

Learning	Android	Application	Testing

Table	of	Contents

Learning	Android	Application	Testing

Credits

About	the	Authors

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

Questions

1.	Getting	Started	with	Testing

Why,	what,	how,	and	when	to	test?

What	to	test

Activity	lifecycle	events

Database	and	filesystem	operations

Physical	characteristics	of	the	device

Types	of	tests

Unit	tests

The	setUp()	method

The	tearDown()	method

Outside	the	test	method

Inside	the	test	method

Mock	objects

Integration	tests

UI	tests

Functional	or	acceptance	tests

Test	case	scenario

Performance	tests

System	tests

Android	Studio	and	other	IDE	support

Java	testing	framework

Android	testing	framework

Instrumentation

Gradle

Test	targets

Creating	the	Android	project

Package	explorer

Creating	a	test	case

Test	annotations

Running	the	tests

Running	all	tests	from	Android	Studio

Running	a	single	test	case	from	your	IDE

Running	from	the	emulator

Running	tests	from	the	command	line

Running	all	tests

Running	tests	from	a	specific	test	case

Running	a	specific	test	by	name

Running	specific	tests	by	category

Running	tests	using	Gradle

Creating	a	custom	annotation

Running	performance	tests

Dry	run

Debugging	tests

Other	command-line	options

Summary

2.	Understanding	Testing	with	the	Android	SDK

The	demonstration	application

Assertions	in	depth

Custom	messages

Static	imports

View	assertions

Even	more	assertions

The	TouchUtils	class

Mock	objects

An	overview	of	MockContext

The	IsolatedContext	class

Alternate	route	to	file	and	database	operations

The	MockContentResolver	class

The	TestCase	base	class

The	default	constructor

The	given	name	constructor

The	setName()	method

The	AndroidTestCase	base	class

The	assertActivityRequiresPermission()	method

Description

Example

The	assertReadingContentUriRequiresPermission	method

Description

Example

The	assertWritingContentUriRequiresPermission()	method

Description

Example

Instrumentation

The	ActivityMonitor	inner	class

Example

The	InstrumentationTestCase	class

The	launchActivity	and	launchActivityWithIntent	methods

The	sendKeys	and	sendRepeatedKeys	methods

The	runTestOnUiThread	helper	method

The	ActivityTestCase	class

The	scrubClass	method

The	ActivityInstrumentationTestCase2	class

The	constructor

The	setUp	method

The	tearDown	method

The	ProviderTestCase2<T>	class

The	constructor

An	example

The	ServiceTestCase<T>

The	constructor

The	TestSuiteBuilder.FailedToCreateTests	class

Using	libraries	in	test	projects

Summary

3.	Baking	with	Testing	Recipes

Android	unit	tests

Testing	activities	and	applications

Mocking	applications	and	preferences

The	RenamingMockContext	class

Mocking	contexts

Testing	activities

Testing	files,	databases,	and	content	providers

The	BrowserProvider	tests

Testing	exceptions

Testing	local	and	remote	services

Extensive	use	of	mock	objects

Importing	libraries

Mockito	usage	example

The	EditNumber	filter	tests

Testing	views	in	isolation

Testing	parsers

Android	assets

The	parser	test

Testing	for	memory	usage

Testing	with	Espresso

Summary

4.	Managing	Your	Android	Testing	Environment

Creating	Android	Virtual	Devices

Running	AVDs	from	the	command	line

Headless	emulator

Disabling	the	keyguard

Cleaning	up

Terminating	the	emulator

Additional	emulator	configurations

Simulating	network	conditions

Speeding	up	your	AVD	with	HAXM

Alternatives	to	the	AVD

Running	monkey

The	client-server	monkey

Test	scripting	with	monkeyrunner

Getting	test	screenshots

Record	and	playback

Summary

5.	Discovering	Continuous	Integration

Building	Android	applications	manually	using	Gradle

Git	–	the	fast	version	control	system

Creating	a	local	Git	repository

Continuous	integration	with	Jenkins

Installing	and	configuring	Jenkins

Creating	the	jobs

Obtaining	Android	test	results

Summary

6.	Practicing	Test-driven	Development

Getting	started	with	TDD

Writing	a	test	case

Running	all	tests

Refactoring	the	code

Advantages	of	TDD

Understanding	the	requirements

Creating	a	sample	project	–	the	temperature	converter

List	of	requirements

User	interface	concept	design

Creating	the	project

Creating	a	Java	module

Creating	the	TemperatureConverterActivityTests	class

Creating	the	fixture

Creating	the	user	interface

Testing	the	existence	of	the	user	interface	components

Getting	the	IDs	defined

Translating	requirements	to	tests

Empty	fields

View	properties

Screen	layout

Adding	functionality

Temperature	conversion

The	EditNumber	class

The	TemperatureConverter	unit	tests

The	EditNumber	tests

The	TemperatureChangeWatcher	class

More	TemperatureConverter	tests

The	InputFilter	tests

Viewing	our	final	application

Summary

7.	Behavior-driven	Development

Given,	When,	and	Then

FitNesse

Running	FitNesse	from	the	command	line

Creating	a	TemperatureConverterTests	subwiki

Adding	child	pages	to	the	subwiki

Adding	the	acceptance	test	fixture

Adding	the	supporting	test	classes

GivWenZen

Creating	the	test	scenario

Summary

8.	Testing	and	Profiling	Performance

Ye	Olde	Logge	method

Timing	logger

Performance	tests	in	Android	SDK

Launching	the	performance	test

Creating	the	LaunchPerformanceBase	instrumentation

Creating	the	TemperatureConverterActivityLaunchPerformance	class

Running	the	tests

Using	the	Traceview	and	dmtracedump	platform	tools

Dmtracedump

Microbenchmarks

Caliper	microbenchmarks

Benchmarking	the	temperature	converter

Running	Caliper

Summary

9.	Alternative	Testing	Tactics

Code	coverage

Jacoco	features

Temperature	converter	code	coverage

Generating	code	coverage	analysis	report

Covering	the	exceptions

Introducing	Robotium

Adding	Robotium

Creating	the	test	cases

The	testFahrenheitToCelsiusConversion()	test

Testing	between	Activities

Testing	on	the	host’s	JVM

Comparing	the	performance	gain

Adding	Android	to	the	picture

Introducing	Robolectric

Installing	Robolectric

Adding	resources

Writing	some	tests

Google’s	march	on	shadows

Introducing	Fest

Introducing	Spoon

Introducing	Fork

Summary

Index

Learning	Android	Application	Testing

Learning	Android	Application	Testing
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	authors,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	June	2011

Second	edition:	March	2015

Production	reference:	1240315

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78439-533-9

www.packtpub.com

http://www.packtpub.com

Credits
Authors

Paul	Blundell

Diego	Torres	Milano

Reviewers

BJ	Peter	DeLaCruz

Noureddine	Dimachk

Miguel	L	Gonzalez

Henrik	Kirk

Sérgio	Lima

João	Trindade

Commissioning	Editor

Taron	Pereira

Acquisition	Editor

Rebecca	Youé

Content	Development	Editor

Manasi	Pandire

Technical	Editor

Indrajit	A.	Das

Copy	Editors

Khushnum	Mistry

Alfida	Paiva

Vikrant	Phadke

Adithi	Shetty

Project	Coordinator

Suzanne	Coutinho

Proofreaders

Simran	Bhogal

Joanna	McMahon

Indexer

Hemangini	Bari

Graphics

Valentina	D’silva

Production	Coordinator

Alwin	Roy

Cover	Work

Alwin	Roy

About	the	Authors
Paul	Blundell	is	an	aspiring	software	craftsman	and	senior	Android	developer	at	Novoda.
Before	Novoda,	he	worked	at	AutoTrader	and	Thales,	with	apps	that	he	released	racking
up	over	one	million	downloads.	A	strong	believer	in	software	craftsmanship,	SOLID
architecture,	clean	code,	and	testing,	Paul	has	used	this	methodology	to	successfully
nurture	and	create	many	Android	applications.	These	include	the	Tesco	launcher	app,
which	was	preinstalled	for	the	recently	released	Hudl2	tablet;	MUBI,	a	unique	film
streaming	service;	and	the	AutoTrader	UK	car	search	app.

If	anyone	wants	to	provide	feedback,	you	can	always	tweet	to	him	@blundell_apps.	He
also	likes	to	write,	so	you	can	find	more	material	at	http://blog.blundellapps.com/.

I’d	like	to	thank	everyone	at	Novoda	for	being	great	guys/gals	and	helping	each	other	all
the	time	to	learn	and	develop.	Without	the	atmosphere	of	craftsmanship	and	constant
learning,	my	skills	and	this	book	would	not	have	been	possible.	Also,	I’d	like	to	thank	my
girlfriend	for	her	endless	patience.	Every	time	she	asked	me	to	help	her	out,	I’d	give	her
the	excuse	of	writing	my	book.	Well,	no	more	excuses	because	it	is	finished!

I’d	like	to	acknowledge	the	legacy	author	of	this	book	Diego	Torres	Milano	for	doing	a
great	job.	The	chapters	outlined	are	down	to	your	insight	into	the	world	of	testing	on
Android,	and	I	hope	my	rewrite	lives	up	to	your	ideals.

Finally,	I’d	like	to	thank	all	the	people	who	don’t	know	me	but	from	whom	I’ve	learnt	a
lot.	If	you,	as	the	reader,	want	a	list	of	other	authors	for	further	research,	this	is	it:	Kent
Beck,	Martin	Fowler,	Robert	C	Martin,	Romain	Guy,	Reto	Meier,	Mark	Murphy,	Eric
Evans,	Joshua	Block,	Ward	Cunningham,	Kevin	Rutherford,	JB	Rainsberger,	and	Sandro
Mancuso.

Diego	Torres	Milano	has	been	involved	with	the	Android	platform	since	its	inception,	by
the	end	of	2007,	when	he	started	exploring	and	researching	the	platform’s	possibilities,
mainly	in	the	areas	of	user	interfaces,	unit	and	acceptance	tests,	and	Test-driven
Development.

This	is	reflected	by	a	number	of	articles	mainly	published	on	his	personal	blog
(http://dtmilano.blogspot.com),	and	his	participation	as	a	lecturer	in	some	conferences	and
courses,	such	as	Mobile	Dev	Camp	2008	in	Amsterdam	(Netherlands)	and	Japan	Linux
Symposium	2009	(Tokyo),	Droidcon	London	2009,	and	Skillsmatter	2009	(London,	UK).
He	has	also	authored	Android	training	courses	delivered	to	various	companies	in	Europe.

Previously,	he	was	the	founder	and	developer	of	several	open	source	projects,	mainly
CULT	Universal	Linux	Thin	Project	(http://cult-thinclient.sf.net)	and	the	very	successful
PXES	Universal	Linux	Thin	Client	project	(that	was	later	acquired	by	2X	Software,
http://www.2x.com).	PXES	is	a	Linux-based	operating	system	specialized	for	thin	clients,
used	by	hundreds	of	thousands	of	thin	clients	all	over	the	world.	This	project	has	a
popularity	peak	of	35	million	hits	and	400K	downloads	from	SourceForge	in	2005.	This
project	had	a	dual	impact.	Big	companies	in	Europe	decided	to	use	it	because	of	improved
security	and	efficiency;	and	organizations,	institutions,	and	schools	in	some	development

http://blog.blundellapps.com/
http://dtmilano.blogspot.com
http://cult-thinclient.sf.net
http://www.2x.com

countries	in	South	America,	Africa,	and	Asia	decided	to	use	it	because	of	the	minimal
hardware	requirements,	having	a	huge	social	impact	of	providing	computers,	sometimes
recycled	ones,	to	everyone.

Among	the	other	open	source	projects	that	he	founded	are	Autoglade,	Gnome-tla,	and
JGlade,	and	he	has	contributed	to	various	Linux	distributions,	such	as	RedHat,	Fedora,	and
Ubuntu.

He	has	also	given	presentations	at	the	LinuxWorld,	LinuxTag,	GUADEC	ES,	University
of	Buenos	Aires,	and	so	on.

Diego	has	also	developed	software,	participated	in	open	source	projects,	and	advised
companies	worldwide	for	more	than	15	years.

He	can	be	contacted	at	<dtmilano@gmail.com>.

mailto:dtmilano@gmail.com

About	the	Reviewers
BJ	Peter	DeLaCruz	graduated	with	a	master’s	degree	in	computer	science	from	the
University	of	Hawaii	at	Manoa.	In	2011,	he	began	his	career	as	a	software	developer	at
Referentia	Systems	Inc.	in	Honolulu,	Hawaii.	At	Referentia,	he	assisted	in	the
development	of	the	LiveAction	product.	After	working	at	Referentia	for	2.5	years,	he	was
hired	as	a	Java	web	developer	by	the	University	of	Hawaii.	Between	fall	2014	and	spring
2015	semesters,	he	upgraded	Laulima	(http://laulima.hawaii.edu),	the	learning
management	system	that	the	university	uses	for	traditional	face-to-face,	online,	and	hybrid
classes.

BJ	holds	three	Java	certifications,	including	the	Oracle	Certified	Master,	Java	SE	6
Developer	certification.

He	is	a	successful	Android	developer.	As	of	January	2015,	he	has	published	seven
Android	apps	on	Google	Play.	His	latest	app,	Chamorro	Dictionary,	is	an	excellent
learning	tool	for	the	Chamorro	language.	You	can	check	out	his	apps	at
http://tinyurl.com/google-play-bpd.

BJ	really	likes	Gradle	because	it	makes	building	applications	very	easy.	He	was	a	reviewer
for	Gradle	in	Action.

His	hobbies	include	learning	the	Japanese	language,	reading	books	about	Japanese	culture,
and	making	YouTube	videos.	You	can	contact	him	at	<bj.peter.delacruz@gmail.com>.
You	can	also	visit	his	website	at	http://www.bjpeter.com.

I	want	to	thank	God	for	giving	me	the	opportunity	to	review	this	book.	I	also	want	to
thank	Nikita	Michael	for	inviting	me	to	become	a	reviewer	and	Suzanne	Coutinho	for
sending	all	the	chapters	to	review.	Arigatou	gozaimasu!

Noureddine	Dimachk	is	a	passionate	video	gamer	since	birth.	Noureddine	started
building	games	using	The	Games	Factory	when	he	was	just	10	years	old.

Today,	he	leads	a	multinational	team	of	17	enthusiastic	developers	spread	across	Lebanon,
Argentina,	and	India	to	build	cutting-edge	applications	that	serve	millions	of	concurrent
GSM	subscribers,	in	addition	to	mobile	applications.

A	geek	by	nature,	Noureddine	likes	to	experiment	with	new	technologies	in	his	spare	time,
and	he’s	a	passionate	Dota	2	player.

I	would	like	to	thank	my	amazing	wife	for	standing	by	me	and	supporting	me	in	my
technical	ventures.

Miguel	L	Gonzalez	is	a	Spanish	software	engineer	working	in	the	United	Kingdom	since
2010.	He	took	his	first	programming	course	at	the	early	age	of	eight,	and	it	has	been	his
main	passion	and	hobby	since	then.	He	soon	became	attracted	to	the	Web	and	Internet,
which	lead	him	to	study	telecommunications	engineering.

He	has	worked	as	a	researcher	in	the	university,	designing	accessible	hardware	and
wireless	sensor	networks,	teaching	web	development,	developing	a	mixture	of	Java

http://laulima.hawaii.edu
http://tinyurl.com/google-play-bpd
mailto:bj.peter.delacruz@gmail.com
http://www.bjpeter.com

hardware,	desktops,	and	web	apps,	and	is	the	head	of	development	in	an	agency.	Since	the
time	he	arrived	in	the	UK,	he	has	mainly	focused	on	web	and	native	development	for
mobiles,	and	he	developed	a	few	Android	and	iOS	apps	in	coANDcoUK.	In	2013,	he
joined	BBC	to	work	on	iPlayer,	BBC’s	catch-up	service.	It	was	here	that	he	became	more
serious	about	unit	testing,	behavioral	testing,	and	how	to	drive	success	via	continuous
integration.

He	tries	to	keep	improving	his	projects,	which	can	be	found	at	http://github.com/ktzar	and
maintain	his	personal	website,	http://mentadreams.com.	Since	his	son	Alex	was	born,	the
spare	time	for	side	projects	has	been	reduced,	but	his	wife,	Dalia,	helps	him	to	find	time
for	them.	Nevertheless,	he’s	looking	forward	to	playing	Monkey	Island,	designing	games,
playing	the	guitar,	and	traveling	the	world	with	his	offspring	in	a	few	years	time.

Henrik	Kirk	holds	a	master’s	degree	in	computer	science	from	Aarhus	University	and	has
over	5	years	of	experience	in	Android	application	development.	He	is	curious	about	new
technologies	and	has	been	using	Scala	as	well	as	Java	for	Android	development.	He	also
enjoys	optimizing	the	user	experience	through	speed	and	responsive	design.	He	is
currently	employed	as	the	lead	developer	at	Lapio,	creating	an	awesome	timing	and	race
experience	for	athletes	in	the	US	and	Europe.	In	his	spare	time,	he	races	his	mountain
bike.

Sérgio	Lima	is	a	software	engineer	and	an	airplane	pilot.	It’s	easy	to	see	that	he’s	a	very
ambitious	person	with	broad	and,	at	the	same	time,	specific	interests.	He	currently	works
at	a	Portuguese	company	that	aims	to	revolutionize	the	world	with	telecom	and	mobile
applications.	His	curriculum	started	with	a	master’s	degree	in	electronics	and
telecommunications	and	he	specialized	in	computer	programming	and	computer	vision.
After	working	at	some	institutions	in	Portugal,	he	worked	at	CERN	in	Switzerland,	before
returning	to	his	home	country.

He	also	loves	to	fly	small	planes,	such	as	the	Piper	“Cherokee”	and	“Tomahawk”,	from
the	nearby	aerodrome,	to	see	Portugal	from	above,	admire	the	radiant	sceneries	of	the
country,	and	experience	the	freedom	of	flying.

I	would	like	to	thank	my	family	and	specially	my	wonderful	princess,	“Kika”,	for	her
patience,	support,	and	love	during	the	process	of	reviewing	this	book.

João	Trindade	is	a	software	developer	who	specializes	in	developing	Android	apps.

Currently,	he	is	part	of	a	startup	in	Milan	that	tracks	your	mobile	phone	usage	and
suggests	the	best	tariff	plan	for	your	needs.

He	completed	his	PhD	in	computer	engineering	at	Lisbon	Tech	and	is	interested	in
everything	related	to	mobile	development,	software	testing,	docker	containers,	or	cloud
computing.

For	6	years	he	was	a	researcher	involved	in	multiple	international	research	projects	and
has	published	18	peer	reviewed	articles.

His	twitter	handler	is	@joaotrindade	and	his	personal	web	page	is
http://joaoptrindade.com.

http://github.com/ktzar
http://mentadreams.com
http://joaoptrindade.com

He	contributes	to	various	open	source	products	on	GitHub.	You	can	see	his	profile	at
http://github.com/joninvski.

http://github.com/joninvski

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
It	doesn’t	matter	how	much	time	you	invest	in	Android	design,	or	even	how	careful	you
are	when	programming,	mistakes	are	inevitable	and	bugs	will	appear.	This	book	will	help
you	minimize	the	impact	of	these	errors	in	your	Android	project	and	increase	your
development	productivity.	It	will	show	you	the	problems	that	are	easily	avoided,	to	help
get	you	quickly	to	the	testing	stage.

Android	Application	Testing	Guide	is	the	first	and	only	book	providing	a	practical
introduction	to	the	most	commonly	available	techniques,	frameworks,	and	tools	to
improve	the	development	of	your	Android	applications.	Clear,	step-by-step	instructions
show	how	to	write	tests	for	your	applications	and	assure	quality	control	using	various
methodologies.

The	author’s	experience	in	applying	application	testing	techniques	to	real-world	projects
enables	him	to	share	insights	on	creating	professional	Android	applications.

The	book	covers	the	basics	of	framework	support	for	tests	to	architectures	and	techniques
such	as	Test-driven	Development,	which	is	an	agile	component	of	the	software
development	process	and	a	technique	where	you	will	tackle	bugs	early	on.	From	the	most
basic	unit	tests	applied	to	a	sample	project	to	more	sophisticated	performance	tests,	this
book	provides	a	detailed	description	of	the	most	widely	used	techniques	in	the	Android
testing	world	in	a	recipe-based	approach.

The	author	has	extensive	experience	of	working	on	various	development	projects
throughout	his	professional	career.	All	this	research	and	knowledge	has	helped	create	a
book	that	will	serve	as	a	useful	resource	to	any	developer	navigating	the	world	of	Android
testing.

What	this	book	covers
Chapter	1,	Getting	Started	with	Testing,	introduces	the	different	types	of	testing	and	their
applicability	to	software	development	projects	in	general	and	to	Android	in	particular.	It
then	goes	on	to	cover	testing	on	the	Android	platform,	unit	testing	and	JUnit,	creating	an
Android	test	project	and	running	tests.

Chapter	2,	Understanding	Testing	with	the	Android	SDK,	starts	digging	a	bit	deeper	to
recognize	the	building	blocks	available	to	create	the	tests.	It	covers	Assertions,
TouchUtils,	which	are	intended	to	test	user	interfaces,	mock	objects,	instrumentation,	and
TestCase	class	hierarchies.

Chapter	3,	Baking	with	Testing	Recipes,	provides	practical	examples	of	different	situations
you	will	commonly	encounter	while	applying	the	disciplines	and	techniques	described
before.	The	examples	are	presented	in	a	cookbook	style	so	you	can	adapt	and	use	them	for
your	projects.	The	recipes	cover	Android	unit	tests,	activities,	applications,	databases	and
ContentProviders,	services,	UIs,	exceptions,	parsers,	memory	leaks,	and	a	look	at	testing
with	Espresso.

Chapter	4,	Managing	Your	Android	Testing	Environment,	provides	different	conditions	to
run	the	tests.	It	starts	with	the	creation	of	the	Android	Virtual	Devices	(AVD)	to	provide
different	conditions	and	configurations	for	the	application	under	test	and	runs	the	tests
using	the	available	options.	Finally,	it	introduces	monkey	as	a	way	to	generate	simulated
events	used	for	testing.

Chapter	5,	Discovering	Continuous	Integration,	introduces	this	agile	technique	for
software	engineering	and	automation	that	aims	to	improve	the	software	quality	and	reduce
the	time	taken	to	integrate	changes	by	continuously	applying	integration	and	testing
frequently.

Chapter	6,	Practicing	Test-driven	Development,	introduces	the	Test-driven	Development
discipline.	It	starts	with	a	general	revision	and	later	on	moves	to	the	concepts	and
techniques	closely	related	to	the	Android	platform.	This	is	a	code-intensive	chapter.

Chapter	7,	Behavior-driven	Development,	introduces	Behavior-driven	Development	and
some	concepts,	such	as	the	use	of	a	common	vocabulary	to	express	the	tests	and	the
inclusion	of	business	participants	in	the	software	development	project.

Chapter	8,	Testing	and	Profiling	Performance,	introduces	a	series	of	concepts	related	to
benchmarking	and	profiles	from	traditional	logging	statement	methods	to	creating
Android	performance	tests	and	using	profiling	tools.

Chapter	9,	Alternative	Testing	Tactics,	covers	adding	code	coverage	to	ensure	you	know
what	is	tested	and	what	isn’t,	as	well	as	testing	on	the	host’s	Java	Virtual	Machine,
investigating	Fest,	Spoon,	and	the	future	of	Android	testing	to	build	upon	and	expand	your
Android	testing	range.

What	you	need	for	this	book
To	be	able	to	follow	the	examples	in	the	different	chapters,	you	need	a	common	set	of
software	and	tools	installed	and	several	other	components	that	are	described	in	every
chapter	in	particular,	including	their	respective	download	locations.

All	the	examples	are	based	on	the	following:

Mac	OSX	10.9.4,	fully	updated
Java	SE	version	1.6.0_24	(build	1.6.0_24-b07)
Android	SDK	tools,	revision	24
Android	SDK	platform-tools,	revision	21
SDK	platform	Android	4.4,	API	20
Android	support	library,	revision	21
Android	Studio	IDE,	Version:	1.1.0
Gradle	version	2.2.1
Git	version	1.8.5.2

Who	this	book	is	for
If	you	are	an	Android	developer	looking	to	test	your	applications	or	optimize	your
application	development	process,	then	this	book	is	for	you.	No	previous	experience	in
application	testing	is	required.

