(model.iris,	iris,	Petal.Width	~	Petal.Length,	slice	=	

list(Sepal.Width	=	3,	Sepal.Length	=	4))

Figure	6:	The	SVM	classification	plot	of	trained	SVM	fit	based	on	iris	dataset

2.	 Visualize	the	SVM	fit	object,	model,	using	the	plot	function	with	the	dimensions	of
total_day_minutes	and	total_intl_charge:

>	plot(model,	trainset,	total_day_minutes	~	total_intl_charge)



Figure	7:	The	SVM	classification	plot	of	trained	SVM	fit	based	on	churn	dataset



How	it	works…
In	this	recipe,	we	demonstrate	how	to	use	the	plot	function	to	visualize	the	SVM	fit.	In
the	first	plot,	we	train	a	support	vector	machine	using	the	iris	dataset.	Then,	we	use	the
plot	function	to	visualize	the	fitted	SVM.

In	the	argument	list,	we	specify	the	fitted	model	in	the	first	argument	and	the	dataset	(this
should	be	the	same	data	used	to	build	the	model)	as	the	second	parameter.	The	third
parameter	indicates	the	dimension	used	to	generate	the	classification	plot.	By	default,	the
plot	function	can	only	generate	a	scatter	plot	based	on	two	dimensions	(for	the	x-axis	and
y-axis).	Therefore,	we	select	the	variables,	Petal.Length	and	Petal.Width	as	the	two
dimensions	to	generate	the	scatter	plot.

From	Figure	6,	we	find	Petal.Length	assigned	to	the	x-axis,	Petal.Width	assigned	to	the
y-axis,	and	data	points	with	X	and	O	symbols	scattered	on	the	plot.	Within	the	scatter	plot,
the	X	symbol	shows	the	support	vector	and	the	O	symbol	represents	the	data	points.	These
two	symbols	can	be	altered	through	the	configuration	of	the	svSymbol	and	dataSymbol
options.	Both	the	support	vectors	and	true	classes	are	highlighted	and	colored	depending
on	their	label	(green	refers	to	viginica,	red	refers	to	versicolor,	and	black	refers	to	setosa).
The	last	argument,	slice,	is	set	when	there	are	more	than	two	variables.	Therefore,	in	this
example,	we	use	the	additional	variables,	Sepal.width	and	Sepal.length,	by	assigning	a
constant	of	3	and	4.

Next,	we	take	the	same	approach	to	draw	the	SVM	fit	based	on	customer	churn	data.	In
this	example,	we	use	total_day_minutes	and	total_intl_charge	as	the	two	dimensions
used	to	plot	the	scatterplot.	As	per	Figure	7,	the	support	vectors	and	data	points	in	red	and
black	are	scattered	closely	together	in	the	central	region	of	the	plot,	and	there	is	no	simple
way	to	separate	them.



See	also
There	are	other	parameters,	such	as	fill,	grid,	symbolPalette,	and	so	on,	that	can
be	configured	to	change	the	layout	of	the	plot.	You	can	use	the	help	function	to	view
the	following	document	for	further	information:

>	?svm.plot





Predicting	labels	based	on	a	model	trained
by	a	support	vector	machine
In	the	previous	recipe,	we	trained	an	SVM	based	on	the	training	dataset.	The	training
process	finds	the	optimum	hyperplane	that	separates	the	training	data	by	the	maximum
margin.	We	can	then	utilize	the	SVM	fit	to	predict	the	label	(category)	of	new
observations.	In	this	recipe,	we	will	demonstrate	how	to	use	the	predict	function	to
predict	values	based	on	a	model	trained	by	SVM.



Getting	ready
You	need	to	have	completed	the	previous	recipe	by	generating	a	fitted	SVM,	and	save	the
fitted	model	in	model.



How	to	do	it…
Perform	the	following	steps	to	predict	the	labels	of	the	testing	dataset:

1.	 Predict	the	label	of	the	testing	dataset	based	on	the	fitted	SVM	and	attributes	of	the
testing	dataset:

>	svm.pred	=	predict(model,	testset[,	!names(testset)	%in%	c("churn")])

2.	 Then,	you	can	use	the	table	function	to	generate	a	classification	table	with	the
prediction	result	and	labels	of	the	testing	dataset:

>	svm.table=table(svm.pred,	testset$churn)

>	svm.table

								

svm.pred	yes		no

					yes		70		12

					no			71	865

3.	 Next,	you	can	use	classAgreement	to	calculate	coefficients	compared	to	the
classification	agreement:

>	classAgreement(svm.table)

$diag

[1]	0.9184676

$kappa

[1]	0.5855903

$rand

[1]	0.850083

$crand

[1]	0.5260472

4.	 Now,	you	can	use	confusionMatrix	to	measure	the	prediction	performance	based	on
the	classification	table:

>	library(caret)

>	confusionMatrix(svm.table)

Confusion	Matrix	and	Statistics

								

svm.pred	yes		no

					yes		70		12

					no			71	865

																																										

															Accuracy	:	0.9185										

																	95%	CI	:	(0.8999,	0.9345)

				No	Information	Rate	:	0.8615										

				P-Value	[Acc	>	NIR]	:	1.251e-08							

																																										

																		Kappa	:	0.5856										

	Mcnemar's	Test	P-Value	:	1.936e-10							

																																										



												Sensitivity	:	0.49645									

												Specificity	:	0.98632									

									Pos	Pred	Value	:	0.85366									

									Neg	Pred	Value	:	0.92415									

													Prevalence	:	0.13851									

									Detection	Rate	:	0.06876									

			Detection	Prevalence	:	0.08055									

						Balanced	Accuracy	:	0.74139									

																																										

							'Positive'	Class	:	yes													



How	it	works…
In	this	recipe,	we	first	used	the	predict	function	to	obtain	the	predicted	labels	of	the
testing	dataset.	Next,	we	used	the	table	function	to	generate	the	classification	table	based
on	the	predicted	labels	of	the	testing	dataset.	So	far,	the	evaluation	procedure	is	very
similar	to	the	evaluation	process	mentioned	in	the	previous	chapter.

We	then	introduced	a	new	function,	classAgreement,	which	computes	several	coefficients
of	agreement	between	the	columns	and	rows	of	a	two-way	contingency	table.	The
coefficients	include	diag,	kappa,	rand,	and	crand.	The	diag	coefficient	represents	the
percentage	of	data	points	in	the	main	diagonal	of	the	classification	table,	kappa	refers	to
diag,	which	is	corrected	for	an	agreement	by	a	change	(the	probability	of	random
agreements),	rand	represents	the	Rand	index,	which	measures	the	similarity	between	two
data	clusters,	and	crand	indicates	the	Rand	index,	which	is	adjusted	for	the	chance
grouping	of	elements.

Finally,	we	used	confusionMatrix	from	the	caret	package	to	measure	the	performance	of
the	classification	model.	The	accuracy	of	0.9185	shows	that	the	trained	support	vector
machine	can	correctly	classify	most	of	the	observations.	However,	accuracy	alone	is	not	a
good	measurement	of	a	classification	model.	One	should	also	reference	sensitivity	and
specificity.



There’s	more…
Besides	using	SVM	to	predict	the	category	of	new	observations,	you	can	use	SVM	to
predict	continuous	values.	In	other	words,	one	can	use	SVM	to	perform	regression
analysis.

In	the	following	example,	we	will	show	how	to	perform	a	simple	regression	prediction
based	on	a	fitted	SVM	with	the	type	specified	as	eps-regression.

Perform	the	following	steps	to	train	a	regression	model	with	SVM:

1.	 Train	a	support	vector	machine	based	on	a	Quartet	dataset:

>	library(car)

>	data(Quartet)

>	model.regression	=	svm(Quartet$y1~Quartet$x,type="eps-regression")

2.	 Use	the	predict	function	to	obtain	prediction	results:

>	predict.y	=	predict(model.regression,	Quartet$x)	

>	predict.y

							1								2								3								4								5								6								7								8	

8.196894	7.152946	8.807471	7.713099	8.533578	8.774046	6.186349	5.763689	

							9							10							11	

8.726925	6.621373	5.882946	

3.	 Plot	the	predicted	points	as	squares	and	the	training	data	points	as	circles	on	the	same
plot:

>	plot(Quartet$x,	Quartet$y1,	pch=19)

>	points(Quartet$x,	predict.y,	pch=15,	col="red")

Figure	8:	The	scatter	plot	contains	predicted	data	points	and	training	data	points







Tuning	a	support	vector	machine
Besides	using	different	feature	sets	and	the	kernel	function	in	support	vector	machines,
one	trick	that	you	can	use	to	tune	its	performance	is	to	adjust	the	gamma	and	cost
configured	in	the	argument.	One	possible	approach	to	test	the	performance	of	different
gamma	and	cost	combination	values	is	to	write	a	for	loop	to	generate	all	the	combinations
of	gamma	and	cost	as	inputs	to	train	different	support	vector	machines.	Fortunately,	SVM
provides	a	tuning	function,	tune.svm,	which	makes	the	tuning	much	easier.	In	this	recipe,
we	will	demonstrate	how	to	tune	a	support	vector	machine	through	the	use	of	tune.svm.



Getting	ready
You	need	to	have	completed	the	previous	recipe	by	preparing	a	training	dataset,	trainset.



How	to	do	it…
Perform	the	following	steps	to	tune	the	support	vector	machine:

1.	 First,	tune	the	support	vector	machine	using	tune.svm:

>	tuned	=	tune.svm(churn~.,	data	=	trainset,	gamma	=	10^(-6:-1),	cost	=	

10^(1:2))

2.	 Next,	you	can	use	the	summary	function	to	obtain	the	tuning	result:

>	summary(tuned)

Parameter	tuning	of	'svm':

-	sampling	method:	10-fold	cross	validation	

-	best	parameters:

	gamma	cost

		0.01		100

-	best	performance:	0.08077885	

-	Detailed	performance	results:

			gamma	cost						error	dispersion

1		1e-06			10	0.14774780	0.02399512

2		1e-05			10	0.14774780	0.02399512

3		1e-04			10	0.14774780	0.02399512

4		1e-03			10	0.14774780	0.02399512

5		1e-02			10	0.09245223	0.02046032

6		1e-01			10	0.09202306	0.01938475

7		1e-06		100	0.14774780	0.02399512

8		1e-05		100	0.14774780	0.02399512

9		1e-04		100	0.14774780	0.02399512

10	1e-03		100	0.11794484	0.02368343

11	1e-02		100	0.08077885	0.01858195

12	1e-01		100	0.12356135	0.01661508

3.	 After	retrieving	the	best	performance	parameter	from	tuning	the	result,	you	can
retrain	the	support	vector	machine	with	the	best	performance	parameter:

>	model.tuned	=	svm(churn~.,	data	=	trainset,	gamma	=	

tuned$best.parameters$gamma,	cost	=	tuned$best.parameters$cost)

>	summary(model.tuned)

Call:

svm(formula	=	churn	~	.,	data	=	trainset,	gamma	=	10^-2,	cost	=	100)

Parameters:

			SVM-Type:		C-classification	

	SVM-Kernel:		radial	

							cost:		100	

						gamma:		0.01	

Number	of	Support	Vectors:		547



	(	304	243	)

Number	of	Classes:		2	

Levels:	

	yes	no

4.	 Then,	you	can	use	the	predict	function	to	predict	labels	based	on	the	fitted	SVM:

>	svm.tuned.pred	=	predict(model.tuned,	testset[,	!names(testset)	%in%	

c("churn")])

5.	 Next,	generate	a	classification	table	based	on	the	predicted	and	original	labels	of	the
testing	dataset:

>	svm.tuned.table=table(svm.tuned.pred,	testset$churn)

>	svm.tuned.table

														

svm.tuned.pred	yes		no

											yes		95		24

											no			46	853

6.	 Also,	generate	a	class	agreement	to	measure	the	performance:

>	classAgreement(svm.tuned.table)

$diag

[1]	0.9312377

$kappa

[1]	0.691678

$rand

[1]	0.871806

$crand

[1]	0.6303615

7.	 Finally,	you	can	use	a	confusion	matrix	to	measure	the	performance	of	the	retrained
model:

>	confusionMatrix(svm.tuned.table)

Confusion	Matrix	and	Statistics

														

svm.tuned.pred	yes		no

											yes		95		24

											no			46	853

																																									

															Accuracy	:	0.9312									

																	95%	CI	:	(0.9139,	0.946)

				No	Information	Rate	:	0.8615									

				P-Value	[Acc	>	NIR]	:	1.56e-12							

																																									

																		Kappa	:	0.6917									

	Mcnemar's	Test	P-Value	:	0.01207								



																																									

												Sensitivity	:	0.67376								

												Specificity	:	0.97263								

									Pos	Pred	Value	:	0.79832								

									Neg	Pred	Value	:	0.94883								

													Prevalence	:	0.13851								

									Detection	Rate	:	0.09332								

			Detection	Prevalence	:	0.11690								

						Balanced	Accuracy	:	0.82320								

																																									

							'Positive'	Class	:	yes												



How	it	works…
To	tune	the	support	vector	machine,	you	can	use	a	trial	and	error	method	to	find	the	best
gamma	and	cost	parameters.	In	other	words,	one	has	to	generate	a	variety	of	combinations
of	gamma	and	cost	for	the	purpose	of	training	different	support	vector	machines.

In	this	example,	we	generate	different	gamma	values	from	10^-6	to	10^-1,	and	cost	with	a
value	of	either	10	or	100.	Therefore,	you	can	use	the	tuning	function,	svm.tune,	to
generate	12	sets	of	parameters.	The	function	then	makes	10	cross-validations	and	outputs
the	error	dispersion	of	each	combination.	As	a	result,	the	combination	with	the	least	error
dispersion	is	regarded	as	the	best	parameter	set.	From	the	summary	table,	we	found	that
gamma	with	a	value	of	0.01	and	cost	with	a	value	of	100	are	the	best	parameters	for	the
SVM	fit.

After	obtaining	the	best	parameters,	we	can	then	train	a	new	support	vector	machine	with
gamma	equal	to	0.01	and	cost	equal	to	100.	Additionally,	we	can	obtain	a	classification
table	based	on	the	predicted	labels	and	labels	of	the	testing	dataset.	We	can	also	obtain	a
confusion	matrix	from	the	classification	table.	From	the	output	of	the	confusion	matrix,
you	can	determine	the	accuracy	of	the	newly	trained	model	in	comparison	to	the	original
model.



See	also
For	more	information	about	how	to	tune	SVM	with	svm.tune,	you	can	use	the	help
function	to	access	this	document:

>	?svm.tune





Training	a	neural	network	with	neuralnet
The	neural	network	is	constructed	with	an	interconnected	group	of	nodes,	which	involves
the	input,	connected	weights,	processing	element,	and	output.	Neural	networks	can	be
applied	to	many	areas,	such	as	classification,	clustering,	and	prediction.	To	train	a	neural
network	in	R,	you	can	use	neuralnet,	which	is	built	to	train	multilayer	perceptron	in	the
context	of	regression	analysis,	and	contains	many	flexible	functions	to	train	forward
neural	networks.	In	this	recipe,	we	will	introduce	how	to	use	neuralnet	to	train	a	neural
network.



Getting	ready
In	this	recipe,	we	will	use	an	iris	dataset	as	our	example	dataset.	We	will	first	split	the
iris	dataset	into	a	training	and	testing	datasets,	respectively.



How	to	do	it…
Perform	the	following	steps	to	train	a	neural	network	with	neuralnet:

1.	 First	load	the	iris	dataset	and	split	the	data	into	training	and	testing	datasets:

>	data(iris)

>	ind	=	sample(2,	nrow(iris),	replace	=	TRUE,	prob=c(0.7,	0.3))

>	trainset	=	iris[ind	==	1,]

>	testset	=	iris[ind	==	2,]

2.	 Then,	install	and	load	the	neuralnet	package:

>	install.packages("neuralnet")

>	library(neuralnet)

3.	 Add	the	columns	versicolor,	setosa,	and	virginica	based	on	the	name	matched	value
in	the	Species	column:

>	trainset$setosa	=	trainset$Species	==	"setosa"

>	trainset$virginica	=	trainset$Species	==	"virginica"

>	trainset$versicolor	=	trainset$Species	==	"versicolor"

4.	 Next,	train	the	neural	network	with	the	neuralnet	function	with	three	hidden	neurons
in	each	layer.	Notice	that	the	results	may	vary	with	each	training,	so	you	might	not
get	the	same	result.	However,	you	can	use	set.seed	at	the	beginning,	so	you	can	get
the	same	result	in	every	training	process

>	network	=	neuralnet(versicolor	+	virginica	+	setosa~	Sepal.Length	+	

Sepal.Width	+	Petal.Length	+	Petal.Width,	trainset,	hidden=3)

>	network

Call:	neuralnet(formula	=	versicolor	+	virginica	+	setosa	~	

Sepal.Length	+					Sepal.Width	+	Petal.Length	+	Petal.Width,	data	=	

trainset,					hidden	=	3)

1	repetition	was	calculated.

									Error	Reached	Threshold	Steps

1	0.8156100175				0.009994274769	11063

5.	 Now,	you	can	view	the	summary	information	by	accessing	the	result.matrix
attribute	of	the	built	neural	network	model:

>	network$result.matrix

																																										1

error																								0.815610017474

reached.threshold												0.009994274769

steps																				11063.000000000000

Intercept.to.1layhid1								1.686593311644

Sepal.Length.to.1layhid1					0.947415215237

Sepal.Width.to.1layhid1					-7.220058260187

Petal.Length.to.1layhid1					1.790333443486

Petal.Width.to.1layhid1						9.943109233330

Intercept.to.1layhid2								1.411026063895

Sepal.Length.to.1layhid2					0.240309549505

Sepal.Width.to.1layhid2						0.480654059973



Petal.Length.to.1layhid2					2.221435192437

Petal.Width.to.1layhid2						0.154879347818

Intercept.to.1layhid3							24.399329878242

Sepal.Length.to.1layhid3					3.313958088512

Sepal.Width.to.1layhid3						5.845670010464

Petal.Length.to.1layhid3				-6.337082722485

Petal.Width.to.1layhid3				-17.990352566695

Intercept.to.versicolor					-1.959842102421

1layhid.1.to.versicolor						1.010292389835

1layhid.2.to.versicolor						0.936519720978

1layhid.3.to.versicolor						1.023305801833

Intercept.to.virginica						-0.908909982893

1layhid.1.to.virginica						-0.009904635231

1layhid.2.to.virginica							1.931747950462

1layhid.3.to.virginica						-1.021438938226

Intercept.to.setosa										1.500533827729

1layhid.1.to.setosa									-1.001683936613

1layhid.2.to.setosa									-0.498758815934

1layhid.3.to.setosa									-0.001881935696

6.	 Lastly,	you	can	view	the	generalized	weight	by	accessing	it	in	the	network:

>	head(network$generalized.weights[[1]])



How	it	works…
The	neural	network	is	a	network	made	up	of	artificial	neurons	(or	nodes).	There	are	three
types	of	neurons	within	the	network:	input	neurons,	hidden	neurons,	and	output	neurons.
In	the	network,	neurons	are	connected;	the	connection	strength	between	neurons	is	called
weights.	If	the	weight	is	greater	than	zero,	it	is	in	an	excitation	status.	Otherwise,	it	is	in	an
inhibition	status.	Input	neurons	receive	the	input	information;	the	higher	the	input	value,
the	greater	the	activation.	Then,	the	activation	value	is	passed	through	the	network	in
regard	to	weights	and	transfer	functions	in	the	graph.	The	hidden	neurons	(or	output
neurons)	then	sum	up	the	activation	values	and	modify	the	summed	values	with	the
transfer	function.	The	activation	value	then	flows	through	hidden	neurons	and	stops	when
it	reaches	the	output	nodes.	As	a	result,	one	can	use	the	output	value	from	the	output
neurons	to	classify	the	data.

Figure	9:	Artificial	Neural	Network

The	advantages	of	a	neural	network	are:	first,	it	can	detect	nonlinear	relationships	between
the	dependent	and	independent	variable.	Second,	one	can	efficiently	train	large	datasets
using	the	parallel	architecture.	Third,	it	is	a	nonparametric	model	so	that	one	can	eliminate
errors	in	the	estimation	of	parameters.	The	main	disadvantages	of	a	neural	network	are
that	it	often	converges	to	the	local	minimum	rather	than	the	global	minimum.	Also,	it
might	over-fit	when	the	training	process	goes	on	for	too	long.

In	this	recipe,	we	demonstrate	how	to	train	a	neural	network.	First,	we	split	the	iris
dataset	into	training	and	testing	datasets,	and	then	install	the	neuralnet	package	and	load
the	library	into	an	R	session.	Next,	we	add	the	columns	versicolor,	setosa,	and
virginica	based	on	the	name	matched	value	in	the	Species	column,	respectively.	We
then	use	the	neuralnet	function	to	train	the	network	model.	Besides	specifying	the	label
(the	column	where	the	name	equals	to	versicolor,	virginica,	and	setosa)	and	training
attributes	in	the	function,	we	also	configure	the	number	of	hidden	neurons	(vertices)	as
three	in	each	layer.

Then,	we	examine	the	basic	information	about	the	training	process	and	the	trained



network	saved	in	the	network.	From	the	output	message,	it	shows	the	training	process
needed	11,063	steps	until	all	the	absolute	partial	derivatives	of	the	error	function	were
lower	than	0.01	(specified	in	the	threshold).	The	error	refers	to	the	likelihood	of
calculating	Akaike	Information	Criterion	(AIC).	To	see	detailed	information	on	this,
you	can	access	the	result.matrix	of	the	built	neural	network	to	see	the	estimated	weight.
The	output	reveals	that	the	estimated	weight	ranges	from	-18	to	24.40;	the	intercepts	of	the
first	hidden	layer	are	1.69,	1.41	and	24.40,	and	the	two	weights	leading	to	the	first	hidden
neuron	are	estimated	as	0.95	(Sepal.Length),	-7.22	(Sepal.Width),	1.79	(Petal.Length),
and	9.94	(Petal.Width).	We	can	lastly	determine	that	the	trained	neural	network
information	includes	generalized	weights,	which	express	the	effect	of	each	covariate.	In
this	recipe,	the	model	generates	12	generalized	weights,	which	are	the	combination	of	four
covariates	(Sepal.Length,	Sepal.Width,	Petal.Length,	Petal.Width)	to	three	responses
(setosa,	virginica,	versicolor).



See	also
For	a	more	detailed	introduction	on	neuralnet,	one	can	refer	to	the	following	paper:
Günther,	F.,	and	Fritsch,	S.	(2010).	neuralnet:	Training	of	neural	networks.	The	R
journal,	2(1),	30-38.





Visualizing	a	neural	network	trained	by
neuralnet
The	package,	neuralnet,	provides	the	plot	function	to	visualize	a	built	neural	network
and	the	gwplot	function	to	visualize	generalized	weights.	In	following	recipe,	we	will
cover	how	to	use	these	two	functions.



Getting	ready
You	need	to	have	completed	the	previous	recipe	by	training	a	neural	network	and	have	all
basic	information	saved	in	the	network.



How	to	do	it…
Perform	the	following	steps	to	visualize	the	neural	network	and	the	generalized	weights:

1.	 You	can	visualize	the	trained	neural	network	with	the	plot	function:

>	plot(network)

Figure	10:	The	plot	of	the	trained	neural	network

2.	 Furthermore,	you	can	use	gwplot	to	visualize	the	generalized	weights:

>	par(mfrow=c(2,2))

>	gwplot(network,selected.covariate="Petal.Width")

>	gwplot(network,selected.covariate="Sepal.Width")

>	gwplot(network,selected.covariate="Petal.Length")

>	gwplot(network,selected.covariate="Petal.Width")



Figure	11:	The	plot	of	generalized	weights



How	it	works…
In	this	recipe,	we	demonstrate	how	to	visualize	the	trained	neural	network	and	the
generalized	weights	of	each	trained	attribute.	As	per	Figure	10,	the	plot	displays	the
network	topology	of	the	trained	neural	network.	Also,	the	plot	includes	the	estimated
weight,	intercepts	and	basic	information	about	the	training	process.	At	the	bottom	of	the
figure,	one	can	find	the	overall	error	and	number	of	steps	required	to	converge.

Figure	11	presents	the	generalized	weight	plot	in	regard	to
network$generalized.weights.	The	four	plots	in	Figure	11	display	the	four	covariates:
Petal.Width,	Sepal.Width,	Petal.Length,	and	Petal.Width,	in	regard	to	the	versicolor
response.	If	all	the	generalized	weights	are	close	to	zero	on	the	plot,	it	means	the	covariate
has	little	effect.	However,	if	the	overall	variance	is	greater	than	one,	it	means	the	covariate
has	a	nonlinear	effect.



See	also
For	more	information	about	gwplot,	one	can	use	the	help	function	to	access	the
following	document:

>	?gwplot





Predicting	labels	based	on	a	model	trained
by	neuralnet
Similar	to	other	classification	methods,	we	can	predict	the	labels	of	new	observations
based	on	trained	neural	networks.	Furthermore,	we	can	validate	the	performance	of	these
networks	through	the	use	of	a	confusion	matrix.	In	the	following	recipe,	we	will	introduce
how	to	use	the	compute	function	in	a	neural	network	to	obtain	a	probability	matrix	of	the
testing	dataset	labels,	and	use	a	table	and	confusion	matrix	to	measure	the	prediction
performance.



Getting	ready
You	need	to	have	completed	the	previous	recipe	by	generating	the	training	dataset,
trainset,	and	the	testing	dataset,	testset.	The	trained	neural	network	needs	to	be	saved
in	the	network.



How	to	do	it…
Perform	the	following	steps	to	measure	the	prediction	performance	of	the	trained	neural
network:

1.	 First,	generate	a	prediction	probability	matrix	based	on	a	trained	neural	network	and
the	testing	dataset,	testset:

>	net.predict	=	compute(network,	testset[-5])$net.result

2.	 Then,	obtain	other	possible	labels	by	finding	the	column	with	the	greatest	probability:

>	net.prediction	=	c("versicolor",	"virginica",	"setosa")

[apply(net.predict,	1,	which.max)]

3.	 Generate	a	classification	table	based	on	the	predicted	labels	and	the	labels	of	the
testing	dataset:

>	predict.table	=	table(testset$Species,	net.prediction)

>	predict.table

												prediction

													setosa	versicolor	virginica

		setosa									20										0									0

		versicolor						0									19									1

		virginica							0										2								16

4.	 Next,	generate	classAgreement	from	the	classification	table:

>	classAgreement(predict.table)

$diag

[1]	0.9444444444

$kappa

[1]	0.9154488518

$rand

[1]	0.9224318658

$crand

[1]	0.8248251737

5.	 Finally,	use	confusionMatrix	to	measure	the	prediction	performance:

>	confusionMatrix(predict.table)

Confusion	Matrix	and	Statistics

												prediction

													setosa	versicolor	virginica

		setosa									20										0									0

		versicolor						0									19									1

		virginica							0										2								16

Overall	Statistics

																																																		

															Accuracy	:	0.9482759															

																	95%	CI	:	(0.8561954,	0.9892035)		



				No	Information	Rate	:	0.362069																

				P-Value	[Acc	>	NIR]	:	<	0.00000000000000022204

																																																		

																		Kappa	:	0.922252																

	Mcnemar's	Test	P-Value	:	NA																						

Statistics	by	Class:

																					Class:	setosa	Class:	versicolor	Class:	virginica

Sensitivity														1.0000000									0.9047619								0.9411765

Specificity														1.0000000									0.9729730								0.9512195

Pos	Pred	Value											1.0000000									0.9500000								0.8888889

Neg	Pred	Value											1.0000000									0.9473684								0.9750000

Prevalence															0.3448276									0.3620690								0.2931034

Detection	Rate											0.3448276									0.3275862								0.2758621

Detection	Prevalence					0.3448276									0.3448276								0.3103448

Balanced	Accuracy								1.0000000									0.9388674								0.9461980



How	it	works…
In	this	recipe,	we	demonstrate	how	to	predict	labels	based	on	a	model	trained	by	neuralnet.
Initially,	we	use	the	compute	function	to	create	an	output	probability	matrix	based	on	the
trained	neural	network	and	the	testing	dataset.	Then,	to	convert	the	probability	matrix	to
class	labels,	we	use	the	which.max	function	to	determine	the	class	label	by	selecting	the
column	with	the	maximum	probability	within	the	row.	Next,	we	use	a	table	to	generate	a
classification	matrix	based	on	the	labels	of	the	testing	dataset	and	the	predicted	labels.	As
we	have	created	the	classification	table,	we	can	employ	a	confusion	matrix	to	measure	the
prediction	performance	of	the	built	neural	network.



See	also
In	this	recipe,	we	use	the	net.result	function,	which	is	the	overall	result	of	the
neural	network,	used	to	predict	the	labels	of	the	testing	dataset.	Apart	from
examining	the	overall	result	by	accessing	net.result,	the	compute	function	also
generates	the	output	from	neurons	in	each	layer.	You	can	examine	the	output	of
neurons	to	get	a	better	understanding	of	how	compute	works:

>	compute(network,	testset[-5])





Training	a	neural	network	with	nnet
The	nnet	package	is	another	package	that	can	deal	with	artificial	neural	networks.	This
package	provides	the	functionality	to	train	feed-forward	neural	networks	with	traditional
back	propagation.	As	you	can	find	most	of	the	neural	network	function	implemented	in	the
neuralnet	package,	in	this	recipe	we	provide	a	short	overview	of	how	to	train	neural
networks	with	nnet.



Getting	ready
In	this	recipe,	we	do	not	use	the	trainset	and	trainset	generated	from	the	previous	step;
please	reload	the	iris	dataset	again.



How	to	do	it…
Perform	the	following	steps	to	train	the	neural	network	with	nnet:

1.	 First,	install	and	load	the	nnet	package:

>	install.packages("nnet")

>	library(nnet)

2.	 Next,	split	the	dataset	into	training	and	testing	datasets:

>	data(iris)

>	set.seed(2)

>	ind	=	sample(2,	nrow(iris),	replace	=	TRUE,	prob=c(0.7,	0.3))

>	trainset	=	iris[ind	==	1,]

>	testset	=	iris[ind	==	2,]

3.	 Then,	train	the	neural	network	with	nnet:

>	iris.nn	=	nnet(Species	~	.,	data	=	trainset,	size	=	2,	rang	=	0.1,	

decay	=	5e-4,	maxit	=	200)

#	weights:		19

initial		value	165.086674	

iter		10	value	70.447976

iter		20	value	69.667465

iter		30	value	69.505739

iter		40	value	21.588943

iter		50	value	8.691760

iter		60	value	8.521214

iter		70	value	8.138961

iter		80	value	7.291365

iter		90	value	7.039209

iter	100	value	6.570987

iter	110	value	6.355346

iter	120	value	6.345511

iter	130	value	6.340208

iter	140	value	6.337271

iter	150	value	6.334285

iter	160	value	6.333792

iter	170	value	6.333578

iter	180	value	6.333498

final		value	6.333471	

converged

4.	 Use	the	summary	to	obtain	information	about	the	trained	neural	network:

>	summary(iris.nn)

a	4-2-3	network	with	19	weights

options	were	-	softmax	modelling		decay=0.0005

	b->h1	i1->h1	i2->h1	i3->h1	i4->h1	

	-0.38		-0.63		-1.96			3.13			1.53	

	b->h2	i1->h2	i2->h2	i3->h2	i4->h2	

		8.95			0.52			1.42		-1.98		-3.85	

	b->o1	h1->o1	h2->o1	

		3.08	-10.78			4.99	

	b->o2	h1->o2	h2->o2	

	-7.41			6.37			7.18	



	b->o3	h1->o3	h2->o3	

		4.33			4.42	-12.16	



How	it	works…
In	this	recipe,	we	demonstrate	steps	to	train	a	neural	network	model	with	the	nnet
package.	We	first	use	nnet	to	train	the	neural	network.	With	this	function,	we	can	set	the
classification	formula,	source	of	data,	number	of	hidden	units	in	the	size	parameter,	initial
random	weight	in	the	rang	parameter,	parameter	for	weight	decay	in	the	decay	parameter,
and	the	maximum	iteration	in	the	maxit	parameter.	As	we	set	maxit	to	200,	the	training
process	repeatedly	runs	till	the	value	of	the	fitting	criterion	plus	the	decay	term	converge.
Finally,	we	use	the	summary	function	to	obtain	information	about	the	built	neural	network,
which	reveals	that	the	model	is	built	with	4-2-3	networks	with	19	weights.	Also,	the	model
shows	a	list	of	weight	transitions	from	one	node	to	another	at	the	bottom	of	the	printed
message.



See	also
For	those	who	are	interested	in	the	background	theory	of	nnet	and	how	it	is	made,	please
refer	to	the	following	articles:

Ripley,	B.	D.	(1996)	Pattern	Recognition	and	Neural	Networks.	Cambridge
Venables,	W.	N.,	and	Ripley,	B.	D.	(2002).	Modern	applied	statistics	with	S.	Fourth
edition.	Springer





Predicting	labels	based	on	a	model	trained
by	nnet
As	we	have	trained	a	neural	network	with	nnet	in	the	previous	recipe,	we	can	now	predict
the	labels	of	the	testing	dataset	based	on	the	trained	neural	network.	Furthermore,	we	can
assess	the	model	with	a	confusion	matrix	adapted	from	the	caret	package.



Getting	ready
You	need	to	have	completed	the	previous	recipe	by	generating	the	training	dataset,
trainset,	and	the	testing	dataset,	testset,	from	the	iris	dataset.	The	trained	neural
network	also	needs	to	be	saved	as	iris.nn.



How	to	do	it…
Perform	the	following	steps	to	predict	labels	based	on	the	trained	neural	network:

1.	 Generate	the	predictions	of	the	testing	dataset	based	on	the	model,	iris.nn:

>	iris.predict	=	predict(iris.nn,	testset,	type="class")

2.	 Generate	a	classification	table	based	on	the	predicted	labels	and	labels	of	the	testing
dataset:

>	nn.table	=	table(testset$Species,	iris.predict)

												iris.predict

													setosa	versicolor	virginica

		setosa									17										0									0

		versicolor						0									14									0

		virginica							0										1								14

3.	 Lastly,	generate	a	confusion	matrix	based	on	the	classification	table:

>	confusionMatrix(nn.table)

Confusion	Matrix	and	Statistics

												iris.predict

													setosa	versicolor	virginica

		setosa									17										0									0

		versicolor						0									14									0

		virginica							0										1								14

Overall	Statistics

																																																		

															Accuracy	:	0.9782609															

																	95%	CI	:	(0.8847282,	0.9994498)		

				No	Information	Rate	:	0.3695652															

				P-Value	[Acc	>	NIR]	:	<	0.00000000000000022204

																																																		

																		Kappa	:	0.9673063															

	Mcnemar's	Test	P-Value	:	NA																						

Statistics	by	Class:

																					Class:	setosa	Class:	versicolor

Sensitivity														1.0000000									0.9333333

Specificity														1.0000000									1.0000000

Pos	Pred	Value											1.0000000									1.0000000

Neg	Pred	Value											1.0000000									0.9687500

Prevalence															0.3695652									0.3260870

Detection	Rate											0.3695652									0.3043478

Detection	Prevalence					0.3695652									0.3043478

Balanced	Accuracy								1.0000000									0.9666667

																					Class:	virginica

Sensitivity																	1.0000000

Specificity																	0.9687500

Pos	Pred	Value														0.9333333

Neg	Pred	Value														1.0000000

Prevalence																		0.3043478



Detection	Rate														0.3043478

Detection	Prevalence								0.3260870

Balanced	Accuracy											0.9843750



How	it	works…
Similar	to	other	classification	methods,	one	can	also	predict	labels	based	on	the	neural
networks	trained	by	nnet.	First,	we	use	the	predict	function	to	generate	the	predicted
labels	based	on	a	testing	dataset,	testset.	Within	the	predict	function,	we	specify	the
type	argument	to	the	class,	so	the	output	will	be	class	labels	instead	of	a	probability
matrix.	Next,	we	use	the	table	function	to	generate	a	classification	table	based	on
predicted	labels	and	labels	written	in	the	testing	dataset.	Finally,	as	we	have	created	the
classification	table,	we	can	employ	a	confusion	matrix	from	the	caret	package	to	measure
the	prediction	performance	of	the	trained	neural	network.



See	also
For	the	predict	function,	if	the	type	argument	to	class	is	not	specified,	by	default,
it	will	generate	a	probability	matrix	as	a	prediction	result,	which	is	very	similar	to
net.result	generated	from	the	compute	function	within	the	neuralnet	package:

>	head(predict(iris.nn,	testset))





Chapter	7.	Model	Evaluation
In	this	chapter,	we	will	cover	the	following	topics:

Estimating	model	performance	with	k-fold	cross-validation
Performing	cross-validation	with	the	e1071	package
Performing	cross-validation	with	the	caret	package
Ranking	the	variable	importance	with	the	caret	package
Ranking	the	variable	importance	with	the	rminer	package
Finding	highly	correlated	features	with	the	caret	package
Selecting	features	using	the	caret	package
Measuring	the	performance	of	a	regression	model
Measuring	the	prediction	performance	with	the	confusion	matrix
Measuring	the	prediction	performance	using	ROCR
Comparing	an	ROC	curve	using	the	caret	package
Measuring	performance	differences	between	models	with	the	caret	package



Introduction
Model	evaluation	is	performed	to	ensure	that	a	fitted	model	can	accurately	predict
responses	for	future	or	unknown	subjects.	Without	model	evaluation,	we	might	train
models	that	over-fit	in	the	training	data.	To	prevent	overfitting,	we	can	employ	packages,
such	as	caret,	rminer,	and	rocr	to	evaluate	the	performance	of	the	fitted	model.
Furthermore,	model	evaluation	can	help	select	the	optimum	model,	which	is	more	robust
and	can	accurately	predict	responses	for	future	subjects.

In	the	following	chapter,	we	will	discuss	how	one	can	implement	a	simple	R	script	or	use
one	of	the	packages	(for	example,	caret	or	rminer)	to	evaluate	the	performance	of	a	fitted
model.





Estimating	model	performance	with	k-
fold	cross-validation
The	k-fold	cross-validation	technique	is	a	common	technique	used	to	estimate	the
performance	of	a	classifier	as	it	overcomes	the	problem	of	over-fitting.	For	k-fold	cross-
validation,	the	method	does	not	use	the	entire	dataset	to	build	the	model,	instead	it	splits
the	data	into	a	training	dataset	and	a	testing	dataset.	Therefore,	the	model	built	with	a
training	dataset	can	then	be	used	to	assess	the	performance	of	the	model	on	the	testing
dataset.	By	performing	n	repeats	of	the	k-fold	validation,	we	can	then	use	the	average	of	n
accuracies	to	truly	assess	the	performance	of	the	built	model.	In	this	recipe,	we	will
illustrate	how	to	perform	a	k-fold	cross-validation.



Getting	ready
In	this	recipe,	we	will	continue	to	use	the	telecom	churn	dataset	as	the	input	data	source	to
train	the	support	vector	machine.	For	those	who	have	not	prepared	the	dataset,	please	refer
to	Chapter	5,	Classification	(I)	–	Tree,	Lazy,	and	Probabilistic,	for	detailed	information.



How	to	do	it…
Perform	the	following	steps	to	cross-validate	the	telecom	churn	dataset:

1.	 Split	the	index	into	10	fold	using	the	cut	function:

>	ind	=	cut(1:nrow(churnTrain),	breaks=10,	labels=F)

2.	 Next,	use	for	loop	to	perform	a	10	fold	cross-validation,	repeated	10	times:

>	accuracies	=	c()

>	for	(i	in	1:10)	{

+			fit	=	svm(churn	~.,	churnTrain[ind	!=	i,])

+			predictions	=	predict(fit,	churnTrain[ind	==	i,	!	names(churnTrain)	

%in%	c("churn")])

+			correct_count	=	sum(predictions	==	churnTrain[ind	==	i,c("churn")])

+			accuracies	=	append(correct_count	/	nrow(churnTrain[ind	==	i,]),	

accuracies)

+	}

3.	 You	can	then	print	the	accuracies:

>	accuracies

	[1]	0.9341317	0.8948949	0.8978979	0.9459459	0.9219219	0.9281437	

0.9219219	0.9249249	0.9189189	0.9251497

4.	 Lastly,	you	can	generate	average	accuracies	with	the	mean	function:

>	mean(accuracies)

[1]	0.9213852



How	it	works…
In	this	recipe,	we	implement	a	simple	script	performing	10-fold	cross-validations.	We	first
generate	an	index	with	10	fold	with	the	cut	function.	Then,	we	implement	a	for	loop	to
perform	a	10-fold	cross-validation	10	times.	Within	the	loop,	we	first	apply	svm	on	9	folds
of	data	as	the	training	set.	We	then	use	the	fitted	model	to	predict	the	label	of	the	rest	of
the	data	(the	testing	dataset).	Next,	we	use	the	sum	of	the	correctly	predicted	labels	to
generate	the	accuracy.	As	a	result	of	this,	the	loop	stores	10	generated	accuracies.	Finally,
we	use	the	mean	function	to	retrieve	the	average	of	the	accuracies.



There’s	more…
If	you	wish	to	perform	the	k-fold	validation	with	the	use	of	other	models,	simply	replace
the	line	to	generate	the	variable	fit	to	whatever	classifier	you	prefer.	For	example,	if	you
would	like	to	assess	the	Naïve	Bayes	model	with	a	10-fold	cross-validation,	you	just	need
to	replace	the	calling	function	from	svm	to	naiveBayes:

>	for	(i	in	1:10)	{

+			fit	=	naiveBayes(churn	~.,	churnTrain[ind	!=	i,])

+			predictions	=	predict(fit,	churnTrain[ind	==	i,	!	names(churnTrain)	

%in%	c("churn")])

+			correct_count	=	sum(predictions	==	churnTrain[ind	==	i,c("churn")])

+			accuracies	=	append(correct_count	/	nrow(churnTrain[ind	==	i,]),	

accuracies)

+	}





Performing	cross-validation	with	the
e1071	package
Besides	implementing	a	loop	function	to	perform	the	k-fold	cross-validation,	you	can	use
the	tuning	function	(for	example,	tune.nnet,	tune.randomForest,	tune.rpart,
tune.svm,	and	tune.knn.)	within	the	e1071	package	to	obtain	the	minimum	error	value.	In
this	recipe,	we	will	illustrate	how	to	use	tune.svm	to	perform	the	10-fold	cross-validation
and	obtain	the	optimum	classification	model.



Getting	ready
In	this	recipe,	we	continue	to	use	the	telecom	churn	dataset	as	the	input	data	source	to
perform	10-fold	cross-validation.



