

Learning	Apache	Mahout	Classification

Table	of	Contents

Learning	Apache	Mahout	Classification

Credits

About	the	Author

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Downloading	the	color	images	of	this	book

Errata

Piracy

Questions

1.	Classification	in	Data	Analysis

Introducing	the	classification

Application	of	the	classification	system

Working	of	the	classification	system

Classification	algorithms

Model	evaluation	techniques

The	confusion	matrix

The	Receiver	Operating	Characteristics	(ROC)	graph

Area	under	the	ROC	curve

The	entropy	matrix

Summary

2.	Apache	Mahout

Introducing	Apache	Mahout

Algorithms	supported	in	Mahout

Reasons	for	Mahout	being	a	good	choice	for	classification

Installing	Mahout

Building	Mahout	from	source	using	Maven

Installing	Maven

Building	Mahout	code

Setting	up	a	development	environment	using	Eclipse

Setting	up	Mahout	for	a	Windows	user

Summary

3.	Learning	Logistic	Regression	/	SGD	Using	Mahout

Introducing	regression

Understanding	linear	regression

Cost	function

Gradient	descent

Logistic	regression

Stochastic	Gradient	Descent

Using	Mahout	for	logistic	regression

Summary

4.	Learning	the	Naïve	Bayes	Classification	Using	Mahout

Introducing	conditional	probability	and	the	Bayes	rule

Understanding	the	Naïve	Bayes	algorithm

Understanding	the	terms	used	in	text	classification

Using	the	Naïve	Bayes	algorithm	in	Apache	Mahout

Summary

5.	Learning	the	Hidden	Markov	Model	Using	Mahout

Deterministic	and	nondeterministic	patterns

The	Markov	process

Introducing	the	Hidden	Markov	Model

Using	Mahout	for	the	Hidden	Markov	Model

Summary

6.	Learning	Random	Forest	Using	Mahout

Decision	tree

Random	forest

Using	Mahout	for	Random	forest

Steps	to	use	the	Random	forest	algorithm	in	Mahout

Summary

7.	Learning	Multilayer	Perceptron	Using	Mahout

Neural	network	and	neurons

Multilayer	Perceptron

MLP	implementation	in	Mahout

Using	Mahout	for	MLP

Steps	to	use	the	MLP	algorithm	in	Mahout

Summary

8.	Mahout	Changes	in	the	Upcoming	Release

Mahout	new	changes

Mahout	Scala	and	Spark	bindings

Apache	Spark

Using	Mahout’s	Spark	shell

H2O	platform	integration

Summary

9.	Building	an	E-mail	Classification	System	Using	Apache	Mahout

Spam	e-mail	dataset

Creating	the	model	using	the	Assassin	dataset

Program	to	use	a	classifier	model

Testing	the	program

Second	use	case	as	an	exercise

The	ASF	e-mail	dataset

Classifiers	tuning

Summary

Index

Learning	Apache	Mahout	Classification

Learning	Apache	Mahout	Classification
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	February	2015

Production	reference:	1210215

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78355-495-9

www.packtpub.com

http://www.packtpub.com

Credits
Author

Ashish	Gupta

Reviewers

Siva	Prakash

Tharindu	Rusira

Vishnu	Viswanath

Commissioning	Editor

Akram	Hussain

Acquisition	Editor

Reshma	Raman

Content	Development	Editor

Merwyn	D’souza

Technical	Editors

Monica	John

Novina	Kewalramani

Shruti	Rawool

Copy	Editors

Sarang	Chari

Gladson	Monteiro

Aarti	Saldanha

Rashmi	Sawant

Project	Coordinator

Neha	Bhatnagar

Proofreaders

Simran	Bhogal

Steve	Maguire

Indexer

Monica	Ajmera	Mehta

Graphics

Sheetal	Aute

Abhinash	Sahu

Production	Coordinator

Conidon	Miranda

Cover	Work

Conidon	Miranda

About	the	Author
Ashish	Gupta	has	been	working	in	the	field	of	software	development	for	the	last	8	years.
He	has	worked	in	different	companies,	such	as	SAP	Labs	and	Caterpillar,	as	a	software
developer.	While	working	for	a	start-up	where	he	was	responsible	for	predicting	potential
customers	for	new	fashion	apparels	using	social	media,	he	developed	an	interest	in	the
field	of	machine	learning.	Since	then,	he	has	worked	on	using	big	data	technologies	and
machine	learning	for	different	industries,	including	retail,	finance,	insurance,	and	so	on.
He	has	a	passion	for	learning	new	technologies	and	sharing	the	knowledge	thus	gained
with	others.	He	has	organized	many	boot	camps	for	the	Apache	Mahout	and	Hadoop
ecosystem.

First	of	all,	I	would	like	to	thank	open	source	communities	for	their	continuous	efforts	in
developing	great	software	for	all.	I	would	like	to	thank	Merwyn	D’Souza	and	Reshma
Raman,	my	editors	for	this	project.	Special	thanks	to	the	reviewers	of	this	book.

Nothing	can	be	accomplished	without	the	support	of	family,	friends,	and	loved	ones.	I
would	like	to	thank	my	friends,	family,	and	especially	my	wife	and	my	son	for	their
continuous	support	throughout	the	writing	of	this	book.

About	the	Reviewers
Siva	Prakash	is	working	as	a	tech	lead	in	Bangalore.	He	has	extensive	development
experience	in	the	analysis,	design,	development,	implementation,	and	maintenance	of
various	desktop,	mobile,	and	web-based	applications.	He	loves	trekking,	traveling,	music,
reading	books,	and	blogging.

You	can	find	him	on	LinkedIn	at	https://www.linkedin.com/in/techsivam.

Tharindu	Rusira	is	currently	a	computer	science	and	engineering	undergraduate	at	the
University	of	Moratuwa,	Sri	Lanka.	As	a	student	researcher,	he	has	strong	interests	in
machine	learning,	compilers,	and	high-performance	computing.

Tharindu	has	also	worked	as	a	research	and	development	software	engineering	intern	at
Zaizi	Asia	(Pvt)	Ltd.,	where	he	first	started	using	Apache	Mahout	during	the
implementation	of	an	enterprise-level	content	management	and	information	retrieval
system.

He	sees	the	potential	of	Apache	Mahout	as	a	scalable	machine	learning	library	for
industry-level	implementations	and	has	even	contributed	to	the	Mahout	0.9	release,	the
latest	stable	release	of	Mahout.

He	is	available	on	LinkedIn	at	https://www.linkedin.com/in/trusira.

Vishnu	Viswanath	is	a	senior	big	data	developer	who	has	many	years	of	industrial
expertise	in	the	arena	of	machine	learning.	He	is	a	tech	enthusiast	and	is	passionate	about
big	data	and	has	expertise	on	most	big-data-related	technologies.

You	can	find	him	on	LinkedIn	at	http://in.linkedin.com/in/vishnuviswanath25.

https://www.linkedin.com/in/techsivam
https://www.linkedin.com/in/trusira
http://in.linkedin.com/in/vishnuviswanath25

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
Thanks	to	the	progress	made	in	the	hardware	industries,	our	storage	capacity	has
increased,	and	because	of	this,	there	are	many	organizations	who	want	to	store	all	types	of
events	for	analytics	purposes.	This	has	given	birth	to	a	new	era	of	machine	learning.	The
field	of	machine	learning	is	very	complex	and	writing	these	algorithms	is	not	a	piece	of
cake.	Apache	Mahout	provides	us	with	readymade	algorithms	in	the	area	of	machine
learning	and	saves	us	from	the	complex	task	of	algorithm	implementation.

The	intention	of	this	book	is	to	cover	classification	algorithms	available	in	Apache
Mahout.	Whether	you	have	already	worked	on	classification	algorithms	using	some	other
tool	or	are	completely	new	to	the	field,	this	book	will	help	you.	So,	start	reading	this	book
to	explore	the	classification	algorithms	in	one	of	the	most	popular	open	source	projects
which	enjoys	strong	community	support:	Apache	Mahout.

What	this	book	covers
Chapter	1,	Classification	in	Data	Analysis,	provides	an	introduction	to	the	classification
concept	in	data	analysis.	This	chapter	will	cover	the	basics	of	classification,	similarity
matrix,	and	algorithms	available	in	this	area.

Chapter	2,	Apache	Mahout,	provides	an	introduction	to	Apache	Mahout	and	its	installation
process.	Further,	this	chapter	will	talk	about	why	it	is	a	good	choice	for	classification.

Chapter	3,	Learning	Logistic	Regression	/	SGD	Using	Mahout,	discusses	logistic
regression	and	Stochastic	Gradient	Descent,	and	how	developers	can	use	Mahout	to	use
SGD.

Chapter	4,	Learning	the	Naïve	Bayes	Classification	Using	Mahout,	discusses	the	Bayes
Theorem,	Naïve	Bayes	classification,	and	how	we	can	use	Mahout	to	build	Naïve	Bayes
classifier.

Chapter	5,	Learning	the	Hidden	Markov	Model	Using	Mahout,	covers	the	HMM	and	how
to	use	Mahout’s	HMM	algorithms.

Chapter	6,	Learning	Random	Forest	Using	Mahout,	discusses	the	Random	forest
algorithm	in	detail,	and	how	to	use	Mahout’s	Random	forest	implementation.

Chapter	7,	Learning	Multilayer	Perceptron	Using	Mahout,	discusses	Mahout	as	an	early
level	implementation	of	a	neural	network.	We	will	discuss	Multilayer	Perceptron	in	this
chapter.	Further,	we	will	use	Mahout’s	implementation	of	MLP.

Chapter	8,	Mahout	Changes	in	the	Upcoming	Release,	discusses	Mahout	as	a	work	in
progress.	We	will	discuss	the	new	major	changes	in	the	upcoming	release	of	Mahout.

Chapter	9,	Building	an	E-mail	Classification	System	Using	Apache	Mahout,	provides	two
use	cases	of	e-mail	classification—spam	mail	classification	and	e-mail	classification	based
on	the	project	the	mail	belongs	to.	We	will	create	the	model,	and	use	this	model	in	a
program	that	will	simulate	the	real	working	environment.

What	you	need	for	this	book
To	use	the	examples	in	this	book,	you	should	have	the	following	software	installed	on
your	system:

Java	1.6	or	higher
Eclipse
Hadoop
Mahout;	we	will	discuss	the	installation	in	Chapter	2,	Apache	Mahout,	of	this	book
Maven,	depending	on	how	you	install	Mahout

Who	this	book	is	for
If	you	are	a	data	scientist	who	has	some	experience	with	the	Hadoop	ecosystem	and
machine	learning	methods	and	want	to	try	out	classification	on	large	datasets	using
Mahout,	this	book	is	ideal	for	you.	Knowledge	of	Java	is	essential.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“Extract
the	source	code	and	ensure	that	the	folder	contains	the	pom.xml	file.”

A	block	of	code	is	set	as	follows:

				public	static	Map<String,	Integer>	readDictionary(Configuration	conf,	

Path	dictionaryPath)	{

								Map<String,	Integer>	dictionary	=	new	HashMap<String,	Integer>();

								for	(Pair<Text,	IntWritable>	pair	:	new	SequenceFileIterable<Text,	

IntWritable>(dictionaryPath,	true,	conf))	{

												dictionary.put(pair.getFirst().toString(),	

pair.getSecond().get());

								}

								return	dictionary;

				}

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:

				public	static	Map<String,	Integer>	readDictionary(Configuration	conf,	

Path	dictionaryPath)	{

								Map<String,	Integer>	dictionary	=	new	HashMap<String,	Integer>();

								for	(Pair<Text,	IntWritable>	pair	:	new	SequenceFileIterable<Text,	

IntWritable>(dictionaryPath,	true,	conf))	{

												dictionary.put(pair.getFirst().toString(),	

pair.getSecond().get());

								}

								return	dictionary;

				}

Any	command-line	input	or	output	is	written	as	follows:

hadoop	fs	-mkdir	/user/hue/KDDTrain	

hadoop	fs	-mkdir	/user/hue/KDDTest

hadoop	fs	–put	/tmp/KDDTrain+_20Percent.arff		/user/hue/KDDTrain

hadoop	fs	–put	/tmp/KDDTest+.arff		/user/hue/KDDTest

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“Now,	navigate	to	the
location	for	mahout-distribution-0.9	and	click	on	Finish.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support

Downloading	the	color	images	of	this	book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams
used	in	this	book.	The	color	images	will	help	you	better	understand	the	changes	in	the
output.	You	can	download	this	file	from
http://www.packtpub.com/sites/default/files/downloads/4959OS_ColoredImages.pdf.

http://www.packtpub.com/sites/default/files/downloads/4959OS_ColoredImages.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	Classification	in	Data	Analysis
In	the	last	decade,	we	saw	a	huge	growth	in	social	networking	and	e-commerce	sites.	I	am
sure	that	you	must	have	got	information	about	this	book	on	Facebook,	Twitter,	or	some
other	site.	Chances	are	also	high	that	you	are	reading	an	e-copy	of	this	book	after	ordering
it	on	your	phone	or	tablet.

This	must	give	you	an	idea	of	how	much	data	we	are	generating	over	the	Internet	every
single	day.	Now,	in	order	to	obtain	all	necessary	information	from	the	data,	we	not	only
create	data	but	also	store	this	data.	This	data	is	extremely	useful	to	get	some	important
insights	into	the	business.	The	analysis	of	this	data	can	increase	the	customer	base	and
create	profits	for	the	organization.	Take	the	example	of	an	e-commerce	site.	You	visit	the
site	to	buy	some	book.	You	get	information	about	books	on	related	topics	or	the	same
topic,	publisher,	or	writer,	and	this	helps	you	to	take	better	decisions,	which	also	helps	the
site	to	know	more	about	its	customers.	This	will	eventually	lead	to	an	increase	in	sales.

Finding	related	items	or	suggesting	a	new	item	to	the	user	is	all	part	of	the	data	science	in
which	we	analyze	the	data	and	try	to	get	useful	patterns.

Data	analysis	is	the	process	of	inspecting	historical	data	and	creating	models	to	get	useful
information	that	is	required	to	help	in	decision	making.	It	is	helpful	in	many	industries,
such	as	e-commerce,	banking,	finance,	healthcare,	telecommunications,	retail,
oceanography,	and	many	more.

Let’s	take	the	example	of	a	weather	forecasting	system.	It	is	a	system	that	can	predict	the
state	of	the	atmosphere	at	a	particular	location.	In	this	process,	scientists	collect	historical
data	of	the	atmosphere	of	that	location	and	try	to	create	a	model	based	on	it	to	predict	how
the	atmosphere	will	evolve	over	a	period	of	time.

In	machine	learning,	classification	is	the	automation	of	the	decision-making	process	that
learns	from	examples	of	the	past	and	emulates	those	decisions	automatically.	Emulating
the	decisions	automatically	is	a	core	concept	in	predictive	analytics.	In	this	chapter,	we
will	look	at	the	following	points:

Understanding	classification
Working	of	classification	systems
Classification	algorithms
Model	evaluation	methods

Introducing	the	classification
The	word	classification	always	reminds	us	of	our	biology	class,	where	we	learned	about
the	classification	of	animals.	We	learned	about	different	categories	of	animals,	such	as
mammals,	reptiles,	birds,	amphibians,	and	so	on.

If	you	remember	how	these	categories	are	defined,	you	will	realize	that	there	were	certain
properties	that	scientists	found	in	existing	animals,	and	based	on	these	properties,	they
categorized	a	new	animal.

Other	real-life	examples	of	classification	could	be,	for	instance,	when	you	visit	the	doctor.
He/she	asks	you	certain	questions,	and	based	on	your	answers,	he/she	is	able	to	identify
whether	you	have	a	certain	disease	or	not.

Classification	is	the	categorization	of	potential	answers,	and	in	machine	learning,	we	want
to	automate	this	process.	Biological	classification	is	an	example	of	multiclass
classification	and	finding	the	disease	is	an	example	of	binary	classification.

In	data	analysis,	we	want	to	use	machine	learning	concepts.	To	analyze	the	data,	we	want
to	build	a	system	that	can	help	us	to	find	out	which	class	an	individual	item	belongs	to.
Usually,	these	classes	are	mutually	exclusive.	A	related	problem	in	this	area	is	finding	out
the	probability	that	an	individual	belongs	to	a	certain	class.

Classification	is	a	supervised	learning	technique.	In	this	technique,	machines—based	on
historical	data—learn	and	gain	the	capabilities	to	predict	the	unknown.	In	machine
learning,	another	popular	technique	is	unsupervised	learning.	In	supervised	learning,	we
already	know	the	output	categories,	but	in	unsupervised	learning,	we	know	nothing	about
the	output.	Let’s	understand	this	with	a	quick	example:	suppose	we	have	a	fruit	basket,
and	we	want	to	classify	fruits.	When	we	say	classify,	it	means	that	in	the	training	data,	we
already	have	output	variables,	such	as	size	and	color,	and	we	know	whether	the	color	is
red	and	the	size	is	from	2.3”	to	3.7”.	We	will	classify	that	fruit	as	an	apple.	Opposite	to
this,	in	unsupervised	learning,	we	want	to	separate	different	fruits,	and	we	do	not	have	any
output	information	in	the	training	dataset,	so	the	learning	algorithm	will	separate	different
fruits	based	on	different	features	present	in	the	dataset,	but	it	will	not	be	able	to	label
them.	In	other	words,	it	will	not	be	able	to	tell	which	one	is	an	apple	and	which	one	is	a
banana,	although	it	will	be	able	to	separate	them.

Application	of	the	classification	system
Classification	is	used	for	prediction.	In	the	case	of	e-mail	categorization,	it	is	used	to
classify	e-mail	as	spam	or	not	spam.	Nowadays,	Gmail	is	classifying	e-mails	as	primary,
social,	and	promotional	as	well.	Classification	is	useful	in	predicting	credit	card	frauds,	to
categorize	customers	for	eligibility	of	loans,	and	so	on.	It	is	also	used	to	predict	customer
churn	in	the	insurance	and	telecom	industries.	It	is	useful	in	the	healthcare	industry	as
well.	Based	on	historical	data,	it	is	useful	in	classifying	particular	symptoms	of	a	disease
to	predict	the	disease	in	advance.	Classification	can	be	used	to	classify	tropical	cyclones.
So,	it	is	useful	across	all	industries.

Working	of	the	classification	system
Let’s	understand	the	classification	process	in	more	detail.	In	the	process	of	classification,
with	the	dataset	given	to	us,	we	try	to	find	out	informative	variables	using	which	we	can
reduce	the	uncertainty	and	categorize	something.	These	informative	variables	are	called
explanatory	variables	or	features.

The	final	categories	that	we	are	interested	are	called	target	variables	or	labels.	Explanatory
variables	can	be	any	of	the	following	forms:

Continuous	(numeric	types)
Categorical
Word-like
Text-like

Note
If	numeric	types	are	not	useful	for	any	mathematical	functions,	those	will	be	counted	as
categorical	(zip	codes,	street	numbers,	and	so	on).

So,	for	example,	we	have	a	dataset	of	customer’s’	loan	applications,	and	we	want	to	build
a	classifier	to	find	out	whether	a	new	customer	is	eligible	for	a	loan	or	not.	In	this	dataset,
we	can	have	the	following	fields:

Customer	Age
Customer	Income	(PA)
Customer	Account	Balance
Loan	Granted

From	these	fields,	Customer	Age,	Customer	Income	(PA)	and	Customer	Account
Balance	will	work	as	explanatory	variables	and	Loan	Granted	will	be	the	target	variable,
as	shown	in	the	following	screenshot:

To	understand	the	creation	of	the	classifier,	we	need	to	understand	a	few	terms,	as	shown
in	the	following	diagram:

Training	dataset:	From	the	given	dataset,	a	portion	of	the	data	is	used	to	create	the
training	dataset	(it	could	be	70	percent	of	the	given	data).	This	dataset	is	used	to	build
the	classifier.	All	the	feature	sets	are	used	in	this	dataset.
Test	dataset:	The	dataset	that	is	left	after	the	training	dataset	is	used	to	test	the
created	model.	With	this	data,	only	the	feature	set	is	used	and	the	model	is	used	to
predict	the	target	variables	or	labels.
Model:	This	is	used	to	understand	the	algorithm	used	to	generate	the	target	variables.

While	building	a	classifier,	we	follow	these	steps:

Collecting	historical	data
Cleaning	data	(a	lot	of	activities	are	involved	here,	such	as	space	removal,	and	so	on)
Defining	target	variables
Defining	explanatory	variables
Selecting	an	algorithm
Training	the	model	(using	the	training	dataset)
Running	test	data
Evaluating	the	model
Adjusting	explanatory	variables
Rerunning	the	test

While	preparing	the	model,	one	should	take	care	of	outlier	detection.	Outlier	detection	is
a	method	to	find	out	items	that	do	not	conform	to	an	expected	pattern	in	a	dataset.	Outliers
in	an	input	dataset	can	mislead	the	training	process	of	an	algorithm.	This	can	affect	the
model	accuracy.	There	are	algorithms	to	find	out	these	outliers	in	the	datasets.	Distance-

based	techniques	and	fuzzy-logic-based	methods	are	mostly	used	to	find	out	outliers	in	the
dataset.	Let’s	talk	about	one	example	to	understand	the	outliers.

We	have	a	set	of	numbers,	and	we	want	to	find	out	the	mean	of	these	numbers:

10,	75,	10,	15,	20,	85,	25,	30,	25

Just	plot	these	numbers	and	the	result	will	be	as	shown	in	the	following	screenshot:

Clearly,	the	numbers	75	and	85	are	outliers	(far	away	in	the	plot	from	the	other	numbers).

Mean	=	sum	of	values/number	of	values	=	32.78

Mean	without	the	outliers:	=	19.29

So,	now	you	can	understand	how	outliers	can	affect	the	results.

While	creating	the	model,	we	can	encounter	two	majorly	occurring	problems
—Overfitting	and	Underfitting.

Overfitting	occurs	when	the	algorithm	captures	the	noise	of	the	data,	and	the	algorithm	fits
the	data	too	well.	Generally,	it	occurs	if	we	use	all	the	given	data	to	build	the	model	using
pure	memorization.	Instead	of	finding	out	the	generalizing	pattern,	the	model	just
memorizes	the	pattern.	Usually,	in	the	case	of	overfitting,	the	model	gets	more	complex,
and	it	is	allowed	to	pick	up	spurious	correlations.	These	correlations	are	specific	to
training	datasets	and	do	not	represent	characteristics	of	the	whole	dataset	in	general.

The	following	diagram	is	an	example	of	overfitting.	An	outlier	is	present,	and	the
algorithm	considers	that	and	creates	a	model	that	perfectly	classifies	the	training	set,	but
because	of	this,	the	test	data	is	wrongly	classified	(both	the	rectangles	are	classified	as
stars	in	the	test	data):

There	is	no	single	method	to	avoid	overfitting;	however,	we	have	some	approaches,	such
as	a	reduction	in	the	number	of	features	and	the	regularization	of	a	few	of	the	features.
Another	way	is	to	train	the	model	with	some	dataset	and	test	with	the	remaining	dataset.	A
common	method	called	cross-validation	is	used	to	generate	multiple	performance
measures.	In	this	way,	a	single	dataset	is	split	and	used	for	the	creation	of	performance
measures.