Conventions
In	this	book,	you	will	find	a	number	of	styles	of	text	that	distinguish	between	different
kinds	of	information.	Here	are	some	examples	of	these	styles,	and	an	explanation	of	their
meaning.

Code	words	in	text	are	shown	as	follows:	“To	invoke	the	am	command	we	will	be	using
the	adb	shell	command”.

A	block	of	code	is	set	as	follows:

dependencies	{

				compile	project(':dummylibrary')

}

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:

fahrenheitEditNumber

.addTextChangedListener(

newFehrenheitToCelciusWatcher(fahrenheitEditNumber,	celsiusEditNumber));

}

Any	command-line	input	or	output	is	written	as	follows:

junit.framework.ComparisonFailure:	expected:<[]>	but	was:<[123.45]>

at	com.blundell.tut.EditNumberTests.testClear(EditNumberTests.java:31)

at	java.lang.reflect.Method.invokeNative(Native	Method)

at	android.test.AndroidTestRunner.runTest(AndroidTestRunner.java:191)

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	in
menus	or	dialog	boxes	for	example,	appear	in	the	text	like	this:	“The	first	test	performs	a
click	on	the	Go	button	of	the	Forwarding	Activity.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Questions
You	can	contact	us	at	<questions@packtpub.com>	if	you	are	having	a	problem	with	any
aspect	of	the	book,	and	we	will	do	our	best	to	address	it.

mailto:questions@packtpub.com

Chapter	1.	Getting	Started	with	Testing
Firstly,	I	will	avoid	introductions	to	Android	since	it	is	covered	in	many	books	already,
and	I	am	inclined	to	believe	that	if	you	are	reading	a	book	that	covers	this	more	advanced
topic,	you	will	have	already	started	with	Android	development.

I	will	be	reviewing	the	main	concepts	behind	testing,	and	the	techniques,	frameworks,	and
tools	available	to	deploy	your	testing	strategy	on	Android.

After	this	overview,	we	can	put	the	concepts	learned	into	practice.	In	this	chapter	we	will
cover:

Setting	up	the	infrastructure	to	test	on	Android
Running	unit	tests	using	JUnit
Creating	an	Android	instrumentation	test	project
Running	multiple	tests

We	will	be	creating	a	simple	Android	project	and	its	companion	tests.	The	main	project
will	be	bare	bones	so	that	you	can	concentrate	on	the	testing	components.

I	would	suggest	that	new	developers	with	no	Android	testing	experience	read	this	book.	If
you	have	more	experience	with	Android	projects	and	have	been	using	testing	techniques
for	them,	you	might	read	this	chapter	as	a	revision	or	reaffirmation	of	the	concepts.

Why,	what,	how,	and	when	to	test?
You	should	understand	that	early	bug	detection	saves	a	huge	amount	of	project	resources
and	reduces	software	maintenance	costs.	This	is	the	best	known	reason	to	write	tests	for
your	software	development	project.	Increased	productivity	will	soon	be	evident.

Additionally,	writing	tests	will	give	you	a	deeper	understanding	of	the	requirements	and
the	problem	to	be	solved.	You	will	not	be	able	to	write	tests	for	a	piece	of	software	you
don’t	understand.

This	is	also	the	reason	behind	the	approach	of	writing	tests	to	clearly	understand	legacy	or
third-party	code	and	having	the	testing	infrastructure	to	confidently	change	or	update	the
codebase.

The	more	the	code	is	covered	by	your	tests,	the	higher	the	likelihood	of	discovering
hidden	bugs.

If,	during	this	coverage	analysis,	you	find	that	some	areas	of	your	code	are	not	exercised,
additional	tests	should	be	added	to	cover	this	code	as	well.

To	help	in	this	request,	enter	Jacoco	(http://www.eclemma.org/jacoco/),	an	open	source
toolkit	that	measures	and	reports	Java	code	coverage.	It	supports	various	coverage	types,
as	follows:

Class
Method
Block
Line

Coverage	reports	can	also	be	obtained	in	different	output	formats.	Jacoco	is	supported	to
some	degree	by	the	Android	framework,	and	it	is	possible	to	build	a	Jacoco	instrumented
version	of	an	Android	app.

We	will	be	analyzing	the	use	of	Jacoco	on	Android	to	guide	us	to	full	test	coverage	of	our
code	in	Chapter	9,	Alternative	Testing	Tactics.

This	screenshot	shows	how	a	Jacoco	code	coverage	report	is	displayed	as	an	HTML	file
that	shows	green	lines	when	the	code	has	been	tested:

http://www.eclemma.org/jacoco/

By	default,	the	Jacoco	gradle	plugin	isn’t	supported	in	Android	Studio;	therefore,	you
cannot	see	code	coverage	in	your	IDE,	and	so	code	coverage	has	to	be	viewed	as	separate
HTML	reports.	There	are	other	options	available	with	other	plugins	such	as	Atlassian’s
Clover	or	Eclipse	with	EclEmma.

Tests	should	be	automated,	and	you	should	run	some	or	all	tests	every	time	you	introduce
a	change	or	addition	to	your	code	in	order	to	ensure	that	all	the	conditions	that	were	met
before	are	still	met,	and	that	the	new	code	satisfies	the	tests	as	expected.

This	leads	us	to	the	introduction	of	Continuous	Integration,	which	will	be	discussed	in
detail	in	Chapter	5,	Discovering	Continuous	Integration,	enabling	the	automation	of	tests
and	the	building	process.

If	you	don’t	use	automated	testing,	it	is	practically	impossible	to	adopt	Continuous
Integration	as	part	of	the	development	process,	and	it	is	very	difficult	to	ensure	that
changes	would	not	break	existing	code.

Having	tests	stops	you	from	introducing	new	bugs	into	already	completed	features	when
you	touch	the	code	base.	These	regressions	are	easily	done,	and	tests	are	a	barrier	to	this
happening.	Further,	you	can	now	catch	and	find	problems	at	compile	time,	that	is,	when
you	are	developing,	rather	than	receiving	them	as	feedback	when	your	users	start
complaining.

What	to	test
Strictly	speaking,	you	should	test	every	statement	in	your	code,	but	this	also	depends	on
different	criteria	and	can	be	reduced	to	testing	the	main	path	of	execution	or	just	some	key
methods.	Usually,	there’s	no	need	to	test	something	that	can’t	be	broken;	for	example,	it
usually	makes	no	sense	to	test	getters	and	setters	as	you	probably	won’t	be	testing	the	Java
compiler	on	your	own	code,	and	the	compiler	would	have	already	performed	its	tests.

In	addition	to	your	domain-specific	functional	areas	that	you	should	test,	there	are	some
other	areas	of	an	Android	application	that	you	should	consider.	We	will	be	looking	at	these
in	the	following	sections.

Activity	lifecycle	events
You	should	test	whether	your	activities	handle	lifecycle	events	correctly.

If	your	activity	should	save	its	state	during	the	onPause()	or	onDestroy()	events	and	later
be	able	to	restore	it	in	onCreate(Bundle	savedInstanceState),	then	you	should	be	able
to	reproduce	and	test	all	these	conditions	and	verify	that	the	state	was	correctly	saved	and
restored.

Configuration	change	events	should	also	be	tested	as	some	of	these	events	cause	the
current	Activity	to	be	recreated.	You	should	test	whether	the	handling	of	the	event	is
correct	and	that	the	newly	created	Activity	preserves	the	previous	state.	Configuration
changes	are	triggered	even	by	a	device	rotation,	so	you	should	test	your	application’s
ability	to	handle	these	situations.

Database	and	filesystem	operations
Database	and	filesystem	operations	should	be	tested	to	ensure	that	the	operations	and	any
errors	are	handled	correctly.	These	operations	should	be	tested	in	isolation	at	the	lower
system	level,	at	a	higher	level	through	ContentProviders,	or	from	the	application	itself.

To	test	these	components	in	isolation,	Android	provides	some	mock	objects	in	the
android.test.mock	package.	A	simple	way	to	think	of	a	mock	is	as	a	drop-in	replacement
for	the	real	object,	where	you	have	more	control	of	the	object’s	behavior.

Physical	characteristics	of	the	device
Before	shipping	your	application,	you	should	be	sure	that	all	of	the	different	devices	it	can
be	run	on	are	supported,	or	at	least	you	should	detect	the	unsupported	situation	and	take
pertinent	measures.

The	characteristics	of	the	devices	that	you	should	test	are:

Network	capabilities
Screen	densities
Screen	resolutions
Screen	sizes
Availability	of	sensors
Keyboard	and	other	input	devices

GPS
External	storage

In	this	respect,	an	Android	emulator	can	play	an	important	role	because	it	is	practically
impossible	to	have	access	to	all	of	the	devices	with	all	of	the	possible	combinations	of
features,	but	you	can	configure	emulators	for	almost	every	situation.	However,	as
mentioned	before,	leave	your	final	tests	for	actual	devices	where	the	real	users	will	run	the
application	so	you	get	feedback	from	a	real	environment.

Types	of	tests
Testing	comes	in	a	variety	of	frameworks	with	differing	levels	of	support	from	the
Android	SDK	and	your	IDE	of	choice.	For	now,	we	are	going	to	concentrate	on	how	to
test	Android	apps	using	the	instrumented	Android	testing	framework,	which	has	full	SDK
and	ASide	support,	and	later	on,	we	will	discuss	the	alternatives.

Testing	can	be	implemented	at	any	time	in	the	development	process,	depending	on	the	test
method	employed.	However,	we	will	be	promoting	testing	at	an	early	stage	of	the
development	cycle,	even	before	the	full	set	of	requirements	has	been	defined	and	the
coding	process	has	been	started.

There	are	several	types	of	tests	depending	on	the	code	being	tested.	Regardless	of	its	type,
a	test	should	verify	a	condition	and	return	the	result	of	this	evaluation	as	a	single	Boolean
value	that	indicates	its	success	or	failure.

Unit	tests
Unit	tests	are	tests	written	by	programmers	for	other	programmers,	and	they	should	isolate
the	component	under	tests	and	be	able	to	test	it	in	a	repeatable	way.	That’s	why	unit	tests
and	mock	objects	are	usually	placed	together.	You	use	mock	objects	to	isolate	the	unit
from	its	dependencies,	to	monitor	interactions,	and	also	to	be	able	to	repeat	the	test	any
number	of	times.	For	example,	if	your	test	deletes	some	data	from	a	database,	you
probably	don’t	want	the	data	to	be	actually	deleted	and,	therefore,	not	found	the	next	time
the	test	is	ran.

JUnit	is	the	de	facto	standard	for	unit	tests	on	Android.	It’s	a	simple	open	source
framework	for	automating	unit	testing,	originally	written	by	Erich	Gamma	and	Kent	Beck.

Android	test	cases	use	JUnit	3	(this	is	about	to	change	to	JUnit	4	in	an	impending	Google
release,	but	as	of	the	time	of	this	writing,	we	are	showing	examples	with	JUnit	3).	This
version	doesn’t	have	annotations,	and	uses	introspection	to	detect	the	tests.

A	typical	Android-instrumented	JUnit	test	would	be	something	like	this:

public	class	MyUnitTestCase	extends	TestCase	{

				public	MyUnitTestCase()	{

								super("testSomething");

				}

				public	void	testSomething()	{

								fail("Test	not	implemented	yet");

				}

}

Tip
You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

The	following	sections	explain	the	components	that	can	be	used	to	build	up	a	test	case.
Note	that	these	components	and	the	pattern	of	working	with	a	test	case	are	not	unique	to
unit	tests,	and	they	can	be	deployed	for	the	other	test	types	that	we	will	discuss	in	the
following	sections.

The	setUp()	method
This	method	is	called	to	initialize	the	fixture	(fixture	being	the	test	and	its	surrounding
code	state).

Overriding	it,	you	have	the	opportunity	to	create	objects	and	initialize	fields	that	will	be
used	by	tests.	It’s	worth	noting	that	this	setup	occurs	before	every	test.

The	tearDown()	method
This	method	is	called	to	finalize	the	fixture.

http://www.packtpub.com
http://www.packtpub.com/support

Overriding	it,	you	can	release	resources	used	by	the	initialization	or	tests.	Again,	this
method	is	invoked	after	every	test.

For	example,	you	can	release	a	database	or	close	a	network	connection	here.

There	are	more	methods	you	can	hook	into	before	and	after	your	test	methods,	but	these
are	used	rarely,	and	will	be	explained	as	we	bump	into	them.

Outside	the	test	method
JUnit	is	designed	in	a	way	that	the	entire	tree	of	test	instances	is	built	in	one	pass,	and	then
the	tests	are	executed	in	a	second	pass.	Therefore,	the	test	runner	holds	strong	references
to	all	test	instances	for	the	duration	of	the	test	execution.	This	means	that	for	very	large
and	very	long	test	runs	with	many	Test	instances,	none	of	the	tests	may	be	garbage
collected	until	the	entire	test	is	run.	This	is	particularly	important	in	Android	and	while
testing	on	limited	devices	as	some	tests	may	fail	not	because	of	an	intrinsic	failure	but
because	of	the	amount	of	memory	needed	to	run	the	application,	in	addition	to	its	tests
exceeding	the	device	limits.

Therefore,	if	you	allocate	external	or	limited	resources	in	a	test,	such	as	Services	or
ContentProviders,	you	are	responsible	for	freeing	those	resources.	Explicitly	setting	an
object	to	null	in	the	tearDown()	method,	for	example,	allows	it	to	be	garbage	collected
before	the	end	of	the	entire	test	run.

Inside	the	test	method
All	public	void	methods	whose	names	start	with	test	will	be	considered	as	a	test.	As
opposed	to	JUnit	4,	JUnit	3	doesn’t	use	annotations	to	discover	the	tests;	instead,	it	uses
introspection	to	find	their	names.	There	are	some	annotations	available	in	the	Android	test
framework	such	as	@SmallTest,	@MediumTest,	or	@LargeTest,	which	don’t	turn	a	simple
method	into	a	test	but	organize	them	in	different	categories.	Ultimately,	you	will	have	the
ability	to	run	tests	for	a	single	category	using	the	test	runner.

As	a	rule	of	thumb,	name	your	tests	in	a	descriptive	way	and	use	nouns	and	the	condition
being	tested.	Also,	remember	to	test	for	exceptions	and	wrong	values	instead	of	just
testing	positive	cases.

For	example,	some	valid	tests	and	naming	could	be:

testOnCreateValuesAreLoaded()

testGivenIllegalArgumentThenAConversionErrorIsThrown()

testConvertingInputToStringIsValid()

During	the	execution	of	the	test,	some	conditions,	side	effects,	or	method	returns	should
be	compared	against	the	expectations.	To	ease	these	operations,	JUnit	provides	a	full	set	of
assert*	methods	to	compare	the	expected	results	from	the	test	to	the	actual	results	after
running	them,	throwing	exceptions	if	the	conditions	are	not	met.	Then,	the	test	runner
handles	these	exceptions	and	presents	the	results.

These	methods,	which	are	overloaded	to	support	different	arguments,	include:

assertTrue()

assertFalse()

assertEquals()

assertNull()

assertNotNull()

assertSame()

assertNotSame()

fail()

In	addition	to	these	JUnit	assert	methods,	Android	extends	Assert	in	two	specialized
classes,	providing	additional	tests:

MoreAsserts

ViewAsserts

Mock	objects

Mock	objects	are	mimic	objects	used	instead	of	calling	the	real	domain	objects	to	enable
testing	units	in	isolation.

Generally,	this	is	accomplished	to	verify	that	the	correct	methods	are	called,	but	they	can
also	be	of	great	help	to	isolate	your	tests	from	the	surrounding	code	and	be	able	to	run	the
tests	independently	and	ensure	repeatability.

The	Android	testing	framework	supports	mock	objects	that	you	will	find	very	useful	when
writing	tests.	You	need	to	provide	some	dependencies	to	be	able	to	compile	the	tests.
There	are	also	external	libraries	that	can	be	used	when	mocking.

Several	classes	are	provided	by	the	Android	testing	framework	in	the	android.test.mock
package:

MockApplication

MockContentProvider

MockContentResolver

MockContext

MockCursor

MockDialogInterface

MockPackageManager

MockResources

Almost	any	component	of	the	platform	that	could	interact	with	your	Activity	can	be
created	by	instantiating	one	of	these	classes.

However,	they	are	not	real	implementations	but	stubs,	the	idea	being	you	extend	one	of
these	classes	to	create	a	real	mock	object	and	override	the	methods	you	want	to
implement.	Any	methods	you	do	not	override	will	throw	an
UnsupportedOperationException.

Integration	tests
Integration	tests	are	designed	to	test	the	way	individual	components	work	together.
Modules	that	have	been	unit	tested	independently	are	now	combined	together	to	test	the
integration.

Usually,	Android	Activities	require	some	integration	with	the	system	infrastructure	to	be
able	to	run.	They	need	the	Activity	lifecycle	provided	by	the	ActivityManager,	and
access	to	resources,	the	filesystem,	and	databases.

The	same	criteria	apply	to	other	Android	components	such	as	Services	or
ContentProviders	that	need	to	interact	with	other	parts	of	the	system	to	achieve	their
duty.

In	all	these	cases,	there	are	specialized	test	classes	provided	by	the	Android	testing
framework	that	facilitates	the	creation	of	tests	for	these	components.

UI	tests
User	Interface	tests	test	the	visual	representation	of	your	application,	such	as	how	a	dialog
looks	or	what	UI	changes	are	made	when	a	dialog	is	dismissed.

Special	considerations	should	be	taken	if	your	tests	involve	UI	components.	As	you	may
have	already	known,	only	the	main	thread	is	allowed	to	alter	the	UI	in	Android.	Thus,	a
special	annotation	@UIThreadTest	is	used	to	indicate	that	a	particular	test	should	be	run	on
that	thread	and	it	would	have	the	ability	to	alter	the	UI.	On	the	other	hand,	if	you	only
want	to	run	parts	of	your	test	on	the	UI	thread,	you	may	use	the
Activity.runOnUiThread(Runnable	r)	method	that	provides	the	corresponding
Runnable,	which	contains	the	testing	instructions.

A	helper	class	TouchUtils	is	also	provided	to	aid	in	the	UI	test	creation,	allowing	the
generation	of	the	following	events	to	send	to	the	Views,	such	as:

Click
Drag
Long	click
Scroll
Tap
Touch

By	these	means,	you	can	actually	remote	control	your	application	from	the	tests.	Also,
Android	has	recently	introduced	Espresso	for	UI	instrumented	tests,	and	we	will	be
covering	this	in	Chapter	3,	Baking	with	Testing	Recipes.

Functional	or	acceptance	tests
In	agile	software	development,	functional	or	acceptance	tests	are	usually	created	by
business	and	Quality	Assurance	(QA)	people,	and	expressed	in	a	business	domain
language.	These	are	high-level	tests	to	assert	the	completeness	and	correctness	of	a	user
story	or	feature.	They	are	created	ideally	through	collaboration	between	business
customers,	business	analysts,	QA,	testers,	and	developers.	However,	the	business
customers	(product	owners)	are	the	primary	owners	of	these	tests.

Some	frameworks	and	tools	can	help	in	this	field,	such	as	Calabash	(http://calaba.sh)	or
most	notably	FitNesse	(http://www.fitnesse.org),	which	can	be	easily	integrated,	up	to
some	point,	into	the	Android	development	process,	and	will	let	you	create	acceptance	tests
and	check	their	results	as	follows:

http://calaba.sh
http://www.fitnesse.org

Lately,	within	acceptance	testing,	a	new	trend	named	Behavior-driven	Development	has
gained	some	popularity,	and	in	a	very	brief	description,	it	can	be	understood	as	a	cousin	of
Test-driven	Development.	It	aims	to	provide	a	common	vocabulary	between	business	and
technology	people	in	order	to	increase	mutual	understanding.

Behavior-driven	Development	can	be	expressed	as	a	framework	of	activities	based	on
three	principles	(more	information	can	be	found	at	http://behaviour-driven.org):

Business	and	technology	should	refer	to	the	same	system	in	the	same	way
Any	system	should	have	an	identified,	verifiable	value	to	the	business
Upfront	analysis,	design,	and	planning,	all	have	a	diminishing	return

To	apply	these	principles,	business	people	are	usually	involved	in	writing	test	case
scenarios	in	a	high-level	language	and	use	a	tool	such	as	jbehave	(http://jbehave.org).	In
the	following	example,	these	scenarios	are	translated	into	Java	code	that	expresses	the
same	test	scenario.

Test	case	scenario
As	an	illustration	of	this	technique,	here	is	an	oversimplified	example.

The	scenario,	as	written	by	a	product	owner,	is	as	follows:

Given	I'm	using	the	Temperature	Converter.

When	I	enter	100	into	Celsius	field.

Then	I	obtain	212	in	Fahrenheit	field.

It	would	be	translated	into	something	similar	to:

@Given("I	am	using	the	Temperature	Converter")

public	void	createTemperatureConverter()	{

				//	do	nothing	this	is	syntactic	sugar	for	readability

}

@When("I	enter	$celsius	into	Celsius	field")

public	void	setCelsius(int	celsius)	{

				this.celsius	=	celsius;

}

@Then("I	obtain	$fahrenheit	in	Fahrenheit	field")

public	void	testCelsiusToFahrenheit(int	fahrenheit)	{

				assertEquals(fahrenheit,	

																	TemperatureConverter.celsiusToFahrenheit(celsius));

}

This	allows	both	the	programmers	and	the	business	users	to	speak	the	language	of	the
domain	(in	this	case,	temperature	conversions),	and	both	are	able	to	relate	it	back	to	their
day-to-day	work.

http://behaviour-driven.org
http://jbehave.org

Performance	tests
Performance	tests	measure	performance	characteristics	of	the	components	in	a	repeatable
way.	If	performance	improvements	are	required	by	some	part	of	the	application,	the	best
approach	is	to	measure	performance	before	and	after	a	change	is	introduced.

As	is	widely	known,	premature	optimization	does	more	harm	than	good,	so	it	is	better	to
clearly	understand	the	impact	of	your	changes	on	the	overall	performance.

The	introduction	of	the	Dalvik	JIT	compiler	in	Android	2.2	changed	some	optimization
patterns	that	were	widely	used	in	Android	development.	Nowadays,	every
recommendation	about	performance	improvements	in	the	Android	developer’s	site	is
backed	up	by	performance	tests.

System	tests
The	system	is	tested	as	a	whole,	and	the	interaction	between	the	components,	software,
and	hardware	is	exercised.	Normally,	system	tests	include	additional	classes	of	tests	such
as:

GUI	tests
Smoke	tests
Mutation	tests
Performance	tests
Installation	tests

Android	Studio	and	other	IDE	support
JUnit	is	fully	supported	by	Android	Studio,	and	it	lets	you	create	tested	Android	projects.
Furthermore,	you	can	run	the	tests	and	analyze	the	results	without	leaving	the	IDE	(to
some	extent).

This	also	provides	a	more	subtle	advantage;	being	able	to	run	the	tests	from	the	IDE
allows	you	to	debug	the	tests	that	are	not	behaving	correctly.

In	the	following	screenshot,	we	can	see	how	ASide	runs	19	unit	tests,	taking	1.043
seconds,	with	0	Errors	and	0	Failures	detected.	The	name	of	each	test	and	its	duration	is
also	displayed.	If	there	were	a	failure,	the	Failure	Trace	would	show	the	related
information,	as	shown	in	the	following	screenshot:

There	is	also	Android	support	in	Eclipse	IDE	using	the	Android	Development	Tools
plugin.

Even	if	you	are	not	developing	in	an	IDE,	you	can	find	support	to	run	the	tests	with	gradle
(check	http://gradle.org	if	you	are	not	familiar	with	this	tool).	The	tests	are	run	using	the
command	gradle	connectedAndroidTest.	This	will	install	and	run	the	tests	for	the
debug	build	on	a	connected	Android	device.

This	is	actually	the	same	method	that	Android	Studio	uses	under	the	hood.	ASide	will	just
run	the	Gradle	commands	to	build	the	project	and	run	the	tests,	although	with	selective

http://gradle.org

compilation.