How	to	do	it…
Perform	the	following	steps	to	retrieve	the	minimum	estimation	error	using	cross-
validation:

1.	 Apply	tune.svm	on	the	training	dataset,	trainset,	with	the	10-fold	cross-validation
as	the	tuning	control.	(If	you	find	an	error	message,	such	as	could	not	find
function	predict.func,	please	clear	the	workspace,	restart	the	R	session	and	reload
the	e1071	library	again):

>	tuned	=	tune.svm(churn~.,	data	=	trainset,	gamma	=	10^-2,	cost	=	

10^2,	tunecontrol=tune.control(cross=10))

2.	 Next,	you	can	obtain	the	summary	information	of	the	model,	tuned:

>	summary(tuned)

Error	estimation	of	'svm'	using	10-fold	cross	validation:	0.08164651

3.	 Then,	you	can	access	the	performance	details	of	the	tuned	model:

>	tuned$performances

		gamma	cost						error	dispersion

1		0.01		100	0.08164651	0.02437228

4.	 Lastly,	you	can	use	the	optimum	model	to	generate	a	classification	table:

>	svmfit	=	tuned$best.model

>	table(trainset[,c("churn")],	predict(svmfit))

					

							yes			no

		yes		234		108

		no				13	1960



How	it	works…
The	e1071	package	provides	miscellaneous	functions	to	build	and	assess	models,
therefore,	you	do	not	need	to	reinvent	the	wheel	to	evaluate	a	fitted	model.	In	this	recipe,
we	use	the	tune.svm	function	to	tune	the	svm	model	with	the	given	formula,	dataset,
gamma,	cost,	and	control	functions.	Within	the	tune.control	options,	we	configure	the
option	as	cross=10,	which	performs	a	10-fold	cross	validation	during	the	tuning	process.
The	tuning	process	will	eventually	return	the	minimum	estimation	error,	performance
detail,	and	the	best	model	during	the	tuning	process.	Therefore,	we	can	obtain	the
performance	measures	of	the	tuning	and	further	use	the	optimum	model	to	generate	a
classification	table.



See	also
In	the	e1071	package,	the	tune	function	uses	a	grid	search	to	tune	parameters.	For
those	interested	in	other	tuning	functions,	use	the	help	function	to	view	the	tune
document:

>	?e1071::tune





Performing	cross-validation	with	the	caret
package
The	Caret	(classification	and	regression	training)	package	contains	many	functions	in
regard	to	the	training	process	for	regression	and	classification	problems.	Similar	to	the
e1071	package,	it	also	contains	a	function	to	perform	the	k-fold	cross	validation.	In	this
recipe,	we	will	demonstrate	how	to	the	perform	k-fold	cross	validation	using	the	caret
package.



Getting	ready
In	this	recipe,	we	will	continue	to	use	the	telecom	churn	dataset	as	the	input	data	source	to
perform	the	k-fold	cross	validation.



How	to	do	it…
Perform	the	following	steps	to	perform	the	k-fold	cross-validation	with	the	caret
package:

1.	 First,	set	up	the	control	parameter	to	train	with	the	10-fold	cross	validation	in	3
repetitions:

>	control	=	trainControl(method="repeatedcv",	number=10,	repeats=3)

2.	 Then,	you	can	train	the	classification	model	on	telecom	churn	data	with	rpart:

>	model	=	train(churn~.,	data=trainset,	method="rpart",	

preProcess="scale",	trControl=control)

3.	 Finally,	you	can	examine	the	output	of	the	generated	model:

>	model

CART	

2315	samples

		16	predictor

			2	classes:	'yes',	'no'	

Pre-processing:	scaled	

Resampling:	Cross-Validated	(10	fold,	repeated	3	times)	

Summary	of	sample	sizes:	2084,	2083,	2082,	2084,	2083,	2084,	...	

Resampling	results	across	tuning	parameters:

		cp						Accuracy		Kappa		Accuracy	SD		Kappa	SD

		0.0556		0.904					0.531		0.0236							0.155			

		0.0746		0.867					0.269		0.0153							0.153			

		0.0760		0.860					0.212		0.0107							0.141			

Accuracy	was	used	to	select	the	optimal	model	using	the	largest	value.

The	final	value	used	for	the	model	was	cp	=	0.05555556.



How	it	works…
In	this	recipe,	we	demonstrate	how	convenient	it	is	to	conduct	the	k-fold	cross-validation
using	the	caret	package.	In	the	first	step,	we	set	up	the	training	control	and	select	the
option	to	perform	the	10-fold	cross-validation	in	three	repetitions.	The	process	of
repeating	the	k-fold	validation	is	called	repeated	k-fold	validation,	which	is	used	to	test	the
stability	of	the	model.	If	the	model	is	stable,	one	should	get	a	similar	test	result.	Then,	we
apply	rpart	on	the	training	dataset	with	the	option	to	scale	the	data	and	to	train	the	model
with	the	options	configured	in	the	previous	step.

After	the	training	process	is	complete,	the	model	outputs	three	resampling	results.	Of	these
results,	the	model	with	cp=0.05555556	has	the	largest	accuracy	value	(0.904),	and	is
therefore	selected	as	the	optimal	model	for	classification.



See	also
You	can	configure	the	resampling	function	in	trainControl,	in	which	you	can
specify	boot,	boot632,	cv,	repeatedcv,	LOOCV,	LGOCV,	none,	oob,	adaptive_cv,
adaptive_boot,	or	adaptive_LGOCV.	To	view	more	detailed	information	of	how	to
choose	the	resampling	method,	view	the	trainControl	document:

>	?trainControl





Ranking	the	variable	importance	with	the
caret	package
After	building	a	supervised	learning	model,	we	can	estimate	the	importance	of	features.
This	estimation	employs	a	sensitivity	analysis	to	measure	the	effect	on	the	output	of	a
given	model	when	the	inputs	are	varied.	In	this	recipe,	we	will	show	you	how	to	rank	the
variable	importance	with	the	caret	package.



Getting	ready
You	need	to	have	completed	the	previous	recipe	by	storing	the	fitted	rpart	object	in	the
model	variable.



How	to	do	it…
Perform	the	following	steps	to	rank	the	variable	importance	with	the	caret	package:

1.	 First,	you	can	estimate	the	variable	importance	with	the	varImp	function:

>	importance	=	varImp(model,	scale=FALSE)

>	importance

rpart	variable	importance

																														Overall

number_customer_service_calls	116.015

total_day_minutes													106.988

total_day_charge														100.648

international_planyes										86.789

voice_mail_planyes													25.974

total_eve_charge															23.097

total_eve_minutes														23.097

number_vmail_messages										19.885

total_intl_minutes														6.347

total_eve_calls																	0.000

total_day_calls																	0.000

total_night_charge														0.000

total_intl_calls																0.000

total_intl_charge															0.000

total_night_minutes													0.000

total_night_calls															0.000

2.	 Then,	you	can	generate	the	variable	importance	plot	with	the	plot	function:

>	plot(importance)

Figure	1:	The	visualization	of	variable	importance	using	the	caret	package



How	it	works…
In	this	recipe,	we	first	use	the	varImp	function	to	retrieve	the	variable	importance	and
obtain	the	summary.	The	overall	results	show	the	sensitivity	measure	of	each	attribute.
Next,	we	plot	the	variable	importance	in	terms	of	rank,	which	shows	that	the
number_customer_service_calls	attribute	is	the	most	important	variable	in	the
sensitivity	measure.



There’s	more…
In	some	classification	packages,	such	as	rpart,	the	object	generated	from	the	training
model	contains	the	variable	importance.	We	can	examine	the	variable	importance	by
accessing	the	output	object:

>	library(rpart)

>	model.rp	=	rpart(churn~.,	data=trainset)

>	model.rp$variable.importance

												total_day_minutes														total_day_charge	

																			111.645286																				110.881583	

number_customer_service_calls												total_intl_minutes	

																				58.486651																					48.283228	

												total_intl_charge														total_eve_charge	

																				47.698379																					47.166646	

												total_eve_minutes												international_plan	

																				47.166646																					42.194508	

													total_intl_calls									number_vmail_messages	

																				36.730344																					19.884863	

														voice_mail_plan													total_night_calls	

																				19.884863																						7.195828	

														total_eve_calls												total_night_charge	

																					3.553423																						1.754547	

										total_night_minutes															total_day_calls	

																					1.754547																						1.494986		





Ranking	the	variable	importance	with	the
rminer	package
Besides	using	the	caret	package	to	generate	variable	importance,	you	can	use	the	rminer
package	to	generate	the	variable	importance	of	a	classification	model.	In	the	following
recipe,	we	will	illustrate	how	to	use	rminer	to	obtain	the	variable	importance	of	a	fitted
model.



Getting	ready
In	this	recipe,	we	will	continue	to	use	the	telecom	churn	dataset	as	the	input	data	source	to
rank	the	variable	importance.



How	to	do	it…
Perform	the	following	steps	to	rank	the	variable	importance	with	rminer:

1.	 Install	and	load	the	package,	rminer:

>	install.packages("rminer")

>	library(rminer)

2.	 Fit	the	svm	model	with	the	training	set:

>	model=fit(churn~.,trainset,model="svm")

3.	 Use	the	Importance	function	to	obtain	the	variable	importance:

>	VariableImportance=Importance(model,trainset,method="sensv")

4.	 Plot	the	variable	importance	ranked	by	the	variance:

>	

L=list(runs=1,sen=t(VariableImportance$imp),sresponses=VariableImportan

ce$sresponses)

>	mgraph(L,graph="IMP",leg=names(trainset),col="gray",Grid=10)

Figure	2:	The	visualization	of	variable	importance	using	the	rminer	package



How	it	works…
Similar	to	the	caret	package,	the	rminer	package	can	also	generate	the	variable
importance	of	a	classification	model.	In	this	recipe,	we	first	train	the	svm	model	on	the
training	dataset,	trainset,	with	the	fit	function.	Then,	we	use	the	Importance	function
to	rank	the	variable	importance	with	a	sensitivity	measure.	Finally,	we	use	mgraph	to	plot
the	rank	of	the	variable	importance.	Similar	to	the	result	obtained	from	using	the	caret
package,	number_customer_service_calls	is	the	most	important	variable	in	the	measure
of	sensitivity.



See	also
The	rminer	package	provides	many	classification	models	for	one	to	choose	from.	If
you	are	interested	in	using	models	other	than	svm,	you	can	view	these	options	with
the	following	command:

>	?rminer::fit





Finding	highly	correlated	features	with
the	caret	package
When	performing	regression	or	classification,	some	models	perform	better	if	highly
correlated	attributes	are	removed.	The	caret	package	provides	the	findCorrelation
function,	which	can	be	used	to	find	attributes	that	are	highly	correlated	to	each	other.	In
this	recipe,	we	will	demonstrate	how	to	find	highly	correlated	features	using	the	caret
package.



Getting	ready
In	this	recipe,	we	will	continue	to	use	the	telecom	churn	dataset	as	the	input	data	source	to
find	highly	correlated	features.



How	to	do	it…
Perform	the	following	steps	to	find	highly	correlated	attributes:

1.	 Remove	the	features	that	are	not	coded	in	numeric	characters:

>	new_train	=	trainset[,!	names(churnTrain)	%in%	c("churn",	

"international_plan",	"voice_mail_plan")]

2.	 Then,	you	can	obtain	the	correlation	of	each	attribute:

>cor_mat	=	cor(new_train)

3.	 Next,	we	use	findCorrelation	to	search	for	highly	correlated	attributes	with	a	cut
off	equal	to	0.75:

>	highlyCorrelated	=	findCorrelation(cor_mat,	cutoff=0.75)

4.	 We	then	obtain	the	name	of	highly	correlated	attributes:

>	names(new_train)[highlyCorrelated]

[1]	"total_intl_minutes"		"total_day_charge"				"total_eve_minutes"			

"total_night_minutes"



How	it	works…
In	this	recipe,	we	search	for	highly	correlated	attributes	using	the	caret	package.	In	order
to	retrieve	the	correlation	of	each	attribute,	one	should	first	remove	nonnumeric	attributes.
Then,	we	perform	correlation	to	obtain	a	correlation	matrix.	Next,	we	use
findCorrelation	to	find	highly	correlated	attributes	with	the	cut	off	set	to	0.75.	We
finally	obtain	the	names	of	highly	correlated	(with	a	correlation	coefficient	over	0.75)
attributes,	which	are	total_intl_minutes,	total_day_charge,	total_eve_minutes,	and
total_night_minutes.	You	can	consider	removing	some	highly	correlated	attributes	and
keep	one	or	two	attributes	for	better	accuracy.



See	also
In	addition	to	the	caret	package,	you	can	use	the	leaps,	genetic,	and	anneal
functions	in	the	subselect	package	to	achieve	the	same	goal





Selecting	features	using	the	caret	package
The	feature	selection	method	searches	the	subset	of	features	with	minimized	predictive
errors.	We	can	apply	feature	selection	to	identify	which	attributes	are	required	to	build	an
accurate	model.	The	caret	package	provides	a	recursive	feature	elimination	function,	rfe,
which	can	help	automatically	select	the	required	features.	In	the	following	recipe,	we	will
demonstrate	how	to	use	the	caret	package	to	perform	feature	selection.



Getting	ready
In	this	recipe,	we	will	continue	to	use	the	telecom	churn	dataset	as	the	input	data	source
for	feature	selection.



How	to	do	it…
Perform	the	following	steps	to	select	features:

1.	 Transform	the	feature	named	as	international_plan	of	the	training	dataset,
trainset,	to	intl_yes	and	intl_no:

>	intl_plan	=	model.matrix(~	trainset.international_plan	-	1,	

data=data.frame(trainset$international_plan))

>	colnames(intl_plan)	=	c("trainset.international_planno"="intl_no",	

"trainset.international_planyes"=	"intl_yes")

2.	 Transform	the	feature	named	as	voice_mail_plan	of	the	training	dataset,	trainset,
to	voice_yes	and	voice_no:

>	voice_plan	=	model.matrix(~	trainset.voice_mail_plan	-	1,	

data=data.frame(trainset$voice_mail_plan))

>	colnames(voice_plan)	=	c("trainset.voice_mail_planno"	="voice_no",	

"trainset.voice_mail_planyes"="voidce_yes")

3.	 Remove	the	international_plan	and	voice_mail_plan	attributes	and	combine	the
training	dataset,	trainset	with	the	data	frames,	intl_plan	and	voice_plan:

>	trainset$international_plan	=	NULL

>	trainset$voice_mail_plan	=	NULL

>	trainset	=	cbind(intl_plan,voice_plan,	trainset)

4.	 Transform	the	feature	named	as	international_plan	of	the	testing	dataset,	testset,
to	intl_yes	and	intl_no:

>	intl_plan	=	model.matrix(~	testset.international_plan	-	1,	

data=data.frame(testset$international_plan))

>	colnames(intl_plan)	=	c("testset.international_planno"="intl_no",	

"testset.international_planyes"=	"intl_yes")

5.	 Transform	the	feature	named	as	voice_mail_plan	of	the	training	dataset,	trainset,
to	voice_yes	and	voice_no:

>	voice_plan	=	model.matrix(~	testset.voice_mail_plan	-	1,	

data=data.frame(testset$voice_mail_plan))

>	colnames(voice_plan)	=	c("testset.voice_mail_planno"	="voice_no",	

"testset.voice_mail_planyes"="voidce_yes")

6.	 Remove	the	international_plan	and	voice_mail_plan	attributes	and	combine	the
testing	dataset,	testset	with	the	data	frames,	intl_plan	and	voice_plan:

>	testset$international_plan	=	NULL

>	testset$voice_mail_plan	=	NULL

>	testset	=	cbind(intl_plan,voice_plan,	testset)

7.	 We	then	create	a	feature	selection	algorithm	using	linear	discriminant	analysis:

>	ldaControl	=	rfeControl(functions	=	ldaFuncs,	method	=	"cv")

8.	 Next,	we	perform	a	backward	feature	selection	on	the	training	dataset,	trainset
using	subsets	from	1	to	18:



>	ldaProfile	=	rfe(trainset[,	!names(trainset)	%in%	c("churn")],	

trainset[,c("churn")],sizes	=	c(1:18),	rfeControl	=	ldaControl)

>	ldaProfile

Recursive	feature	selection

Outer	resampling	method:	Cross-Validated	(10	fold)	

Resampling	performance	over	subset	size:

	Variables	Accuracy		Kappa	AccuracySD	KappaSD	Selected

									1			0.8523	0.0000			0.001325	0.00000									

									2			0.8523	0.0000			0.001325	0.00000									

									3			0.8423	0.1877			0.015468	0.09787									

									4			0.8462	0.2285			0.016593	0.09610									

									5			0.8466	0.2384			0.020710	0.09970									

									6			0.8466	0.2364			0.019612	0.09387									

									7			0.8458	0.2315			0.017551	0.08670									

									8			0.8458	0.2284			0.016608	0.09536									

									9			0.8475	0.2430			0.016882	0.10147									

								10			0.8514	0.2577			0.014281	0.08076									

								11			0.8518	0.2587			0.014124	0.08075									

								12			0.8544	0.2702			0.015078	0.09208								*

								13			0.8544	0.2721			0.015352	0.09421									

								14			0.8531	0.2663			0.018428	0.11022									

								15			0.8527	0.2652			0.017958	0.10850									

								16			0.8531	0.2684			0.017897	0.10884									

								17			0.8531	0.2684			0.017897	0.10884									

								18			0.8531	0.2684			0.017897	0.10884									

The	top	5	variables	(out	of	12):

			total_day_charge,	total_day_minutes,	intl_no,	

number_customer_service_calls,	total_eve_charge

9.	 Next,	we	can	plot	the	selection	result:

>	plot(ldaProfile,	type	=	c("o",	"g"))



Figure	3:	The	feature	selection	result

10.	 We	can	then	examine	the	best	subset	of	the	variables:

>	ldaProfile$optVariables

	[1]	"total_day_charge"													

	[2]	"total_day_minutes"												

	[3]	"intl_no"																						

	[4]	"number_customer_service_calls"

	[5]	"total_eve_charge"													

	[6]	"total_eve_minutes"												

	[7]	"voidce_yes"																			

	[8]	"total_intl_calls"													

	[9]	"number_vmail_messages"								

[10]	"total_intl_charge"												

[11]	"total_intl_minutes"											

[12]	"total_night_minutes"		

11.	 Now,	we	can	examine	the	fitted	model:

>	ldaProfile$fit

Call:

lda(x,	y)

Prior	probabilities	of	groups:

						yes								no	

0.1477322	0.8522678	

Group	means:

				total_day_charge	total_day_minutes			intl_no

yes									35.00143										205.8877	0.7046784

no										29.62402										174.2555	0.9351242

				number_customer_service_calls	total_eve_charge

yes																						2.204678									18.16702



no																							1.441460									16.96789

				total_eve_minutes	voidce_yes	total_intl_calls

yes										213.7269		0.1666667									4.134503

no											199.6197		0.2954891									4.514445

				number_vmail_messages	total_intl_charge

yes														5.099415										2.899386

no															8.674607										2.741343

				total_intl_minutes	total_night_minutes

yes											10.73684												205.4640

no												10.15119												201.4184

Coefficients	of	linear	discriminants:

																																							LD1

total_day_charge															0.715025524

total_day_minutes													-0.130486470

intl_no																								2.259889324

number_customer_service_calls	-0.421997335

total_eve_charge														-2.390372793

total_eve_minutes														0.198406977

voidce_yes																					0.660927935

total_intl_calls															0.066240268

number_vmail_messages									-0.003529233

total_intl_charge														2.315069869

total_intl_minutes												-0.693504606

total_night_minutes											-0.002127471

12.	 Finally,	we	can	calculate	the	performance	across	resamples:

>	postResample(predict(ldaProfile,	testset[,	!names(testset)	%in%	

c("churn")]),	testset[,c("churn")])

Accuracy					Kappa

0.8605108	0.2672027



How	it	works…
In	this	recipe,	we	perform	feature	selection	using	the	caret	package.	As	there	are	factor-
coded	attributes	within	the	dataset,	we	first	use	a	function	called	model.matrix	to
transform	the	factor-coded	attributes	into	multiple	binary	attributes.	Therefore,	we
transform	the	international_plan	attribute	to	intl_yes	and	intl_no.	Additionally,	we
transform	the	voice_mail_plan	attribute	to	voice_yes	and	voice_no.

Next,	we	set	up	control	parameters	for	training	using	the	cross-validation	method,	cv,	with
the	linear	discriminant	function,	ldaFuncs.	Then,	we	use	the	recursive	feature	elimination,
rfe,	to	perform	feature	selection	with	the	use	of	the	control	function,	ldaFuncs.	The	rfe
function	generates	the	summary	of	feature	selection,	which	contains	resampling	a
performance	over	the	subset	size	and	top	variables.

We	can	then	use	the	obtained	model	information	to	plot	the	number	of	variables	against
accuracy.	From	Figure	3,	it	is	obvious	that	using	12	features	can	obtain	the	best	accuracy.
In	addition	to	this,	we	can	retrieve	the	best	subset	of	the	variables	in	(12	variables	in	total)
the	fitted	model.	Lastly,	we	can	calculate	the	performance	across	resamples,	which	yields
an	accuracy	of	0.86	and	a	kappa	of	0.27.



See	also
In	order	to	specify	the	algorithm	used	to	control	feature	selection,	one	can	change	the
control	function	specified	in	rfeControl.	Here	are	some	of	the	options	you	can	use:

caretFuncs						SVM	(caret)

lmFuncs					lm	(base)

rfFuncs									RF(randomForest)

treebagFuncs					DT	(ipred)

ldaFuncs							lda(base)

nbFuncs							NB(klaR)

gamFuncs						gam(gam)





Measuring	the	performance	of	the
regression	model
To	measure	the	performance	of	a	regression	model,	we	can	calculate	the	distance	from
predicted	output	and	the	actual	output	as	a	quantifier	of	the	performance	of	the	model.
Here,	we	often	use	the	root	mean	square	error	(RMSE),	relative	square	error	(RSE)
and	R-Square	as	common	measurements.	In	the	following	recipe,	we	will	illustrate	how	to
compute	these	measurements	from	a	built	regression	model.



Getting	ready
In	this	recipe,	we	will	use	the	Quartet	dataset,	which	contains	four	regression	datasets,	as
our	input	data	source.



How	to	do	it…
Perform	the	following	steps	to	measure	the	performance	of	the	regression	model:

1.	 Load	the	Quartet	dataset	from	the	car	package:

>	library(car)

>	data(Quartet)

2.	 Plot	the	attribute,	y3,	against	x	using	the	lm	function:

>	plot(Quartet$x,	Quartet$y3)

>	lmfit	=	lm(Quartet$y3~Quartet$x)

>	abline(lmfit,	col="red")

Figure	4:	The	linear	regression	plot

3.	 You	can	retrieve	predicted	values	by	using	the	predict	function:

>	predicted=	predict(lmfit,	newdata=Quartet[c("x")])

4.	 Now,	you	can	calculate	the	root	mean	square	error:

>	actual	=	Quartet$y3

>	rmse	=	(mean((predicted	-	actual)^2))^0.5

>	rmse

[1]	1.118286

5.	 You	can	calculate	the	relative	square	error:

>	mu	=	mean(actual)

>	rse	=	mean((predicted	-	actual)^2)	/	mean((mu	-	actual)^2)	

>	rse

[1]	0.333676



6.	 Also,	you	can	use	R-Square	as	a	measurement:

>	rsquare	=	1	-	rse

>	rsquare

[1]	0.666324

7.	 Then,	you	can	plot	attribute,	y3,	against	x	using	the	rlm	function	from	the	MASS
package:

>	library(MASS)

>	plot(Quartet$x,	Quartet$y3)

>	rlmfit	=	rlm(Quartet$y3~Quartet$x)

>	abline(rlmfit,	col="red")

Figure	5:	The	robust	linear	regression	plot	on	the	Quartet	dataset

8.	 You	can	then	retrieve	the	predicted	value	using	the	predict	function:

>	predicted	=	predict(rlmfit,	newdata=Quartet[c("x")])

9.	 Next,	you	can	calculate	the	root	mean	square	error	using	the	distance	of	the	predicted
and	actual	value:

>	actual	=	Quartet$y3

>	rmse	=	(mean((predicted	-	actual)^2))^0.5

>	rmse

[1]	1.279045

10.	 Calculate	the	relative	square	error	between	the	predicted	and	actual	labels:

>	mu	=	mean(actual)

>	rse	=mean((predicted	-	actual)^2)	/	mean((mu	-	actual)^2)	

>	rse

[1]	0.4365067



11.	 Now,	you	can	calculate	the	R-Square	value:

>	rsquare	=	1	-	rse

>	rsquare

[1]	0.5634933



How	it	works…
The	measurement	of	the	performance	of	the	regression	model	employs	the	distance
between	the	predicted	value	and	the	actual	value.	We	often	use	these	three	measurements,
root	mean	square	error,	relative	square	error,	and	R-Square,	as	the	quantifier	of	the
performance	of	regression	models.	In	this	recipe,	we	first	load	the	Quartet	data	from	the
car	package.	We	then	use	the	lm	function	to	fit	the	linear	model,	and	add	the	regression
line	on	a	scatter	plot	of	the	x	variable	against	the	y3	variable.	Next,	we	compute	the
predicted	value	using	the	predict	function,	and	begin	to	compute	the	root	mean	square
error	(RMSE),	relative	square	error	(RSE),	and	R-Square	for	the	built	model.

As	this	dataset	has	an	outlier	at	x=13,	we	would	like	to	quantify	how	the	outlier	affects	the
performance	measurement.	To	achieve	this,	we	first	train	a	regression	model	using	the	rlm
function	from	the	MASS	package.	Similar	to	the	previous	step,	we	then	generate	a
performance	measurement	of	the	root	square	mean	error,	relative	error	and	R-Square.
From	the	output	measurement,	it	is	obvious	that	the	mean	square	error	and	the	relative
square	errors	of	the	lm	model	are	smaller	than	the	model	built	by	rlm,	and	the	score	of	R-
Square	shows	that	the	model	built	with	lm	has	a	greater	prediction	power.	However,	for
the	actual	scenario,	we	should	remove	the	outlier	at	x=13.	This	comparison	shows	that	the
outlier	may	be	biased	toward	the	performance	measure	and	may	lead	us	to	choose	the
wrong	model.



There’s	more…
If	you	would	like	to	perform	cross-validation	on	a	linear	regression	model,	you	can	use	the
tune	function	within	the	e1071	package:

>	tune(lm,	y3~x,	data	=	Quartet)

Error	estimation	of	'lm'	using	10-fold	cross	validation:	2.33754

Other	than	the	e1071	package,	you	can	use	the	train	function	from	the	caret	package	to
perform	cross-validation.	In	addition	to	this,	you	can	also	use	cv.lm	from	the	DAAG
package	to	achieve	the	same	goal.





Measuring	prediction	performance	with	a
confusion	matrix
To	measure	the	performance	of	a	classification	model,	we	can	first	generate	a
classification	table	based	on	our	predicted	label	and	actual	label.	Then,	we	can	use	a
confusion	matrix	to	obtain	performance	measures	such	as	precision,	recall,	specificity,	and
accuracy.	In	this	recipe,	we	will	demonstrate	how	to	retrieve	a	confusion	matrix	using	the
caret	package.



Getting	ready
In	this	recipe,	we	will	continue	to	use	the	telecom	churn	dataset	as	our	example	dataset.



How	to	do	it…
Perform	the	following	steps	to	generate	a	classification	measurement:

1.	 Train	an	svm	model	using	the	training	dataset:

>	svm.model=	train(churn	~	.,

+																			data	=	trainset,

+																			method	=	"svmRadial")

2.	 You	can	then	predict	labels	using	the	fitted	model,	svm.model:

>	svm.pred	=	predict(svm.model,	testset[,!	names(testset)	%in%	

c("churn")])

3.	 Next,	you	can	generate	a	classification	table:

>	table(svm.pred,	testset[,c("churn")])

								

svm.pred	yes		no

					yes		73		16

					no			68	861

4.	 Lastly,	you	can	generate	a	confusion	matrix	using	the	prediction	results	and	the	actual
labels	from	the	testing	dataset:

>	confusionMatrix(svm.pred,	testset[,c("churn")])

Confusion	Matrix	and	Statistics

										Reference

Prediction	yes		no

							yes		73		16

							no			68	861

																																										

															Accuracy	:	0.9175										

																	95%	CI	:	(0.8989,	0.9337)

				No	Information	Rate	:	0.8615										

				P-Value	[Acc	>	NIR]	:	2.273e-08							

																																										

																		Kappa	:	0.5909										

	Mcnemar's	Test	P-Value	:	2.628e-08							

																																										

												Sensitivity	:	0.51773									

												Specificity	:	0.98176									

									Pos	Pred	Value	:	0.82022									

									Neg	Pred	Value	:	0.92680									

													Prevalence	:	0.13851									

									Detection	Rate	:	0.07171									

			Detection	Prevalence	:	0.08743									

						Balanced	Accuracy	:	0.74974									

																																										

							'Positive'	Class	:	yes														



How	it	works…
In	this	recipe,	we	demonstrate	how	to	obtain	a	confusion	matrix	to	measure	the
performance	of	a	classification	model.	First,	we	use	the	train	function	from	the	caret
package	to	train	an	svm	model.	Next,	we	use	the	predict	function	to	extract	the	predicted
labels	of	the	svm	model	using	the	testing	dataset.	Then,	we	perform	the	table	function	to
obtain	the	classification	table	based	on	the	predicted	and	actual	labels.	Finally,	we	use	the
confusionMatrix	function	from	the	caret	package	to	a	generate	a	confusion	matrix	to
measure	the	performance	of	the	classification	model.



See	also
If	you	are	interested	in	the	available	methods	that	can	be	used	in	the	train	function,
you	can	refer	to	this	website:	http://topepo.github.io/caret/modelList.html

http://topepo.github.io/caret/modelList.html




Measuring	prediction	performance	using
ROCR
A	receiver	operating	characteristic	(ROC)	curve	is	a	plot	that	illustrates	the
performance	of	a	binary	classifier	system,	and	plots	the	true	positive	rate	against	the	false
positive	rate	for	different	cut	points.	We	most	commonly	use	this	plot	to	calculate	the	area
under	curve	(AUC)	to	measure	the	performance	of	a	classification	model.	In	this	recipe,
we	will	demonstrate	how	to	illustrate	an	ROC	curve	and	calculate	the	AUC	to	measure	the
performance	of	a	classification	model.



Getting	ready
In	this	recipe,	we	will	continue	using	the	telecom	churn	dataset	as	our	example	dataset.



How	to	do	it…
Perform	the	following	steps	to	generate	two	different	classification	examples	with
different	costs:

1.	 First,	you	should	install	and	load	the	ROCR	package:

>	install.packages("ROCR")

>	library(ROCR)

2.	 Train	the	svm	model	using	the	training	dataset	with	a	probability	equal	to	TRUE:

>	svmfit=svm(churn~	.,	data=trainset,	prob=TRUE)

3.	 Make	predictions	based	on	the	trained	model	on	the	testing	dataset	with	the
probability	set	as	TRUE:

>pred=predict(svmfit,testset[,	!names(testset)	%in%	c("churn")],	

probability=TRUE)

4.	 Obtain	the	probability	of	labels	with	yes:

>	pred.prob	=	attr(pred,	"probabilities")	

>	pred.to.roc	=	pred.prob[,	2]	

5.	 Use	the	prediction	function	to	generate	a	prediction	result:

>	pred.rocr	=	prediction(pred.to.roc,	testset$churn)

6.	 Use	the	performance	function	to	obtain	the	performance	measurement:

>	perf.rocr	=	performance(pred.rocr,	measure	=	"auc",	x.measure	=	

"cutoff")	

>	perf.tpr.rocr	=	performance(pred.rocr,	"tpr","fpr")	

7.	 Visualize	the	ROC	curve	using	the	plot	function:

>	plot(perf.tpr.rocr,	colorize=T,main=paste("AUC:",

(perf.rocr@y.values)))



Figure	6:	The	ROC	curve	for	the	svm	classifier	performance



How	it	works…
In	this	recipe,	we	demonstrated	how	to	generate	an	ROC	curve	to	illustrate	the
performance	of	a	binary	classifier.	First,	we	should	install	and	load	the	library,	ROCR.	Then,
we	use	svm,	from	the	e1071	package,	to	train	a	classification	model,	and	then	use	the
model	to	predict	labels	for	the	testing	dataset.	Next,	we	use	the	prediction	function	(from
the	package,	ROCR)	to	generate	prediction	results.	We	then	adapt	the	performance	function
to	obtain	the	performance	measurement	of	the	true	positive	rate	against	the	false	positive
rate.	Finally,	we	use	the	plot	function	to	visualize	the	ROC	plot,	and	add	the	value	of
AUC	on	the	title.	In	this	example,	the	AUC	value	is	0.92,	which	indicates	that	the	svm
classifier	performs	well	in	classifying	telecom	user	churn	datasets.



See	also
For	those	interested	in	the	concept	and	terminology	of	ROC,	you	can	refer	to
http://en.wikipedia.org/wiki/Receiver_operating_characteristic

http://en.wikipedia.org/wiki/Receiver_operating_characteristic




Comparing	an	ROC	curve	using	the	caret
package
In	previous	chapters,	we	introduced	many	classification	methods;	each	method	has	its	own
advantages	and	disadvantages.	However,	when	it	comes	to	the	problem	of	how	to	choose
the	best	fitted	model,	you	need	to	compare	all	the	performance	measures	generated	from
different	prediction	models.	To	make	the	comparison	easy,	the	caret	package	allows	us	to
generate	and	compare	the	performance	of	models.	In	this	recipe,	we	will	use	the	function
provided	by	the	caret	package	to	compare	different	algorithm	trained	models	on	the	same
dataset.



Getting	ready
Here,	we	will	continue	to	use	telecom	dataset	as	our	input	data	source.



How	to	do	it…
Perform	the	following	steps	to	generate	an	ROC	curve	of	each	fitted	model:

1.	 Install	and	load	the	library,	pROC:

>	install.packages("pROC")

>	library("pROC")

2.	 Set	up	the	training	control	with	a	10-fold	cross-validation	in	3	repetitions:

>	control	=	trainControl(method	=	"repeatedcv",

+																												number	=	10,

+																												repeats	=	3,

+																												classProbs	=	TRUE,

+																												summaryFunction	=	twoClassSummary)

3.	 Then,	you	can	train	a	classifier	on	the	training	dataset	using	glm:

>	glm.model=	train(churn	~	.,

+																					data	=	trainset,

+																					method	=	"glm",

+																					metric	=	"ROC",

+																					trControl	=	control)

4.	 Also,	you	can	train	a	classifier	on	the	training	dataset	using	svm:

>	svm.model=	train(churn	~	.,

+																			data	=	trainset,

+																			method	=	"svmRadial",

+																			metric	=	"ROC",

+																			trControl	=	control)

5.	 To	see	how	rpart	performs	on	the	training	data,	we	use	the	rpart	function:

>	rpart.model=	train(churn	~	.,

+																			data	=	trainset,

+																			method	=	"rpart",

+																			metric	=	"ROC",

+																			trControl	=	control)

6.	 You	can	make	predictions	separately	based	on	different	trained	models:

>	glm.probs	=	predict(glm.model,	testset[,!	names(testset)	%in%	

c("churn")],	type	=	"prob")

>	svm.probs	=	predict(svm.model,	testset[,!	names(testset)	%in%	

c("churn")],	type	=	"prob")

>	rpart.probs	=	predict(rpart.model,	testset[,!	names(testset)	%in%	

c("churn")],	type	=	"prob")

7.	 You	can	generate	the	ROC	curve	of	each	model,	and	plot	the	curve	on	the	same
figure:

>	glm.ROC	=	roc(response	=	testset[,c("churn")],

+																predictor	=glm.probs$yes,

+																levels	=	levels(testset[,c("churn")]))

>	plot(glm.ROC,	type="S",	col="red")	



Call:

roc.default(response	=	testset[,	c("churn")],	predictor	=	

glm.probs$yes,					levels	=	levels(testset[,	c("churn")]))

Data:	glm.probs$yes	in	141	controls	(testset[,	c("churn")]	yes)	>	877	

cases	(testset[,	c("churn")]	no).

Area	under	the	curve:	0.82

>	svm.ROC	=	roc(response	=	testset[,c("churn")],

+																predictor	=svm.probs$yes,

+																levels	=	levels(testset[,c("churn")]))

>	plot(svm.ROC,	add=TRUE,	col="green")	

Call:

roc.default(response	=	testset[,	c("churn")],	predictor	=	

svm.probs$yes,					levels	=	levels(testset[,	c("churn")]))

Data:	svm.probs$yes	in	141	controls	(testset[,	c("churn")]	yes)	>	877	

cases	(testset[,	c("churn")]	no).

Area	under	the	curve:	0.9233

>	rpart.ROC	=	roc(response	=	testset[,c("churn")],

+																predictor	=rpart.probs$yes,

+																levels	=	levels(testset[,c("churn")]))

>	plot(rpart.ROC,	add=TRUE,	col="blue")

Call:

roc.default(response	=	testset[,	c("churn")],	predictor	=	

rpart.probs$yes,					levels	=	levels(testset[,	c("churn")]))

Data:	rpart.probs$yes	in	141	controls	(testset[,	c("churn")]	yes)	>	877	

cases	(testset[,	c("churn")]	no).

Area	under	the	curve:	0.7581

Figure	7:	The	ROC	curve	for	the	performance	of	three	classifiers





How	it	works…
Here,	we	demonstrate	how	we	can	compare	fitted	models	by	illustrating	their	ROC	curve
in	one	figure.	First,	we	set	up	the	control	of	the	training	process	with	a	10-fold	cross
validation	in	3	repetitions	with	the	performance	evaluation	in	twoClassSummary.	After
setting	up	control	of	the	training	process,	we	then	apply	glm,	svm,	and	rpart	algorithms	on
the	training	dataset	to	fit	the	classification	models.	Next,	we	can	make	a	prediction	based
on	each	generated	model	and	plot	the	ROC	curve,	respectively.	Within	the	generated
figure,	we	find	that	the	model	trained	by	svm	has	the	largest	area	under	curve,	which	is
0.9233	(plotted	in	green),	the	AUC	of	the	glm	model	(red)	is	0.82,	and	the	AUC	of	the
rpart	model	(blue)	is	0.7581.	From	Figure	7,	it	is	obvious	that	svm	performs	the	best
among	all	the	fitted	models	on	this	training	dataset	(without	requiring	tuning).



See	also
We	use	another	ROC	visualization	package,	pROC,	which	can	be	employed	to	display
and	analyze	ROC	curves.	If	you	would	like	to	know	more	about	the	package,	please
use	the	help	function:

>	help(package="pROC")





Measuring	performance	differences
between	models	with	the	caret	package
In	the	previous	recipe,	we	introduced	how	to	generate	ROC	curves	for	each	generated
model,	and	have	the	curve	plotted	on	the	same	figure.	Apart	from	using	an	ROC	curve,
one	can	use	the	resampling	method	to	generate	statistics	of	each	fitted	model	in	ROC,
sensitivity	and	specificity	metrics.	Therefore,	we	can	use	these	statistics	to	compare	the
performance	differences	between	each	model.	In	the	following	recipe,	we	will	introduce
how	to	measure	performance	differences	between	fitted	models	with	the	caret	package.



Getting	ready
One	needs	to	have	completed	the	previous	recipe	by	storing	the	glm	fitted	model,	svm
fitted	model,	and	the	rpart	fitted	model	into	glm.model,	svm.model,	and	rpart.model,
respectively.



How	to	do	it…
Perform	the	following	steps	to	measure	performance	differences	between	each	fitted
model:

1.	 Resample	the	three	generated	models:

>	cv.values	=	resamples(list(glm	=	glm.model,	svm=svm.model,	rpart	=	

rpart.model))

2.	 Then,	you	can	obtain	a	summary	of	the	resampling	result:

>	summary(cv.values)

Call:

summary.resamples(object	=	cv.values)

Models:	glm,	svm,	rpart	

Number	of	resamples:	30	

ROC	

								Min.	1st	Qu.	Median			Mean	3rd	Qu.			Max.	NA's

glm			0.7206		0.7847	0.8126	0.8116		0.8371	0.8877				0

svm			0.8337		0.8673	0.8946	0.8929		0.9194	0.9458				0

rpart	0.2802		0.7159	0.7413	0.6769		0.8105	0.8821				0

Sens	

									Min.	1st	Qu.	Median			Mean	3rd	Qu.			Max.	NA's

glm			0.08824		0.2000	0.2286	0.2194		0.2517	0.3529				0

svm			0.44120		0.5368	0.5714	0.5866		0.6424	0.7143				0

rpart	0.20590		0.3742	0.4706	0.4745		0.5929	0.6471				0

Spec	

								Min.	1st	Qu.	Median			Mean	3rd	Qu.			Max.	NA's

glm			0.9442		0.9608	0.9746	0.9701		0.9797	0.9949				0

svm			0.9442		0.9646	0.9746	0.9740		0.9835	0.9949				0

rpart	0.9492		0.9709	0.9797	0.9780		0.9848	0.9949				0

3.	 Use	dotplot	to	plot	the	resampling	result	in	the	ROC	metric:

>	dotplot(cv.values,	metric	=	"ROC")



Figure	8:	The	dotplot	of	resampling	result	in	ROC	metric

4.	 Also,	you	can	use	a	box-whisker	plot	to	plot	the	resampling	result:

>	bwplot(cv.values,	layout	=	c(3,	1))

Figure	9:	The	box-whisker	plot	of	resampling	result



How	it	works…
In	this	recipe,	we	demonstrate	how	to	measure	the	performance	differences	among	three
fitted	models	using	the	resampling	method.	First,	we	use	the	resample	function	to
generate	the	statistics	of	each	fitted	model	(svm.model,	glm.model,	and	rpart.model).
Then,	we	can	use	the	summary	function	to	obtain	the	statistics	of	these	three	models	in	the
ROC,	sensitivity	and	specificity	metrics.	Next,	we	can	apply	a	dotplot	on	the	resampling
result	to	see	how	ROC	varied	between	each	model.	Last,	we	use	a	box-whisker	plot	on	the
resampling	results	to	show	the	box-whisker	plot	of	different	models	in	the	ROC,
sensitivity	and	specificity	metrics	on	a	single	plot.



See	also
Besides	using	dotplot	and	bwplot	to	measure	performance	differences,	one	can	use
densityplot,	splom,	and	xyplot	to	visualize	the	performance	differences	of	each
fitted	model	in	the	ROC,	sensitivity,	and	specificity	metrics.