Underfitting	occurs	when	the	algorithm	cannot	capture	the	patterns	in	the	data,	and	the
data	does	not	fit	well.	Underfitting	is	also	known	as	high	bias.	It	means	your	algorithm	has
such	a	strong	bias	towards	its	hypothesis	that	it	does	not	fit	the	data	well.	For	an
underfitting	error,	more	data	will	not	help.	It	can	increase	the	training	error.	More
explanatory	variables	can	help	to	deal	with	the	underfitting	problem.	More	explanatory
fields	will	expand	the	hypothesis	space	and	will	be	useful	to	overcome	this	problem.

Both	overfitting	and	underfitting	provide	poor	results	with	new	datasets.

Classification	algorithms
We	will	now	discuss	the	following	algorithms	that	are	supported	by	Apache	Mahout	in
this	book:

Logistic	regression	/	Stochastic	Gradient	Descent	(SGD):	We	usually	read
regression	along	with	classification,	but	actually,	there	is	a	difference	between	the
two.	Classification	involves	a	categorical	target	variable,	while	regression	involves	a
numeric	target	variable.	Classification	predicts	whether	something	will	happen,	and
regression	predicts	how	much	of	something	will	happen.	We	will	cover	this	algorithm
in	Chapter	3,	Learning	Logistic	Regression	/	SGD	Using	Mahout.	Mahout	supports
logistic	regression	trained	via	Stochastic	Gradient	Descent.
Naïve	Bayes	classification:	This	is	a	very	popular	algorithm	for	text	classification.
Naïve	Bayes	uses	the	concept	of	probability	to	classify	new	items.	It	is	based	on	the
Bayes	theorem.	We	will	discuss	this	algorithm	in	Chapter	4,	Learning	the	Naïve
Bayes	Classification	Using	Mahout.	In	this	chapter,	we	will	see	how	Mahout	is	useful
in	classifying	text,	which	is	required	in	the	data	analysis	field.	We	will	discuss
vectorization,	bag	of	words,	n-grams,	and	other	terms	used	in	text	classification.
Hidden	Markov	Model	(HMM):	This	is	used	in	various	fields,	such	as	speech
recognition,	parts-of-speech	tagging,	gene	prediction,	time-series	analysis,	and	so	on.
In	HMM,	we	observe	a	sequence	of	emissions	but	do	not	have	a	sequence	of	states
which	a	model	uses	to	generate	the	emission.	In	Chapter	5,	Learning	the	Hidden
Markov	Model	Using	Mahout,	we	will	take	one	more	algorithm	supported	by	Mahout
Hidden	Markov	Model.	We	will	discuss	HMM	in	detail	and	see	how	Mahout
supports	this	algorithm.
Random	Forest:	This	is	the	most	widely	used	algorithm	in	classification.	Random
Forest	consists	of	a	collection	of	simple	tree	predictors,	each	capable	of	producing	a
response	when	presented	with	a	set	of	explanatory	variables.	In	Chapter	6,	Learning
Random	Forest	Using	Mahout,	we	will	discuss	this	algorithm	in	detail	and	also	talk
about	how	to	use	Mahout	to	implement	this	algorithm.
Multi-layer	Perceptron	(MLP):	In	Chapter	7,	Learning	Multilayer	Perceptron
Using	Mahout,	we	will	discuss	this	newly	implemented	algorithm	in	Mahout.	An
MLP	consists	of	multiple	layers	of	nodes	in	a	directed	graph,	with	each	layer	fully
connected	to	the	next	one.	It	is	a	base	for	the	implementation	of	neural	networks.	We
will	discuss	neural	networks	a	little	but	only	after	a	detailed	discussion	on	MLP	in
Mahout.

We	will	discuss	all	the	classification	algorithms	supported	by	Apache	Mahout	in	this	book,
and	we	will	also	check	the	model	evaluation	techniques	provided	by	Apache	Mahout.

Model	evaluation	techniques
We	cannot	have	a	single	evaluation	metric	that	can	fit	all	the	classifier	models,	but	we	can
find	out	some	common	issues	in	evaluation,	and	we	have	techniques	to	deal	with	them.
We	will	discuss	the	following	techniques	that	are	used	in	Mahout:

Confusion	matrix
ROC	graph
AUC
Entropy	matrix

The	confusion	matrix
The	confusion	matrix	provides	us	with	the	number	of	correct	and	incorrect	predictions
made	by	the	model	compared	with	the	actual	outcomes	(target	values)	in	the	data.	A
confusion	matrix	is	a	N*N	matrix,	where	N	is	the	number	of	labels	(classes).	Each	column
is	an	instance	in	the	predicted	class,	and	each	row	is	an	instance	in	the	actual	class.	Using
this	matrix,	we	can	find	out	how	one	class	is	confused	with	another.	Let’s	assume	that	we
have	a	classifier	that	classifies	three	fruits:	strawberries,	cherries,	and	grapes.	Assuming
that	we	have	a	sample	of	24	fruits:	7	strawberries,	8	cherries,	and	9	grapes,	the	resulting
confusion	matrix	will	be	as	shown	in	the	following	table:

Predicted	classes	by	model

Actual	class

	 Strawberries Cherries Grapes

Strawberries 4 3 0

Cherries 2 5 1

Grapes 0 1 8

So,	in	this	model,	from	the	8	strawberries,	3	were	classified	as	cherries.	From	the	8
cherries,	2	were	classified	as	strawberries,	and	1	is	classified	as	a	grape.	From	the	9
grapes,	1	is	classified	as	a	cherry.	From	this	matrix,	we	will	create	the	table	of	confusion.
The	table	of	confusion	has	two	rows	and	two	columns	that	report	about	true	positive,	true
negative,	false	positive,	and	false	negative.

So,	if	we	build	this	table	for	a	particular	class,	let’s	say	for	strawberries,	it	would	be	as
follows:

True	Positive

4	(actual	strawberries	classified	correctly)	(a)

False	Positive

2	(cherries	that	were	classified	as	strawberries)(b)

False	Negative

3	(strawberries	wrongly	classified	as	cherries)	(c)

True	Negative

15	(all	other	fruits	correctly	not	classified	as	strawberries)	(d)

Using	this	table	of	confusion,	we	can	find	out	the	following	terms:

Accuracy:	This	is	the	proportion	of	the	total	number	of	predictions	that	were
correctly	classified.	It	is	calculated	as	(True	Positive	+	True	Negative)	/	Positive	+
Negative.	Therefore,	accuracy	=	(a+d)/(a+b+c+d).
Precision	or	positive	predictive	value:	This	is	the	proportion	of	positive	cases	that
were	correctly	classified.	It	is	calculated	as	(True	Positive)/(True	Positive	+	False
Positive).	Therefore,	precision	=	a/(a+b).
Negative	predictive	value:	This	is	the	proportion	of	negative	cases	that	were
classified	correctly.	It	is	calculated	as	True	Negative/(True	Negative	+	False
Negative).	Therefore,	negative	predictive	value	=	d/(c+d).
Sensitivity	/	true	positive	rate	/	recall:	This	is	the	proportion	of	the	actual	positive

cases	that	were	correctly	identified.	It	is	calculated	as	True	Positive/(True	Positive	+
False	Negative).	Therefore,	sensitivity	=	a/(a+c).
Specificity:	This	is	the	proportion	of	the	actual	negative	cases.	It	is	calculated	as	True
Negative/(False	Positive	+	True	Negative).	Therefore,	specificity	=d	/(b+d).
F1	score:	This	is	the	measure	of	a	test’s	accuracy,	and	it	is	calculated	as	follows:	F1
=	2.((Positive	predictive	value	(precision)	*	sensitivity	(recall))/(Positive	predictive
value	(precision)	+sensitivity	(recall))).

The	Receiver	Operating	Characteristics	(ROC)
graph
ROC	is	a	two-dimensional	plot	of	a	classifier	with	false	positive	rate	on	the	x	axis	and	true
positive	rate	on	the	y	axis.	The	lower	point	(0,0)	in	the	figure	represents	never	issuing	a
positive	classification.	Point	(0,1)	represents	perfect	classification.	The	diagonal	from
(0,0)	to	(1,1)	divides	the	ROC	space.	Points	above	the	diagonal	represent	good
classification	results,	and	points	below	the	line	represent	poor	results,	as	shown	in	the
following	diagram:

Area	under	the	ROC	curve
This	is	the	area	under	the	ROC	curve	and	is	also	known	as	AUC.	It	is	used	to	measure	the
quality	of	the	classification	model.	In	practice,	most	of	the	classification	models	have	an
AUC	between	0.5	and	1.	The	closer	the	value	is	to	1,	the	greater	is	your	classifier.

The	entropy	matrix
Before	going	into	the	details	of	the	entropy	matrix,	first	we	need	to	understand	entropy.
The	concept	of	entropy	in	information	theory	was	developed	by	Shannon.

Entropy	is	a	measure	of	disorder	that	can	be	applied	to	a	set.	It	is	defined	as:

Entropy	=	-p1log(p1)	–	p2log(p2)-	…….

Each	p	is	the	probability	of	a	particular	property	within	the	set.	Let’s	revisit	our	customer
loan	application	dataset.	For	example,	assuming	we	have	a	set	of	10	customers	from
which	6	are	eligible	for	a	loan	and	4	are	not.	Here,	we	have	two	properties	(classes):
eligible	or	not	eligible.

P(eligible)	=	6/10	=	0.6

P(not	eligible)	=	4/10	=	0.4

So,	entropy	of	the	dataset	will	be:

Entropy	=	-[0.6*log2(0.6)+0.4*log2(0.4)]

=	-[0.6*-0.74	+0.4*-1.32]

=	0.972

Entropy	is	useful	in	acquiring	knowledge	of	information	gain.	Information	gain	measures
the	change	in	entropy	due	to	any	new	information	being	added	in	model	creation.	So,	if
entropy	decreases	from	new	information,	it	indicates	that	the	model	is	performing	well
now.	Information	gain	is	calculated	as:

IG	(classes	,	subclasses)	=	entropy(class)	–(p(subclass1)*entropy(subclass1)+
p(subclass2)*entropy(subclass2)	+	…)

Entropy	matrix	is	basically	the	same	as	the	confusion	matrix	defined	earlier;	the	only
difference	is	that	the	elements	in	the	matrix	are	the	averages	of	the	log	of	the	probability
score	for	each	true	or	estimated	category	combination.	A	good	model	will	have	small
negative	numbers	along	the	diagonal	and	will	have	large	negative	numbers	in	the	off-
diagonal	position.

Summary
We	have	discussed	classification	and	its	applications	and	also	what	algorithm	and
classifier	evaluation	techniques	are	supported	by	Mahout.	We	discussed	techniques	like
confusion	matrix,	ROC	graph,	AUC,	and	entropy	matrix.

Now,	we	will	move	to	the	next	chapter	and	set	up	Apache	Mahout	and	the	developer
environment.	We	will	also	discuss	the	architecture	of	Apache	Mahout	and	find	out	why
Mahout	is	a	good	choice	for	classification.

Chapter	2.	Apache	Mahout
In	the	previous	chapter,	we	discussed	classification	and	looked	into	the	algorithms
provided	by	Mahout	in	this	area.	Before	going	to	those	algorithms,	we	need	to	understand
Mahout	and	its	installation.	In	this	chapter,	we	will	explore	the	following	topics:

What	is	Apache	Mahout?
Algorithms	supported	in	Mahout
Why	is	it	a	good	choice	for	classification	problems?
Setting	up	the	system	for	Mahout	development

Introducing	Apache	Mahout
A	mahout	is	a	person	who	rides	and	controls	an	elephant.	Most	of	the	algorithms	in
Apache	Mahout	are	implemented	on	top	of	Hadoop,	which	is	another	Apache-licensed
project	and	has	the	symbol	of	an	elephant	(http://hadoop.apache.org/).	As	Apache	Mahout
rides	over	Hadoop,	this	name	is	justified.

Apache	Mahout	is	a	project	of	Apache	Software	Foundation	that	has	implementations	of
machine	learning	algorithms.	Mahout	was	started	as	a	subproject	of	the	Apache	Lucene
project	in	2008.	After	some	time,	an	open	source	project	named	Taste,	which	was
developed	for	collaborative	filtering,	and	it	was	absorbed	into	Mahout.	Mahout	is	written
in	Java	and	provides	scalable	machine	learning	algorithms.	Mahout	is	the	default	choice
for	machine	learning	problems	in	which	the	data	is	too	large	to	fit	into	a	single	machine.
Mahout	provides	Java	libraries	and	does	not	provide	any	user	interface	or	server.	It	is	a
framework	of	tools	to	be	used	and	adapted	by	developers.

To	sum	it	up,	Mahout	provides	you	with	implementations	of	the	most	frequently	used
machine	learning	algorithms	in	the	area	of	classification,	clustering,	and	recommendation.
Instead	of	spending	time	writing	algorithms,	it	provides	us	with	ready-to-consume
solutions.

Mahout	uses	Hadoop	for	its	algorithms,	but	some	of	the	algorithms	can	also	run	without
Hadoop.	Currently,	Mahout	supports	the	following	use	cases:

Recommendation:	This	takes	the	user	data	and	tries	to	predict	items	that	the	user
might	like.	With	this	use	case,	you	can	see	all	the	sites	that	are	selling	goods	to	the
user.	Based	on	your	previous	action,	they	will	try	to	find	out	unknown	items	that
could	be	of	use.	One	example	can	be	this:	as	soon	as	you	select	some	book	from
Amazon,	the	website	will	show	you	a	list	of	other	books	under	the	title,	Customers
Who	Bought	This	Item	Also	Bought.	It	also	shows	the	title,	What	Other	Items	Do
Customers	Buy	After	Viewing	This	Item?	Another	example	of	recommendation	is
that	while	playing	videos	on	YouTube,	it	recommends	that	you	listen	to	some	other
videos	based	on	your	selection.	Mahout	provides	full	API	support	to	develop	your

http://hadoop.apache.org/

own	user-based	or	item-based	recommendation	engine.
Classification:	As	defined	in	the	earlier	chapter,	classification	decides	how	much	an
item	belongs	to	one	particular	category.	E-mail	classification	for	filtering	out	spam	is
a	classic	example	of	classification.	Mahout	provides	a	rich	set	of	APIs	to	build	your
own	classification	model.	For	example,	Mahout	can	be	used	to	build	a	document
classifier	or	an	e-mail	classifier.
Clustering:	This	is	a	technique	that	tries	to	group	items	together	based	on	some	sort
of	similarity.	Here,	we	find	the	different	clusters	of	items	based	on	certain	properties,
and	we	do	not	know	the	name	of	the	cluster	in	advance.	The	main	difference	between
clustering	and	classification	is	that	in	classification,	we	know	the	end	class	name.
Clustering	is	useful	in	finding	out	different	customer	segments.	Google	News	uses
the	clustering	technique	in	order	to	group	news.	For	clustering,	Mahout	has	already
implemented	some	of	the	most	popular	algorithms	in	this	area,	such	as	k-means,
fuzzy	k-means,	canopy,	and	so	on.
Dimensional	reduction:	As	we	discussed	in	the	previous	chapter,	features	are	called
dimensions.	Dimensional	reduction	is	the	process	of	reducing	the	number	of	random
variables	under	consideration.	This	makes	data	easy	to	use.	Mahout	provides
algorithms	for	dimensional	reduction.	Singular	value	decomposition	and	Lanczos	are
examples	of	the	algorithms	that	Mahout	provides.
Topic	modeling:	Topic	modeling	is	used	to	capture	the	abstract	idea	of	a	document.
A	topic	model	is	a	model	that	associates	probability	distribution	with	each	document
over	topics.	Given	that	a	document	is	about	a	particular	topic,	one	would	expect
particular	words	to	appear	in	the	document	more	or	less	frequently.	“Football”	and
“goal”	will	appear	more	in	a	document	about	sports.	Latent	Dirichlet	Allocation
(LDA)	is	a	powerful	learning	algorithm	for	topic	modeling.	In	Mahout,	collapsed
variational	Bayes	is	implemented	for	LDA.

Algorithms	supported	in	Mahout
The	implementation	of	algorithms	in	Mahout	can	be	categorized	into	two	groups:

Sequential	algorithms:	These	algorithms	are	executed	sequentially	and	do	not	use
Hadoop	scalable	processing.	They	are	usually	the	ones	derived	from	Taste.	For
example:	user-based	collaborative	filtering,	logistic	regression,	Hidden	Markov
Model,	multi-layer	perceptron,	singular	value	decomposition.
Parallel	algorithms:	These	algorithms	can	support	petabytes	of	data	using	Hadoop’s
map	and	hence	reduce	parallel	processing.	For	example,	Random	Forest,	Naïve
Bayes,	canopy	clustering,	k-means	clustering,	spectral	clustering,	and	so	on.

Reasons	for	Mahout	being	a	good	choice
for	classification
In	machine	learning	systems,	the	more	data	you	use,	the	more	accurate	the	system	built
will	be.	Mahout,	which	uses	Hadoop	for	scalability,	is	way	ahead	of	others	in	terms	of
handling	huge	datasets.	As	the	number	of	training	sets	increases,	Mahout’s	performance
also	increases.	If	the	input	size	for	training	examples	is	from	1	million	to	10	million,	then
Mahout	is	an	excellent	choice.

For	classification	problems,	increased	data	for	training	is	desirable	as	it	can	improve	the
accuracy	of	the	model.	Generally,	as	the	number	of	datasets	increases,	memory
requirement	also	increases,	and	algorithms	become	slow,	but	Mahout’s	scalable	and
parallel	algorithms	work	better	with	regards	to	the	time	taken.	Each	new	machine	added
decreases	the	training	time	and	provides	higher	performance.

Installing	Mahout
Now	let’s	try	the	slightly	challenging	part	of	this	book:	Mahout	installation.	Based	on
common	experiences,	I	have	come	up	with	the	following	questions	or	concerns	that	users
face	before	installation:

I	do	not	know	anything	about	Maven.	How	will	I	compile	Mahout	build?
How	can	I	set	up	Eclipse	to	write	my	own	programs	in	Mahout?
How	can	I	install	Mahout	on	a	Windows	system?

So,	we	will	install	Mahout	with	the	help	of	the	following	steps.	Each	step	is	independent
from	the	other.	You	can	choose	any	one	of	these:

Building	Mahout	code	using	Maven
Setting	up	a	development	environment	using	Eclipse
Setting	up	Mahout	for	a	Windows	user

Before	any	of	the	steps,	some	of	the	prerequisites	are:

You	should	have	Java	installed	on	your	system.	Wikihow	is	a	good	source	for	this	at
http://www.wikihow.com/Install-Java-on-Linux
You	should	have	Hadoop	installed	on	your	system	from	the
http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-
common/SingleNodeSetup.html	URL

http://www.wikihow.com/Install-Java-on-Linux
http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SingleNodeSetup.html

Building	Mahout	from	source	using	Maven
Mahout’s	build	and	release	system	is	based	on	Maven.

Installing	Maven
1.	 Create	the	folder	/usr/local/maven,	as	follows:

mkdir	/usr/local/maven

2.	 Download	the	distribution	apache-maven-x.y.z-bin.tar.gz	from	the	Maven	site
(http://maven.apache.org/download.cgi)	and	move	this	to	/usr/local/maven,	as
follows:

mv	apache-maven-x.y.z-bin.tar.gz	/usr/local/maven

3.	 Unpack	to	the	location	/usr/local/maven,	as	follows:

tar	–xvf	apache-maven-x.y.z-bin.tar.gz

4.	 Edit	the	.bashrc	file,	as	follows:

export	M2_HOME=/usr/local/apache-maven-x.y.z

export	M2=$M2_HOME/bin

export	PATH=$M2:$PATH

Note
For	the	Eclipse	IDE,	go	to	Help	and	select	Install	new	Software.	Click	on	the	Add
button,	and	in	the	pop	up,	type	the	name	M2Eclipse,	provide	the	link
http://download.eclipse.org/technology/m2e/releases,	and	click	on	OK.

Building	Mahout	code
By	default,	Mahout	assumes	that	Hadoop	is	already	installed	on	the	system.	Mahout	uses
the	HADOOP_HOME	and	HADOOP_CONF_DIR	environment	variables	to	access	Hadoop	cluster
configurations.	For	setting	up	Mahout,	execute	the	following	steps:

1.	 Download	the	Mahout	distribution	file	mahout-distribution-0.9-src.tar.gz	from
the	location	http://archive.apache.org/dist/mahout/0.9/.

2.	 Choose	an	installation	directory	for	Mahout	(/usr/local/Mahout),	and	place	the
downloaded	source	in	the	folder.	Extract	the	source	code	and	ensure	that	the	folder
contains	the	pom.xml	file.	The	following	is	the	exact	location	of	the	source:

tar	-xvf		mahout-distribution-0.9-src.tar.gz

3.	 Install	the	Mahout	Maven	project,	and	skip	the	test	cases	while	installing,	as	follows:

mvn	install	-Dmaven.test.skip=true

4.	 Set	the	MAHOUT_HOME	environment	variable	in	the	~/.bashrc	file,	and	update	the	PATH
variable	with	the	Mahout	bin	directory:

export	MAHOUT_HOME=/user/local/mahout/mahout-distribution-0.9

http://maven.apache.org/download.cgi
http://download.eclipse.org/technology/m2e/releases
http://archive.apache.org/dist/mahout/0.9/

export	PATH=$PATH:$MAHOUT_HOME/bin

5.	 To	test	the	Mahout	installation,	execute	the	command:	mahout.	This	will	list	the
available	programs	within	the	distribution	bundle,	as	shown	in	the	following
screenshot:

Setting	up	a	development	environment	using
Eclipse
For	this	setup,	you	should	have	Maven	installed	on	the	system	and	the	Maven	plugin	for
Eclipse.	Refer	to	the	Installing	Maven	step	explained	in	the	previous	section.	This	setup
can	be	done	in	the	following	steps:

1.	 Download	the	Mahout	distribution	file	mahout-distribution-0.9-src.tar.gz	from
the	location	http://archive.apache.org/dist/mahout/0.9/	and	unzip	this:

tar	xzf	mahout-distribution-0.9-src.tar.gz

2.	 Let’s	create	a	folder	named	workspace	under	/usr/local/workspace,	as	follows:

mkdir	/usr/local/workspace

3.	 Move	the	downloaded	distribution	to	this	folder	(from	the	downloads	folder),	as
follows:

mv	mahout-distribution-0.9	/usr/local/workspace/

4.	 Move	to	the	folder	/usr/local/workspace/mahout-distribution-0.9	and	make	an
Eclipse	project	(this	command	can	take	up	to	an	hour):

mvn	eclipse:eclipse

5.	 Set	the	Mahout	home	in	the	.bashrc	file,	as	explained	earlier	in	the	Building	Mahout
code	section.

6.	 Now	open	Eclipse.	Select	the	file,	import	Maven,	and	Existing	Maven	Projects.
Now,	navigate	to	the	location	for	mahout-distribution-0.9	and	click	on	Finish.

http://archive.apache.org/dist/mahout/0.9/

Setting	up	Mahout	for	a	Windows	user
A	Windows	user	can	use	Cygwin	(a	large	collection	of	GNU	and	open	source	tools	that
provides	functionality	similar	to	a	Linux	distribution	on	Windows)	to	set	up	their
environment.	There	is	also	another	way	that	is	easy	to	use,	as	shown	in	the	following
steps:

1.	 Download	Hortonworks	Sandbox	for	virtual	box	on	your	system	from	the	location
http://hortonworks.com/products/hortonworks-sandbox/#install.	Hortonworks
Sandbox	on	your	system	will	be	a	pseudo-distributed	mode	of	Hadoop.