Java	testing	framework
The	Java	testing	framework	is	the	backbone	of	Android	testing,	and	sometimes,	you	can
get	away	without	writing	Android-specific	code.	This	can	be	a	good	thing,	because	as	we
continue	on	our	testing	quest,	you	will	notice	that	we	deploy	Android	framework	tests	to	a
device,	and	this	has	an	impact	on	the	speed	of	our	tests,	that	is,	the	speed	we	get	feedback
from	a	pass	or	a	fail.

If	you	architect	your	app	in	a	clever	way,	you	can	create	pure	Java	classes	that	can	be
tested	in	isolation	away	from	Android.	The	two	main	benefits	of	this	are	increased	speed
of	feedback	from	test	results,	and	also,	to	quickly	plug	together	libraries	and	code	snippets
to	create	powerful	test	suites,	you	can	use	the	near	ten	years	of	experience	of	other
programmers	doing	Java	testing.

Android	testing	framework
Android	provides	a	very	advanced	testing	framework	that	extends	the	industry	standard
JUnit	library	with	specific	features	that	are	suitable	to	implement	all	of	the	testing
strategies	and	types	we	mentioned	before.	In	some	cases,	additional	tools	are	needed,	but
the	integration	of	these	tools	is,	in	most	of	the	cases,	simple	and	straightforward.

Most	relevant	key	features	of	the	Android	testing	environment	include:

Android	extensions	to	the	JUnit	framework	that	provide	access	to	Android	system
objects
An	instrumentation	framework	that	lets	the	tests	control	and	examine	the	application
Mock	versions	of	commonly	used	Android	system	objects
Tools	to	run	single	tests	or	test	suites,	with	or	without	instrumentation
Support	to	manage	tests	and	test	projects	in	Android	Studio	and	at	the	command	line

Instrumentation
The	instrumentation	framework	is	the	foundation	of	the	testing	framework.
Instrumentation	controls	the	application	under	tests	and	permits	the	injection	of	mock
components	required	by	the	application	to	run.	For	example,	you	can	create	mock
Contexts	before	the	application	starts	and	let	the	application	use	it.

All	the	interactions	of	the	application	with	the	surrounding	environment	can	be	controlled
using	this	approach.	You	can	also	isolate	your	application	in	a	restricted	environment	to	be
able	to	predict	the	results	that	force	the	values	returned	by	some	methods,	or	that	mock
persistent	and	unchanged	data	for	the	ContentProvider's	databases	or	even	the
filesystem	content.

A	standard	Android	project	has	its	instrumentation	tests	in	a	correlated	source	folder	called
androidTest.	This	creates	a	separate	application	that	runs	tests	on	your	application.	There
is	no	AndroidManifest	here	as	it	is	automatically	generated.	The	instrumentation	can	be
customized	inside	the	Android	closure	of	your	build.gradle	file,	and	these	changes	are
reflected	in	the	autogenerated	AndroidManifest.	However,	you	can	still	run	your	tests
with	the	default	settings	if	you	choose	to	change	nothing.

Examples	of	things	you	can	change	are	the	test	application	package	name,	your	test
runner,	or	how	to	toggle	performance-testing	features:

		testApplicationId	"com.blundell.something.non.default"

		testInstrumentationRunner		"com.blundell.tut.CustomTestRunner"

		testHandleProfiling	false

		testFunctionalTest	true

		testCoverageEnabled	true

Here,	the	Instrumentation	package	(testApplicationId)	is	a	different	package	to	the
main	application.	If	you	don’t	change	this	yourself,	it	will	default	to	your	main	application
package	with	the	.test	suffix	added.

Then,	the	Instrumentation	test	runner	is	declared,	which	can	be	helpful	if	you	create
custom	annotations	to	allow	special	behavior;	for	example,	each	test	runs	twice	upon
failure.	In	the	case	of	not	declaring	a	runner,	the	default	custom	runner
android.test.InstrumentationTestRunner	is	used.

At	the	moment,	testHandleProfiling	and	testFunctionalTest	are	undocumented	and
unused,	so	watch	out	for	when	we	are	told	what	we	can	do	with	these.	Setting
testCoverageEnabled	to	true	will	allow	you	to	gather	code	coverage	reports	using
Jacoco.	We	will	come	back	to	this	later.

Also,	notice	that	both	the	application	being	tested	and	the	tests	themselves	are	Android
applications	with	their	corresponding	APKs	installed.	Internally,	they	will	be	sharing	the
same	process	and	thus	have	access	to	the	same	set	of	features.

When	you	run	a	test	application,	the	Activity	Manager
(http://developer.android.com/intl/de/reference/android/app/ActivityManager.html)	uses
the	instrumentation	framework	to	start	and	control	the	test	runner,	which	in	turn	uses

http://developer.android.com/intl/de/reference/android/app/ActivityManager.html

instrumentation	to	shut	down	any	running	instances	of	the	main	application,	starts	the	test
application,	and	then	starts	the	main	application	in	the	same	process.	This	allows	various
aspects	of	the	test	application	to	work	directly	with	the	main	application.

Gradle
Gradle	is	an	advanced	build	toolkit	that	allows	you	to	manage	dependencies	and	define	a
custom	login	to	build	your	project.	The	Android	build	system	is	a	plugin	on	top	of	Gradle,
and	this	is	what	gives	you	the	domain-specific	language	discussed	previously	such	as
setting	a	testInstrumentationRunner.

The	idea	of	using	Gradle	is	that	it	allows	you	to	build	your	Android	apps	from	the
command	line	for	machines	without	using	an	IDE	such	as	a	continuous	integration
machine.	Also,	with	first	line	integration	of	Gradle	into	the	building	of	projects	in	Android
Studio,	you	get	the	exact	same	custom	build	configuration	from	the	IDE	or	command	line.

Other	benefits	include	being	able	to	customize	and	extend	the	build	process;	for	example,
each	time	your	CI	builds	your	project,	you	could	automatically	upload	a	beta	APK	to	the
Google	play	store.	You	can	create	multiple	APKs	with	different	features	using	the	same
project,	for	example,	one	version	that	targets	Google	play	in	an	app	purchase	and	another
that	targets	the	Amazon	app	store’s	coin	payments.

Gradle	and	the	Android	Gradle	plugin	make	for	a	powerful	combination,	and	so,	we	will
be	using	this	build	framework	throughout	the	rest	of	the	samples	in	this	book.

Test	targets
During	the	evolution	of	your	development	project,	your	tests	would	be	targeted	to
different	devices.	From	simplicity,	flexibility,	and	speed	of	testing	on	an	emulator	to	the
unavoidable	final	testing	on	the	specific	device	you	are	intending	your	application	to	be
run	upon,	you	should	be	able	to	run	your	application	on	all	of	them.

There	are	also	some	intermediate	cases	such	as	running	your	tests	on	a	local	JVM	virtual
machine,	on	the	development	computer,	or	on	a	Dalvik	virtual	machine	or	Activity,
depending	on	the	case.

Every	case	has	its	pros	and	cons,	but	the	good	news	is	that	you	have	all	of	these
alternatives	available	to	run	your	tests.

The	emulator	is	probably	the	most	powerful	target	as	you	can	modify	almost	every
parameter	from	its	configuration	to	simulate	different	conditions	for	your	tests.	Ultimately,
your	application	should	be	able	to	handle	all	of	these	situations,	so	it’s	much	better	to
discover	the	problems	upfront	than	when	the	application	has	been	delivered.

The	real	devices	are	a	requirement	for	performance	tests,	as	it	is	somewhat	difficult	to
extrapolate	performance	measurements	from	a	simulated	device.	You	will	enjoy	the	real
user	experience	only	when	using	the	real	device.	Rendering,	scrolling,	flinging,	and	other
cases	should	be	tested	before	delivering	the	application.

Creating	the	Android	project
We	will	create	a	new	Android	project.	This	is	done	from	the	ASide	menu	by	going	to	File	|
New	Project.	This	then	leads	us	through	the	wysiwyg	guide	to	create	a	project.

In	this	particular	case,	we	are	using	the	following	values	for	the	required	component
names	(clicking	on	the	Next	button	in	between	screens):

Application	name:	AndroidApplicationTestingGuide
Company	domain:	blundell.com
Form	factor:	Phone	and	Tablet
Minimum	SDK:	17
Add	an	Activity:	Blank	Activity	(go	with	default	names)

The	following	screenshot	shows	the	start	of	the	form	editor	for	reference:

When	you	click	on	Finish	and	the	application	is	created,	it	will	automatically	generate	the
androidTest	source	folder	under	the	app/src	directory,	and	this	is	where	you	can	add
your	instrumented	test	cases.

Tip
Alternatively,	to	create	an	androidTest	folder	for	an	existing	Gradle	Android	project,	you
can	select	the	src	folder	and	then	go	to	File	|	New	|	Directory.	Then,	write
androidTest/java	in	the	dialog	prompt.	When	the	project	rebuilds,	the	path	will	then
automatically	be	added	so	that	you	can	create	tests.

Package	explorer
After	having	created	our	project,	the	project	view	should	look	like	one	of	the	images
shown	in	the	following	screenshot.	This	is	because	ASide	has	multiple	ways	to	show	the
project	outline.	On	the	left,	we	can	note	the	existence	of	the	two	source	directories,	one
colored	green	for	the	test	source	and	the	other	blue	for	the	project	source.	On	the	right,	we
have	the	new	Android	project	view	that	tries	to	simplify	the	hierarchy	by	compressing
useless	and	merging	functionally	similar	folders.

Now	that	we	have	the	basic	infrastructure	set	up,	it’s	time	for	us	to	start	adding	some	tests,
as	shown	in	the	following	screenshot:

There’s	nothing	to	test	right	now,	but	as	we	are	setting	up	the	fundamentals	of	a	Test-
driven	Development	discipline,	we	are	adding	a	dummy	test	just	to	get	acquainted	with	the
technique.

The	src/androidTest/java	folder	in	your	AndroidApplicationTestingGuide	project	is
the	perfect	place	to	add	the	tests.	You	could	declare	a	different	folder	if	you	really	wanted
to,	but	we’re	sticking	to	defaults.	The	package	should	be	the	same	as	the	corresponding
package	of	the	component	being	tested.

Right	now,	we	are	not	concentrating	on	the	content	of	the	tests	but	on	the	concepts	and
placement	of	those	tests.

Creating	a	test	case
As	described	before,	we	are	creating	our	test	cases	in	the	src/androidTest/java	folder	of
the	project.

You	can	create	the	file	manually	by	right-clicking	on	the	package	and	selecting	New…	|
Java	Class.	However,	in	this	particular	case,	we’ll	take	advantage	of	ASide	to	create	our
JUnit	TestCase.	Open	the	class	under	test	(in	this	case,	MainActivity)	and	hover	over	the
class	name	until	you	see	a	lightbulb	(or	press	Ctrl/Command	+	1).	Select	Create	Test
from	the	menu	that	appears.

These	are	the	values	that	we	should	enter	when	we	create	the	test	case:

Testing	library:	JUnit	3
Class	name:	MainActivityTest
Superclass:	junit.framework.TestCase
Destination	package:	com.blundell.tut
Superclass:	junit.framework.TestCase
Generate:	Select	none

After	entering	all	the	required	values,	our	JUnit	test	case	creation	dialog	would	look	like
this.

As	you	can	see,	you	could	also	have	checked	one	of	the	methods	of	the	class	to	generate
an	empty	test	method	stub.	These	stub	methods	may	be	useful	in	some	cases,	but	you	have
to	consider	that	testing	should	be	a	behavior-driven	process	rather	than	a	method-driven
one.

The	basic	infrastructure	for	our	tests	is	in	place;	what	is	left	is	to	add	a	dummy	test	to
verify	that	everything	is	working	as	expected.	We	now	have	a	test	case	template,	so	the
next	step	is	to	start	completing	it	to	suit	our	needs.	To	do	it,	open	the	recently	created	test
class	and	add	the	testSomething()	test.

We	should	have	something	like	this:

package	com.blundell.tut;

import	android.test.suitebuilder.annotation.SmallTest;

import	junit.framework.TestCase;

public	class	MainActivityTest	extends	TestCase	{

				public	MainActivityTest()	{

								super("MainActivityTest");

				}

				@SmallTest

				public	void	testSomething()	throws	Exception	{

								fail("Not	implemented	yet");

				}

}

Tip
The	no-argument	constructor	is	needed	to	run	a	specific	test	from	the	command	line,	as
explained	later	using	am	instrumentation.

This	test	will	always	fail,	presenting	the	message:	Not	implemented	yet.	In	order	to	do
this,	we	will	use	the	fail	method	from	the	junit.framework.Assert	class	that	fails	the	test
with	the	given	message.

Test	annotations
Looking	carefully	at	the	test	definition,	you	might	notice	that	we	decorated	the	test	using
the	@SmallTest	annotation,	which	is	a	way	to	organize	or	categorize	our	tests	and	run
them	separately.

There	are	other	annotations	that	can	be	used	by	the	tests,	such	as:

Annotation Description

@SmallTest Marks	a	test	that	should	run	as	part	of	the	small	tests.

@MediumTest Marks	a	test	that	should	run	as	part	of	the	medium	tests.

@LargeTest Marks	a	test	that	should	run	as	part	of	the	large	tests.

@Smoke
Marks	a	test	that	should	run	as	part	of	the	smoke	tests.	The
android.test.suitebuilder.SmokeTestSuiteBuilder	will	run	all	tests	with	this	annotation.

@FlakyTest

Use	this	annotation	on	the	InstrumentationTestCase	class’	test	methods.	When	this	is	present,	the
test	method	is	re-executed	if	the	test	fails.	The	total	number	of	executions	is	specified	by	the	tolerance,
and	defaults	to	1.	This	is	useful	for	tests	that	may	fail	due	to	an	external	condition	that	could	vary	with
time.

For	example,	to	specify	a	tolerance	of	4,	you	would	annotate	your	test	with:
@FlakyTest(tolerance=4).

@UIThreadTest

Use	this	annotation	on	the	InstrumentationTestCase	class’	test	methods.	When	this	is	present,	the
test	method	is	executed	on	the	application’s	main	thread	(or	UI	thread).

As	instrumentation	methods	may	not	be	used	when	this	annotation	is	present,	there	are	other
techniques	if,	for	example,	you	need	to	modify	the	UI	and	get	access	to	the	instrumentation	within	the
same	test.

In	such	cases,	you	can	resort	to	the	Activity.runOnUIThread()	method	that	allows	you	to	create	any
Runnable	and	run	it	in	the	UI	thread	from	within	your	test:

mActivity.runOnUIThread(new	Runnable()	{

public	void	run()	{

//	do	somethings

}

});

@Suppress

Use	this	annotation	on	test	classes	or	test	methods	that	should	not	be	included	in	a	test	suite.

This	annotation	can	be	used	at	the	class	level,	where	none	of	the	methods	in	that	class	are	included	in
the	test	suite,	or	at	the	method	level,	to	exclude	just	a	single	method	or	a	set	of	methods.

Now	that	we	have	the	tests	in	place,	it’s	time	to	run	them,	and	that’s	what	we	are	going	to
do	next.

Running	the	tests
There	are	several	ways	of	running	our	tests,	and	we	will	analyze	them	here.

Additionally,	as	mentioned	in	the	previous	section	about	annotations,	tests	can	be	grouped
or	categorized	and	run	together,	depending	on	the	situation.

Running	all	tests	from	Android	Studio
This	is	perhaps	the	simplest	method	if	you	have	adopted	ASide	as	your	development
environment.	This	will	run	all	the	tests	in	the	package.

Select	the	app	module	in	your	project	and	then	go	to	Run	|	(android	icon)	All	Tests.

If	a	suitable	device	or	emulator	is	not	found,	you	will	be	asked	to	start	or	connect	one.

The	tests	are	then	run,	and	the	results	are	presented	inside	the	Run	perspective,	as	shown
in	the	following	screenshot:

A	more	detailed	view	of	the	results	and	the	messages	produced	during	their	execution	can
also	be	obtained	in	the	LogCat	view	within	the	Android	DDMS	perspective,	as	shown	in
the	following	screenshot:

Running	a	single	test	case	from	your	IDE
There	is	an	option	to	run	a	single	test	case	from	ASide,	should	you	need	to.	Open	the	file
where	the	test	resides,	right-click	on	the	method	name	you	want	to	run,	and	just	like	you
run	all	the	tests,	select	Run	|	(android	icon)	testMethodName.

When	you	run	this,	as	usual,	only	this	test	will	be	executed.	In	our	case,	we	have	only	one
test,	so	the	result	will	be	similar	to	the	screenshot	presented	earlier.

Note
Running	a	single	test	like	this	is	a	shortcut	that	actually	creates	a	run	configuration	for	you
that	is	specific	to	that	one	method.	If	you	want	to	look	into	the	details	of	this,	from	the
menu,	select	Run	|	Edit	Configurations,	and	under	Android	Tests,	you	should	be	able	to
see	a	configuration	with	the	name	of	the	test	you	just	executed.

Running	from	the	emulator
The	default	system	image	used	by	the	emulator	has	the	Dev	Tools	application	installed,
providing	several	handy	tools	and	settings.	Among	these	tools,	we	can	find	a	rather	long
list,	as	is	shown	in	the	following	screenshot:

Now,	we	are	interested	in	Instrumentation,	which	is	the	way	to	run	our	tests.	This
application	lists	all	of	the	packages	installed	that	define	instrumentation	tag	tests	in	their
project.	We	can	run	the	tests	by	selecting	our	tests	based	on	the	package	name,	as	shown
in	the	following	screenshot:

When	the	tests	are	run	in	this	way,	the	results	can	be	seen	through	DDMS	/	LogCat,	as
described	in	the	previous	section.

Running	tests	from	the	command	line
Finally,	tests	can	be	run	from	the	command	line	too.	This	is	useful	if	you	want	to	automate
or	script	the	process.

To	run	the	tests,	we	use	the	am	instrument	command	(strictly	speaking,	the	am	command
and	instrument	subcommand),	which	allows	us	to	run	instrumentations	specifying	the
package	name	and	some	other	options.

You	might	wonder	what	“am”	stands	for.	It	is	short	for	Activity	Manager,	a	main
component	of	the	internal	Android	infrastructure	that	is	started	by	the	System	Server	at	the
beginning	of	the	boot	process,	and	it	is	responsible	for	managing	Activities	and	their	life
cycle.	Additionally,	as	we	can	see	here,	it	is	also	responsible	for	Activity	instrumentation.

The	general	usage	of	the	am	instrument	command	is:

am	instrument	[flags]	<COMPONENT>	-r	-e	<NAME>	<VALUE>	-p	<FILE>-w

This	table	summarizes	the	most	common	options:

Option Description

-r Prints	raw	results.	This	is	useful	to	collect	raw	performance	data.

-e	<NAME>

<VALUE>

Sets	arguments	by	name.	We	will	examine	its	usage	shortly.	This	is	a	generic	option	argument	that	allows
us	to	set	the	<name,	value>	pairs.

-p	<FILE> Writes	profiling	data	to	an	external	file.

-w
Waits	for	instrumentation	to	finish	before	exiting.	This	is	normally	used	in	commands.	Although	not
mandatory,	it’s	very	handy,	as	otherwise,	you	will	not	be	able	to	see	the	test’s	results.

To	invoke	the	am	command,	we	will	be	using	the	adb	shell	command	or,	if	you	already
have	a	shell	running	on	an	emulator	or	device,	you	can	issue	the	am	command	directly	in
the	shell	command	prompt.

Running	all	tests
This	command	line	will	open	the	adb	shell	and	then	run	all	tests	with	the	exception	of
performance	tests:

$:	adb	shell	

#:	am	instrument	-w	

com.blundell.tut.test/android.test.InstrumentationTestRunner

		

com.blundell.tut.MainActivityTest:

Failure	in	testSomething:

junit.framework.AssertionFailedError:	Not	implemented	yet

at	

com.blundell.tut.MainActivityTest.testSomething(MainActivityTest.java:15)

at	java.lang.reflect.Method.invokeNative(Native	Method)

at	android.test.AndroidTestRunner.runTest(AndroidTestRunner.java:191)

at	android.test.AndroidTestRunner.runTest(AndroidTestRunner.java:176)

at	android.test.InstrumentationTestRunner.onStart

																(InstrumentationTestRunner.java:554)

at	android.app.Instrumentation$InstrumentationThread.run

																(Instrumentation.java:1701)

Test	results	for	InstrumentationTestRunner=.F

Time:	0.002

FAILURES!!!

Tests	run:	1,		Failures:	1,		Errors:	0

Note	that	the	package	you	declare	with	–w	is	the	package	of	your	instrumentation	tests,	not
the	package	of	the	application	under	test.

Running	tests	from	a	specific	test	case
To	run	all	the	tests	in	a	specific	test	case,	you	can	use:

$:	adb	shell	

#:	am	instrument	-w	-e	class	com.blundell.tut.MainActivityTest	

com.blundell.tut.test/android.test.InstrumentationTestRunner

Running	a	specific	test	by	name
Additionally,	we	have	the	alternative	of	specifying	which	test	we	want	to	run	in	the
command	line:

$:	adb	shell	

#:	am	instrument	-w	-e	class	

com.blundell.tut.MainActivityTest\#testSomething	

com.blundell.tut.test/android.test.InstrumentationTestRunner

This	test	cannot	be	run	in	this	way	unless	we	have	a	no-argument	constructor	in	our	test
case;	that	is	the	reason	we	added	it	before.

Running	specific	tests	by	category
As	mentioned	before,	tests	can	be	grouped	into	different	categories	using	annotations	(Test
Annotations),	and	you	can	run	all	tests	in	this	category.

The	following	options	can	be	added	to	the	command	line:

Option Description

-e	unit	true
This	runs	all	unit	tests.	These	are	tests	that	are	not	derived	from
InstrumentationTestCase	(and	are	not	performance	tests).

-e	func	true
This	runs	all	functional	tests.	These	are	tests	that	are	derived	from
InstrumentationTestCase.

-e	perf	true This	includes	performance	tests.

-e	size	{small	|	medium

|	large}
This	runs	small,	medium,	or	large	tests	depending	on	the	annotations	added	to	the	tests.

-e	annotation

<annotation-name>

This	runs	tests	annotated	with	this	annotation.	This	option	is	mutually	exclusive	with	the
size	option.

In	our	example,	we	annotated	the	test	method	testSomething()	with	@SmallTest.	So	this
test	is	considered	to	be	in	that	category,	and	is	thus	run	eventually	with	other	tests	that
belong	to	that	same	category,	when	we	specify	the	test	size	as	small.

This	command	line	will	run	all	the	tests	annotated	with	@SmallTest:

$:	adb	shell	

#:	am	instrument	-w	-e	size	small	

com.blundell.tut.test/android.test.InstrumentationTestRunner

Running	tests	using	Gradle
Your	gradle	build	script	can	also	help	you	run	the	tests	and	this	will	actually	do	the
previous	commands	under	the	hood.	Gradle	can	run	your	tests	with	this	command:

gradle	connectedAndroidTest

Creating	a	custom	annotation

In	case	you	decide	to	sort	the	tests	by	a	criterion	other	than	their	size,	a	custom	annotation

can	be	created	and	then	specified	in	the	command	line.

As	an	example,	let’s	say	we	want	to	arrange	our	tests	according	to	their	importance,	so	we
create	an	annotation	@VeryImportantTest,	which	we	will	use	in	any	class	where	we	write
tests	(MainActivityTest	for	example):

package	com.blundell.tut;

/**

	*	Marker	interface	to	segregate	important	tests

	*/

@Retention(RetentionPolicy.RUNTIME)

public	@interface	VeryImportantTest	{

}

Following	this,	we	can	create	another	test	and	annotate	it	with	@VeryImportantTest:

@VeryImportantTest

public	void	testOtherStuff()	{

fail("Also	not	implemented	yet");

}

So,	as	we	mentioned	before,	we	can	include	this	annotation	in	the	am	instrument
command	line	to	run	only	the	annotated	tests:

$:	adb	shell	

#:	am	instrument	-w	-e	annotation	com.blundell.tut.VeryImportantTest	

com.blundell.tut.test/android.test.	InstrumentationTestRunner

Running	performance	tests

We	will	be	reviewing	performance	test	details	in	Chapter	8,	Testing	and	Profiling
Performance,	but	here,	we	will	introduce	the	available	options	to	the	am	instrument
command.

To	include	performance	tests	on	your	test	run,	you	should	add	this	command	line	option:

-e	perf	true:	This	includes	performance	tests

Dry	run

Sometimes,	you	might	only	need	to	know	what	tests	will	be	run	instead	of	actually
running	them.