Chapter	8.	Ensemble	Learning
In	this	chapter,	we	will	cover	the	following	topics:

Classifying	data	with	the	bagging	method
Performing	cross-validation	with	the	bagging	method
Classifying	data	with	the	boosting	method
Performing	cross-validation	with	the	boosting	method
Classifying	data	with	gradient	boosting
Calculating	the	margins	of	a	classifier
Calculating	the	error	evolution	of	the	ensemble	method
Classifying	the	data	with	random	forest
Estimating	the	prediction	errors	of	different	classifiers



Introduction
Ensemble	learning	is	a	method	to	combine	results	produced	by	different	learners	into	one
format,	with	the	aim	of	producing	better	classification	results	and	regression	results.	In
previous	chapters,	we	discussed	several	classification	methods.	These	methods	take
different	approaches	but	they	all	have	the	same	goal,	that	is,	finding	an	optimum
classification	model.	However,	a	single	classifier	may	be	imperfect,	which	may
misclassify	data	in	certain	categories.	As	not	all	classifiers	are	imperfect,	a	better	approach
is	to	average	the	results	by	voting.	In	other	words,	if	we	average	the	prediction	results	of
every	classifier	with	the	same	input,	we	may	create	a	superior	model	compared	to	using	an
individual	method.

In	ensemble	learning,	bagging,	boosting,	and	random	forest	are	the	three	most	common
methods:

Bagging	is	a	voting	method,	which	first	uses	Bootstrap	to	generate	a	different	training
set,	and	then	uses	the	training	set	to	make	different	base	learners.	The	bagging
method	employs	a	combination	of	base	learners	to	make	a	better	prediction.
Boosting	is	similar	to	the	bagging	method.	However,	what	makes	boosting	different
is	that	it	first	constructs	the	base	learning	in	sequence,	where	each	successive	learner
is	built	for	the	prediction	residuals	of	the	preceding	learner.	With	the	means	to	create
a	complementary	learner,	it	uses	the	mistakes	made	by	previous	learners	to	train	the
next	base	learner.
Random	forest	uses	the	classification	results	voted	from	many	classification	trees.
The	idea	is	simple;	a	single	classification	tree	will	obtain	a	single	classification	result
with	a	single	input	vector.	However,	a	random	forest	grows	many	classification	trees,
obtaining	multiple	results	from	a	single	input.	Therefore,	a	random	forest	will	use	the
majority	of	votes	from	all	the	decision	trees	to	classify	data	or	use	an	average	output
for	regression.

In	the	following	recipes,	we	will	discuss	how	to	use	bagging	and	boosting	to	classify	data.
We	can	then	perform	cross-validation	to	estimate	the	error	rate	of	each	classifier.	In
addition	to	this,	we’ll	introduce	the	use	of	a	margin	to	measure	the	certainty	of	a	model.
Next,	we	cover	random	forests,	similar	to	the	bagging	and	boosting	methods,	and
introduce	how	to	train	the	model	to	classify	data	and	use	margins	to	estimate	the	model
certainty.	Lastly,	we’ll	demonstrate	how	to	estimate	the	error	rate	of	each	classifier,	and
use	the	error	rate	to	compare	the	performance	of	different	classifiers.





Classifying	data	with	the	bagging	method
The	adabag	package	implements	both	boosting	and	bagging	methods.	For	the	bagging
method,	the	package	implements	Breiman’s	Bagging	algorithm,	which	first	generates
multiple	versions	of	classifiers,	and	then	obtains	an	aggregated	classifier.	In	this	recipe,	we
will	illustrate	how	to	use	the	bagging	method	from	adabag	to	generate	a	classification
model	using	the	telecom	churn	dataset.



Getting	ready
In	this	recipe,	we	continue	to	use	the	telecom	churn	dataset	as	the	input	data	source	for	the
bagging	method.	For	those	who	have	not	prepared	the	dataset,	please	refer	to	Chapter	5,
Classification	(I)	–	Tree,	Lazy,	and	Probabilistic,	for	detailed	information.



How	to	do	it…
Perform	the	following	steps	to	generate	a	classification	model	for	the	telecom	churn
dataset:

1.	 First,	you	need	to	install	and	load	the	adabag	package	(it	might	take	a	while	to	install
adabag):

>	install.packages("adabag")

>	library(adabag)

2.	 Next,	you	can	use	the	bagging	function	to	train	a	training	dataset	(the	result	may	vary
during	the	training	process):

>	set.seed(2)

>	churn.bagging	=	bagging(churn	~	.,	data=trainset,	mfinal=10)

3.	 Access	the	variable	importance	from	the	bagging	result:

>	churn.bagging$importance

											international_plan	number_customer_service_calls	

																			10.4948380																				16.4260510	

								number_vmail_messages															total_day_calls	

																				0.5319143																					0.3774190	

													total_day_charge													total_day_minutes	

																				0.0000000																				28.7545042	

														total_eve_calls														total_eve_charge	

																				0.1463585																					0.0000000	

												total_eve_minutes														total_intl_calls	

																			14.2366754																					8.7733895	

												total_intl_charge												total_intl_minutes	

																				0.0000000																					9.7838256	

												total_night_calls												total_night_charge	

																				0.4349952																					0.0000000	

										total_night_minutes															voice_mail_plan	

																				2.3379622																					7.7020671	

4.	 After	generating	the	classification	model,	you	can	use	the	predicted	results	from	the
testing	dataset:

>	churn.predbagging=	predict.bagging(churn.bagging,	newdata=testset)

5.	 From	the	predicted	results,	you	can	obtain	a	classification	table:

>	churn.predbagging$confusion

															Observed	Class

Predicted	Class	yes		no

												no			35	866

												yes	106		11

6.	 Finally,	you	can	retrieve	the	average	error	of	the	bagging	result:

>	churn.predbagging$error

[1]	0.0451866



How	it	works…
Bagging	is	derived	from	the	name	Bootstrap	aggregating,	which	is	a	stable,	accurate,	and
easy	to	implement	model	for	data	classification	and	regression.	The	definition	of	bagging
is	as	follows:	given	a	training	dataset	of	size	n,	bagging	performs	Bootstrap	sampling	and
generates	m	new	training	sets,	Di,	each	of	size	n.	Finally,	we	can	fit	m	Bootstrap	samples
to	m	models	and	combine	the	result	by	averaging	the	output	(for	regression)	or	voting	(for
classification):

An	illustration	of	bagging	method

The	advantage	of	using	bagging	is	that	it	is	a	powerful	learning	method,	which	is	easy	to
understand	and	implement.	However,	the	main	drawback	of	this	technique	is	that	it	is	hard
to	analyze	the	result.

In	this	recipe,	we	use	the	boosting	method	from	adabag	to	classify	the	telecom	churn	data.
Similar	to	other	classification	methods	discussed	in	previous	chapters,	you	can	train	a
boosting	classifier	with	a	formula	and	a	training	dataset.	Additionally,	you	can	set	the
number	of	iterations	to	10	in	the	mfinal	argument.	Once	the	classification	model	is	built,



you	can	examine	the	importance	of	each	attribute.	Ranking	the	attributes	by	importance
reveals	that	the	number	of	customer	service	calls	play	a	crucial	role	in	the	classification
model.

Next,	with	a	fitted	model,	you	can	apply	the	predict.bagging	function	to	predict	the
labels	of	the	testing	dataset.	Therefore,	you	can	use	the	labels	of	the	testing	dataset	and
predicted	results	to	generate	a	classification	table	and	obtain	the	average	error,	which	is
0.045	in	this	example.



There’s	more…
Besides	adabag,	the	ipred	package	provides	a	bagging	method	for	a	classification	tree.
We	demonstrate	here	how	to	use	the	bagging	method	of	the	ipred	package	to	train	a
classification	model:

1.	 First,	you	need	to	install	and	load	the	ipred	package:

>	install.packages("ipred")

>	library(ipred)

2.	 You	can	then	use	the	bagging	method	to	fit	the	classification	method:

>	churn.bagging	=	bagging(churn	~	.,	data	=	trainset,	coob	=	T)

>	churn.bagging

Bagging	classification	trees	with	25	bootstrap	replications	

Call:	bagging.data.frame(formula	=	churn	~	.,	data	=	trainset,	coob	=	

T)

Out-of-bag	estimate	of	misclassification	error:		0.0605	

3.	 Obtain	an	out	of	bag	estimate	of	misclassification	of	the	errors:

>	mean(predict(churn.bagging)	!=	trainset$churn)

[1]	0.06047516

4.	 You	can	then	use	the	predict	function	to	obtain	the	predicted	labels	of	the	testing
dataset:

>	churn.prediction	=	predict(churn.bagging,	newdata=testset,	

type="class")

5.	 Obtain	the	classification	table	from	the	labels	of	the	testing	dataset	and	prediction
result:

>	prediction.table	=	table(churn.prediction,	testset$churn)

																

churn.prediction	yes		no

													no			31	869

													yes	110			8





Performing	cross-validation	with	the
bagging	method
To	assess	the	prediction	power	of	a	classifier,	you	can	run	a	cross-validation	method	to	test
the	robustness	of	the	classification	model.	In	this	recipe,	we	will	introduce	how	to	use
bagging.cv	to	perform	cross-validation	with	the	bagging	method.



Getting	ready
In	this	recipe,	we	continue	to	use	the	telecom	churn	dataset	as	the	input	data	source	to
perform	a	k-fold	cross-validation	with	the	bagging	method.



How	to	do	it…
Perform	the	following	steps	to	retrieve	the	minimum	estimation	errors	by	performing
cross-validation	with	the	bagging	method:

1.	 First,	we	use	bagging.cv	to	make	a	10-fold	classification	on	the	training	dataset	with
10	iterations:

>	churn.baggingcv	=	bagging.cv(churn	~	.,	v=10,	data=trainset,	

mfinal=10)

2.	 You	can	then	obtain	the	confusion	matrix	from	the	cross-validation	results:

>	churn.baggingcv$confusion

															Observed	Class

Predicted	Class		yes			no

												no			100	1938

												yes		242			35

3.	 Lastly,	you	can	retrieve	the	minimum	estimation	errors	from	the	cross-validation
results:

>	churn.baggingcv$error

[1]	0.05831533



How	it	works…
The	adabag	package	provides	a	function	to	perform	the	k-fold	validation	with	either	the
bagging	or	boosting	method.	In	this	example,	we	use	bagging.cv	to	make	the	k-fold
cross-validation	with	the	bagging	method.	We	first	perform	a	10-fold	cross	validation	with
10	iterations	by	specifying	v=10	and	mfinal=10.	Please	note	that	this	is	quite	time
consuming	due	to	the	number	of	iterations.	After	the	cross-validation	process	is	complete,
we	can	obtain	the	confusion	matrix	and	average	errors	(0.058	in	this	case)	from	the	cross-
validation	results.



See	also
For	those	interested	in	tuning	the	parameters	of	bagging.cv,	please	view	the
bagging.cv	document	by	using	the	help	function:

>	help(bagging.cv)





Classifying	data	with	the	boosting	method
Similar	to	the	bagging	method,	boosting	starts	with	a	simple	or	weak	classifier	and
gradually	improves	it	by	reweighting	the	misclassified	samples.	Thus,	the	new	classifier
can	learn	from	previous	classifiers.	The	adabag	package	provides	implementation	of	the
AdaBoost.M1	and	SAMME	algorithms.	Therefore,	one	can	use	the	boosting	method	in
adabag	to	perform	ensemble	learning.	In	this	recipe,	we	will	use	the	boosting	method	in
adabag	to	classify	the	telecom	churn	dataset.



Getting	ready
In	this	recipe,	we	will	continue	to	use	the	telecom	churn	dataset	as	the	input	data	source	to
perform	classifications	with	the	boosting	method.	Also,	you	need	to	have	the	adabag
package	loaded	in	R	before	commencing	the	recipe.



How	to	do	it…
Perform	the	following	steps	to	classify	the	telecom	churn	dataset	with	the	boosting
method:

1.	 You	can	use	the	boosting	function	from	the	adabag	package	to	train	the	classification
model:

>	set.seed(2)

>	churn.boost	=	boosting(churn	~.,data=trainset,mfinal=10,	

coeflearn="Freund",	boos=FALSE	,	control=rpart.control(maxdepth=3))

2.	 You	can	then	make	a	prediction	based	on	the	boosted	model	and	testing	dataset:

>	churn.boost.pred	=	predict.boosting(churn.boost,newdata=testset)

3.	 Next,	you	can	retrieve	the	classification	table	from	the	predicted	results:

>	churn.boost.pred$confusion

															Observed	Class

Predicted	Class	yes		no

												no			41	858

												yes	100		19

4.	 Finally,	you	can	obtain	the	average	errors	from	the	predicted	results:

>	churn.boost.pred$error

[1]	0.0589391



How	it	works…
The	idea	of	boosting	is	to	“boost”	weak	learners	(for	example,	a	single	decision	tree)	into
strong	learners.	Assuming	that	we	have	n	points	in	our	training	dataset,	we	can	assign	a
weight,	Wi	(0	<=	i	<n),	for	each	point.	Then,	during	the	iterative	learning	process	(we
assume	the	number	of	iterations	is	m),	we	can	reweigh	each	point	in	accordance	with	the
classification	result	in	each	iteration.	If	the	point	is	correctly	classified,	we	should
decrease	the	weight.	Otherwise,	we	increase	the	weight	of	the	point.	When	the	iteration
process	is	finished,	we	can	then	obtain	the	m	fitted	model,	fi(x)	(0	<=	i	<n).	Finally,	we	can
obtain	the	final	prediction	through	the	weighted	average	of	each	tree’s	prediction,	where
the	weight,	b,	is	based	on	the	quality	of	each	tree:

An	illustration	of	boosting	method

Both	bagging	and	boosting	are	ensemble	methods,	which	combine	the	prediction	power	of
each	single	learner	into	a	strong	learner.	The	difference	between	bagging	and	boosting	is
that	the	bagging	method	combines	independent	models,	but	boosting	performs	an	iterative
process	to	reduce	the	errors	of	preceding	models	by	predicting	them	with	successive



models.

In	this	recipe,	we	demonstrate	how	to	fit	a	classification	model	within	the	boosting
method.	Similar	to	bagging,	one	has	to	specify	the	formula	and	the	training	dataset	used	to
train	the	classification	model.	In	addition,	one	can	specify	parameters,	such	as	the	number
of	iterations	(mfinal),	the	weight	update	coefficient	(coeflearn),	the	weight	of	how	each
observation	is	used	(boos),	and	the	control	for	rpart	(a	single	decision	tree).	In	this
recipe,	we	set	the	iteration	to	10,	using	Freund	(the	AdaBoost.M1	algorithm	implemented
method)	as	coeflearn,	boos	set	to	false	and	max	depth	set	to	3	for	rpart	configuration.

We	use	the	boosting	method	to	fit	the	classification	model	and	then	save	it	in
churn.boost.	We	can	then	obtain	predicted	labels	using	the	prediction	function.
Furthermore,	we	can	use	the	table	function	to	retrieve	a	classification	table	based	on	the
predicted	labels	and	testing	the	dataset	labels.	Lastly,	we	can	get	the	average	errors	of	the
predicted	results.



There’s	more…
In	addition	to	using	the	boosting	function	in	the	adabag	package,	one	can	also	use	the
caret	package	to	perform	a	classification	with	the	boosting	method:

1.	 First,	load	the	mboost	and	pROC	package:

>	library(mboost)

>	install.packages("pROC")

>	library(pROC)

2.	 We	can	then	set	the	training	control	with	the	trainControl	function	and	use	the
train	function	to	train	the	classification	model	with	adaboost:

>	set.seed(2)

>	ctrl	=	trainControl(method	=	"repeatedcv",	repeats	=	1,	classProbs	=	

TRUE,	summaryFunction	=	twoClassSummary)

>	ada.train	=	train(churn	~	.,	data	=	trainset,	method	=	"ada",	metric	

=	"ROC",	trControl	=	ctrl)

3.	 Use	the	summary	function	to	obtain	the	details	of	the	classification	model:

>	ada.train$result

			nu	maxdepth	iter							ROC						Sens								Spec						ROCSD					

SensSD						SpecSD

1	0.1								1			50	0.8571988	0.9152941	0.012662155	0.03448418	

0.04430519	0.007251045

4	0.1								2			50	0.8905514	0.7138655	0.006083679	0.03538445	

0.10089887	0.006236741

7	0.1								3			50	0.9056456	0.4036134	0.007093780	0.03934631	

0.09406015	0.006407402

2	0.1								1		100	0.8550789	0.8918487	0.015705276	0.03434382	

0.06190546	0.006503191

5	0.1								2		100	0.8907720	0.6609244	0.009626724	0.03788941	

0.11403364	0.006940001

8	0.1								3		100	0.9077750	0.3832773	0.005576065	0.03601187	

0.09630026	0.003738978

3	0.1								1		150	0.8571743	0.8714286	0.016720505	0.03481526	

0.06198773	0.006767313

6	0.1								2		150	0.8929524	0.6171429	0.011654617	0.03638272	

0.11383803	0.006777465

9	0.1								3		150	0.9093921	0.3743697	0.007093780	0.03258220	

0.09504202	0.005446136

4.	 Use	the	plot	function	to	plot	the	ROC	curve	within	different	iterations:

>	plot(ada.train)



The	repeated	cross	validation	plot

5.	 Finally,	we	can	make	predictions	using	the	predict	function	and	view	the
classification	table:

>	ada.predict	=	predict(ada.train,	testset,	"prob")

>	ada.predict.result	=	ifelse(ada.predict[1]	>	0.5,	"yes",	"no")

>	table(testset$churn,	ada.predict.result)

					ada.predict.result

							no	yes

		yes		40	101

		no		872			5





Performing	cross-validation	with	the
boosting	method
Similar	to	the	bagging	function,	adabag	provides	a	cross-validation	function	for	the
boosting	method,	named	boosting.cv.	In	this	recipe,	we	will	demonstrate	how	to	perform
cross-validation	using	boosting.cv	from	the	package,	adabag.



Getting	ready
In	this	recipe,	we	continue	to	use	the	telecom	churn	dataset	as	the	input	data	source	to
perform	a	k-fold	cross-validation	with	the	boosting	method.



How	to	do	it…
Perform	the	following	steps	to	retrieve	the	minimum	estimation	errors	via	cross-validation
with	the	boosting	method:

1.	 First,	you	can	use	boosting.cv	to	cross-validate	the	training	dataset:

>	churn.boostcv	=	boosting.cv(churn	~	.,	v=10,	data=trainset,	

mfinal=5,control=rpart.control(cp=0.01))

2.	 You	can	then	obtain	the	confusion	matrix	from	the	boosting	results:

>	churn.boostcv$confusion

															Observed	Class

Predicted	Class		yes			no

												no			119	1940

												yes		223			33

3.	 Finally,	you	can	retrieve	the	average	errors	of	the	boosting	method:

>	churn.boostcv$error

[1]	0.06565875



How	it	works…
Similar	to	bagging.cv,	we	can	perform	cross-validation	with	the	boosting	method	using
boosting.cv.	If	v	is	set	to	10	and	mfinal	is	set	to	5,	the	boosting	method	will	perform
10-fold	cross-validations	with	five	iterations.	Also,	one	can	set	the	control	of	the	rpart	fit
within	the	parameter.	We	can	set	the	complexity	parameter	to	0.01	in	this	example.	Once
the	training	is	complete,	the	confusion	matrix	and	average	errors	of	the	boosted	results
will	be	obtained.



See	also
For	those	who	require	more	information	on	tuning	the	parameters	of	boosting.cv,
please	view	the	boosting.cv	document	by	using	the	help	function:

>	help(boosting.cv)





Classifying	data	with	gradient	boosting
Gradient	boosting	ensembles	weak	learners	and	creates	a	new	base	learner	that	maximally
correlates	with	the	negative	gradient	of	the	loss	function.	One	may	apply	this	method	on
either	regression	or	classification	problems,	and	it	will	perform	well	in	different	datasets.
In	this	recipe,	we	will	introduce	how	to	use	gbm	to	classify	a	telecom	churn	dataset.



Getting	ready
In	this	recipe,	we	continue	to	use	the	telecom	churn	dataset	as	the	input	data	source	for	the
bagging	method.	For	those	who	have	not	prepared	the	dataset,	please	refer	to	Chapter	5,
Classification	(I)	–	Tree,	Lazy,	and	Probabilistic,	for	detailed	information.



How	to	do	it…
Perform	the	following	steps	to	calculate	and	classify	data	with	the	gradient	boosting
method:

1.	 First,	install	and	load	the	package,	gbm:

>	install.packages("gbm")

>	library(gbm)

2.	 The	gbm	function	only	uses	responses	ranging	from	0	to	1;	therefore,	you	should
transform	yes/no	responses	to	numeric	responses	(0/1):

>	trainset$churn	=	ifelse(trainset$churn	==	"yes",	1,	0)

3.	 Next,	you	can	use	the	gbm	function	to	train	a	training	dataset:

>	set.seed(2)

>	churn.gbm	=	gbm(formula	=	churn	~	.,distribution	=	"bernoulli",data	=	

trainset,n.trees	=	1000,interaction.depth	=	7,shrinkage	=	0.01,	

cv.folds=3)

4.	 Then,	you	can	obtain	the	summary	information	from	the	fitted	model:

>	summary(churn.gbm)

																																									var				rel.inf

total_day_minutes										total_day_minutes	28.1217147

total_eve_minutes																total_eve_minutes	16.8097151

number_customer_service_calls	number_customer_service_calls	12.7894464

total_intl_minutes													total_intl_minutes		9.4515822

total_intl_calls																			total_intl_calls		8.1379826

international_plan															international_plan		8.0703900

total_night_minutes													total_night_minutes		4.0805153

number_vmail_messages									number_vmail_messages		3.9173515

voice_mail_plan																		voice_mail_plan		2.5501480

total_night_calls														total_night_calls		2.1357970

total_day_calls																					total_day_calls		1.7367888

total_eve_calls																					total_eve_calls		1.4398047

total_eve_charge																	total_eve_charge		0.5457486

total_night_charge														total_night_charge		0.2130152

total_day_charge																total_day_charge		0.0000000

total_intl_charge																	total_intl_charge		0.0000000



Relative	influence	plot	of	fitted	model

5.	 You	can	obtain	the	best	iteration	using	cross-validation:

>	churn.iter	=	gbm.perf(churn.gbm,method="cv")

The	performance	measurement	plot

6.	 Then,	you	can	retrieve	the	odd	value	of	the	log	returned	from	the	Bernoulli	loss
function:

>	churn.predict	=	predict(churn.gbm,	testset,	n.trees	=	churn.iter)

>	str(churn.predict)

	num	[1:1018]	-3.31	-2.91	-3.16	-3.47	-3.48…



7.	 Next,	you	can	plot	the	ROC	curve	and	get	the	best	cut	off	that	will	have	the
maximum	accuracy:

>	churn.roc	=	roc(testset$churn,	churn.predict)

>	plot(churn.roc)

Call:

roc.default(response	=	testset$churn,	predictor	=	churn.predict)

Data:	churn.predict	in	141	controls	(testset$churn	yes)	>	877	cases	

(testset$churn	no).

Area	under	the	curve:	0.9393

The	ROC	curve	of	fitted	model

8.	 You	can	retrieve	the	best	cut	off	with	the	coords	function	and	use	this	cut	off	to
obtain	the	predicted	label:

>	coords(churn.roc,	"best")

		threshold	specificity	sensitivity	

	-0.9495258			0.8723404			0.9703535	

>	churn.predict.class	=	ifelse(churn.predict	>	coords(churn.roc,	

"best")["threshold"],	"yes",	"no")

9.	 Lastly,	you	can	obtain	the	classification	table	from	the	predicted	results:

>	table(	testset$churn,churn.predict.class)

					churn.predict.class

							no	yes

		yes		18	123

		no		851		26



How	it	works…
The	algorithm	of	gradient	boosting	involves,	first,	the	process	computes	the	deviation	of
residuals	for	each	partition,	and	then,	determines	the	best	data	partitioning	in	each	stage.
Next,	the	successive	model	will	fit	the	residuals	from	the	previous	stage	and	build	a	new
model	to	reduce	the	residual	variance	(an	error).	The	reduction	of	the	residual	variance
follows	the	functional	gradient	descent	technique,	in	which	it	minimizes	the	residual
variance	by	going	down	its	derivative,	as	show	here:

Gradient	descent	method

In	this	recipe,	we	use	the	gradient	boosting	method	from	gbm	to	classify	the	telecom	churn
dataset.	To	begin	the	classification,	we	first	install	and	load	the	gbm	package.	Then,	we	use
the	gbm	function	to	train	the	classification	model.	Here,	as	our	prediction	target	is	the
churn	attribute,	which	is	a	binary	outcome,	we	therefore	set	the	distribution	as	bernoulli
in	the	distribution	argument.	Also,	we	set	the	1000	trees	to	fit	in	the	n.tree	argument,
the	maximum	depth	of	the	variable	interaction	to	7	in	interaction.depth,	the	learning
rate	of	the	step	size	reduction	to	0.01	in	shrinkage,	and	the	number	of	cross-validations	to
3	in	cv.folds.	After	the	model	is	fitted,	we	can	use	the	summary	function	to	obtain	the
relative	influence	information	of	each	variable	in	the	table	and	figure.	The	relative
influence	shows	the	reduction	attributable	to	each	variable	in	the	sum	of	the	square	error.
Here,	we	can	find	total_day_minutes	is	the	most	influential	one	in	reducing	the	loss
function.

Next,	we	use	the	gbm.perf	function	to	find	the	optimum	iteration.	Here,	we	estimate	the
optimum	number	with	cross-validation	by	specifying	the	method	argument	to	cv.	The
function	further	generates	two	plots,	where	the	black	line	plots	the	training	error	and	the
green	one	plots	the	validation	error.	The	error	measurement	here	is	a	bernoulli
distribution,	which	we	have	defined	earlier	in	the	training	stage.	The	blue	dash	line	on	the
plot	shows	where	the	optimum	iteration	is.



Then,	we	use	the	predict	function	to	obtain	the	odd	value	of	a	log	in	each	testing	case
returned	from	the	Bernoulli	loss	function.	In	order	to	get	the	best	prediction	result,	one	can
set	the	n.trees	argument	to	an	optimum	iteration	number.	However,	as	the	returned	value
is	an	odd	value	log,	we	still	have	to	determine	the	best	cut	off	to	determine	the	label.
Therefore,	we	use	the	roc	function	to	generate	an	ROC	curve	and	get	the	cut	off	with	the
maximum	accuracy.

Finally,	we	can	use	the	function,	coords,	to	retrieve	the	best	cut	off	threshold	and	use	the
ifelse	function	to	determine	the	class	label	from	the	odd	value	of	the	log.	Now,	we	can
use	the	table	function	to	generate	the	classification	table	and	see	how	accurate	the
classification	model	is.



There’s	more…
In	addition	to	using	the	boosting	function	in	the	gbm	package,	one	can	also	use	the	mboost
package	to	perform	classifications	with	the	gradient	boosting	method:

1.	 First,	install	and	load	the	mboost	package:

>	install.packages("mboost")

>	library(mboost)

2.	 The	mboost	function	only	uses	numeric	responses;	therefore,	you	should	transform
yes/no	responses	to	numeric	responses	(0/1):

>	trainset$churn	=	ifelse(trainset$churn	==	"yes",	1,	0)

3.	 Also,	you	should	remove	nonnumerical	attributes,	such	as	voice_mail_plan	and
international_plan:

>	trainset$voice_mail_plan	=	NULL

>	trainset$international_plan	=	NULL

4.	 We	can	then	use	mboost	to	train	the	classification	model:

>	churn.mboost	=	mboost(churn	~	.,	data=trainset,		control	=	

boost_control(mstop	=	10))

5.	 Use	the	summary	function	to	obtain	the	details	of	the	classification	model:

>	summary(churn.mboost)

			Model-based	Boosting

Call:

mboost(formula	=	churn	~	.,	data	=	trainset,	control	=	

boost_control(mstop	=	10))

			Squared	Error	(Regression)	

Loss	function:	(y	-	f)^2	

Number	of	boosting	iterations:	mstop	=	10	

Step	size:		0.1	

Offset:		1.147732	

Number	of	baselearners:		14	

Selection	frequencies:

												bbs(total_day_minutes)	bbs(number_customer_service_calls)	

																0.6																																0.4	

6.	 Lastly,	use	the	plot	function	to	draw	a	partial	contribution	plot	of	each	attribute:

>	par(mfrow=c(1,2))

>	plot(churn.mboost)



The	partial	contribution	plot	of	important	attributes





Calculating	the	margins	of	a	classifier
A	margin	is	a	measure	of	the	certainty	of	classification.	This	method	calculates	the
difference	between	the	support	of	a	correct	class	and	the	maximum	support	of	an	incorrect
class.	In	this	recipe,	we	will	demonstrate	how	to	calculate	the	margins	of	the	generated
classifiers.



Getting	ready
You	need	to	have	completed	the	previous	recipe	by	storing	a	fitted	bagging	model	in	the
variables,	churn.bagging	and	churn.predbagging.	Also,	put	the	fitted	boosting	classifier
in	both	churn.boost	and	churn.boost.pred.



How	to	do	it…
Perform	the	following	steps	to	calculate	the	margin	of	each	ensemble	learner:

1.	 First,	use	the	margins	function	to	calculate	the	margins	of	the	boosting	classifiers:

>	boost.margins	=	margins(churn.boost,	trainset)

>	boost.pred.margins	=	margins(churn.boost.pred,	testset)

2.	 You	can	then	use	the	plot	function	to	plot	a	marginal	cumulative	distribution	graph
of	the	boosting	classifiers:

>	plot(sort(boost.margins[[1]]),	

(1:length(boost.margins[[1]]))/length(boost.margins[[1]]),	

type="l",xlim=c(-1,1),main="Boosting:	Margin	cumulative	distribution	

graph",	xlab="margin",	ylab="%	observations",	col	=	"blue")

>	lines(sort(boost.pred.margins[[1]]),	

(1:length(boost.pred.margins[[1]]))/length(boost.pred.margins[[1]]),	

type="l",	col	=	"green")

>	abline(v=0,	col="red",lty=2)

The	margin	cumulative	distribution	graph	of	using	the	boosting	method

3.	 You	can	then	calculate	the	percentage	of	negative	margin	matches	training	errors	and
the	percentage	of	negative	margin	matches	test	errors:

>	boosting.training.margin	=	table(boost.margins[[1]]	>	0)

>	boosting.negative.training	=	

as.numeric(boosting.training.margin[1]/boosting.training.margin[2])

>	boosting.negative.training

	[1]	0.06387868

>	boosting.testing.margin	=	table(boost.pred.margins[[1]]	>	0)

>	boosting.negative.testing	=	

as.numeric(boosting.testing.margin[1]/boosting.testing.margin[2])

>	boosting.negative.testing

[1]	0.06263048



4.	 Also,	you	can	calculate	the	margins	of	the	bagging	classifiers.	You	might	see	the
warning	message	showing	“no	non-missing	argument	to	min“.	The	message
simply	indicates	that	the	min/max	function	is	applied	to	the	numeric	of	the	0	length
argument:

>	bagging.margins	=	margins(churn.bagging,	trainset)

>	bagging.pred.margins	=	margins(churn.predbagging,	testset)

5.	 You	can	then	use	the	plot	function	to	plot	a	margin	cumulative	distribution	graph	of
the	bagging	classifiers:

>	plot(sort(bagging.margins[[1]]),	

(1:length(bagging.margins[[1]]))/length(bagging.margins[[1]]),	

type="l",xlim=c(-1,1),main="Bagging:	Margin	cumulative	distribution	

graph",	xlab="margin",	ylab="%	observations",	col	=	"blue")

>	lines(sort(bagging.pred.margins[[1]]),	

(1:length(bagging.pred.margins[[1]]))/length(bagging.pred.margins[[1]])

,	type="l",	col	=	"green")

>	abline(v=0,	col="red",lty=2)

The	margin	cumulative	distribution	graph	of	the	bagging	method

6.	 Finally,	you	can	then	compute	the	percentage	of	negative	margin	matches	training
errors	and	the	percentage	of	negative	margin	matches	test	errors:

>	bagging.training.margin	=	table(bagging.margins[[1]]	>	0)

>	bagging.negative.training	=	

as.numeric(bagging.training.margin[1]/bagging.training.margin[2])

>	bagging.negative.training

[1]	0.1733401



>	bagging.testing.margin	=	table(bagging.pred.margins[[1]]	>	0)

>	bagging.negative.testing	=	

as.numeric(bagging.testing.margin[1]/bagging.testing.margin[2])

>	bagging.negative.testing

[1]	0.04303279



How	it	works…
A	margin	is	the	measurement	of	certainty	of	the	classification;	it	is	computed	by	the
support	of	the	correct	class	and	the	maximum	support	of	the	incorrect	class.	The	formula
of	margins	can	be	formulated	as:

Here,	the	margin	of	the	xi	sample	equals	the	support	of	a	correctly	classified	sample	(c
denotes	the	correct	class)	minus	the	maximum	support	of	a	sample	that	is	classified	to
class	j	(where	j≠c	and	j=1…k).	Therefore,	correctly	classified	examples	will	have	positive
margins	and	misclassified	examples	will	have	negative	margins.	If	the	margin	value	is
close	to	one,	it	means	that	correctly	classified	examples	have	a	high	degree	of	confidence.
On	the	other	hand,	examples	of	uncertain	classifications	will	have	small	margins.

The	margins	function	calculates	the	margins	of	AdaBoost.M1,	AdaBoost-SAMME,	or	the
bagging	classifier,	which	returns	a	vector	of	a	margin.	To	visualize	the	margin	distribution,
one	can	use	a	margin	cumulative	distribution	graph.	In	these	graphs,	the	x-axis	shows	the
margin	and	the	y-axis	shows	the	percentage	of	observations	where	the	margin	is	less	than
or	equal	to	the	margin	value	of	the	x-axis.	If	every	observation	is	correctly	classified,	the
graph	will	show	a	vertical	line	at	the	margin	equal	to	1	(where	margin	=	1).

For	the	margin	cumulative	distribution	graph	of	the	boosting	classifiers,	we	can	see	that
there	are	two	lines	plotted	on	the	graph,	in	which	the	green	line	denotes	the	margin	of	the
testing	dataset,	and	the	blue	line	denotes	the	margin	of	the	training	set.	The	figure	shows
about	6.39	percent	of	negative	margins	match	the	training	error,	and	6.26	percent	of
negative	margins	match	the	test	error.	On	the	other	hand,	we	can	find	that	17.33%	of
negative	margins	match	the	training	error	and	4.3	percent	of	negative	margins	match	the
test	error	in	the	margin	cumulative	distribution	graph	of	the	bagging	classifiers.	Normally,
the	percentage	of	negative	margins	matching	the	training	error	should	be	close	to	the
percentage	of	negative	margins	that	match	the	test	error.	As	a	result	of	this,	we	should	then
examine	the	reason	why	the	percentage	of	negative	margins	that	match	the	training	error	is
much	higher	than	the	negative	margins	that	match	the	test	error.



See	also
If	you	are	interested	in	more	details	on	margin	distribution	graphs,	please	refer	to	the
following	source:	Kuncheva	LI	(2004),	Combining	Pattern	Classifiers:	Methods	and
Algorithms,	John	Wiley	&	Sons.





Calculating	the	error	evolution	of	the
ensemble	method
The	adabag	package	provides	the	errorevol	function	for	a	user	to	estimate	the	ensemble
method	errors	in	accordance	with	the	number	of	iterations.	In	this	recipe,	we	will
demonstrate	how	to	use	errorevol	to	show	the	evolution	of	errors	of	each	ensemble
classifier.



Getting	ready
You	need	to	have	completed	the	previous	recipe	by	storing	the	fitted	bagging	model	in	the
variable,	churn.bagging.	Also,	put	the	fitted	boosting	classifier	in	churn.boost.



How	to	do	it…
Perform	the	following	steps	to	calculate	the	error	evolution	of	each	ensemble	learner:

1.	 First,	use	the	errorevol	function	to	calculate	the	error	evolution	of	the	boosting
classifiers:

>	boosting.evol.train	=	errorevol(churn.boost,	trainset)

>	boosting.evol.test	=	errorevol(churn.boost,	testset)

>	plot(boosting.evol.test$error,	type	=	"l",	ylim	=	c(0,	1),

+							main	=	"Boosting	error	versus	number	of	trees",	xlab	=	

"Iterations",

+							ylab	=	"Error",	col	=	"red",	lwd	=	2)

>	lines(boosting.evol.train$error,	cex	=	.5,	col	=	"blue",	lty	=	2,	lwd	

=	2)

>	legend("topright",	c("test",	"train"),	col	=	c("red",	"blue"),	lty	=	

1:2,	lwd	=	2)

Boosting	error	versus	number	of	trees

2.	 Next,	use	the	errorevol	function	to	calculate	the	error	evolution	of	the	bagging
classifiers:

>	bagging.evol.train	=	errorevol(churn.bagging,	trainset)

>	bagging.evol.test	=	errorevol(churn.bagging,	testset)

>	plot(bagging.evol.test$error,	type	=	"l",	ylim	=	c(0,	1),

+							main	=	"Bagging	error	versus	number	of	trees",	xlab	=	

"Iterations",

+							ylab	=	"Error",	col	=	"red",	lwd	=	2)

>	lines(bagging.evol.train$error,	cex	=	.5,	col	=	"blue",	lty	=	2,	lwd	

=	2)

>	legend("topright",	c("test",	"train"),	col	=	c("red",	"blue"),	lty	=	

1:2,	lwd	=	2)



Bagging	error	versus	number	of	trees



How	it	works…
The	errorest	function	calculates	the	error	evolution	of	AdaBoost.M1,	AdaBoost-
SAMME,	or	the	bagging	classifiers	and	returns	a	vector	of	error	evolutions.	In	this	recipe,
we	use	the	boosting	and	bagging	models	to	generate	error	evolution	vectors	and	graph	the
error	versus	number	of	trees.

The	resulting	graph	reveals	the	error	rate	of	each	iteration.	The	trend	of	the	error	rate	can
help	measure	how	fast	the	errors	reduce,	while	the	number	of	iterations	increases.	In
addition	to	this,	the	graphs	may	show	whether	the	model	is	over-fitted.



See	also
If	the	ensemble	model	is	over-fitted,	you	can	use	the	predict.bagging	and
predict.boosting	functions	to	prune	the	ensemble	model.	For	more	information,
please	use	the	help	function	to	refer	to	predict.bagging	and	predict.boosting:

>	help(predict.bagging)

>	help(predict.boosting)





Classifying	data	with	random	forest
Random	forest	is	another	useful	ensemble	learning	method	that	grows	multiple	decision
trees	during	the	training	process.	Each	decision	tree	will	output	its	own	prediction	results
corresponding	to	the	input.	The	forest	will	use	the	voting	mechanism	to	select	the	most
voted	class	as	the	prediction	result.	In	this	recipe,	we	will	illustrate	how	to	classify	data
using	the	randomForest	package.



Getting	ready
In	this	recipe,	we	will	continue	to	use	the	telecom	churn	dataset	as	the	input	data	source	to
perform	classifications	with	the	random	forest	method.



How	to	do	it…
Perform	the	following	steps	to	classify	data	with	random	forest:

1.	 First,	you	have	to	install	and	load	the	randomForest	package;

>	install.packages("randomForest")

>	library(randomForest)

2.	 You	can	then	fit	the	random	forest	classifier	with	a	training	set:

>	churn.rf	=	randomForest(churn	~	.,	data	=	trainset,	importance	=	T)

>	churn.rf

Call:

	randomForest(formula	=	churn	~	.,	data	=	trainset,	importance	=	T)	

															Type	of	random	forest:	classification

																					Number	of	trees:	500

No.	of	variables	tried	at	each	split:	4

								OOB	estimate	of		error	rate:	4.88%

Confusion	matrix:

				yes			no	class.error

yes	247			95	0.277777778

no			18	1955	0.009123163

3.	 Next,	make	predictions	based	on	the	fitted	model	and	testing	dataset:

>	churn.prediction	=	predict(churn.rf,	testset)

4.	 Similar	to	other	classification	methods,	you	can	obtain	the	classification	table:

>	table(churn.prediction,	testset$churn)

																

churn.prediction	yes		no

													yes	110			7

													no			31	870

5.	 You	can	use	the	plot	function	to	plot	the	mean	square	error	of	the	forest	object:

>	plot(churn.rf)



The	mean	square	error	of	the	random	forest

6.	 You	can	then	examine	the	importance	of	each	attribute	within	the	fitted	classifier:

>	importance(churn.rf)

																																						yes									no

international_plan												66.55206691	56.5100647

voice_mail_plan															19.98337191	15.2354970

number_vmail_messages									21.02976166	14.0707195

total_day_minutes													28.05190188	27.7570444

7.	 Next,	you	can	use	the	varImpPlot	function	to	obtain	the	plot	of	variable	importance:

>	varImpPlot(churn.rf)



The	visualization	of	variable	importance

8.	 You	can	also	use	the	margin	function	to	calculate	the	margins	and	plot	the	margin
cumulative	distribution:

>	margins.rf=margin(churn.rf,trainset)

>	plot(margins.rf)

The	margin	cumulative	distribution	graph	for	the	random	forest	method

9.	 Furthermore,	you	can	use	a	histogram	to	visualize	the	margin	distribution	of	the
random	forest:

>	hist(margins.rf,main="Margins	of	Random	Forest	for	churn	dataset")



The	histogram	of	margin	distribution

10.	 You	can	also	use	boxplot	to	visualize	the	margins	of	the	random	forest	by	class:

>	boxplot(margins.rf~trainset$churn,	main="Margins	of	Random	Forest	for	

churn	dataset	by	class")

Margins	of	the	random	forest	by	class



How	it	works…
The	purpose	of	random	forest	is	to	ensemble	weak	learners	(for	example,	a	single	decision
tree)	into	a	strong	learner.	The	process	of	developing	a	random	forest	is	very	similar	to	the
bagging	method,	assuming	that	we	have	a	training	set	containing	N	samples	with	M
features.	The	process	first	performs	bootstrap	sampling,	which	samples	N	cases	at	random,
with	the	replacement	as	the	training	dataset	of	each	single	decision	tree.	Next,	in	each
node,	the	process	first	randomly	selects	m	variables	(where	m	<<	M),	then	finds	the
predictor	variable	that	provides	the	best	split	among	m	variables.	Next,	the	process	grows
the	full	tree	without	pruning.	In	the	end,	we	can	obtain	the	predicted	result	of	an	example
from	each	single	tree.	As	a	result,	we	can	get	the	prediction	result	by	taking	an	average	or
weighted	average	(for	regression)	of	an	output	or	taking	a	majority	vote	(for
classification):

A	random	forest	uses	two	parameters:	ntree	(the	number	of	trees)	and	mtry	(the	number
of	features	used	to	find	the	best	feature),	while	the	bagging	method	only	uses	ntree	as	a
parameter.	Therefore,	if	we	set	mtry	equal	to	the	number	of	features	within	a	training



dataset,	then	the	random	forest	is	equal	to	the	bagging	method.

The	main	advantages	of	random	forest	are	that	it	is	easy	to	compute,	it	can	efficiently
process	data,	and	is	fault	tolerant	to	missing	or	unbalanced	data.	The	main	disadvantage	of
random	forest	is	that	it	cannot	predict	the	value	beyond	the	range	of	a	training	dataset.
Also,	it	is	prone	to	over-fitting	of	noisy	data.