2.	 Log	in	to	the	console.	Use	Alt	+	F5	or	alternatively	download	Putty	and	provide
127.0.0.1	as	the	hostname	and	2222	in	the	port,	as	shown	in	the	following	figure.	Log
in	with	the	username	root	and	password	-hadoop.

3.	 Enter	the	following	command:

yum	install	mahout

Now,	you	will	see	a	screen	like	this:

http://hortonworks.com/products/hortonworks-sandbox/#install

4.	 Enter	y,	and	your	Mahout	will	start	installing.	Once	this	is	done,	you	can	test	by
typing	the	command	mahout	and	this	will	show	you	the	same	screen	as	shown	in	the
Setting	up	a	development	environment	using	Eclipse	recipe	seen	earlier.

Summary
We	discussed	Apache	Mahout	in	detail	in	this	chapter.	We	covered	the	process	of
installing	Mahout	on	our	system,	along	with	setting	up	a	development	environment	that	is
ready	to	execute	Mahout	algorithms.	We	have	also	taken	a	look	at	the	reasons	behind
Mahout	being	considered	a	good	choice	for	classification.	Now,	we	move	to	the	next
where	we	will	understand	about	logistic	regression	and	learn	about	the	process	that	needs
to	be	followed	to	execute	our	first	algorithm	in	Mahout.

Chapter	3.	Learning	Logistic	Regression	/
SGD	Using	Mahout
Instead	of	jumping	directly	into	logistic	regression,	let’s	try	to	understand	a	few	of	its
concepts.	In	this	chapter,	we	will	explore	the	following	topics:

Introducing	regression
Understanding	linear	regression
Cost	function
Gradient	descent
Logistic	regression
Understanding	SGD
Using	Mahout	for	logistic	regression

Introducing	regression
Regression	analysis	is	used	for	prediction	and	forecasting.	It	is	used	to	find	out	the
relationship	between	explanatory	variables	and	target	variables.	Essentially,	it	is	a
statistical	model	that	is	used	to	find	out	the	relationship	among	variables	present	in	the
datasets.	An	example	that	you	can	refer	to	for	a	better	understanding	of	this	term	is	this:
determine	the	earnings	of	workers	in	a	particular	industry.	Here,	we	will	try	to	find	out	the
factors	that	affect	a	worker’s	salary.	These	factors	can	be	age,	education,	years	of
experience,	particular	skill	set,	location,	and	so	on.	We	will	try	to	make	a	model	that	will
take	all	these	variables	into	consideration	and	try	to	predict	the	salary.	In	regression
analysis,	we	characterize	the	variation	of	the	target	variable	around	the	regression
function,	which	can	be	described	by	a	probability	distribution	that	is	also	of	interest.	There
are	a	number	of	regression	analysis	techniques	that	are	available.	For	example,	linear
regression,	ordinary	least	squares	regression,	logistic	regression,	and	so	on.

Understanding	linear	regression
In	linear	regression,	we	create	a	model	to	predict	the	value	of	a	target	variable	with	the
help	of	an	explanatory	variable.	To	understand	this	better,	let’s	look	at	an	example.

A	company	X	that	deals	in	selling	coffee	has	noticed	that	in	the	month	of	monsoon,	their
sales	increased	to	quite	an	extent.	So	they	have	come	up	with	a	formula	to	find	the	relation
between	rain	and	their	per	cup	coffee	sale,	which	is	shown	as	follows:

C	=	1.5R+800

So,	for	2	mm	of	rain,	there	is	a	demand	of	803	cups	of	coffee.	Now	if	you	go	into	minute
details,	you	will	realize	that	we	have	the	data	for	rainfall	and	per	cup	coffee	sale,	and	we
are	trying	to	build	a	model	that	can	predict	the	demand	for	coffee	based	on	the	rainfall.	We
have	data	in	the	form	of	(R1,	C1),	(R2,	C2)….	(Ri,	Ci).	Here,	we	will	build	the	model	in	a
manner	that	keeps	the	error	in	the	actual	and	predicted	values	at	a	minimum.

Cost	function
In	the	equation	C	=	1.5R+800,	the	two	values	1.5	and	800	are	parameters	and	these	values
affect	the	end	result.	We	can	write	this	equation	as	C=	p0+p1R.	As	we	discussed	earlier,
our	goal	is	to	reduce	the	difference	between	the	actual	value	and	the	predicted	value,	and
this	is	dependent	on	the	values	of	p0	and	p1.	Let’s	assume	that	the	predicted	value	is	Cp
and	the	actual	value	is	C	so	that	the	difference	will	be	(Cp-C).	This	can	be	written	as
(p0+p1R-C).To	minimize	this	error,	we	define	the	error	function,	which	is	also	called	the
cost	function.

The	cost	function	can	be	defined	with	the	following	formula:

Here,	i	is	the	ith	sample	and	N	is	the	number	of	training	examples.	We	calculate	costs	for
different	sets	of	p0	and	p1	and	finally	select	the	p0	and	p1	that	gives	the	least	cost	(C).
This	is	the	model	that	will	be	used	to	make	predictions	for	new	input.

Gradient	descent
Gradient	descent	starts	with	an	initial	set	of	parameter	values,	p0	and	p1,	and	iteratively
moves	towards	a	set	of	parameter	values	that	minimizes	the	cost	function.	We	can
visualize	this	error	function	graphically,	where	width	and	length	can	be	considered	as	the
parameters	p0	and	p1	and	height	as	the	cost	function.	Our	goal	is	to	find	the	values	for	p0
and	p1	in	a	way	that	our	cost	function	will	be	minimal.	We	start	the	algorithm	with	some
values	of	p0	and	p1	and	iteratively	work	towards	the	minimum	value.	A	good	way	to
ensure	that	the	gradient	descent	is	working	correctly	is	to	make	sure	that	the	cost	function
decreases	for	each	iteration.	In	this	case,	the	cost	function	surface	is	convex	and	we	will
try	to	find	out	the	minimum	value.	This	can	be	seen	in	the	following	figure:

Logistic	regression
Logistic	regression	is	used	to	ascertain	the	probability	of	an	event.	Generally,	logistic
regression	refers	to	problems	where	the	outcome	is	binary,	for	example,	in	building	a
model	that	is	based	on	a	customer’s	income,	travel	uses,	gender,	and	other	features	to
predict	whether	he	or	she	will	buy	a	particular	car	or	not.	So,	the	answer	will	be	a	simple
yes	or	no.	When	the	outcome	is	composed	of	more	than	one	category,	this	is	called
multinomial	logistic	regression.

Logistic	regression	is	based	on	the	sigmoid	function.	Predictor	variables	are	combined
with	linear	weight	and	then	passed	to	this	function,	which	generates	the	output	in	the
range	of	0–1.	An	output	close	to	1	indicates	that	an	item	belongs	to	a	certain	class.	Let’s
first	understand	the	sigmoid	or	logistic	function.	It	can	be	defined	by	the	following
formula:

F	(z)	=	1/1+e	(-z)

With	a	single	explanatory	variable,	z	will	be	defined	as	z	=	β0	+	β1*x.	This	equation	is
explained	as	follows:

z:	This	is	called	the	dependent	variable.	This	is	the	variable	that	we	would	like	to
predict.	During	the	creation	of	the	model,	we	have	this	variable	with	us	in	the	training
set,	and	we	build	the	model	to	predict	this	variable.	The	known	values	of	z	are	called
observed	values.
x:	This	is	the	explanatory	or	independent	variable.	These	variables	are	used	to	predict
the	dependent	variable	z.	For	example,	to	predict	the	sales	of	a	newly	launched
product	at	a	particular	location,	we	might	include	explanatory	variables	such	as	the
price	of	the	product,	the	average	income	of	the	people	of	that	location,	and	so	on.
β0:	This	is	called	the	regression	intercept.	If	all	explanatory	variables	are	zero,	then
this	parameter	is	equal	to	the	dependent	variable	z.
β1:	These	are	values	for	each	explanatory	variable.

The	graph	of	the	logistic	function	is	as	follows:

With	a	little	bit	of	mathematics,	we	can	change	this	equation	as	follows:

ln(F(x)/(1-F(x))	=	β0	+	β1*x

In	the	case	of	linear	regression,	the	cost	function	graph	was	convex,	but	here,	it	is	not
going	to	be	convex.	Finding	the	minimum	values	for	parameters	in	a	way	that	our
predicted	output	is	close	to	the	actual	one	will	be	difficult.	In	a	cost	function,	while
calculating	for	logistic	regression,	we	will	replace	our	Cp	value	of	linear	regression	with
the	function	F(z).	To	make	convex	logistic	regression	cost	functions,	we	will	replace
(p0+p1Ri-Ci)2	with	one	of	the	following:

log	(1/1+e	(-(β0	+	β1*x)))	if	the	actual	occurrence	of	an	event	is	1,	this	function	will
represent	the	cost.
log	(1-(1/1+e	(-(β0	+	β1*x))))	if	the	actual	occurrence	of	an	event	is	0,	this	function
will	represent	the	cost.

We	will	have	to	remember	that	in	logistic	regression,	we	calculate	the	class	probability.
So,	if	the	probability	of	an	event	occurring	(customer	buying	a	car,	being	defrauded,	and
so	on)	is	p,	the	probability	of	non-occurrence	is	1-p.

Stochastic	Gradient	Descent
Gradient	descent	minimizes	the	cost	function.	For	very	large	datasets,	gradient	descent	is	a
very	expensive	procedure.	Stochastic	Gradient	Descent	(SGD)	is	a	modification	of	the
gradient	descent	algorithm	to	handle	large	datasets.	Gradient	descent	computes	the
gradient	using	the	whole	dataset,	while	SGD	computes	the	gradient	using	a	single	sample.
So,	gradient	descent	loads	the	full	dataset	and	tries	to	find	out	the	local	minimum	on	the
graph	and	then	repeat	the	full	process	again,	while	SGD	adjusts	the	cost	function	for	every
sample,	one	by	one.	A	major	advantage	that	SGD	has	over	gradient	descent	is	that	its
speed	of	computation	is	a	whole	lot	faster.	Large	datasets	in	RAM	generally	cannot	be
held	as	the	storage	is	limited.	In	SGD,	the	burden	on	the	RAM	is	reduced,	wherein	each
sample	or	batch	of	samples	are	loaded	and	worked	with,	the	results	for	which	are	stored,
and	so	on.

Using	Mahout	for	logistic	regression
Mahout	has	implementations	for	logistic	regression	using	SGD.	It	is	very	easy	to
understand	and	use.	So	let’s	get	started.

Dataset

We	will	use	the	Wisconsin	Diagnostic	Breast	Cancer	(WDBC)	dataset.	This	is	a	dataset
for	breast	cancer	tumors	and	data	is	available	from	1995	onwards.	It	has	569	instances	of
breast	tumor	cases	and	has	30	features	to	predict	the	diagnosis,	which	is	categorized	as
either	benign	or	malignant.

Note
More	details	on	the	preceding	dataset	is	available	at	http://archive.ics.uci.edu/ml/machine-
learning-databases/breast-cancer-wisconsin/wdbc.names.

Preparing	the	training	and	test	data

You	can	download	the	wdbc.data	dataset	from	http://archive.ics.uci.edu/ml/machine-
learning-databases/breast-cancer-wisconsin/wdbc.data.

Now,	save	it	as	a	CSV	file	and	include	the	following	header	line:
ID_Number,Diagnosis,Radius,Texture,Perimeter,Area,Smoothness,Compactness,Concavity,ConcavePoints,Symmetry,Fractal_Dimension,RadiusStdError,TextureStdError,PerimeterStdError,AreaStdError,SmoothnessStdError,CompactnessStdError,ConcavityStdError,ConcavePointStdError,Symmetrystderror,FractalDimensionStderror,WorstRadius,worsttexture,worstperimeter,worstarea,worstsmoothness,worstcompactness,worstconcavity,worstconcavepoints,worstsymmentry,worstfractaldimensions

Now,	we	will	have	to	perform	the	following	steps	to	prepare	this	data	to	be	used	by	the
Mahout	logistic	regression	algorithm:

1.	 We	will	make	the	target	class	numeric.	In	this	case,	the	second	field	diagnosis	is	the
target	variable.	We	will	change	malignant	to	0	and	benign	to	1.	Use	the	following
code	snippet	to	introduce	the	changes.	We	can	use	this	strategy	for	small	datasets,	but
for	huge	datasets,	we	have	different	strategies,	which	we	will	cover	in	Chapter	4,
Learning	the	Naïve	Bayes	Classification	Using	Mahout:

public	void	convertTargetToInteger()	throws	IOException{

		//Read	the	data

		BufferedReader	br	=	new	BufferedReader(new	FileReader("wdbc.csv"));

		String	line	=null;

		//Create	the	file	to	save	the	resulted	data

		File	wdbcData	=	new	File("<Your	Destination	location	for	file.>");

		FileWriter	fw	=	new	FileWriter(wdbcData);

		//We	are	adding	header	to	the	new	file

		

fw.write("ID_Number"+","+"Diagnosis"+","+"Radius"+","+"Texture"+","+"Pe

rimeter"+","+"Area"+","+"Smoothness"+","+"Compactness"+","+"Concavity"+

","+"ConcavePoints"+","+"Symmetry"+","+"Fractal_Dimension"+","+"RadiusS

tdError"+","+"TextureStdError"+","+"PerimeterStdError"+","+"AreaStdErro

r"+","+"SmoothnessStdError"+","+"CompactnessStdError"+","+"ConcavityStd

Error"+","+"ConcavePointStdError"+","+"Symmetrystderror"+","+"FractalDi

mensionStderror"+","+"WorstRadius"+","+"worsttexture"+","+"worstperimet

er"+","+"worstarea"+","+"worstsmoothness"+","+"worstcompactness"+","+"w

orstconcavity"+","+"worstconcavepoints"+","+"worstsymmentry"+","+"worst

fractaldimensions"+"\n");

http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/wdbc.names
http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/wdbc.data

		/*In	the	while	loop	we	are	reading	line	by	line	and	checking	the	last	

field-	parts[1]	and	changing	it	to	numeric	value	accordingly*/

		while((line=br.readLine())!=null){

				String	[]parts	=	line.split(",");

				if(parts[1].equals("M")){

				

fw.write(parts[0]+","+"0"+","+parts[2]+","+parts[3]+","+parts[4]+","+pa

rts[5]+","+parts[6]+","+parts[7]+","+parts[8]+","+parts[9]+","+parts[10

]+","+parts[11]+","+parts[12]+","+parts[13]+","+parts[14]+","+parts[15]

+","+parts[16]+","+parts[17]+","+parts[18]+","+parts[19]+","+parts[20]+

","+parts[21]+","+parts[22]+","+parts[23]+","+parts[24]+","+parts[25]+"

,"+parts[26]+","+parts[27]+","+parts[28]+","+parts[29]+","+parts[30]+",

"+parts[31]+"\n");

				}

				if(parts[1].equals("B")){

						

fw.write(parts[0]+","+"1"+","+parts[2]+","+parts[3]+","+parts[4]+","+pa

rts[5]+","+parts[6]+","+parts[7]+","+parts[8]+","+parts[9]+","+parts[10

]+","+parts[11]+","+parts[12]+","+parts[13]+","+parts[14]+","+parts[15]

+","+parts[16]+","+parts[17]+","+parts[18]+","+parts[19]+","+parts[20]+

","+parts[21]+","+parts[22]+","+parts[23]+","+parts[24]+","+parts[25]+"

,"+parts[26]+","+parts[27]+","+parts[28]+","+parts[29]+","+parts[30]+",

"+parts[31]+"\n");

				}

		}

		fw.close();

		br.close();

}

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	from	your	account	at
http://www.packtpub.com	for	all	the	Packt	Publishing	books	you	have	purchased.	If
you	purchased	this	book	elsewhere,	you	can	visit	http://www.packtpub.com/support
and	register	to	have	the	files	e-mailed	directly	to	you.

2.	 We	will	have	to	split	the	dataset	into	training	and	test	datasets	and	then	shuffle	the
datasets	so	that	we	can	mix	them	up,	which	can	be	done	using	the	following	code
snippet:

public	void	dataPrepration()	throws	Exception	{

		//	Reading	the	dataset	created	by	earlier	method	

convertTargetToInteger	and	here	we	are	using	google	guava	api's.

		List<String>	result	=	

Resources.readLines(Resources.getResource("wdbc.csv"),	Charsets.UTF_8);

		//This	is	to	remove	header	before	the	randomization	process.	

Otherwise	it	can	appear	in	the	middle	of	dataset.

		List<String>	raw	=	result.subList(1,	570);

		Random	random	=	new	Random();

		//Shuffling	the	dataset.

		Collections.shuffle(raw,	random);

		//Splitting	dataset	into	training	and	test	examples.

http://www.packtpub.com
http://www.packtpub.com/support

		List<String>	train	=	raw.subList(0,	470);

		List<String>	test	=	raw.subList(470,	569);

		File	trainingData	=	new	File("<your	Location>/	wdbcTrain.csv");

		File	testData	=	new	File("<your	Location>/	wdbcTest.csv");

		writeCSV(train,	trainingData);

		writeCSV(test,	testData);

}

//This	method	is	writing	the	list	to	desired	file	location.

public	void	writeCSV(List<String>	list,	File	file)	throws	IOException{

		FileWriter	fw	=	new	FileWriter(file);

		

fw.write("ID_Number"+","+"Diagnosis"+","+"Radius"+","+"Texture"+","+"Pe

rimeter"+","+"Area"+","+"Smoothness"+","+"Compactness"+","+"Concavity"+

","+"ConcavePoints"+","+"Symmetry"+","+"Fractal_Dimension"+","+"RadiusS

tdError"+","+"TextureStdError"+","+"PerimeterStdError"+","+"AreaStdErro

r"+","+"SmoothnessStdError"+","+"CompactnessStdError"+","+"ConcavityStd

Error"+","+"ConcavePointStdError"+","+"Symmetrystderror"+","+"FractalDi

mensionStderror"+","+"WorstRadius"+","+"worsttexture"+","+"worstperimet

er"+","+"worstarea"+","+"worstsmoothness"+","+"worstcompactness"+","+"w

orstconcavity"+","+"worstconcavepoints"+","+"worstsymmentry"+","+"worst

fractaldimensions"+"\n");

		for(int	i=0;i<	list.size();i++){

				fw.write(list.get(i)+"\n");

		}

		fw.close();

}

Training	the	model

We	will	use	the	training	dataset	and	trainlogistic	algorithm	to	prepare	the	model.	Use	the
following	command	to	create	the	model:

mahout	trainlogistic	--input	/tmp/wdbcTrain.csv	--output	/tmp//model	--

target	Diagnosis	--categories	2	--predictors	Radius	Texture	Perimeter	Area	

Smoothness	Compactness	Concavity	ConcavePoints	Symmetry	Fractal_Dimension	

RadiusStdError	TextureStdError	PerimeterStdError	AreaStdError	

SmoothnessStdError	CompactnessStdError	ConcavityStdError	

ConcavePointStdError	Symmetrystderror	FractalDimensionStderror	WorstRadius	

worsttexture	worstperimeter	worstarea	worstsmoothness	worstcompactness	

worstconcavity	worstconcavepoints	worstsymmentry	worstfractaldimensions		--

types	numeric	--features	30	--passes	90	--rate	300

This	command	will	give	you	the	following	output:

Let’s	understand	the	parameters	used	in	this	command:

trainlogistic:	This	is	the	algorithm	that	Mahout	provides	to	build	the	model	using
your	input	parameters.
input:	This	is	the	location	of	the	input	file.
output:	This	is	the	location	of	the	model	file.
target:	This	is	the	name	of	the	target	variable	that	we	want	to	predict	from	the
dataset.
categories:	This	refers	to	the	number	of	predicted	classes.
predictors:	This	features	in	the	dataset	used	to	predict	the	target	variable.
types:	This	is	a	list	of	the	types	of	predictor	variables.	(Here	all	are	numeric	but	it
could	be	word	or	text	as	well.)
features:	This	is	the	size	of	the	feature	vector	used	to	build	the	model.
passes:	This	specifies	the	number	of	times	the	input	data	should	be	re-examined
during	training.	Small	input	files	may	need	to	be	examined	dozens	of	times.	Very
large	input	files	probably	don’t	even	need	to	be	completely	examined.
rate:	This	sets	the	initial	learning	rate.	This	can	be	large	if	you	have	lots	of	data	or
use	lots	of	passes	because	it	decreases	progressively	as	data	is	examined.

Now	our	model	is	ready	to	move	on	to	the	next	step	of	evaluation.	To	evaluate	the	model
further,	we	can	use	the	same	dataset	and	check	the	confusion	and	AUC	matrix.	The
command	for	this	will	be	as	follows:

mahout	runlogistic	--input	/tmp/wdbcTrain.csv	--model	/tmp//model		--auc	--

confusion

runlogistic:	This	is	the	algorithm	to	run	the	logistic	regression	model	over	an	input
dataset
model:	This	is	the	location	of	the	model	file
auc:	This	prints	the	AUC	score	for	the	model	versus	the	input	data	after	the	data	is
read
confusion:	This	prints	the	confusion	matrix	for	a	particular	threshold

The	output	of	the	previous	command	is	shown	in	the	following	screenshot:

Now,	these	matrices	show	that	the	model	is	not	bad.	Having	0.88	as	the	value	for	AUC	is
good,	but	we	will	check	this	on	test	data	as	well.	The	confusion	matrix	informs	us	that	out
of	172	malignant	tumors,	it	has	correctly	classified	151	instances	and	that	34	benign
tumors	are	also	classified	as	malignant.	In	the	case	of	benign	tumors,	out	of	298,	it	has
correctly	classified	264.

If	the	model	does	not	provide	good	results,	we	have	a	number	of	options.

Change	the	parameters	in	the	feature	vector,	increasing	them	if	we	are	selecting	few
features.	This	should	be	done	one	at	a	time,	and	we	should	test	the	result	again	with	each
generated	model.	We	should	get	a	model	where	AUC	is	close	to	1.

Let’s	run	the	same	algorithm	on	test	data	as	well:

mahout	runlogistic	--input	/tmp/wdbcTest.csv	--model	/tmp//model		--auc	–

confusion

So	this	model	works	almost	the	same	on	test	data	as	well.	It	has	classified	34	out	of	the	40
malignant	tumors	correctly.