This	is	the	option	you	need	to	add	to	your	command	line:

-e	log	true:	This	displays	the	tests	to	be	run	instead	of	running	them

This	is	useful	if	you	are	writing	scripts	around	your	tests	or	perhaps	building	other	tools.

Debugging	tests
You	should	assume	that	your	tests	might	have	bugs	too.	In	such	a	case,	usual	debugging
techniques	apply,	for	example,	adding	messages	through	LogCat.

If	a	more	sophisticated	debugging	technique	is	needed,	you	should	attach	the	debugger	to
the	test	runner.

In	order	to	do	this	without	giving	up	on	the	convenience	of	the	IDE	and	not	having	to
remember	hard-to-memorize	command-line	options,	you	can	Debug	Run	your	run
configurations.	Thus,	you	can	set	a	breakpoint	in	your	tests	and	use	it.	To	toggle	a
breakpoint,	you	can	select	the	desired	line	in	the	editor	and	left-click	on	the	margin.

Once	it	is	done,	you	will	be	in	a	standard	debugging	session,	and	the	debug	window
should	be	available	to	you.

It	is	also	possible	to	debug	your	tests	from	the	command	line;	you	can	use	code
instructions	to	wait	for	your	debugger	to	attach.	We	won’t	be	using	this	command;	if	you
want	more	details,	they	can	be	found	at
(http://developer.android.com/reference/android/test/InstrumentationTestRunner.html).

http://developer.android.com/reference/android/test/InstrumentationTestRunner.html

Other	command-line	options
The	am	instrument	command	accepts	other	<name,	value>	pairs	beside	the	previously
mentioned	ones:

Name Value

debug true.	Set	break	points	in	your	code.

package This	is	a	fully	qualified	package	name	of	one	or	several	packages	in	the	test	application.

class
A	fully	qualified	test	case	class	to	be	executed	by	the	test	runner.	Optionally,	this	could	include	the	test
method	name	separated	from	the	class	name	by	a	hash	(#).

coverage

true.	Runs	the	EMMA	code	coverage	and	writes	the	output	to	a	file	that	can	also	be	specified.	We	will	dig
into	the	details	about	supporting	EMMA	code	coverage	for	our	tests	in	Chapter	9,	Alternative	Testing
Tactics.

Summary
We	have	reviewed	the	main	techniques	and	tools	behind	testing	on	Android.	Having
acquired	this	knowledge,	it	will	let	us	begin	our	journey	so	that	we	can	start	exploiting	the
benefits	of	testing	in	our	software	development	projects.

So	far,	we	have	visited	the	following	subjects:

We	briefly	analyzed	the	whys,	whats,	hows,	and	whens	of	testing.	Henceforth,	we
will	concentrate	more	on	exploring	the	hows,	now	that	you’re	giving	testing	the
importance	it	deserves.
We	enumerated	the	different	and	most	common	types	of	tests	you	would	need	in	your
projects,	described	some	of	the	tools	we	can	count	on	our	testing	toolbox,	and
provided	an	introductory	example	of	a	JUnit	unit	test	to	better	understand	what	we
are	discussing.
We	also	created	our	first	Android	project	with	tests,	using	the	Android	Studio	IDE
and	Gradle.
We	also	created	a	simple	test	class	to	test	the	Activity	in	our	project.	We	haven’t
added	any	useful	test	cases	yet,	but	adding	those	simple	ones	was	intended	to	validate
our	infrastructure.
We	also	ran	this	simple	test	from	our	IDE	and	from	the	command	line	to	understand
the	alternatives	we	have.	In	this	process,	we	mentioned	the	Activity	Manager	and	its
command	line	incarnation	am.
We	created	a	custom	annotation	to	sort	our	tests	and	demonstrate	how	we	can
separate	or	differentiate	suites	of	tests.

In	the	next	chapter,	we	will	start	analyzing	the	mentioned	techniques,	frameworks,	and
tools	in	much	greater	detail,	and	provide	examples	of	their	usage.

Chapter	2.	Understanding	Testing	with
the	Android	SDK
We	now	know	how	to	create	tests	inside	an	Android	project	and	how	to	run	these	tests.	It
is	now	time	to	start	digging	a	bit	deeper	to	recognize	the	building	blocks	available	to
create	more	useful	tests.

In	this	second	chapter,	we	will	be	covering	the	following	topics:

Common	assertions
View	assertions
Other	assertion	types
Helpers	to	test	User	Interfaces
Mock	objects
Instrumentation
TestCase	class	hierarchies
Using	external	libraries

We	will	be	analyzing	these	components	and	showing	examples	of	their	use	when
applicable.	The	examples	in	this	chapter	are	intentionally	split	from	the	original	Android
project	that	contains	them.	This	is	done	to	let	you	concentrate	and	focus	only	on	the
subject	being	presented,	though	the	complete	examples	in	a	single	project	can	be
downloaded	as	explained	later.	Right	now,	we	are	interested	in	the	trees	and	not	the	forest.

Along	with	the	examples	presented,	we	will	be	identifying	reusable	common	patterns	that
will	help	you	in	the	creation	of	tests	for	your	own	projects.

The	demonstration	application
A	very	simple	application	has	been	created	to	demonstrate	the	use	of	some	of	the	tests	in
this	chapter.	The	source	for	the	application	can	be	downloaded	from
XXXXXXXXXXXXX.

The	following	screenshot	shows	this	application	running:

When	reading	the	explanation	of	the	tests	in	this	chapter,	at	any	point,	you	can	refer	to	the
demo	application	that	is	provided	in	order	to	see	the	test	in	action.	The	previous	simple
application	has	a	clickable	link,	text	input,	click	on	a	button	and	a	defined	layout	UI,	we
can	test	these	one	by	one.

Assertions	in	depth
Assertions	are	methods	that	check	for	a	condition	that	can	be	evaluated.	If	the	condition	is
not	met,	the	assertion	method	will	throw	an	exception,	thereby	aborting	the	execution	of
the	test.

The	JUnit	API	includes	the	class	Assert.	This	is	the	base	class	of	all	the	TestCase	classes
that	hold	several	assertion	methods	useful	for	writing	tests.	These	inherited	methods	test
for	a	variety	of	conditions	and	are	overloaded	to	support	different	parameter	types.	They
can	be	grouped	together	in	the	following	different	sets,	depending	on	the	condition
checked,	for	example:

assertEquals
assertTrue
assertFalse
assertNull
assertNotNull
assertSame
assertNotSame
fail

The	condition	tested	is	pretty	obvious	and	is	easily	identifiable	by	the	method	name.
Perhaps	the	ones	that	deserve	some	attention	are	assertEquals()	and	assertSame().	The
former,	when	used	on	objects,	asserts	that	both	objects	passed	as	parameters	are	equally
calling	the	objects’	equals()	method.	The	latter	asserts	that	both	objects	refer	to	the	same
object.	If,	in	some	case,	equals()	is	not	implemented	by	the	class,	then	assertEquals()
and	assertSame()	will	do	the	same	thing.

When	one	of	these	assertions	fails	inside	a	test,	an	AssertionFailedException	is	thrown,
and	this	indicates	that	the	test	has	failed.

Occasionally,	during	the	development	process,	you	might	need	to	create	a	test	that	you	are
not	implementing	at	that	precise	time.	However,	you	want	to	flag	that	the	creation	of	the
test	was	postponed	(we	did	this	in	Chapter	1,	Getting	Started	with	Testing,	when	we	added
just	the	test	method	stubs).	In	such	cases,	you	can	use	the	fail()	method,	which	always
fails	and	uses	a	custom	message	that	indicates	the	condition:

		public	void	testNotImplementedYet()	{

				fail("Not	implemented	yet");

		}

Still,	there	is	another	common	use	for	fail()	that	is	worth	mentioning.	If	we	need	to	test
whether	a	method	throws	an	exception,	we	can	surround	the	code	with	a	try-catch	block
and	force	a	fail	if	the	exception	was	not	thrown.	For	example:

public	void	testShouldThrowException()	{

				try	{

						MyFirstProjectActivity.methodThatShouldThrowException();

						fail("Exception	was	not	thrown");

				}	catch	(Exception	ex)	{

						//	do	nothing

				}

		}

Note
JUnit4	has	the	annotation	@Test(expected=Exception.class),	and	this	supersedes	the
need	for	using	fail()	when	testing	exceptions.	With	this	annotation,	the	test	will	only
pass	if	the	expected	exception	is	thrown.

Custom	messages
It	is	worth	knowing	that	all	assert	methods	provide	an	overloaded	version	including	a
custom	String	message.	Should	the	assertion	fail,	this	custom	message	will	be	printed	by
the	test	runner,	instead	of	a	default	message.

The	premise	behind	this	is	that,	sometimes,	the	generic	error	message	does	not	reveal
enough	details,	and	it	is	not	obvious	how	the	test	failed.	This	custom	message	can	be
extremely	useful	to	easily	identify	the	failure	once	you	are	looking	at	the	test	report,	so	it’s
highly	recommended	as	a	best	practice	to	use	this	version.

The	following	is	an	example	of	a	simple	test	that	uses	this	recommendation:

public	void	testMax()	{

int	a	=	10;

int	b	=	20;

int	actual	=	Math.max(a,	b);

String	failMsg	=	"Expected:	"	+	b	+	"	but	was:	"	+	actual;

assertEquals(failMsg,	b,	actual);

}

In	the	preceding	example,	we	can	see	another	practice	that	would	help	you	organize	and
understand	your	tests	easily.	This	is	the	use	of	explicit	names	for	variables	that	hold	the
actual	values.

Note
There	are	other	libraries	available	that	have	better	default	error	messages	and	also	a	more
fluid	interface	for	testing.	One	of	these	that	is	worth	looking	at	is	Fest
(https://code.google.com/p/fest/).

https://code.google.com/p/fest/

Static	imports
Though	basic	assertion	methods	are	inherited	from	the	Assert	base	class,	some	other
assertions	need	specific	imports.	To	improve	the	readability	of	your	tests,	there	is	a	pattern
to	statically	import	the	assert	methods	from	the	corresponding	classes.	Using	this	pattern
instead	of	having:

		public	void	testAlignment()	{

	int	margin	=	0;

			...

	android.test.ViewAsserts.assertRightAligned(errorMsg,	editText,	margin);

		}

We	can	simplify	it	by	adding	the	static	import:

import	static	android.test.ViewAsserts.assertRightAligned;

public	void	testAlignment()	{

			int	margin	=	0;

			assertRightAligned(errorMsg,	editText,	margin);

}

View	assertions
The	assertions	introduced	earlier	handle	a	variety	of	types	as	parameters,	but	they	are	only
intended	to	test	simple	conditions	or	simple	objects.

For	example,	we	have	asertEquals(short	expected,	short	actual)	to	test	short
values,	assertEquals(int	expected,	int	actual)	to	test	integer	values,
assertEquals(Object	expected,	Object	expected)	to	test	any	Object	instance,	and	so
on.

Usually,	while	testing	user	interfaces	in	Android,	you	will	face	the	problem	of	more
sophisticated	methods,	which	are	mainly	related	with	Views.	In	this	respect,	Android
provides	a	class	with	plenty	of	assertions	in	android.test.ViewAsserts	(see
http://developer.android.com/reference/android/test/ViewAsserts.html	for	more	details),
which	test	relationships	between	Views	and	their	absolute	and	relative	positions	on	the
screen.

These	methods	are	also	overloaded	to	provide	different	conditions.	Among	the	assertions,
we	can	find	the	following:

assertBaselineAligned:	This	asserts	that	two	Views	are	aligned	on	their	baseline;
that	is,	their	baselines	are	on	the	same	y	location.
assertBottomAligned:	This	asserts	that	two	views	are	bottom	aligned;	that	is,	their
bottom	edges	are	on	the	same	y	location.
assertGroupContains:	This	asserts	that	the	specified	group	contains	a	specific	child
once	and	only	once.
assertGroupIntegrity:	This	asserts	the	specified	group’s	integrity.	The	child	count
should	be	>=	0	and	each	child	should	be	non-null.
assertGroupNotContains:	This	asserts	that	the	specified	group	does	not	contain	a
specific	child.
assertHasScreenCoordinates:	This	asserts	that	a	View	has	a	particular	x	and	y
position	on	the	visible	screen.
assertHorizontalCenterAligned:	This	asserts	that	the	test	View	is	horizontally
center	aligned	with	respect	to	the	reference	view.
assertLeftAligned:	This	asserts	that	two	Views	are	left	aligned;	that	is,	their	left
edges	are	on	the	same	x	location.	An	optional	margin	can	also	be	provided.
assertOffScreenAbove:	This	asserts	that	the	specified	view	is	above	the	visible
screen.
assertOffScreenBelow:	This	asserts	that	the	specified	view	is	below	the	visible
screen.
assertOnScreen:	This	asserts	that	a	View	is	on	the	screen.
assertRightAligned:	This	asserts	that	two	Views	are	right-aligned;	that	is,	their
right	edges	are	on	the	same	x	location.	An	optional	margin	can	also	be	specified.
assertTopAligned:	This	asserts	that	two	Views	are	top	aligned;	that	is,	their	top
edges	are	on	the	same	y	location.	An	optional	margin	can	also	be	specified.
assertVerticalCenterAligned:	This	asserts	that	the	test	View	is	vertically	center-

http://developer.android.com/reference/android/test/ViewAsserts.html

aligned	with	respect	to	the	reference	View.

The	following	example	shows	how	you	can	use	ViewAssertions	to	test	the	user	interface
layout:

		public	void	testUserInterfaceLayout()	{

				int	margin	=	0;

				View	origin	=	mActivity.getWindow().getDecorView();

				assertOnScreen(origin,	editText);

				assertOnScreen(origin,	button);

				assertRightAligned(editText,	button,	margin);

		}

The	assertOnScreen	method	uses	an	origin	to	start	looking	for	the	requested	Views.	In
this	case,	we	are	using	the	top-level	window	decor	View.	If,	for	some	reason,	you	don’t
need	to	go	that	high	in	the	hierarchy,	or	if	this	approach	is	not	suitable	for	your	test,	you
may	use	another	root	View	in	the	hierarchy,	for	example	View.getRootView(),	which,	in
our	concrete	example,	would	be	editText.getRootView().

Even	more	assertions
If	the	assertions	that	are	reviewed	previously	do	not	seem	to	be	enough	for	your	tests’
needs,	there	is	still	another	class	included	in	the	Android	framework	that	covers	other
cases.	This	class	is	MoreAsserts
(http://developer.android.com/reference/android/test/MoreAsserts.html).

These	methods	are	also	overloaded	to	support	different	parameter	types.	Among	the
assertions,	we	can	find	the	following:

assertAssignableFrom:	This	asserts	that	an	object	is	assignable	to	a	class.
assertContainsRegex:	This	asserts	that	an	expected	Regex	matches	any	substring	of
the	specified	String.	It	fails	with	the	specified	message	if	it	does	not.
assertContainsInAnyOrder:	This	asserts	that	the	specified	Iterable	contains
precisely	the	elements	expected,	but	in	any	order.
assertContainsInOrder:	This	asserts	that	the	specified	Iterable	contains	precisely
the	elements	expected,	but	in	the	same	order.
assertEmpty:	This	asserts	that	an	Iterable	is	empty.
assertEquals:	This	is	for	some	Collections	not	covered	in	JUnit	asserts.
assertMatchesRegex:	This	asserts	that	the	specified	Regex	exactly	matches	the
String	and	fails	with	the	provided	message	if	it	does	not.
assertNotContainsRegex:	This	asserts	that	the	specified	Regex	does	not	match	any
substring	of	the	specified	String,	and	fails	with	the	provided	message	if	it	does.
assertNotEmpty:	This	asserts	that	some	Collections	not	covered	in	JUnit	asserts	are
not	empty.
assertNotMatchesRegex:	This	asserts	that	the	specified	Regex	does	not	exactly
match	the	specified	String,	and	fails	with	the	provided	message	if	it	does.
checkEqualsAndHashCodeMethods:	This	is	a	utility	used	to	test	the	equals()	and
hashCode()	results	at	once.	This	tests	whether	equals()	that	is	applied	to	both
objects	matches	the	specified	result.

The	following	test	checks	for	an	error	during	the	invocation	of	the	capitalization	method
called	via	a	click	on	the	UI	button:

@UiThreadTest

public	void	testNoErrorInCapitalization()	{

String	msg	=	"capitalize	this	text";

editText.setText(msg);

button.performClick();

String	actual	=	editText.getText().toString();

String	notExpectedRegexp	=	"(?i:ERROR)";

String	errorMsg	=	"Capitalization	error	for	"	+	actual;

assertNotContainsRegex(errorMsg,	notExpectedRegexp,	actual);

}

If	you	are	not	familiar	with	regular	expressions,	invest	some	time	and	visit
http://developer.android.com/reference/java/util/regex/package-summary.html	because	it

http://developer.android.com/reference/android/test/MoreAsserts.html
http://developer.android.com/reference/java/util/regex/package-summary.html

will	be	worth	it!

In	this	particular	case,	we	are	looking	for	the	word	ERROR	contained	in	the	result	with	a
case-insensitive	match	(setting	the	flag	i	for	this	purpose).	That	is,	if	for	some	reason,
capitalization	doesn’t	work	in	our	application,	and	it	contains	an	error	message,	we	can
detect	this	condition	with	the	assertion.

Note
Note	that	because	this	is	a	test	that	modifies	the	user	interface,	we	must	annotate	it	with
@UiThreadTest;	otherwise,	it	won’t	be	able	to	alter	the	UI	from	a	different	thread,	and	we
will	receive	the	following	exception:

INFO/TestRunner(610):	-----	begin	exception	-----

INFO/TestRunner(610):	android.view.ViewRoot$CalledFromWrongThreadException:	

Only	the	original	thread	that	created	a	view	hierarchy	can	touch	its	views.

INFO/TestRunner(610):					at	

android.view.ViewRoot.checkThread(ViewRoot.java:2932)

[...]

INFO/TestRunner(610):					at	

android.app.Instrumentation$InstrumentationThread.run(Instrumentation.java:

1447)

INFO/TestRunner(610):	-----	end	exception	-----

The	TouchUtils	class
Sometimes,	when	testing	UIs,	it	is	helpful	to	simulate	different	kinds	of	touch	events.
These	touch	events	can	be	generated	in	many	different	ways,	but	probably
android.test.TouchUtils	is	the	simplest	to	use.	This	class	provides	reusable	methods	to
generate	touch	events	in	test	cases	that	are	derived	from	InstrumentationTestCase.

The	featured	methods	allow	a	simulated	interaction	with	the	UI	under	test.	The
TouchUtils	class	provides	the	infrastructure	to	inject	the	events	using	the	correct	UI	or
main	thread,	so	no	special	handling	is	needed,	and	you	don’t	need	to	annotate	the	test
using	@UIThreadTest.

TouchUtils	supports	the	following:

Clicking	on	a	View	and	releasing	it
Tapping	on	a	View	(touching	it	and	quickly	releasing)
Long-clicking	on	a	View
Dragging	the	screen
Dragging	Views

The	following	test	represents	a	typical	usage	of	TouchUtils:

				public	void	testListScrolling()	{

								listView.scrollTo(0,	0);

								TouchUtils.dragQuarterScreenUp(this,	activity);	

								int	actualItemPosition	=	listView.getFirstVisiblePosition();

								assertTrue("Wrong	position",	actualItemPosition	>	0);

				}

This	test	does	the	following:

Repositions	the	list	at	the	beginning	to	start	from	a	known	condition
Scrolls	the	list
Checks	for	the	first	visible	position	to	see	that	it	was	correctly	scrolled

Even	the	most	complex	UIs	can	be	tested	in	that	way,	and	it	would	help	you	detect	a
variety	of	conditions	that	could	potentially	affect	the	user	experience.

Mock	objects
We	have	seen	the	mock	objects	provided	by	the	Android	testing	framework	in	Chapter	1,
Getting	Started	with	Testing,	and	evaluated	the	concerns	about	not	using	real	objects	to
isolate	our	tests	from	the	surrounding	environment.

The	next	chapter	deals	with	Test-driven	Development,	and	if	we	were	Test-driven
Development	purists,	we	can	argue	about	the	use	of	mock	objects	and	be	more	inclined	to
use	real	ones.	Martin	Fowler	calls	these	two	styles	the	classical	and	mockist	Test-driven
Development	dichotomy	in	his	great	article	Mocks	aren’t	stubs,	which	can	be	read	online
at	http://www.martinfowler.com/articles/mocksArentStubs.html.

Independent	of	this	discussion,	we	are	introducing	mock	objects	as	one	of	the	available
building	blocks	because,	sometimes,	using	mock	objects	in	our	tests	is	recommended,
desirable,	useful,	or	even	unavoidable.

The	Android	SDK	provides	the	following	classes	in	the	subpackage	android.test.mock
to	help	us:

MockApplication:	This	is	a	mock	implementation	of	the	Application	class.	All
methods	are	non-functional	and	throw	UnsupportedOperationException.
MockContentProvider:	This	is	a	mock	implementation	of	ContentProvider.	All
methods	are	non-functional	and	throw	UnsupportedOperationException.
MockContentResolver:	This	is	a	mock	implementation	of	the	ContentResolver	class
that	isolates	the	test	code	from	the	real	content	system.	All	methods	are	non-
functional	and	throw	UnsupportedOperationException.
MockContext:	This	is	a	mock	context	class,	and	this	can	be	used	to	inject	other
dependencies.	All	methods	are	non-functional	and	throw
UnsupportedOperationException.
MockCursor:	This	is	a	mock	Cursor	class	that	isolates	the	test	code	from	real	Cursor
implementation.	All	methods	are	non-functional	and	throw
UnsupportedOperationException.
MockDialogInterface:	This	is	a	mock	implementation	of	the	DialogInterface
class.	All	methods	are	non-functional	and	throw	UnsupportedOperationException.
MockPackageManager:	This	is	a	mock	implementation	of	the	PackageManager	class.
All	methods	are	non-functional	and	throw	UnsupportedOperationException.
MockResources:	This	is	a	mock	Resources	class.

All	of	these	classes	have	non-functional	methods	that	throw
UnsupportedOperationException	when	used.	If	you	need	to	use	some	of	these	methods,
or	if	you	detect	that	your	test	is	failing	with	this	Exception,	you	should	extend	one	of
these	base	classes	and	provide	the	required	functionality.

http://www.martinfowler.com/articles/mocksArentStubs.html

An	overview	of	MockContext
This	mock	can	be	used	to	inject	other	dependencies,	mocks,	or	monitors	into	the	classes
under	test.	Extend	this	class	to	provide	your	desired	behavior,	overriding	the
correspondent	methods.	The	Android	SDK	provides	some	prebuilt	mock	Context	objects,
each	of	which	has	a	separate	use	case.

The	IsolatedContext	class
In	your	tests,	you	might	find	the	need	to	isolate	the	Activity	under	test	from	other	Android
components	to	prevent	unwanted	interactions.	This	can	be	a	complete	isolation,	but
sometimes,	this	isolation	avoids	interacting	with	other	components,	and	for	your	Activity
to	still	run	correctly,	some	connection	with	the	system	is	required.

For	those	cases,	the	Android	SDK	provides	android.test.IsolatedContext,	a	mock
Context	that	not	only	prevents	interaction	with	most	of	the	underlying	system	but	also
satisfies	the	needs	of	interacting	with	other	packages	or	components	such	as	Services	or
ContentProviders.

Alternate	route	to	file	and	database	operations
In	some	cases,	all	we	need	is	to	be	able	to	provide	an	alternate	route	to	the	file	and
database	operations.	For	example,	if	we	are	testing	the	application	on	a	real	device,	we
perhaps	don’t	want	to	affect	the	existing	database	but	use	our	own	testing	data.

Such	cases	can	take	advantage	of	another	class	that	is	not	part	of	the	android.test.mock
subpackage	but	is	part	of	android.test	instead,	that	is,	RenamingDelegatingContext.

This	class	lets	us	alter	operations	on	files	and	databases	by	having	a	prefix	that	is	specified
in	the	constructor.	All	other	operations	are	delegated	to	the	delegating	Context	that	you
must	specify	in	the	constructor	too.

Suppose	our	Activity	under	test	uses	a	database	we	want	to	control,	probably	introducing
specialized	content	or	fixture	data	to	drive	our	tests,	and	we	don’t	want	to	use	the	real
files.	In	this	case,	we	create	a	RenamingDelegatingContext	class	that	specifies	a	prefix,
and	our	unchanged	Activity	will	use	this	prefix	to	create	any	files.