In	this	recipe,	we	employ	the	random	forest	method	adapted	from	the	randomForest
package	to	fit	a	classification	model.	First,	we	install	and	load	randomForest	into	an	R
session.	We	then	use	the	random	forest	method	to	train	a	classification	model.	We	set
importance	=	T,	which	will	ensure	that	the	importance	of	the	predictor	is	assessed.

Similar	to	the	bagging	and	boosting	methods,	once	the	model	is	fitted,	one	can	perform
predictions	using	a	fitted	model	on	the	testing	dataset,	and	furthermore,	obtain	the
classification	table.

In	order	to	assess	the	importance	of	each	attribute,	the	randomForest	package	provides	the
importance	and	varImpPlot	functions	to	either	list	the	importance	of	each	attribute	in	the
fitted	model	or	visualize	the	importance	using	either	mean	decrease	accuracy	or	mean
decrease	gini.

Similar	to	adabag,	which	contains	a	method	to	calculate	the	margins	of	the	bagging	and
boosting	methods,	randomForest	provides	the	margin	function	to	calculate	the	margins	of
the	forest	object.	With	the	plot,	hist,	and	boxplot	functions,	you	can	visualize	the
margins	in	different	aspects	to	the	proportion	of	correctly	classified	observations.



There’s	more…
Apart	from	the	randomForest	package,	the	party	package	also	provides	an
implementation	of	random	forest.	In	the	following	steps,	we	illustrate	how	to	use	the
cforest	function	within	the	party	package	to	perform	classifications:

1.	 First,	install	and	load	the	party	package:

>	install.packages("party")

>	library(party)

2.	 You	can	then	use	the	cforest	function	to	fit	the	classification	model:

>	churn.cforest	=	cforest(churn	~	.,	data	=	trainset,	

controls=cforest_unbiased(ntree=1000,	mtry=5))

>	churn.cforest

			Random	Forest	using	Conditional	Inference	Trees

Number	of	trees:		1000	

Response:		churn	

Inputs:		international_plan,	voice_mail_plan,	number_vmail_messages,	

total_day_minutes,	total_day_calls,	total_day_charge,	

total_eve_minutes,	total_eve_calls,	total_eve_charge,	

total_night_minutes,	total_night_calls,	total_night_charge,	

total_intl_minutes,	total_intl_calls,	total_intl_charge,	

number_customer_service_calls	

Number	of	observations:		2315	

3.	 You	can	make	predictions	based	on	the	built	model	and	the	testing	dataset:

>	churn.cforest.prediction	=	predict(churn.cforest,	testset,	OOB=TRUE,	

type	=	"response")

4.	 Finally,	obtain	the	classification	table	from	the	predicted	labels	and	the	labels	of	the
testing	dataset:

>	table(churn.cforest.prediction,	testset$churn)

																								

churn.cforest.prediction	yes		no

																					yes		91			3

																					no			50	874





Estimating	the	prediction	errors	of
different	classifiers
At	the	beginning	of	this	chapter,	we	discussed	why	we	use	ensemble	learning	and	how	it
can	improve	the	prediction	performance	compared	to	using	just	a	single	classifier.	We	now
validate	whether	the	ensemble	model	performs	better	than	a	single	decision	tree	by
comparing	the	performance	of	each	method.	In	order	to	compare	the	different	classifiers,
we	can	perform	a	10-fold	cross-validation	on	each	classification	method	to	estimate	test
errors	using	erroreset	from	the	ipred	package.



Getting	ready
In	this	recipe,	we	will	continue	to	use	the	telecom	churn	dataset	as	the	input	data	source	to
estimate	the	prediction	errors	of	the	different	classifiers.



How	to	do	it…
Perform	the	following	steps	to	estimate	the	prediction	errors	of	each	classification	method:

1.	 You	can	estimate	the	error	rate	of	the	bagging	model:

>	churn.bagging=	errorest(churn	~	.,	data	=	trainset,	model	=	bagging)

>	churn.bagging

Call:

errorest.data.frame(formula	=	churn	~	.,	data	=	trainset,	model	=	

bagging)

			10-fold	cross-validation	estimator	of	misclassification	error	

Misclassification	error:		0.0583	

2.	 You	can	then	estimate	the	error	rate	of	the	boosting	method:

>	install.packages("ada")

>	library(ada)

>	churn.boosting=	errorest(churn	~	.,	data	=	trainset,	model	=	ada)

>	churn.boosting

Call:

errorest.data.frame(formula	=	churn	~	.,	data	=	trainset,	model	=	ada)

			10-fold	cross-validation	estimator	of	misclassification	error	

Misclassification	error:		0.0475	

3.	 Next,	estimate	the	error	rate	of	the	random	forest	model:

>	churn.rf=	errorest(churn	~	.,	data	=	trainset,	model	=	randomForest)

>	churn.rf

Call:

errorest.data.frame(formula	=	churn	~	.,	data	=	trainset,	model	=	

randomForest)

			10-fold	cross-validation	estimator	of	misclassification	error	

Misclassification	error:		0.051	

4.	 Finally,	make	a	prediction	function	using	churn.predict,	and	then	use	the	function
to	estimate	the	error	rate	of	the	single	decision	tree:

>	churn.predict	=	function(object,	newdata)	{predict(object,	newdata	=	

newdata,	type	=	"class")}

>	churn.tree=	errorest(churn	~	.,	data	=	trainset,	model	=	

rpart,predict	=	churn.predict)

>	churn.tree

Call:

errorest.data.frame(formula	=	churn	~	.,	data	=	trainset,	model	=	

rpart,	



				predict	=	churn.predict)

			10-fold	cross-validation	estimator	of	misclassification	error	

Misclassification	error:		0.0674	



How	it	works…
In	this	recipe,	we	estimate	the	error	rates	of	four	different	classifiers	using	the	errorest
function	from	the	ipred	package.	We	compare	the	boosting,	bagging,	and	random	forest
methods,	and	the	single	decision	tree	classifier.	The	errorest	function	performs	a	10-fold
cross-validation	on	each	classifier	and	calculates	the	misclassification	error.	The
estimation	results	from	the	four	chosen	models	reveal	that	the	boosting	method	performs
the	best	with	the	lowest	error	rate	(0.0475).	The	random	forest	method	has	the	second
lowest	error	rate	(0.051),	while	the	bagging	method	has	an	error	rate	of	0.0583.	The	single
decision	tree	classifier,	rpart,	performs	the	worst	among	the	four	methods	with	an	error
rate	equal	to	0.0674.	These	results	show	that	all	three	ensemble	learning	methods,
boosting,	bagging,	and	random	forest,	outperform	a	single	decision	tree	classifier.



See	also
In	this	recipe	we	mentioned	the	ada	package,	which	contains	a	method	to	perform
stochastic	boosting.	For	those	interested	in	this	package,	please	refer	to:	Additive
Logistic	Regression:	A	Statistical	View	of	Boosting	by	Friedman,	et	al.	(2000).





Chapter	9.	Clustering
In	this	chapter,	we	will	cover	the	following	topics:

Clustering	data	with	hierarchical	clustering
Cutting	a	tree	into	clusters
Clustering	data	with	the	k-means	method
Drawing	a	bivariate	cluster	plot
Comparing	clustering	methods
Extracting	silhouette	information	from	clustering
Obtaining	optimum	clusters	for	k-means
Clustering	data	with	the	density-based	method
Clustering	data	with	the	model-based	method
Visualizing	a	dissimilarity	matrix
Validating	clusters	externally



Introduction
Clustering	is	a	technique	used	to	group	similar	objects	(close	in	terms	of	distance)	together
in	the	same	group	(cluster).	Unlike	supervised	learning	methods	(for	example,
classification	and	regression)	covered	in	the	previous	chapters,	a	clustering	analysis	does
not	use	any	label	information,	but	simply	uses	the	similarity	between	data	features	to
group	them	into	clusters.

Clustering	can	be	widely	adapted	in	the	analysis	of	businesses.	For	example,	a	marketing
department	can	use	clustering	to	segment	customers	by	personal	attributes.	As	a	result	of
this,	different	marketing	campaigns	targeting	various	types	of	customers	can	be	designed.

The	four	most	common	types	of	clustering	methods	are	hierarchical	clustering,	k-means
clustering,	model-based	clustering,	and	density-based	clustering:

Hierarchical	clustering:	It	creates	a	hierarchy	of	clusters,	and	presents	the	hierarchy
in	a	dendrogram.	This	method	does	not	require	the	number	of	clusters	to	be	specified
at	the	beginning.
k-means	clustering:	It	is	also	referred	to	as	flat	clustering.	Unlike	hierarchical
clustering,	it	does	not	create	a	hierarchy	of	clusters,	and	it	requires	the	number	of
clusters	as	an	input.	However,	its	performance	is	faster	than	hierarchical	clustering.
Model-based	clustering:	Both	hierarchical	clustering	and	k-means	clustering	use	a
heuristic	approach	to	construct	clusters,	and	do	not	rely	on	a	formal	model.	Model-
based	clustering	assumes	a	data	model	and	applies	an	EM	algorithm	to	find	the	most
likely	model	components	and	the	number	of	clusters.
Density-based	clustering:	It	constructs	clusters	in	regard	to	the	density
measurement.	Clusters	in	this	method	have	a	higher	density	than	the	remainder	of	the
dataset.

In	the	following	recipes,	we	will	discuss	how	to	use	these	four	clustering	techniques	to
cluster	data.	We	discuss	how	to	validate	clusters	internally,	using	within	clusters	the	sum
of	squares,	average	silhouette	width,	and	externally,	with	ground	truth.





Clustering	data	with	hierarchical
clustering
Hierarchical	clustering	adopts	either	an	agglomerative	or	divisive	method	to	build	a
hierarchy	of	clusters.	Regardless	of	which	approach	is	adopted,	both	first	use	a	distance
similarity	measure	to	combine	or	split	clusters.	The	recursive	process	continues	until	there
is	only	one	cluster	left	or	you	cannot	split	more	clusters.	Eventually,	we	can	use	a
dendrogram	to	represent	the	hierarchy	of	clusters.	In	this	recipe,	we	will	demonstrate	how
to	cluster	customers	with	hierarchical	clustering.



Getting	ready
In	this	recipe,	we	will	perform	hierarchical	clustering	on	customer	data,	which	involves
segmenting	customers	into	different	groups.	You	can	download	the	data	from	this	Github
page:	https://github.com/ywchiu/ml_R_cookbook/tree/master/CH9.

https://github.com/ywchiu/ml_R_cookbook/tree/master/CH9


How	to	do	it…
Perform	the	following	steps	to	cluster	customer	data	into	a	hierarchy	of	clusters:

1.	 First,	you	need	to	load	data	from	customer.csv	and	save	it	into	customer:

>	customer=	read.csv('customer.csv',	header=TRUE)

>	head(customer)

		ID	Visit.Time	Average.Expense	Sex	Age

1		1										3													5.7			0		10

2		2										5												14.5			0		27

3		3									16												33.5			0		32

4		4										5												15.9			0		30

5		5									16												24.9			0		23

6		6										3												12.0			0		15

2.	 You	can	then	examine	the	dataset	structure:

>	str(customer)

'data.frame':		60	obs.	of		5	variables:

	$	ID													:	int		1	2	3	4	5	6	7	8	9	10…

	$	Visit.Time					:	int		3	5	16	5	16	3	12	14	6	3…

	$	Average.Expense:	num		5.7	14.5	33.5	15.9	24.9	12	28.5	18.8	23.8	5.3…

	$	Sex												:	int		0	0	0	0	0	0	0	0	0	0…

	$	Age												:	int		10	27	32	30	23	15	33	27	16	11…

3.	 Next,	you	should	normalize	the	customer	data	into	the	same	scale:

>	customer	=	scale(customer[,-1])

4.	 You	can	then	use	agglomerative	hierarchical	clustering	to	cluster	the	customer	data:

>	hc	=	hclust(dist(customer,	method="euclidean"),	method="ward.D2")

>	hc

Call:

hclust(d	=	dist(customer,	method	=	"euclidean"),	method	=	"ward.D2")

Cluster	method			:	ward.D2	

Distance									:	euclidean	

Number	of	objects:	60

5.	 Lastly,	you	can	use	the	plot	function	to	plot	the	dendrogram:

>	plot(hc,	hang	=	-0.01,	cex	=	0.7)



The	dendrogram	of	hierarchical	clustering	using	“ward.D2”

6.	 Additionally,	you	can	use	the	single	method	to	perform	hierarchical	clustering	and
see	how	the	generated	dendrogram	differs	from	the	previous:

>	hc2	=	hclust(dist(customer),	method="single")

>	plot(hc2,	hang	=	-0.01,	cex	=	0.7)

The	dendrogram	of	hierarchical	clustering	using	“single”



How	it	works…
Hierarchical	clustering	is	a	clustering	technique	that	tries	to	build	a	hierarchy	of	clusters
iteratively.	Generally,	there	are	two	approaches	to	build	hierarchical	clusters:

Agglomerative	hierarchical	clustering:	This	is	a	bottom-up	approach.	Each
observation	starts	in	its	own	cluster.	We	can	then	compute	the	similarity	(or	the
distance)	between	each	cluster	and	then	merge	the	two	most	similar	ones	at	each
iteration	until	there	is	only	one	cluster	left.
Divisive	hierarchical	clustering:	This	is	a	top-down	approach.	All	observations	start
in	one	cluster,	and	then	we	split	the	cluster	into	the	two	least	dissimilar	clusters
recursively	until	there	is	one	cluster	for	each	observation:

An	illustration	of	hierarchical	clustering

Before	performing	hierarchical	clustering,	we	need	to	determine	how	similar	the	two
clusters	are.	Here,	we	list	some	common	distance	functions	used	for	the	measurement	of
similarity:

Single	linkage:	This	refers	to	the	shortest	distance	between	two	points	in	each
cluster:

Complete	linkage:	This	refers	to	the	longest	distance	between	two	points	in	each
cluster:

Average	linkage:	This	refer	to	the	average	distance	between	two	points	in	each

cluster	(where	 	is	the	size	of	cluster	 	and	 	is	the	size	of	cluster	 ):



Ward	method:	This	refers	to	the	sum	of	the	squared	distance	from	each	point	to	the

mean	of	the	merged	clusters	(where	 	is	the	mean	vector	of	 ):

In	this	recipe,	we	perform	hierarchical	clustering	on	customer	data.	First,	we	load	the	data
from	customer.csv,	and	then	load	it	into	the	customer	data	frame.	Within	the	data,	we
find	five	variables	of	customer	account	information,	which	are	ID,	number	of	visits,
average	expense,	sex,	and	age.	As	the	scale	of	each	variable	varies,	we	use	the	scale
function	to	normalize	the	scale.

After	the	scales	of	all	the	attributes	are	normalized,	we	perform	hierarchical	clustering
using	the	hclust	function.	We	use	the	Euclidean	distance	as	distance	metrics,	and	use
Ward’s	minimum	variance	method	to	perform	agglomerative	clustering.

Finally,	we	use	the	plot	function	to	plot	the	dendrogram	of	hierarchical	clusters.	We
specify	hang	to	display	labels	at	the	bottom	of	the	dendrogram,	and	use	cex	to	shrink	the
label	to	70	percent	of	the	normal	size.	In	order	to	compare	the	differences	using	the
ward.D2	and	single	methods	to	generate	a	hierarchy	of	clusters,	we	draw	another
dendrogram	using	single	in	the	preceding	figure	(step	6).



There’s	more…
You	can	choose	a	different	distance	measure	and	method	while	performing	hierarchical
clustering.	For	more	details,	you	can	refer	to	the	documents	for	dist	and	hclust:

>	?	dist

>	?	hclust

In	this	recipe,	we	use	hclust	to	perform	agglomerative	hierarchical	clustering;	if	you
would	like	to	perform	divisive	hierarchical	clustering,	you	can	use	the	diana	function:

1.	 First,	you	can	use	diana	to	perform	divisive	hierarchical	clustering:

>	dv	=	diana(customer,	metric	=	"euclidean")

2.	 Then,	you	can	use	summary	to	obtain	the	summary	information:

>	summary(dv)

3.	 Lastly,	you	can	plot	a	dendrogram	and	banner	with	the	plot	function:

>	plot(dv)

If	you	are	interested	in	drawing	a	horizontal	dendrogram,	you	can	use	the	dendextend
package.	Use	the	following	procedure	to	generate	a	horizontal	dendrogram:

1.	 First,	install	and	load	the	dendextend	and	magrittr	packages	(if	your	R	version	is
3.1	and	above,	you	do	not	have	to	install	and	load	the	magrittr	package):

>	install.packages("dendextend")

>	library(dendextend)

>	install.packages("margrittr")

>	library(magrittr)

2.	 Set	up	the	dendrogram:

>	dend	=	customer	%>%	dist	%>%	hclust	%>%	as.dendrogram

3.	 Finally,	plot	the	horizontal	dendrogram:

dend	%>%	plot(horiz=TRUE,	main	=	"Horizontal	Dendrogram")



The	horizontal	dendrogram





Cutting	trees	into	clusters
In	a	dendrogram,	we	can	see	the	hierarchy	of	clusters,	but	we	have	not	grouped	data	into
different	clusters	yet.	However,	we	can	determine	how	many	clusters	are	within	the
dendrogram	and	cut	the	dendrogram	at	a	certain	tree	height	to	separate	the	data	into
different	groups.	In	this	recipe,	we	demonstrate	how	to	use	the	cutree	function	to	separate
the	data	into	a	given	number	of	clusters.



Getting	ready
In	order	to	perform	the	cutree	function,	you	need	to	have	the	previous	recipe	completed
by	generating	the	hclust	object,	hc.



How	to	do	it…
Perform	the	following	steps	to	cut	the	hierarchy	of	clusters	into	a	given	number	of
clusters:

1.	 First,	categorize	the	data	into	four	groups:

>	fit	=	cutree(hc,	k	=	4)

2.	 You	can	then	examine	the	cluster	labels	for	the	data:

>	fit

	[1]	1	1	2	1	2	1	2	2	1	1	1	2	2	1	1	1	2	1	2	3	4	3	4	3	3	4	4	3	4

[30]	4	4	3	3	3	4	4	3	4	4	4	4	4	4	4	3	3	4	4	4	3	4	3	3	4	4	4	3	4

[59]	4	3

3.	 Count	the	number	of	data	within	each	cluster:

>	table(fit)

fit

	1		2		3		4	

11		8	16	25	

4.	 Finally,	you	can	visualize	how	data	is	clustered	with	the	red	rectangle	border:

>	plot(hc)

>	rect.hclust(hc,	k	=	4	,	border="red")

Using	the	red	rectangle	border	to	distinguish	different	clusters	within	the	dendrogram



How	it	works…
We	can	determine	the	number	of	clusters	from	the	dendrogram	in	the	preceding	figure.	In
this	recipe,	we	determine	there	should	be	four	clusters	within	the	tree.	Therefore,	we
specify	the	number	of	clusters	as	4	in	the	cutree	function.	Besides	using	the	number	of
clusters	to	cut	the	tree,	you	can	specify	the	height	as	the	cut	tree	parameter.

Next,	we	can	output	the	cluster	labels	of	the	data	and	use	the	table	function	to	count	the
number	of	data	within	each	cluster.	From	the	counting	table,	we	find	that	most	of	the	data
is	in	cluster	4.	Lastly,	we	can	draw	red	rectangles	around	the	clusters	to	show	how	data	is
categorized	into	the	four	clusters	with	the	rect.hclust	function.



There’s	more…
Besides	drawing	rectangles	around	all	hierarchical	clusters,	you	can	place	a	red	rectangle
around	a	certain	cluster:

>	rect.hclust(hc,	k	=	4	,	which	=2,	border="red")

Drawing	a	red	rectangle	around	a	certain	cluster.

Also,	you	can	color	clusters	in	different	colors	with	a	red	rectangle	around	the	clusters	by
using	the	dendextend	package.	You	have	to	complete	the	instructions	outlined	in	the
There’s	more	section	of	the	previous	recipe	and	perform	the	following	steps:

1.	 Color	the	branch	according	to	the	cluster	it	belongs	to:

>	dend	%>%	color_branches(k=4)	%>%	plot(horiz=TRUE,	main	=	"Horizontal	

Dendrogram")

2.	 You	can	then	add	a	red	rectangle	around	the	clusters:

>	dend	%>%	rect.dendrogram(k=4,horiz=TRUE)



Drawing	red	rectangles	around	clusters	within	a	horizontal	dendrogram

3.	 Finally,	you	can	add	a	line	to	show	the	tree	cutting	location:

>	abline(v	=	heights_per_k.dendrogram(dend)["4"]	+	.1,	lwd	=	2,	lty	=	

2,	col	=	"blue")

Drawing	a	cutting	line	within	a	horizontal	dendrogram





Clustering	data	with	the	k-means	method
k-means	clustering	is	a	flat	clustering	technique,	which	produces	only	one	partition	with	k
clusters.	Unlike	hierarchical	clustering,	which	does	not	require	a	user	to	determine	the
number	of	clusters	at	the	beginning,	the	k-means	method	requires	this	to	be	determined
first.	However,	k-means	clustering	is	much	faster	than	hierarchical	clustering	as	the
construction	of	a	hierarchical	tree	is	very	time	consuming.	In	this	recipe,	we	will
demonstrate	how	to	perform	k-means	clustering	on	the	customer	dataset.



Getting	ready
In	this	recipe,	we	will	continue	to	use	the	customer	dataset	as	the	input	data	source	to
perform	k-means	clustering.



How	to	do	it…
Perform	the	following	steps	to	cluster	the	customer	dataset	with	the	k-means	method:

1.	 First,	you	can	use	kmeans	to	cluster	the	customer	data:

>	set.seed(22)

>	fit	=	kmeans(customer,	4)

>	fit

K-means	clustering	with	4	clusters	of	sizes	8,	11,	16,	25

Cluster	means:

		Visit.Time	Average.Expense								Sex								Age

1		1.3302016							1.0155226	-1.4566845		0.5591307

2	-0.7771737						-0.5178412	-1.4566845	-0.4774599

3		0.8571173							0.9887331		0.6750489		1.0505015

4	-0.6322632						-0.7299063		0.6750489	-0.6411604

Clustering	vector:

	[1]	2	2	1	2	1	2	1	1	2	2	2	1	1	2	2	2	1	2	1	3	4	3	4	3	3	4	4	3

[29]	4	4	4	3	3	3	4	4	3	4	4	4	4	4	4	4	3	3	4	4	4	3	4	3	3	4	4	4

[57]	3	4	4	3

Within	cluster	sum	of	squares	by	cluster:

[1]		5.90040	11.97454	22.58236	20.89159

	(between_SS	/	total_SS	=		74.0	%)

Available	components:

[1]	"cluster"						"centers"						"totss"							

[4]	"withinss"					"tot.withinss"	"betweenss"			

[7]	"size"									"iter"									"ifault

2.	 You	can	then	inspect	the	center	of	each	cluster	using	barplot:

>	barplot(t(fit$centers),	beside	=	TRUE,xlab="cluster",	ylab="value")



The	barplot	of	centers	of	different	attributes	in	four	clusters

3.	 Lastly,	you	can	draw	a	scatter	plot	of	the	data	and	color	the	points	according	to	the
clusters:

>	plot(customer,	col	=	fit$cluster)

The	scatter	plot	showing	data	colored	with	regard	to	its	cluster	label



How	it	works…
k-means	clustering	is	a	method	of	partitioning	clustering.	The	goal	of	the	algorithm	is	to
partition	n	objects	into	k	clusters,	where	each	object	belongs	to	the	cluster	with	the	nearest
mean.	The	objective	of	the	algorithm	is	to	minimize	the	within-cluster	sum	of	squares

(WCSS).	Assuming	x	is	the	given	set	of	observations,	S	=	 	denotes	k
partitions,	and	 	is	the	mean	of	 ,	then	we	can	formulate	the	WCSS	function	as	follows:

The	process	of	k-means	clustering	can	be	illustrated	by	the	following	five	steps:

1.	 Specify	the	number	of	k	clusters.
2.	 Randomly	create	k	partitions.
3.	 Calculate	the	center	of	the	partitions.
4.	 Associate	objects	closest	to	the	cluster	center.
5.	 Repeat	steps	2,	3,	and	4	until	the	WCSS	changes	very	little	(or	is	minimized).

In	this	recipe,	we	demonstrate	how	to	use	k-means	clustering	to	cluster	customer	data.	In
contrast	to	hierarchical	clustering,	k-means	clustering	requires	the	user	to	input	the
number	of	K.	In	this	example,	we	use	K=4.	Then,	the	output	of	a	fitted	model	shows	the
size	of	each	cluster,	the	cluster	means	of	four	generated	clusters,	the	cluster	vectors	with
regard	to	each	data	point,	the	within	cluster	sum	of	squares	by	the	clusters,	and	other
available	components.

Further,	you	can	draw	the	centers	of	each	cluster	in	a	bar	plot,	which	will	provide	more
details	on	how	each	attribute	affects	the	clustering.	Lastly,	we	plot	the	data	point	in	a
scatter	plot	and	use	the	fitted	cluster	labels	to	assign	colors	with	regard	to	the	cluster	label.



See	also
In	k-means	clustering,	you	can	specify	the	algorithm	used	to	perform	clustering
analysis.	You	can	specify	either	Hartigan-Wong,	Lloyd,	Forgy,	or	MacQueen	as	the
clustering	algorithm.	For	more	details,	please	use	the	help	function	to	refer	to	the
document	for	the	kmeans	function:

>help(kmeans)





Drawing	a	bivariate	cluster	plot
In	the	previous	recipe,	we	employed	the	k-means	method	to	fit	data	into	clusters.
However,	if	there	are	more	than	two	variables,	it	is	impossible	to	display	how	data	is
clustered	in	two	dimensions.	Therefore,	you	can	use	a	bivariate	cluster	plot	to	first	reduce
variables	into	two	components,	and	then	use	components,	such	as	axis	and	circle,	as
clusters	to	show	how	data	is	clustered.	In	this	recipe,	we	will	illustrate	how	to	create	a
bivariate	cluster	plot.



Getting	ready
In	this	recipe,	we	will	continue	to	use	the	customer	dataset	as	the	input	data	source	to
draw	a	bivariate	cluster	plot.



How	to	do	it…
Perform	the	following	steps	to	draw	a	bivariate	cluster	plot:

1.	 Install	and	load	the	cluster	package:

>	install.packages("cluster")

>	library(cluster)

2.	 You	can	then	draw	a	bivariate	cluster	plot:

>	clusplot(customer,	fit$cluster,	color=TRUE,	shade=TRUE)

The	bivariate	clustering	plot	of	the	customer	dataset

3.	 You	can	also	zoom	into	the	bivariate	cluster	plot:

>	par(mfrow=	c(1,2))

>	clusplot(customer,	fit$cluster,	color=TRUE,	shade=TRUE)

>	rect(-0.7,-1.7,	2.2,-1.2,	border	=	"orange",	lwd=2)

>	clusplot(customer,	fit$cluster,	color	=	TRUE,	xlim	=	c(-0.7,2.2),	

ylim	=	c(-1.7,-1.2))



The	zoom-in	of	the	bivariate	clustering	plot



How	it	works…
In	this	recipe,	we	draw	a	bivariate	cluster	plot	to	show	how	data	is	clustered.	To	draw	a
bivariate	cluster	plot,	we	first	need	to	install	the	cluster	package	and	load	it	into	R.	We
then	use	the	clusplot	function	to	draw	a	bivariate	cluster	plot	from	a	customer	dataset.	In
the	clustplot	function,	we	can	set	shade	to	TRUE	and	color	to	TRUE	to	display	a	cluster
with	colors	and	shades.	As	per	the	preceding	figure	(step	2)	we	found	that	the	bivariate
uses	two	components,	which	explains	85.01	percent	of	point	variability,	as	the	x-axis	and
y-axis.	The	data	points	are	then	scattered	on	the	plot	in	accordance	with	component	1	and
component	2.	Data	within	the	same	cluster	is	circled	in	the	same	color	and	shade.

Besides	drawing	the	four	clusters	in	a	single	plot,	you	can	use	rect	to	add	a	rectangle
around	a	specific	area	within	a	given	x-axis	and	y-axis	range.	You	can	then	zoom	into	the
plot	to	examine	the	data	within	each	cluster	by	using	xlim	and	ylim	in	the	clusplot
function.



There’s	more
The	clusplot	function	uses	princomp	and	cmdscale	to	reduce	the	original	feature
dimension	to	the	principal	component.	Therefore,	one	can	see	how	data	is	clustered	in	a
single	plot	with	these	two	components	as	the	x-axis	and	y-axis.	To	learn	more	about
princomp	and	cmdscale,	one	can	use	the	help	function	to	view	related	documents:

>	help(cmdscale)

>	help(princomp)

For	those	interested	in	how	to	use	cmdscale	to	reduce	the	dimensions,	please	perform	the
following	steps:

>	mds	=	cmdscale(dist(customer),	k	=	2)

>	plot(mds,	col	=	fit$cluster)

The	scatter	plot	of	data	with	regard	to	scaled	dimensions





Comparing	clustering	methods
After	fitting	data	into	clusters	using	different	clustering	methods,	you	may	wish	to
measure	the	accuracy	of	the	clustering.	In	most	cases,	you	can	use	either	intracluster	or
intercluster	metrics	as	measurements.	We	now	introduce	how	to	compare	different
clustering	methods	using	cluster.stat	from	the	fpc	package.



Getting	ready
In	order	to	perform	a	clustering	method	comparison,	one	needs	to	have	the	previous	recipe
completed	by	generating	the	customer	dataset.



How	to	do	it…
Perform	the	following	steps	to	compare	clustering	methods:

1.	 First,	install	and	load	the	fpc	package:

>	install.packages("fpc")

>	library(fpc)

2.	 You	then	need	to	use	hierarchical	clustering	with	the	single	method	to	cluster
customer	data	and	generate	the	object	hc_single:

>	single_c	=		hclust(dist(customer),	method="single")

>	hc_single	=	cutree(single_c,	k	=	4)

3.	 Use	hierarchical	clustering	with	the	complete	method	to	cluster	customer	data	and
generate	the	object	hc_complete:

>	complete_c	=		hclust(dist(customer),	method="complete")

>	hc_complete	=		cutree(complete_c,	k	=	4)

4.	 You	can	then	use	k-means	clustering	to	cluster	customer	data	and	generate	the	object
km:

>	set.seed(22)

>	km	=	kmeans(customer,	4)

5.	 Next,	retrieve	the	cluster	validation	statistics	of	either	clustering	method:

>	cs	=	cluster.stats(dist(customer),	km$cluster)

6.	 Most	often,	we	focus	on	using	within.cluster.ss	and	avg.silwidth	to	validate	the
clustering	method:

>	cs[c("within.cluster.ss","avg.silwidth")]

$within.cluster.ss

[1]	61.3489

$avg.silwidth

[1]	0.4640587

7.	 Finally,	we	can	generate	the	cluster	statistics	of	each	clustering	method	and	list	them
in	a	table:

>	sapply(list(kmeans	=	km$cluster,	hc_single	=	hc_single,	hc_complete	=	

hc_complete),	function(c)	cluster.stats(dist(customer),	c)

[c("within.cluster.ss","avg.silwidth")])

																		kmeans				hc_single	hc_complete

within.cluster.ss	61.3489			136.0092		65.94076

avg.silwidth						0.4640587	0.2481926	0.4255961



How	it	works…
In	this	recipe,	we	demonstrate	how	to	validate	clusters.	To	validate	a	clustering	method,
we	often	employ	two	techniques:	intercluster	distance	and	intracluster	distance.	In	these
techniques,	the	higher	the	intercluster	distance,	the	better	it	is,	and	the	lower	the
intracluster	distance,	the	better	it	is.	In	order	to	calculate	related	statistics,	we	can	apply
cluster.stat	from	the	fpc	package	on	the	fitted	clustering	object.

From	the	output,	the	within.cluster.ss	measurement	stands	for	the	within	clusters	sum
of	squares,	and	avg.silwidth	represents	the	average	silhouette	width.	The
within.cluster.ss	measurement	shows	how	closely	related	objects	are	in	clusters;	the
smaller	the	value,	the	more	closely	related	objects	are	within	the	cluster.	On	the	other
hand,	a	silhouette	is	a	measurement	that	considers	how	closely	related	objects	are	within
the	cluster	and	how	clusters	are	separated	from	each	other.	Mathematically,	we	can	define
the	silhouette	width	for	each	point	x	as	follows:

In	the	preceding	equation,	a(x)	is	the	average	distance	between	x	and	all	other	points
within	the	cluster,	and	b(x)	is	the	minimum	of	the	average	distances	between	x	and	the
points	in	the	other	clusters.	The	silhouette	value	usually	ranges	from	0	to	1;	a	value	closer
to	1	suggests	the	data	is	better	clustered.

The	summary	table	generated	in	the	last	step	shows	that	the	complete	hierarchical
clustering	method	outperforms	a	single	hierarchical	clustering	method	and	k-means
clustering	in	within.cluster.ss	and	avg.silwidth.



See	also
The	kmeans	function	also	outputs	statistics	(for	example,	withinss	and	betweenss)
for	users	to	validate	a	clustering	method:

>	set.seed(22)

>	km	=	kmeans(customer,	4)

>	km$withinss

[1]		5.90040	11.97454	22.58236	20.89159

>	km$betweenss

[1]	174.6511





Extracting	silhouette	information	from
clustering
Silhouette	information	is	a	measurement	to	validate	a	cluster	of	data.	In	the	previous
recipe,	we	mentioned	that	the	measurement	of	a	cluster	involves	the	calculation	of	how
closely	the	data	is	clustered	within	each	cluster,	and	measures	how	far	different	clusters
are	apart	from	each	other.	The	silhouette	coefficient	combines	the	measurement	of	the
intracluster	and	intercluster	distance.	The	output	value	typically	ranges	from	0	to	1;	the
closer	to	1,	the	better	the	cluster	is.	In	this	recipe,	we	will	introduce	how	to	compute
silhouette	information.



Getting	ready
In	order	to	extract	the	silhouette	information	from	a	cluster,	you	need	to	have	the	previous
recipe	completed	by	generating	the	customer	dataset.



How	to	do	it…
Perform	the	following	steps	to	compute	the	silhouette	information:

1.	 Use	kmeans	to	generate	a	k-means	object,	km:

>	set.seed(22)

>	km	=	kmeans(customer,	4)

2.	 You	can	then	compute	the	silhouette	information:

>	kms	=	silhouette(km$cluster,dist(customer))

>	summary(kms)

Silhouette	of	60	units	in	4	clusters	from	silhouette.default(x	=	

km$cluster,	dist	=	dist(customer))	:

	Cluster	sizes	and	average	silhouette	widths:

								8								11								16								25	

0.5464597	0.4080823	0.3794910	0.5164434	

Individual	silhouette	widths:

			Min.	1st	Qu.		Median				Mean	3rd	Qu.				Max.	

	0.1931		0.4030		0.4890		0.4641		0.5422		0.6333	

3.	 Next,	you	can	plot	the	silhouette	information:

>	plot(kms)

The	silhouette	plot	of	the	k-means	clustering	result



How	it	works…
In	this	recipe,	we	demonstrate	how	to	use	the	silhouette	plot	to	validate	clusters.	You	can
first	retrieve	the	silhouette	information,	which	shows	cluster	sizes,	the	average	silhouette
widths,	and	individual	silhouette	widths.	The	silhouette	coefficient	is	a	value	ranging	from
0	to	1;	the	closer	to	1,	the	better	the	quality	of	the	cluster.

Lastly,	we	use	the	plot	function	to	draw	a	silhouette	plot.	The	left-hand	side	of	the	plot
shows	the	number	of	horizontal	lines,	which	represent	the	number	of	clusters.	The	right-
hand	column	shows	the	mean	similarity	of	the	plot	of	its	own	cluster	minus	the	mean
similarity	of	the	next	similar	cluster.	The	average	silhouette	width	is	presented	at	the
bottom	of	the	plot.



See	also
For	those	interested	in	how	silhouettes	are	computed,	please	refer	to	the	Wikipedia
entry	for	Silhouette	Value:
http://en.wikipedia.org/wiki/Silhouette_%28clustering%29

http://en.wikipedia.org/wiki/Silhouette_%28clustering%29




Obtaining	the	optimum	number	of
clusters	for	k-means
While	k-means	clustering	is	fast	and	easy	to	use,	it	requires	k	to	be	the	input	at	the
beginning.	Therefore,	we	can	use	the	sum	of	squares	to	determine	which	k	value	is	best	for
finding	the	optimum	number	of	clusters	for	k-means.	In	the	following	recipe,	we	will
discuss	how	to	find	the	optimum	number	of	clusters	for	the	k-means	clustering	method.



Getting	ready
In	order	to	find	the	optimum	number	of	clusters,	you	need	to	have	the	previous	recipe
completed	by	generating	the	customer	dataset.



How	to	do	it…
Perform	the	following	steps	to	find	the	optimum	number	of	clusters	for	the	k-means
clustering:

1.	 First,	calculate	the	within	sum	of	squares	(withinss)	of	different	numbers	of	clusters:

>	nk	=	2:10

>	set.seed(22)

>	WSS	=	sapply(nk,	function(k)	{

+					kmeans(customer,	centers=k)$tot.withinss

+	})

>	WSS

[1]	123.49224		88.07028		61.34890		48.76431		47.20813

[6]		45.48114		29.58014		28.87519		23.21331

2.	 You	can	then	use	a	line	plot	to	plot	the	within	sum	of	squares	with	a	different	number
of	k:

>	plot(nk,	WSS,	type="l",	xlab=	"number	of	k",	ylab="within	sum	of	

squares")

The	line	plot	of	the	within	sum	of	squares	with	regard	to	the	different	number	of	k

3.	 Next,	you	can	calculate	the	average	silhouette	width	(avg.silwidth)	of	different
numbers	of	clusters:

>	SW	=	sapply(nk,	function(k)	{

+			cluster.stats(dist(customer),	kmeans(customer,	

centers=k)$cluster)$avg.silwidth

+	})

>	SW

[1]	0.4203896	0.4278904	0.4640587	0.4308448	0.3481157

[6]	0.3320245	0.4396910	0.3417403	0.4070539



4.	 You	can	then	use	a	line	plot	to	plot	the	average	silhouette	width	with	a	different
number	of	k:

>	plot(nk,	SW,	type="l",	xlab="number	of	clusers",	ylab="average	

silhouette	width")

The	line	plot	of	average	silhouette	width	with	regard	to	the	different	number	of	k

5.	 Retrieve	the	maximum	number	of	clusters:

>	nk[which.max(SW)]

[1]	4



How	it	works…
In	this	recipe,	we	demonstrate	how	to	find	the	optimum	number	of	clusters	by	iteratively
getting	within	the	sum	of	squares	and	the	average	silhouette	value.	For	the	within	sum	of
squares,	lower	values	represent	clusters	with	better	quality.	By	plotting	the	within	sum	of
squares	in	regard	to	different	number	of	k,	we	find	that	the	elbow	of	the	plot	is	at	k=4.

On	the	other	hand,	we	also	compute	the	average	silhouette	width	based	on	the	different
numbers	of	clusters	using	cluster.stats.	Also,	we	can	use	a	line	plot	to	plot	the	average
silhouette	width	with	regard	to	the	different	numbers	of	clusters.	The	preceding	figure
(step	4)	shows	the	maximum	average	silhouette	width	appears	at	k=4.	Lastly,	we	use
which.max	to	obtain	the	value	of	k	to	determine	the	location	of	the	maximum	average
silhouette	width.



See	also
For	those	interested	in	how	the	within	sum	of	squares	is	computed,	please	refer	to	the
Wikipedia	entry	of	K-means	clustering:	http://en.wikipedia.org/wiki/K-
means_clustering

http://en.wikipedia.org/wiki/K-means_clustering




Clustering	data	with	the	density-based
method
As	an	alternative	to	distance	measurement,	you	can	use	a	density-based	measurement	to
cluster	data.	This	method	finds	an	area	with	a	higher	density	than	the	remaining	area.	One
of	the	most	famous	methods	is	DBSCAN.	In	the	following	recipe,	we	will	demonstrate
how	to	use	DBSCAN	to	perform	density-based	clustering.



Getting	ready
In	this	recipe,	we	will	use	simulated	data	generated	from	the	mlbench	package.



How	to	do	it…
Perform	the	following	steps	to	perform	density-based	clustering:

1.	 First,	install	and	load	the	fpc	and	mlbench	packages:

>	install.packages("mlbench")

>	library(mlbench)

>	install.packages("fpc")

>	library(fpc)

2.	 You	can	then	use	the	mlbench	library	to	draw	a	Cassini	problem	graph:

>	set.seed(2)

>	p	=	mlbench.cassini(500)

>	plot(p$x)

The	Cassini	problem	graph

3.	 Next,	you	can	cluster	data	with	regard	to	its	density	measurement:

>	ds	=	dbscan(dist(p$x),0.2,	2,	countmode=NULL,	method="dist")

>	ds

dbscan	Pts=500	MinPts=2	eps=0.2

								1			2			3

seed		200	200	100

total	200	200	100

4.	 Plot	the	data	in	a	scatter	plot	with	different	cluster	labels	as	the	color:

>	plot(ds,	p$x)



The	data	scatter	plot	colored	with	regard	to	the	cluster	label

5.	 You	can	also	use	dbscan	to	predict	which	cluster	the	data	point	belongs	to.	In	this
example,	first	make	three	inputs	in	the	matrix	p:

>	y	=	matrix(0,nrow=3,ncol=2)

>	y[1,]	=	c(0,0)

>	y[2,]	=	c(0,-1.5)

>	y[3,]	=	c(1,1)

>	y

					[,1]	[,2]

[1,]				0		0.0

[2,]				0	-1.5

[3,]				1		1.0

6.	 You	can	then	predict	which	cluster	the	data	belongs	to:

>	predict(ds,	p$x,	y)

[1]	3	1	2



How	it	works…
Density-based	clustering	uses	the	idea	of	density	reachability	and	density	connectivity,
which	makes	it	very	useful	in	discovering	a	cluster	in	nonlinear	shapes.	Before	discussing
the	process	of	density-based	clustering,	some	important	background	concepts	must	be
explained.	Density-based	clustering	takes	two	parameters	into	account:	eps	and	MinPts.
eps	stands	for	the	maximum	radius	of	the	neighborhood;	MinPts	denotes	the	minimum
number	of	points	within	the	eps	neighborhood.	With	these	two	parameters,	we	can	define
the	core	point	as	having	points	more	than	MinPts	within	eps.	Also,	we	can	define	the
board	point	as	having	points	less	than	MinPts,	but	is	in	the	neighborhood	of	the	core
points.	Then,	we	can	define	the	core	object	as	if	the	number	of	points	in	the	eps-
neighborhood	of	p	is	more	than	MinPts.