Summary
In	this	chapter,	we	discussed	logistic	regression	and	how	we	can	use	this	algorithm
available	in	Apache	Mahout.	We	used	the	Wisconsin	Diagnostic	Breast	Cancer	dataset	and
randomly	broke	it	into	two	datasets:	one	for	training	and	the	other	for	testing.	We	created
the	logistic	regression	model	using	Mahout	and	also	ran	test	data	over	this	model.	Now,
we	will	move	on	to	the	next	chapter	where	you	will	learn	about	the	Naïve	Bayes
classification	and	also	the	most	frequently	used	classification	technique:	text
classification.

Chapter	4.	Learning	the	Naïve	Bayes
Classification	Using	Mahout
In	this	chapter,	we	will	use	the	Naïve	Bayes	classification	algorithm	to	classify	a	set	of
documents.	Classifying	text	documents	is	a	little	tricky	because	of	the	data	preparation
steps	involved.	In	this	chapter,	we	will	explore	the	following	topics:

Conditional	probability	and	the	Bayes	rule
Understanding	the	Naïve	Bayes	algorithm
Understanding	terms	used	in	text	classification
Using	the	Naïve	Bayes	algorithm	in	Apache	Mahout

Introducing	conditional	probability	and
the	Bayes	rule
Before	learning	the	Naïve	Bayes	algorithm,	you	should	have	an	understanding	of
conditional	probability	and	the	Bayes	rule.

In	very	simple	terms,	conditional	probability	is	the	probability	that	something	will	happen,
given	that	something	else	has	already	happened.	It	is	expressed	as	P(A/B),	which	can	be
read	as	probability	of	A	given	B,	and	it	finds	the	probability	of	the	occurrence	of	event	A
once	event	B	has	already	happened.

Mathematically,	it	is	defined	as	follows:

For	example,	if	you	choose	a	card	from	a	standard	card	deck	and	if	you	were	asked	about
the	probability	for	the	card	to	be	a	diamond,	you	would	quickly	say	13/52	or	0.25,	as	there
are	13	diamond	cards	in	the	deck.	However,	if	you	then	look	at	the	card	and	declare	that	it
is	red,	then	we	will	have	narrowed	the	possibilities	for	the	card	to	26	possible	cards,	and
the	probability	that	the	card	is	a	diamond	now	is	13/26	=	0.5.	So,	if	we	define	A	as	a
diamond	card	and	B	as	a	red	card,	then	P(A/B)	will	be	the	probability	of	the	card	being	a
diamond,	given	it	is	red.

Sometimes,	for	a	given	pair	of	events,	conditional	probability	is	hard	to	calculate,	and
Bayes’	theorem	helps	us	here	by	giving	the	relationship	between	two	conditional
probabilities.

Bayes’	theorem	is	defined	as	follows:

The	terms	in	the	formula	are	defined	as	follows:

P(A):	This	is	called	prior	probability	or	prior
P(B/A):	This	is	called	conditional	probability	or	likelihood
P(B):	This	is	called	marginal	probability
P(A/B):	This	is	called	posterior	probability	or	posterior

The	following	formula	is	derived	only	from	the	conditional	probability	formula.	We	can
define	P(B/A)	as	follows:

When	rearranged,	the	formula	becomes	this:

Now,	from	the	preceding	conditional	probability	formula,	we	get	the	following:

Let’s	take	an	example	that	will	help	us	to	understand	how	Bayes’	theorem	is	applied.

A	cancer	test	gives	a	positive	result	with	a	probability	of	97	percent	when	the	patient	is
indeed	affected	by	cancer,	while	it	gives	a	negative	result	with	99	percent	probability
when	the	patient	is	not	affected	by	cancer.	If	a	patient	is	drawn	at	random	from	a
population	where	0.2	percent	of	the	individuals	are	affected	by	cancer	and	he	or	she	is
found	to	be	positive,	what	is	the	probability	that	he	or	she	is	indeed	affected	by	cancer?	In
probabilistic	terms,	what	we	know	about	this	problem	can	be	defined	as	follows:

P	(positive|	cancer)	=	0.97

P	(positive|	no	cancer)	=	1-0.99	=	0.01

P	(cancer)	=	0.002

P	(no	cancer)	=	1-0.002=	0.998

P	(positive)	=	P	(positive|	cancer)	P	(cancer)	+	P	(positive|	no	cancer)	P	(no	cancer)

=	0.97*0.002	+	0.01*0.998

=	0.01192

Now	P	(cancer|	positive)	=	(0.97*0.002)/0.01192	=	0.1628

So	even	when	found	positive,	the	probability	of	the	patient	being	affected	by	cancer	in	this
example	is	around	16	percent.

Understanding	the	Naïve	Bayes	algorithm
In	Bayes’	theorem,	we	have	seen	that	the	outcome	is	based	only	on	one	evidence,	but	in
classification	problems,	we	have	multiple	evidences	and	we	have	to	predict	the	outcome.
In	Naïve	Bayes,	we	uncouple	multiple	pieces	of	evidence	and	treat	each	one	of	them
independently.	It	is	defined	as	follows:

P	(outcome	|	multiple	Evidence))	=	P	(Evidence	1|outcome)*	P	(Evidence	2|outcome)*	P
(Evidence	3|outcome)	….	/P	(Evidence)

Run	this	formula	for	each	possible	outcome.	Since	we	are	trying	to	classify,	each	outcome
will	be	called	a	class.	Our	task	is	to	look	at	the	evidence	(features)	to	consider	how	likely
it	is	for	it	to	be	of	a	particular	class	and	then	assign	it	accordingly.	The	class	that	has	the
highest	probability	gets	assigned	to	that	combination	of	evidences.	Let’s	understand	this
with	an	example.

Let’s	say	that	we	have	data	on	1,000	pieces	of	fruit.	They	happen	to	be	bananas,	apples,	or
some	other	fruit.	We	are	aware	of	three	characteristics	of	each	fruit:

Size:	They	are	either	long	or	not	long
Taste:	They	are	either	sweet	or	not	sweet
Color:	They	are	either	yellow	or	not	yellow

Assume	that	we	have	a	dataset	like	the	following:

Fruit	type Taste	–	sweet Taste	–	not	sweet Color	–	yellow Color	–	not	yellow Size	–	long Size	–	not	long Total

Banana 350 150 450 50 400 100 500

Apple 150 150 100 200 0 300 300

Other 150 50 50 150 100 100 200

Total 650 350 600 400 500 500 1000

Now	let’s	look	at	the	things	we	have:

P	(Banana)	=	500/1000	=	0.5

P	(Apple)	=	300/1000	=	0.3

P	(Other)	=	200/1000	=	0.2

Let’s	look	at	the	probability	of	the	features:

P	(Sweet)	=	650/1000	=	0.65

P	(Yellow)	=	600/1000	=	0.6

P	(long)	=	500/1000	=	0.5

P	(not	Sweet)	=	350/1000	=	0.35

P	(not	yellow)	=	400/1000=	0.4

P	(not	long)	=	500/1000	=	0.5

Now	we	want	to	know	what	fruit	we	will	have	if	it	is	not	yellow	and	not	long	and	sweet.
The	probability	of	it	being	an	apple	is	as	follows:

P	(Apple|	sweet,	not	long,	not	yellow)	=	P	(sweet	|	Apple)*	P	(not	long	|	Apple)*	P	(not
yellow	|	Apple)*P	(Apple)/P	(sweet)*	P	(not	long)	*P	(not	yellow)

=	0.5*1*0.67*0.3/P	(Evidence)

=	0.1005/P	(Evidence)

The	probability	of	it	being	a	banana	is	this:

P	(banana|	sweet,	not	long,	not	yellow)	=	P	(sweet	|	banana)*	P	(not	long	|	banana)*	P
(not	yellow	|	banana)*P	(banana)/P	(sweet)*	P	(not	long)	*P	(not	yellow)

=	0.7*0.2*0.1*0.5/P	(Evidence)

=	0.007/P	(Evidence)

The	probability	of	it	being	any	other	fruit	is	as	follows:

P	(other	fruit|	sweet,	not	long,	not	yellow)	=	P	(sweet	|	other	fruit)*	P	(not	long	|	other
fruit)*	P	(not	yellow	|	other	fruit)	*P	(other	fruit)/P	(sweet)*	P	(not	long)	*P	(not	yellow)

=	0.75*0.5*0.75*0.2/P	(Evidence)

=	0.05625/	P	(Evidence)

So	from	the	results,	you	can	see	that	if	the	fruit	is	sweet,	not	long,	and	not	yellow,	then	the
highest	probability	is	that	it	will	be	an	apple.	So	find	out	the	highest	probability	and	assign
the	unknown	item	to	that	class.

Naïve	Bayes	is	a	very	good	choice	for	text	classification.	Before	we	move	on	to	text
classification	using	Naïve	Bayes	in	Mahout,	let’s	understand	a	few	terms	that	are	really
useful	for	text	classification.

Understanding	the	terms	used	in	text
classification
To	prepare	data	so	that	it	can	be	used	by	a	classifier	is	a	complex	process.	From	raw	data,
we	can	collect	explanatory	and	target	variables	and	encode	them	as	vectors,	which	is	the
input	of	the	classifier.

Vectors	are	ordered	lists	of	values	as	defined	in	two-dimensional	space.	You	can	take	a
clue	from	coordinate	geometry	as	well.	A	point	(3,	4)	is	a	point	in	the	x	and	y	planes.	In
Mahout,	it	is	different.	Here,	a	vector	can	have	(3,	4)	or	10,000	dimensions.

Mahout	provides	support	for	creating	vectors.	There	are	two	types	of	vector
implementations	in	Mahout:	sparse	and	dense	vectors.	There	are	a	few	terms	that	we	need
to	understand	for	text	classification:

Bag	of	words:	This	considers	each	document	as	a	collection	of	words.	This	ignores
word	order,	grammar,	and	punctuation.	So,	if	every	word	is	a	feature,	then	calculating
the	feature	value	of	the	document	word	is	represented	as	a	token.	It	is	given	the	value
1	if	it	is	present	or	0	if	not.
Term	frequency:	This	considers	the	word	count	in	the	document	instead	of	0	and	1.
So	the	importance	of	a	word	increases	with	the	number	of	times	it	appears	in	the
document.	Consider	the	following	example	sentence:

Apple	has	launched	iPhone	and	it	will	continue	to	launch	such	products.	Other
competitors	are	also	planning	to	launch	products	similar	to	that	of	iPhone.

The	following	is	the	table	that	represents	term	frequency:

Term Count

Apple 1

Launch 3

iPhone 2

Product 2

Plan 1

The	following	techniques	are	usually	applied	to	come	up	with	this	type	of	table:

Stemming	of	words:	With	this,	the	suffix	is	removed	from	the	word	so	“launched”,
“launches”,	and	“launch”	are	all	considered	as	“launch”.
Case	normalization:	With	this,	every	term	is	converted	to	lowercase.
Stop	word	removal:	There	are	some	words	that	are	almost	present	in	every
document.	We	call	these	words	stop	words.	During	an	important	feature	extraction
from	a	document,	these	words	come	into	account	and	they	will	not	be	helpful	in	the

overall	calculation.	Examples	of	these	words	are	“is,	are,	the,	that,	and	so	on.”	So,
while	extracting,	we	will	ignore	these	kind	of	words.
Inverse	document	frequency:	This	is	considered	as	the	boost	a	term	gets	for	being
rare.	A	term	should	not	be	too	common.	If	a	term	occurs	in	every	document,	it	is	not
good	for	classification.	The	fewer	documents	in	which	a	term	occurs,	the	more
significant	it	is	likely	to	be	for	the	documents	it	does	occur	in.	For	a	term	t,	inverse
document	frequency	is	calculated	as	follows:

IDF	(t)	=	1	+	log	(total	number	of	documents/	number	of	documents	containing	t)

Term	frequency	and	inverse	term	frequency:	This	is	one	of	the	popular
representations	of	the	text.	It	is	the	product	of	term	frequency	and	inverse	document
frequency,	as	follows:

TFIDF	(t,	d)	=	TF	(t,	d)	*	IDF	(t)

Each	document	is	a	feature	vector	and	a	collection	of	documents	is	a	set	of	these	feature
vectors	and	this	set	works	as	the	input	for	the	classification.	Now	that	we	understand	the
basic	concepts	behind	the	vector	creation	of	text	documents,	let’s	move	on	to	the	next
section	where	we	will	classify	text	documents	using	the	Naïve	Bayes	algorithm.

Using	the	Naïve	Bayes	algorithm	in
Apache	Mahout
We	will	use	a	dataset	of	20	newsgroups	for	this	exercise.	The	20	newsgroups	dataset	is	a
standard	dataset	commonly	used	for	machine	learning	research.	The	data	is	obtained	from
transcripts	of	several	months	of	postings	made	in	20	Usenet	newsgroups	from	the	early
1990s.	This	dataset	consists	of	messages,	one	per	file.	Each	file	begins	with	header	lines
that	specify	things	such	as	who	sent	the	message,	how	long	it	is,	what	kind	of	software
was	used,	and	the	subject.	A	blank	line	follows	and	then	the	message	body	follows	as
unformatted	text.

Download	the	20news-bydate.tar.gz	dataset	from
http://qwone.com/~jason/20Newsgroups/.	The	following	steps	are	used	to	build	the	Naïve
Bayes	classifier	using	Mahout:

1.	 Create	a	20newsdata	directory	and	unzip	the	data	here:

mkdir	/tmp/20newsdata

cd	/tmp/20newsdata

tar	–xzvf	/tmp/20news-bydate.tar.gz

2.	 You	will	see	two	folders	under	20newsdata:	20news-bydate-test	and	20news-
bydate-train.	Now	create	another	directory	called	20newsdataall	and	merge	both
the	training	and	test	data	of	the	20	newsgroups.

3.	 Come	out	of	the	directory	and	move	to	the	home	directory	and	execute	the	following:

mkdir	/tmp/20newsdataall

cp	–R	/20newsdata/*/*	/tmp/20newsdataall

4.	 Create	a	directory	in	Hadoop	and	save	this	data	in	HDFS	format:

hadoop	fs	–mkdir	/user/hue/20newsdata

hadoop	fs	–put	/tmp/20newsdataall	/user/hue/20newsdata

5.	 Convert	the	raw	data	into	a	sequence	file.	The	seqdirectory	command	will	generate
sequence	files	from	a	directory.	Sequence	files	are	used	in	Hadoop.	A	sequence	file	is
a	flat	file	that	consists	of	binary	key/value	pairs.	We	are	converting	the	files	into
sequence	files	so	that	it	can	be	processed	in	Hadoop,	which	can	be	done	using	the
following	command:

bin/mahout	seqdirectory	-i	/user/hue/20newsdata/20newsdataall		-o	

/user/hue/20newsdataseq-out

The	output	of	the	preceding	command	can	be	seen	in	the	following	screenshot:

http://qwone.com/~jason/20Newsgroups/

6.	 Convert	the	sequence	file	into	a	sparse	vector	using	the	following	command:

bin/mahout	seq2sparse	-i	/user/hue/20newsdataseq-out/part-m-00000	-o	

/user/hue/20newsdatavec	-lnorm	-nv	-wt	tfidf

The	terms	used	in	the	preceding	command	are	as	follows:

lnorm:	This	is	for	the	output	vector	to	be	log	normalized
nv:	This	refers	to	named	vectors
wt:	This	refers	to	the	kind	of	weight	to	use;	here,	we	use	tfidf

The	output	of	the	preceding	command	on	the	console	is	shown	in	the	following
screenshot:

7.	 Split	the	set	of	vectors	to	train	and	test	the	model:

bin/mahout	split	-i	/user/hue/20newsdatavec/tfidf-vectors	--

trainingOutput	/user/hue/20newsdatatrain	--testOutput	

/user/hue/20newsdatatest	--randomSelectionPct	40	--overwrite	--

sequenceFiles	-xm	sequential

The	terms	used	in	the	preceding	command	are	as	follows:

randomSelectionPct:	This	divides	the	percentage	of	data	into	testing	and
training	datasets.	Here,	60	percent	is	for	testing	and	40	percent	for	training.
xm:	This	refers	to	the	execution	method	to	use:	sequential	or	mapreduce.	The
default	is	mapreduce.

8.	 Now	train	the	model:

bin/mahout	trainnb	-i	/user/hue/20newsdatatrain	-el	-o	/user/hue/model	

-li	/user/hue/labelindex	-ow	-c

9.	 Test	the	model	using	the	following	command:

bin/mahout	testnb	-i	/user/hue/20newsdatatest	-m	/user/hue/model/	-l		

/user/hue/labelindex	-ow	-o	/user/hue/results

The	output	of	the	preceding	command	on	the	console	is	shown	in	the	following
screenshot:

We	get	the	result	of	our	Naïve	Bayes	classifier	for	the	20	newsgroups.

Summary
In	this	chapter,	we	discussed	the	Naïve	Bayes	algorithm.	This	algorithm	is	a	simplistic	yet
highly	regarded	statistical	model	that	is	widely	used	in	both	industry	and	academia,	and	it
produces	good	results	on	many	occasions.	We	initially	discussed	conditional	probability
and	the	Bayes	rule.	We	then	saw	an	example	of	the	Naïve	Bayes	algorithm.	You	learned
about	the	approaches	to	convert	text	into	a	vector	format,	which	is	an	input	for	classifiers.
Finally,	we	used	the	20	newsgroups	dataset	to	build	a	classifier	using	the	Naïve	Bayes
algorithm	in	Mahout.	In	the	next	chapter,	we	will	continue	our	journey	of	exploring
classification	algorithms	in	Mahout	with	the	Hidden	Markov	model	implementation.

Chapter	5.	Learning	the	Hidden	Markov
Model	Using	Mahout
In	this	chapter,	we	will	cover	one	of	the	most	interesting	topics	of	classification
techniques:	the	Hidden	Markov	Model	(HMM).	To	understand	the	HMM,	we	will	cover
the	following	topics	in	this	chapter:

Deterministic	and	nondeterministic	patterns
The	Markov	process
Introducing	the	HMM
Using	Mahout	for	the	HMM

Deterministic	and	nondeterministic
patterns
In	a	deterministic	system,	each	state	is	solely	dependent	on	the	state	it	was	previously	in.
For	example,	let’s	take	the	case	of	a	set	of	traffic	lights.	The	sequence	of	lights	is	red	→
green	→	amber	→	red.	So,	here	we	know	what	state	will	follow	after	the	current	state.
Once	the	transitions	are	known,	deterministic	systems	are	easy	to	understand.

For	nondeterministic	patterns,	consider	an	example	of	a	person	named	Bob	who	has	his
snacks	at	4:00	P.M.	every	day.	Let’s	say	he	has	any	one	of	the	three	items	from	the	menu:
ice	cream,	juice,	or	cake.	We	cannot	say	for	sure	what	item	he	will	have	the	next	day,	even
if	we	know	what	he	had	today.	This	is	an	example	of	a	nondeterministic	pattern.

The	Markov	process
In	the	Markov	process,	the	next	state	is	dependent	on	the	previous	states.	If	we	assume
that	we	have	an	n	state	system,	then	the	next	state	is	dependent	on	the	previous	n	states.
This	process	is	called	an	n	model	order.	In	the	Markov	process,	we	make	the	choice	for	the
next	state	probabilistically.	So,	considering	our	previous	example,	if	Bob	had	juice	today,
he	can	have	juice,	ice	cream,	or	cake	the	next	day.	In	the	same	way,	we	can	reach	any	state
in	the	system	from	the	previous	state.	The	Markov	process	is	shown	in	the	following
diagram:

If	we	have	n	states	in	a	process,	then	we	can	reach	any	state	with	n2	transitions.	We	have	a
probability	of	moving	to	any	state,	and	hence,	we	will	have	n2	probabilities	of	doing	this.
For	a	Markov	process,	we	will	have	the	following	three	items:

States:	This	refers	to	the	states	in	the	system.	In	our	example,	let’s	say	there	are	three
states:	state	1,	state	2,	and	state	3.
Transition	matrix:	This	will	have	the	probabilities	of	moving	from	one	state	to	any
other	state.	An	example	of	the	transition	matrix	is	shown	in	the	following	screenshot:

This	matrix	shows	that	if	the	system	was	in	state	1	yesterday,	then	the	probability	of
it	to	remain	in	the	same	state	today	will	be	0.1.

Initial	state	vector:	This	is	the	vector	of	the	initial	state	of	the	system.	(Any	one	of
the	states	will	have	a	probability	of	1	and	the	rest	will	have	a	probability	of	0	in	this
vector.)

Introducing	the	Hidden	Markov	Model
The	Hidden	Markov	Model	(HMM)	is	a	classification	technique	to	predict	the	states	of	a
system	by	observing	the	outcomes	without	having	access	to	the	actual	states	themselves.	It
is	a	Markov	model	in	which	the	states	are	hidden.

Let’s	continue	with	Bob’s	snack	example	we	saw	earlier.	Now	assume	we	have	one	more
set	of	events	in	place	that	is	directly	observable.	We	know	what	Bob	has	eaten	for	lunch
and	his	snacks	intake	is	related	to	his	lunch.	So,	we	have	an	observation	state,	which	is
Bob’s	lunch,	and	hidden	states,	which	are	his	snacks	intake.	We	want	to	build	an	algorithm
that	can	forecast	what	would	be	Bob’s	choice	of	snack	based	on	his	lunch.

In	addition	to	the	transition	probability	matrix	in	the	Hidden	Markov	Model,	we	have	one
more	matrix	that	is	called	an	emission	matrix.	This	matrix	contains	the	probability	of	the
observable	state,	provided	it	is	assigned	a	hidden	state.	The	emission	matrix	is	as	follows:

P	(observable	state	|	one	state)

So,	a	Hidden	Markov	Model	has	the	following	properties:

State	vector:	This	contains	the	probability	of	the	hidden	model	to	be	in	a	particular
state	at	the	start
Transition	matrix:	This	has	the	probabilities	of	a	hidden	state,	given	the	previous
hidden	state
Emission	matrix:	Given	that	the	hidden	model	is	in	a	particular	hidden	state,	this	has
the	probabilities	of	observing	a	particular	observable	state
Hidden	states:	This	refers	to	the	states	of	the	system	that	can	be	defined	by	the
Hidden	Markov	Model
Observable	state:	The	states	that	are	visible	in	the	process

Using	the	Hidden	Markov	Model,	three	types	of	problems	can	be	solved.	The	first	two	are
related	to	the	pattern	recognition	problem	and	the	third	type	of	problem	generates	a
Hidden	Markov	Model,	given	a	sequence	of	observations.	Let’s	look	at	these	three	types

of	problems:

Evaluation:	This	is	finding	out	the	probability	of	an	observed	sequence,	given	an
HMM.	From	the	number	of	different	HMMs	that	describe	different	systems	and	a
sequence	of	observations,	our	goal	will	be	to	find	out	which	HMM	will	most
probably	generate	the	required	sequence.	We	use	the	forward	algorithm	to	calculate
the	probability	of	an	observation	sequence	when	a	particular	HMM	is	given	and	find
out	the	most	probable	HMM.
Decoding:	This	is	finding	the	most	probable	sequence	of	hidden	states	from	some
observations.	We	use	the	Viterbi	algorithm	to	determine	the	most	probable	sequence
of	hidden	states	when	you	have	a	sequence	of	observations	and	an	HMM.
Learning:	Learning	is	generating	the	HMM	from	a	sequence	of	observations.	So,	if
we	have	such	a	sequence,	we	may	wonder	which	is	the	most	likely	model	to	generate
this	sequence.	The	forward-backward	algorithms	are	useful	in	solving	this	problem.