For	example,	if	our	Activity	tries	to	access	a	file	named	birthdays.txt,	and	we	provide	a
RenamingDelegatingContext	class	that	specifies	the	prefix	test,	then	this	same	Activity
will	access	the	file	testbirthdays.txt	instead	when	it	is	being	tested.

The	MockContentResolver	class
The	MockContentResolver	class	implements	all	methods	in	a	non-functional	way	and
throws	the	exception	UnsupportedOperationException	if	you	attempt	to	use	them.	The
reason	for	this	class	is	to	isolate	tests	from	the	real	content.

Let’s	say	your	application	uses	a	ContentProvider	class	to	feed	your	Activity
information.	You	can	create	unit	tests	for	this	ContentProvider	using
ProviderTestCase2,	which	we	will	be	analyzing	shortly,	but	when	we	try	to	produce
functional	or	integration	tests	for	the	Activity	against	ContentProvider,	it’s	not	so	evident
as	to	what	test	case	to	use.	The	most	obvious	choice	is
ActivityInstrumentationTestCase2,	mainly	if	your	functional	tests	simulate	user
experience	because	you	might	need	the	sendKeys()	method	or	similar	methods,	which	are
readily	available	on	these	tests.

The	first	problem	you	might	encounter	then	is	that	it’s	unclear	as	to	where	to	inject	a
MockContentResolver	in	your	test	to	be	able	to	use	test	data	with	your	ContentProvider.
There’s	no	way	to	inject	a	MockContext	either.

This	problem	will	be	solved	in	Chapter	3,	Baking	with	Testing	Recipes	where	further
details	are	provided.

The	TestCase	base	class
This	is	the	base	class	of	all	other	test	cases	in	the	JUnit	framework.	It	implements	the
basic	methods	that	we	were	analyzing	in	the	previous	examples	(setUp()).	The	TestCase
class	also	implements	the	junit.framework.Test	interface,	meaning	it	can	be	run	as	a
JUnit	test.

Your	Android	test	cases	should	always	extend	TestCase	or	one	of	its	descendants.

The	default	constructor
All	test	cases	require	a	default	constructor	because,	sometimes,	depending	on	the	test
runner	used,	this	is	the	only	constructor	that	is	invoked,	and	is	also	used	for	serialization.

According	to	the	documentation,	this	method	is	not	intended	to	be	used	by	“mere	mortals”
without	calling	setName(String	name).

Therefore,	to	appease	the	Gods,	a	common	pattern	is	to	use	a	default	test	case	name	in	this
constructor	and	invoke	the	given	name	constructor	afterwards:

public	class	MyTestCase	extends	TestCase	{

			public	MyTestCase()	{

						this("MyTestCase	Default	Name");

			}

			public	MyTestCase(String	name)	{

						super(name);

			}

}

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support

The	given	name	constructor
This	constructor	takes	a	name	as	an	argument	to	label	the	test	case.	It	will	appear	in	test
reports	and	would	be	of	much	help	when	you	try	to	identify	where	failed	tests	have	come
from.

The	setName()	method
There	are	some	classes	that	extend	TestCase	that	don’t	provide	a	given	name	constructor.
In	such	cases,	the	only	alternative	is	to	call	setName(String	name).

The	AndroidTestCase	base	class
This	class	can	be	used	as	a	base	class	for	general-purpose	Android	test	cases.

Use	it	when	you	need	access	to	Android	resources,	databases,	or	files	in	the	filesystem.
Context	is	stored	as	a	field	in	this	class,	which	is	conveniently	named	mContext	and	can	be
used	inside	the	tests	if	needed,	or	the	getContext()	method	can	be	used	too.

Tests	based	on	this	class	can	start	more	than	one	Activity	using
Context.startActivity().

There	are	various	test	cases	in	Android	SDK	that	extend	this	base	class:

ApplicationTestCase<T	extends	Application>

ProviderTestCase2<T	extends	ContentProvider>

ServiceTestCase<T	extends	Service>

When	using	the	AndroidTestCase	Java	class,	you	inherit	some	base	assertion	methods
that	can	be	used;	let’s	look	at	these	in	more	detail.

The	assertActivityRequiresPermission()	method
The	signature	for	this	method	is	as	follows:

public	void	assertActivityRequiresPermission(String	packageName,	String	

className,	String	permission)

Description
This	assertion	method	checks	whether	the	launching	of	a	particular	Activity	is	protected
by	a	specific	permission.	It	takes	the	following	three	parameters:

packageName:	This	is	a	string	that	indicates	the	package	name	of	the	activity	to
launch
className:	This	is	a	string	that	indicates	the	class	of	the	activity	to	launch
permission:	This	is	a	string	with	the	permission	to	check

The	Activity	is	launched	and	then	SecurityException	is	expected,	which	mentions	that
the	required	permission	is	missing	in	the	error	message.	The	actual	instantiation	of	an
activity	is	not	handled	by	this	assertion,	and	thus,	an	Instrumentation	is	not	needed.

Example
This	test	checks	the	requirement	of	the
android.Manifest.permission.WRITE_EXTERNAL_STORAGE	permission,	which	is	needed
to	write	to	external	storage,	in	the	MyContactsActivity	Activity:

public	void	testActivityPermission()	{

		String	pkg	=	"com.blundell.tut";

		String	activity	=		PKG	+	".MyContactsActivity";

		String	permission	=	android.Manifest.permission.CALL_PHONE;

		assertActivityRequiresPermission(pkg,	activity,	permission);

}

Tip
Always	use	the	constants	that	describe	the	permissions	from
android.Manifest.permission,	not	the	strings,	so	if	the	implementation	changes,	your
code	will	still	be	valid.

The	assertReadingContentUriRequiresPermission
method
The	signature	for	this	method	is	as	follows:

public	void	assertReadingContentUriRequiresPermission(Uri	uri,	String	

permission)

Description
This	assertion	method	checks	whether	reading	from	a	specific	URI	requires	the	permission
provided	as	a	parameter.

It	takes	the	following	two	parameters:

uri:	This	is	the	Uri	that	requires	a	permission	to	query
permission:	This	is	a	string	that	contains	the	permission	to	query

If	a	SecurityException	class	is	generated,	which	contains	the	specified	permission,	this
assertion	is	validated.

Example
This	test	tries	to	read	contacts	and	verifies	that	the	correct	SecurityException	is
generated:

		public	void	testReadingContacts()	{

				Uri	URI	=	ContactsContract.AUTHORITY_URI;

				String	PERMISSION	=	android.Manifest.permission.READ_CONTACTS;

				assertReadingContentUriRequiresPermission(URI,	PERMISSION);

		}

The	assertWritingContentUriRequiresPermission()
method
The	signature	for	this	method	is	as	follows:

public	void	assertWritingContentUriRequiresPermission	(Uri	uri,	String	

permission)

Description
This	assertion	method	checks	whether	inserting	into	a	specific	Uri	requires	the	permission
provided	as	a	parameter.

It	takes	the	following	two	parameters:

uri:	This	is	the	Uri	that	requires	a	permission	to	query
permission:	This	is	a	string	that	contains	the	permission	to	query

If	a	SecurityException	class	is	generated,	which	contains	the	specified	permission,	this
assertion	is	validated.

Example
This	test	tries	to	write	to	Contacts	and	verifies	that	the	correct	SecurityException	is
generated:

		public	void	testWritingContacts()	{

		Uri	uri	=	ContactsContract.AUTHORITY_URI;

			String	permission	=	android.Manifest.permission.WRITE_CONTACTS;

		assertWritingContentUriRequiresPermission(uri,	permission);

}

Instrumentation
Instrumentation	is	instantiated	by	the	system	before	any	of	the	application	code	is	run,
thereby	allowing	monitoring	of	all	the	interactions	between	the	system	and	the	application.

As	with	many	other	Android	application	components,	instrumentation	implementations
are	described	in	the	AndroidManifest.xml	under	the	tag	<instrumentation>.	However,
with	the	advent	of	Gradle,	this	has	now	been	automated	for	us,	and	we	can	change	the
properties	of	the	instrumentation	in	the	app’s	build.gradle	file.	The	AndroidManifest
file	for	your	tests	will	be	automatically	generated:

defaultConfig	{

		testApplicationId	'com.blundell.tut.tests'

testInstrumentationRunner		"android.test.InstrumentationTestRunner"

}

The	values	mentioned	in	the	preceding	code	are	also	the	defaults	if	you	do	not	declare
them,	meaning	that	you	don’t	have	to	have	any	of	these	parameters	to	start	writing	tests.

The	testApplicationId	attribute	defines	the	name	of	the	package	for	your	tests.	As	a
default,	it	is	your	application	under	the	test	package	name	+	tests.	You	can	declare	a
custom	test	runner	using	testInstrumentationRunner.	This	is	handy	if	you	want	to	have
tests	run	in	a	custom	way,	for	example,	parallel	test	execution.

There	are	also	many	other	parameters	in	development,	and	I	would	advise	you	to	keep
your	eyes	upon	the	Google	Gradle	plugin	website	(http://tools.android.com/tech-
docs/new-build-system/user-guide).

http://tools.android.com/tech-docs/new-build-system/user-guide

The	ActivityMonitor	inner	class
As	mentioned	earlier,	the	Instrumentation	class	is	used	to	monitor	the	interaction	between
the	system	and	the	application	or	the	Activities	under	test.	The	inner	class	Instrumentation
ActivityMonitor	allows	the	monitoring	of	a	single	Activity	within	an	application.

Example
Let’s	pretend	that	we	have	a	TextView	in	our	Activity	that	holds	a	URL	and	has	its	auto
link	property	set:

		<TextView	

							android:id="@+id/link

							android:layout_width="match_parent"

				android:layout_height="wrap_content"

							android:text="@string/home"

				android:autoLink="web"	"	/>

If	we	want	to	verify	that,	when	clicked,	the	hyperlink	is	correctly	followed	and	some
browser	is	invoked,	we	can	create	a	test	like	this:

		public	void	testFollowLink()	{

								IntentFilter	intentFilter	=	new	IntentFilter(Intent.ACTION_VIEW);

								intentFilter.addDataScheme("http");

								intentFilter.addCategory(Intent.CATEGORY_BROWSABLE);

								Instrumentation	inst	=	getInstrumentation();

								ActivityMonitor	monitor	=	inst.addMonitor(intentFilter,	null,	

false);

								TouchUtils.clickView(this,	linkTextView);

								monitor.waitForActivityWithTimeout(3000);

								int	monitorHits	=	monitor.getHits();

								inst.removeMonitor(monitor);

								assertEquals(1,	monitorHits);

				}	

Here,	we	will	do	the	following:

1.	 Create	an	IntentFilter	for	intents	that	would	open	a	browser.
2.	 Add	a	monitor	to	our	Instrumentation	based	on	the	IntentFilter	class.
3.	 Click	on	the	hyperlink.
4.	 Wait	for	the	activity	(hopefully	the	browser).
5.	 Verify	that	the	monitor	hits	were	incremented.
6.	 Remove	the	monitor.

Using	monitors,	we	can	test	even	the	most	complex	interactions	with	the	system	and	other
Activities.	This	is	a	very	powerful	tool	to	create	integration	tests.

The	InstrumentationTestCase	class
The	InstrumentationTestCase	class	is	the	direct	or	indirect	base	class	for	various	test
cases	that	have	access	to	Instrumentation.	This	is	the	list	of	the	most	important	direct	and
indirect	subclasses:

ActivityTestCase

ProviderTestCase2<T	extends	ContentProvider>

SingleLaunchActivityTestCase<T	extends	Activity>

SyncBaseInstrumentation

ActivityInstrumentationTestCase2<T	extends	Activity>

ActivityUnitTestCase<T	extends	Activity>

The	InstrumentationTestCase	class	is	in	the	android.test	package,	and	extends
junit.framework.TestCase,	which	extends	junit.framework.Assert.

The	launchActivity	and	launchActivityWithIntent
methods
These	utility	methods	are	used	to	launch	Activities	from	a	test.	If	the	Intent	is	not	specified
using	the	second	option,	a	default	Intent	is	used:

public	final	T	launchActivity	(String	pkg,	Class<T>	activityCls,	Bundle	

extras)

Note
The	template	class	parameter	T	is	used	in	activityCls	and	as	the	return	type,	limiting	its
use	to	Activities	of	that	type.

If	you	need	to	specify	a	custom	Intent,	you	can	use	the	following	code	that	also	adds	the
intent	parameter:

public	final	T	launchActivityWithIntent	(String	pkg,	Class<T>	activityCls,	

Intent	intent)

The	sendKeys	and	sendRepeatedKeys	methods
While	testing	Activities’	UI,	you	will	face	the	need	to	simulate	interaction	with	qwerty-
based	keyboards	or	DPAD	buttons	to	send	keys	to	complete	fields,	select	shortcuts,	or
navigate	throughout	the	different	components.

This	is	what	the	different	sendKeys	and	sendRepeatedKeys	are	used	for.

There	is	one	version	of	sendKeys	that	accepts	integer	keys	values.	They	can	be	obtained
from	constants	defined	in	the	KeyEvent	class.

For	example,	we	can	use	the	sendKeys	method	in	this	way:

				public	void	testSendKeyInts()	{

								requestMessageInputFocus();

								sendKeys(

																KeyEvent.KEYCODE_H,

																KeyEvent.KEYCODE_E,

																KeyEvent.KEYCODE_E,

																KeyEvent.KEYCODE_E,

																KeyEvent.KEYCODE_Y,

																KeyEvent.KEYCODE_DPAD_DOWN,

																KeyEvent.KEYCODE_ENTER);

								String	actual	=	messageInput.getText().toString();

								assertEquals("HEEEY",	actual);

				}

Here,	we	are	sending	H,	E,	and	Y	letter	keys	and	then	the	ENTER	key	using	their	integer
representations	to	the	Activity	under	test.

Alternatively,	we	can	create	a	string	by	concatenating	the	keys	we	desire	to	send,
discarding	the	KEYCODE	prefix,	and	separating	them	with	spaces	that	are	ultimately
ignored:

						public	void	testSendKeyString()	{

								requestMessageInputFocus();

								sendKeys("H	3*E	Y	DPAD_DOWN	ENTER");

								String	actual	=	messageInput.getText().toString();

								assertEquals("HEEEY",	actual);

				}

Here,	we	did	exactly	the	same	as	in	the	previous	test	but	we	used	a	String	"H	3*	EY
DPAD_DOWN	ENTER".	Note	that	every	key	in	the	String	can	be	prefixed	by	a	repeating
factor	followed	by	*	and	the	key	to	be	repeated.	We	used	3*E	in	our	previous	example,
which	is	the	same	as	E	E	E,	that	is,	three	times	the	letter	E.

If	sending	repeated	keys	is	what	we	need	in	our	tests,	there	is	also	another	alternative	that
is	precisely	intended	for	these	cases:

public	void	testSendRepeatedKeys()	{

								requestMessageInputFocus();

								sendRepeatedKeys(

																1,	KeyEvent.KEYCODE_H,

																3,	KeyEvent.KEYCODE_E,

																1,	KeyEvent.KEYCODE_Y,

																1,	KeyEvent.KEYCODE_DPAD_DOWN,

																1,	KeyEvent.KEYCODE_ENTER);

								String	actual	=	messageInput.getText().toString();

								assertEquals("HEEEY",	actual);

				}

This	is	the	same	test	implemented	in	a	different	manner.	The	repetition	number	precedes
each	key.

The	runTestOnUiThread	helper	method
The	runTestOnUiThread	method	is	a	helper	method	used	to	run	portions	of	a	test	on	the
UI	thread.	We	used	this	inside	the	method	requestMessageInputFocus();	so	that	we	can
set	the	focus	on	our	EditText	before	waiting	for	the	application	to	be	idle,	using
Instrumentation.waitForIdleSync().	Also,	the	runTestOnUiThread	method	throws	an
exception,	so	we	have	to	deal	with	this	case:

private	void	requestMessageInputFocus()	{

								try	{

												runTestOnUiThread(new	Runnable()	{

																@Override

																public	void	run()	{

																				messageInput.requestFocus();

																}

												});

								}	catch	(Throwable	throwable)	{

												fail("Could	not	request	focus.");

								}

								instrumentation.waitForIdleSync();

				}

Alternatively,	as	we	have	discussed	before,	to	run	a	test	on	the	UI	thread,	we	can	annotate
it	with	@UiThreadTest.	However,	sometimes,	we	need	to	run	only	parts	of	the	test	on	the
UI	thread	because	other	parts	of	it	are	not	suitable	to	run	on	that	thread,	for	example,
database	calls,	or	we	are	using	other	helper	methods	that	provide	the	infrastructure
themselves	to	use	the	UI	thread,	for	example	the	TouchUtils	methods.

The	ActivityTestCase	class
This	is	mainly	a	class	that	holds	common	code	for	other	test	cases	that	access
Instrumentation.

You	can	use	this	class	if	you	are	implementing	a	specific	behavior	for	test	cases	and	the
existing	alternatives	don’t	fit	your	requirements.	This	means	you	are	unlikely	to	use	this
class	unless	you	want	to	implement	a	new	base	class	for	other	tests	to	use.	For	example,
consider	a	scenario	where	Google	brings	out	a	new	component	and	you	want	to	write	tests
around	it	(like	SuperNewContentProvider).

If	this	is	not	the	case,	you	might	find	the	following	options	more	suitable	for	your
requirements:

ActivityInstrumentationTestCase2<T	extends	Activity>

ActivityUnitTestCase<T	extends	Activity>

The	abstract	class	android.test.ActivityTestCase	extends
android.test.InstrumentationTestCase	and	serves	as	a	base	class	for	other	different
test	cases,	such	as	android.test.ActivityInstrumentationTestCase,
android.test.ActivityInstrumentationTestCase2,	and
android.test.ActivityUnitTestCase.

Note
The	android.test.ActivityInstrumentationTestCase	test	case	is	a	deprecated	class
since	Android	API	Level	3	(Android	1.5)	and	should	not	be	used	in	newer	projects.	Even
though	it	was	deprecated	long	ago,	it	has	a	great	name	for	auto	import,	so	be	careful!

The	scrubClass	method
The	scrubClass	method	is	one	of	the	protected	methods	in	the	class:

protected	void	scrubClass(Class<?>	testCaseClass)

It	is	invoked	from	the	tearDown()	method	in	several	of	the	discussed	test	case
implementations	in	order	to	clean	up	class	variables	that	may	have	been	instantiated	as
non-static	inner	classes	so	as	to	avoid	holding	references	to	them.

This	is	in	order	to	prevent	memory	leaks	for	large	test	suites.

IllegalAccessException	is	thrown	if	a	problem	is	encountered	while	accessing	these
class	variables.

The	ActivityInstrumentationTestCase2
class
The	ActivityInstrumentationTestCase2	class	would	probably	be	the	one	you	use	the
most	to	write	functional	Android	test	cases.	It	provides	functional	testing	of	a	single
Activity.

This	class	has	access	to	Instrumentation	and	will	create	the	Activity	under	test	using	the
system	infrastructure,	by	calling	InstrumentationTestCase.launchActivity().	The
Activity	can	then	be	manipulated	and	monitored	after	creation.

If	you	need	to	provide	a	custom	Intent	to	start	your	Activity,	before	invoking
getActivity(),	you	may	inject	an	Intent	with	setActivityIntent(Intent	intent).

This	test	case	would	be	very	useful	to	test	interactions	through	the	user	interface	as	events
can	be	injected	to	simulate	user	behavior.

The	constructor
There	is	only	one	public	non-deprecated	constructor	for	this	class,	which	is	as	follows:

ActivityInstrumentationTestCase2(Class<T>	activityClass)

It	should	be	invoked	with	an	instance	of	the	Activity	class	for	the	same	Activity	used	as	a
class	template	parameter.

The	setUp	method
The	setUp	method	is	the	precise	place	to	initialize	the	test	case	fields	and	other	fixture
components	that	require	initialization.

This	is	an	example	that	shows	some	of	the	patterns	that	you	might	repeatedly	find	in	your
test	cases:

	@Override

	protected	void	setUp()	throws	Exception	{

			super.setUp();

			//	this	must	be	called	before	getActivity()

			//	disabling	touch	mode	allows	for	sending	key	events

			setActivityInitialTouchMode(false);

			activity	=	getActivity();

			instrumentation	=	getInstrumentation();

			linkTextView	=	(TextView)	activity.findViewById(R.id.main_text_link);

			messageInput	=	(EditText)	

activity.findViewById(R.id.main_input_message);

			capitalizeButton	=	(Button)	

activity.findViewById(R.id.main_button_capitalize);

	}	

We	perform	the	following	actions:

1.	 Invoke	the	super	method.	This	is	a	JUnit	pattern	that	should	be	followed	here	to
ensure	correct	operation.

2.	 Disable	the	touch	mode.	To	take	effect,	this	should	be	done	before	the	Activity	is
created,	by	invoking	getActivity().	It	sets	the	initial	touch	mode	of	the	Activity
under	test	as	disabled.	The	touch	mode	is	a	fundamental	Android	UI	concept,	and	is
discussed	in	http://developer.android.com/guide/topics/ui/ui-
events.html#TouchMode.

3.	 Start	the	Activity	using	getActivity().
4.	 Get	the	instrumentation.	We	have	access	to	the	instrumentation	because

ActivityInstrumentationTestCase2	extends	InstrumentationTestCase.
5.	 Find	the	Views	and	set	the	fields.	In	these	operations,	note	that	the	R	class	used	is

from	the	target	package	and	not	from	the	tests.

http://developer.android.com/guide/topics/ui/ui-events.html#TouchMode

The	tearDown	method
Usually,	this	method	cleans	up	what	was	initialized	in	setUp.	For	instance,	if	you	were
creating	an	integration	test	that	sets	up	a	mock	web	server	before	your	tests,	you	would
want	to	tear	it	back	down	afterwards	to	free	up	resources.

In	this	example,	we	ensure	that	the	object	we	used	is	disposed	of:

@Override		

protected	void	tearDown()	throws	Exception	{

				super.tearDown();

						myObject.dispose();

}

The	ProviderTestCase2<T>	class
This	is	a	test	case	designed	to	test	the	ContentProvider	classes.

The	ProviderTestCase2	class	also	extends	AndroidTestCase.	The	class	template
parameter	T	represents	ContentProvider	under	test.	Implementation	of	this	test	uses
IsolatedContext	and	MockContentResolver,	which	are	mock	objects	that	we	described
before	in	this	chapter.

The	constructor
There	is	only	one	public	non-deprecated	constructor	for	this	class.	This	is	as	follows:

ProviderTestCase2(Class<T>	providerClass,	String	providerAuthority)

This	should	be	invoked	with	an	instance	of	the	ContentProvider	class	for	the	same
ContentProvider	class	used	as	a	class	template	parameter.

The	second	parameter	is	the	authority	for	the	provider,	which	is	usually	defined	as	the
AUTHORITY	constant	in	the	ContentProvider	class.

An	example
This	is	a	typical	example	of	a	ContentProvider	test:

public	void	testQuery()	{

				String	segment	=	"dummySegment";

				Uri	uri	=	Uri.withAppendedPath(MyProvider.CONTENT_URI,	segment);

				Cursor	c	=	provider.query(uri,	null,	null,	null,	null);

				try	{

						int	actual	=	c.getCount();

							assertEquals(2,	actual);

				}	finally	{

								c.close();

		}

}

In	this	test,	we	are	expecting	the	query	to	return	a	Cursor	that	contains	two	rows	(this	is
just	an	example	that	uses	the	number	of	rows	that	applies	for	your	particular	case)	and
asserts	this	condition.

Usually,	in	the	setUp	method,	we	obtain	a	reference	to	the	mProvider	provider	in	this
example,	using	getProvider().

What	is	interesting	to	note	is	that	because	these	tests	are	using	MockContentResolver	and
IsolatedContext,	the	content	of	the	real	database	is	not	affected,	and	we	can	also	run
destructive	tests	like	this	one:

public	void	testDeleteByIdDeletesCorrectNumberOfRows()	{

				String	segment	=	"dummySegment";

				Uri	uri	=	Uri.withAppendedPath(MyProvider.CONTENT_URI,	segment);

				int	actual	=	provider.delete(uri,	"_id	=	?",	new	String[]{"1"});

				assertEquals(1,	actual);

}

This	test	deletes	some	content	from	the	database,	but	the	database	is	restored	to	its	initial
content	afterwards	not	to	affect	other	tests.