Furthermore,	we	have	to	define	the	reachability	between	two	points.	We	can	say	that	a
point,	p,	is	directly	density	reachable	from	another	point,	q,	if	q	is	within	the	eps-
neighborhood	of	p	and	p	is	a	core	object.	Then,	we	can	define	that	a	point,	p,	is	generic
and	density	reachable	from	the	point	q,	if	there	exists	a	chain	of	points,	p1,p2…,pn,	where
p1	=	q,	pn	=	p,	and	pi+1	is	directly	density	reachable	from	pi	with	regard	to	Eps	and
MinPts	for	1	<=	i	<=	n:

Point	p	and	q	is	density	reachable

With	a	preliminary	concept	of	density-based	clustering,	we	can	then	illustrate	the	process
of	DBSCAN,	the	most	popular	density-based	clustering,	as	shown	in	these	steps:

1.	 Randomly	select	a	point,	p.
2.	 Retrieve	all	the	points	that	are	density-reachable	from	p	with	regard	to	Eps	and

MinPts.
3.	 If	p	is	a	core	point,	then	a	cluster	is	formed.	Otherwise,	if	it	is	a	board	point	and	no

points	are	density	reachable	from	p,	the	process	will	mark	the	point	as	noise	and
continue	visiting	the	next	point.

4.	 Repeat	the	process	until	all	points	have	been	visited.

In	this	recipe,	we	demonstrate	how	to	use	the	DBSCAN	density-based	method	to	cluster
customer	data.	First,	we	have	to	install	and	load	the	mlbench	and	fpc	libraries.	The



mlbench	package	provides	many	methods	to	generate	simulated	data	with	different	shapes
and	sizes.	In	this	example,	we	generate	a	Cassini	problem	graph.

Next,	we	perform	dbscan	on	a	Cassini	dataset	to	cluster	the	data.	We	specify	the
reachability	distance	as	0.2,	the	minimum	reachability	number	of	points	to	2,	the	progress
reporting	as	null,	and	use	distance	as	a	measurement.	The	clustering	method	successfully
clusters	data	into	three	clusters	with	sizes	of	200,	200,	and	100.	By	plotting	the	points	and
cluster	labels	on	the	plot,	we	see	that	three	sections	of	the	Cassini	graph	are	separated	in
different	colors.

The	fpc	package	also	provides	a	predict	function,	and	you	can	use	this	to	predict	the
cluster	labels	of	the	input	matrix.	Point	c(0,0)	is	classified	into	cluster	3,	point	c(0,	-1.5)	is
classified	into	cluster	1,	and	point	c(1,1)	is	classified	into	cluster	2.



See	also
The	fpc	package	contains	flexible	procedures	of	clustering,	and	has	useful	clustering
analysis	functions.	For	example,	you	can	generate	a	discriminant	projection	plot
using	the	plotcluster	function.	For	more	information,	please	refer	to	the	following
document:

>	help(plotcluster)





Clustering	data	with	the	model-based
method
In	contrast	to	hierarchical	clustering	and	k-means	clustering,	which	use	a	heuristic
approach	and	do	not	depend	on	a	formal	model.	Model-based	clustering	techniques
assume	varieties	of	data	models	and	apply	an	EM	algorithm	to	obtain	the	most	likely
model,	and	further	use	the	model	to	infer	the	most	likely	number	of	clusters.	In	this	recipe,
we	will	demonstrate	how	to	use	the	model-based	method	to	determine	the	most	likely
number	of	clusters.



Getting	ready
In	order	to	perform	a	model-based	method	to	cluster	customer	data,	you	need	to	have	the
previous	recipe	completed	by	generating	the	customer	dataset.



How	to	do	it…
Perform	the	following	steps	to	perform	model-based	clustering:

1.	 First,	please	install	and	load	the	library	mclust:

>	install.packages("mclust")

>	library(mclust)

2.	 You	can	then	perform	model-based	clustering	on	the	customer	dataset:

>	mb	=	Mclust(customer)

>	plot(mb)

3.	 Then,	you	can	press	1	to	obtain	the	BIC	against	a	number	of	components:

Plot	of	BIC	against	number	of	components

4.	 Then,	you	can	press	2	to	show	the	classification	with	regard	to	different	combinations
of	features:



Plot	showing	classification	with	regard	to	different	combinations	of	features

5.	 Press	3	to	show	the	classification	uncertainty	with	regard	to	different	combinations	of
features:

Plot	showing	classification	uncertainty	with	regard	to	different	combinations	of
features

6.	 Next,	press	4	to	plot	the	density	estimation:



A	plot	of	density	estimation

7.	 Then,	you	can	press	0	to	plot	density	to	exit	the	plotting	menu.
8.	 Lastly,	use	the	summary	function	to	obtain	the	most	likely	model	and	number	of

clusters:

>	summary(mb)

----------------------------------------------------

Gaussian	finite	mixture	model	fitted	by	EM	algorithm	

----------------------------------------------------

Mclust	VII	(spherical,	varying	volume)	model	with	5	components:

	log.likelihood		n	df							BIC							ICL

						-218.6891	60	29	-556.1142	-557.2812

Clustering	table:

	1		2		3		4		5

11		8	17	14	10



How	it	works…
Instead	of	taking	a	heuristic	approach	to	build	a	cluster,	model-based	clustering	uses	a
probability-based	approach.	Model-based	clustering	assumes	that	the	data	is	generated	by
an	underlying	probability	distribution	and	tries	to	recover	the	distribution	from	the	data.
One	common	model-based	approach	is	using	finite	mixture	models,	which	provide	a
flexible	modeling	framework	for	the	analysis	of	the	probability	distribution.	Finite	mixture
models	are	a	linearly	weighted	sum	of	component	probability	distribution.	Assume	the
data	y=(y1,y2…yn)	contains	n	independent	and	multivariable	observations;	G	is	the
number	of	components;	the	likelihood	of	finite	mixture	models	can	be	formulated	as:

Where	 	and	 	are	the	density	and	parameters	of	the	kth	component	in	the	mixture,	and	

	( 	and	 )	is	the	probability	that	an	observation	belongs	to	the	kth
component.

The	process	of	model-based	clustering	has	several	steps:	First,	the	process	selects	the
number	and	types	of	component	probability	distribution.	Then,	it	fits	a	finite	mixture
model	and	calculates	the	posterior	probabilities	of	a	component	membership.	Lastly,	it
assigns	the	membership	of	each	observation	to	the	component	with	the	maximum
probability.

In	this	recipe,	we	demonstrate	how	to	use	model-based	clustering	to	cluster	data.	We	first
install	and	load	the	Mclust	library	into	R.	We	then	fit	the	customer	data	into	the	model-
based	method	by	using	the	Mclust	function.

After	the	data	is	fit	into	the	model,	we	plot	the	model	based	on	clustering	results.	There
are	four	different	plots:	BIC,	classification,	uncertainty,	and	density	plots.	The	BIC	plot
shows	the	BIC	value,	and	one	can	use	this	value	to	choose	the	number	of	clusters.	The
classification	plot	shows	how	data	is	clustered	in	regard	to	different	dimension
combinations.	The	uncertainty	plot	shows	the	uncertainty	of	classifications	in	regard	to
different	dimension	combinations.	The	density	plot	shows	the	density	estimation	in
contour.

You	can	also	use	the	summary	function	to	obtain	the	most	likely	model	and	the	most
possible	number	of	clusters.	For	this	example,	the	most	possible	number	of	clusters	is	five,
with	a	BIC	value	equal	to	-556.1142.



See	also
For	those	interested	in	detail	on	how	Mclust	works,	please	refer	to	the	following
source:	C.	Fraley,	A.	E.	Raftery,	T.	B.	Murphy	and	L.	Scrucca	(2012).	mclust	Version
4	for	R:	Normal	Mixture	Modeling	for	Model-Based	Clustering,	Classification,	and
Density	Estimation.	Technical	Report	No.	597,	Department	of	Statistics,	University	of
Washington.





Visualizing	a	dissimilarity	matrix
A	dissimilarity	matrix	can	be	used	as	a	measurement	for	the	quality	of	a	cluster.	To
visualize	the	matrix,	we	can	use	a	heat	map	on	a	distance	matrix.	Within	the	plot,	entries
with	low	dissimilarity	(or	high	similarity)	are	plotted	darker,	which	is	helpful	to	identify
hidden	structures	in	the	data.	In	this	recipe,	we	will	discuss	some	techniques	that	are
useful	to	visualize	a	dissimilarity	matrix.



Getting	ready
In	order	to	visualize	the	dissimilarity	matrix,	you	need	to	have	the	previous	recipe
completed	by	generating	the	customer	dataset.	In	addition	to	this,	a	k-means	object	needs
to	be	generated	and	stored	in	the	variable	km.



How	to	do	it…
Perform	the	following	steps	to	visualize	the	dissimilarity	matrix:

1.	 First,	install	and	load	the	seriation	package:

>	install.packages("seriation")

>	library(seriation)

2.	 You	can	then	use	dissplot	to	visualize	the	dissimilarity	matrix	in	a	heat	map:

>	dissplot(dist(customer),	labels=km$cluster,	options=list(main="Kmeans	

Clustering	With	k=4"))

A	dissimilarity	plot	of	k-means	clustering

3.	 Next,	apply	dissplot	on	hierarchical	clustering	in	the	heat	map:

>	complete_c	=		hclust(dist(customer),	method="complete")

>	hc_complete	=		cutree(complete_c,	k	=	4)

>	dissplot(dist(customer),	labels=hc_complete,	

options=list(main="Hierarchical	Clustering"))



A	dissimilarity	plot	of	hierarchical	clustering



How	it	works…
In	this	recipe,	we	use	a	dissimilarity	plot	to	visualize	the	dissimilarity	matrix.	We	first
install	and	load	the	package	seriation,	and	then	apply	the	dissplot	function	on	the	k-
means	clustering	output,	generating	the	preceding	figure	(step	2).

It	shows	that	clusters	similar	to	each	other	are	plotted	darker,	and	dissimilar	combinations
are	plotted	lighter.	Therefore,	we	can	see	clusters	against	their	corresponding	clusters
(such	as	cluster	4	to	cluster	4)	are	plotted	diagonally	and	darker.	On	the	other	hand,
clusters	dissimilar	to	each	other	are	plotted	lighter	and	away	from	the	diagonal.

Likewise,	we	can	apply	the	dissplot	function	on	the	output	of	hierarchical	clustering.
The	generated	plot	in	the	figure	(step	3)	shows	the	similarity	of	each	cluster	in	a	single
heat	map.



There’s	more…
Besides	using	dissplot	to	visualize	the	dissimilarity	matrix,	one	can	also	visualize	a
distance	matrix	by	using	the	dist	and	image	functions.	In	the	resulting	graph,	closely
related	entries	are	plotted	in	red.	Less	related	entries	are	plotted	closer	to	white:

>	image(as.matrix(dist(customer)))

A	distance	matrix	plot	of	customer	dataset

In	order	to	plot	both	a	dendrogram	and	heat	map	to	show	how	data	is	clustered,	you	can
use	the	heatmap	function:

>	cd=dist(customer)

>	hc=hclust(cd)

>	cdt=dist(t(customer))

>	hcc=hclust(cdt)

>	heatmap(customer,	Rowv=as.dendrogram(hc),	Colv=as.dendrogram(hcc))



A	heat	map	with	dendrogram	on	the	column	and	row	side





Validating	clusters	externally
Besides	generating	statistics	to	validate	the	quality	of	the	generated	clusters,	you	can	use
known	data	clusters	as	the	ground	truth	to	compare	different	clustering	methods.	In	this
recipe,	we	will	demonstrate	how	clustering	methods	differ	with	regard	to	data	with	known
clusters.



Getting	ready
In	this	recipe,	we	will	continue	to	use	handwriting	digits	as	clustering	inputs;	you	can	find
the	figure	on	the	author’s	Github	page:
https://github.com/ywchiu/ml_R_cookbook/tree/master/CH9.

https://github.com/ywchiu/ml_R_cookbook/tree/master/CH9


How	to	do	it…
Perform	the	following	steps	to	cluster	digits	with	different	clustering	techniques:

1.	 First,	you	need	to	install	and	load	the	package	png:

>	install.packages("png")

>	library(png)

2.	 Then,	please	read	images	from	handwriting.png	and	transform	the	read	data	into	a
scatter	plot:

>	img2	=	readPNG("handwriting.png",	TRUE)

>	img3	=	img2[,nrow(img2):1]

>	b	=	cbind(as.integer(which(img3	<	-1)	%%	28),	which(img3	<	-1)	/	28)

>	plot(b,	xlim=c(1,28),	ylim=c(1,28))

A	scatter	plot	of	handwriting	digits

3.	 Perform	a	k-means	clustering	method	on	the	handwriting	digits:

>	set.seed(18)

>	fit	=	kmeans(b,	2)

>	plot(b,	col=fit$cluster)

>	plot(b,	col=fit$cluster,		xlim=c(1,28),	ylim=c(1,28))



k-means	clustering	result	on	handwriting	digits

4.	 Next,	perform	the	dbscan	clustering	method	on	the	handwriting	digits:

>	ds	=	dbscan(b,	2)

>	ds

dbscan	Pts=212	MinPts=5	eps=2

							1			2

seed		75	137

total	75	137

>	plot(ds,	b,		xlim=c(1,28),	ylim=c(1,28))



DBSCAN	clustering	result	on	handwriting	digits



How	it	works…
In	this	recipe,	we	demonstrate	how	different	clustering	methods	work	in	regard	to	a
handwriting	dataset.	The	aim	of	the	clustering	is	to	separate	1	and	7	into	different	clusters.
We	perform	different	techniques	to	see	how	data	is	clustered	in	regard	to	the	k-means	and
DBSCAN	methods.

To	generate	the	data,	we	use	the	Windows	application	paint.exe	to	create	a	PNG	file	with
dimensions	of	28	x	28	pixels.	We	then	read	the	PNG	data	using	the	readPNG	function	and
transform	the	read	PNG	data	points	into	a	scatter	plot,	which	shows	the	handwriting	digits
in	17.

After	the	data	is	read,	we	perform	clustering	techniques	on	the	handwriting	digits.	First,
we	perform	k-means	clustering,	where	k=2	on	the	dataset.	Since	k-means	clustering
employs	distance	measures,	the	constructed	clusters	cover	the	area	of	both	the	1	and	7
digits.	We	then	perform	DBSCAN	on	the	dataset.	As	DBSCAN	is	a	density-based
clustering	technique,	it	successfully	separates	digit	1	and	digit	7	into	different	clusters.



See	also
If	you	are	interested	in	how	to	read	various	graphic	formats	in	R,	you	may	refer	to	the
following	document:

>	help(package="png")





Chapter	10.	Association	Analysis	and
Sequence	Mining
In	this	chapter,	we	will	cover	the	following	topics:

Transforming	data	into	transactions
Displaying	transactions	and	associations
Mining	associations	with	the	Apriori	rule
Pruning	redundant	rules
Visualizing	associations	rules
Mining	frequent	itemsets	with	Eclat
Creating	transactions	with	temporal	information
Mining	frequent	sequential	patterns	with	cSPADE



Introduction
Enterprises	accumulate	a	large	amount	of	transaction	data	(for	example,	sales	orders	from
retailers,	invoices,	and	shipping	documentations)	from	daily	operations.	Finding	hidden
relationships	in	the	data	can	be	useful,	such	as,	“What	products	are	often	bought
together?”	or	“What	are	the	subsequent	purchases	after	buying	a	cell	phone?”	To	answer
these	two	questions,	we	need	to	perform	association	analysis	and	frequent	sequential
pattern	mining	on	a	transaction	dataset.

Association	analysis	is	an	approach	to	find	interesting	relationships	within	a	transaction
dataset.	A	famous	association	between	products	is	that	customers	who	buy	diapers	also
buy	beer.	While	this	association	may	sound	unusual,	if	retailers	can	use	this	kind	of
information	or	rule	to	cross-sell	products	to	their	customers,	there	is	a	high	likelihood	that
they	can	increase	their	sales.

Association	analysis	is	used	to	find	a	correlation	between	itemsets,	but	what	if	you	want
to	find	out	the	order	in	which	items	are	frequently	purchased?	To	achieve	this,	you	can
adopt	frequent	sequential	pattern	mining	to	find	frequent	subsequences	from	transaction
datasets	with	temporal	information.	You	can	then	use	the	mined	frequent	subsequences	to
predict	customer	shopping	sequence	orders,	web	click	streams,	biological	sequences,	and
usages	in	other	applications.

In	this	chapter,	we	will	cover	recipes	to	create	and	inspect	transaction	datasets,	performing
association	analysis	with	an	Apriori	algorithm,	visualizing	associations	in	various	graph
formats,	and	finding	frequent	itemsets	using	the	Eclat	algorithm.	Lastly,	we	will	create
transactions	with	temporal	information	and	use	the	cSPADE	algorithm	to	discover
frequent	sequential	patterns.





Transforming	data	into	transactions
Before	creating	a	mining	association	rule,	you	need	to	transform	the	data	into	transactions.
In	the	following	recipe,	we	will	introduce	how	to	transform	either	a	list,	matrix,	or	data
frame	into	transactions.



Getting	ready
In	this	recipe,	we	will	generate	three	different	datasets	in	a	list,	matrix,	or	data	frame.	We
can	then	transform	the	generated	dataset	into	transactions.



How	to	do	it…
Perform	the	following	steps	to	transform	different	formats	of	data	into	transactions:

1.	 First,	you	have	to	install	and	load	the	package	arule:

>	install.packages("arules")

>	library(arules)

2.	 You	can	then	make	a	list	with	three	vectors	containing	purchase	records:

>	tr_list	=	list(c("Apple",	"Bread",	"Cake"),

+																c("Apple",	"Bread",	"Milk"),

+																c("Bread",	"Cake",	"Milk"))

>	names(tr_list)	=	paste("Tr",c(1:3),	sep	=	"")

3.	 Next,	you	can	use	the	as	function	to	transform	the	data	frame	into	transactions:

>	trans	=	as(tr_list,	"transactions")

>	trans

transactions	in	sparse	format	with

	3	transactions	(rows)	and

	4	items	(columns)

4.	 You	can	also	transform	the	matrix	format	data	into	transactions:

>	tr_matrix	=	matrix(

+			c(1,1,1,0,

+					1,1,0,1,

+					0,1,1,1),	ncol	=	4)

>	dimnames(tr_matrix)	=		list(

+			paste("Tr",c(1:3),	sep	=	""),

+			c("Apple","Bread","Cake",	"Milk")

+			)

>	trans2	=		as(tr_matrix,	"transactions")

>	trans2

transactions	in	sparse	format	with

	3	transactions	(rows)	and

	4	items	(columns)

5.	 Lastly,	you	can	transform	the	data	frame	format	datasets	into	transactions:

>	Tr_df	=	data.frame(

+			TrID=	as.factor(c(1,2,1,1,2,3,2,3,2,3)),

+			Item	=	as.factor(c("Apple","Milk","Cake","Bread",

+																						"Cake","Milk","Apple","Cake",

+																						"Bread","Bread"))		

+	)

>	trans3	=	as(split(Tr_df[,"Item"],	Tr_df[,"TrID"]),	"transactions")

>	trans3

transactions	in	sparse	format	with

	3	transactions	(rows)	and

	4	items	(columns)



How	it	works…
Before	mining	frequent	itemsets	or	using	the	association	rule,	it	is	important	to	prepare	the
dataset	by	the	class	of	transactions.	In	this	recipe,	we	demonstrate	how	to	transform	a
dataset	from	a	list,	matrix,	and	data	frame	format	to	transactions.	In	the	first	step,	we
generate	the	dataset	in	a	list	format	containing	three	vectors	of	purchase	records.	Then,
after	we	have	assigned	a	transaction	ID	to	each	transaction,	we	transform	the	data	into
transactions	using	the	as	function.

Next,	we	demonstrate	how	to	transform	the	data	from	the	matrix	format	into	transactions.
To	denote	how	items	are	purchased,	one	should	use	a	binary	incidence	matrix	to	record	the
purchase	behavior	of	each	transaction	with	regard	to	different	items	purchased.	Likewise,
we	can	use	an	as	function	to	transform	the	dataset	from	the	matrix	format	into
transactions.

Lastly,	we	illustrate	how	to	transform	the	dataset	from	the	data	frame	format	into
transactions.	The	data	frame	contains	two	factor-type	vectors:	one	is	a	transaction	ID
named	TrID,	while	the	other	shows	purchased	items	(named	in	Item)	with	regard	to
different	transactions.	Also,	one	can	use	the	as	function	to	transform	the	data	frame	format
data	into	transactions.



See	also
The	transactions	class	is	used	to	represent	transaction	data	for	rules	or	frequent
pattern	mining.	It	is	an	extension	of	the	itemMatrix	class.	If	you	are	interested	in
how	to	use	the	two	different	classes	to	represent	transaction	data,	please	use	the	help
function	to	refer	to	the	following	documents:

>	help(transactions)

>	help(itemMatrix)





Displaying	transactions	and	associations
The	arule	package	uses	its	own	transactions	class	to	store	transaction	data.	As	such,	we
must	use	the	generic	function	provided	by	arule	to	display	transactions	and	association
rules.	In	this	recipe,	we	will	illustrate	how	to	display	transactions	and	association	rules	via
various	functions	in	the	arule	package.



Getting	ready
Ensure	that	you	have	completed	the	previous	recipe	by	generating	transactions	and	storing
these	in	the	variable,	trans.



How	to	do	it…
Perform	the	following	steps	to	display	transactions	and	associations:

1.	 First,	you	can	obtain	a	LIST	representation	of	the	transaction	data:

>	LIST(trans)

$Tr1

[1]	"Apple"	"Bread"	"Cake"	

$Tr2

[1]	"Apple"	"Bread"	"Milk"	

$Tr3

[1]	"Bread"	"Cake"		"Milk"

2.	 Next,	you	can	use	the	summary	function	to	show	a	summary	of	the	statistics	and
details	of	the	transactions:

>	summary(trans)

transactions	as	itemMatrix	in	sparse	format	with

	3	rows	(elements/itemsets/transactions)	and

	4	columns	(items)	and	a	density	of	0.75	

most	frequent	items:

		Bread			Apple				Cake				Milk	(Other)	

						3							2							2							2							0	

element	(itemset/transaction)	length	distribution:

sizes

3	

3	

			Min.	1st	Qu.		Median				Mean	3rd	Qu.				Max.	

						3							3							3							3							3							3	

includes	extended	item	information	-	examples:

		labels

1		Apple

2		Bread

3			Cake

includes	extended	transaction	information	-	examples:

		transactionID

1											Tr1

2											Tr2

3											Tr3

3.	 You	can	then	display	transactions	using	the	inspect	function:

>	inspect(trans)

		items			transactionID

1	{Apple,														

			Bread,														

			Cake}												Tr1

2	{Apple,														



			Bread,														

			Milk}												Tr2

3	{Bread,														

			Cake,															

			Milk}												Tr3

4.	 In	addition	to	this,	you	can	filter	the	transactions	by	size:

>	filter_trains	=	trans[size(trans)	>=3]

>	inspect(filter_trains)

		items			transactionID

1	{Apple,														

			Bread,														

			Cake}												Tr1

2	{Apple,														

			Bread,														

			Milk}												Tr2

3	{Bread,														

			Cake,															

			Milk}												Tr3

5.	 Also,	you	can	use	the	image	function	to	visually	inspect	the	transactions:

>	image(trans)

Visual	inspection	of	transactions

6.	 To	visually	show	the	frequency/support	bar	plot,	one	can	use	itemFrequenctPlot:

>	itemFrequencyPlot	(trans)



Item	frequency	bar	plot	of	transactions



How	it	works…
As	the	transaction	data	is	the	base	for	mining	associations	and	frequent	patterns,	we	have
to	learn	how	to	display	the	associations	to	gain	insights	and	determine	how	associations
are	built.	The	arules	package	provides	various	methods	to	inspect	transactions.	First,	we
use	the	LIST	function	to	obtain	the	list	representation	of	the	transaction	data.	We	can	then
use	the	summary	function	to	obtain	information,	such	as	basic	descriptions,	most	frequent
items,	and	the	transaction	length	distribution.

Next,	we	use	the	inspect	function	to	display	the	transactions.	Besides	displaying	all
transactions,	one	can	first	filter	the	transactions	by	size	and	then	display	the	associations
by	using	the	inspect	function.	Furthermore,	we	can	use	the	image	function	to	visually
inspect	the	transactions.	Finally,	we	illustrate	how	to	use	the	frequency/support	bar	plot	to
display	the	relative	item	frequency	of	each	item.



See	also
Besides	using	itemFrequencyPlot	to	show	the	frequency/bar	plot,	you	can	use	the
itemFrequency	function	to	show	the	support	distribution.	For	more	details,	please
use	the	help	function	to	view	the	following	document:

>	help(itemFrequency)





Mining	associations	with	the	Apriori	rule
Association	mining	is	a	technique	that	can	discover	interesting	relationships	hidden	in
transaction	datasets.	This	approach	first	finds	all	frequent	itemsets,	and	generates	strong
association	rules	from	frequent	itemsets.	Apriori	is	the	most	well-known	association
mining	algorithm,	which	identifies	frequent	individual	items	first	and	then	performs	a
breadth-first	search	strategy	to	extend	individual	items	to	larger	itemsets	until	larger
frequent	itemsets	cannot	be	found.	In	this	recipe,	we	will	introduce	how	to	perform
association	analysis	using	the	Apriori	rule.



Getting	ready
In	this	recipe,	we	will	use	the	built-in	transaction	dataset,	Groceries,	to	demonstrate	how
to	perform	association	analysis	with	the	Apriori	algorithm	in	the	arules	package.	Please
make	sure	that	the	arules	package	is	installed	and	loaded	first.



How	to	do	it…
Perform	the	following	steps	to	analyze	the	association	rules:

1.	 First,	you	need	to	load	the	dataset	Groceries:

>	data(Groceries)

2.	 You	can	then	examine	the	summary	of	the	Groceries	dataset:

>	summary(Groceries)

3.	 Next,	you	can	use	itemFrequencyPlot	to	examine	the	relative	item	frequency	of
itemsets:

>	itemFrequencyPlot(Groceries,	support	=	0.1,	cex.names=0.8,	topN=5)

The	top	five	item	frequency	bar	plot	of	groceries	transactions

4.	 Use	apriori	to	discover	rules	with	the	support	over	0.001	and	confidence	over	0.5:

>	rules	=	apriori(Groceries,	parameter	=	list(supp	=	0.001,	conf	=	0.5,	

target=	"rules"))

>	summary(rules)

set	of	5668	rules

rule	length	distribution	(lhs	+	rhs):sizes

			2				3				4				5				6	

		11	1461	3211		939			46	

			Min.	1st	Qu.		Median				Mean	3rd	Qu.				Max.	

			2.00				3.00				4.00				3.92				4.00				6.00	

summary	of	quality	measures:



				support											confidence										lift							

	Min.			:0.001017			Min.			:0.5000			Min.			:	1.957		

	1st	Qu.:0.001118			1st	Qu.:0.5455			1st	Qu.:	2.464		

	Median	:0.001322			Median	:0.6000			Median	:	2.899		

	Mean			:0.001668			Mean			:0.6250			Mean			:	3.262		

	3rd	Qu.:0.001729			3rd	Qu.:0.6842			3rd	Qu.:	3.691		

	Max.			:0.022267			Max.			:1.0000			Max.			:18.996		

mining	info:

						data	ntransactions	support	confidence

	Groceries										9835			0.001								0.5

5.	 We	can	then	inspect	the	first	few	rules:

>	inspect(head(rules))

		lhs																				rhs														support	confidence					lift

1	{honey}													=>	{whole	milk}	0.001118454		0.7333333	2.870009

2	{tidbits}											=>	{rolls/buns}	0.001220132		0.5217391	2.836542

3	{cocoa	drinks}						=>	{whole	milk}	0.001321810		0.5909091	2.312611

4	{pudding	powder}				=>	{whole	milk}	0.001321810		0.5652174	2.212062

5	{cooking	chocolate}	=>	{whole	milk}	0.001321810		0.5200000	2.035097

6	{cereals}											=>	{whole	milk}	0.003660397		0.6428571	2.515917

6.	 You	can	sort	rules	by	confidence	and	inspect	the	first	few	rules:

>	rules=sort(rules,	by="confidence",	decreasing=TRUE)

>	inspect(head(rules))

		lhs																					rhs																				support	confidence					

lift

1	{rice,																																																																				

			sugar}														=>	{whole	milk}							0.001220132										1	

3.913649

2	{canned	fish,																																																													

			hygiene	articles}			=>	{whole	milk}							0.001118454										1	

3.913649

3	{root	vegetables,																																																									

			butter,																																																																		

			rice}															=>	{whole	milk}							0.001016777										1	

3.913649

4	{root	vegetables,																																																									

			whipped/sour	cream,																																																						

			flour}														=>	{whole	milk}							0.001728521										1	

3.913649

5	{butter,																																																																		

			soft	cheese,																																																													

			domestic	eggs}						=>	{whole	milk}							0.001016777										1	

3.913649

6	{citrus	fruit,																																																												

			root	vegetables,																																																									

			soft	cheese}								=>	{other	vegetables}	0.001016777										1	

5.168156



How	it	works…
The	purpose	of	association	mining	is	to	discover	associations	among	items	from	the
transactional	database.	Typically,	the	process	of	association	mining	proceeds	by	finding
itemsets	that	have	the	support	greater	than	the	minimum	support.	Next,	the	process	uses
the	frequent	itemsets	to	generate	strong	rules	(for	example,	milk	=>	bread;	a	customer
who	buys	milk	is	likely	to	buy	bread)	that	have	the	confidence	greater	than	minimum	the
confidence.	By	definition,	an	association	rule	can	be	expressed	in	the	form	of	X=>Y,
where	X	and	Y	are	disjointed	itemsets.	We	can	measure	the	strength	of	associations
between	two	terms:	support	and	confidence.	Support	shows	how	much	of	the	percentage
of	a	rule	is	applicable	within	a	dataset,	while	confidence	indicates	the	probability	of	both
X	and	Y	appearing	in	the	same	transaction:

Support	=	

Confidence	=	

Here,	 	refers	to	the	frequency	of	a	particular	itemset;	N	denotes	the	populations.

As	support	and	confidence	are	metrics	for	the	strength	rule	only,	you	might	still	obtain
many	redundant	rules	with	a	high	support	and	confidence.	Therefore,	we	can	use	the	third
measure,	lift,	to	evaluate	the	quality	(ranking)	of	the	rule.	By	definition,	lift	indicates	the
strength	of	a	rule	over	the	random	co-occurrence	of	X	and	Y,	so	we	can	formulate	lift	in
the	following	form:

Lift	=	

Apriori	is	the	best	known	algorithm	for	mining	associations,	which	performs	a	level-wise,
breadth-first	algorithm	to	count	the	candidate	itemsets.	The	process	of	Apriori	starts	by
finding	frequent	itemsets	(a	set	of	items	that	have	minimum	support)	level-wisely.	For
example,	the	process	starts	with	finding	frequent	1-itemsets.	Then,	the	process	continues
by	using	frequent	1-itemsets	to	find	frequent	2-itemsets.	The	process	iteratively	discovers
new	frequent	k+1-itemsets	from	frequent	k-itemsets	until	no	frequent	itemsets	are	found.

Finally,	the	process	utilizes	frequent	itemsets	to	generate	association	rules:



An	illustration	of	Apriori	algorithm	(Where	support	=	2)

In	this	recipe,	we	use	the	Apriori	algorithm	to	find	association	rules	within	transactions.
We	use	the	built-in	Groceries	dataset,	which	contains	one	month	of	real-world	point-of-
sale	transaction	data	from	a	typical	grocery	outlet.	We	then	use	the	summary	function	to
obtain	the	summary	statistics	of	the	Groceries	dataset.	The	summary	statistics	shows	that
the	dataset	contains	9,835	transactions,	which	are	categorized	into	169	categories.	In
addition	to	this,	the	summary	shows	information,	such	as	most	frequent	items,	itemset
distribution,	and	example	extended	item	information	within	the	dataset.	We	can	then	use
itemFrequencyPlot	to	visualize	the	five	most	frequent	items	with	support	over	0.1.

Next,	we	apply	the	Apriori	algorithm	to	search	for	rules	with	support	over	0.001	and
confidence	over	0.5.	We	then	use	the	summary	function	to	inspect	detailed	information	on
the	generated	rules.	From	the	output	summary,	we	find	the	Apriori	algorithm	generates
5,668	rules	with	support	over	0.001	and	confidence	over	0.5.	Further,	we	can	find	the	rule
length	distribution,	summary	of	quality	measures,	and	mining	information.	In	the
summary	of	the	quality	measurement,	we	find	descriptive	statistics	of	three	measurements,
which	are	support,	confidence,	and	lift.	Support	is	the	proportion	of	transactions
containing	a	certain	itemset.	Confidence	is	the	correctness	percentage	of	the	rule.	Lift	is
the	response	target	association	rule	divided	by	the	average	response.

To	explore	some	generated	rules,	we	can	use	the	inspect	function	to	view	the	first	six
rules	of	the	5,668	generated	rules.	Lastly,	we	can	sort	rules	by	confidence	and	list	rules
with	the	most	confidence.	Therefore,	we	find	that	rich	sugar	associated	to	whole	milk	is
the	most	confident	rule	with	the	support	equal	to	0.001220132,	confidence	equal	to	1,	and
lift	equal	to	3.913649.



See	also
For	those	interested	in	the	research	results	using	the	Groceries	dataset,	and	how	the
support,	confidence,	and	lift	measurement	are	defined,	you	can	refer	to	the	following
papers:

Michael	Hahsler,	Kurt	Hornik,	and	Thomas	Reutterer	(2006)	Implications	of
probabilistic	data	modeling	for	mining	association	rules.	In	M.	Spiliopoulou,	R.
Kruse,	C.	Borgelt,	A
Nuernberger,	and	W.	Gaul,	editors,	From	Data	and	Information	Analysis	to
Knowledge	Engineering,	Studies	in	Classification,	Data	Analysis,	and	Knowledge
Organization,	pages	598–605.	Springer-Verlag

Also,	in	addition	to	using	the	summary	and	inspect	functions	to	inspect	association	rules,
you	can	use	interestMeasure	to	obtain	additional	interest	measures:

>	head(interestMeasure(rules,	c("support",	"chiSquare",	"confidence",	

"conviction","cosine",	"coverage",	"leverage",	"lift","oddsRatio"),	

Groceries))





Pruning	redundant	rules
Among	the	generated	rules,	we	sometimes	find	repeated	or	redundant	rules	(for	example,
one	rule	is	the	super	rule	or	subset	of	another	rule).	In	this	recipe,	we	will	show	you	how
to	prune	(or	remove)	repeated	or	redundant	rules.



Getting	ready
In	this	recipe,	you	have	to	complete	the	previous	recipe	by	generating	rules	and	have	it
stored	in	the	variable	rules.



How	to	do	it…
Perform	the	following	steps	to	prune	redundant	rules:

1.	 First,	follow	these	steps	to	find	redundant	rules:

>	rules.sorted	=	sort(rules,	by="lift")

>	subset.matrix	=	is.subset(rules.sorted,	rules.sorted)

>	subset.matrix[lower.tri(subset.matrix,	diag=T)]	=	NA

>	redundant	=	colSums(subset.matrix,	na.rm=T)	>=	1

2.	 You	can	then	remove	redundant	rules:

>	rules.pruned	=	rules.sorted[!redundant]

>	inspect(head(rules.pruned))

		lhs																								rhs																		support	confidence					

lift

1	{Instant	food	products,																																																				

			soda}																		=>	{hamburger	meat}	0.001220132		0.6315789	

18.99565

2	{soda,																																																																					

			popcorn}															=>	{salty	snack}				0.001220132		0.6315789	

16.69779

3	{flour,																																																																				

			baking	powder}									=>	{sugar}										0.001016777		0.5555556	

16.40807

4	{ham,																																																																						

			processed	cheese}						=>	{white	bread}				0.001931876		0.6333333	

15.04549

5	{whole	milk,																																																															

			Instant	food	products}	=>	{hamburger	meat}	0.001525165		0.5000000	

15.03823

6	{other	vegetables,																																																									

			curd,																																																																					

			yogurt,																																																																			

			whipped/sour	cream}				=>	{cream	cheese	}		0.001016777		0.5882353	

14.83409



How	it	works…
The	two	main	constraints	of	association	mining	are	to	choose	between	the	support	and
confidence.	For	example,	if	you	use	a	high	support	threshold,	you	might	remove	rare	item
rules	without	considering	whether	these	rules	have	a	high	confidence	value.	On	the	other
hand,	if	you	choose	to	use	a	low	support	threshold,	the	association	mining	can	produce
huge	sets	of	redundant	association	rules,	which	make	these	rules	difficult	to	utilize	and
analyze.	Therefore,	we	need	to	prune	redundant	rules	so	we	can	discover	meaningful
information	from	these	generated	rules.

In	this	recipe,	we	demonstrate	how	to	prune	redundant	rules.	First,	we	search	for
redundant	rules.	We	sort	the	rules	by	a	lift	measure,	and	then	find	subsets	of	the	sorted
rules	using	the	is.subset	function,	which	will	generate	an	itemMatrix	object.	We	can
then	set	the	lower	triangle	of	the	matrix	to	NA.	Lastly,	we	compute	colSums	of	the
generated	matrix,	of	which	colSums	>=1	indicates	that	the	specific	rule	is	redundant.

After	we	have	found	the	redundant	rules,	we	can	prune	these	rules	from	the	sorted	rules.
Lastly,	we	can	examine	the	pruned	rules	using	the	inspect	function.



See	also
In	order	to	find	subsets	or	supersets	of	rules,	you	can	use	the	is.superset	and
is.subset	functions	on	the	association	rules.	These	two	methods	may	generate	an
itemMatrix	object	to	show	which	rule	is	the	superset	or	subset	of	other	rules.	You
can	refer	to	the	help	function	for	more	information:

>	help(is.superset)

>	help(is.subset)





Visualizing	association	rules
Besides	listing	rules	as	text,	you	can	visualize	association	rules,	making	it	easier	to	find
the	relationship	between	itemsets.	In	the	following	recipe,	we	will	introduce	how	to	use
the	aruleViz	package	to	visualize	the	association	rules.



Getting	ready
In	this	recipe,	we	will	continue	using	the	Groceries	dataset.	You	need	to	have	completed
the	previous	recipe	by	generating	the	pruned	rule	rules.pruned.



How	to	do	it…
Perform	the	following	steps	to	visualize	the	association	rule:

1.	 First,	you	need	to	install	and	load	the	package	arulesViz:

>	install.packages("arulesViz")

>	library(arulesViz)

2.	 You	can	then	make	a	scatter	plot	from	the	pruned	rules:

>	plot(rules.pruned)

The	scatter	plot	of	pruned	association	rules

3.	 Additionally,	to	prevent	overplotting,	you	can	add	jitter	to	the	scatter	plot:

>	plot(rules.pruned,	shading="order",	control=list(jitter=6))



The	scatter	plot	of	pruned	association	rules	with	jitters

4.	 We	then	produce	new	rules	with	soda	on	the	left-hand	side	using	the	Apriori
algorithm:

>	soda_rule=apriori(data=Groceries,	parameter=list(supp=0.001,conf	=	

0.1,	minlen=2),	appearance	=	list(default="rhs",lhs="soda"))

5.	 Next,	you	can	plot	soda_rule	in	a	graph	plot:

>	plot(sort(soda_rule,	by="lift"),	method="graph",	

control=list(type="items"))



Graph	plot	of	association	rules

6.	 Also,	the	association	rules	can	be	visualized	in	a	balloon	plot:

>	plot(soda_rule,	method="grouped")

Balloon	plot	of	association	rules



How	it	works…
Besides	presenting	association	rules	as	text,	one	can	use	arulesViz	to	visualize
association	rules.	The	arulesViz	is	an	arules	extension	package,	which	provides	many
visualization	techniques	to	explore	association	rules.	To	start	using	arulesViz,	first	install
and	load	the	package	arulesViz.	We	then	use	the	pruned	rules	generated	in	the	previous
recipe	to	make	a	scatter	plot.	As	per	the	figure	in	step	2,	we	find	the	rules	are	shown	as
points	within	the	scatter	plot,	with	the	x-axis	in	support	and	y-axis	in	confidence.	The
shade	of	color	shows	the	lift	of	the	rule;	the	darker	the	shade,	the	higher	the	lift.	Next,	in
order	to	prevent	overplotting	points,	we	can	include	the	jitter	as	an	argument	in	the	control
list.	The	plot	with	the	jitter	added	is	provided	in	the	figure	in	step	3.

In	addition	to	plotting	the	rules	in	a	scatter	plot,	arulesViz	enables	you	to	plot	rules	in	a
graph	and	grouped	matrix.	Instead	of	printing	all	the	rules	on	a	single	plot,	we	choose	to
produce	new	rules	with	soda	on	the	left-hand	side.	We	then	sort	the	rules	by	using	the	lift
and	visualize	the	rules	in	the	graph	in	the	figure	in	step	4.	From	the	graph,	every	itemset	is
presented	in	a	vertex	and	their	relationship	is	presented	in	an	edge.	The	figure	(step	4)
shows	it	is	clear	that	the	rule	with	soda	on	the	left-handside	to	whole	milk	on	the	right-
handside	has	the	maximum	support,	for	the	size	of	the	node	is	greatest.	Also,	the	rule
shows	that	soda	on	the	left-hand	side	to	bottled	water	on	the	right-hand	side	has	the
maximum	lift	as	the	shade	of	color	in	the	circle	is	the	darkest.	We	can	then	use	the	same
data	with	soda	on	the	left-handside	to	generate	a	grouped	matrix,	which	is	a	balloon	plot
shown	in	the	figure	in	step	5,	with	the	left-handside	rule	as	column	labels	and	the	right-
handside	as	row	labels.	Similar	to	the	graph	plot	in	the	figure	in	step	4,	the	size	of	the
balloon	in	the	figure	in	step	5	shows	the	support	of	the	rule,	and	the	color	of	the	balloon
shows	the	lift	of	the	rule.



See	also
In	this	recipe,	we	introduced	three	visualization	methods	to	plot	association	rules.
However,	arulesViz	also	provides	features	to	plot	parallel	coordinate	plots,	double-
decker	plots,	mosaic	plots,	and	other	related	charts.	For	those	who	are	interested	in
how	these	plots	work,	you	may	refer	to:	Hahsler,	M.,	and	Chelluboina,	S.	(2011).
Visualizing	association	rules:	Introduction	to	the	R-extension	package	arulesViz.	R
project	module.
In	addition	to	generating	a	static	plot,	you	can	generate	an	interactive	plot	by	setting
interactive	equal	to	TRUE	through	the	following	steps:

>	plot(rules.pruned,interactive=TRUE)

The	interactive	scatter	plots





Mining	frequent	itemsets	with	Eclat
In	addition	to	the	Apriori	algorithm,	you	can	use	the	Eclat	algorithm	to	generate	frequent
itemsets.	As	the	Apriori	algorithm	performs	a	breadth-first	search	to	scan	the	complete
database,	the	support	counting	is	rather	time	consuming.	Alternatively,	if	the	database	fits
into	the	memory,	you	can	use	the	Eclat	algorithm,	which	performs	a	depth-first	search	to
count	the	supports.	The	Eclat	algorithm,	therefore,	performs	quicker	than	the	Apriori
algorithm.	In	this	recipe,	we	introduce	how	to	use	the	Eclat	algorithm	to	generate	frequent
itemsets.