The	Hidden	Markov	Model	is	used	in	different	applications	such	as	speech	recognition,
handwritten	letter	recognition,	genome	analysis,	parts	of	speech	tagging,	customer
behavior	modeling,	and	so	on.

Using	Mahout	for	the	Hidden	Markov
Model
Apache	Mahout	has	the	implementation	of	the	Hidden	Markov	Model.	It	is	available	in
the	org.apache.mahout.classifier.sequencelearning.hmm	package.

The	overall	implementation	is	provided	by	eight	different	classes:

HMMModel:	This	is	the	main	class	that	defines	the	Hidden	Markov	Model.
HmmTrainer:	This	class	has	algorithms	that	are	used	to	train	the	Hidden	Markov
Model.	The	main	algorithms	are	supervised	learning,	unsupervised	learning,	and
unsupervised	Baum-Welch.
HmmEvaluator:	This	class	provides	different	methods	to	evaluate	an	HMM	model.
The	following	use	cases	are	covered	in	this	class:

Generating	a	sequence	of	output	states	from	a	model	(prediction)
Computing	the	likelihood	that	a	given	model	will	generate	the	given	sequence	of
output	states	(model	likelihood)
Computing	the	most	likely	hidden	sequence	for	a	given	model	and	a	given
observed	sequence	(decoding)

HmmAlgorithms:	This	class	contains	implementations	of	the	three	major	HMM
algorithms:	forward,	backward,	and	Viterbi.
HmmUtils:	This	is	a	utility	class	and	provides	methods	to	handle	HMM	model
objects.
RandomSequenceGenerator:	This	is	a	command-line	tool	to	generate	a	sequence	by
the	given	HMM.
BaumWelchTrainer:	This	is	the	class	to	train	HMM	from	the	console.
ViterbiEvaluator:	This	is	also	a	command-line	tool	for	Viterbi	evaluation.

Now,	let’s	work	with	Bob’s	example.

The	following	is	the	given	matrix	and	the	initial	probability	vector:

Ice	cream Cake Juice

0.36 0.51 0.13

The	following	will	be	the	state	transition	matrix:

	 Ice	cream Cake Juice

Ice	cream 0.365 0.500 0.135

Cake 0.250 0.125 0.625

Juice 0.365 0.265 0.370

The	following	will	be	the	emission	matrix:

	 Spicy	food Normal	food No	food

Ice	cream 0.1 0.2 0.7

Cake 0.5 0.25 0.25

Juice 0.80 0.10 0.10

Now	we	will	execute	a	command-line-based	example	of	this	problem.	We	have	three
hidden	states	of	what	Bob’s	eaten	for	snacks:	ice-cream,	cake,	or	juice.	Then,	we	have
three	observable	states	of	what	he	is	having	at	lunch:	spicy	food,	normal	food,	or	no	food
at	all.	Now,	the	following	are	the	steps	to	execute	from	the	command	line:

1.	 Create	a	directory	with	the	name	hmm:	mkdir	/tmp/hmm.	Go	to	this	directory	and
create	the	sample	input	file	of	the	observed	states.	This	will	include	a	sequence	of
Bob’s	lunch	habit:	spicy	food	(state	0),	normal	food	(state	1),	and	no	food	(state	2).
Execute	the	following	command:

echo	"0	1	2	2	2	1	1	0	0	2	1	2	1	1	1	1	2	2	2	0	0	0	0	0	0	2	2	2	0	0	0	0	0	

0	1	1	1	1	2	2	2	2	2	0	2	1	2	0	2	1	2	1	1	0	0	0	1	0	1	0	2	1	2	1	2	1	2	1	1	

0	0	2	2	0	2	1	1	0"	>	hmm-input

2.	 Run	the	BaumWelch	algorithm	to	train	the	model	using	the	following	command:

mahout	baumwelch	-i	/tmp/hmm/hmm-input	-o	/tmp/hmm/hmm-model	-nh	3	-no	

3	-e	.0001	-m	1000

The	parameters	used	in	the	preceding	command	are	as	follows:

i:	This	is	the	input	file	location
o:	This	is	the	output	location	for	the	model
nh:	This	is	the	number	of	hidden	states.	In	our	example,	it	is	three	(ice	cream,
juice,	or	cake)
no:	This	is	the	number	of	observable	states.	In	our	example,	it	is	three	(spicy,
normal,	or	no	food)
e:	This	is	the	epsilon	number.	This	is	the	convergence	threshold	value
m:	This	is	the	maximum	iteration	number

The	following	screenshot	shows	the	output	on	executing	the	previous	command:

3.	 Now	we	have	an	HMM	model	that	can	be	used	to	build	a	predicted	sequence.	We
will	run	the	model	to	predict	the	next	15	states	of	the	observable	sequence	using	the
following	command:

mahout	hmmpredict	-m	/tmp/hmm/hmm-model	-o	/tmp/hmm/hmm-predictions	-l	

10

The	parameters	used	in	the	preceding	command	are	as	follows:

m:	This	is	the	path	for	the	HMM	model

o:	This	is	the	output	directory	path

l:	This	is	the	length	of	the	generated	sequence

4.	 To	view	the	prediction	for	the	next	10	observable	states,	use	the	following	command:

mahout	hmmpredict	-m	/tmp/hmm/hmm-model	-o	/tmp/hmm/hmm-predictions	-l	

10

The	output	of	the	previous	command	is	shown	in	the	following	screenshot:

From	the	output,	we	can	say	that	the	next	observable	states	for	Bob’s	lunch	will	be
spicy,	spicy,	spicy,	normal,	normal,	no	food,	no	food,	no	food,	no	food,	and	no	food.

5.	 Now,	we	will	use	one	more	algorithm	to	predict	the	hidden	state.	We	will	use	the
Viterbi	algorithm	to	predict	the	hidden	states	for	a	given	observational	state’s
sequence.	We	will	first	create	the	sequence	of	the	observational	state	using	the
following	command:

echo	"0	1	2	0	2	1	1	0	0	1	1	2"	>	/tmp/hmm/hmm-viterbi-input

6.	 We	will	use	the	Viterbi	command-line	option	to	generate	the	output	with	the
likelihood	of	generating	this	sequence:

mahout	viterbi	--input	/tmp/hmm/hmm-viterbi-input	--output	tmp/hmm/hmm-

viterbi-output	--model	/tmp/hmm/hmm-model	--likelihood

The	parameters	used	in	the	preceding	command	are	as	follows:

input:	This	is	the	input	location	of	the	file
output:	This	is	the	output	location	of	the	Viterbi	algorithm’s	output
model:	This	is	the	HMM	model	location	that	we	created	earlier
likelihood:	This	is	the	computed	likelihood	of	the	observed	sequence

The	following	screenshot	shows	the	output	on	executing	the	previous	command:

7.	 Predictions	from	the	Viterbi	are	saved	in	the	output	file	and	can	be	seen	using	the	cat
command:

cat	/tmp/hmm/hmm-viterbi-output

The	following	output	shows	the	predictions	for	the	hidden	state:

Summary
In	this	chapter,	we	discussed	another	classification	technique:	the	Hidden	Markov	Model.
You	learned	about	deterministic	and	nondeterministic	patterns.	We	also	touched	upon	the
Markov	process	and	Hidden	Markov	process	in	general.	We	checked	the	classes
implemented	inside	Mahout	to	support	the	Hidden	Markov	Model.	We	took	up	an	example
to	create	the	HMM	model	and	further	used	this	model	to	predict	the	observational	state’s
sequence.	We	used	the	Viterbi	algorithm	implemented	in	Mahout	to	predict	the	hidden
states	in	the	system.

Now,	in	the	next	chapter,	we	will	cover	one	more	interesting	algorithm	used	in
classification	area:	Random	forest.

Chapter	6.	Learning	Random	Forest
Using	Mahout
Random	forest	is	one	of	the	most	popular	techniques	in	classification.	It	starts	with	a
machine	learning	technique	called	decision	tree.	In	this	chapter,	we	will	explore	the
following	topics:

Decision	tree
Random	forest
Using	Mahout	for	Random	forest

Decision	tree
A	decision	tree	is	used	for	classification	and	regression	problems.	In	simple	terms,	it	is	a
predictive	model	that	uses	binary	rules	to	calculate	the	target	variable.	In	a	decision	tree,
we	use	an	iterative	process	of	splitting	the	data	into	partitions,	then	we	split	it	further	on
branches.	As	in	other	classification	model	creation	processes,	we	start	with	the	training
dataset	in	which	target	variables	or	class	labels	are	defined.	The	algorithm	tries	to	break	all
the	records	in	training	datasets	into	two	parts	based	on	one	of	the	explanatory	variables.
The	partitioning	is	then	applied	to	each	new	partition,	and	this	process	is	continued	until
no	more	partitioning	can	be	done.	The	core	of	the	algorithm	is	to	find	out	the	rule	that
determines	the	initial	split.	There	are	algorithms	to	create	decision	trees,	such	as	Iterative
Dichotomiser	3	(ID3),	Classification	and	Regression	Tree	(CART),	Chi-squared
Automatic	Interaction	Detector	(CHAID),	and	so	on.	A	good	explanation	for	ID3	can
be	found	at	http://www.cse.unsw.edu.au/~billw/cs9414/notes/ml/06prop/id3/id3.html.

Forming	the	explanatory	variables	to	choose	the	best	splitter	in	a	node,	the	algorithm
considers	each	variable	in	turn.	Every	possible	split	is	considered	and	tried,	and	the	best
split	is	the	one	that	produces	the	largest	decrease	in	diversity	of	the	classification	label
within	each	partition.	This	is	repeated	for	all	variables,	and	the	winner	is	chosen	as	the
best	splitter	for	that	node.	The	process	is	continued	in	the	next	node	until	we	reach	a	node
where	we	can	make	the	decision.

We	create	a	decision	tree	from	a	training	dataset	so	it	can	suffer	from	the	overfitting
problem.	This	behavior	creates	a	problem	with	real	datasets.	To	improve	this	situation,	a
process	called	pruning	is	used.	In	this	process,	we	remove	the	branches	and	leaves	of	the
tree	to	improve	the	performance.	Algorithms	used	to	build	the	tree	work	best	at	the
starting	or	root	node	since	all	the	information	is	available	there.	Later	on,	with	each	split,
data	is	less	and	towards	the	end	of	the	tree,	a	particular	node	can	show	patterns	that	are
related	to	the	set	of	data	which	is	used	to	split.	These	patterns	create	problems	when	we
use	them	to	predict	the	real	dataset.	Pruning	methods	let	the	tree	grow	and	remove	the
smaller	branches	that	fail	to	generalize.	Now	take	an	example	to	understand	the	decision
tree.

Consider	we	have	a	iris	flower	dataset.	This	dataset	is	hugely	popular	in	the	machine
learning	field.	It	was	introduced	by	Sir	Ronald	Fisher.	It	contains	50	samples	from	each	of
three	species	of	iris	flower	(Iris	setosa,	Iris	virginica,	and	Iris	versicolor).	The	four
explanatory	variables	are	the	length	and	width	of	the	sepals	and	petals	in	centimeters,	and
the	target	variable	is	the	class	to	which	the	flower	belongs.

http://www.cse.unsw.edu.au/~billw/cs9414/notes/ml/06prop/id3/id3.html

As	you	can	see	in	the	preceding	diagram,	all	the	groups	were	earlier	considered	as	Sentosa
species	and	then	the	explanatory	variable	and	petal	length	were	further	used	to	divide	the
groups.	At	each	step,	the	calculation	for	misclassified	items	was	also	done,	which	shows
how	many	items	were	wrongly	classified.	Moreover,	the	petal	width	variable	was	taken
into	account.	Usually,	items	at	leaf	nodes	are	correctly	classified.

Random	forest
The	Random	forest	algorithm	was	developed	by	Leo	Breiman	and	Adele	Cutler.	Random
forests	grow	many	classification	trees.	They	are	an	ensemble	learning	method	for
classification	and	regression	that	constructs	a	number	of	decision	trees	at	training	time	and
also	outputs	the	class	that	is	the	mode	of	the	classes	outputted	by	individual	trees.

Single	decision	trees	show	the	bias–variance	tradeoff.	So	they	usually	have	high	variance
or	high	bias.	The	following	are	the	parameters	in	the	algorithm:

Bias:	This	is	an	error	caused	by	an	erroneous	assumption	in	the	learning	algorithm
Variance:	This	is	an	error	that	ranges	from	sensitivity	to	small	fluctuations	in	the
training	set

Random	forests	attempt	to	mitigate	this	problem	by	averaging	to	find	a	natural	balance
between	two	extremes.	A	Random	forest	works	on	the	idea	of	bagging,	which	is	to
average	noisy	and	unbiased	models	to	create	a	model	with	low	variance.	A	Random	forest
algorithm	works	as	a	large	collection	of	decorrelated	decision	trees.	To	understand	the	idea
of	a	Random	forest	algorithm,	let’s	work	with	an	example.

Consider	we	have	a	training	dataset	that	has	lots	of	features	(explanatory	variables)	and
target	variables	or	classes:

We	create	a	sample	set	from	the	given	dataset:

A	different	set	of	random	features	were	taken	into	account	to	create	the	random	sub-
dataset.	Now,	from	these	sub-datasets,	different	decision	trees	will	be	created.	So	actually
we	have	created	a	forest	of	the	different	decision	trees.	Using	these	different	trees,	we	will
create	a	ranking	system	for	all	the	classifiers.	To	predict	the	class	of	a	new	unknown	item,
we	will	use	all	the	decision	trees	and	separately	find	out	which	class	these	trees	are

predicting.	See	the	following	diagram	for	a	better	understanding	of	this	concept:

Different	decision	trees	to	predict	the	class	of	an	unknown	item

In	this	particular	case,	we	have	four	different	decision	trees.	We	predict	the	class	of	an
unknown	dataset	with	each	of	the	trees.	As	per	the	preceding	figure,	the	first	decision	tree
provides	class	2	as	the	predicted	class,	the	second	decision	tree	predicts	class	5,	the	third
decision	tree	predicts	class	5,	and	the	fourth	decision	tree	predicts	class	3.	Now,	a	Random
forest	will	vote	for	each	class.	So	we	have	one	vote	each	for	class	2	and	class	3	and	two
votes	for	class	5.	Therefore,	it	has	decided	that	for	the	new	unknown	dataset,	the	predicted
class	is	class	5.	So	the	class	that	gets	a	higher	vote	is	decided	for	the	new	dataset.	A
Random	forest	has	a	lot	of	benefits	in	classification	and	a	few	of	them	are	mentioned	in
the	following	list:

Combination	of	learning	models	increases	the	accuracy	of	the	classification
Runs	effectively	on	large	datasets	as	well
The	generated	forest	can	be	saved	and	used	for	other	datasets	as	well
Can	handle	a	large	amount	of	explanatory	variables

Now	that	we	have	understood	the	Random	forest	theoretically,	let’s	move	on	to	Mahout
and	use	the	Random	forest	algorithm,	which	is	available	in	Apache	Mahout.

Using	Mahout	for	Random	forest
Mahout	has	implementation	for	the	Random	forest	algorithm.	It	is	very	easy	to	understand
and	use.	So	let’s	get	started.

Dataset

We	will	use	the	NSL-KDD	dataset.	Since	1999,	KDD‘99	has	been	the	most	widely	used
dataset	for	the	evaluation	of	anomaly	detection	methods.	This	dataset	is	prepared	by	S.	J.
Stolfo	and	is	built	based	on	the	data	captured	in	the	DARPA‘98	IDS	evaluation	program
(R.	P.	Lippmann,	D.	J.	Fried,	I.	Graf,	J.	W.	Haines,	K.	R.	Kendall,	D.	McClung,	D.	Weber,
S.	E.	Webster,	D.	Wyschogrod,	R.	K.	Cunningham,	and	M.	A.	Zissman,	“Evaluating
intrusion	detection	systems:	The	1998	darpa	off-line	intrusion	detection	evaluation,”
discex,	vol.	02,	p.	1012,	2000).

DARPA‘98	is	about	4	GB	of	compressed	raw	(binary)	tcp	dump	data	of	7	weeks	of
network	traffic,	which	can	be	processed	into	about	5	million	connection	records,	each	with
about	100	bytes.	The	two	weeks	of	test	data	have	around	2	million	connection	records.
The	KDD	training	dataset	consists	of	approximately	4,900,000	single	connection	vectors,
each	of	which	contains	41	features	and	is	labeled	as	either	normal	or	an	attack,	with
exactly	one	specific	attack	type.

NSL-KDD	is	a	dataset	suggested	to	solve	some	of	the	inherent	problems	of	the	KDD‘99
dataset.	You	can	download	this	dataset	from	http://nsl.cs.unb.ca/NSL-KDD/.

We	will	download	the	KDDTrain+_20Percent.ARFF	and	KDDTest+.ARFF	datasets.

Note
In	KDDTrain+_20Percent.ARFF	and	KDDTest+.ARFF,	remove	the	first	44	lines	(that

http://nsl.cs.unb.ca/NSL-KDD/

is,	all	lines	starting	with	@attribute).	If	this	is	not	done,	we	will	not	be	able	to	generate	a
descriptor	file.

Steps	to	use	the	Random	forest	algorithm	in
Mahout
The	steps	to	implement	the	Random	forest	algorithm	in	Apache	Mahout	are	as	follows:

1.	 Transfer	the	test	and	training	datasets	to	hdfs	using	the	following	commands:

hadoop	fs	-mkdir	/user/hue/KDDTrain

hadoop	fs	-mkdir	/user/hue/KDDTest

hadoop	fs	–put	/tmp/KDDTrain+_20Percent.arff		/user/hue/KDDTrain

hadoop	fs	–put	/tmp/KDDTest+.arff		/user/hue/KDDTest

2.	 Generate	the	descriptor	file.	Before	you	build	a	Random	forest	model	based	on	the
training	data	in	KDDTrain+.arff,	a	descriptor	file	is	required.	This	is	because	all
information	in	the	training	dataset	needs	to	be	labeled.	From	the	labeled	dataset,	the
algorithm	can	understand	which	one	is	numerical	and	categorical.	Use	the	following
command	to	generate	descriptor	file:

hadoop	jar		$MAHOUT_HOME/core/target/mahout-core-xyz.job.jar	

org.apache.mahout.classifier.df.tools.Describe	

-p	/user/hue/KDDTrain/KDDTrain+_20Percent.arff	

-f	/user/hue/KDDTrain/KDDTrain+.info	

-d	N	3	C	2	N	C	4	N	C	8	N	2	C	19	N	L

Jar:	Mahout	core	jar	(xyz	stands	for	version).	If	you	have	directly	installed	Mahout,	it
can	be	found	under	the	/usr/lib/mahout	folder.	The	main	class	Describe	is	used
here	and	it	takes	three	parameters:

The	p	path	for	the	data	to	be	described.

The	f	location	for	the	generated	descriptor	file.

d	is	the	information	for	the	attribute	on	the	data.	N	3	C	2	N	C	4	N	C	8	N	2	C	19	N	L
defines	that	the	dataset	is	starting	with	a	numeric	(N),	followed	by	three	categorical
attributes,	and	so	on.	In	the	last,	L	defines	the	label.

The	output	of	the	previous	command	is	shown	in	the	following	screenshot:

3.	 Build	the	Random	forest	using	the	following	command:

hadoop	jar	$MAHOUT_HOME/examples/target/mahout-examples-xyz-job.jar	

org.apache.mahout.classifier.df.mapreduce.BuildForest		

-Dmapred.max.split.size=1874231	-d	

/user/hue/KDDTrain/KDDTrain+_20Percent.arff		

-ds	/user/hue/KDDTrain/KDDTrain+.info	

-sl	5	-p	-t	100	–o	/user/hue/	nsl-forest

Jar:	Mahout	example	jar	(xyz	stands	for	version).	If	you	have	directly	installed
Mahout,	it	can	be	found	under	the	/usr/lib/mahout	folder.	The	main	class	build

forest	is	used	to	build	the	forest	with	other	arguments,	which	are	shown	in	the
following	list:

Dmapred.max.split.size	indicates	to	Hadoop	the	maximum	size	of	each	partition.

d	stands	for	the	data	path.

ds	stands	for	the	location	of	the	descriptor	file.

sl	is	a	variable	to	select	randomly	at	each	tree	node.	Here,	each	tree	is	built	using
five	randomly	selected	attributes	per	node.

p	uses	partial	data	implementation.

t	stands	for	the	number	of	trees	to	grow.	Here,	the	commands	build	100	trees	using
partial	implementation.

o	stands	for	the	output	path	that	will	contain	the	decision	forest.

In	the	end,	the	process	will	show	the	following	result:

4.	 Use	this	model	to	classify	the	new	dataset:

hadoop	jar	$MAHOUT_HOME/examples/target/mahout-examples-xyz-job.jar	

org.apache.mahout.classifier.df.mapreduce.TestForest	

-i	/user/hue/KDDTest/KDDTest+.arff	

-ds	/user/hue/KDDTrain/KDDTrain+.info	-m	/user/hue/nsl-forest	-a	–mr

	-o	/user/hue/predictions

Jar:	Mahout	example	jar	(xyz	stands	for	version).	If	you	have	directly	installed
Mahout,	it	can	be	found	under	the	/usr/lib/mahout	folder.	The	class	to	test	the
forest	has	the	following	parameters:

I	indicates	the	path	for	the	test	data

ds	stands	for	the	location	of	the	descriptor	file

m	stands	for	the	location	of	the	generated	forest	from	the	previous	command

a	informs	to	run	the	analyzer	to	compute	the	confusion	matrix

mr	informs	hadoop	to	distribute	the	classification

o	stands	for	the	location	to	store	the	predictions	in

The	job	provides	the	following	confusion	matrix:

So,	from	the	confusion	matrix,	it	is	clear	that	9,396	instances	were	correctly	classified	and
315	normal	instances	were	incorrectly	classified	as	anomalies.	And	the	accuracy
percentage	is	77.7635	(correctly	classified	instances	by	the	model	/	classified	instances).
The	output	file	in	the	prediction	folder	contains	the	list	where	0	and	1.	0	defines	the
normal	dataset	and	1	defines	the	anomaly.

Summary
In	this	chapter,	we	discussed	the	Random	forest	algorithm.	We	started	our	discussion	by
understanding	the	decision	tree	and	continued	with	an	understanding	of	the	Random
forest.	We	took	up	the	NSL-KDD	dataset,	which	is	used	to	build	predictive	systems	for
cyber	security.	We	used	Mahout	to	build	the	Random	forest	tree,	and	used	it	with	the	test
dataset	and	generated	the	confusion	matrix	and	other	statistics	for	the	output.