The	ServiceTestCase<T>
This	is	a	test	case	specially	created	to	test	services.	The	methods	to	exercise	the	service
life	cycle,	such	as	setupService,	startService,	bindService,	and	shutDownService,	are
also	included	in	this	class.

The	constructor
There	is	only	one	public	non-deprecated	constructor	for	this	class.	This	is	as	follows:

ServiceTestCase(Class<T>	serviceClass)

It	should	be	invoked	with	an	instance	of	the	Service	class	for	the	same	Service	used	as	a
class	template	parameter.

The	TestSuiteBuilder.FailedToCreateTests
class
The	TestSuiteBuilder.FailedToCreateTests	class	is	a	special	TestCase	class	used	to
indicate	a	failure	during	the	build()	step.	That	is,	during	the	test	suite	creation,	if	an	error
is	detected,	you	will	receive	an	exception	like	this	one,	which	indicates	the	failure	to
construct	the	test	suite:

INFO/TestRunner(1):	java.lang.RuntimeException:	Exception	during	suite	

construction

INFO/TestRunner(1):					at	

android.test.suitebuilder.TestSuiteBuilder$FailedToCreateTests.testSuiteCon

structionFailed(TestSuiteBuilder.java:239)

INFO/TestRunner(1):					at	java.lang.reflect.Method.invokeNative(Native	

Method)

[...]

INFO/TestRunner(1):					at	

android.test.InstrumentationTestRunner.onStart(InstrumentationTestRunner.ja

va:520)

INFO/TestRunner(1):					at	

android.app.Instrumentation$InstrumentationThread.run(Instrumentation.java:

1447)

Using	libraries	in	test	projects
Your	Android	project	might	require	an	external	Java	library	or	an	Android	library.	Now,
we	will	explain	how	to	incorporate	these	in	your	project	that	is	ready	to	be	tested.	Note
that	the	following	explains	the	usage	of	a	local	module	that	is	an	Android	library,	but	the
same	rules	can	be	applied	to	an	external	JAR	(Java	library)	file	or	an	external	AAR
(Android	library)	file.

Let’s	pretend	that	in	one	Activity,	we	are	creating	objects	from	a	class	that	is	part	of	a
library.	For	the	sake	of	our	example,	let’s	say	the	library	is	called	dummyLibrary,	and	the
mentioned	class	is	Dummy.

So	our	Activity	would	look	like	this:

import	com.blundell.dummylibrary.Dummy;

public	class	MyFirstProjectActivity	extends	Activity	{

				private	Dummy	dummy;

				@Override

				public	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activity_main);

								final	EditText	messageInput	=	(EditText)	

findViewById(R.id.main_input_message);

								Button	capitalizeButton	=	(Button)	

findViewById(R.id.main_button_capitalize);

								capitalizeButton.setOnClickListener(new	OnClickListener()	{

												@Override

												public	void	onClick(View	v)	{

																String	input	=	messageInput.getText().toString();

																messageInput.setText(input.toUpperCase());

												}

								});

								dummy	=	new	Dummy();

				}

				public	Dummy	getDummy()	{

								return	dummy;

				}

				public	static	void	methodThatShouldThrowException()	throws	Exception	{

								throw	new	Exception("This	is	an	exception");

				}

}

This	library	is	an	Android	AAR	module,	and	so	it	should	be	added	to	your	build.gradle
dependencies	in	the	normal	way:

dependencies	{

				compile	project(':dummylibrary')

}

If	this	was	an	external	library,	you	would	replace	project(':dummylibrary')	with
'com.external.lib:name:version'.

Now,	let’s	create	a	simple	test.	From	our	previous	experience,	we	know	that	if	we	need	to
test	an	Activity,	we	should	use	ActivityInstrumentationTestCase2,	and	this	is	precisely
what	we	will	do.	Our	simple	test	will	be	as	follows:

public	void	testDummy()	{

		assertNotNull(activity.getDummy());

}

The	test	in	the	preceding	code	runs	and	passes	in	the	first	instance!	Note	that	in	the	not-so-
distant	past	(pre-Gradle),	the	test	would	not	have	even	compiled.	We	would	have	had	to
jump	through	hoops,	adding	the	test	library	to	our	Android	tests	project,	or	making	the
JAR/AAR	file	exportable	from	our	main	project.	It’s	a	nice	time	to	stop	and	reflect	on	the
power	of	Gradle	and	Android	Studio	that	give	us	a	lot	of	manual	setup	for	free.

Summary
We	investigated	the	most	relevant	building	blocks	and	reusable	patterns	to	create	our	tests.
Along	this	journey,	we:

Understood	the	common	assertions	found	in	JUnit	tests
Explained	the	specialized	assertions	found	in	the	Android	SDK
Explored	Android	mock	objects	and	their	use	in	Android	tests
Exemplified	the	use	of	the	different	test	cases	available	in	the	Android	SDK

Now	that	we	have	all	the	building	blocks,	it	is	time	to	start	creating	more	and	more	tests	to
acquire	the	experience	needed	to	master	the	technique.

The	next	chapter	will	provide	you	with	examples	of	when	and	where	to	use	different	test
cases	on	Android.	This	will	give	us	a	great	breadth	of	expertise	in	knowing	what	testing
methodology	to	apply	when	we	have	a	specific	scenario	to	test.

Chapter	3.	Baking	with	Testing	Recipes
This	chapter	provides	practical	examples	of	multiple	common	situations	that	you	will
encounter,	by	applying	the	disciplines	and	techniques	described	in	the	previous	chapters.
The	examples	are	presented	in	an	easy-to-follow	manner,	so	you	can	adapt	and	use	them
for	your	own	projects.

The	following	are	the	topics	that	will	be	covered	in	this	chapter:

Android	unit	tests
Testing	activities	and	applications
Testing	databases	and	content	providers
Testing	local	and	remote	services
Testing	user	interfaces
Testing	exceptions
Testing	parsers
Testing	for	memory	leaks
Testing	with	Espresso

After	this	chapter,	you	will	have	a	reference	to	apply	different	testing	recipes	to	your
projects	for	different	situations.

Android	unit	tests
There	are	some	cases	where	you	really	need	to	test	parts	of	the	application	in	isolation
with	little	connection	to	the	underlying	system.	In	Android,	the	system	is	the	Activity
framework.	In	such	cases,	we	have	to	select	a	base	class	that	is	high	enough	in	the	test
hierarchy	to	remove	some	of	the	dependencies	but	not	high	enough	for	us	to	be
responsible	for	some	of	the	basic	infrastructure	of	instantiating	Context,	for	example.

In	such	cases,	the	candidate	base	class	is	AndroidTestCase	because	this	allows	the	use	of
Context	and	Resources	without	thinking	about	Activities:

public	class	AccessPrivateDataTest	extends	AndroidTestCase	{

			public	void	testAccessAnotherAppsPrivateDataIsNotPossible()		{

								String	filesDirectory	=	getContext().getFilesDir().getPath();

								String	privateFilePath	=	filesDirectory	+	

"/data/com.android.cts.appwithdata/private_file.txt";

								try	{

												new	FileInputStream(privateFilePath);

												fail("Was	able	to	access	another	app's	private	data");

								}	catch	(FileNotFoundException	e)	{

												//	expected

								}

			}

}

Tip
This	example	is	based	on	the	Android	Compatibility	Test	Suite	(CTS)	at
http://source.android.com/compatibility/cts-intro.html.	The	CTS	is	a	suite	of	tests	aimed	at
making	the	Android	hardware	and	software	environment	consistent	for	application
developers,	irrespective	of	the	original	equipment	manufacturer.

The	AccessPrivateDataTest	class	extends	AndroidTestCase	because	it’s	a	unit	test	that
doesn’t	require	the	system	infrastructure.	In	this	particular	case,	we	could	not	have	used
TestCase	directly	because	we	are	using	getContext()	later	on.

This	test	method,	testAccessAnotherAppsPrivateDataIsNotPossible(),	tests	the	access
to	another	package’s	private	data	and	fails	if	access	is	possible.	To	achieve	this,	the
expected	exceptions	are	caught,	and	if	this	doesn’t	happen,	fail()	is	invoked	with	a
custom	message.	The	test	seems	pretty	straightforward,	but	you	can	see	how	powerful	this
is	to	stop	inadvertent	security	mistakes	from	creeping	in.

http://source.android.com/compatibility/cts-intro.html

Testing	activities	and	applications
Here,	we	cover	some	common	cases	that	you	will	find	in	your	day-to-day	testing,
including	dealing	with	Intents,	Preferences,	and	Context.	You	can	adapt	these	patterns	to
suit	your	specific	needs.

Mocking	applications	and	preferences
In	Android	parlance,	an	application	refers	to	a	base	class	used	when	it	is	needed	to
maintain	a	global	application	state.	The	full	package	is	android.app.Application.	This
can	be	utilized	when	dealing	with	shared	preferences.

We	expect	that	the	tests	that	alter	these	preferences’	values	will	not	affect	the	behavior	of
the	real	application.	Without	the	correct	testing	framework,	the	tests	could	delete	user
account	information	for	an	application	that	stores	these	values	as	shared	preferences.	This
doesn’t	sound	like	a	good	idea.	So	what	we	really	need	is	the	ability	to	mock	a	Context
that	also	mocks	the	access	to	SharedPreferences.

Our	first	attempt	could	be	to	use	RenamingDelegatingContext,	but	unfortunately,	it	does
not	mock	SharedPreferences,	although	it	is	close	because	it	mocks	the	database	and
filesystem	access.	So	first,	we	need	to	mock	access	to	our	shared	preferences.

Tip
Whenever	you	come	across	a	new	class	(like	RenamingDelegatingContext),	it’s	a	good
idea	to	read	the	relevant	Java	doc	to	get	an	overview	of	how	the	framework	developers
expect	it	to	be	used.	For	more	information,	refer	to
http://developer.android.com/reference/android/test/RenamingDelegatingContext.html.

The	RenamingMockContext	class
Let’s	create	the	specialized	Context.	The	RenamingDelegatingContext	class	is	a	very
good	point	to	start	from	because	as	we	mentioned	before,	database	and	filesystem	access
will	be	mocked.	The	problem	is	how	to	mock	the	SharedPreferences	access.

Remember	that	RenamingDelegatingContext,	as	its	name	suggests,	delegates	everything
to	a	Context.	So	the	root	of	our	problem	lies	in	this	Context.	When	you	access
SharedPreferences	from	a	Context,	you	use	getSharedPreferences(String	name,	int
mode).	To	change	the	way	this	method	works,	we	can	override	it	inside
RenamingMockContext.	Now	that	we	have	control,	we	can	prepend	the	name	parameter
with	our	test	prefix,	which	means	that	when	our	tests	run,	they	will	write	to	a	preferences
file	that	is	different	than	that	of	our	main	application:

public	class	RenamingMockContext	extends	RenamingDelegatingContext	{

				private	static	final	String	PREFIX	=	"test.";

				public	RenamingMockContext(Context	context)	{

								super(context,	PREFIX);

				}

				@Override

				public	SharedPreferences	getSharedPreferences(String	name,	int	mode)	{

								return	super.getSharedPreferences(PREFIX	+	name,	mode);

				}

}

Now,	we	have	full	control	over	how	preferences,	databases,	and	files	are	stored.

http://developer.android.com/reference/android/test/RenamingDelegatingContext.html

Mocking	contexts
We	have	the	RenamingMockContext	class.	Now,	we	need	a	test	that	uses	it.	As	we	will	be
testing	an	application,	the	base	class	for	the	test	would	be	ApplicationTestCase.	This	test
case	provides	a	framework	in	which	you	can	test	application	classes	in	a	controlled
environment.	It	provides	basic	support	for	the	lifecycle	of	an	application,	and	hooks	to
inject	various	dependencies	and	control	the	environment	in	which	your	application	is
tested.	Using	the	setContext()	method,	we	can	inject	the	RenamingMockContext	method
before	the	application	is	created.

We’re	going	to	test	an	application	called	TemperatureConverter.	This	is	a	simple
application	that	converts	Celsius	to	Fahrenheit	and	vice	versa.	We	will	discuss	more	about
the	development	of	this	app	in	Chapter	6,	Practicing	Test-driven	Development.	For	now,
the	details	aren’t	necessary	as	we	are	concentrating	on	testing	scenarios.	The
TemperatureConverter	application	will	store	the	decimal	places	of	any	conversion	as	a
shared	preference.	Consequently,	we	will	create	a	test	to	set	the	decimal	places	and	then
retrieve	it	to	verify	its	value:

public	class	TemperatureConverterApplicationTests	extends	

ApplicationTestCase<TemperatureConverterApplication>	{

				public	TemperatureConverterApplicationTests()	{

								this("TemperatureConverterApplicationTests");

				}

				public	TemperatureConverterApplicationTests(String	name)	{

								super(TemperatureConverterApplication.class);

								setName(name);

				}

				public	void	testSetAndRetreiveDecimalPlaces()	{

								RenamingMockContext	mockContext	=	new	

RenamingMockContext(getContext());

								setContext(mockContext);

								createApplication();

								TemperatureConverterApplication	application	=	getApplication();

								application.setDecimalPlaces(3);

								assertEquals(3,	application.getDecimalPlaces());

				}

}

We	extend	ApplicationTestCase	using	the	TemperatureConverterApplication	template
parameter.

Then,	we	use	the	given	name	constructor	pattern	that	we	discussed	in	Chapter	2,
Understanding	Testing	with	the	Android	SDK.

Here,	we	have	not	used	a	setUp()	method	since	there	is	only	one	test	in	the	class–you
ain’t	gonna	need	it	as	they	say.	One	day,	if	you	come	to	add	another	test	to	this	class,	this
is	when	you	can	override	setUp()	and	move	the	behavior.	This	follows	the	DRY	principle,

meaning	Don’t	Repeat	Yourself,	and	leads	to	more	maintainable	software.	So	at	the	top	of
the	test	method,	we	create	the	mock	context	and	set	the	context	for	this	test	using	the
setContext()	method;	we	create	the	application	using	createApplication().	You	need
to	ensure	you	call	setContext	before	createApplication	as	this	is	how	you	get	the
correct	instantiation	order.	Now,	the	code	that	actually	tests	for	the	required	behavior
setting	the	decimal	places,	retrieving	it,	and	verifying	its	value.	This	is	it,	using
RenamingMockContext	to	give	us	control	over	SharedPreferences.	Whenever	the
SharedPreference	is	requested,	the	method	will	invoke	the	delegating	context,	adding	the
prefix	for	the	name.	The	original	SharedPreferences	class	used	by	the	application	are
unchanged:

public	class	TemperatureConverterApplication	extends	Application	{

				private	static	final	int	DECIMAL_PLACES_DEFAULT	=	2;

				private	static	final	String	KEY_DECIMAL_PLACES	=	".KEY_DECIMAL_PLACES";

				private	SharedPreferences	sharedPreferences;

				@Override

				public	void	onCreate()	{

								super.onCreate();

								sharedPreferences	=	

PreferenceManager.getDefaultSharedPreferences(this);

				}

				public	void	setDecimalPlaces(int	places)	{

								Editor	editor	=	sharedPreferences.edit();

								editor.putInt(KEY_DECIMAL_PLACES,	places);

								editor.apply();

				}

				public	int	getDecimalPlaces()	{

								return	sharedPreferences.getInt(KEY_DECIMAL_PLACES,	

DECIMAL_PLACES_DEFAULT);

				}

}

We	can	verify	that	our	tests	do	not	affect	the	application	by	furnishing	the
TemperatureConverterApplication	class	with	some	value	in	the	shared	preferences,
running	the	application,	then	running	the	tests	and	eventually	verifying	that	this	value	was
not	affected	by	executing	the	tests.

Testing	activities
The	next	example	shows	how	an	activity	can	be	tested	in	complete	isolation	using	the
ActivityUnitTestCase<Activity>	base	class.	A	second	choice	would	be
ActivityInstrumentationTestCase2<Activity>.	However,	the	former	allows	you	to
create	an	Activity	but	not	attach	it	to	the	system,	meaning	you	cannot	launch	other
Activities	(you	are	an	Activity	single	unit).	This	choice	of	the	parent	class	not	only
requires	more	care	and	attention	in	your	setup	but	also	provides	a	greater	flexibility	and
control	over	the	Activity	under	test.	This	kind	of	test	is	intended	to	test	general	Activity
behavior	and	not	an	Activity	instance’s	interaction	with	other	system	components	or	any
UI-related	tests.

First	things	first,	here	is	the	class	under	test.	It	is	a	simple	Activity	with	one	button.	When
this	button	is	pressed,	it	fires	an	Intent	to	start	the	Dialer	and	finishes	itself:

public	class	ForwardingActivity	extends	Activity	{

				private	static	final	int	GHOSTBUSTERS	=	999121212;

				@Override

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activity_forwarding);

								View	button	=	findViewById(R.id.forwarding_go_button);

								button.setOnClickListener(new	View.OnClickListener()	{

												@Override

												public	void	onClick(View	v)	{

																Intent	intent	=	new	Intent("tel:"	+	GHOSTBUSTERS);

																startActivity(intent);

																finish();

												}

								});

				}

}

For	our	test	case,	we	extend	ActivityUnitTestCase<ForwardingActivity>,	as	we
mentioned	earlier,	as	a	unit	test	for	an	Activity	class.	This	activity	under	test	will	be
disconnected	from	the	system,	so	it	is	only	intended	to	test	internal	aspects	of	it	and	not	its
interaction	with	other	components.	In	the	setUp()	method,	we	create	the	Intent	that	will
start	our	Activity	under	test,	that	is,	ForwardingActivity.	Note	the	use	of
getInstrumentation().	The	getContext	class,	as	at	this	point	in	the	setUp()	method	of
the	Activity	Context,	is	still	null:

public	class	ForwardingActivityTest	extends	

ActivityUnitTestCase<ForwardingActivity>	{

				private	Intent	startIntent;

				public	ForwardingActivityTest()	{

								super(ForwardingActivity.class);

				}

				@Override

				protected	void	setUp()	throws	Exception	{

								super.setUp();

								Context	context	=	getInstrumentation().getContext();

								startIntent	=	new	Intent(context,	ForwardingActivity.class);

				}

Now	that	the	setup	is	done,	we	can	move	onto	our	tests:

public	void	testLaunchingSubActivityFiresIntentAndFinishesSelf()	{

Activity	activity	=	startActivity(startIntent,	null,	null);

View	button	=	activity.findViewById(R.id.forwarding_go_button);

button.performClick();

assertNotNull(getStartedActivityIntent());

assertTrue(isFinishCalled());

}

The	first	test	performs	a	click	on	the	Go	button	of	the	Forwarding	Activity.	The
onClickListener	class	of	that	button	invokes	startActivity()	with	an	Intent	that
defines	a	new	Activity	that	will	be	started.	After	performing	this	action,	we	verify	that
the	Intent	used	to	launch	the	new	Activity	is	not	null.	The	getStartedActivityIntent()
method	returns	the	Intent	that	was	used	if	the	Activity	under	tests	invoked
startActivity(Intent)	or	startActivityForResult(Intent,	int).	Next,	we	assert
that	finish()	was	called,	and	we	do	that	by	verifying	the	return	value	of
FinishCalled(),	which	returns	true	if	one	of	the	finish	methods	(finish(),
finishFromChild(Activity),	or	finishActivity(int))	was	called	in	the	Activity	under
test:

public	void	testExampleOfLifeCycleCreation()	{

		Activity	activity	=	startActivity(startIntent,	null,	null);

		//	At	this	point,	onCreate()	has	been	called,	but	nothing	else

		//	so	we	complete	the	startup	of	the	activity

		getInstrumentation().callActivityOnStart(activity);

		getInstrumentation().callActivityOnResume(activity);

		//	At	this	point	you	could	test	for	various	configuration	aspects

		//	or	you	could	use	a	Mock	Context	

		//	to	confirm	that	your	activity	has	made

		//	certain	calls	to	the	system	and	set	itself	up	properly.

		getInstrumentation().callActivityOnPause(activity);

		//	At	this	point	you	could	confirm	that	

		//	the	activity	has	paused	properly,

		//	as	if	it	is	no	longer	the	topmost	activity	on	screen.

				getInstrumentation().callActivityOnStop(activity);

		//	At	this	point,	you	could	confirm	that	

		//	the	activity	has	shut	itself	down	appropriately,

		//	or	you	could	use	a	Mock	Context	to	confirm	that	

		//	your	activity	has	released	any

		//	system	resources	it	should	no	longer	be	holding.

		//	ActivityUnitTestCase.tearDown()	is	always	automatically	called

		//	and	will	take	care	of	calling	onDestroy().

	}

The	second	test	is	perhaps	the	more	interesting	test	method	in	this	test	case.	This	test	case
demonstrates	how	to	exercise	the	Activity	life	cycle.	After	starting	the	Activity,
onCreate()	is	called	automatically,	and	we	can	then	exercise	other	life	cycle	methods	by
invoking	them	manually.	To	be	able	to	invoke	these	methods,	we	use	Intrumentation	of
this	test.	Also,	we	don’t	manually	invoke	onDestroy()	as	it	will	be	invoked	for	us	in
tearDown().

Let’s	walk	through	the	code.	This	method	starts	the	Activity	in	the	same	way	as	the
previously	analyzed	test.	After	the	activity	is	started,	its	onCreate()	method	is	called
automatically	by	the	system.	We	then	use	Instrumentation	to	invoke	other	life	cycle
methods	to	complete	the	Activity	under	test	start	up.	These	correspond	to	onStart()	and
onResume()	in	the	Activity	life	cycle.

The	Activity	is	now	completely	started,	and	it’s	time	to	test	for	the	aspects	we	are
interested	in.	Once	this	is	achieved,	we	can	follow	other	steps	in	the	life	cycle.	Note	that
this	sample	test	does	not	assert	anything	here	but	simply	points	out	how	to	step	through
the	life	cycle.	To	finish	the	life	cycle,	we	call	through	to	onPause()	and	onStop().	As	we
know,	onDestroy()	is	avoided	as	it	will	automatically	be	called	by	tearDown().

This	test	represents	a	test	skeleton.	You	can	reuse	it	to	test	your	Activities	in	isolation	and
to	test	life	cycle-related	cases.	The	injection	of	mock	objects	can	also	facilitate	testing	of
other	aspects	of	the	Activity,	such	as	accessing	system	resources.

Testing	files,	databases,	and	content
providers
Some	test	cases	have	the	need	to	exercise	databases	or	ContentProvider	operations,	and
soon	comes	the	need	to	mock	these	operations.	For	example,	if	we	are	testing	an
application	on	a	real	device,	we	don’t	want	to	interfere	with	the	normal	operation	of
applications	on	the	said	device,	especially	if	we	were	to	change	values	that	may	be	shared
by	more	than	one	application.

Such	cases	can	take	advantage	of	another	mock	class	that	is	not	a	part	of	the
android.test.mock	package	but	of	android.test	instead,	namely
RenamingDelegatingContext.

Remember,	this	class	lets	us	mock	file	and	database	operations.	A	prefix	supplied	in	the
constructor	is	used	to	modify	the	target	of	these	operations.	All	other	operations	are
delegated	to	the	delegating	Context	that	you	specify.

Suppose	our	Activity	under	test	uses	some	files	or	databases	that	we	want	to	control	in
some	way,	probably	to	introduce	specialized	content	to	drive	our	tests,	and	we	don’t	want
to,	or	we	cannot	use	the	real	files	or	database.	In	such	cases,	we	create
RenamingDelegatingContext,	which	specifies	a	prefix.	We	provide	mock	files	using	this
prefix	and	introduce	any	content	we	need	to	drive	our	tests,	and	the	Activity	under	test
could	use	them	with	no	alteration.

The	advantage	of	keeping	our	Activity	unchanged,	that	is,	not	modifying	it	to	read	from	a
different	source,	is	that	this	assures	that	all	the	tests	are	valid.	If	we	introduce	a	change
only	intended	for	our	tests,	we	will	not	be	able	to	assure	that,	under	real	conditions,	the
Activity	behaves	the	same.

To	demonstrate	this	case,	we	will	create	an	extremely	simple	Activity.