Getting	ready
In	this	recipe,	we	will	continue	using	the	dataset	Groceries	as	our	input	data	source.



How	to	do	it…
Perform	the	following	steps	to	generate	a	frequent	itemset	using	the	Eclat	algorithm:

1.	 Similar	to	the	Apriori	method,	we	can	use	the	eclat	function	to	generate	the	frequent
itemset:

>	frequentsets=eclat(Groceries,parameter=list(support=0.05,maxlen=10))

2.	 We	can	then	obtain	the	summary	information	from	the	generated	frequent	itemset:

>	summary(frequentsets)

set	of	31	itemsets

most	frequent	items:

						whole	milk	other	vegetables											yogurt	

															4																2																2	

						rolls/buns						frankfurter										(Other)	

															2																1															23	

element	(itemset/transaction)	length	distribution:sizes

	1		2	

28		3	

			Min.	1st	Qu.		Median				Mean	3rd	Qu.				Max.	

		1.000			1.000			1.000			1.097			1.000			2.000	

summary	of	quality	measures:

				support							

	Min.			:0.05236		

	1st	Qu.:0.05831		

	Median	:0.07565		

	Mean			:0.09212		

	3rd	Qu.:0.10173		

	Max.			:0.25552		

includes	transaction	ID	lists:	FALSE	

mining	info:

						data	ntransactions	support

	Groceries										9835				0.05

3.	 Lastly,	we	can	examine	the	top	ten	support	frequent	itemsets:

>	inspect(sort(frequentsets,by="support")[1:10])

			items																	support

1		{whole	milk}							0.25551601

2		{other	vegetables}	0.19349263

3		{rolls/buns}							0.18393493

4		{soda}													0.17437722

5		{yogurt}											0.13950178

6		{bottled	water}				0.11052364

7		{root	vegetables}		0.10899847

8		{tropical	fruit}			0.10493137

9		{shopping	bags}				0.09852567

10	{sausage}										0.09395018





How	it	works…
In	this	recipe,	we	introduce	another	algorithm,	Eclat,	to	perform	frequent	itemset
generation.	Though	Apriori	is	a	straightforward	and	easy	to	understand	association	mining
method,	the	algorithm	has	the	disadvantage	of	generating	huge	candidate	sets	and
performs	inefficiently	in	support	counting,	for	it	takes	multiple	scans	of	databases.	In
contrast	to	Apriori,	Eclat	uses	equivalence	classes,	depth-first	searches,	and	set
intersections,	which	greatly	improves	the	speed	in	support	counting.

In	Apriori,	the	algorithm	uses	a	horizontal	data	layout	to	store	transactions.	On	the	other
hand,	Eclat	uses	a	vertical	data	layout	to	store	a	list	of	transaction	IDs	(tid)	for	each	item.
Then,	Eclat	determines	the	support	of	any	k+1-itemset	by	intersecting	tid-lists	of	two	k-
itemsets.	Lastly,	Eclat	utilizes	frequent	itemsets	to	generate	association	rules:

An	illustration	of	Eclat	algorithm

Similar	to	the	recipe	using	the	Apriori	algorithm,	we	can	use	the	eclat	function	to
generate	a	frequent	itemset	with	a	given	support	(assume	support	=	2	in	this	case)	and
maximum	length.

Generating	frequent	itemset

We	can	then	use	the	summary	function	to	obtain	summary	statistics,	which	include:	most
frequent	items,	itemset	length	distributions,	summary	of	quality	measures,	and	mining
information.	Finally,	we	can	sort	frequent	itemsets	by	the	support	and	inspect	the	top	ten
support	frequent	itemsets.



See	also
Besides	Apriori	and	Eclat,	another	popular	association	mining	algorithm	is	FP-
Growth.	Similar	to	Eclat,	this	takes	a	depth-first	search	to	count	supports.	However,
there	is	no	existing	R	package	that	you	can	download	from	CRAN	that	contains	this
algorithm.	However,	if	you	are	interested	in	knowing	how	to	apply	the	FP-growth
algorithm	in	your	transaction	dataset,	you	can	refer	to	Christian	Borgelt’s	page	at
http://www.borgelt.net/fpgrowth.html	for	more	information.

http://www.borgelt.net/fpgrowth.html




Creating	transactions	with	temporal
information
In	addition	to	mining	interesting	associations	within	the	transaction	database,	we	can	mine
interesting	sequential	patterns	using	transactions	with	temporal	information.	In	the
following	recipe,	we	demonstrate	how	to	create	transactions	with	temporal	information.



Getting	ready
In	this	recipe,	we	will	generate	transactions	with	temporal	information.	We	can	use	the
generated	transactions	as	the	input	source	for	frequent	sequential	pattern	mining.



How	to	do	it…
Perform	the	following	steps	to	create	transactions	with	temporal	information:

1.	 First,	you	need	to	install	and	load	the	package	arulesSequences:

>	install.packages("arulesSequences")

>	library(arulesSequences)

2.	 You	can	first	create	a	list	with	purchasing	records:

>	tmp_data=list(c("A"),

+																c("A","B","C"),

+																c("A","C"),

+																c("D"),

+																c("C","F"),

+																c("A","D"),

+																c("C"),

+																c("B","C"),

+																c("A","E"),

+																c("E","F"),

+																c("A","B"),

+																c("D","F"),

+																c("C"),

+																c("B"),

+																c("E"),

+																c("G"),

+																c("A","F"),

+																c("C"),

+																c("B"),

+																c("C"))

3.	 You	can	then	turn	the	list	into	transactions	and	add	temporal	information:

>names(tmp_data)	=	paste("Tr",c(1:20),	sep	=	"")

>trans	=		as(tmp_data,"transactions")

>transactionInfo(trans)$sequenceID=c(1,1,1,1,1,2,2,2,2,3,3,3,3,3,4,4,4,

4,4,4)

>transactionInfo(trans)$eventID=c(10,20,30,40,50,10,20,30,40,10,20,30,4

0,50,10,20,30,40,50,60)

>	trans

transactions	in	sparse	format	with

	20	transactions	(rows)	and

	7	items	(columns)

4.	 Next,	you	can	use	the	inspect	function	to	inspect	the	transactions:

>	inspect(head(trans))

		items	transactionID	sequenceID	eventID

1	{A}													Tr1										1						10

2	{A,																																			

			B,																																			

			C}													Tr2										1						20

3	{A,																																			

			C}													Tr3										1						30

4	{D}													Tr4										1						40

5	{C,																																			



			F}													Tr5										1						50

6	{A,																																			

			D}													Tr6										2						10

5.	 You	can	then	obtain	the	summary	information	of	the	transactions	with	the	temporal
information:

>	summary(trans)

transactions	as	itemMatrix	in	sparse	format	with

	20	rows	(elements/itemsets/transactions)	and

	7	columns	(items)	and	a	density	of	0.2214286	

most	frequent	items:

						C							A							B							F							D	(Other)	

						8							7							5							4							3							4	

element	(itemset/transaction)	length	distribution:

sizes

	1		2		3	

10		9		1	

			Min.	1st	Qu.		Median				Mean	3rd	Qu.				Max.	

			1.00				1.00				1.50				1.55				2.00				3.00	

includes	extended	item	information	-	examples:

		labels

1						A

2						B

3						C

includes	extended	transaction	information	-	examples:

		transactionID	sequenceID	eventID

1											Tr1										1						10

2											Tr2										1						20

3											Tr3										1						30

6.	 You	can	also	read	the	transaction	data	in	a	basket	format:

>	zaki=read_baskets(con	=	system.file("misc",	"zaki.txt",	package	=	

"arulesSequences"),	info	=	c("sequenceID","eventID","SIZE"))

>	as(zaki,	"data.frame")

			transactionID.sequenceID	transactionID.eventID	transactionID.SIZE					

items

1																									1																				10																		2					

{C,D}

2																									1																				15																		3			

{A,B,C}

3																									1																				20																		3			

{A,B,F}

4																									1																				25																		4	

{A,C,D,F}

5																									2																				15																		3			

{A,B,F}

6																									2																				20																		1							

{E}

7																									3																				10																		3			



{A,B,F}

8																									4																				10																		3			

{D,G,H}

9																									4																				20																		2					

{B,F}

10																								4																				25																		3			

{A,G,H}



How	it	works…
Before	mining	frequent	sequential	patterns,	you	are	required	to	create	transactions	with	the
temporal	information.	In	this	recipe,	we	introduce	two	methods	to	obtain	transactions	with
temporal	information.	In	the	first	method,	we	create	a	list	of	transactions,	and	assign	a
transaction	ID	for	each	transaction.	We	use	the	as	function	to	transform	the	list	data	into	a
transaction	dataset.	We	then	add	eventID	and	sequenceID	as	temporal	information;
sequenceID	is	the	sequence	that	the	event	belongs	to,	and	eventID	indicates	when	the
event	occurred.	After	generating	transactions	with	temporal	information,	one	can	use	this
dataset	for	frequent	sequential	pattern	mining.

In	addition	to	creating	your	own	transactions	with	temporal	information,	if	you	already
have	data	stored	in	a	text	file,	you	can	use	the	read_basket	function	from
arulesSequences	to	read	the	transaction	data	into	the	basket	format.	We	can	also	read	the
transaction	dataset	for	further	frequent	sequential	pattern	mining.



See	also
The	arulesSequences	function	provides	two	additional	data	structures,	sequences
and	timedsequences,	to	present	pure	sequence	data	and	sequence	data	with	the	time
information.	For	those	who	are	interested	in	these	two	collections,	please	use	the	help
function	to	view	the	following	documents:

>	help("sequences-class")

>	help("timedsequences-class")





Mining	frequent	sequential	patterns	with
cSPADE
In	contrast	to	association	mining,	which	only	discovers	relationships	between	itemsets,	we
may	be	interested	in	exploring	patterns	shared	among	transactions	where	a	set	of	itemsets
occurs	sequentially.

One	of	the	most	famous	frequent	sequential	pattern	mining	algorithms	is	the	Sequential
PAttern	Discovery	using	Equivalence	classes	(SPADE)	algorithm,	which	employs	the
characteristics	of	a	vertical	database	to	perform	an	intersection	on	an	ID	list	with	an
efficient	lattice	search	and	allows	us	to	place	constraints	on	mined	sequences.	In	this
recipe,	we	will	demonstrate	how	to	use	cSPADE	to	mine	frequent	sequential	patterns.



Getting	ready
In	this	recipe,	you	have	to	complete	the	previous	recipes	by	generating	transactions	with
the	temporal	information	and	have	it	stored	in	the	variable	trans.



How	to	do	it…
Perform	the	following	steps	to	mine	the	frequent	sequential	patterns:

1.	 First,	you	can	use	the	cspade	function	to	generate	frequent	sequential	patterns:

>	s_result=cspade(trans,parameter	=	list(support	=	0.75),control	=	

list(verbose	=	TRUE))

2.	 You	can	then	examine	the	summary	of	the	frequent	sequential	patterns:

>	summary(s_result)

set	of	14	sequences	with

most	frequent	items:

						C							A							B							D							E	(Other)	

						8							5							5							2							1							1	

most	frequent	elements:

				{C}					{A}					{B}					{D}					{E}	(Other)	

						8							5							5							2							1							1	

element	(sequence)	size	distribution:

sizes

1	2	3	

6	6	2	

sequence	length	distribution:

lengths

1	2	3	

6	6	2	

summary	of	quality	measures:

				support						

	Min.			:0.7500		

	1st	Qu.:0.7500		

	Median	:0.7500		

	Mean			:0.8393		

	3rd	Qu.:1.0000		

	Max.			:1.0000		

includes	transaction	ID	lists:	FALSE	

mining	info:

		data	ntransactions	nsequences	support

	trans												20										4				0.75

3.	 Transform	a	generated	sequence	format	data	back	to	the	data	frame:

>	as(s_result,	"data.frame")

								sequence	support

1										<{A}>				1.00

2										<{B}>				1.00

3										<{C}>				1.00

4										<{D}>				0.75

5										<{E}>				0.75



6										<{F}>				0.75

7						<{A},{C}>				1.00

8						<{B},{C}>				0.75

9						<{C},{C}>				0.75

10					<{D},{C}>				0.75

11	<{A},{C},{C}>				0.75

12					<{A},{B}>				1.00

13					<{C},{B}>				0.75

14	<{A},{C},{B}>				0.75



How	it	works…
The	object	of	sequential	pattern	mining	is	to	discover	sequential	relationships	or	patterns
in	transactions.	You	can	use	the	pattern	mining	result	to	predict	future	events,	or
recommend	items	to	users.

One	popular	method	of	sequential	pattern	mining	is	SPADE.	SPADE	uses	a	vertical	data
layout	to	store	a	list	of	IDs.	In	these,	each	input	sequence	in	the	database	is	called	SID,
and	each	event	in	a	given	input	sequence	is	called	EID.	The	process	of	SPADE	is
performed	by	generating	patterns	level-wisely	by	an	Apriori	candidate	generation.	In
detail,	SPADE	generates	subsequent	n-sequences	from	joining	(n-1)-sequences	from	the
intersection	of	ID	lists.	If	the	number	of	sequences	is	greater	than	the	minimum	support
(minsup),	we	can	consider	the	sequence	to	be	frequent	enough.	The	algorithm	stops	until
the	process	cannot	find	more	frequent	sequences:

An	illustration	of	SPADE	algorithm

In	this	recipe,	we	illustrate	how	to	use	a	frequent	sequential	pattern	mining	algorithm,
cSPADE,	to	mine	frequent	sequential	patterns.	First,	as	we	have	transactions	with
temporal	information	loaded	in	the	variable	trans,	we	can	use	the	cspade	function	with
the	support	over	0.75	to	generate	frequent	sequential	patterns	in	the	sequences	format.	We
can	then	obtain	summary	information,	such	as	most	frequent	items,	sequence	size
distributions,	a	summary	of	quality	measures,	and	mining	information.	Lastly,	we	can
transform	the	generated	sequence	information	back	to	the	data	frame	format,	so	we	can
examine	the	sequence	and	support	of	frequent	sequential	patterns	with	the	support	over
0.75.



See	also
If	you	are	interested	in	the	concept	and	design	of	the	SPADE	algorithm,	you	can	refer
to	the	original	published	paper:	M.	J.	Zaki.	(2001).	SPADE:	An	Efficient	Algorithm
for	Mining	Frequent	Sequences.	Machine	Learning	Journal,	42,	31–60.





Chapter	11.	Dimension	Reduction
In	this	chapter,	we	will	cover	the	following	topics:

Performing	feature	selection	with	FSelector
Performing	dimension	reduction	with	PCA
Determining	the	number	of	principal	components	using	a	scree	test
Determining	the	number	of	principal	components	using	the	Kaiser	method
Visualizing	multivariate	data	using	biplot
Performing	dimension	reduction	with	MDS
Reducing	dimensions	with	SVD
Compressing	images	with	SVD
Performing	nonlinear	dimension	reduction	with	ISOMAP
Performing	nonlinear	dimension	deduction	with	Local	Linear	Embedding



Introduction
Most	datasets	contain	features	(such	as	attributes	or	variables)	that	are	highly	redundant.
In	order	to	remove	irrelevant	and	redundant	data	to	reduce	the	computational	cost	and
avoid	overfitting,	you	can	reduce	the	features	into	a	smaller	subset	without	a	significant
loss	of	information.	The	mathematical	procedure	of	reducing	features	is	known	as
dimension	reduction.

The	reduction	of	features	can	increase	the	efficiency	of	data	processing.	Dimension
reduction	is,	therefore,	widely	used	in	the	fields	of	pattern	recognition,	text	retrieval,	and
machine	learning.	Dimension	reduction	can	be	divided	into	two	parts:	feature	extraction
and	feature	selection.	Feature	extraction	is	a	technique	that	uses	a	lower	dimension	space
to	represent	data	in	a	higher	dimension	space.	Feature	selection	is	used	to	find	a	subset	of
the	original	variables.

The	objective	of	feature	selection	is	to	select	a	set	of	relevant	features	to	construct	the
model.	The	techniques	for	feature	selection	can	be	categorized	into	feature	ranking	and
feature	selection.	Feature	ranking	ranks	features	with	a	certain	criteria	and	then	selects
features	that	are	above	a	defined	threshold.	On	the	other	hand,	feature	selection	searches
the	optimal	subset	from	a	space	of	feature	subsets.

In	feature	extraction,	the	problem	can	be	categorized	as	linear	or	nonlinear.	The	linear
method	searches	an	affine	space	that	best	explains	the	variation	of	data	distribution.	In
contrast,	the	nonlinear	method	is	a	better	option	for	data	that	is	distributed	on	a	highly
nonlinear	curved	surface.	Here,	we	list	some	common	linear	and	nonlinear	methods.

Here	are	some	common	linear	methods:

PCA:	Principal	component	analysis	maps	data	to	a	lower	dimension,	so	that	the
variance	of	the	data	in	a	low	dimension	representation	is	maximized.
MDS:	Multidimensional	scaling	is	a	method	that	allows	you	to	visualize	how	near
(pattern	proximities)	objects	are	to	each	other	and	can	produce	a	representation	of
your	data	with	lower	dimension	space.	PCA	can	be	regarded	as	the	simplest	form	of
MDS	if	the	distance	measurement	used	in	MDS	equals	the	covariance	of	data.
SVD:	Singular	value	decomposition	removes	redundant	features	that	are	linear
correlated	from	the	perspective	of	linear	algebra.	PCA	can	also	be	regarded	as	a
specific	case	of	SVD.

Here	are	some	common	nonlinear	methods:

ISOMAP:	ISOMAP	can	be	viewed	as	an	extension	of	MDS,	which	uses	the	distance
metric	of	geodesic	distances.	In	this	method,	geodesic	distance	is	computed	by
graphing	the	shortest	path	distances.
LLE:	Locally	linear	embedding	performs	local	PCA	and	global	eigen-decomposition.
LLE	is	a	local	approach,	which	involves	selecting	features	for	each	category	of	the
class	feature.	In	contrast,	ISOMAP	is	a	global	approach,	which	involves	selecting
features	for	all	features.



In	this	chapter,	we	will	first	discuss	how	to	perform	feature	ranking	and	selection.	Next,
we	will	focus	on	the	topic	of	feature	extraction	and	cover	recipes	in	performing	dimension
reduction	with	both	linear	and	nonlinear	methods.	For	linear	methods,	we	will	introduce
how	to	perform	PCA,	determine	the	number	of	principal	components,	and	its
visualization.	We	then	move	on	to	MDS	and	SVD.	Furthermore,	we	will	introduce	the
application	of	SVD	to	compress	images.	For	nonlinear	methods,	we	will	introduce	how	to
perform	dimension	reduction	with	ISOMAP	and	LLE.





Performing	feature	selection	with
FSelector
The	FSelector	package	provides	two	approaches	to	select	the	most	influential	features
from	the	original	feature	set.	Firstly,	rank	features	by	some	criteria	and	select	the	ones	that
are	above	a	defined	threshold.	Secondly,	search	for	optimum	feature	subsets	from	a	space
of	feature	subsets.	In	this	recipe,	we	will	introduce	how	to	perform	feature	selection	with
the	FSelector	package.



Getting	ready
In	this	recipe,	we	will	continue	to	use	the	telecom	churn	dataset	as	the	input	data	source	to
train	the	support	vector	machine.	For	those	who	have	not	prepared	the	dataset,	please	refer
to	Chapter	5,	Classification	(I)	–	Tree,	Lazy,	and	Probabilistic,	for	detailed	information.



How	to	do	it…
Perform	the	following	steps	to	perform	feature	selection	on	a	churn	dataset:

1.	 First,	install	and	load	the	package,	FSelector:

>	install.packages("FSelector")

>	library(FSelector)

2.	 Then,	we	can	use	random.forest.importance	to	calculate	the	weight	for	each
attribute,	where	we	set	the	importance	type	to	1:

>	weights	=	random.forest.importance(churn~.,	trainset,	importance.type	

=	1)

>	print(weights)

																														attr_importance

international_plan																	96.3255882

voice_mail_plan																				24.8921239

number_vmail_messages														31.5420332

total_day_minutes																		51.9365357

total_day_calls																				-0.1766420

total_day_charge																			53.7930096

total_eve_minutes																		33.2006078

total_eve_calls																				-2.2270323

total_eve_charge																			32.4317375

total_night_minutes																22.0888120

total_night_calls																			0.3407087

total_night_charge																	21.6368855

total_intl_minutes																	32.4984413

total_intl_calls																			51.1154046

total_intl_charge																		32.4855194

number_customer_service_calls					114.2566676

3.	 Next,	we	can	use	the	cutoff	function	to	obtain	the	attributes	of	the	top	five	weights:

>	subset	=	cutoff.k(weights,	5)

>	f	=	as.simple.formula(subset,	"Class")

>	print(f)

Class	~	number_customer_service_calls	+	international_plan	+	

				total_day_charge	+	total_day_minutes	+	total_intl_calls

<environment:	0x00000000269a28e8>

4.	 Next,	we	can	make	an	evaluator	to	select	the	feature	subsets:

>	evaluator	=	function(subset)	{

+			k	=	5		

+			set.seed(2)

+			ind	=	sample(5,	nrow(trainset),	replace	=	TRUE)

+			results	=	sapply(1:k,	function(i)	{

+					train	=	trainset[ind	==i,]

+					test		=	trainset[ind	!=i,]

+					tree		=	rpart(as.simple.formula(subset,	"churn"),	trainset)

+					error.rate	=	sum(test$churn	!=	predict(tree,	test,	type="class"))	

/	nrow(test)

+					return(1	-	error.rate)

+			})



+			return(mean(results))

+	}

5.	 Finally,	we	can	find	the	optimum	feature	subset	using	a	hill	climbing	search:

>	attr.subset	=	hill.climbing.search(names(trainset)[!names(trainset)	

%in%	"churn"],	evaluator)

>	f	=	as.simple.formula(attr.subset,	"churn")

>	print(f)

churn	~	international_plan	+	voice_mail_plan	+	number_vmail_messages	+	

				total_day_minutes	+	total_day_calls	+	total_eve_minutes	+	

				total_eve_charge	+	total_intl_minutes	+	total_intl_calls	+	

				total_intl_charge	+	number_customer_service_calls

<environment:	0x000000002224d3d0>



How	it	works…
In	this	recipe,	we	present	how	to	use	the	FSelector	package	to	select	the	most	influential
features.	We	first	demonstrate	how	to	use	the	feature	ranking	approach.	In	the	feature
ranking	approach,	the	algorithm	first	employs	a	weight	function	to	generate	weights	for
each	feature.	Here,	we	use	the	random	forest	algorithm	with	the	mean	decrease	in
accuracy	(where	importance.type	=	1)	as	the	importance	measurement	to	gain	the
weights	of	each	attribute.	Besides	the	random	forest	algorithm,	you	can	select	other
feature	ranking	algorithms	(for	example,	chi.squared,	information.gain)	from	the
FSelector	package.	Then,	the	process	sorts	attributes	by	their	weight.	At	last,	we	can
obtain	the	top	five	features	from	the	sorted	feature	list	with	the	cutoff	function.	In	this
case,	number_customer_service_calls,	international_plan,	total_day_charge,
total_day_minutes,	and	total_intl_calls	are	the	five	most	important	features.

Next,	we	illustrate	how	to	search	for	optimum	feature	subsets.	First,	we	need	to	make	a
five-fold	cross-validation	function	to	evaluate	the	importance	of	feature	subsets.	Then,	we
use	the	hill	climbing	searching	algorithm	to	find	the	optimum	feature	subsets	from	the
original	feature	sets.	Besides	the	hill-climbing	method,	one	can	select	other	feature
selection	algorithms	(for	example,	forward.search)	from	the	FSelector	package.	Lastly,
we	can	find	that	international_plan	+	voice_mail_plan	+	number_vmail_messages
+	total_day_minutes	+	total_day_calls	+	total_eve_minutes	+

total_eve_charge	+	total_intl_minutes	+	total_intl_calls	+

total_intl_charge	+	number_customer_service_calls	are	optimum	feature	subsets.



See	also
You	can	also	use	the	caret	package	to	perform	feature	selection.	As	we	have
discussed	related	recipes	in	the	model	assessment	chapter,	you	can	refer	to	Chapter	7,
Model	Evaluation,	for	more	detailed	information.
For	both	feature	ranking	and	optimum	feature	selection,	you	can	explore	the	package,
FSelector,	for	more	related	functions:

>	help(package="FSelector")





Performing	dimension	reduction	with
PCA
Principal	component	analysis	(PCA)	is	the	most	widely	used	linear	method	in	dealing
with	dimension	reduction	problems.	It	is	useful	when	data	contains	many	features,	and
there	is	redundancy	(correlation)	within	these	features.	To	remove	redundant	features,
PCA	maps	high	dimension	data	into	lower	dimensions	by	reducing	features	into	a	smaller
number	of	principal	components	that	account	for	most	of	the	variance	of	the	original
features.	In	this	recipe,	we	will	introduce	how	to	perform	dimension	reduction	with	the
PCA	method.



Getting	ready
In	this	recipe,	we	will	use	the	swiss	dataset	as	our	target	to	perform	PCA.	The	swiss
dataset	includes	standardized	fertility	measures	and	socio-economic	indicators	from
around	the	year	1888	for	each	of	the	47	French-speaking	provinces	of	Switzerland.



How	to	do	it…
Perform	the	following	steps	to	perform	principal	component	analysis	on	the	swiss	dataset:

1.	 First,	load	the	swiss	dataset:

>	data(swiss)

2.	 Exclude	the	first	column	of	the	swiss	data:

>	swiss	=	swiss[,-1]

3.	 You	can	then	perform	principal	component	analysis	on	the	swiss	data:

>	swiss.pca	=	prcomp(swiss,

+	center	=	TRUE,

+	scale		=	TRUE)

>	swiss.pca

Standard	deviations:

[1]	1.6228065	1.0354873	0.9033447	0.5592765	0.4067472

Rotation:

																									PC1									PC2										PC3								PC4									

PC5

Agriculture						0.52396452	-0.25834215		0.003003672	-0.8090741		

0.06411415

Examination		-0.57185792	-0.01145981	-0.039840522	-0.4224580	

-0.70198942

Education							-0.49150243		0.19028476		0.539337412	-0.3321615		

0.56656945

Catholic												0.38530580		0.36956307		0.725888143	0.1007965	

-0.42176895

Infant.Mortality	0.09167606	0.87197641	-0.424976789	-0.2154928	

0.06488642

4.	 Obtain	a	summary	from	the	PCA	results:

>	summary(swiss.pca)

Importance	of	components:

																										PC1				PC2				PC3					PC4					PC5

Standard	deviation					1.6228	1.0355	0.9033	0.55928	0.40675

Proportion	of	Variance	0.5267	0.2145	0.1632	0.06256	0.03309

Cumulative	Proportion		0.5267	0.7411	0.9043	0.96691	1.00000

5.	 Lastly,	you	can	use	the	predict	function	to	output	the	value	of	the	principal
component	with	the	first	row	of	data:

>	predict(swiss.pca,	newdata=head(swiss,	1))

																		PC1							PC2								PC3						PC4							PC5

Courtelary	-0.9390479	0.8047122	-0.8118681	1.000307	0.4618643



How	it	works…
Since	the	feature	selection	method	may	remove	some	correlated	but	informative	features,
you	have	to	consider	combining	these	correlated	features	into	a	single	feature	with	the
feature	extraction	method.	PCA	is	one	of	the	feature	extraction	methods,	which	performs
orthogonal	transformation	to	convert	possibly	correlated	variables	into	principal
components.	Also,	you	can	use	these	principal	components	to	identify	the	directions	of
variance.

The	process	of	PCA	is	carried	on	by	the	following	steps:	firstly,	find	the	mean	vector,	

,	where	 	indicates	the	data	point,	and	n	denotes	the	number	of	points.

Secondly,	compute	the	covariance	matrix	by	the	equation,	 .
Thirdly,	compute	the	eigenvectors, ,	and	the	corresponding	eigenvalues.	In	the	fourth
step,	we	rank	and	choose	the	top	k	eigenvectors.	In	the	fifth	step,	we	construct	a	d	x	k
dimensional	eigenvector	matrix,	U.	Here,	d	is	the	number	of	original	dimensions	and	k	is
the	number	of	eigenvectors.	Finally,	we	can	transform	data	samples	to	a	new	subspace	in
the	equation,	 .

In	the	following	figure,	it	is	illustrated	that	we	can	use	two	principal	components,	 ,	and	
,	to	transform	the	data	point	from	a	two-dimensional	space	to	new	two-dimensional

subspace:

A	sample	illustration	of	PCA

In	this	recipe	we	use	the	prcomp	function	from	the	stats	package	to	perform	PCA	on	the
swiss	dataset.	First,	we	remove	the	standardized	fertility	measures	and	use	the	rest	of	the
predictors	as	input	to	the	function,	prcomp.	In	addition	to	this,	we	set	swiss	as	an	input
dataset;	the	variable	should	be	shifted	to	the	zero	center	by	specifying	center=TRUE;	scale
variables	into	the	unit	variance	with	the	option,	scale=TRUE,	and	store	the	output	in	the
variable,	swiss.pca.

Then,	as	we	print	out	the	value	stored	in	swiss.pca,	we	can	find	the	standard	deviation



and	rotation	of	the	principal	component.	The	standard	deviation	indicates	the	square	root
of	the	eigenvalues	of	the	covariance/correlation	matrix.	On	the	other	hand,	the	rotation	of
the	principal	components	shows	the	coefficient	of	the	linear	combination	of	the	input
features.	For	example,	PC1	equals	Agriculture	*	0.524	+	Examination	*	-0.572	+
Education	*	-0.492	+	Catholic*	0.385	+	Infant.Mortality	*	0.092.	Here,	we	can	find	that
the	attribute,	Agriculture,	contributes	the	most	for	PC1,	for	it	has	the	highest	coefficient.

Additionally,	we	can	use	the	summary	function	to	obtain	the	importance	of	components.
The	first	row	shows	the	standard	deviation	of	each	principal	component,	the	second	row
shows	the	proportion	of	variance	explained	by	each	component,	and	the	third	row	shows
the	cumulative	proportion	of	the	explained	variance.	Finally,	you	can	use	the	predict
function	to	obtain	principal	components	from	the	input	features.	Here,	we	input	the	first
row	of	the	dataset,	and	retrieve	five	principal	components.



There’s	more…
Another	principal	component	analysis	function	is	princomp.	In	this	function,	the
calculation	is	performed	by	using	eigen	on	a	correlation	or	covariance	matrix	instead	of	a
single	value	decomposition	used	in	the	prcomp	function.	In	general	practice,	using	prcomp
is	preferable;	however,	we	cover	how	to	use	princomp	here:

1.	 First,	use	princomp	to	perform	PCA:

>	swiss.princomp	=	princomp(swiss,

+	center	=	TRUE,

+	scale		=	TRUE)

>	swiss.princomp

Call:

princomp(x	=	swiss,	center	=	TRUE,	scale	=	TRUE)

Standard	deviations:

			Comp.1				Comp.2				Comp.3				Comp.4				Comp.5	

42.896335	21.201887		7.587978		3.687888		2.721105	

	5	variables	and	47	observations.

2.	 You	can	then	obtain	the	summary	information:

>	summary(swiss.princomp)

Importance	of	components:

																											Comp.1					Comp.2					Comp.3						Comp.4						

Comp.5

Standard	deviation					42.8963346	21.2018868	7.58797830	3.687888330	

2.721104713

Proportion	of	Variance		0.7770024		0.1898152	0.02431275	0.005742983	

0.003126601

Cumulative	Proportion			0.7770024		0.9668177	0.99113042	0.996873399	

1.000000000

3.	 You	can	use	the	predict	function	to	obtain	principal	components	from	the	input
features:

>	predict(swiss.princomp,	swiss[1,])

														Comp.1				Comp.2			Comp.3			Comp.4			Comp.5

Courtelary	-38.95923	-20.40504	12.45808	4.713234	-1.46634

In	addition	to	the	prcomp	and	princomp	functions	from	the	stats	package,	you	can	use	the
principal	function	from	the	psych	package:

1.	 First,	install	and	load	the	psych	package:

>	install.packages("psych")

>	install.packages("GPArotation")

>	library(psych)

2.	 You	can	then	use	the	principal	function	to	retrieve	the	principal	components:

>	swiss.principal	=	principal(swiss,	nfactors=5,	rotate="none")

>	swiss.principal



Principal	Components	Analysis

Call:	principal(r	=	swiss,	nfactors	=	5,	rotate	=	"none")

Standardized	loadings	(pattern	matrix)	based	upon	correlation	matrix

																			PC1			PC2			PC3			PC4			PC5	h2							u2

Agriculture						-0.85	-0.27		0.00		0.45	-0.03		1	-6.7e-16

Examination							0.93	-0.01	-0.04		0.24		0.29		1		4.4e-16

Education									0.80		0.20		0.49		0.19	-0.23		1		2.2e-16

Catholic									-0.63		0.38		0.66	-0.06		0.17		1	-2.2e-16

Infant.Mortality	-0.15		0.90	-0.38		0.12	-0.03		1	-8.9e-16

																							PC1		PC2		PC3		PC4		PC5

SS	loadings											2.63	1.07	0.82	0.31	0.17

Proportion	Var								0.53	0.21	0.16	0.06	0.03

Cumulative	Var								0.53	0.74	0.90	0.97	1.00

Proportion	Explained		0.53	0.21	0.16	0.06	0.03

Cumulative	Proportion	0.53	0.74	0.90	0.97	1.00

Test	of	the	hypothesis	that	5	components	are	sufficient.

The	degrees	of	freedom	for	the	null	model	are	10	and	the	objective	

function	was	2.13

The	degrees	of	freedom	for	the	model	are	-5		and	the	objective	function	

was		0	

The	total	number	of	observations	was		47		with	MLE	Chi	Square	=		0		

with	prob	<		NA	

Fit	based	upon	off	diagonal	values	=	1





Determining	the	number	of	principal
components	using	the	scree	test
As	we	only	need	to	retain	the	principal	components	that	account	for	most	of	the	variance
of	the	original	features,	we	can	either	use	the	Kaiser	method,	scree	test,	or	the	percentage
of	variation	explained	as	the	selection	criteria.	The	main	purpose	of	a	scree	test	is	to	graph
the	component	analysis	results	as	a	scree	plot	and	find	where	the	obvious	change	in	the
slope	(elbow)	occurs.	In	this	recipe,	we	will	demonstrate	how	to	determine	the	number	of
principal	components	using	a	scree	plot.



Getting	ready
Ensure	that	you	have	completed	the	previous	recipe	by	generating	a	principal	component
object	and	save	it	in	the	variable,	swiss.pca.



How	to	do	it…
Perform	the	following	steps	to	determine	the	number	of	principal	components	with	the
scree	plot:

1.	 First,	you	can	generate	a	bar	plot	by	using	screeplot:

>	screeplot(swiss.pca,	type="barplot")

The	scree	plot	in	bar	plot	form

2.	 You	can	also	generate	a	line	plot	by	using	screeplot:

>	screeplot(swiss.pca,	type="line")



The	scree	plot	in	line	plot	form



How	it	works…
In	this	recipe,	we	demonstrate	how	to	use	a	scree	plot	to	determine	the	number	of	principal
components.	In	a	scree	plot,	there	are	two	types	of	plots,	namely,	bar	plots	and	line	plots.
As	both	generated	scree	plots	reveal,	the	obvious	change	in	slope	(the	so-called	elbow	or
knee)	occurs	at	component	2.	As	a	result,	we	should	retain	component	1,	where	the
component	is	in	a	steep	curve	before	component	2,	which	is	where	the	flat	line	trend
commences.	However,	as	this	method	can	be	ambiguous,	you	can	use	other	methods	(such
as	the	Kaiser	method)	to	determine	the	number	of	components.



There’s	more…
By	default,	if	you	use	the	plot	function	on	a	generated	principal	component	object,	you
can	also	retrieve	the	scree	plot.	For	more	details	on	screeplot,	please	refer	to	the
following	document:

>	help(screeplot)

You	can	also	use	nfactors	to	perform	parallel	analysis	and	nongraphical	solutions	to	the
Cattell	scree	test:

>	install.packages("nFactors")

>	library(nFactors)

>	ev	=	eigen(cor(swiss))

>	ap	=	parallel(subject=nrow(swiss),var=ncol(swiss),rep=100,cent=.05)

>	nS	=	nScree(x=ev$values,	aparallel=ap$eigen$qevpea)

>	plotnScree(nS)

Non-graphical	solution	to	scree	test





Determining	the	number	of	principal
components	using	the	Kaiser	method
In	addition	to	the	scree	test,	you	can	use	the	Kaiser	method	to	determine	the	number	of
principal	components.	In	this	method,	the	selection	criteria	retains	eigenvalues	greater
than	1.	In	this	recipe,	we	will	demonstrate	how	to	determine	the	number	of	principal
components	using	the	Kaiser	method.



Getting	ready
Ensure	that	you	have	completed	the	previous	recipe	by	generating	a	principal	component
object	and	save	it	in	the	variable,	swiss.pca.



How	to	do	it…
Perform	the	following	steps	to	determine	the	number	of	principal	components	with	the
Kaiser	method:

1.	 First,	you	can	obtain	the	standard	deviation	from	swiss.pca:

>	swiss.pca$sdev	

[1]	1.6228065	1.0354873	0.9033447	0.5592765	0.4067472

2.	 Next,	you	can	obtain	the	variance	from	swiss.pca:

>	swiss.pca$sdev	^	2

[1]	2.6335008	1.0722340	0.8160316	0.3127902	0.1654433

3.	 Select	components	with	a	variance	above	1:

>	which(swiss.pca$sdev	^	2>	1)

[1]	1	2

4.	 You	can	also	use	the	scree	plot	to	select	components	with	a	variance	above	1:

>	screeplot(swiss.pca,	type="line")

>	abline(h=1,	col="red",	lty=	3)

Select	component	with	variance	above	1



How	it	works…
You	can	also	use	the	Kaiser	method	to	determine	the	number	of	components.	As	the
computed	principal	component	object	contains	the	standard	deviation	of	each	component,
we	can	compute	the	variance	as	the	standard	deviation,	which	is	the	square	root	of
variance.	From	the	computed	variance,	we	find	both	component	1	and	2	have	a	variance
above	1.	Therefore,	we	can	determine	the	number	of	principal	components	as	2	(both
component	1	and	2).	Also,	we	can	draw	a	red	line	on	the	scree	plot	(as	shown	in	the
preceding	figure)	to	indicate	that	we	need	to	retain	component	1	and	2	in	this	case.



See	also
In	order	to	determine	which	principal	components	to	retain,	please	refer	to:

Ledesma,	R.	D.,	and	Valero-Mora,	P.	(2007).	Determining	the	Number	of	Factors	to
Retain	in	EFA:	an	easy-to-use	computer	program	for	carrying	out	Parallel	Analysis.
Practical	Assessment,	Research	&	Evaluation,	12(2),	1-11.





Visualizing	multivariate	data	using	biplot
In	order	to	find	out	how	data	and	variables	are	mapped	in	regard	to	the	principal
component,	you	can	use	biplot,	which	plots	data	and	the	projections	of	original	features
on	to	the	first	two	components.	In	this	recipe,	we	will	demonstrate	how	to	use	biplot	to
plot	both	variables	and	data	on	the	same	figure.



Getting	ready
Ensure	that	you	have	completed	the	previous	recipe	by	generating	a	principal	component
object	and	save	it	in	the	variable,	swiss.pca.



How	to	do	it…
Perform	the	following	steps	to	create	a	biplot:

1.	 You	can	create	a	scatter	plot	using	component	1	and	2:

>		plot(swiss.pca$x[,1],	swiss.pca$x[,2],	xlim=c(-4,4))

>	text(swiss.pca$x[,1],	swiss.pca$x[,2],	rownames(swiss.pca$x),	

cex=0.7,	pos=4,	col="red")

The	scatter	plot	of	first	two	components	from	PCA	result

2.	 If	you	would	like	to	add	features	on	the	plot,	you	can	create	biplot	using	the
generated	principal	component	object:

>	biplot(swiss.pca)



The	biplot	using	PCA	result



How	it	works…
In	this	recipe,	we	demonstrate	how	to	use	biplot	to	plot	data	and	projections	of	original
features	on	to	the	first	two	components.	In	the	first	step,	we	demonstrate	that	we	can
actually	use	the	first	two	components	to	create	a	scatter	plot.	Furthermore,	if	you	want	to
add	variables	on	the	same	plot,	you	can	use	biplot.	In	biplot,	you	can	see	the	provinces
with	higher	indicators	in	the	agriculture	variable,	lower	indicators	in	the	education
variable,	and	examination	variables	scores	that	are	higher	in	PC1.	On	the	other	hand,	the
provinces	with	higher	infant	mortality	indicators	and	lower	agriculture	indicators	score
higher	in	PC2.



There’s	more…
Besides	biplot	in	the	stats	package,	you	can	also	use	ggbiplot.	However,	you	may	not
find	this	package	from	CRAN;	you	have	to	first	install	devtools	and	then	install	ggbiplot
from	GitHub:

>	install.packages("devtools")

>	library(ggbiplot)

>	g	=	ggbiplot(swiss.pca,	obs.scale	=	1,	var.scale	=	1,	

+	ellipse	=	TRUE,	

+	circle	=	TRUE)

>	print(g)

The	ggbiplot	using	PCA	result





Performing	dimension	reduction	with
MDS
Multidimensional	scaling	(MDS)	is	a	technique	to	create	a	visual	presentation	of
similarities	or	dissimilarities	(distance)	of	a	number	of	objects.	The	multi	prefix	indicates
that	one	can	create	a	presentation	map	in	one,	two,	or	more	dimensions.	However,	we
most	often	use	MDS	to	present	the	distance	between	data	points	in	one	or	two	dimensions.

In	MDS,	you	can	either	use	a	metric	or	a	nonmetric	solution.	The	main	difference	between
the	two	solutions	is	that	metric	solutions	try	to	reproduce	the	original	metric,	while
nonmetric	solutions	assume	that	the	ranks	of	the	distance	are	known.	In	this	recipe,	we
will	illustrate	how	to	perform	MDS	on	the	swiss	dataset.



Getting	ready
In	this	recipe,	we	will	continue	using	the	swiss	dataset	as	our	input	data	source.