In	the	next	chapter,	we	will	look	at	the	final	classification	algorithm	available	in	Apache
Mahout.	So	stay	tuned!

Chapter	7.	Learning	Multilayer
Perceptron	Using	Mahout
To	understand	a	Multilayer	Perceptron	(MLP),	we	will	first	explore	one	more	popular
machine	learning	technique:	neural	network.	In	this	chapter,	we	will	explore	the
following	topics:

Neural	network	and	neurons
MLP
Using	Mahout	for	MLP	implementation

Neural	network	and	neurons
Neural	network	is	an	old	algorithm,	and	it	was	developed	with	a	goal	in	mind:	to	provide
the	computer	with	a	brain.	Neural	network	is	inspired	by	the	biological	structure	of	the
human	brain	where	multiple	neurons	are	connected	and	form	columns	and	layers.	A
neuron	is	an	electrically	excitable	cell	that	processes	and	transmits	information	through
electrical	and	chemical	signals.	Perceptual	input	enters	into	the	neural	network	through
our	sensory	organs	and	is	then	further	processed	into	higher	levels.	Let’s	understand	how
neurons	work	in	our	brain.

Neurons	are	computational	units	in	the	brain	that	collect	the	input	from	input	nerves,
which	are	called	dendrites.	They	perform	computation	on	these	input	messages	and	send
the	output	using	output	nerves,	which	are	called	axons.	See	the	following	figure
(http://vv.carleton.ca/~neil/neural/neuron-a.html):

On	the	same	lines,	we	develop	a	neural	network	in	computers.	We	can	represent	a	neuron
in	our	algorithm	as	shown	in	the	following	figure:

http://vv.carleton.ca/~neil/neural/neuron-a.html

Here,	x1,	x2,	and	x3	are	the	feature	vectors,	and	they	are	assigned	to	a	function	f,	which
will	do	the	computation	and	provide	the	output.	This	activation	function	is	usually	chosen
from	the	family	of	sigmoidal	functions	(as	defined	in	Chapter	3,	Learning	Logistic
Regression	/	SGD	Using	Mahout).	In	the	case	of	classification	problems,	softmax
activation	functions	are	used.	In	classification	problems,	we	want	the	output	as	the
probabilities	of	target	classes.	So,	it	is	desirable	for	the	output	to	lie	between	0	and	1	and
the	sum	close	to	1.	Softmax	function	enforces	these	constraints.	It	is	a	generalization	of
the	logistic	function.	More	details	on	softmax	function	can	be	found	at
http://www.faqs.org/faqs/ai-faq/neural-nets/part2/section-12.html.

http://www.faqs.org/faqs/ai-faq/neural-nets/part2/section-12.html

Multilayer	Perceptron
A	neural	network	or	artificial	neural	network	generally	refers	to	an	MLP	network.	We
defined	neuron	as	an	implementation	in	computers	in	the	previous	section.	An	MLP
network	consists	of	multiple	layers	of	these	neuron	units.	Let’s	understand	a	perceptron
network	of	three	layers,	as	shown	in	the	next	figure.	The	first	layer	of	the	MLP	represents
the	input	and	has	no	other	purpose	than	routing	the	input	to	every	connected	unit	in	a	feed-
forward	fashion.	The	second	layer	is	called	hidden	layers,	and	the	last	layer	serves	the
special	purpose	of	determining	the	output.	The	activation	of	neurons	in	the	hidden	layers
can	be	defined	as	the	sum	of	the	weight	of	all	the	input.	Neuron	1	in	layer	2	is	defined	as
follows:

Y12	=	g(w110x0	+w111x1+w112x2+w113x3)

The	first	part	where	*x0	=	0*	is	called	the	bias	and	can	be	used	as	an	offset,	independent
of	the	input.	Neuron	2	in	layer	2	is	defined	as	follows:

Y22	=	g(w120x0	+w121x1+w122x2+w123x3)

Neuron	3	in	layer	2	is	defined	as	follows:

Y32	=	g	(w130x0	+w131x1+w132x2+w133x3)

Here,	g	is	a	sigmoid	function,	as	defined	in	Chapter	3,	Learning	Logistic	Regression	/
SGD	Using	Mahout.	The	function	is	as	follows:

g(z)	=	1/1+e	(-z)

In	this	MLP	network	output,	from	each	input	and	hidden	layers,	neuron	units	are
distributed	to	other	nodes,	and	this	is	why	this	type	of	network	is	called	a	fully	connected
network.	In	this	network,	no	values	are	fed	back	to	the	previous	layer.	(Feed	forward	is

another	strategy	and	is	also	known	as	back	propagation.	Details	on	this	can	be	found	at
http://home.agh.edu.pl/~vlsi/AI/backp_t_en/backprop.html.)

An	MLP	network	can	have	more	than	one	hidden	layer.	To	get	the	value	of	the	weights	so
that	we	can	get	the	predicted	value	as	close	as	possible	to	the	actual	one	is	a	training
process	of	the	MLP.	To	build	an	effective	network,	we	consider	a	lot	of	items	such	as	the
number	of	hidden	layers	and	neuron	units	in	each	layer,	the	cost	function	to	minimize	the
error	in	predicted	and	actual	values,	and	so	on.

Now	let’s	discuss	two	more	important	and	problematic	questions	that	arise	when	creating
an	MLP	network:

How	many	hidden	layers	should	one	use	for	the	network?
How	many	numbers	of	hidden	units	(neuron	units)	should	one	use	in	a	hidden	layer?

Zero	hidden	layers	are	required	to	resolve	linearly	separable	data.	Assuming	your	data
does	require	separation	by	a	non-linear	technique,	always	start	with	one	hidden	layer.
Almost	certainly,	that’s	all	you	will	need.	If	your	data	is	separable	using	an	MLP,	then	this
MLP	probably	only	needs	a	single	hidden	layer.	In	order	to	select	the	number	of	units	in
different	layers,	these	are	the	guidelines:

Input	layer:	This	refers	to	the	number	of	explanatory	variables	in	the	model	plus	one
for	the	bias	node.
Output	layer:	In	the	case	of	classification,	this	refers	to	the	number	of	target
variables,	and	in	the	case	of	regression,	this	is	obviously	one.
Hidden	layer:	Start	your	network	with	one	hidden	layer	and	use	the	number	of
neuron	units	equivalent	to	the	units	in	the	input	layer.	The	best	way	is	to	train	several
neural	networks	with	different	numbers	of	hidden	layers	and	hidden	neurons	and
measure	the	performance	of	these	networks	using	cross-validation.	You	can	stick
with	the	number	that	yields	the	best-performing	network.	Problems	that	require	two
hidden	layers	are	rarely	encountered.	However,	neural	networks	that	have	more	than
one	hidden	layer	can	represent	functions	with	any	kind	of	shape.	There	is	currently
no	theory	to	justify	the	use	of	neural	networks	with	more	than	two	hidden	layers.	In
fact,	for	many	practical	problems,	there	is	no	reason	to	use	any	more	than	one	hidden
layer.	A	network	with	no	hidden	layer	is	only	capable	of	representing	linearly
separable	functions.	Networks	with	one	layer	can	approximate	any	function	that
contains	a	continuous	mapping	from	one	finite	space	to	another,	and	networks	with
two	hidden	layers	can	represent	an	arbitrary	decision	boundary	to	arbitrary	accuracy
with	rational	activation	functions	and	can	approximate	any	smooth	mapping	to	any
accuracy	(Chapter	5	of	the	book	Introduction	to	Neural	Networks	for	Java).
Number	of	neurons	or	hidden	units:	Use	the	number	of	neuron	units	equivalent	to
the	units	in	the	input	layer.	The	number	of	hidden	units	should	be	less	than	twice	the
number	of	units	in	the	input	layer.	Another	rule	to	calculate	this	is	(number	of	input
units	+	number	of	output	units)*	2/3.

Do	the	testing	for	generalization	errors,	training	errors,	bias,	and	variance.	When	a
generalization	error	dips,	then	just	before	it	begins	to	increase	again,	the	numbers	of	nodes
are	usually	found	to	be	perfect	at	this	point.

http://home.agh.edu.pl/~vlsi/AI/backp_t_en/backprop.html

Now	let’s	move	on	to	the	next	section	and	explore	how	we	can	use	Mahout	for	an	MLP.

MLP	implementation	in	Mahout
The	MLP	implementation	is	based	on	a	more	general	neural	network	class.	It	is
implemented	to	run	on	a	single	machine	using	Stochastic	Gradient	Descent,	where	the
weights	are	updated	using	one	data	point	at	a	time.

The	number	of	layers	and	units	per	layer	can	be	specified	manually	and	determines	the
whole	topology	with	each	unit	being	fully	connected	to	the	previous	layer.	A	bias	unit	is
automatically	added	to	the	input	of	every	layer.	A	bias	unit	is	helpful	for	shifting	the
activation	function	to	the	left	or	right.	It	is	like	adding	a	coefficient	to	the	linear	function.

Currently,	the	logistic	sigmoid	is	used	as	a	squashing	function	in	every	hidden	and	output
layer.

The	command-line	version	does	not	perform	iterations	that	lead	to	bad	results	on	small
datasets.	Another	restriction	is	that	the	CLI	version	of	the	MLP	only	supports
classification,	since	the	labels	have	to	be	given	explicitly	when	executing	the
implementation	in	the	command	line.

A	learned	model	can	be	stored	and	updated	with	new	training	instances	using	the	`--
update`	flag.	The	output	of	the	classification	result	is	saved	as	a	.txt	file	and	only
consists	of	the	assigned	labels.	Apart	from	the	command-line	interface,	it	is	possible	to
construct	and	compile	more	specialized	neural	networks	using	the	API	and	interfaces	in
the	mrlegacy	package.	(The	core	package	is	renamed	as	mrlegacy.)

In	the	command	line,	we	use	TrainMultilayerPerceptron	and
RunMultilayerPerceptron	classes	that	are	available	in	the	mrlegacy	package	with	three
other	classes:	Neural	network.java,	NeuralNetworkFunctions.java,	and
MultilayerPerceptron.java.	For	this	particular	implementation,	users	can	freely	control
the	topology	of	the	MLP,	including	the	following:

The	size	of	the	input	layer
The	number	of	hidden	layers
The	size	of	each	hidden	layer
The	size	of	the	output	layer
The	cost	function
The	squashing	function

The	model	is	trained	in	an	online	learning	approach,	where	the	weights	of	neurons	in	the
MLP	is	updated	and	incremented	using	the	backPropagation	algorithm	proposed	by
Rumelhart,	D.	E.,	Hinton,	G.	E.,	and	Williams,	R.	J.	(1986),	Learning	representations	by
back-propagating	errors.	Nature,	323,	533-536.

Using	Mahout	for	MLP
Mahout	has	implementation	for	an	MLP	network.	The	MLP	implementation	is	currently
located	in	the	Map-Reduce-Legacy	package.	As	with	other	classification	algorithms,	two
separated	classes	are	implemented	to	train	and	use	this	classifier.	For	training	the
classifier,	the	org.apache.mahout.classifier.mlp.TrainMultilayerPerceptron	class,
and	for	running	the	classifier,	the
org.apache.mahout.classifier.mlp.RunMultilayerPerceptron	class	is	used.	There
are	a	number	of	parameters	defined	that	are	used	with	these	classes,	but	we	will	discuss
these	parameters	once	we	run	our	example	on	a	dataset.

Dataset

In	this	chapter,	we	will	train	an	MLP	to	classify	the	iris	dataset.	The	iris	flower	dataset
contains	data	of	three	flower	species,	where	each	data	point	consists	of	four	features.	This
dataset	was	introduced	by	Sir	Ronald	Fisher.	It	consists	of	50	samples	from	each	of	three
species	of	iris.	These	species	are	Iris	setosa,	Iris	virginica,	and	Iris	versicolor.	Four
features	were	measured	from	each	sample:

Sepal	length
Sepal	width
Petal	length
Petal	width

All	measurements	are	in	centimeters.	You	can	download	this	dataset	from
https://archive.ics.uci.edu/ml/machine-learning-databases/iris/	and	save	it	as	a	.csv	file,	as
shown	in	the	following	screenshot:

This	dataset	will	look	like	the	the	following	screenshot:

https://archive.ics.uci.edu/ml/machine-learning-databases/iris/

Steps	to	use	the	MLP	algorithm	in	Mahout
The	steps	to	use	the	MLP	algorithm	in	Mahout	are	as	follows:

1.	 Create	the	MLP	model.

To	create	the	MLP	model,	we	will	use	the	TrainMultilayerPerceptron	class.	Use
the	following	command	to	generate	the	model:

bin/mahout	org.apache.mahout.classifier.mlp.TrainMultilayerPerceptron	-

i	/tmp/irisdata.csv	-labels	Iris-setosa	Iris-versicolor	Iris-virginica	

-mo	/tmp/model.model	-ls	4	8	3	-l	0.2	-m	0.35	-r	0.0001

You	can	also	run	using	the	core	jar:	Mahout	core	jar	(xyz	stands	for	the	version).	If
you	have	directly	installed	Mahout,	it	can	be	found	under	the	/usr/lib/mahout
folder.	Execute	the	following	command:

Java	–cp	/usr/lib/mahout/	mahout-core-xyz-job.jar	

org.apache.mahout.classifier.mlp.TrainMultilayerPerceptron	-i	

/tmp/irisdata.csv	-labels	Iris-setosa	Iris-versicolor	Iris-virginica	-

mo	/user/hue/mlp/model.model	-ls	4	8	3	-l	0.2	-m	0.35	-r	0.0001

The	TrainMultilayerPerceptron	class	is	used	here	and	it	takes	different	parameters.
Also,	i	is	the	path	for	the	input	dataset.	Here,	we	have	put	the	dataset	under	the	/tmp
folder	(local	filesystem).	Additionally,	labels	are	defined	in	the	dataset.	Here	we	have
the	following	labels:

mo	is	the	output	location	for	the	created	model.
ls	is	the	number	of	units	per	layer,	including	input,	hidden,	and	output	layers.
This	parameter	specifies	the	topology	of	the	network.	Here,	we	have	4	as	the
input	feature,	8	for	the	hidden	layer,	and	3	for	the	output	class	number.
l	is	the	learning	rate	that	is	used	for	weight	updates.	The	default	is	0.5.	To
approximate	gradient	descent,	neural	networks	are	trained	with	algorithms.
Learning	is	possible	either	by	batch	or	online	methods.	In	batch	training,	weight
changes	are	accumulated	over	an	entire	presentation	of	the	training	data	(an
epoch)	before	being	applied,	while	online	training	updates	weighs	after	the
presentation	of	each	training	example	(instance).	More	details	can	be	found	at
http://axon.cs.byu.edu/papers/Wilson.nn03.batch.pdf.
m	is	the	momentum	weight	that	is	used	for	gradient	descent.	This	must	be	in	the
range	between	0–1.0.
r	is	the	regularization	value	for	the	weight	vector.	This	must	be	in	the	range
between	0–0.1.	It	is	used	to	prevent	overfitting.

http://axon.cs.byu.edu/papers/Wilson.nn03.batch.pdf

2.	 To	test/run	the	MLP	classification	of	the	trained	model,	we	can	use	the	following
command:

bin/mahout	org.apache.mahout.classifier.mlp.RunMultilayerPerceptron	-i	

/tmp/irisdata.csv	-cr	0	3	-mo	/tmp/model.model	-o	/tmp/labelResult.txt

You	can	also	run	using	the	Mahout	core	jar	(xyz	stands	for	version).	If	you	have
directly	installed	Mahout,	it	can	be	found	under	the	/usr/lib/mahout	folder.	Execute
the	following	command:

Java	–cp	/usr/lib/mahout/	mahout-core-xyz-job.jar	

org.apache.mahout.classifier.mlp.RunMultilayerPerceptron	-i	

/tmp/irisdata.csv	-cr	0	3	-mo	/tmp/model.model	-o	/tmp/labelResult.txt

The	RunMultilayerPerceptron	class	is	employed	here	to	use	the	model.	This	class
also	takes	different	parameters,	which	are	as	follows:

i	indicates	the	input	dataset	location
cr	is	the	range	of	columns	to	use	from	the	input	file,	starting	with	0	(that	is,	`-
cr	0	5`	for	including	the	first	six	columns	only)
mo	is	the	location	of	the	model	built	earlier
o	is	the	path	to	store	labeled	results	from	running	the	model

Summary
In	this	chapter,	we	discussed	one	of	the	newly	implemented	algorithms	in	Mahout:	MLP.
We	started	our	discussion	by	understanding	neural	networks	and	neuron	units	and
continued	our	discussion	further	to	understand	the	MLP	network	algorithm.	We	discussed
how	to	choose	different	layer	units.	We	then	moved	to	Mahout	and	used	the	iris	dataset	to
test	and	run	an	MLP	algorithm	implemented	in	Mahout.	With	this,	we	have	finished	our
discussion	on	classification	algorithms	available	in	Apache	Mahout.

Now	we	move	on	to	the	next	chapter	of	this	book	where	we	will	discuss	the	new	changes
coming	up	in	the	new	Mahout	release.

Chapter	8.	Mahout	Changes	in	the
Upcoming	Release
Mahout	is	a	community-driven	project	and	its	community	is	very	strong.	This	community
decided	on	some	of	the	major	changes	in	the	upcoming	1.0	release.	In	this	chapter,	we	will
explore	the	upcoming	changes	and	developments	in	Apache	Mahout.	We	will	look	at	the
following	topics	in	brief:

New	changes	due	in	Mahout	1.0
Apache	Spark
H20-platform-related	work	in	Apache	Mahout

Mahout	new	changes
Mahout	was	using	the	map	reduce	programming	model	to	handle	large	datasets.	From	the
end	of	April	2014,	the	community	decided	to	stop	the	implementation	of	the	new	map
reduce	algorithm.	This	decision	has	a	valid	reason.	Mahout’s	codebase	will	be	moving	to
modern	data	processing	systems	that	offer	a	richer	programming	model	and	more	efficient
execution	than	Hadoop’s	MapReduce.

Mahout	has	started	its	implementation	on	the	top	of	Domain	Specific	Language	(DSL)
for	linear	algebraic	operations.	Programs	written	in	this	DSL	are	automatically	optimized
and	executed	in	parallel	on	Apache	Spark.	Scala	DSL	and	algebraic	optimizer	is	Scala	and
Spark	binding	for	Mahout.

Mahout	Scala	and	Spark	bindings
With	Mahout	Scala	bindings	and	Mahout	Spark	bindings	for	linear	algebra	subroutines,
developers	in	Mahout	are	trying	to	bring	semantic	explicitness	to	Mahout’s	in-core	and
out-of-core	linear	algebra	subroutines.	They	are	doing	this	while	adding	the	benefits	of	the
strong	programming	environment	of	Scala	and	capitalizing	on	scalability	benefits	of	Spark
and	GraphX.	Scala	binding	is	used	to	provide	support	for	Scala	DSL,	and	this	will	make
writing	machine	learning	programs	easier.

Mahout	Scala	and	Spark	bindings	are	packages	that	aim	to	provide	an	R-like	look	and	feel
to	Mahout’s	in-core	and	out-of-core	Spark-backed	linear	algebra.	An	important	part	of
Spark	bindings	is	the	expression	optimizer.	This	optimizer	looks	at	the	entire	expression
and	decides	on	how	it	can	be	simplified	and	which	physical	operators	should	be	picked.	A
high-level	diagram	of	the	binding	stack	is	shown	in	the	following	figure
(https://issues.apache.org/jira/secure/attachment/12638098/BindingsStack.jpg):

The	Spark	binding	shell	has	also	been	implemented	in	Mahout	1.0.	Let’s	understand	the
Apache	Spark	project	first	and	then	we	will	revisit	the	Spark	binding	shell	in	Mahout.

https://issues.apache.org/jira/secure/attachment/12638098/BindingsStack.jpg

Apache	Spark
Apache	Spark	is	an	open	source,	in-memory,	general-purpose	computing	system.	Spark’s
in-memory	technique	provides	performance	that	is	100	times	faster.	Instead	of	Hadoop-
like	disk-based	computation,	Spark	uses	cluster	memory	to	upload	all	the	data	into	the
memory,	and	this	data	can	be	queried	repeatedly.

Apache	Spark	provides	high-level	APIs	in	Java,	Python,	and	Scala	and	an	optimized
engine	that	supports	general	execution	graphs.	It	provides	the	following	high-level	tools:

Spark	SQL:	This	is	for	SQL	and	structured	data	processing.
MLib:	This	is	Spark’s	scalable	machine	learning	library	that	consists	of	common
learning	algorithms	and	utilities,	including	classification,	regression,	clustering,
collaborative	filtering,	dimensionality	reduction,	as	well	as	the	underlying
optimization	primitives.
GraphX:	This	is	the	new	Spark	API	for	graphs	and	graph-parallel	computation.
Spark	streaming:	This	can	collect	data	from	many	sources	and	after	processing	this
data,	it	uses	complex	algorithms	and	can	push	the	data	to	filesystems,	databases,	and
live	dashboards.

As	Spark	is	gaining	popularity	among	data	scientists,	the	Mahout	community	is	also
quickly	working	on	making	Mahout	algorithms	function	on	Spark’s	execution	engine	to
speed	up	its	calculation	10	to	100	times	faster.	Mahout	provides	several	important	building
blocks	to	create	recommendations	using	Spark.	Spark-item	similarity	can	be	used	to	create
other	people	also	liked	these	things	kind	of	recommendations	and	when	paired	with	a
search	engine	can	personalize	recommendations	for	individual	users.	Spark-row	similarity
can	provide	non-personalized	content	based	on	recommendations	and	when	paired	with	a
search	engine	can	be	used	to	personalize	content	based	on	recommendations
(http://comments.gmane.org/gmane.comp.apache.mahout.scm/6513).

http://comments.gmane.org/gmane.comp.apache.mahout.scm/6513

Using	Mahout’s	Spark	shell
You	can	use	Mahout’s	Spark	shell	by	referring	to	the	following	steps:

1.	 Download	Spark	from	http://spark.apache.org/downloads.html.
2.	 Create	a	new	folder	with	the	name	spark	using	the	following	command	and	move	the

downloaded	file	there:

mkdir	/tmp/spark

mv	~/Downloads/spark-1.1.1.tgz/tmp/spark

3.	 Unpack	the	archived	file	in	a	folder	using	the	following	command:

cd	/tmp/spark

tar	xzf	spark-1.1.1.tgz

4.	 This	will	unzip	the	file	under/tmp/spark/spark-1.1.1.	Now,	move	to	the	newly
created	folder	and	run	the	following	command:

cd	/spark-1.1.1

sbt/sbt	assembly

This	will	build	Spark	on	your	system	as	shown	in	the	following	screenshot:

5.	 Now	create	a	Mahout	directory	and	move	the	file	to	it	using	the	following	command:

mkdir	/tmp/Mahout

6.	 Check	out	the	master	branch	of	Mahout	from	GitHub	using	the	following	command:

git	clone	https://github.com/apache/mahout	mahout

http://spark.apache.org/downloads.html

The	output	of	the	preceding	command	is	shown	in	the	following	screenshot:

7.	 Change	your	directory	to	the	newly	created	Mahout	directory	and	build	Mahout:

cd	mahout

mvn	-DskipTests	clean	install

The	output	of	the	preceding	command	is	shown	in	the	following	screenshot:

8.	 Move	to	the	directory	where	you	unpacked	Spark	and	type	the	following	command	to
start	Spark	locally:

cd	/tmp/spark/spark-1.1.1

sbin/start-all-sh

The	output	of	the	preceding	command	is	shown	in	the	following	screenshot:

9.	 Open	a	browser;	point	it	to	http://localhost:8080/	to	check	whether	Spark	has

successfully	started.	Copy	the	URL	of	the	Spark	master	at	the	top	of	the	page	(it
starts	with	spark://).