The	MockContextExampleActivity	activity	displays	the	content	of	a	file	inside	TextView.
What	we	intend	to	demonstrate	is	how	it	displays	different	content	during	a	normal
operation	of	Activity,	as	compared	to	when	it	is	under	test:

public	class	MockContextExampleActivity	extends	Activity	{

				private	static	final	String	FILE_NAME	=	"my_file.txt";

				private	TextView	textView;

				@Override

				public	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activity_mock_context_example);

								textView	=	(TextView)	findViewById(R.id.mock_text_view);

								try	{

												FileInputStream	fis	=	openFileInput(FILE_NAME);

												textView.setText(convertStreamToString(fis));

								}	catch	(FileNotFoundException	e)	{

												textView.setText("File	not	found");

								}

				}

				private	String	convertStreamToString(java.io.InputStream	is)	{

			Scanner	s	=	new	Scanner(is,	"UTF-8").useDelimiter("\\A");

							return	s.hasNext()	?	s.next()	:	"";

				}

				public	String	getText()	{

								return	textView.getText().toString();

				}

}

This	is	our	simple	Activity.	It	reads	the	content	of	the	my_file.txt	file	and	displays	it	on
TextView.	It	also	displays	any	error	that	might	occur.	Obviously,	in	a	real	scenario,	you
would	have	better	error	handling	than	this.

We	need	some	content	for	this	file.	Probably	the	easiest	way	to	create	the	files	is	as	shown
in	the	following	code:

$	adb	shell	

$	echo	"This	is	real	data"	>	data/data/com.blundell.tut/files/my_file.txt

$	echo	"This	is	*MOCK*	data"	>	

/data/data/com.blundell.tut/files/test.my_file.txt

We	created	two	different	files,	one	named	my_file.txt	and	the	other	test.my_file.txt,
with	different	content.	The	latter	indicates	that	it	is	a	mock	content.	If	you	ran	the
preceding	activity	now,	you	would	see	This	is	real	data	as	it	is	reading	from	the	expected
file	my_file.txt.

The	following	code	demonstrates	the	use	of	this	mock	data	in	our	activity	tests:

public	class	MockContextExampleTest	

extends	ActivityUnitTestCase<MockContextExampleActivity>	{

private	static	final	String	PREFIX	=	"test.";

private	RenamingDelegatingContext	mockContext;

public	MockContextExampleTest()	{

super(MockContextExampleActivity.class);

}

@Override

protected	void	setUp()	throws	Exception	{

super.setUp();

mockContext	=	new	

RenamingDelegatingContext(getInstrumentation().getTargetContext(),	PREFIX);

mockContext.makeExistingFilesAndDbsAccessible();

}

public	void	testSampleTextDisplayed()	{

setActivityContext(mockContext);

			startActivity(new	Intent(),	null,	null);

assertEquals("This	is	*MOCK*	data\n",	getActivity().getText());

}

}

The	MockContextExampleTest	class	extends	ActivityUnitTestCase	because	we	are
looking	for	isolated	testing	of	MockContextExampleActivity	and	because	we	are	going	to
inject	a	mocked	context;	in	this	case,	the	injected	context	is	RenamingDelegatingContext
as	a	dependency.

Our	fixture	consists	of	the	mock	context,	mockContext	and	RenamingDelegatingContext,
using	the	target	context	obtained	by	getInstrumentation().getTargetContext().	Note
that	the	context	where	the	instrumentation	is	run	is	different	than	the	context	of	the
Activity	under	test.

Here	a	fundamental	step	follows—since	we	want	to	make	the	existing	files	and	databases
accessible	to	this	test,	we	have	to	invoke	makeExistingFilesAndDbsAccessible().

Then,	our	test	named	testSampleTextDisplayed()	injects	the	mock	context	using
setActivityContext().

Tip
You	must	invoke	setActivityContext()	to	inject	a	mock	context	before	you	start	the
Activity	under	test	by	invoking	startActivity().

Then,	the	Activity	is	started	by	startActivity()	using	a	blank	Intent	just	created.

We	obtain	the	text	value	held	by	the	TextView	by	using	a	getter	that	we	added	to	the
Activity.	I	would	never	recommend	changing	production	code	(that	is,	exposing	getters)
just	for	your	tests	in	a	real	project,	as	this	can	lead	to	bugs,	incorrect	usage	patterns	by
other	developers,	and	security	issues.	However,	here,	we	are	demonstrating	the	use	of
RenamingDelegatingContext	rather	than	test	correctness.

Finally,	the	text	value	obtained	is	checked	against	the	This	is	MOCK*	data	string.	It	is
important	here	to	notice	that	the	value	used	for	this	test	is	the	test	file	content	and	not	the
real	file	content.

The	BrowserProvider	tests
These	tests	are	based	on	the	Browser	module	of	the	Android	Open	Source	Project
(AOSP).	The	AOSP	has	lots	of	great	test	examples,	and	using	them	as	an	example	here
stops	you	from	writing	a	lot	of	boilerplate	code	to	set	up	the	scenario	for	the	test.	They	are
intended	to	test	some	aspects	of	the	Browser	bookmarks,	content	provider,	which	is	part	of
the	standard	Browser	included	with	the	Android	platform	(not	the	Chrome	app	but	the
default	Browser	app):

public	class	BrowserProviderTests	extends	AndroidTestCase	{

				private	List<Uri>	deleteUris;

				@Override

				protected	void	setUp()	throws	Exception	{

							super.setUp();

								deleteUris	=	new	ArrayList<Uri>();

				}

				@Override

				protected	void	tearDown()	throws	Exception	{

								for	(Uri	uri	:	deleteUris)	{

												deleteUri(uri);

								}

								super.tearDown();

				}

}

Note
AOSP	tests	are	not	available	from	the	example	project	with	this	chapter	but	are	available
online	at
https://github.com/android/platform_packages_apps_browser/blob/master/tests/src/com/android/browser/BrowserProviderTests.java

This	snippet	includes	the	test	case	definition	that	extends	AndroidTestCase.	The
BrowserProviderTests	class	extends	AndroidTestCase	because	a	Context	is	needed	to
access	the	provider	content.

The	fixture	created	in	the	setUp()	method	creates	a	list	of	Uris	that	are	used	to	keep	track
of	the	inserted	Uris	to	be	deleted	at	the	end	of	each	test	in	the	tearDown()	method.	The
developers	could	have	saved	this	hassle	using	a	mock	content	provider,	maintaining	the
isolation	between	our	tests	and	the	system.	Anyway,	tearDown()	iterates	over	this	list	and
deletes	the	stored	Uris.	There	is	no	need	to	override	the	constructor	here	as
AndroidTestCase	is	not	a	parameterized	class,	and	we	don’t	need	to	do	anything	special
in	it.

Now	comes	the	test:

public	void	testHasDefaultBookmarks()	{

		Cursor	c	=	getBookmarksSuggest("");

		try	{

				assertTrue("No	default	bookmarks",	c.getCount()	>	0);

		}	finally	{

https://github.com/android/platform_packages_apps_browser/blob/master/tests/src/com/android/browser/BrowserProviderTests.java

				c.close();

		}

}

The	testHasDefaultBookmarks()	method	is	a	test	to	ensure	that	there	are	a	number	of
default	bookmarks	always	present	in	the	database.	On	startup,	a	cursor	iterates	over	the
default	bookmarks	obtained	by	invoking	getBookmarksSuggest(""),	which	returns	an
unfiltered	cursor	of	bookmarks;	this	is	why	the	content	provider	query	parameter	is	"":

public	void	testPartialFirstTitleWord()	{

			assertInsertQuery(

"http://www.example.com/rasdfe",	"nfgjra	sdfywe",	"nfgj");

}

The	testPartialFirstTitleWord()	method	and	three	others	like	it	not	shown	here
testFullFirstTitleWord(),	testFullFirstTitleWordPartialSecond(),	and
testFullTitle()	test	for	the	insertion	of	bookmarks.	To	achieve	this,	they	invoke
assertInsertQuery()	using	the	bookmarked	URL,	its	title,	and	the	query.	The	method
assertInsertQuery()	adds	the	bookmarks	to	the	bookmark	provider,	inserting	the	URL
issued	as	a	parameter	with	the	specified	title.	The	Uri	returned	is	verified	to	be	not	null
and	not	exactly	the	same	as	the	default	one.	Finally,	the	Uri	is	inserted	in	the	list	of	Uri
instances	to	be	deleted	in	tearDown().	The	code	for	this	can	be	seen	in	the	utility	methods
shown	as	follows:

public	void	testFullTitleJapanese()	{

String	title	=	"\u30ae\u30e3\u30e9\u30ea\u30fc\u30fcGoogle\u691c\u7d22";

assertInsertQuery("http://www.example.com/sdaga",	title,	title);

}

Note
Unicode	is	a	computing	industry	standard	designed	to	consistently	and	uniquely	encode
characters	used	in	written	languages	throughout	the	world.	The	Unicode	standard	uses
hexadecimals	to	express	a	character.	For	example,	the	value	\u30ae	represents	the
Katakana	letter	GI	().

We	have	several	tests	that	are	intended	to	verify	the	utilization	of	this	bookmark	provider
for	locales	and	languages	other	than	just	English.	These	particular	cases	cover	the
Japanese	language	utilization	in	bookmark	titles.	The	tests	testFullTitleJapanese(),
and	two	others	that	are	not	shown	here,	that	is,	testPartialTitleJapanese()	and
testSoundmarkTitleJapanese()	are	the	Japanese	versions	of	the	tests	introduced	before
using	Unicode	characters.	It	is	recommended	to	test	the	application’s	components	under
different	conditions,	like	in	this	case,	where	other	languages	with	different	character	sets
are	used.

Several	utility	methods	follow.	These	are	the	utilities	used	in	the	tests.	We	briefly	looked
at	assertInsertQuery()	before,	so	now,	let’s	look	at	the	other	methods	as	well:

private	void	assertInsertQuery(String	url,	String	title,	String	query)	{

								addBookmark(url,	title);

								assertQueryReturns(url,	title,	query);

				}

				private	void	addBookmark(String	url,	String	title)	{

								Uri	uri	=	insertBookmark(url,	title);

								assertNotNull(uri);

								assertFalse(BOOKMARKS_URI.equals(uri));

								deleteUris.add(uri);

				}

				private	Uri	insertBookmark(String	url,	String	title)	{

								ContentValues	values	=	new	ContentValues();

								values.put("title",	title);

								values.put("url",	url);

								values.put("visits",	0);

								values.put("date",	0);

								values.put("created",	0);

								values.put("bookmark",	1);

								return	getContext().getContentResolver().insert(BOOKMARKS_URI,	

values);

				}

private	void	assertQueryReturns(String	url,	String	title,	String	query)	{

		Cursor	c	=	getBookmarksSuggest(query);

		try	{

				assertTrue(title	+	"	not	matched	by	"	+	query,	c.getCount()	>	0);

				assertTrue("More	than	one	result	for	"	+	query,	c.getCount()	==	1);

				while	(c.moveToNext())	{

						String	text1	=	getCol(c,	SearchManager.SUGGEST_COLUMN_TEXT_1);

						assertNotNull(text1);

						assertEquals("Bad	title",	title,	text1);

						String	text2	=	getCol(c,	SearchManager.SUGGEST_COLUMN_TEXT_2);

						assertNotNull(text2);

						String	data	=	getCol(c,	SearchManager.SUGGEST_COLUMN_INTENT_DATA);

						assertNotNull(data);

						assertEquals("Bad	URL",	url,	data);

				}

		}	finally	{

				c.close();

		}

}

private	String	getCol(Cursor	c,	String	name)	{

		int	col	=	c.getColumnIndex(name);

		String	msg	=	"Column	"	+	name	+	"	not	found,	"	

															+	"columns:	"	+	Arrays.toString(c.getColumnNames());

		assertTrue(msg,	col	>=	0);

		return	c.getString(col);

}

private	Cursor	getBookmarksSuggest(String	query)	{

		Uri	suggestUri	=	

Uri.parse("content://browser/bookmarks/search_suggest_query");

		String[]	selectionArgs	=	{query};

		Cursor	c	=	getContext().getContentResolver().query(suggestUri,	null,	"url	

LIKE	?",	selectionArgs,	null);

		assertNotNull(c);

		return	c;

}

private	void	deleteUri(Uri	uri)	{

		int	count	=	getContext().getContentResolver().delete(uri,	null,	null);

		assertEquals("Failed	to	delete	"	+	uri,	1,	count);

}

The	method	assertInsertQuery()	invokes	assertQueryReturns(url,	title,	and
query),	after	addBookmark(),	to	verify	that	the	Cursor	returned	by
getBookmarksSuggest(query)	contains	the	expected	data.	This	expectation	can	be
summarized	as:

The	number	of	rows	returned	by	the	query	is	greater	than	0
The	number	of	rows	returned	by	the	query	is	equal	to	1
The	title	in	the	returned	row	is	not	null
The	title	returned	by	the	query	is	exactly	the	same	as	the	method	parameter
The	second	line	for	the	suggestion	is	not	null
The	URL	returned	by	the	query	is	not	null
This	URL	matches	exactly	the	URL	issued	as	the	method	parameter

This	strategy	provides	an	interesting	pattern	to	follow	in	our	tests.	Some	of	the	utility
methods	that	we	need	to	create	to	complete	our	tests	can	also	carry	their	own	verification
of	several	conditions	and	improve	our	test	quality.

Creating	assert	methods	in	our	classes	allows	us	to	introduce	a	domain-specific	testing
language	that	can	be	reused	when	testing	other	parts	of	the	system.

Testing	exceptions
We	have	mentioned	this	before	in	Chapter	1,	Getting	Started	with	Testing,	where	we	stated
that	you	should	test	for	exceptions	and	wrong	values	instead	of	just	testing	positive	cases:

@Test(expected	=	InvalidTemperatureException.class)

public	final	void	testExceptionForLessThanAbsoluteZeroF()	{

	TemperatureConverter.

fahrenheitToCelsius(TemperatureConverter.ABSOLUTE_ZERO_F	-	1);

}

@Test(expected	=	InvalidTemperatureException.class)

public	final	void	testExceptionForLessThanAbsoluteZeroC()	{

		TemperatureConverter.

celsiusToFahrenheit(TemperatureConverter.ABSOLUTE_ZERO_C	-	1);

}

We	have	also	presented	these	tests	before,	but	here,	we	are	digging	deeper	into	it.	The	first
thing	to	notice	is	that	these	are	JUnit4	tests,	meaning	we	can	test	for	exceptions	using	the
expected	annotation	parameter.	When	you	download	the	chapter’s	sample	project,	you
will	be	able	to	see	that	it	is	split	into	two	modules,	one	of	them	being	core,	which	is	a	pure
Java	module,	and	so,	we	have	the	chance	to	use	JUnit4.	At	the	time	of	writing	this,
Android	has	announced	JUnit4	support	but	not	yet	released	it,	so	we	are	still	on	JUnit3	for
Instrumented	Android	tests.

Every	time	we	have	a	method	that	is	supposed	to	generate	an	exception,	we	should	test
this	exceptional	condition.	The	best	way	of	doing	it	is	by	using	JUnit4’s	expected
parameter.	This	declares	that	the	test	should	throw	the	exception,	if	it	does	not	throw	the
exception	or	throws	a	different	exception,	the	test	will	fail.	This	can	also	be	done	in	JUnit3
by	invoking	the	method	under	test	inside	a	try-catch	block,	catching	the	expected
exception,	and	failing	otherwise:

				public	void	testExceptionForLessThanAbsoluteZeroC()	{

								try	{

										TemperatureConverter.celsiusToFahrenheit(ABSOLUTE_ZERO_C	-	1);

										fail();

								}	catch	(InvalidTemperatureException	ex)	{

										//	do	nothing	we	expect	this	exception!

								}

				}

Testing	local	and	remote	services
When	you	want	to	test	an	android.app.Service,	the	idea	is	to	extend	the
ServiceTestCase<Service>	class	to	test	in	a	controlled	environment:

public	class	DummyServiceTest	extends	ServiceTestCase<DummyService>	{

				public	DummyServiceTest()	{

								super(DummyService.class);

				}

				public	void	testBasicStartup()	{

								Intent	startIntent	=	new	Intent();

								startIntent.setClass(getContext(),	DummyService.class);

								startService(startIntent);

				}

				public	void	testBindable()	{

								Intent	startIntent	=	new	Intent();

								startIntent.setClass(getContext(),	DummyService.class);

								bindService(startIntent);

				}

}

The	constructor,	as	in	other	similar	cases,	invokes	the	parent	constructor	that	passes	the
Android	service	class	as	a	parameter.

This	is	followed	by	testBasicStartup().	We	start	the	service	using	an	Intent	that	we
create	here,	setting	its	class	to	the	class	of	the	service	under	test.	We	also	use	the
instrumented	Context	for	this	Intent.	This	class	allows	for	some	dependency	injection,	as
every	service	depends	on	the	Context	in	which	it	runs,	and	the	application	with	which	it	is
associated.	This	framework	allows	you	to	inject	modified,	mock,	or	isolated	replacements
for	these	dependencies,	and	thus	performs	a	true	unit	test.

Note
Dependency	Injection	(DI)	is	a	software	design	pattern	that	deals	with	how	components
get	hold	of	their	dependencies.	You	can	do	this	yourself	manually	or	use	one	of	the	many
dependency	injection	libraries.

Since	we	simply	run	our	tests	as	is,	the	service	will	be	injected	with	a	fully	functional
Context	and	a	generic	MockApplication	object.	Then,	we	start	the	service	using	the
startService(startIntent)	method,	in	the	same	way	as	if	it	were	started	by
Context.startService(),	providing	the	arguments	it	supplied.	If	you	use	this	method	to
start	the	service,	it	will	automatically	be	stopped	by	tearDown().

Another	test,	testBindable(),	will	test	whether	the	service	can	be	bound.	This	test	uses
bindService(startIntent),	which	starts	the	service	under	test	in	the	same	way	as	if	it
were	started	by	Context.bindService(),	providing	the	arguments	it	supplied.	It	returns
the	communication	channel	to	the	service.	It	may	return	null	if	clients	cannot	bind	to	the
service.	Most	probably,	this	test	should	check	for	the	null	return	value	in	the	service	with
an	assertion	like	assertNotNull(service)	to	verify	that	the	service	was	bound	correctly,

but	it	doesn’t,	so	we	can	focus	on	the	framework	classes	in	use.	Be	sure	to	include	this	test
when	you	write	code	for	similar	cases.

The	returned	IBinder	is	usually	for	a	complex	interface	that	has	been	described	using
AIDL.	In	order	to	test	with	this	interface,	your	service	must	implement	a	getService()
method,	as	shown	in	DummService	in	the	example	project	for	this	chapter;	which	has	this
implementation	of	that	method:

				public	class	LocalBinder	extends	Binder	{

								DummyService	getService()	{

												return	DummyService.this;

								}

				}

Extensive	use	of	mock	objects
In	the	previous	chapters,	we	described	and	used	the	mock	classes	that	are	present	in	the
Android	SDK.	While	these	classes	can	cover	a	great	number	of	cases,	there	are	other
Android	classes	and	your	own	domain	classes	to	consider.	You	might	have	the	need	for
other	mock	objects	to	furnish	your	test	cases.

Several	libraries	provide	the	infrastructure	to	satisfy	our	mocking	needs,	but	we	are	now
concentrating	on	Mockito,	which	is	perhaps	the	most	widely	used	library	in	Android.

Note
This	is	not	a	Mockito	tutorial.	We	will	just	be	analyzing	its	use	in	Android,	so	if	you	are
not	familiar	with	it,	I	would	recommend	that	you	take	a	look	at	the	documentation
available	on	its	website	at	https://code.google.com/p/mockito/.

Mockito	is	an	open	source	software	project	available	under	the	MIT	license,	and	provides
test	doubles	(mock	objects).	It	is	a	perfect	match	for	Test-driven	Development	due	to	the
way	it	verifies	expectations	and	due	to	its	dynamically	generated	mock	objects	because
they	support	refactoring,	and	the	test	code	will	not	break	when	renaming	methods	or
changing	its	signature.

Summarizing	its	documentation,	the	most	relevant	benefits	of	Mockito	are	as	follows:

Ask	questions	about	interactions	after	execution
It	is	not	expect-run-verify	–	avoids	expensive	setup
One	way	to	mock	that	is	a	simple	API
Easy	refactoring	with	types	used
It	mocks	concrete	classes	as	well	as	interfaces

To	demonstrate	its	usage	and	to	establish	a	style	that	can	be	later	reproduced	for	other
tests,	we	are	completing	some	example	test	cases.

Note
The	latest	version	of	Mockito	supported	by	Android	as	of	this	writing	is	Dexmaker
Mockito	1.1.	You	might	want	to	try	out	a	different	one,	but	you	will	most	probably
encounter	problems.

The	first	thing	we	should	do	is	add	Mockito	as	a	dependency	for	your	Android
instrumentation	tests.	This	is	as	simple	as	adding	the	androidTestCompile	reference	to
your	dependencies	closure.	Gradle	will	do	the	rest,	that	is,	download	the	JAR	file	and	add
it	to	your	classpath:

dependencies	{

				//	other	compile	dependencies

				androidTestCompile('com.google.dexmaker:dexmaker-mockito:1.1')

}

In	order	to	use	Mockito	in	our	tests,	we	only	need	to	statically	import	its	methods	from

https://code.google.com/p/mockito/

org.mockito.	Usually,	your	IDE	will	give	you	the	option	to	statically	import	these,	but	if
it	does	not,	you	can	try	to	add	them	manually	(if	the	code	is	red	when	manually	added,
then	you	have	a	problem	with	the	library	being	available):

		import	static	org.mockito.Matchers.*;

import	static	org.mockito.Mockito.*;

It	is	preferable	to	use	specific	imports	instead	of	using	the	wildcard.	The	wildcards	are
here	just	for	brevity.	It	is	most	likely	that	when	your	IDE	autosaves,	it	will	expand	them
into	the	imports	needed	(or	remove	them	if	you	aren’t	using	them!).

Importing	libraries
We	have	added	the	Mockito	library	to	the	project’s	Java	Build	Path.	Usually,	this	is	not	a
problem,	but	sometimes,	rebuilding	the	project	leads	us	to	the	following	error	that	stops
the	project	being	built:	Error:	duplicate	files	during	packaging	of	APK.

This	depends	on	how	many	libraries	are	included	by	the	project	and	what	they	are.

Most	of	the	available	open	source	libraries	have	a	similar	content	as	proposed	by	GNU
and	include	files	such	as	LICENSE,	NOTICE,	CHANGES,	COPYRIGHT,	and	INSTALL,	among
others.	We	will	find	this	problem	as	soon	as	we	try	to	include	more	than	one	in	the	same
project	to	ultimately	build	a	single	APK.	This	can	be	resolved	in	your	build.gradle:

				packagingOptions	{

								exclude	'META-INF/LICENSE'

								exclude	'folder/duplicatedFileName'

		}

Mockito	usage	example
Let’s	create	EditText,	which	only	accepts	signed	decimal	numbers.	We’ll	call	it
EditNumber.	EditNumber	uses	InputFilter	to	provide	this	feature.	In	the	following	tests,
we	will	be	exercising	this	filter	to	verify	that	the	correct	behavior	is	implemented.

To	create	the	test,	we	will	be	using	a	property	that	EditNumber	inherits	from	EditText,	so
it	can	add	a	listener,	actually	a	TextWatcher.	This	will	provide	methods	that	are	called
whenever	the	text	of	EditNumber	changes.	This	TextWatcher	is	a	collaborator	for	the	test,
and	we	could	have	implemented	it	as	its	own	separate	class	and	verified	the	results	of
calling	its	methods,	but	this	is	tedious,	and	might	introduce	more	errors,	so	the	approach
taken	is	to	use	Mockito	in	order	to	avoid	the	need	of	writing	an	external	TextWatcher.

This	is	precisely	how	we	are	introducing	a	mock	TextWatcher	to	check	method
invocations	when	the	text	changes.

The	EditNumber	filter	tests
This	suite	of	tests	will	exercise	InputFilter	behavior	of	EditNumber,	checking	the
method	calls	on	the	TextWatcher	mock	and	verifying	the	results.

We	are	using	an	AndroidTestCase	because	we	are	interested	in	testing	EditNumber	in
isolation	of	other	components	or	Activities.