How	to	do	it…
Perform	the	following	steps	to	perform	multidimensional	scaling	using	the	metric	method:

1.	 First,	you	can	perform	metric	MDS	with	a	maximum	of	two	dimensions:

>	swiss.dist	=dist(swiss)

>	swiss.mds	=	cmdscale(swiss.dist,	k=2)

2.	 You	can	then	plot	the	swiss	data	in	a	two-dimension	scatter	plot:

>	plot(swiss.mds[,1],	swiss.mds[,2],	type	=	"n",	main	=	"cmdscale	

(stats)")

>	text(swiss.mds[,1],	swiss.mds[,2],	rownames(swiss),	cex	=	0.9,	xpd	=	

TRUE)

The	2-dimension	scatter	plot	from	cmdscale	object

3.	 In	addition,	you	can	perform	nonmetric	MDS	with	isoMDS:

>	library(MASS)

>	swiss.nmmds	=	isoMDS(swiss.dist,	k=2)

initial		value	2.979731	

iter			5	value	2.431486

iter		10	value	2.343353

final		value	2.338839	

converged

4.	 You	can	also	plot	the	data	points	in	a	two-dimension	scatter	plot:

>	plot(swiss.nmmds$points,	type	=	"n",	main	=	"isoMDS	(MASS)")

>	text(swiss.nmmds$points,	rownames(swiss),	cex	=	0.9,	xpd	=	TRUE)



The	2-dimension	scatter	plot	from	isoMDS	object

5.	 You	can	then	plot	the	data	points	in	a	two-dimension	scatter	plot:

>	swiss.sh	=	Shepard(swiss.dist,	swiss.mds)

>	plot(swiss.sh,	pch	=	".")

>	lines(swiss.sh$x,	swiss.sh$yf,	type	=	"S")

The	Shepard	plot	from	isoMDS	object





How	it	works…
MDS	reveals	the	structure	of	the	data	by	providing	a	visual	presentation	of	similarities
among	a	set	of	objects.	In	more	detail,	MDS	places	an	object	in	an	n-dimensional	space,
where	the	distances	between	pairs	of	points	corresponds	to	the	similarities	among	the	pairs
of	objects.	Usually,	the	dimensional	space	is	a	two-dimensional	Euclidean	space,	but	it
may	be	non-Euclidean	and	have	more	than	two	dimensions.	In	accordance	with	the
meaning	of	the	input	matrix,	MDS	can	be	mainly	categorized	into	two	types:	metric	MDS,
where	the	input	matrix	is	metric-based,	nonmetric	MDS,	where	the	input	matrix	is
nonmetric-based.

Metric	MDS	is	also	known	as	principal	coordinate	analysis,	which	first	transforms	a
distance	into	similarities.	In	the	simplest	form,	the	process	linearly	projects	original	data
points	to	a	subspace	by	performing	principal	components	analysis	on	similarities.	On	the
other	hand,	the	process	can	also	perform	a	nonlinear	projection	on	similarities	by

minimizing	the	stress	value,	 ,	where	 	is	the	distance

measurement	between	the	two	points,	 	and	 ,	and	 	is	the	similarity	measure	of

two	projected	points,	 	and	 .	As	a	result,	we	can	represent	the	relationship	among
objects	in	the	Euclidean	space.

In	contrast	to	metric	MDS,	which	use	a	metric-based	input	matrix,	a	nonmetric-based
MDS	is	used	when	the	data	is	measured	at	the	ordinal	level.	As	only	the	rank	order	of	the
distances	between	the	vectors	is	meaningful,	nonmetric	MDS	applies	a	monotonically
increasing	function,	f,	on	the	original	distances	and	projects	the	distance	to	new	values
that	preserve	the	rank	order.	The	normalized	equation	can	be	formulated	as	

.

In	this	recipe,	we	illustrate	how	to	perform	metric	and	nonmetric	MDS	on	the	swiss
dataset.	To	perform	metric	MDS,	we	first	need	to	obtain	the	distance	metric	from	the
swiss	data.	In	this	step,	you	can	replace	the	distance	measure	to	any	measure	as	long	as	it
produces	a	similarity/dissimilarity	measure	of	data	points.	You	can	use	cmdscale	to
perform	metric	multidimensional	scaling.	Here,	we	specify	k	=	2,	so	the	maximum
generated	dimensions	equals	2.	You	can	also	visually	present	the	distance	of	the	data
points	on	a	two-dimensional	scatter	plot.

Next,	you	can	perform	nonmetric	MDS	with	isoMDS.	In	nonmetric	MDS,	we	do	not	match
the	distances,	but	only	arrange	them	in	order.	We	also	set	swiss	as	an	input	dataset	with
maximum	dimensions	of	two.	Similar	to	the	metric	MDS	example,	we	can	plot	the
distance	between	data	points	on	a	two-dimensional	scatter	plot.	Then,	we	use	a	Shepard
plot,	which	shows	how	well	the	projected	distances	match	those	in	the	distance	matrix.	As
per	the	figure	in	step	4,	the	projected	distance	matches	well	in	the	distance	matrix.



There’s	more…
Another	visualization	method	is	to	present	an	MDS	object	as	a	graph.	A	sample	code	is
listed	here:

>	library(igraph)

>	swiss.sample	=	swiss[1:10,]

>	g	=	graph.full(nrow(swiss.sample))

>	V(g)$label	=	rownames(swiss.sample)

>	layout	=	layout.mds(g,	dist	=	as.matrix(dist(swiss.sample)))

>	plot(g,	layout	=	layout,	vertex.size	=	3)

The	graph	presentation	of	MDS	object

You	can	also	compare	differences	between	the	generated	results	from	MDS	and	PCA.	You
can	compare	their	differences	by	drawing	the	projected	dimensions	on	the	same	scatter
plot.	If	you	use	a	Euclidean	distance	on	MDS,	the	projected	dimensions	are	exactly	the
same	as	the	ones	projected	from	PCA:

>	swiss.dist	=	dist(swiss)

>	swiss.mds	=	cmdscale(swiss.dist,	k=2)

>	plot(swiss.mds[,1],	swiss.mds[,2],	type="n")

>	text(swiss.mds[,1],	swiss.mds[,2],	rownames(swiss),	cex	=	0.9,	xpd	=	

TRUE)

>	swiss.pca	=	prcomp(swiss)

>	text(-swiss.pca$x[,1],-swiss.pca$x[,2],	rownames(swiss),	

+						,col="blue",	adj	=	c(0.2,-0.5),cex	=	0.9,	xpd	=	TRUE)



The	comparison	between	MDS	and	PCA





Reducing	dimensions	with	SVD
Singular	value	decomposition	(SVD)	is	a	type	of	matrix	factorization	(decomposition),
which	can	factorize	matrices	into	two	orthogonal	matrices	and	diagonal	matrices.	You	can
multiply	the	original	matrix	back	using	these	three	matrices.	SVD	can	reduce	redundant
data	that	is	linear	dependent	from	the	perspective	of	linear	algebra.	Therefore,	it	can	be
applied	to	feature	selection,	image	processing,	clustering,	and	many	other	fields.	In	this
recipe,	we	will	illustrate	how	to	perform	dimension	reduction	with	SVD.



Getting	ready
In	this	recipe,	we	will	continue	using	the	dataset,	swiss,	as	our	input	data	source.



How	to	do	it…
Perform	the	following	steps	to	perform	dimension	reduction	using	SVD:

1.	 First,	you	can	perform	svd	on	the	swiss	dataset:

>	swiss.svd	=	svd(swiss)

2.	 You	can	then	plot	the	percentage	of	variance	explained	and	the	cumulative	variance
explained	in	accordance	with	the	SVD	column:

>	plot(swiss.svd$d^2/sum(swiss.svd$d^2),	type="l",	xlab="	Singular	

vector",	ylab	=	"Variance	explained")

The	percent	of	variance	explained

>	plot(cumsum(swiss.svd$d^2/sum(swiss.svd$d^2)),	type="l",	

xlab="Singular	vector",	ylab	=	"Cumulative	percent	of	variance	

explained")



Cumulative	percent	of	variance	explained

3.	 Next,	you	can	reconstruct	the	data	with	only	one	singular	vector:

>	swiss.recon	=	swiss.svd$u[,1]	%*%	diag(swiss.svd$d[1],	length(1),	

length(1))	%*%	t(swiss.svd$v[,1])

4.	 Lastly,	you	can	compare	the	original	dataset	with	the	constructed	dataset	in	an	image:

>	par(mfrow=c(1,2))

>	image(as.matrix(swiss),	main="swiss	data	Image")

>	image(swiss.recon,		main="Reconstructed	Image")



The	comparison	between	original	dataset	and	re-constructed	dataset



How	it	works…
SVD	is	a	factorization	of	a	real	or	complex	matrix.	In	detail,	the	SVD	of	m	x	n	matrix,	A,
is	the	factorization	of	A	into	the	product	of	three	matrices,	 .	Here,	U	is	an	m	x	m
orthonormal	matrix,	D	has	singular	values	and	is	an	m	x	n	diagonal	matrix,	and	VT	is	an	n
x	n	orthonormal	matrix.

In	this	recipe,	we	demonstrate	how	to	perform	dimension	reduction	with	SVD.	First,	you
can	apply	the	svd	function	on	the	swiss	dataset	to	obtain	factorized	matrices.	You	can
then	generate	two	plots:	one	shows	the	variance	explained	in	accordance	to	a	singular
vector,	the	other	shows	the	cumulative	variance	explained	in	accordance	to	a	singular
vector.

The	preceding	figure	shows	that	the	first	singular	vector	can	explain	80	percent	of
variance.	We	now	want	to	compare	the	differences	from	the	original	dataset	and	the
reconstructed	dataset	with	a	single	singular	vector.	We,	therefore,	reconstruct	the	data	with
a	single	singular	vector	and	use	the	image	function	to	present	the	original	and
reconstructed	datasets	side-by-side	and	see	how	they	differ	from	each	other.	The	next
figure	reveals	that	these	two	images	are	very	similar.



See	also
As	we	mentioned	earlier,	PCA	can	be	regarded	as	a	specific	case	of	SVD.	Here,	we
generate	the	orthogonal	vector	from	the	swiss	data	from	SVD	and	obtained	the
rotation	from	prcomp.	We	can	see	that	the	two	generated	matrices	are	the	same:

>	svd.m	=	svd(scale(swiss))

>	svd.m$v

												[,1]								[,2]									[,3]							[,4]								[,5]

[1,]		0.52396452	-0.25834215		0.003003672	-0.8090741		0.06411415

[2,]	-0.57185792	-0.01145981	-0.039840522	-0.4224580	-0.70198942

[3,]	-0.49150243		0.19028476		0.539337412	-0.3321615		0.56656945

[4,]		0.38530580		0.36956307		0.725888143		0.1007965	-0.42176895

[5,]		0.09167606		0.87197641	-0.424976789	-0.2154928		0.06488642

>	pca.m	=	prcomp(swiss,scale=TRUE)

>	pca.m$rotation

																									PC1									PC2										PC3								PC4									

PC5

Agriculture						0.52396452	-0.25834215		0.003003672	-0.8090741		

0.06411415

Examination		-0.57185792	-0.01145981	-0.039840522	-0.4224580	

-0.70198942

Education							-0.49150243		0.19028476		0.539337412	-0.3321615		

0.56656945

Catholic										0.38530580		0.36956307		0.725888143		0.1007965	

-0.42176895

Infant.Mortality	0.09167606	0.87197641	-0.424976789	-0.2154928	

0.06488642





Compressing	images	with	SVD
In	the	previous	recipe,	we	demonstrated	how	to	factorize	a	matrix	with	SVD	and	then
reconstruct	the	dataset	by	multiplying	the	decomposed	matrix.	Furthermore,	the
application	of	matrix	factorization	can	be	applied	to	image	compression.	In	this	recipe,	we
will	demonstrate	how	to	perform	SVD	on	the	classic	image	processing	material,	Lenna.



Getting	ready
In	this	recipe,	you	should	download	the	image	of	Lenna	beforehand	(refer	to
http://www.ece.rice.edu/~wakin/images/lena512.bmp	for	this),	or	you	can	prepare	an
image	of	your	own	to	see	how	image	compression	works.

http://www.ece.rice.edu/~wakin/images/lena512.bmp


How	to	do	it…
Perform	the	following	steps	to	compress	an	image	with	SVD:

1.	 First,	install	and	load	bmp:

>	install.packages("bmp")

>	library(bmp)

2.	 You	can	then	read	the	image	of	Lenna	as	a	numeric	matrix	with	the	read.bmp
function.	When	the	reader	downloads	the	image,	the	default	name	is	lena512.bmp:

>	lenna	=	read.bmp("lena512.bmp")

3.	 Rotate	and	plot	the	image:

>	lenna	=	t(lenna)[,nrow(lenna):1]

>	image(lenna)	

The	picture	of	Lenna

4.	 Next,	you	can	perform	SVD	on	the	read	numeric	matrix	and	plot	the	percentage	of
variance	explained:

>	lenna.svd	=	svd(scale(lenna))

>	plot(lenna.svd$d^2/sum(lenna.svd$d^2),	type="l",	xlab="	Singular	

vector",	ylab	=	"Variance	explained")



The	percentage	of	variance	explained

5.	 Next,	you	can	obtain	the	number	of	dimensions	to	reconstruct	the	image:

>	length(lenna.svd$d)

[1]	512

6.	 Obtain	the	point	at	which	the	singular	vector	can	explain	more	than	90	percent	of	the
variance:

>	min(which(cumsum(lenna.svd$d^2/sum(lenna.svd$d^2))>	0.9))

[1]	18

7.	 You	can	also	wrap	the	code	into	a	function,	lenna_compression,	and	you	can	then
use	this	function	to	plot	compressed	Lenna:

>	lenna_compression	=	function(dim){

+					u=as.matrix(lenna.svd$u[,	1:dim])

+					v=as.matrix(lenna.svd$v[,	1:dim])

+					d=as.matrix(diag(lenna.svd$d)[1:dim,	1:dim])

+					image(u%*%d%*%t(v))

+	}

8.	 Also,	you	can	use	18	vectors	to	reconstruct	the	image:

>	lenna_compression(18)



The	reconstructed	image	with	18	components

9.	 You	can	obtain	the	point	at	which	the	singular	vector	can	explain	more	than	99
percent	of	the	variance;

>	min(which(cumsum(lenna.svd$d^2/sum(lenna.svd$d^2))>	0.99))

[1]	92

>	lenna_compression(92)



The	reconstructed	image	with	92	components



How	it	works…
In	this	recipe,	we	demonstrate	how	to	compress	an	image	with	SVD.	In	the	first	step,	we
use	the	package,	bmp,	to	load	the	image,	Lenna,	to	an	R	session.	Then,	as	the	read	image	is
rotated,	we	can	rotate	the	image	back	and	use	the	plot	function	to	plot	Lenna	in	R	(as
shown	in	the	figure	in	step	3).	Next,	we	perform	SVD	on	the	image	matrix	to	factorize	the
matrix.	We	then	plot	the	percentage	of	variance	explained	in	regard	to	the	number	of
singular	vectors.

Further,	as	we	discover	that	we	can	use	18	components	to	explain	90	percent	of	the
variance,	we	then	use	these	18	components	to	reconstruct	Lenna.	Thus,	we	make	a
function	named	lenna_compression	with	the	purpose	of	reconstructing	the	image	by
matrix	multiplication.	As	a	result,	we	enter	18	as	the	input	to	the	function,	which	returns	a
rather	blurry	Lenna	image	(as	shown	in	the	figure	in	step	8).	However,	we	can	at	least	see
an	outline	of	the	image.	To	obtain	a	clearer	picture,	we	discover	that	we	can	use	92
components	to	explain	99	percent	of	the	variance.	We,	therefore,	set	the	input	to	the
function,	lenna_compression,	as	92.	The	figure	in	step	9	shows	that	this	generates	a
clearer	picture	than	the	one	constructed	using	merely	18	components.



See	also
The	Lenna	picture	is	one	of	the	most	widely	used	standard	test	images	for
compression	algorithms.	For	more	details	on	the	Lenna	picture,	please	refer	to
http://www.cs.cmu.edu/~chuck/lennapg/.

http://www.cs.cmu.edu/~chuck/lennapg/




Performing	nonlinear	dimension
reduction	with	ISOMAP
ISOMAP	is	one	of	the	approaches	for	manifold	learning,	which	generalizes	linear
framework	to	nonlinear	data	structures.	Similar	to	MDS,	ISOMAP	creates	a	visual
presentation	of	similarities	or	dissimilarities	(distance)	of	a	number	of	objects.	However,
as	the	data	is	structured	in	a	nonlinear	format,	the	Euclidian	distance	measure	of	MDS	is
replaced	by	the	geodesic	distance	of	a	data	manifold	in	ISOMAP.	In	this	recipe,	we	will
illustrate	how	to	perform	a	nonlinear	dimension	reduction	with	ISOMAP.



Getting	ready
In	this	recipe,	we	will	use	the	digits	data	from	RnavGraphImageData	as	our	input	source.



How	to	do	it…
Perform	the	following	steps	to	perform	nonlinear	dimension	reduction	with	ISOMAP:

1.	 First,	install	and	load	the	RnavGraphImageData	and	vegan	packages:

>	install.packages("RnavGraphImageData")

>	install.packages("vegan")

>	library(RnavGraphImageData)

>	library(vegan)

2.	 You	can	then	load	the	dataset,	digits:

>	data(digits)

3.	 Rotate	and	plot	the	image:

>	sample.digit	=	matrix(digits[,3000],ncol	=	16,	byrow=FALSE)

>	image(t(sample.digit)[,nrow(sample.digit):1])

A	sample	image	from	the	digits	dataset

4.	 Next,	you	can	randomly	sample	300	digits	from	the	population:

>	set.seed(2)

>	digit.idx	=	sample(1:ncol(digits),size	=	600)

>	digit.select	=	digits[,digit.idx]

5.	 Transpose	the	selected	digit	data	and	then	compute	the	dissimilarity	between	objects
using	vegdist:

>	digits.Transpose	=	t(digit.select)

>	digit.dist	=	vegdist(digits.Transpose,	method="euclidean")

6.	 Next,	you	can	use	isomap	to	perform	dimension	reduction:



>	digit.isomap	=	isomap(digit.dist,k	=	8,	ndim=6,	fragmentedOK	=	TRUE)

>	plot(digit.isomap)

A	2-dimension	scatter	plot	from	ISOMAP	object

7.	 Finally,	you	can	overlay	the	scatter	plot	with	the	minimum	spanning	tree,	marked	in
red;

>	digit.st	=	spantree(digit.dist)

>	digit.plot	=	plot(digit.isomap,	main="isomap	k=8")

>	lines(digit.st,	digit.plot,	col="red")



A	2-dimension	scatter	plot	overlay	with	minimum	spanning	tree



How	it	works…
ISOMAP	is	a	nonlinear	dimension	reduction	method	and	a	representative	of	isometric
mapping	methods.	ISOMAP	can	be	regarded	as	an	extension	of	the	metric	MDS,	where
pairwise	the	Euclidean	distance	among	data	points	is	replaced	by	geodesic	distances
induced	by	a	neighborhood	graph.

The	description	of	the	ISOMAP	algorithm	is	shown	in	four	steps.	First,	determine	the
neighbor	of	each	point.	Secondly,	construct	a	neighborhood	graph.	Thirdly,	compute	the
shortest	distance	path	between	two	nodes.	At	last,	find	a	low	dimension	embedding	of	the
data	by	performing	MDS.

In	this	recipe,	we	demonstrate	how	to	perform	a	nonlinear	dimension	reduction	using
ISOMAP.	First,	we	load	the	digits	data	from	RnavGraphImageData.	Then,	after	we	select
one	digit	and	plot	its	rotated	image,	we	can	see	an	image	of	the	handwritten	digit	(the
numeral	3,	in	the	figure	in	step	3).

Next,	we	randomly	sample	300	digits	as	our	input	data	to	ISOMAP.	We	then	transpose	the
dataset	to	calculate	the	distance	between	each	image	object.	Once	the	data	is	ready,	we
calculate	the	distance	between	each	object	and	perform	a	dimension	reduction.	Here,	we
use	vegdist	to	calculate	the	dissimilarities	between	each	object	using	a	Euclidean
measure.	We	then	use	ISOMAP	to	perform	a	nonlinear	dimension	reduction	on	the	digits
data	with	the	dimension	set	as	6,	number	of	shortest	dissimilarities	retained	for	a	point	as
8,	and	ensure	that	you	analyze	the	largest	connected	group	by	specifying	fragmentedOK	as
TRUE.

Finally,	we	can	use	the	generated	ISOMAP	object	to	make	a	two-dimension	scatter	plot
(figure	in	step	6),	and	also	overlay	the	minimum	spanning	tree	with	lines	in	red	on	the
scatter	plot	(figure	in	step	7).



There’s	more…
You	can	also	use	the	RnavGraph	package	to	visualize	high	dimensional	data	(digits	in	this
case)	using	graphs	as	a	navigational	infrastructure.	For	more	information,	please	refer	to
http://www.icesi.edu.co/CRAN/web/packages/RnavGraph/vignettes/RnavGraph.pdf.

Here	is	a	description	of	how	you	can	use	RnavGraph	to	visualize	high	dimensional	data	in
a	graph:

1.	 First,	install	and	load	the	RnavGraph	and	graph	packages:

>	install.packages("RnavGraph")

>	source("http://bioconductor.org/biocLite.R")

>	biocLite("graph")

>	library(RnavGraph)

2.	 You	can	then	create	an	NG_data	object	from	the	digit	data:

>	digit.group	=	rep(c(1:9,0),	each	=	1100)

>	digit.ng_data	=	ng_data(name	=	"ISO_digits",

+	data	=	data.frame(digit.isomap$points),

+	shortnames	=	paste('i',1:6,	sep	=	''),

+	group	=	digit.group[digit.idx],

+	labels	=	as.character(digits.group[digit.idx]))

3.	 Create	an	NG_graph	object	from	NG_data:

>		V	=	shortnames(digit.ng_data)

>		G	=	completegraph(V)

>		LG	=linegraph(G)

>		LGnot	=	complement(LG)

>		ng.LG	=	ng_graph(name	=	"3D	Transition",	graph	=	LG)

>	ng.LGnot	=	ng_graph(name	=	"4D	Transition",	graph	=	LGnot)

4.	 Finally,	you	can	visualize	the	graph	in	the	tk2d	plot:

>	ng.i.digits	=	ng_image_array_gray('USPS	Handwritten	Digits',

+	digit.select,16,16,invert	=	TRUE,

+	img_in_row	=	FALSE)

>	vizDigits1	=	ng_2d(data	=	digit.ng_data,	graph	=	ng.LG,	images	=	

ng.i.digits)

>	vizDigits2	=	ng_2d(data	=	digit.ng_data,	graph	=	ng.LGnot,	images	=	

ng.i.digits)

>	nav	=	navGraph(data	=	digit.ng_data,	graph	=	list(ng.LG,	ng.LGnot),	

viz	=	list(vizDigits1,	vizDigits2))

http://www.icesi.edu.co/CRAN/web/packages/RnavGraph/vignettes/RnavGraph.pdf


A	3-D	Transition	graph	plot

5.	 One	can	also	view	a	4D	transition	graph	plot:

A	4D	transition	graph	plot







Performing	nonlinear	dimension
reduction	with	Local	Linear	Embedding
Locally	linear	embedding	(LLE)	is	an	extension	of	PCA,	which	reduces	data	that	lies	on
a	manifold	embedded	in	a	high	dimensional	space	into	a	low	dimensional	space.	In
contrast	to	ISOMAP,	which	is	a	global	approach	for	nonlinear	dimension	reduction,	LLE
is	a	local	approach	that	employs	a	linear	combination	of	the	k-nearest	neighbor	to	preserve
local	properties	of	data.	In	this	recipe,	we	will	give	a	short	introduction	of	how	to	use	LLE
on	an	s-curve	data.



Getting	ready
In	this	recipe,	we	will	use	digit	data	from	lle_scurve_data	within	the	lle	package	as	our
input	source.



How	to	do	it…
Perform	the	following	steps	to	perform	nonlinear	dimension	reduction	with	LLE:

1.	 First,	you	need	to	install	and	load	the	package,	lle:

>	install.packages("lle")

>	library(lle)

2.	 You	can	then	load	ll_scurve_data	from	lle:

>	data(	lle_scurve_data	)

3.	 Next,	perform	lle	on	lle_scurve_data:

>	X	=	lle_scurve_data

>	results	=	lle(	X=X	,	m=2,	k=12,		id=TRUE)

finding	neighbours

calculating	weights

intrinsic	dim:	mean=2.47875,	mode=2

computing	coordinates

4.	 Examine	the	result	with	the	str	and	plot	function:

>	str(	results	)

List	of	4

	$	Y					:	num	[1:800,	1:2]	-1.586	-0.415	0.896	0.513	1.477…

	$	X					:	num	[1:800,	1:3]	0.955	-0.66	-0.983	0.954	0.958…

	$	choise:	NULL

	$	id				:	num	[1:800]	3	3	2	3	2	2	2	3	3	3…

>plot(	results$Y,	main="embedded	data",	xlab=expression(y[1]),	

ylab=expression(y[2])	)



A	2-D	scatter	plot	of	embedded	data

5.	 Lastly,	you	can	use	plot_lle	to	plot	the	LLE	result:

>	plot_lle(	results$Y,	X,	FALSE,	col="red",	inter=TRUE	)

A	LLE	plot	of	LLE	result



How	it	works…
LLE	is	a	nonlinear	dimension	reduction	method,	which	computes	a	low	dimensional,
neighborhood,	preserving	embeddings	of	high	dimensional	data.	The	algorithm	of	LLE
can	be	illustrated	in	these	steps:	first,	LLE	computes	the	k-neighbors	of	each	data	point,	
.	Secondly,	it	computes	a	set	of	weights	for	each	point,	which	minimizes	the	residual	sum
of	errors,	which	can	best	reconstruct	each	data	point	from	its	neighbors.	The	residual	sum

of	errors	can	be	described	as	 ,	where	 	if	 	is	not	one	of

‘s	k-nearest	neighbor,	and	for	each	i,	 .	Finally,	find	the	vector,	Y,	which	is	best
reconstructed	by	the	weight,	W.	The	cost	function	can	be	illustrated	as	

,	with	the	constraint	that	 ,	and	 .

In	this	recipe,	we	demonstrate	how	to	perform	nonlinear	dimension	reduction	using	LLE.
First,	we	load	lle_scurve_data	from	lle.	We	then	perform	lle	with	two	dimensions	and
12	neighbors,	and	list	the	dimensions	for	every	data	point	by	specifying	id	=TRUE.	The
LLE	has	three	steps,	including:	building	a	neighborhood	for	each	point	in	the	data,	finding
the	weights	for	linearly	approximating	the	data	in	that	neighborhood,	and	finding	the	low
dimensional	coordinates.

Next,	we	can	examine	the	data	using	the	str	and	plot	functions.	The	str	function	returns
X,Y,	choice,	and	ID.	Here,	X	represents	the	input	data,	Y	stands	for	the	embedded	data,
choice	indicates	the	index	vector	of	the	kept	data,	while	subset	selection	and	ID	show	the
dimensions	of	every	data	input.	The	plot	function	returns	the	scatter	plot	of	the	embedded
data.	Lastly,	we	use	plot_lle	to	plot	the	result.	Here,	we	enable	the	interaction	mode	by
setting	the	inter	equal	to	TRUE.



See	also
Another	useful	package	for	nonlinear	dimension	reduction	is	RDRToolbox,	which	is	a
package	for	nonlinear	dimension	reduction	with	ISOMAP	and	LLE.	You	can	use	the
following	command	to	install	RDRToolbox:

>	source("http://bioconductor.org/biocLite.R")

>	biocLite("RDRToolbox")

>	library(RDRToolbox)





Chapter	12.	Big	Data	Analysis	(R	and
Hadoop)
In	this	chapter,	we	will	cover	the	following	topics:

Preparing	the	RHadoop	environment
Installing	rmr2
Installing	rhdfs
Operating	HDFS	with	rhdfs
Implementing	a	word	count	problem	with	RHadoop
Comparing	the	performance	between	an	R	MapReduce	program	and	a	standard	R
program
Testing	and	debugging	the	rmr2	program
Installing	plyrmr
Manipulating	data	with	plyrmr
Conducting	machine	learning	with	RHadoop
Configuring	RHadoop	clusters	on	Amazon	EMR



Introduction
RHadoop	is	a	collection	of	R	packages	that	enables	users	to	process	and	analyze	big	data
with	Hadoop.	Before	understanding	how	to	set	up	RHadoop	and	put	it	in	to	practice,	we
have	to	know	why	we	need	to	use	machine	learning	to	big-data	scale.

In	the	previous	chapters,	we	have	mentioned	how	useful	R	is	when	performing	data
analysis	and	machine	learning.	In	traditional	statistical	analysis,	the	focus	is	to	perform
analysis	on	historical	samples	(small	data),	which	may	ignore	rarely	occurring	but
valuable	events	and	results	to	uncertain	conclusions.

The	emergence	of	Cloud	technology	has	made	real-time	interaction	between	customers
and	businesses	much	more	frequent;	therefore,	the	focus	of	machine	learning	has	now
shifted	to	the	development	of	accurate	predictions	for	various	customers.	For	example,
businesses	can	provide	real-time	personal	recommendations	or	online	advertisements
based	on	personal	behavior	via	the	use	of	a	real-time	prediction	model.

However,	if	the	data	(for	example,	behaviors	of	all	online	users)	is	too	large	to	fit	in	the
memory	of	a	single	machine,	you	have	no	choice	but	to	use	a	supercomputer	or	some
other	scalable	solution.	The	most	popular	scalable	big-data	solution	is	Hadoop,	which	is
an	open	source	framework	able	to	store	and	perform	parallel	computations	across	clusters.
As	a	result,	you	can	use	RHadoop,	which	allows	R	to	leverage	the	scalability	of	Hadoop,
helping	to	process	and	analyze	big	data.	In	RHadoop,	there	are	five	main	packages,	which
are:

rmr:	This	is	an	interface	between	R	and	Hadoop	MapReduce,	which	calls	the	Hadoop
streaming	MapReduce	API	to	perform	MapReduce	jobs	across	Hadoop	clusters.	To
develop	an	R	MapReduce	program,	you	only	need	to	focus	on	the	design	of	the	map
and	reduce	functions,	and	the	remaining	scalability	issues	will	be	taken	care	of	by
Hadoop	itself.
rhdfs:	This	is	an	interface	between	R	and	HDFS,	which	calls	the	HDFS	API	to
access	the	data	stored	in	HDFS.	The	use	of	rhdfs	is	very	similar	to	the	use	of	the
Hadoop	shell,	which	allows	users	to	manipulate	HDFS	easily	from	the	R	console.
rhbase:	This	is	an	interface	between	R	and	HBase,	which	accesses	Hbase	and	is
distributed	in	clusters	through	a	Thrift	server.	You	can	use	rhbase	to	read/write	data
and	manipulate	tables	stored	within	HBase.
plyrmr:	This	is	a	higher-level	abstraction	of	MapReduce,	which	allows	users	to
perform	common	data	manipulation	in	a	plyr-like	syntax.	This	package	greatly
lowers	the	learning	curve	of	big-data	manipulation.
ravro:	This	allows	users	to	read	avro	files	in	R,	or	write	avro	files.	It	allows	R	to
exchange	data	with	HDFS.

In	this	chapter,	we	will	start	by	preparing	the	Hadoop	environment,	so	that	you	can	install
RHadoop.	We	then	cover	the	installation	of	three	main	packages:	rmr,	rhdfs,	and	plyrmr.
Next,	we	will	introduce	how	to	use	rmr	to	perform	MapReduce	from	R,	operate	an	HDFS
file	through	rhdfs,	and	perform	a	common	data	operation	using	plyrmr.	Further,	we	will
explore	how	to	perform	machine	learning	using	RHadoop.	Lastly,	we	will	introduce	how



to	deploy	multiple	RHadoop	clusters	on	Amazon	EC2.





Preparing	the	RHadoop	environment
As	RHadoop	requires	an	R	and	Hadoop	integrated	environment,	we	must	first	prepare	an
environment	with	both	R	and	Hadoop	installed.	Instead	of	building	a	new	Hadoop	system,
we	can	use	the	Cloudera	QuickStart	VM	(the	VM	is	free),	which	contains	a	single	node
Apache	Hadoop	Cluster	and	R.	In	this	recipe,	we	will	demonstrate	how	to	download	the
Cloudera	QuickStart	VM.



Getting	ready
To	use	the	Cloudera	QuickStart	VM,	it	is	suggested	that	you	should	prepare	a	64-bit	guest
OS	with	either	VMWare	or	VirtualBox,	or	the	KVM	installed.

If	you	choose	to	use	VMWare,	you	should	prepare	a	player	compatible	with	WorkStation
8.x	or	higher:	Player	4.x	or	higher,	ESXi	5.x	or	higher,	or	Fusion	4.x	or	higher.

Note,	4	GB	of	RAM	is	required	to	start	VM,	with	an	available	disk	space	of	at	least	3	GB.



How	to	do	it…
Perform	the	following	steps	to	set	up	a	Hadoop	environment	using	the	Cloudera
QuickStart	VM:

1.	 Visit	the	Cloudera	QuickStart	VM	download	site	(you	may	need	to	update	the	link	as
Cloudera	upgrades	its	VMs	,	the	current	version	of	CDH	is	5.3)	at
http://www.cloudera.com/content/cloudera/en/downloads/quickstart_vms/cdh-5-3-
x.html.

A	screenshot	of	the	Cloudera	QuickStart	VM	download	site

2.	 Depending	on	the	virtual	machine	platform	installed	on	your	OS,	choose	the
appropriate	link	(you	may	need	to	update	the	link	as	Cloudera	upgrades	its	VMs)	to
download	the	VM	file:

To	download	VMWare:	You	can	visit
https://downloads.cloudera.com/demo_vm/vmware/cloudera-quickstart-vm-
5.2.0-0-vmware.7z
To	download	KVM:	You	can	visit
https://downloads.cloudera.com/demo_vm/kvm/cloudera-quickstart-vm-5.2.0-0-
kvm.7z
To	download	VirtualBox:	You	can	visit
https://downloads.cloudera.com/demo_vm/virtualbox/cloudera-quickstart-vm-
5.2.0-0-virtualbox.7z

http://www.cloudera.com/content/cloudera/en/downloads/quickstart_vms/cdh-5-3-x.html
https://downloads.cloudera.com/demo_vm/vmware/cloudera-quickstart-vm-5.2.0-0-vmware.7z
https://downloads.cloudera.com/demo_vm/kvm/cloudera-quickstart-vm-5.2.0-0-kvm.7z
https://downloads.cloudera.com/demo_vm/virtualbox/cloudera-quickstart-vm-5.2.0-0-virtualbox.7z


3.	 Next,	you	can	start	the	QuickStart	VM	using	the	virtual	machine	platform	installed
on	your	OS.	You	should	see	the	desktop	of	Centos	6.2	in	a	few	minutes.

The	screenshot	of	Cloudera	QuickStart	VM.

4.	 You	can	then	open	a	terminal	and	type	hadoop,	which	will	display	a	list	of	functions
that	can	operate	a	Hadoop	cluster.

The	terminal	screenshot	after	typing	hadoop

5.	 Open	a	terminal	and	type	R.	Access	an	R	session	and	check	whether	version	3.1.1	is



already	installed	in	the	Cloudera	QuickStart	VM.	If	you	cannot	find	R	installed	in	the
VM,	please	use	the	following	command	to	install	R:

$	yum	install	R	R-core	R-core-devel	R-devel



How	it	works…
Instead	of	building	a	Hadoop	system	on	your	own,	you	can	use	the	Hadoop	VM
application	provided	by	Cloudera	(the	VM	is	free).	The	QuickStart	VM	runs	on	CentOS
6.2	with	a	single	node	Apache	Hadoop	cluster,	Hadoop	Ecosystem	module,	and	R
installed.	This	helps	you	to	save	time,	instead	of	requiring	you	to	learn	how	to	install	and
use	Hadoop.

The	QuickStart	VM	requires	you	to	have	a	computer	with	a	64-bit	guest	OS,	at	least	4	GB
of	RAM,	3	GB	of	disk	space,	and	either	VMWare,	VirtualBox,	or	KVM	installed.	As	a
result,	you	may	not	be	able	to	use	this	version	of	VM	on	some	computers.	As	an
alternative,	you	could	consider	using	Amazon’s	Elastic	MapReduce	instead.	We	will
illustrate	how	to	prepare	a	RHadoop	environment	in	EMR	in	the	last	recipe	of	this	chapter.

Setting	up	the	Cloudera	QuickStart	VM	is	simple.	Download	the	VM	from	the	download
site	and	then	open	the	built	image	with	either	VMWare,	VirtualBox,	or	KVM.	Once	you
can	see	the	desktop	of	CentOS,	you	can	then	access	the	terminal	and	type	hadoop	to	see
whether	Hadoop	is	working;	then,	type	R	to	see	whether	R	works	in	the	QuickStart	VM.



See	also
Besides	using	the	Cloudera	QuickStart	VM,	you	may	consider	using	a	Sandbox	VM
provided	by	Hontonworks	or	MapR.	You	can	find	Hontonworks	Sandbox	at
http://hortonworks.com/products/hortonworks-sandbox/#install	and	mapR	Sandbox
at	https://www.mapr.com/products/mapr-sandbox-hadoop/download.

http://hortonworks.com/products/hortonworks-sandbox/#install
https://www.mapr.com/products/mapr-sandbox-hadoop/download




Installing	rmr2
The	rmr2	package	allows	you	to	perform	big	data	processing	and	analysis	via	MapReduce
on	a	Hadoop	cluster.	To	perform	MapReduce	on	a	Hadoop	cluster,	you	have	to	install	R
and	rmr2	on	every	task	node.	In	this	recipe,	we	will	illustrate	how	to	install	rmr2	on	a
single	node	of	a	Hadoop	cluster.



Getting	ready
Ensure	that	you	have	completed	the	previous	recipe	by	starting	the	Cloudera	QuickStart
VM	and	connecting	the	VM	to	the	Internet,	so	that	you	can	proceed	with	downloading	and
installing	the	rmr2	package.



How	to	do	it…
Perform	the	following	steps	to	install	rmr2	on	the	QuickStart	VM:

1.	 First,	open	the	terminal	within	the	Cloudera	QuickStart	VM.
2.	 Use	the	permission	of	the	root	to	enter	an	R	session:

$	sudo	R

3.	 You	can	then	install	dependent	packages	before	installing	rmr2:

>	install.packages(c("codetools",	"Rcpp",	"RJSONIO",	"bitops",	

"digest",	"functional",	"stringr",	"plyr",	"reshape2",	"rJava",	

"caTools"))

4.	 Quit	the	R	session:

>	q()

5.	 Next,	you	can	download	rmr-3.3.0	to	the	QuickStart	VM.	You	may	need	to	update
the	link	if	Revolution	Analytics	upgrades	the	version	of	rmr2:

$	wget	--no-check-certificate	

https://raw.githubusercontent.com/RevolutionAnalytics/rmr2/3.3.0/build/

rmr2_3.3.0.tar.gz

6.	 You	can	then	install	rmr-3.3.0	to	the	QuickStart	VM:

$	sudo	R	CMD	INSTALL	rmr2_3.3.0.tar.gz

7.	 Lastly,	you	can	enter	an	R	session	and	use	the	library	function	to	test	whether	the
library	has	been	successfully	installed:

$	R

>	library(rmr2)



How	it	works…
In	order	to	perform	MapReduce	on	a	Hadoop	cluster,	you	have	to	install	R	and	RHadoop
on	every	task	node.	Here,	we	illustrate	how	to	install	rmr2	on	a	single	node	of	a	Hadoop
cluster.	First,	open	the	terminal	of	the	Cloudera	QuickStart	VM.	Before	installing	rmr2,
we	first	access	an	R	session	with	root	privileges	and	install	dependent	R	packages.

Next,	after	all	the	dependent	packages	are	installed,	quit	the	R	session	and	use	the	wget
command	in	the	Linux	shell	to	download	rmr-3.3.0	from	GitHub	to	the	local	filesystem.
You	can	then	begin	the	installation	of	rmr2.	Lastly,	you	can	access	an	R	session	and	use
the	library	function	to	validate	whether	the	package	has	been	installed.



See	also
To	see	more	information	and	read	updates	about	RHadoop,	you	can	refer	to	the
RHadoop	wiki	page	hosted	on	GitHub:
https://github.com/RevolutionAnalytics/RHadoop/wiki

https://github.com/RevolutionAnalytics/RHadoop/wiki




Installing	rhdfs
The	rhdfs	package	is	the	interface	between	R	and	HDFS,	which	allows	users	to	access
HDFS	from	an	R	console.	Similar	to	rmr2,	one	should	install	rhdfs	on	every	task	node,	so
that	one	can	access	HDFS	resources	through	R.	In	this	recipe,	we	will	introduce	how	to
install	rhdfs	on	the	Cloudera	QuickStart	VM.



Getting	ready
Ensure	that	you	have	completed	the	previous	recipe	by	starting	the	Cloudera	QuickStart
VM	and	connecting	the	VM	to	the	Internet,	so	that	you	can	proceed	with	downloading	and
installing	the	rhdfs	package.



How	to	do	it…
Perform	the	following	steps	to	install	rhdfs:

1.	 First,	you	can	download	rhdfs	1.0.8	from	GitHub.	You	may	need	to	update	the	link
if	Revolution	Analytics	upgrades	the	version	of	rhdfs:

$wget	--no-check-certificate	

https://raw.github.com/RevolutionAnalytics/rhdfs/master/build/rhdfs_1.0

.8.tar.gz

2.	 Next,	you	can	install	rhdfs	under	the	command-line	mode:

$	sudo	HADOOP_CMD=/usr/bin/hadoop		R	CMD	INSTALL	rhdfs_1.0.8.tar.gz

3.	 You	can	then	set	up	JAVA_HOME.	The	configuration	of	JAVA_HOME	depends	on	the
installed	Java	version	within	the	VM:

$	sudo	JAVA_HOME=/usr/java/jdk1.7.0_67-cloudera	R	CMD	javareconf

4.	 Last,	you	can	set	up	the	system	environment	and	initialize	rhdfs.	You	may	need	to
update	the	environment	setup	if	you	use	a	different	version	of	QuickStart	VM:

$	R

>	Sys.setenv(HADOOP_CMD="/usr/bin/hadoop")

>	Sys.setenv(HADOOP_STREAMING="/usr/lib/hadoop-mapreduce/hadoop-

streaming-2.5.0-cdh5.2.0.jar")

>	library(rhdfs)

>	hdfs.init()



How	it	works…
The	package,	rhdfs,	provides	functions	so	that	users	can	manage	HDFS	using	R.	Similar
to	rmr2,	you	should	install	rhdfs	on	every	task	node,	so	that	one	can	access	HDFS
through	the	R	console.

To	install	rhdfs,	you	should	first	download	rhdfs	from	GitHub.	You	can	then	install
rhdfs	in	R	by	specifying	where	the	HADOOP_CMD	is	located.	You	must	configure	R	with
Java	support	through	the	command,	javareconf.