10.	 Define	the	following	environment	variables:

export	MAHOUT_HOME=[directory	into	which	you	checked	out	Mahout]

export	SPARK_HOME=[directory	where	you	unpacked	Spark]

export	MASTER=[url	of	the	Spark	master]

11.	 Finally,	change	to	the	directory	where	you	unpacked	Mahout	and	type	bin/mahout
spark-shell;	you	should	see	the	shell	starting	and	get	the	mahout>	prompt.

Now	your	Mahout	Spark	shell	is	ready	and	you	can	start	playing	with	data.	For	more
information	on	this	topic,	see	the	implementation	section	at
https://mahout.apache.org/users/sparkbindings/play-with-shell.html.

https://mahout.apache.org/users/sparkbindings/play-with-shell.html

H2O	platform	integration
As	discussed	earlier,	an	experimental	work	to	integrate	Mahout	and	the	H2O	platform	is
also	in	progress.	The	integration	provides	an	H2O	backend	to	the	Mahout	algebra	DSL.

H2O	makes	Hadoop	do	math!	H2O	scales	statistics,	machine	learning,	and	math	over	big
data.	It	is	extensible	and	users	can	build	blocks	using	simple	math	legos	in	the	core.	H2O
keeps	familiar	interfaces	such	as	R,	Excel,	and	JSON	so	that	big	data	enthusiasts	and
experts	can	explore,	munge,	model,	and	score	datasets	using	a	range	of	simple-to-
advanced	algorithms.	Data	collection	is	easy,	while	decision	making	is	hard.	H2O	makes	it
fast	and	easy	to	derive	insights	from	your	data	through	faster	and	better	predictive
modeling.	It	also	has	a	vision	of	online	scoring	and	modeling	in	a	single	platform
(http://0xdata.com/download/).

H2O	is	fundamentally	a	peer-to-peer	system.	H2O	nodes	join	together	to	form	a	cloud	on
which	high-performance	distributed	math	can	be	executed.	Each	node	joins	a	cloud	of	a
given	name.	Multiple	clouds	can	exist	on	the	same	network	at	the	same	time	as	long	as
their	names	are	different.	Multiple	nodes	can	exist	on	the	same	server	as	well	(they	can
even	belong	to	the	same	cloud).

The	Mahout	H2O	integration	is	fit	into	this	model	by	having	N-1	worker	nodes	and	one
driver	node,	all	belonging	to	the	same	cloud	name.	The	default	cloud	name	used	for	the
integration	is	mah2out.	Clouds	have	to	be	spun	up	as	per	their	task/job.

More	details	can	be	found	at	https://issues.apache.org/jira/browse/MAHOUT-1500.

http://0xdata.com/download/
https://issues.apache.org/jira/browse/MAHOUT-1500

Summary
In	this	chapter,	we	discussed	the	upcoming	release	of	Mahout	1.0,	and	the	changes	that	are
currently	going	on.	We	also	glanced	through	Spark,	Scala	binding,	and	Apache	Spark.	We
also	discussed	a	high-level	overview	of	H2O	Mahout	integration.

Now	let’s	move	on	to	the	final	chapter	of	this	book	where	we	will	develop	a	production-
ready	classifier.

Chapter	9.	Building	an	E-mail
Classification	System	Using	Apache
Mahout
In	this	chapter,	we	will	create	a	classifier	system	using	Mahout.	In	order	to	build	this
system,	we	will	cover	the	following	topics:

Getting	the	dataset
Preparation	of	the	dataset
Preparing	the	model
Training	the	model

In	this	chapter,	we	will	target	the	creation	of	two	different	classifiers.	The	first	one	will	be
an	easy	one	because	you	can	both	create	and	test	it	on	a	pseudo-distributed	Hadoop
installation.	For	the	second	classifier,	I	will	provide	you	with	all	the	details,	so	you	can	run
it	using	your	fully	distributed	Hadoop	installation.	I	will	count	the	second	one	as	a	hands-
on	exercise	for	the	readers	of	this	book.

First	of	all,	let’s	understand	the	problem	statement	for	the	first	use	case.	Nowadays,	in
most	of	the	e-mail	systems,	we	see	that	e-mails	are	classified	as	spam	or	not	spam.	E-
mails	that	are	not	spam	are	delivered	directly	into	our	inbox	but	spam	e-mails	are	stored	in
a	folder	called	Spam.	Usually,	based	on	a	certain	pattern	such	as	message	subject,	sender’s
e-mail	address,	or	certain	keywords	in	the	message	body,	we	categorize	an	incoming	e-
mail	as	spam.	We	will	create	a	classifier	using	Mahout,	which	will	classify	an	e-mail	into
spam	or	not	spam.	We	will	use	SpamAssassin,	an	Apache	open	source	project	dataset	for
this	task.

For	the	second	use	case,	we	will	create	a	classifier,	which	can	predict	a	group	of	incoming
e-mails.	As	an	open	source	project,	there	are	lots	of	projects	under	the	Apache	software
foundation,	such	as	Apache	Mahout,	Apache	Hadoop,	Apache	Solr,	and	so	on.	We	will
take	the	Apache	Software	Foundation	(ASF)	e-mail	dataset	and	using	this,	we	will
create	and	train	our	model	so	that	our	model	can	predict	a	new	incoming	e-mail.	So,	based
on	certain	features,	we	will	be	able	to	predict	which	group	a	new	incoming	e-mail	belongs
to.

In	Mahout’s	classification	problem,	we	will	have	to	identify	a	pattern	in	the	dataset	to	help
us	predict	the	group	of	a	new	e-mail.	We	already	have	a	dataset,	which	is	separated	by
project	names.	We	will	use	the	ASF	public	e-mail	archives	dataset	for	this	use	case.

Now,	let’s	consider	our	first	use	case:	spam	e-mail	detection	classifier.

Spam	e-mail	dataset
As	I	mentioned,	we	will	be	using	the	Apache	SpamAssassin	projects	dataset.	Apache
SpamAssassin	is	an	open	source	spam	filter.	Download	20021010_easy_ham.tar	and
20021010_spam.tar	from	http://spamassassin.apache.org/publiccorpus/,	as	shown	in	the
following	screenshot:

http://spamassassin.apache.org/publiccorpus/

Creating	the	model	using	the	Assassin
dataset
We	can	create	the	model	with	the	help	of	the	following	steps:

1.	 Create	a	folder	under	tmp	with	the	name	dataset,	and	then	click	on	the	folder	and
unzip	the	datasets	using	the	following	command:

mkdir	/tmp/assassin/dataset

tar	–xvf		/tmp/assassin/	20021010_easy_ham.tar.bz2	

tar	–xvf	/tmp/assassin/	20021010_spam.tar.bz2

This	will	create	two	folders	under	the	dataset	folder,	easy	_ham	and	spam,	as	shown
in	the	following	screenshot:

2.	 Create	a	folder	in	Hdfs	and	move	this	dataset	into	Hadoop:

hadoop	fs		-mkdir	/user/hue/assassin/

hadoop	fs	–put	/tmp/assassin/dataset		/user/hue/assassin	

tar	–xvf	/tmp/assassin/	20021010_spam.tar.bz2

Now	our	data	preparation	is	done.	We	have	downloaded	the	data	and	moved	this	data
into	hdfs.	Let’s	move	on	to	the	next	step.

3.	 Convert	this	data	into	sequence	files	so	that	we	can	process	it	using	Hadoop:

bin/mahout	seqdirectory	–i	/user/hue/assassin/dataset	–o	

/user/hue/assassinseq-out

4.	 Convert	the	sequence	file	into	sparse	vector	(Mahout	algorithms	accept	input	in
vector	format,	which	is	why	we	are	converting	the	sequence	file	into	sparse	vector)
by	using	the	following	command:

bin/mahout	seq2sparse	-i	/user/hue/assassinseq-out/part-m-00000	-o	

/user/hue/assassinvec	-lnorm	-nv	-wt	tfidf

The	command	in	the	preceding	screenshot	is	explained	as	follows:

lnorm:	This	command	is	used	for	output	vector	to	be	log	normalized.
nv:	This	command	is	used	for	named	vector.
wt:	This	command	is	used	to	identify	the	kind	of	weight	to	use.	Here	we	use	tf-
idf.

5.	 Split	the	set	of	vectors	for	training	and	testing	the	model,	as	follows:

bin/mahout	split	-i	/user/hue/assassinvec/tfidf-vectors	--

trainingOutput	/user/hue/assassindatatrain	--testOutput	

/user/hue/assassindatatest	--randomSelectionPct	20	--overwrite	--

sequenceFiles	-xm	sequential

The	preceding	command	can	be	explained	as	follows:

The	randomSelectionPct	parameter	divides	the	percentage	of	data	into	test	and
training	datasets.	In	this	case,	it’s	80	percent	for	test	and	20	percent	for	training.
The	xm	parameter	specifies	what	portion	of	the	tf	(tf-idf)	vectors	is	to	be
used	expressed	in	times	the	standard	deviation.
The	sigma	symbol	specifies	the	document	frequencies	of	these	vectors.	It	can	be
used	to	remove	really	high	frequency	terms.	It	is	expressed	as	a	double	value.	A
good	value	to	be	specified	is	3.0.	If	the	value	is	less	than	0,	no	vectors	will	be
filtered	out.

6.	 Now,	train	the	model	using	the	following	command:

bin/mahout	trainnb	-i	/user/hue/assassindatatrain	-el	-o	

/user/hue/prodmodel	-li	/user/hue/prodlabelindex	-ow	-c

7.	 Now,	test	the	model	using	the	following	command:

bin/mahout	testnb	-i	/user/hue/assassindatatest	-m	/user/hue/prodmodel/	

-l		/user/hue/prodlabelindex	-ow	-o	/user/hue/prodresults

You	can	see	from	the	results	that	the	output	is	displayed	on	the	console.	As	per	the	matrix,
the	system	has	correctly	classified	99.53	percent	of	the	instances	given.

We	can	use	this	created	model	to	classify	new	documents.	To	do	this,	we	can	either	use	a
Java	program	or	create	a	servlet	that	can	be	deployed	on	our	server.

Let’s	take	an	example	of	a	Java	program	in	continuation	of	this	exercise.

Program	to	use	a	classifier	model
We	will	create	a	Java	program	that	will	use	our	model	to	classify	new	e-mails.	This
program	will	take	model,	labelindex,	dictionary-file,	document	frequency,	and	text	file	as
input	and	will	generate	a	score	for	the	categories.	The	category	will	be	decided	based	on
the	higher	scores.

Let’s	have	a	look	at	this	program	step	by	step:

The	.jar	files	required	to	make	a	compilation	of	this	program	are	as	follows:

Hadoop-core-x.y.x.jar

Mahout-core-xyz.jar

Mahout-integration-xyz.jar

Mahout-math-xyz.jar

The	import	statements	are	listed	as	follows.	We	are	discussing	this	because	there	are
lots	of	changes	in	the	Mahout	releases	and	people	usually	find	it	difficult	to	get	the
correct	classes.

import	java.io.BufferedReader;

import	java.io.FileReader;

import	java.io.StringReader;

import	java.util.HashMap;

import	java.util.Map;

import	org.apache.hadoop.conf.Configuration;

import	org.apache.hadoop.fs.Path;

import	org.apache.lucene.analysis.Analyzer;

import	org.apache.lucene.analysis.TokenStream;

import	org.apache.lucene.analysis.standard.StandardAnalyzer;

import

org.apache.lucene.analysis.tokenattributes.CharTermAttribute;

import	org.apache.lucene.util.Version;

import	org.apache.mahout.classifier.naivebayes.BayesUtils;

import	org.apache.mahout.classifier.naivebayes.NaiveBayesModel;

import

org.apache.mahout.classifier.naivebayes.StandardNaiveBayesClassifier;

import	org.apache.mahout.common.Pair;

import

org.apache.mahout.common.iterator.sequencefile.SequenceFileIterable;

import	org.apache.mahout.math.RandomAccessSparseVector;

import	org.apache.mahout.math.Vector;

import	org.apache.mahout.math.Vector.Element;

import	org.apache.mahout.vectorizer.TFIDF;

import	org.apache.hadoop.io.*;

import	com.google.common.collect.ConcurrentHashMultiset;

import	com.google.common.collect.Multiset;

The	supporting	methods	to	read	the	dictionary	are	as	follows:

public	static	Map<String,	Integer>	readDictionary(Configuration	conf,	

Path	dictionaryPath)	{

		Map<String,	Integer>	dictionary	=	new	HashMap<String,	Integer>();

		for	(Pair<Text,	IntWritable>	pair	:	new	SequenceFileIterable<Text,	

IntWritable>(dictionaryPath,	true,	conf))	{

				dictionary.put(pair.getFirst().toString(),	pair.getSecond().get());

		}

		return	dictionary;

}

The	supporting	methods	to	read	the	document	frequency	are	as	follows:

public	static	Map<Integer,	Long>	readDocumentFrequency(Configuration	

conf,	Path	documentFrequencyPath)	{

		Map<Integer,	Long>	documentFrequency	=	new	HashMap<Integer,	Long>();

		for	(Pair<IntWritable,	LongWritable>	pair	:	new	

SequenceFileIterable<IntWritable,	LongWritable>(documentFrequencyPath,	

true,	conf))	{

				documentFrequency.put(pair.getFirst().get(),	

pair.getSecond().get());

		}

		return	documentFrequency;

}

The	first	part	of	the	main	method	is	used	to	perform	the	following	actions:

Getting	the	input
Loading	the	model
Initializing	StandardNaiveBayesClassifier	using	our	created	model
Reading	labelindex,	document	frequency,	and	dictionary	created	while	creating
the	vector	from	the	dataset

The	following	code	can	be	used	for	the	preceding	actions:

public	static	void	main(String[]	args)	throws	Exception	{

		if	(args.length	<	5)	{

				System.out.println("Arguments:	[model]	[labelindex]	

[dictionary]	[documentfrequency]	[new	file]	");

				return;

		}

		String	modelPath	=	args[0];

		String	labelIndexPath	=	args[1];

		String	dictionaryPath	=	args[2];

		String	documentFrequencyPath	=	args[3];

		String	newDataPath	=	args[4];

		Configuration	configuration	=	new	Configuration();	//	model	is	a	

matrix	(wordId,	labelId)	=>	probability	score

		NaiveBayesModel	model	=	NaiveBayesModel.materialize(new	

Path(modelPath),	configuration);	

		StandardNaiveBayesClassifier	classifier	=	new	

StandardNaiveBayesClassifier(model);	

		//	labels	is	a	map	label	=>	classId

		Map<Integer,	String>	labels	=	

BayesUtils.readLabelIndex(configuration,	new	Path(labelIndexPath));

		Map<String,	Integer>	dictionary	=	readDictionary(configuration,	

new	Path(dictionaryPath));

		Map<Integer,	Long>	documentFrequency	=	

readDocumentFrequency(configuration,	new	

Path(documentFrequencyPath));

The	second	part	of	the	main	method	is	used	to	extract	words	from	the	e-mail:

Analyzer	analyzer	=	new	StandardAnalyzer(Version.LUCENE_CURRENT);

int	labelCount	=	labels.size();

int	documentCount	=	documentFrequency.get(-1).intValue();

System.out.println("Number	of	labels:	"	+	labelCount);

System.out.println("Number	of	documents	in	training	set:	"	+	

documentCount);

BufferedReader	reader	=	new	BufferedReader(new	

FileReader(newDataPath));

while(true)	{

		String	line	=	reader.readLine();

		if	(line	==	null)	{

				break;

		}

		ConcurrentHashMultiset<Object>	words	=	

ConcurrentHashMultiset.create();	

		//	extract	words	from	mail

		TokenStream	ts	=	analyzer.tokenStream("text",	new	

StringReader(line));

		CharTermAttribute	termAtt	=	ts.addAttribute(CharTermAttribute.class);

		ts.reset();

		int	wordCount	=	0;

		while	(ts.incrementToken())	{

				if	(termAtt.length()	>	0)	{

						String	word	=	

ts.getAttribute(CharTermAttribute.class).toString();

						Integer	wordId	=	dictionary.get(word);

						//	if	the	word	is	not	in	the	dictionary,	skip	it

						if	(wordId	!=	null)	{

								words.add(word);

								wordCount++;

						}

				}

		}

		ts.close();

The	third	part	of	the	main	method	is	used	to	create	vector	of	the	id	word	and	the	tf-
idf	weights:

Vector	vector	=	new	RandomAccessSparseVector(10000);

TFIDF	tfidf	=	new	TFIDF();

for	(Multiset.Entry	entry:words.entrySet())	{

		String	word	=		(String)entry.getElement();

		int	count	=	entry.getCount();

		Integer	wordId	=	dictionary.get(word);

		Long	freq	=	documentFrequency.get(wordId);

		double	tfIdfValue	=	tfidf.calculate(count,	freq.intValue(),	

wordCount,	documentCount);

		vector.setQuick(wordId,	tfIdfValue);

}

In	the	fourth	part	of	the	main	method,	with	classifier,	we	get	the	score	for	each
label	and	assign	the	e-mail	to	the	higher	scored	label:

		Vector	resultVector	=	classifier.classifyFull(vector);

				double	bestScore	=	-Double.MAX_VALUE;

				int	bestCategoryId	=	-1;										

				for(int	i=0	;i<resultVector.size();i++)	{

						Element	e1		=	resultVector.getElement(i);

						int	categoryId	=	e1.index();

						double	score	=	e1.get();

						if	(score	>	bestScore)	{

								bestScore	=	score;

								bestCategoryId	=	categoryId;

						}

						System.out.print("		"	+	labels.get(categoryId)	+	":	"	+	score);

				}

				System.out.println("	=>	"	+	labels.get(bestCategoryId));

		}

}

Now,	put	all	these	codes	under	one	class	and	create	the	.jar	file	of	this	class.	We	will	use
this	.jar	file	to	test	our	new	e-mails.

Testing	the	program
To	test	the	program,	perform	the	following	steps:

1.	 Create	a	folder	named	assassinmodeltest	in	the	local	directory,	as	follows:

mkdir	/tmp/assassinmodeltest

2.	 To	use	this	model,	get	the	following	files	from	hdfs	to	/tmp/assassinmodeltest:

For	the	earlier	created	model,	use	the	following	command:

hadoop	fs	–get	/user/hue/prodmodel	/tmp/assassinmodeltest

For	labelindex,	use	the	following	command:

hadoop	fs	–get	/user/hue/prodlabelindex		/tmp/assassinmodeltest

For	df-counts	from	the	assassinvec	folder	(change	the	name	of	the	part-
00000	file	to	df-count),	use	the	following	commands:

hadoop	fs	–get	/user/hue/assassinvec/df-count		

/tmp/assassinmodeltest

dictionary.file-0	from	the	same	assassinvec	folder

hadoop	fs	–get	/user/hue/assassinvec/dictionary.file-0		

/tmp/assassinmodeltest

3.	 Under	/tmp/assassinmodeltest,	create	a	file	with	the	message	shown	in	the
following	screenshot:

4.	 Now,	run	the	program	using	the	following	command:

Java	–cp	/tmp/assassinmodeltest/spamclassifier.jar:/usr/lib/mahout/*	

com.packt.spamfilter.TestClassifier	/tmp/assassinmodeltest	

/tmp/assassinmodeltest/prodlabelindex	

/tmp/assassinmodeltest/dictionary.file-0	/tmp/assassinmodeltest/df-

count	/tmp/assassinmodeltest/testemail

5.	 Now,	update	the	test	e-mail	file	with	the	message	shown	in	the	following
screenshot:

6.	 Run	the	program	again	using	the	same	command	as	given	in	step	4	and	view	the
result	as	follows:

Now,	we	have	a	program	ready	that	can	use	our	classifier	model	and	predict	the	unknown
items.	Let’s	move	on	to	our	second	use	case.

Second	use	case	as	an	exercise
As	discussed	at	the	start	of	this	chapter,	we	will	now	work	on	a	second	use	case,	where	we
will	predict	the	category	of	a	new	e-mail.

The	ASF	e-mail	dataset
The	Apache	Software	Foundation	e-mail	dataset	is	partitioned	by	project.	This	e-mail
dataset	can	be	found	at	http://aws.amazon.com/datasets/7791434387204566.

A	smaller	dataset	can	be	found	at	http://files.grantingersoll.com/ibm.tar.gz.	(Refer	to
http://lucidworks.com/blog/scaling-mahout/).	Use	this	data	to	perform	the	following	steps:

1.	 Move	this	data	to	the	folder	of	your	choice	(/tmp/asfmail)	and	unzip	the	folder:

mkdir	/tmp/asfmail

tar	–xvf		ibm.tar

2.	 Move	the	dataset	to	hdfs:

hadoop	fs	-put	/tmp/asfmail/ibm/content	/user/hue/asfmail

3.	 Convert	the	mbox	files	into	Hadoop’s	SequenceFile	format	using	Mahout’s
SequenceFilesFromMailArchives	as	follows:

mahout		org.apache.mahout.text.SequenceFilesFromMailArchives	--charset	

"UTF-8"	--body	--subject	--input	/user/hue/asfmail/content	--output	

/user/hue/asfmailout

http://aws.amazon.com/datasets/7791434387204566
http://files.grantingersoll.com/ibm.tar.gz
http://lucidworks.com/blog/scaling-mahout/

4.	 Convert	the	sequence	file	into	sparse	vector:

mahout		seq2sparse	--input	/user/hue/asfmailout	--output	

/user/hue/asfmailseqsp	--norm	2	--weight	TFIDF	--namedVector	--

maxDFPercent	90	--minSupport	2	--analyzerName	

org.apache.mahout.text.MailArchivesClusteringAnalyzer

5.	 Modify	the	labels:

mahout		org.apache.mahout.classifier.email.PrepEmailDriver	--input	

/user/hue/asfmailseqsp	--output	/user/hue/asfmailseqsplabel	--

maxItemsPerLabel	1000

Now,	the	next	three	steps	are	similar	to	the	ones	we	performed	earlier:

1.	 Split	the	dataset	into	training	and	test	datasets	using	the	following	command:

mahout		split	--input	/user/hue/asfmailseqsplabel	--trainingOutput	

/user/hue/asfmailtrain	--testOutput	/user/hue/asfmailtest		--

randomSelectionPct	20	--overwrite	--sequenceFiles

2.	 Train	the	model	using	the	training	dataset	as	follows:

mahout	trainnb	-i	/user/hue/asfmailtrain	-o	/user/hue/asfmailmodel	-

extractLabels	--labelIndex	/user/hue/asfmaillabels

3.	 Test	the	model	using	the	test	dataset:

mahout	testnb	-i	/user/hue/asfmailtest	-m	/user/hue/asfmailmodel	--

labelIndex	/user/hue/asfmaillabels

As	you	may	have	noticed,	all	the	steps	are	exactly	identical	to	the	ones	we	performed
earlier.	Hereby,	I	leave	this	topic	as	an	exercise	for	you	to	create	your	own	classifier
system	using	this	model.	You	can	use	hints	as	provided	for	the	spam	filter	classifier.	We
now	move	our	discussion	to	tuning	our	classifier.	Let’s	take	a	brief	overview	of	the	best
practices	in	this	area.

Classifiers	tuning
We	already	discussed	classifiers’	evaluation	techniques	in	Chapter	1,	Classification	in
Data	Analysis.	Just	as	a	reminder,	we	evaluate	our	model	using	techniques	such	as
confusion	matrix,	entropy	matrix,	area	under	curve,	and	so	on.

From	the	explanatory	variables,	we	create	the	feature	vector.	To	check	how	a	particular
model	is	working,	these	feature	vectors	need	to	be	investigated.	In	Mahout,	there	is	a	class
available	for	this,	ModelDissector.	It	takes	the	following	three	inputs:

Features:	This	class	takes	a	feature	vector	to	use	(destructively)
TraceDictionary:	This	class	takes	a	trace	dictionary	containing	variables	and	the
locations	in	the	feature	vector	that	are	affected	by	them
Learner:	This	class	takes	the	model	that	we	are	probing	to	find	weights	on	features

ModelDissector	tweaks	the	feature	vector	and	observes	how	the	model	output	changes.
By	taking	an	average	of	the	number	of	examples,	we	can	determine	the	effect	of	different
explanatory	variables.

ModelDissector	has	a	summary	method,	which	returns	the	most	important	features	with
their	weights,	most	important	category,	and	the	top	few	categories	that	they	affect.

The	output	of	ModelDissector	is	helpful	in	troubleshooting	problems	in	a	wrongly
created	model.

More	details	for	the	code	can	be	found	at
https://github.com/apache/mahout/blob/master/mrlegacy/src/main/java/org/apache/mahout/classifier/sgd/ModelDissector.java

While	improving	the	output	of	the	classifier,	one	should	take	care	with	two	commonly
occurring	problems:	target	leak,	and	broken	feature	extraction.

If	the	model	is	showing	results	that	are	too	good	to	be	true	or	an	output	beyond
expectations,	we	could	have	a	problem	with	target	leak.	This	error	comes	once
information	from	the	target	variable	is	included	in	the	explanatory	variables,	which	are
used	to	train	the	classifier.	In	this	instance,	the	classifier	will	work	too	well	for	the	test
dataset.

On	the	other	hand,	broken	feature	extraction	occurs	when	feature	extraction	is	broken.
This	type	of	classifier	shows	the	opposite	result	from	the	target	leak	classifiers.	Here,	the
model	provides	results	poorer	than	expected.

To	tune	the	classifier,	we	can	use	new	explanatory	variables,	transformations	of
explanatory	variables,	and	can	also	eliminate	some	of	the	variables.	We	should	also	try
different	learning	algorithms	to	create	the	model	and	choose	an	algorithm,	which	is	good
in	performance,	training	time,	and	speed.

More	details	on	tuning	can	be	found	in	Chapter	16,	Deploying	a	classifier	in	the	book
Mahout	in	Action.

https://github.com/apache/mahout/blob/master/mrlegacy/src/main/java/org/apache/mahout/classifier/sgd/ModelDissector.java

Summary
In	this	chapter,	we	discussed	creating	our	own	production	ready	classifier	model.	We	took
up	two	use	cases	here,	one	for	an	e-mail	spam	filter	and	the	other	for	classifying	the	e-mail
as	per	the	projects.	We	used	datasets	for	Apache	SpamAssassin	for	the	e-mail	filter	and
ASF	for	the	e-mail	classifier.

We	also	saw	how	to	increase	the	performance	of	your	model.

So	you	are	now	ready	to	implement	classifiers	using	Apache	Mahout	for	your	own	real
world	use	cases.	Happy	learning!

Index
A

algorithms,	classification
Logistic	regression	/	Classification	algorithms
Stochastic	Gradient	Descent	(SGD)	/	Classification	algorithms
Naïve	Bayes	classification	/	Classification	algorithms
Hidden	Markov	Model	(HMM)	/	Classification	algorithms
random	forest	/	Classification	algorithms
Multi-layer	perceptron	(MLP)	/	Classification	algorithms

Apache	SpamAssassin	project	/	Spam	e-mail	dataset
Apache	Spark

about	/	Apache	Spark
Spark	SQL	/	Apache	Spark
MLib	/	Apache	Spark
GraphX	/	Apache	Spark
Spark	streaming	/	Apache	Spark

ASF	e-mail	dataset
about	/	The	ASF	e-mail	dataset
URL	/	The	ASF	e-mail	dataset

Assassin	dataset
used,	for	creating	model	/	Creating	the	model	using	the	Assassin	dataset

AUC	(area	under	the	ROC	curve)	/	Area	under	the	ROC	curve
axons	/	Neural	network	and	neurons

B
back	propagation	/	Multilayer	Perceptron
Bag	of	words	/	Understanding	the	terms	used	in	text	classification
BaumWelchTrainer	class	/	Using	Mahout	for	the	Hidden	Markov	Model
Bayes	rule

about	/	Introducing	conditional	probability	and	the	Bayes	rule
binding	stack

URL	/	Mahout	Scala	and	Spark	bindings

C
Chi-squared	Automatic	Interaction	Detector	(CHAID)	/	Decision	tree
classification

about	/	Introducing	the	classification,	Introducing	Apache	Mahout
application	/	Application	of	the	classification	system
system,	working	/	Working	of	the	classification	system
algorithms	/	Classification	algorithms

Classification	and	Regression	Tree	(CART)	/	Decision	tree
classifier

training	dataset	/	Working	of	the	classification	system
test	dataset	/	Working	of	the	classification	system
model	/	Working	of	the	classification	system
building	/	Working	of	the	classification	system

classifier	model
using,	program	for	/	Program	to	use	a	classifier	model

classifiers
tuning	/	Classifiers	tuning

clustering
about	/	Introducing	Apache	Mahout

conditional	probability
about	/	Introducing	conditional	probability	and	the	Bayes	rule

confusion	matrix
about	/	The	confusion	matrix
Accuracy	/	The	confusion	matrix
Precision	or	positive	predictive	value	/	The	confusion	matrix
Negative	predictive	value	/	The	confusion	matrix
Sensitivity	/	true	positive	rate	/	recall	/	The	confusion	matrix
Specificity	/	The	confusion	matrix
F1	score	/	The	confusion	matrix

cost	function,	linear	regression
about	/	Cost	function

D
DARPA‘98	/	Using	Mahout	for	Random	forest
data	analysis

classification	/	Introducing	the	classification
decision	tree

about	/	Decision	tree
dendrites	/	Neural	network	and	neurons
dependent	variable	/	Logistic	regression
deterministic	patterns	/	Deterministic	and	nondeterministic	patterns
development	environment

setting	up,	Eclipse	used	/	Setting	up	a	development	environment	using	Eclipse
dimensional	reduction

about	/	Introducing	Apache	Mahout
Domain	Specific	Language	(DSL)	/	Mahout	new	changes

E
Eclipse

used,	for	building	development	environment	/	Setting	up	a	development
environment	using	Eclipse

emission	matrix,	HMM	/	Introducing	the	Hidden	Markov	Model
Entropy	matrix

about	/	The	entropy	matrix
explanatory	variable	/	Logistic	regression
explanatory	variables

about	/	Working	of	the	classification	system

G
gradient	descent

about	/	Gradient	descent
sigmoid	function	/	Logistic	regression
logistic	function	/	Logistic	regression

GraphX	/	Apache	Spark

H
H2O	platform

integration	/	H2O	platform	integration
URL	/	H2O	platform	integration

Hadoop
URL	/	Introducing	Apache	Mahout,	Installing	Mahout

hidden	layer,	MLP	network	/	Multilayer	Perceptron
hidden	layers,	MLP	network	/	Multilayer	Perceptron
Hidden	Markov	Model	(HMM)	/	Classification	algorithms
hidden	states,	HMM	/	Introducing	the	Hidden	Markov	Model
HMM

about	/	Introducing	the	Hidden	Markov	Model
properties	/	Introducing	the	Hidden	Markov	Model
state	vector	/	Introducing	the	Hidden	Markov	Model
transition	matrix	/	Introducing	the	Hidden	Markov	Model
emission	matrix	/	Introducing	the	Hidden	Markov	Model
hidden	states	/	Introducing	the	Hidden	Markov	Model
observable	state	/	Introducing	the	Hidden	Markov	Model
Mahout	used	/	Using	Mahout	for	the	Hidden	Markov	Model
Model	class	/	Using	Mahout	for	the	Hidden	Markov	Model
HmmTrainer	class	/	Using	Mahout	for	the	Hidden	Markov	Model
HmmEvaluator	class	/	Using	Mahout	for	the	Hidden	Markov	Model
HmmAlgorithms	class	/	Using	Mahout	for	the	Hidden	Markov	Model
HmmUtils	class	/	Using	Mahout	for	the	Hidden	Markov	Model
RandomSequencerGenerator	/	Using	Mahout	for	the	Hidden	Markov	Model
BaumWelchTrainer	class	/	Using	Mahout	for	the	Hidden	Markov	Model
ViterbiEvaluator	class	/	Using	Mahout	for	the	Hidden	Markov	Model
input	command	/	Using	Mahout	for	the	Hidden	Markov	Model
output	command	/	Using	Mahout	for	the	Hidden	Markov	Model
model	command	/	Using	Mahout	for	the	Hidden	Markov	Model
likelihood	command	/	Using	Mahout	for	the	Hidden	Markov	Model

HMM,	issues
evaluation	/	Introducing	the	Hidden	Markov	Model
decoding	/	Introducing	the	Hidden	Markov	Model
learning	/	Introducing	the	Hidden	Markov	Model

HmmAlgorithms	class	/	Using	Mahout	for	the	Hidden	Markov	Model
HmmEvaluator	class	/	Using	Mahout	for	the	Hidden	Markov	Model
HMMModel	class	/	Using	Mahout	for	the	Hidden	Markov	Model
HmmTrainer	class	/	Using	Mahout	for	the	Hidden	Markov	Model
HmmUtils	class	/	Using	Mahout	for	the	Hidden	Markov	Model
Hortonworks	Sandbox

URL	/	Setting	up	Mahout	for	a	Windows	user

I
iInitial	state	vector,	Markov	process	/	The	Markov	process
independent	variable	/	Logistic	regression
input	layer,	MLP	network	/	Multilayer	Perceptron
iris	dataset

URL	/	Using	Mahout	for	MLP
Iterative	Dichotomiser	3	(ID3)

URL	/	Decision	tree

J
Java

URL	/	Installing	Mahout

L
labels

about	/	Working	of	the	classification	system
Latent	Dirichlet	Allocation	(LDA)	/	Introducing	Apache	Mahout
linear	regression

about	/	Understanding	linear	regression
cost	function	/	Cost	function
gradient	descent	/	Gradient	descent

logistic	function	/	Logistic	regression
logistic	regression	/	Classification	algorithms

about	/	Logistic	regression
Mahout,	using	for	/	Using	Mahout	for	logistic	regression
dataset	/	Using	Mahout	for	logistic	regression
training	and	test	data,	preparing	/	Using	Mahout	for	logistic	regression
model,	training	/	Using	Mahout	for	logistic	regression
trainlogistic	/	Using	Mahout	for	logistic	regression
input	/	Using	Mahout	for	logistic	regression
output	/	Using	Mahout	for	logistic	regression
target	/	Using	Mahout	for	logistic	regression
categories	/	Using	Mahout	for	logistic	regression
predictors	/	Using	Mahout	for	logistic	regression
types	/	Using	Mahout	for	logistic	regression
features	/	Using	Mahout	for	logistic	regression
passes	/	Using	Mahout	for	logistic	regression
rate	/	Using	Mahout	for	logistic	regression
runlogistic	/	Using	Mahout	for	logistic	regression
model	/	Using	Mahout	for	logistic	regression
auc	/	Using	Mahout	for	logistic	regression
confusion	/	Using	Mahout	for	logistic	regression

M
M2Eclipse

URL	/	Installing	Maven
Mahout

about	/	Introducing	Apache	Mahout
use	cases	/	Introducing	Apache	Mahout
features	/	Reasons	for	Mahout	being	a	good	choice	for	classification
installing	/	Installing	Mahout
prerequisites	/	Installing	Mahout
building	from	source,	Maven	used	/	Building	Mahout	from	source	using	Maven
Maven,	installing	/	Installing	Maven
code,	building	/	Building	Mahout	code
distribution	file,	URL	/	Building	Mahout	code,	Setting	up	a	development
environment	using	Eclipse
setting	up,	for	Windows	user	/	Setting	up	Mahout	for	a	Windows	user
used,	for	logistic	regression	/	Using	Mahout	for	logistic	regression
Naïve	Bayes	algorithm	/	Using	the	Naïve	Bayes	algorithm	in	Apache	Mahout
using,	for	HMM	/	Using	Mahout	for	the	Hidden	Markov	Model
using,	for	Random	forest	algorithm	/	Using	Mahout	for	Random	forest
Random	forest	algorithm,	implementing	/	Steps	to	use	the	Random	forest
algorithm	in	Mahout
MLP,	implementing	/	MLP	implementation	in	Mahout
using,	for	MLP	/	Using	Mahout	for	MLP
MLP	algorithm,	using	/	Steps	to	use	the	MLP	algorithm	in	Mahout
updations	/	Mahout	new	changes
Scala	bindings	/	Mahout	Scala	and	Spark	bindings
Spark	bindings	/	Mahout	Scala	and	Spark	bindings
Spark	shell,	using	/	Using	Mahout’s	Spark	shell
H2O	platform,	integration	/	H2O	platform	integration

Mahout,	algorithms
about	/	Algorithms	supported	in	Mahout
sequential	algorithms	/	Algorithms	supported	in	Mahout
parallel	algorithms	/	Algorithms	supported	in	Mahout

Mahout,	use	cases
recommendation	/	Introducing	Apache	Mahout
classification	/	Introducing	Apache	Mahout
clustering	/	Introducing	Apache	Mahout
dimensional	reduction	/	Introducing	Apache	Mahout
topic	modeling	/	Introducing	Apache	Mahout

Mahout	Scala	bindings
about	/	Mahout	Scala	and	Spark	bindings

Mahout	Spark	bindings
about	/	Mahout	Scala	and	Spark	bindings

Markov	process
about	/	The	Markov	process
states	/	The	Markov	process
transition	matrix	/	The	Markov	process
Transition	matrix	/	The	Markov	process
Initial	state	vector	/	The	Markov	process

Maven
used,	for	building	Mahout	from	source	/	Building	Mahout	from	source	using
Maven
installing	/	Installing	Maven
URL	/	Installing	Maven

MLib	/	Apache	Spark
MLP

implementing,	in	Mahout	/	MLP	implementation	in	Mahout
Mahout	used	/	Using	Mahout	for	MLP
iris	dataset	/	Using	Mahout	for	MLP

MLP	algorithm
using,	in	Mahout	/	Steps	to	use	the	MLP	algorithm	in	Mahout

MLP	network
about	/	Multilayer	Perceptron
hidden	layers	/	Multilayer	Perceptron
back	propagation	/	Multilayer	Perceptron
zero	hidden	layers	/	Multilayer	Perceptron
input	layer	/	Multilayer	Perceptron
output	layer	/	Multilayer	Perceptron
hidden	layer	/	Multilayer	Perceptron
number	of	neurons	or	hidden	units	/	Multilayer	Perceptron

model
creating,	Assassin	dataset	used	/	Creating	the	model	using	the	Assassin	dataset
classifier	model,	program	for	using	/	Program	to	use	a	classifier	model

model,	evaluation
confusion	matrix	/	The	confusion	matrix
Receiver	Operating	Characteristics	(ROC)	graph	/	The	Receiver	Operating
Characteristics	(ROC)	graph
area	under	the	ROC	curve	(AUC)	/	Area	under	the	ROC	curve
Entropy	matrix	/	The	entropy	matrix

model,	issues
overfitting	/	Working	of	the	classification	system
underfitting	/	Working	of	the	classification	system

ModelDissector
Features	class	/	Classifiers	tuning
TraceDictionary	class	/	Classifiers	tuning
Learner	class	/	Classifiers	tuning
about	/	Classifiers	tuning

Multi-layer	perceptron	(MLP)	/	Classification	algorithms

N
Naïve	Bayes	algorithm

about	/	Understanding	the	Naïve	Bayes	algorithm
in	Apache	Mahout	/	Using	the	Naïve	Bayes	algorithm	in	Apache	Mahout

Naïve	Bayes	classification	/	Classification	algorithms
neural	network

about	/	Neural	network	and	neurons
neurons

about	/	Neural	network	and	neurons
URL	/	Neural	network	and	neurons

nondeterministic	patterns	/	Deterministic	and	nondeterministic	patterns
NSL-KDD	dataset

URL	/	Using	Mahout	for	Random	forest

O
observable	state,	HMM	/	Introducing	the	Hidden	Markov	Model
outlier	detection

about	/	Working	of	the	classification	system
output	layer,	MLP	network	/	Multilayer	Perceptron
overfitting,	model

issues	/	Working	of	the	classification	system

P
parallel	algorithms	/	Algorithms	supported	in	Mahout
program

testing	/	Testing	the	program
pruning	/	Decision	tree

R
random	forest	/	Classification	algorithms
Random	forest	algorithm

about	/	Random	forest
Bias	parameter	/	Random	forest
Variance	parameter	/	Random	forest
Mahout	used	/	Using	Mahout	for	Random	forest
NSL-KDD	dataset	/	Using	Mahout	for	Random	forest
dataset	/	Using	Mahout	for	Random	forest
implementing,	in	Mahout	/	Steps	to	use	the	Random	forest	algorithm	in	Mahout

RandomSequencerGenerator	/	Using	Mahout	for	the	Hidden	Markov	Model
Receiver	Operating	Characteristics	(ROC)	graph

about	/	The	Receiver	Operating	Characteristics	(ROC)	graph
regression

about	/	Introducing	regression
linear	regression	/	Understanding	linear	regression

regression	intercept	/	Logistic	regression

S
sequential	algorithms	/	Algorithms	supported	in	Mahout
sigmoid	function	/	Logistic	regression
softmax	function

URL	/	Neural	network	and	neurons
spam	e-mail	dataset	classifier

about	/	Spam	e-mail	dataset
Spark

URL	/	Using	Mahout’s	Spark	shell
binding,	URL	/	Using	Mahout’s	Spark	shell

Spark-item	/	Apache	Spark
Spark-row	/	Apache	Spark
Spark	shell

using	/	Using	Mahout’s	Spark	shell
Spark	SQL	/	Apache	Spark
Spark	streaming	/	Apache	Spark
states,	Markov	process	/	The	Markov	process
state	vector,	HMM	/	Introducing	the	Hidden	Markov	Model
Stochastic	Gradient	Descent	(SGD)	/	Classification	algorithms

about	/	Stochastic	Gradient	Descent

T
target	variables

about	/	Working	of	the	classification	system
Term	frequency	/	Understanding	the	terms	used	in	text	classification
term	frequency

Stemming	of	words	/	Understanding	the	terms	used	in	text	classification
Case	normalization	/	Understanding	the	terms	used	in	text	classification
Stop	word	removal	/	Understanding	the	terms	used	in	text	classification
Inverse	document	frequency	/	Understanding	the	terms	used	in	text
classification
Term	frequency	and	inverse	term	frequency	/	Understanding	the	terms	used	in
text	classification

text	classification
about	/	Understanding	the	terms	used	in	text	classification

topic	modeling
about	/	Introducing	Apache	Mahout

transition	matrix,	HMM	/	Introducing	the	Hidden	Markov	Model
transition	matrix,	Markov	process	/	The	Markov	process

U
underfitting,	model

issues	/	Working	of	the	classification	system

V
vectors

about	/	Understanding	the	terms	used	in	text	classification
ViterbiEvaluator	class	/	Using	Mahout	for	the	Hidden	Markov	Model

W
Windows

user,	Mahout	setting	up	for	/	Setting	up	Mahout	for	a	Windows	user
Wisconsin	Diagnostic	Breast	Cancer	(WDBC)	dataset

URL	/	Using	Mahout	for	logistic	regression

	Learning Apache Mahout Classification
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. Classification in Data Analysis
	Introducing the classification
	Application of the classification system
	Working of the classification system
	Classification algorithms
	Model evaluation techniques
	The confusion matrix
	The Receiver Operating Characteristics (ROC) graph
	Area under the ROC curve
	The entropy matrix
	Summary
	2. Apache Mahout
	Introducing Apache Mahout
	Algorithms supported in Mahout
	Reasons for Mahout being a good choice for classification
	Installing Mahout
	Building Mahout from source using Maven
	Installing Maven
	Building Mahout code
	Setting up a development environment using Eclipse
	Setting up Mahout for a Windows user
	Summary
	3. Learning Logistic Regression / SGD Using Mahout
	Introducing regression
	Understanding linear regression
	Cost function
	Gradient descent
	Logistic regression
	Stochastic Gradient Descent
	Using Mahout for logistic regression
	Summary
	4. Learning the Naïve Bayes Classification Using Mahout
	Introducing conditional probability and the Bayes rule
	Understanding the Naïve Bayes algorithm
	Understanding the terms used in text classification
	Using the Naïve Bayes algorithm in Apache Mahout
	Summary
	5. Learning the Hidden Markov Model Using Mahout
	Deterministic and nondeterministic patterns
	The Markov process
	Introducing the Hidden Markov Model
	Using Mahout for the Hidden Markov Model
	Summary
	6. Learning Random Forest Using Mahout
	Decision tree
	Random forest
	Using Mahout for Random forest
	Steps to use the Random forest algorithm in Mahout
	Summary
	7. Learning Multilayer Perceptron Using Mahout
	Neural network and neurons
	Multilayer Perceptron
	MLP implementation in Mahout
	Using Mahout for MLP
	Steps to use the MLP algorithm in Mahout
	Summary
	8. Mahout Changes in the Upcoming Release
	Mahout new changes
	Mahout Scala and Spark bindings
	Apache Spark
	Using Mahout's Spark shell
	H2O platform integration
	Summary
	9. Building an E-mail Classification System Using Apache Mahout
	Spam e-mail dataset
	Creating the model using the Assassin dataset
	Program to use a classifier model
	Testing the program
	Second use case as an exercise
	The ASF e-mail dataset
	Classifiers tuning
	Summary
	Index