Next,	you	can	access	R	and	configure	where	HADOOP_CMD	and	HADOOP_STREAMING	are
located.	Lastly,	you	can	initialize	rhdfs	via	the	rhdfs.init	function,	which	allows	you	to
begin	operating	HDFS	through	rhdfs.



See	also
To	find	where	HADOOP_CMD	is	located,	you	can	use	the	which	hadoop	command	in	the
Linux	shell.	In	most	Hadoop	systems,	HADOOP_CMD	is	located	at	/usr/bin/hadoop.
As	for	the	location	of	HADOOP_STREAMING,	the	streaming	JAR	file	is	often	located	in
/usr/lib/hadoop-mapreduce/.	However,	if	you	cannot	find	the	directory,
/usr/lib/Hadoop-mapreduce,	in	your	Linux	system,	you	can	search	the	streaming
JAR	by	using	the	locate	command.	For	example:

$	sudo	updatedb

$	locate	streaming	|	grep	jar	|	more





Operating	HDFS	with	rhdfs
The	rhdfs	package	is	an	interface	between	Hadoop	and	R,	which	can	call	an	HDFS	API	in
the	backend	to	operate	HDFS.	As	a	result,	you	can	easily	operate	HDFS	from	the	R
console	through	the	use	of	the	rhdfs	package.	In	the	following	recipe,	we	will
demonstrate	how	to	use	the	rhdfs	function	to	manipulate	HDFS.



Getting	ready
To	proceed	with	this	recipe,	you	need	to	have	completed	the	previous	recipe	by	installing
rhdfs	into	R,	and	validate	that	you	can	initial	HDFS	via	the	hdfs.init	function.



How	to	do	it…
Perform	the	following	steps	to	operate	files	stored	on	HDFS:

1.	 Initialize	the	rhdfs	package:

>	Sys.setenv(HADOOP_CMD="/usr/bin/hadoop")

>	Sys.setenv(HADOOP_STREAMING="/usr/lib/hadoop-mapreduce/hadoop-

streaming-2.5.0-cdh5.2.0.jar")

>	library(rhdfs)

>	hdfs.init	()

2.	 You	can	then	manipulate	files	stored	on	HDFS,	as	follows:

hdfs.put:	Copy	a	file	from	the	local	filesystem	to	HDFS:

>	hdfs.put('word.txt',	'./')

hdfs.ls:	Read	the	list	of	directory	from	HDFS:

>	hdfs.ls('./')

hdfs.copy:	Copy	a	file	from	one	HDFS	directory	to	another:

>	hdfs.copy('word.txt',	'wordcnt.txt')

hdfs.move	:	Move	a	file	from	one	HDFS	directory	to	another:

>	hdfs.move('wordcnt.txt',	'./data/wordcnt.txt')

hdfs.delete:	Delete	an	HDFS	directory	from	R:

>	hdfs.delete('./data/')

hdfs.rm:	Delete	an	HDFS	directory	from	R:

>	hdfs.rm('./data/')

hdfs.get:	Download	a	file	from	HDFS	to	a	local	filesystem:

>	hdfs.get(word.txt',	'/home/cloudera/word.txt')

hdfs.rename:	Rename	a	file	stored	on	HDFS:

hdfs.rename('./test/q1.txt','./test/test.txt')

hdfs.chmod:	Change	the	permissions	of	a	file	or	directory:

>	hdfs.chmod('test',	permissions=	'777')

hdfs.file.info:	Read	the	meta	information	of	the	HDFS	file:

>	hdfs.file.info('./')

3.	 Also,	you	can	write	stream	to	the	HDFS	file:

>	f	=	hdfs.file("iris.txt","w")

>	data(iris)

>	hdfs.write(iris,f)

>	hdfs.close(f)



4.	 Lastly,	you	can	read	stream	from	the	HDFS	file:

>	f	=	hdfs.file("iris.txt",	"r")

>	dfserialized	=	hdfs.read(f)

>	df	=	unserialize(dfserialized)

>	df

>	hdfs.close(f)



How	it	works…
In	this	recipe,	we	demonstrate	how	to	manipulate	HDFS	using	the	rhdfs	package.
Normally,	you	can	use	the	Hadoop	shell	to	manipulate	HDFS,	but	if	you	would	like	to
access	HDFS	from	R,	you	can	use	the	rhdfs	package.

Before	you	start	using	rhdfs,	you	have	to	initialize	rhdfs	with	hdfs.init().	After
initialization,	you	can	operate	HDFS	through	the	functions	provided	in	the	rhdfs	package.

Besides	manipulating	HDFS	files,	you	can	exchange	streams	to	HDFS	through	hdfs.read
and	hdfs.write.	We,	therefore,	demonstrate	how	to	write	a	data	frame	in	R	to	an	HDFS
file,	iris.txt,	using	hdfs.write.	Lastly,	you	can	recover	the	written	file	back	to	the	data
frame	using	the	hdfs.read	function	and	the	unserialize	function.



See	also
To	initialize	rhdfs,	you	have	to	set	HADOOP_CMD	and	HADOOP_STREAMING	in	the	system
environment.	Instead	of	setting	the	configuration	each	time	you’re	using	rhdfs,	you
can	put	the	configurations	in	the	.rprofile	file.	Therefore,	every	time	you	start	an	R
session,	the	configuration	will	be	automatically	loaded.





Implementing	a	word	count	problem	with
RHadoop
To	demonstrate	how	MapReduce	works,	we	illustrate	the	example	of	a	word	count,	which
counts	the	number	of	occurrences	of	each	word	in	a	given	input	set.	In	this	recipe,	we	will
demonstrate	how	to	use	rmr2	to	implement	a	word	count	problem.



Getting	ready
In	this	recipe,	we	will	need	an	input	file	as	our	word	count	program	input.	You	can
download	the	example	input	from
https://github.com/ywchiu/ml_R_cookbook/tree/master/CH12.

https://github.com/ywchiu/ml_R_cookbook/tree/master/CH12


How	to	do	it…
Perform	the	following	steps	to	implement	the	word	count	program:

1.	 First,	you	need	to	configure	the	system	environment,	and	then	load	rmr2	and	rhdfs
into	an	R	session.	You	may	need	to	update	the	use	of	the	JAR	file	if	you	use	a
different	version	of	QuickStart	VM:

>	Sys.setenv(HADOOP_CMD="/usr/bin/hadoop")

>	Sys.setenv(HADOOP_STREAMING="/usr/lib/hadoop-mapreduce/hadoop-

streaming-2.5.0-cdh5.2.0.jar	")

>	library(rmr2)

>	library(rhdfs)

>	hdfs.init()

2.	 You	can	then	create	a	directory	on	HDFS	and	put	the	input	file	into	the	newly	created
directory:

>	hdfs.mkdir("/user/cloudera/wordcount/data")

>	hdfs.put("wc_input.txt",	"/user/cloudera/wordcount/data")

3.	 Next,	you	can	create	a	map	function:

>	map	=	function(.,lines)	{	keyval(

+			unlist(

+					strsplit(

+							x	=	lines,	

+							split	=	"	+")),

+			1)}

4.	 Create	a	reduce	function:

>	reduce	=	function(word,	counts)	{	

+			keyval(word,	sum(counts))	

+	}

5.	 Call	the	MapReduce	program	to	count	the	words	within	a	document:

>	hdfs.root	=	'wordcount'	>	hdfs.data	=	file.path(hdfs.root,	'data')

>	hdfs.out	=	file.path(hdfs.root,	'out')

>	wordcount	=	function	(input,	output=NULL)	{	

+		mapreduce(input=input,	output=output,	input.format="text",	map=map,	

+		reduce=reduce)	

+	}	

>	out	=	wordcount(hdfs.data,	hdfs.out)

6.	 Lastly,	you	can	retrieve	the	top	10	occurring	words	within	the	document:

>	results	=	from.dfs(out)	

>	results$key[order(results$val,	decreasing	=	TRUE)][1:10]



How	it	works…
In	this	recipe,	we	demonstrate	how	to	implement	a	word	count	using	the	rmr2	package.
First,	we	need	to	configure	the	system	environment	and	load	rhdfs	and	rmr2	into	R.	Then,
we	specify	the	input	of	our	word	count	program	from	the	local	filesystem	into	the	HDFS
directory,	/user/cloudera/wordcount/data,	via	the	hdfs.put	function.

Next,	we	begin	implementing	the	MapReduce	program.	Normally,	we	can	divide	the
MapReduce	program	into	the	map	and	reduce	functions.	In	the	map	function,	we	first	use
the	strsplit	function	to	split	each	line	into	words.	Then,	as	the	strsplit	function	returns
a	list	of	words,	we	can	use	the	unlist	function	to	character	vectors.	Lastly,	we	can	return
key-value	pairs	with	each	word	as	a	key	and	the	value	as	one.	As	the	reduce	function
receives	the	key-value	pair	generated	from	the	map	function,	the	reduce	function	sums	the
count	and	returns	the	number	of	occurrences	of	each	word	(or	key).

After	we	have	implemented	the	map	and	reduce	functions,	we	can	submit	our	job	via	the
mapreduce	function.	Normally,	the	mapreduce	function	requires	four	inputs,	which	are	the
HDFS	input	path,	the	HDFS	output	path,	the	map	function,	and	the	reduce	function.	In	this
case,	we	specify	the	input	as	wordcount/data,	output	as	wordcount/out,	map	function	as
map,	reduce	function	as	reduce,	and	wrap	the	mapreduce	call	in	function,	wordcount.
Lastly,	we	call	the	function,	wordcount	and	store	the	output	path	in	the	variable,	out.

We	can	use	the	from.dfs	function	to	load	the	HDFS	data	into	the	results	variable,	which
contains	the	mapping	of	words	and	number	of	occurrences.	We	can	then	generate	the	top
10	occurring	words	from	the	results	variable.



See	also
In	this	recipe,	we	demonstrate	how	to	write	an	R	MapReduce	program	to	solve	a
word	count	problem.	However,	if	you	are	interested	in	how	to	write	a	native	Java
MapReduce	program,	you	can	refer	to	http://hadoop.apache.org/docs/current/hadoop-
mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html.

http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html




Comparing	the	performance	between	an
R	MapReduce	program	and	a	standard	R
program
Those	not	familiar	with	how	Hadoop	works	may	often	see	Hadoop	as	a	remedy	for	big
data	processing.	Some	might	believe	that	Hadoop	can	return	the	processed	results	for	any
size	of	data	within	a	few	milliseconds.	In	this	recipe,	we	will	compare	the	performance
between	an	R	MapReduce	program	and	a	standard	R	program	to	demonstrate	that	Hadoop
does	not	perform	as	quickly	as	some	may	believe.



Getting	ready
In	this	recipe,	you	should	have	completed	the	previous	recipe	by	installing	rmr2	into	the	R
environment.



How	to	do	it…
Perform	the	following	steps	to	compare	the	performance	of	a	standard	R	program	and	an
R	MapReduce	program:

1.	 First,	you	can	implement	a	standard	R	program	to	have	all	numbers	squared:

>	a.time	=	proc.time()	

>	small.ints2=1:100000	

>	result.normal	=	sapply(small.ints2,	function(x)	x^2)	

>	proc.time()	-	a.time

2.	 To	compare	the	performance,	you	can	implement	an	R	MapReduce	program	to	have
all	numbers	squared:

>	b.time	=	proc.time()	

>	small.ints=	to.dfs(1:100000)	

>	result	=	mapreduce(input	=	small.ints,	map	=	function(k,v)							

cbind(v,v^2))	

>	proc.time()	-	b.time



How	it	works…
In	this	recipe,	we	implement	two	programs	to	square	all	the	numbers.	In	the	first	program,
we	use	a	standard	R	function,	sapply,	to	square	the	sequence	from	1	to	100,000.	To	record
the	program	execution	time,	we	first	record	the	processing	time	before	the	execution	in
a.time,	and	then	subtract	a.time	from	the	current	processing	time	after	the	execution.
Normally,	the	execution	takes	no	more	than	10	seconds.	In	the	second	program,	we	use	the
rmr2	package	to	implement	a	program	in	the	R	MapReduce	version.	In	this	program,	we
also	record	the	execution	time.	Normally,	this	program	takes	a	few	minutes	to	complete	a
task.

The	performance	comparison	shows	that	a	standard	R	program	outperforms	the
MapReduce	program	when	processing	small	amounts	of	data.	This	is	because	a	Hadoop
system	often	requires	time	to	spawn	daemons,	job	coordination	between	daemons,	and
fetching	data	from	data	nodes.	Therefore,	a	MapReduce	program	often	takes	a	few
minutes	to	a	couple	of	hours	to	finish	the	execution.	As	a	result,	if	you	can	fit	your	data	in
the	memory,	you	should	write	a	standard	R	program	to	solve	the	problem.	Otherwise,	if
the	data	is	too	large	to	fit	in	the	memory,	you	can	implement	a	MapReduce	solution.



See	also
In	order	to	check	whether	a	job	will	run	smoothly	and	efficiently	in	Hadoop,	you	can
run	a	MapReduce	benchmark,	MRBench,	to	evaluate	the	performance	of	the	job:

$	hadoop	jar	/usr/lib/hadoop-0.20-mapreduce/hadoop-test.jar	mrbench	-

numRuns	50





Testing	and	debugging	the	rmr2	program
Since	running	a	MapReduce	program	will	require	a	considerable	amount	of	time,	varying
from	a	few	minutes	to	several	hours,	testing	and	debugging	become	very	important.	In	this
recipe,	we	will	illustrate	some	techniques	you	can	use	to	troubleshoot	an	R	MapReduce
program.



Getting	ready
In	this	recipe,	you	should	have	completed	the	previous	recipe	by	installing	rmr2	into	an	R
environment.



How	to	do	it…
Perform	the	following	steps	to	test	and	debug	an	R	MapReduce	program:

1.	 First,	you	can	configure	the	backend	as	local	in	rmr.options:

>	rmr.options(backend	=	'local')

2.	 Again,	you	can	execute	the	number	squared	MapReduce	program	mentioned	in	the
previous	recipe:

>	b.time	=	proc.time()	

>	small.ints=	to.dfs(1:100000)	

>	result	=	mapreduce(input	=	small.ints,	map	=	function(k,v)							

cbind(v,v^2))	

>	proc.time()	-	b.time

3.	 In	addition	to	this,	if	you	want	to	print	the	structure	information	of	any	variable	in	the
MapReduce	program,	you	can	use	the	rmr.str	function:

>	out	=	mapreduce(to.dfs(1),	map	=	function(k,	v)	rmr.str(v))

Dotted	pair	list	of	14

	$	:	language	mapreduce(to.dfs(1),	map	=	function(k,	v)	rmr.str(v))

	$	:	language	mr(map	=	map,	reduce	=	reduce,	combine	=	combine,	

vectorized.reduce,	in.folder	=	if	(is.list(input))	{					lapply(input,	

to.dfs.path)	...

	$	:	language	c.keyval(do.call(c,	lapply(in.folder,	function(fname)	{					

kv	=	get.data(fname)	...

	$	:	language	do.call(c,	lapply(in.folder,	function(fname)	{					kv	=	

get.data(fname)	...

	$	:	language	lapply(in.folder,	function(fname)	{					kv	=	

get.data(fname)	...

	$	:	language	FUN("/tmp/Rtmp813BFJ/file25af6e85cfde"[[1L]],	...)

	$	:	language	unname(tapply(1:lkv,	

ceiling((1:lkv)/(lkv/(object.size(kv)/10^6))),	function(r)	{					kvr	=	

slice.keyval(kv,	r)	...

	$	:	language	tapply(1:lkv,	

ceiling((1:lkv)/(lkv/(object.size(kv)/10^6))),	function(r)	{					kvr	=	

slice.keyval(kv,	r)	...

	$	:	language	lapply(X	=	split(X,	group),	FUN	=	FUN,	...)

	$	:	language	FUN(X[[1L]],	...)

	$	:	language	as.keyval(map(keys(kvr),	values(kvr)))

	$	:	language	is.keyval(x)

	$	:	language	map(keys(kvr),	values(kvr))

	$	:length	2	rmr.str(v)

		..-	attr(*,	"srcref")=Class	'srcref'		atomic	[1:8]	1	34	1	58	34	58	1	

1

		..	..	..-	attr(*,	"srcfile")=Classes	'srcfilecopy',	'srcfile'	

<environment:	0x3f984f0>	

v

	num	1



How	it	works…
In	this	recipe,	we	introduced	some	debugging	and	testing	techniques	you	can	use	while
implementing	the	MapReduce	program.	First,	we	introduced	the	technique	to	test	a
MapReduce	program	in	a	local	mode.	If	you	would	like	to	run	the	MapReduce	program	in
a	pseudo	distributed	or	fully	distributed	mode,	it	would	take	you	a	few	minutes	to	several
hours	to	complete	the	task,	which	would	involve	a	lot	of	wastage	of	time	while
troubleshooting	your	MapReduce	program.	Therefore,	you	can	set	the	backend	to	the	local
mode	in	rmr.options	so	that	the	program	will	be	executed	in	the	local	mode,	which	takes
lesser	time	to	execute.

Another	debugging	technique	is	to	list	the	content	of	the	variable	within	the	map	or	reduce
function.	In	an	R	program,	you	can	use	the	str	function	to	display	the	compact	structure
of	a	single	variable.	In	rmr2,	the	package	also	provides	a	function	named	rmr.str,	which
allows	you	to	print	out	the	content	of	a	single	variable	onto	the	console.	In	this	example,
we	use	rmr.str	to	print	the	content	of	variables	within	a	MapReduce	program.



See	also
For	those	who	are	interested	in	the	option	settings	for	the	rmr2	package,	you	can
refer	to	the	help	document	of	rmr.options:

>	help(rmr.options)





Installing	plyrmr
The	plyrmr	package	provides	common	operations	(as	found	in	plyr	or	reshape2)	for
users	to	easily	perform	data	manipulation	through	the	MapReduce	framework.	In	this
recipe,	we	will	introduce	how	to	install	plyrmr	on	the	Hadoop	system.



Getting	ready
Ensure	that	you	have	completed	the	previous	recipe	by	starting	the	Cloudera	QuickStart
VM	and	connecting	the	VM	to	the	Internet.	Also,	you	need	to	have	the	rmr2	package
installed	beforehand.



How	to	do	it…
Perform	the	following	steps	to	install	plyrmr	on	the	Hadoop	system:

1.	 First,	you	should	install	libxml2-devel	and	curl-devel	in	the	Linux	shell:

$	yum	install	libxml2-devel

$	sudo	yum	install	curl-devel

2.	 You	can	then	access	R	and	install	the	dependent	packages:

$	sudo	R

>	Install.packages(c("	Rcurl",	"httr"),		dependencies	=	TRUE

>	Install.packages("devtools",	dependencies	=	TRUE)

>	library(devtools)

>	install_github("pryr",	"hadley")

>	install.packages(c("	R.methodsS3",	"hydroPSO"),		dependencies	=	TRUE)

>	q()

3.	 Next,	you	can	download	plyrmr	0.5.0	and	install	it	on	Hadoop	VM.	You	may	need
to	update	the	link	if	Revolution	Analytics	upgrades	the	version	of	plyrmr:

$	wget	-no-check-certificate	

https://raw.github.com/RevolutionAnalytics/plyrmr/master/build/plyrmr_0

.5.0.tar.gz

$	sudo	R	CMD	INSTALL	plyrmr_0.5.0.tar.gz

4.	 Lastly,	validate	the	installation:

$	R

>	library(plyrmr)



How	it	works…
Besides	writing	an	R	MapReduce	program	using	the	rmr2	package,	you	can	use	the
plyrmr	to	manipulate	data.	The	plyrmr	package	is	similar	to	hive	and	pig	in	the	Hadoop
ecosystem,	which	is	the	abstraction	of	the	MapReduce	program.	Therefore,	we	can
implement	an	R	MapReduce	program	in	plyr	style	instead	of	implementing	the	map	f	and
reduce	functions.

To	install	plyrmr,	first	install	the	package	of	libxml2-devel	and	curl-devel,	using	the
yum	install	command.	Then,	access	R	and	install	the	dependent	packages.	Lastly,
download	the	file	from	GitHub	and	install	plyrmr	in	R.



See	also
To	read	more	information	about	plyrmr,	you	can	use	the	help	function	to	refer	to	the
following	document:

>	help(package=plyrmr)	





Manipulating	data	with	plyrmr
While	writing	a	MapReduce	program	with	rmr2	is	much	easier	than	writing	a	native	Java
version,	it	is	still	hard	for	nondevelopers	to	write	a	MapReduce	program.	Therefore,	you
can	use	plyrmr,	a	high-level	abstraction	of	the	MapReduce	program,	so	that	you	can	use
plyr-like	operations	to	manipulate	big	data.	In	this	recipe,	we	will	introduce	some
operations	you	can	use	to	manipulate	data.



Getting	ready
In	this	recipe,	you	should	have	completed	the	previous	recipes	by	installing	plyrmr	and
rmr2	in	R.



How	to	do	it…
Perform	the	following	steps	to	manipulate	data	with	plyrmr:

1.	 First,	you	need	to	load	both	plyrmr	and	rmr2	into	R:

>	library(rmr2)

>	library(plyrmr)

2.	 You	can	then	set	the	execution	mode	to	the	local	mode:

>	plyrmr.options(backend="local")

3.	 Next,	load	the	Titanic	dataset	into	R:

>	data(Titanic)

>	titanic	=	data.frame(Titanic)

4.	 Begin	the	operation	by	filtering	the	data:

>	where(

+				Titanic,	

+	Freq	>=100)

5.	 You	can	also	use	a	pipe	operator	to	filter	the	data:

>	titanic	%|%	where(Freq	>=100)

6.	 Put	the	Titanic	data	into	HDFS	and	load	the	path	of	the	data	to	the	variable,	tidata:

>	tidata	=	to.dfs(data.frame(Titanic),	output	=	'/tmp/titanic')

>	tidata

7.	 Next,	you	can	generate	a	summation	of	the	frequency	from	the	Titanic	data:

>	input(tidata)	%|%	transmute(sum(Freq))

8.	 You	can	also	group	the	frequency	by	sex:

>	input(tidata)	%|%	group(Sex)	%|%	transmute(sum(Freq))

9.	 You	can	then	sample	10	records	out	of	the	population:

>	sample(input(tidata),	n=10)

10.	 In	addition	to	this,	you	can	use	plyrmr	to	join	two	datasets:

>	convert_tb	=	data.frame(Label=c("No","Yes"),	Symbol=c(0,1))

ctb	=	to.dfs(convert_tb,	output	=	'convert')

>	as.data.frame(plyrmr::merge(input(tidata),	input(ctb),	

by.x="Survived",	by.y="Label"))

>	file.remove('convert')



How	it	works…
In	this	recipe,	we	introduce	how	to	use	plyrmr	to	manipulate	data.	First,	we	need	to	load
the	plyrmr	package	into	R.	Then,	similar	to	rmr2,	you	have	to	set	the	backend	option	of
plyrmr	as	the	local	mode.	Otherwise,	you	will	have	to	wait	anywhere	between	a	few
minutes	to	several	hours	if	plyrmr	is	running	on	Hadoop	mode	(the	default	setting).

Next,	we	can	begin	the	data	manipulation	with	data	filtering.	You	can	choose	to	call	the
function	nested	inside	the	other	function	call	in	step	4.	On	the	other	hand,	you	can	use	the
pipe	operator,	%|%,	to	chain	multiple	operations.	Therefore,	we	can	filter	data	similar	to
step	4,	using	pipe	operators	in	step	5.

Next,	you	can	input	the	dataset	into	either	the	HDFS	or	local	filesystem,	using	to.dfs	in
accordance	with	the	current	running	mode.	The	function	will	generate	the	path	of	the
dataset	and	save	it	in	the	variable,	tidata.	By	knowing	the	path,	you	can	access	the	data
using	the	input	function.	Next,	we	illustrate	how	to	generate	a	summation	of	the
frequency	from	the	Titanic	dataset	with	the	transmute	and	sum	functions.	Also,	plyrmr
allows	users	to	sum	up	the	frequency	by	gender.

Additionally,	in	order	to	sample	data	from	a	population,	you	can	also	use	the	sample
function	to	select	10	records	out	of	the	Titanic	dataset.	Lastly,	we	demonstrate	how	to	join
two	datasets	using	the	merge	function	from	plyrmr.



See	also
Here	we	list	some	functions	that	can	be	used	to	manipulate	data	with	plyrmr.	You	may
refer	to	the	help	function	for	further	details	on	their	usage	and	functionalities:

Data	manipulation:

bind.cols:	This	adds	new	columns
select:	This	is	used	to	select	columns
where:	This	is	used	to	select	rows
transmute:	This	uses	all	of	the	above	plus	their	summaries

From	reshape2:

melt	and	dcast:	It	converts	long	and	wide	data	frames

Summary:

count

quantile

sample

Extract:

top.k

bottom.k





Conducting	machine	learning	with
RHadoop
In	the	previous	chapters,	we	have	demonstrated	how	powerful	R	is	when	used	to	solve
machine	learning	problems.	Also,	we	have	shown	that	the	use	of	Hadoop	allows	R	to
process	big	data	in	parallel.	At	this	point,	some	may	believe	that	the	use	of	RHadoop	can
easily	solve	machine	learning	problems	of	big	data	via	numerous	existing	machine
learning	packages.	However,	you	cannot	use	most	of	these	to	solve	machine	learning
problems	as	they	cannot	be	executed	in	the	MapReduce	mode.	In	the	following	recipe,	we
will	demonstrate	how	to	implement	a	MapReduce	version	of	linear	regression	and
compare	this	version	with	the	one	using	the	lm	function.



Getting	ready
In	this	recipe,	you	should	have	completed	the	previous	recipe	by	installing	rmr2	into	the	R
environment.



How	to	do	it…
Perform	the	following	steps	to	implement	a	linear	regression	in	MapReduce:

1.	 First,	load	the	cats	dataset	from	the	MASS	package:

>	library(MASS)

>	data(cats)

>	X	=	matrix(cats$Bwt)

>	y	=	matrix(cats$Hwt)

2.	 You	can	then	generate	a	linear	regression	model	by	calling	the	lm	function:

>	model	=	lm(y~X)

>	summary(model)

Call:

lm(formula	=	y	~	X)

Residuals:

				Min						1Q		Median						3Q					Max	

-3.5694	-0.9634	-0.0921		1.0426		5.1238	

Coefficients:

												Estimate	Std.	Error	t	value	Pr(>|t|)				

(Intercept)		-0.3567					0.6923		-0.515				0.607				

X													4.0341					0.2503		16.119			<2e-16	***

---

Signif.	codes:		

0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1

Residual	standard	error:	1.452	on	142	degrees	of	freedom

Multiple	R-squared:		0.6466,		Adjusted	R-squared:		0.6441	

F-statistic:	259.8	on	1	and	142	DF,		p-value:	<	2.2e-16

3.	 You	can	now	make	a	regression	plot	with	the	given	data	points	and	model:

>	plot(y~X)

>	abline(model,	col="red")



Linear	regression	plot	of	cats	dataset

4.	 Load	rmr2	into	R:

>	Sys.setenv(HADOOP_CMD="/usr/bin/hadoop")

>	Sys.setenv(HADOOP_STREAMING="/usr/lib/hadoop-mapreduce/hadoop->	

streaming-2.5.0-cdh5.2.0.jar")

>	library(rmr2)

>	rmr.options(backend="local")

5.	 You	can	then	set	up	X	and	y	values:

>	X	=	matrix(cats$Bwt)

>	X.index	=	to.dfs(cbind(1:nrow(X),	X))

>	y	=	as.matrix(cats$Hwt)

6.	 Make	a	Sum	function	to	sum	up	the	values:

>	Sum	=	

+			function(.,	YY)	

+					keyval(1,	list(Reduce('+',	YY)))

7.	 Compute	Xtx	in	MapReduce,	Job1:

>	XtX	=	

+				values(

+						from.dfs(



+								mapreduce(

+										input	=	X.index,

+										map	=	

+												function(.,	Xi)	{

+														Xi	=	Xi[,-1]

+														keyval(1,	list(t(Xi)	%*%	Xi))},

+										reduce	=	Sum,

+										combine	=	TRUE)))[[1]]

8.	 You	can	then	compute	Xty	in	MapReduce,	Job2:

Xty	=	

+				values(

+						from.dfs(

+								mapreduce(

+										input	=	X.index,

+										map	=	function(.,	Xi)	{

+												yi	=	y[Xi[,1],]

+												Xi	=	Xi[,-1]

+												keyval(1,	list(t(Xi)	%*%	yi))},

+										reduce	=	Sum,

+										combine	=	TRUE)))[[1]]

9.	 Lastly,	you	can	derive	the	coefficient	from	XtX	and	Xty:

>	solve(XtX,	Xty)

									[,1]

[1,]	3.907113



How	it	works…
In	this	recipe,	we	demonstrate	how	to	implement	linear	logistic	regression	in	a
MapReduce	fashion	in	R.	Before	we	start	the	implementation,	we	review	how	traditional
linear	models	work.	We	first	retrieve	the	cats	dataset	from	the	MASS	package.	We	then
load	X	as	the	body	weight	(Bwt)	and	y	as	the	heart	weight	(Hwt).

Next,	we	begin	to	fit	the	data	into	a	linear	regression	model	using	the	lm	function.	We	can
then	compute	the	fitted	model	and	obtain	the	summary	of	the	model.	The	summary	shows
that	the	coefficient	is	4.0341	and	the	intercept	is	-0.3567.	Furthermore,	we	draw	a	scatter
plot	in	accordance	with	the	given	data	points	and	then	draw	a	regression	line	on	the	plot.

As	we	cannot	perform	linear	regression	using	the	lm	function	in	the	MapReduce	form,	we
have	to	rewrite	the	regression	model	in	a	MapReduce	fashion.	Here,	we	would	like	to
implement	a	MapReduce	version	of	linear	regression	in	three	steps,	which	are:	calculate
the	Xtx	value	with	the	MapReduce,	job1,	calculate	the	Xty	value	with	MapReduce,	job2,
and	then	derive	the	coefficient	value:

In	the	first	step,	we	pass	the	matrix,	X,	as	the	input	to	the	map	function.	The	map
function	then	calculates	the	cross	product	of	the	transposed	matrix,	X,	and,	X.	The
reduce	function	then	performs	the	sum	operation	defined	in	the	previous	section.
In	the	second	step,	the	procedure	of	calculating	Xty	is	similar	to	calculating	XtX.	The
procedure	calculates	the	cross	product	of	the	transposed	matrix,	X,	and,	y.	The
reduce	function	then	performs	the	sum	operation.
Lastly,	we	use	the	solve	function	to	derive	the	coefficient,	which	is	3.907113.

As	the	results	show,	the	coefficients	computed	by	lm	and	MapReduce	differ	slightly.
Generally	speaking,	the	coefficient	computed	by	the	lm	model	is	more	accurate	than	the
one	calculated	by	MapReduce.	However,	if	your	data	is	too	large	to	fit	in	the	memory,	you
have	no	choice	but	to	implement	linear	regression	in	the	MapReduce	version.



See	also
You	can	access	more	information	on	machine	learning	algorithms	at:
https://github.com/RevolutionAnalytics/rmr2/tree/master/pkg/tests

https://github.com/RevolutionAnalytics/rmr2/tree/master/pkg/tests




Configuring	RHadoop	clusters	on
Amazon	EMR
Until	now,	we	have	only	demonstrated	how	to	run	a	RHadoop	program	in	a	single	Hadoop
node.	In	order	to	test	our	RHadoop	program	on	a	multi-node	cluster,	the	only	thing	you
need	to	do	is	to	install	RHadoop	on	all	the	task	nodes	(nodes	with	either	task	tracker	for
mapreduce	version	1	or	node	manager	for	map	reduce	version	2)	of	Hadoop	clusters.
However,	the	deployment	and	installation	is	time	consuming.	On	the	other	hand,	you	can
choose	to	deploy	your	RHadoop	program	on	Amazon	EMR,	so	that	you	can	deploy	multi-
node	clusters	and	RHadoop	on	every	task	node	in	only	a	few	minutes.	In	the	following
recipe,	we	will	demonstrate	how	to	configure	RHadoop	cluster	on	an	Amazon	EMR
service.



Getting	ready
In	this	recipe,	you	must	register	and	create	an	account	on	AWS,	and	you	also	must	know
how	to	generate	a	EC2	key-pair	before	using	Amazon	EMR.

For	those	who	seek	more	information	on	how	to	start	using	AWS,	please	refer	to	the
tutorial	provided	by	Amazon	at
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html.

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html


How	to	do	it…
Perform	the	following	steps	to	configure	RHadoop	on	Amazon	EMR:

1.	 First,	you	can	access	the	console	of	the	Amazon	Web	Service	(refer	to	https://us-
west-2.console.aws.amazon.com/console/)	and	find	EMR	in	the	analytics	section.
Then,	click	on	EMR.

Access	EMR	service	from	AWS	console.

2.	 You	should	find	yourself	in	the	cluster	list	of	the	EMR	dashboard	(refer	to	https://us-
west-2.console.aws.amazon.com/elasticmapreduce/home?region=us-west-2#cluster-
list::);	click	on	Create	cluster.

Cluster	list	of	EMR

3.	 Then,	you	should	find	yourself	on	the	Create	Cluster	page	(refer	to	https://us-west-
2.console.aws.amazon.com/elasticmapreduce/home?region=us-west-2#create-
cluster:).

https://us-west-2.console.aws.amazon.com/console/
https://us-west-2.console.aws.amazon.com/elasticmapreduce/home?region=us-west-2#cluster-list::
https://us-west-2.console.aws.amazon.com/elasticmapreduce/home?region=us-west-2#create-cluster:


4.	 Next,	you	should	specify	Cluster	name	and	Log	folder	S3	location	in	the	cluster
configuration.

Cluster	configuration	in	the	create	cluster	page

5.	 You	can	then	configure	the	Hadoop	distribution	on	Software	Configuration.

Configure	the	software	and	applications

6.	 Next,	you	can	configure	the	number	of	nodes	within	the	Hadoop	cluster.



Configure	the	hardware	within	Hadoop	cluster

7.	 You	can	then	specify	the	EC2	key-pair	for	the	master	node	login.

Security	and	access	to	the	master	node	of	the	EMR	cluster

8.	 To	set	up	RHadoop,	one	has	to	perform	bootstrap	actions	to	install	RHadoop	on	every
task	node.	Please	write	a	file	named	bootstrapRHadoop.sh,	and	insert	the	following
lines	within	the	file:

echo	'install.packages(c("codetools",	"Rcpp",	"RJSONIO",	"bitops",	

"digest",	"functional",	"stringr",	"plyr",	"reshape2",	"rJava",	

"caTools"),	repos="http://cran.us.r-project.org")'	>	

/home/hadoop/installPackage.R

sudo	Rscript	/home/hadoop/installPackage.R

wget	--no-check-certificate	

https://raw.githubusercontent.com/RevolutionAnalytics/rmr2/master/build

/rmr2_3.3.0.tar.gz

sudo	R	CMD	INSTALL	rmr2_3.3.0.tar.gz

wget	--no-check-certificate	

https://raw.github.com/RevolutionAnalytics/rhdfs/master/build/rhdfs_1.0

.8.tar.gz

sudo	HADOOP_CMD=/home/hadoop/bin/hadoop	R	CMD	INSTALL	

rhdfs_1.0.8.tar.gz

9.	 You	should	upload	bootstrapRHadoop.sh	to	S3.
10.	 You	now	need	to	add	the	bootstrap	action	with	Custom	action,	and	add

s3://<location>/bootstrapRHadoop.sh	within	the	S3	location.



Set	up	the	bootstrap	action

11.	 Next,	you	can	click	on	Create	cluster	to	launch	the	Hadoop	cluster.

Create	the	cluster

12.	 Lastly,	you	should	see	the	master	public	DNS	when	the	cluster	is	ready.	You	can	now
access	the	terminal	of	the	master	node	with	your	EC2-key	pair:

A	screenshot	of	the	created	cluster





How	it	works…
In	this	recipe,	we	demonstrate	how	to	set	up	RHadoop	on	Amazon	EMR.	The	benefit	of
this	is	that	you	can	quickly	create	a	scalable,	on	demand	Hadoop	with	just	a	few	clicks
within	a	few	minutes.	This	helps	save	you	time	from	building	and	deploying	a	Hadoop
application.	However,	you	have	to	pay	for	the	number	of	running	hours	for	each	instance.
Before	using	Amazon	EMR,	you	should	create	an	AWS	account	and	know	how	to	set	up
the	EC2	key-pair	and	the	S3.	You	can	then	start	installing	RHadoop	on	Amazon	EMR.

In	the	first	step,	access	the	EMR	cluster	list	and	click	on	Create	cluster.	You	can	see	a	list
of	configurations	on	the	Create	cluster	page.	You	should	then	set	up	the	cluster	name	and
log	folder	in	the	S3	location	in	the	cluster	configuration.

Next,	you	can	set	up	the	software	configuration	and	choose	the	Hadoop	distribution	you
would	like	to	install.	Amazon	provides	both	its	own	distribution	and	the	MapR
distribution.	Normally,	you	would	skip	this	section	unless	you	have	concerns	about	the
default	Hadoop	distribution.

You	can	then	configure	the	hardware	by	specifying	the	master,	core,	and	task	node.	By
default,	there	is	only	one	master	node,	and	two	core	nodes.	You	can	add	more	core	and
task	nodes	if	you	like.	You	should	then	set	up	the	key-pair	to	login	to	the	master	node.

You	should	next	make	a	file	containing	all	the	start	scripts	named	bootstrapRHadoop.sh.
After	the	file	is	created,	you	should	save	the	file	in	the	S3	storage.	You	can	then	specify
custom	action	in	Bootstrap	Action	with	bootstrapRHadoop.sh	as	the	Bootstrap	script.
Lastly,	you	can	click	on	Create	cluster	and	wait	until	the	cluster	is	ready.	Once	the
cluster	is	ready,	one	can	see	the	master	public	DNS	and	can	use	the	EC2	key-pair	to	access
the	terminal	of	the	master	node.

Beware!	Terminate	the	running	instance	if	you	do	not	want	to	continue	using	the	EMR
service.	Otherwise,	you	will	be	charged	per	instance	for	every	hour	you	use.



See	also
Google	also	provides	its	own	cloud	solution,	the	Google	compute	engine.	For	those
who	would	like	to	know	more,	please	refer	to	https://cloud.google.com/compute/.

https://cloud.google.com/compute/




Appendix	A.	Resources	for	R	and
Machine	Learning
The	following	table	lists	all	the	resources	for	R	and	machine	learning:

R	introduction

Title Link Author

R	in	Action http://www.amazon.com/R-Action-Robert-
Kabacoff/dp/1935182390 Robert	Kabacoff

The	Art	of	R
Programming:	A	Tour	of
Statistical	Software
Design

http://www.amazon.com/The-Art-
Programming-Statistical-
Software/dp/1593273843

Norman	Matloff

An	Introduction	to	R http://cran.r-project.org/doc/manuals/R-
intro.pdf

W.	N.	Venables,	D.	M.	Smith,	and	the	R
Core	Team

Quick-R http://www.statmethods.net/ Robert	I.	Kabacoff,	PhD

Online	courses

Title Link Instructor

Computing	for	Data
Analysis	(with	R) https://www.coursera.org/course/compdata Roger	D.	Peng,	Johns	Hopkins	University

Data	Analysis https://www.coursera.org/course/dataanalysis Jeff	Leek,	Johns	Hopkins	University

Data	Analysis	and
Statistical	Inference https://www.coursera.org/course/statistics Mine	Çetinkaya-Rundel,	Duke	University

Machine	learning

Title Link Author

Machine	Learning	for
Hackers

http://www.amazon.com/dp/1449303714?
tag=inspiredalgor-20 Drew	Conway	and	John	Myles	White

Machine	Learning	with
R

http://www.packtpub.com/machine-learning-
with-r/book Brett	Lantz

Online	blog

Title Link

R-bloggers http://www.r-bloggers.com/

The	R	Journal http://journal.r-project.org/

http://www.amazon.com/R-Action-Robert-Kabacoff/dp/1935182390
http://www.amazon.com/The-Art-Programming-Statistical-Software/dp/1593273843
http://cran.r-project.org/doc/manuals/R-intro.pdf
http://www.statmethods.net/
https://www.coursera.org/course/compdata
https://www.coursera.org/course/dataanalysis
https://www.coursera.org/course/statistics
http://www.amazon.com/dp/1449303714?tag=inspiredalgor-20
http://www.packtpub.com/machine-learning-with-r/book
http://www.r-bloggers.com/
http://journal.r-project.org/


CRAN	task	view

Title Link

CRAN	Task	View:	Machine	Learning	and
Statistical	Learning http://cran.r-project.org/web/views/MachineLearning.html

http://cran.r-project.org/web/views/MachineLearning.html




Appendix	B.	Dataset	–	Survival	of
Passengers	on	the	Titanic
Before	the	exploration	process,	we	would	like	to	introduce	the	example	adopted	here.	It	is
the	demographic	information	on	passengers	aboard	the	RMS	Titanic,	provided	by	Kaggle
(https://www.kaggle.com/,	a	platform	for	data	prediction	competitions).	The	result	we	are
examining	is	whether	passengers	on	board	would	survive	the	shipwreck	or	not.

There	are	two	reasons	to	apply	this	dataset:

RMS	Titanic	is	considered	as	the	most	infamous	shipwreck	in	history,	with	a	death
toll	of	up	to	1,502	out	of	2,224	passengers	and	crew.	However,	after	the	ship	sank,
the	passengers’	chance	of	survival	was	not	by	chance	only;	actually,	the	cabin	class,
sex,	age,	and	other	factors	might	also	have	affected	their	chance	of	survival.
The	dataset	is	relatively	simple;	you	do	not	need	to	spend	most	of	your	time	on	data
munging	(except	when	dealing	with	some	missing	values),	but	you	can	focus	on	the
application	of	exploratory	analysis.

The	following	chart	is	the	variables’	descriptions	of	the	target	dataset:

https://www.kaggle.com/


Judging	from	the	description	of	the	variables,	one	might	have	some	questions	in	mind,
such	as,	“Are	there	any	missing	values	in	this	dataset?”,	“What	was	the	average	age	of	the
passengers	on	the	Titanic?”,	“What	proportion	of	the	passengers	survived	the	disaster?”,
“What	social	class	did	most	passengers	on	board	belong	to?”.	All	these	questions
presented	here	will	be	answered	in	Chapter	2,	Data	Exploration	with	RMS	Titanic.

Beyond	questions	relating	to	descriptive	statistics,	the	eventual	object	of	Chapter	2,	Data
Exploration	with	RMS	Titanic,	is	to	generate	a	model	to	predict	the	chance	of	survival
given	by	the	input	parameters.	In	addition	to	this,	we	will	assess	the	performance	of	the
generated	model	to	determine	whether	the	model	is	suited	for	the	problem.
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