We	have	several	inputs	that	need	to	be	tested	(we	allow	decimal	numbers,	but	do	not	allow
multiple	decimals,	letters,	and	so	on),	and	so	we	can	have	one	test	with	an	array	of
expected	input	and	an	array	of	expected	output.	However,	the	test	can	get	very
complicated	and	would	be	awful	to	maintain.	A	better	approach	is	to	have	one	test	for	each
test	case	of	InputFilter.	This	allows	us	to	give	meaningful	names	to	our	tests	and	an
explanation	of	what	we	are	aiming	to	test.	We	will	finish	up	with	a	list	like	this:

testTextChangedFilter*

								*	WorksForBlankInput

								*	WorksForSingleDigitInput

								*	WorksForMultipleDigitInput

								*	WorksForZeroInput

								*	WorksForDecimalInput

								*	WorksForNegativeInput

								*	WorksForDashedInput

								*	WorksForPositiveInput

								*	WorksForCharacterInput

								*	WorksForDoubleDecimalInput

Now,	we	will	run	through	the	use	of	mocks	for	one	of	these	tests
testTextChangedFilterWorksForCharacterInput(),	and	if	you	check	the	example
project,	you	will	see	that	all	the	other	tests	follow	the	same	pattern,	and	we	have	actually
extracted	out	a	helper	method	that	acts	as	a	custom	assertion	for	all	tests:

public	void	testTextChangedFilterWorksForCharacterInput()	{

		assertEditNumberTextChangeFilter("A1A",	"1");

}

/**

	*	@param	input		the	text	to	be	filtered	

	*	@param	output	the	result	you	expect	once	the	input	has	been	filtered

*/

private	void	assertEditNumberTextChangeFilter(String	input,	String	output)	

{

	int	lengthAfter	=	output.length();

	TextWatcher	mockTextWatcher	=	mock(TextWatcher.class);

	editNumber.addTextChangedListener(mockTextWatcher);

	editNumber.setText(input);

	verify(mockTextWatcher)

.afterTextChanged(editableCharSequenceEq(output));

	verify(mockTextWatcher)

.onTextChanged(charSequenceEq(output),	eq(0),	eq(0),	eq(lengthAfter));

	verify(mockTextWatcher)

.beforeTextChanged(charSequenceEq(""),	eq(0),	eq(0),	eq(lengthAfter));

}

As	you	can	see,	the	text	case	is	pretty	straightforward;	it	asserts	that	when	you	enter	A1A
into	the	text	of	the	EditNumber	view,	the	text	is	actually	changed	into	1.	This	means	that
our	EditNumber	has	filtered	out	the	characters.	An	interesting	thing	happens	when	we
look	at	the	assertEditNumberTextChangeFilter(input,	output)	helper	method.	Within
our	helper	method	is	where	we	verify	that	the	InputFilter	is	doing	its	job	and	it	is	here
we	use	Mockito.	There	are	four	common	steps	to	take	when	using	Mockito	mock	objects:

1.	 Instantiate	the	intended	mocks	that	are	ready	for	use.
2.	 Determine	what	behavior	is	expected	and	stub	it	to	return	any	fixture	data.
3.	 Exercise	the	methods,	usually	by	invoking	methods	of	the	class	under	test.
4.	 Verify	the	behavior	of	your	mock	object	to	pass	the	test.

According	to	step	one,	we	create	a	mock	TextWatcher	using	mock(TextWatcher.class)
and	set	it	as	our	TextChangedListener	on	EditNumber.

We	skip	step	two	in	this	instance	as	we	have	no	fixture	data,	in	that	the	class	we	are
mocking	does	not	have	any	methods	that	are	expected	to	return	a	value.	We’ll	come	back
to	this	in	another	test	later	on.

In	step	three,	we	have	our	mock	in	place,	and	we	can	exercise	the	method	under	test	to
perform	its	intended	action.	In	our	case,	the	method	is	editNumber.setText(input),	and
the	intended	action	is	to	set	the	text	and	thus	prompt	our	InputFilter	to	run.

Step	four	is	where	we	verify	that	the	text	was	actually	changed	by	our	filter.	Let’s	break
step	four	down	a	little.	Here	are	our	verifications	again:

verify(mockTextWatcher)

.afterTextChanged(editableCharSequenceEq(output));

verify(mockTextWatcher)

.onTextChanged(charSequenceEq(output),	eq(0),	eq(0),	eq(lengthAfter));

verify(mockTextWatcher)

.beforeTextChanged(charSequenceEq(""),	eq(0),	eq(0),	eq(lengthAfter));

We	will	be	using	two	custom	written	matchers	(editableCharSequenceEq(String)	and
charSequenceEq(String))	because	we	are	interested	in	comparing	the	string	content	for
different	classes	used	by	Android,	such	as	Editable	and	CharSequence.	When	you	use	a
special	matcher,	it	means	all	comparisons	done	for	that	verification	method	call	need	a
special	wrapper	method.

The	other	matcher,	eq(),	expects	int	that	is	equal	to	the	given	value.	The	latter	is
provided	by	Mockito	for	all	primitive	types	and	objects,	but	we	need	to	implement
editableCharSequenceEq()	and	charSequenceEq()	as	it	is	an	Android-specific	matcher.

Mockito	has	a	predefined	ArgumentMatcher	that	would	help	us	create	our	matcher.	You
extend	the	class	and	it	gives	you	one	method	to	override:

				abstract	boolean	matches(T	t);

The	matches	argument	matcher	method	expects	an	argument	that	you	can	use	to	compare

against	a	predefined	variable.	This	argument	is	the	“actual”	result	of	your	method
invocation,	and	the	predefined	variable	is	the	“expected”	one.	You	then	decide	to	return
true	or	false	whether	they	are	the	same	or	not.

As	you	might	have	already	realized,	the	custom	ArgumentMatcher	class’s	frequent	use	in	a
test	could	become	really	complex	and	might	lead	to	errors,	so	to	simplify	this	process,	we
will	be	using	a	helper	class	that	we	call	CharSequenceMatcher.	We	also	have
EditableCharSequenceMatcher,	which	can	be	found	in	the	example	project	of	this
chapter:

class	CharSequenceMatcher	extends	ArgumentMatcher<CharSequence>	{

				private	final	CharSequence	expected;

				static	CharSequence	charSequenceEq(CharSequence	expected)	{

								return	argThat(new	CharSequenceMatcher(expected));

				}

				CharSequenceMatcher(CharSequence	expected)	{

								this.expected	=	expected;

				}

				@Override

				public	boolean	matches(Object	actual)	{

								return	expected.toString().equals(actual.toString());

				}

				@Override

				public	void	describeTo(Description	description)	{

								description.appendText(expected.toString());

				}

}

We	implement	matches	by	returning	the	result	of	the	comparison	of	the	object	passed	as
arguments	with	our	predefined	field	after	they	are	converted	to	a	string.

We	also	override	the	describeTo	method,	and	this	allows	us	to	change	the	error	message
when	the	verification	fails.	This	is	always	a	good	tip	to	remember:	take	a	look	at	the	error
messages	before	and	after	doing	this:

Argument(s)	are	different!	Wanted:	

textWatcher.afterTextChanged(<Editable	char	sequence	matcher>);

Actual	invocation	has	different	arguments:

textWatcher.afterTextChanged(1);

Argument(s)	are	different!	Wanted:	

textWatcher.afterTextChanged(1XX);

Actual	invocation	has	different	arguments:	

textWatcher.afterTextChanged(1);

When	the	static	instantiation	method	for	our	matcher	is	used	and	we	import	this	as	a	static
method,	in	our	test,	we	can	simply	write:

verify(mockTextWatcher).onTextChanged(charSequenceEq(output),	…

Testing	views	in	isolation
The	test	that	we	are	analyzing	here	is	based	on	the	Focus2AndroidTest	from	the	Android
SDK	ApiDemos	project.	It	demonstrates	how	some	properties	of	the	Views	that	conform
to	a	layout	can	be	tested	when	the	behavior	itself	cannot	be	isolated.	The	testing
focusability	of	a	view	is	one	of	these	situations.

We	are	only	testing	individual	views.	In	order	to	avoid	creating	the	full	Activity,	this	test
extends	AndroidTestCase.	You	may	have	thought	about	using	just	TestCase,	but
unfortunately,	this	is	not	possible	as	we	need	a	Context	to	inflate	the	XML	layout	via
LayoutInflater,	and	AndroidTestCase	will	provide	us	with	this	component:

public	class	FocusTest	extends	AndroidTestCase	{

	private	FocusFinder	focusFinder;

	private	ViewGroup	layout;

	private	Button	leftButton;

	private	Button	centerButton;

	private	Button	rightButton;

@Override

protected	void	setUp()	throws	Exception	{

	super.setUp();

	focusFinder	=	FocusFinder.getInstance();

	//	inflate	the	layout

	Context	context	=	getContext();

	LayoutInflater	inflater	=	LayoutInflater.from(context);

	layout	=	(ViewGroup)	inflater.inflate(R.layout.view_focus,	null);

	//	manually	measure	it,	and	lay	it	out

	layout.measure(500,	500);

	layout.layout(0,	0,	500,	500);

	leftButton	=	(Button)	layout.findViewById(R.id.focus_left_button);

	centerButton	=	(Button)	layout.findViewById(R.id.focus_center_button);

	rightButton	=	(Button)	layout.findViewById(R.id.focus_right_button);

}

The	setup	prepares	our	test	as	follows:

1.	 We	request	a	FocusFinder	class.	This	is	a	class	that	provides	the	algorithm	used	to
find	the	next	focusable	View.	It	implements	the	singleton	pattern	and	that’s	why	we
use	FocusFinder.getInstance()	to	obtain	a	reference	to	it.	This	class	has	several
methods	to	help	us	find	focusable	and	touchable	items,	given	various	conditions	as
the	nearest	in	a	given	direction	or	searching	from	a	particular	rectangle.

2.	 Then,	we	get	the	LayoutInflater	class	and	inflate	the	layout	under	test.	One	thing
we	need	to	take	into	account,	as	our	test	is	isolated	from	other	parts	of	the	system,	is
that	we	have	to	manually	measure	and	lay	out	the	components.

3.	 Then,	we	use	the	find	views	pattern	and	assign	the	found	views	to	the	fields.

In	a	previous	chapter,	we	enumerated	all	the	available	asserts	in	our	arsenal,	and	you	may
remember	that	to	test	a	View’s	position,	we	had	a	complete	set	of	assertions	in	the
ViewAsserts	class.	However,	this	depends	on	how	the	layout	is	defined:

public	void	testGoingRightFromLeftButtonJumpsOverCenterToRight()	{

	View	actualNextButton	=	

focusFinder.findNextFocus(layout,	leftButton,	View.FOCUS_RIGHT);

	String	msg	=	"right	should	be	next	focus	from	left";

	assertEquals(msg,	this.rightButton,	actualNextButton);

}

public	void	testGoingLeftFromRightButtonGoesToCenter()	{

	View	actualNextButton	=	

focusFinder.findNextFocus(layout,	rightButton,	View.FOCUS_LEFT);

	String	msg	=	"center	should	be	next	focus	from	right";

	assertEquals(msg,	this.centerButton,	actualNextButton);

}

The	method	testGoingRightFromLeftButtonJumpsOverCenterToRight(),	as	its	name
suggests,	tests	the	focus	gained	by	the	right	button	when	the	focus	moves	from	the	left	to
the	right	button.	To	achieve	this	search,	the	instance	of	FocusFinder	obtained	during	the
setUp()	method	is	employed.	This	class	has	a	findNextFocus()	method	to	obtain	the
View	that	receives	focus	in	a	given	direction.	The	value	obtained	is	checked	against	our
expectations.

In	a	similar	way,	the	testGoingLeftFromRightButtonGoesToCenter()	test	tests	the	focus
that	goes	in	the	other	direction.

Testing	parsers
There	are	many	occasions	where	your	Android	application	relies	on	external	XML,	JSON
messages,	or	documents	obtained	from	web	services.	These	documents	are	used	for	data
interchange	between	the	local	application	and	the	server.	There	are	many	use	cases	where
XML	or	JSON	documents	are	obtained	from	the	server	or	generated	by	the	local
application	to	be	sent	to	the	server.	Ideally,	methods	invoked	by	these	activities	have	to	be
tested	in	isolation	to	have	real	unit	tests,	and	to	achieve	this,	we	need	to	include	some
mock	files	somewhere	in	our	APK	to	run	the	tests.

But	the	question	is	where	can	we	include	these	files?

Let’s	find	out.

Android	assets
To	begin,	a	brief	review	of	the	assets’	definition	can	be	found	in	the	Android	SDK
documentation:

The	difference	between	“resources”	and	“assets”	isn’t	much	on	the	surface,	but	in
general,	you’ll	use	resources	to	store	your	external	content	much	more	often	than
you’ll	use	assets.	The	real	difference	is	that	anything	placed	in	the	resources
directory	will	be	easily	accessible	from	your	application	from	the	R	class,	which	is
compiled	by	Android.	Whereas,	anything	placed	in	the	assets	directory	will	maintain
its	raw	file	format	and,	in	order	to	read	it,	you	must	use	the	AssetManager	to	read	the
file	as	a	stream	of	bytes.	So	keeping	files	and	data	in	resources	(res/)	makes	them
easily	accessible.

Clearly,	assets	are	what	we	need	to	store	the	files	that	will	be	parsed	to	test	the	parser.

So	our	XML	or	JSON	files	should	be	placed	in	the	assets	folder	to	prevent	manipulation	at
compile	time	and	to	be	able	to	access	the	raw	content	while	the	application	or	tests	are
run.

But	be	careful,	we	need	to	place	them	in	the	assets	of	our	androidTest	folder	because
then,	these	are	not	part	of	the	application,	and	we	don’t	want	them	packed	with	our	code
when	we	release	a	live	application.

The	parser	test
This	test	implements	an	AndroidTestCase	as	all	we	need	is	a	Context	to	be	able	to
reference	our	assets	folder.	Also,	we	have	written	the	parsing	inside	of	the	test,	as	the	point
of	this	test	is	not	how	to	parse	xml	but	how	to	reference	mock	assets	from	your	tests:

public	class	ParserExampleActivityTest	extends	AndroidTestCase	{

	public	void	testParseXml()	throws	IOException	{

	InputStream	assetsXml	=	getContext().getAssets()

.open("my_document.xml");

		String	result	=	parseXml(assetsXml);

		assertNotNull(result);

	}

}

}

The	InputStream	class	is	obtained	by	opening	the	my_document.xml	file	from	the	assets
by	getContext().getAssets().	Note	that	the	Context	and	thus	the	assets	obtained	here
are	from	the	tests	package	and	not	from	the	Activity	under	test.

Next,	the	parseXml()	method	is	invoked	using	the	recently	obtained	InputStream.	If	there
is	an	IOException,	the	test	will	fail	and	spit	out	the	error	from	the	stack	trace,	and	if
everything	goes	well,	we	test	that	the	result	is	not	null.

We	should	then	provide	the	XML	we	want	to	use	for	the	test	in	an	asset	named
my_document.xml.	You	want	the	asset	to	be	under	the	test	project	folder;	by	default,	this	is
androidTest/assets.

The	content	could	be:

<?xml	version="1.0"	encoding="UTF-8"	?>

<records>

		<record>

				<name>Paul</name>

		</record>

</records>

Testing	for	memory	usage
Sometimes,	memory	consumption	is	an	important	factor	to	measure	the	good	behavior	of
the	test	target,	be	it	an	Activity,	Service,	Content	Provider,	or	another	component.

To	test	for	this	condition,	we	can	use	a	utility	test	that	you	can	invoke	from	other	tests
mainly	after	having	run	a	test	loop:

public	void	assertNotInLowMemoryCondition()	{

//Verification:	check	if	it	is	in	low	memory

ActivityManager.MemoryInfo	mi	=	new	ActivityManager.MemoryInfo();

	((ActivityManager)getActivity()

.getSystemService(Context.ACTIVITY_SERVICE)).getMemoryInfo(mi);

assertFalse("Low	memory	condition",	mi.lowMemory);

}

This	assertion	can	be	called	from	other	tests.	At	the	beginning,	it	obtains	MemoryInfo	from
ActivityManager	using	getMemoryInfo(),	after	getting	the	instance	using
getSystemService().	The	lowMemory	field	is	set	to	true	if	the	system	considers	itself	to
currently	be	in	a	low	memory	situation.

In	some	cases,	we	want	to	dive	even	deeper	into	the	resource	usage	and	can	obtain	more
detailed	information	from	the	process	table.

We	can	create	another	helper	method	to	obtain	process	information	and	use	it	in	our	tests:

				private	String	captureProcessInfo()	{

								InputStream	in	=	null;

								try	{

											String	cmd	=	"ps";

											Process	p	=	Runtime.getRuntime().exec(cmd);

											in	=	p.getInputStream();

											Scanner	scanner	=	new	Scanner(in);

											scanner.useDelimiter("\\A");

											return	scanner.hasNext()	?	scanner.next()	:	"scanner	error";

								}	catch	(IOException	e)	{

											fail(e.getLocalizedMessage());

								}	finally	{

											if	(in	!=	null)	{

															try	{

																			in.close();

															}	catch	(IOException	ignore)	{

															}

												}

								}

								return	"captureProcessInfo	error";

				}

To	obtain	this	information,	a	command	(in	this	case,	ps	is	used,	but	you	can	adapt	it	to
your	needs)	is	executed	using	Runtime.exec().	The	output	of	this	command	is
concatenated	in	a	string	that	is	later	returned.	We	can	use	the	return	value	to	print	it	to	the
logs	in	our	test,	or	we	can	further	process	the	content	to	obtain	summary	information.

This	is	an	example	of	logging	the	output:

								Log.d(TAG,	captureProcessInfo());

When	this	test	is	run,	we	obtain	information	about	the	running	processes:

D/ActivityTest(1):	USER					PID			PPID		VSIZE		RSS					WCHAN				PC			NAME

D/ActivityTest(1):	root						1					0					312				220			c009b74c	0000ca4c	S	

/init

D/ActivityTest(1):	root						2					0					0						0					c004e72c	00000000	S	

kthreadd

D/ActivityTest(1):	root						3					2					0						0					c003fdc8	00000000	S	

ksoftirqd/0

D/ActivityTest(1):	root						4					2					0						0					c004b2c4	00000000	S	

events/0

D/ActivityTest(1):	root						5					2					0						0					c004b2c4	00000000	S	

khelper

D/ActivityTest(1):	root						6					2					0						0					c004b2c4	00000000	S	

suspend

D/ActivityTest(1):	root						7					2					0						0					c004b2c4	00000000	S	

kblockd/0

D/ActivityTest(1):	root						8					2					0						0					c004b2c4	00000000	S	

cqueue

D/ActivityTest(1):	root						9					2					0						0					c018179c	00000000	S	

kseriod

The	output	was	cut	for	brevity,	but	if	you	run	it,	you	will	get	the	complete	list	of	processes
that	run	on	the	system.

A	brief	explanation	of	the	information	obtained	is	as	follows:

Column Description

USER This	is	the	textual	user	ID.

PID This	is	the	process	ID	number	of	the	process.

PPID This	is	the	parent	process	ID.

VSIZE This	is	the	virtual	memory	size	of	the	process	in	KB.	This	is	the	virtual	memory	the	process	reserves.

RSS
This	is	the	resident	set	size,	the	non-swapped	physical	memory	that	a	task	has	used	(in	pages).	This	is	the
actual	amount	of	real	memory	the	process	takes	in	pages.

This	does	not	include	pages	that	have	not	been	demand-loaded	in.

WCHAN This	is	the	“channel”	in	which	the	process	is	waiting.	It	is	the	address	of	a	system	call,	and	can	be	looked
up	in	a	name	list	if	you	need	a	textual	name.

PC This	is	the	current	EIP	(instruction	pointer).

State	(no
header)

This	denotes	the	process	states,	which	are	as	follows:

S	is	used	to	indicate	sleeping	in	an	interruptible	state
R	is	used	to	indicate	running
T	is	used	to	indicate	a	stopped	process
Z	is	used	to	indicate	a	zombie

Column Description

NAME This	denotes	the	command	name.	The	application	processes	in	Android	are	renamed	after	its	package
name.

Testing	with	Espresso
Testing	UI	components	can	be	difficult.	Knowing	when	a	view	has	been	inflated	or
ensuring	you	don’t	access	views	on	the	wrong	thread	can	lead	to	strange	behavior	and
flaky	tests.	This	is	why	Google	has	released	a	helper	library	for	UI-related	instrumentation
tests	called	Espresso	(https://code.google.com/p/android-test-kit/wiki/Espresso).

Adding	the	Espresso	library	JAR	can	be	achieved	by	adding	to	the	/libs	folder,	but	to
make	it	easier	for	Gradle	users,	Google	released	a	version	to	their	Maven	repository
(consider	yourselves	lucky	users	because	this	was	not	available	before	version	2.0).	When
using	Espresso,	you	need	to	use	the	bundled	TestRunner	as	well.	Therefore,	the	setup
becomes:

dependencies	{

//	other	dependencies

androidTestCompile('com.android.support.test.espresso:espresso-core:2.0')

}

android	{

				defaultConfig	{

				//	other	configuration

				testInstrumentationRunner	

"android.support.test.runner.AndroidJUnitRunner"

}

//	Annoyingly	there	is	a	overlap	with	Espresso	dependencies	at	the	moment	

//	add	this	closure	to	fix	internal	jar	file	name	clashes

packagingOptions	{

								exclude	'LICENSE.txt'

				}

}

Once	the	Espresso	dependency	has	been	added	to	your	project,	you	have	a	fluid	interface
to	be	able	to	assert	the	behavior	on	your	UI	elements.	In	our	example,	we	have	an	Activity
that	allows	you	to	order	Espresso	coffee.	When	you	press	the	order	button,	a	nice	Espresso
image	appears.	We	want	to	verify	this	behavior	in	an	instrumentation	test.

The	first	thing	to	do	is	to	set	up	our	Activity	to	test.	We	use
ActivityInstrumentationTestCase2	so	that	we	can	have	a	full	lifecycle	Activity
running.	You	need	to	call	getActivity()	at	the	start	of	your	test	or	in	the	setup()	method
to	allow	the	activity	to	be	started	and	for	Espresso	to	find	the	Activity	in	a	resumed	state:

public	class	ExampleEspressoTest	extends	

ActivityInstrumentationTestCase2<EspressoActivity>	{

				public	ExampleEspressoTest()	{

								super(EspressoActivity.class);

				}

				@Override

				public	void	setUp()	throws	Exception	{

								getActivity();

				}

https://code.google.com/p/android-test-kit/wiki/Espresso

Once	the	setup	is	done,	we	can	write	a	test	using	Espresso	to	click	our	button	and	check
whether	the	image	was	shown	(made	visible)	in	the	Activity:

				public	void	testClickingButtonShowsImage()	{

								Espresso.onView(

														ViewMatchers.withId(R.id.espresso_button_order))

														perform(ViewActions.click());

								Espresso.onView(

														ViewMatchers.withId(R.id.espresso_imageview_cup))

																.check(ViewAssertions.matches(ViewMatchers.isDisplayed()));

				}

This	example	shows	the	use	of	Espresso	to	find	our	order	button,	click	on	the	button,	and
check	whether	our	ordered	Espresso	is	shown	to	the	user.	Espresso	has	a	fluid	interface,
meaning	it	follows	a	builder-style	pattern,	and	most	method	calls	can	be	chained.	In	the
preceding	example,	I	showed	the	fully	qualified	classes	for	clarity,	but	these	can	easily	be
changed	to	static	imports	so	that	the	test	is	even	more	human	readable:

				public	void	testClickingButtonShowsImage()	{

								onView(withId(R.id.espresso_button_order))

																.perform(click());

								onView(withId(R.id.espresso_imageview_cup))

																.check(matches(isDisplayed()));

				}

This	can	now	be	read	in	a	much	more	sentence	style.	This	example	shows	the	use	of
Espresso	to	find	our	order	button	onView(withId(R.id.espresso_button_order)).	Click
on	perform(click()),	then	we	find	the	cup	image
onView(withId(R.id.espresso_imageview_cup)),	and	check	whether	it	is	visible	to	the
user	check(matches(isDisplayed())).

This	shows	that	the	only	classes	you	need	to	think	about	are:

Espresso:	This	is	the	entry	point.	Always	start	with	this	to	interact	with	a	View.
ViewMatchers:	This	is	used	to	locate	a	View	within	the	current	hierarchy.
ViewActions:	This	is	used	to	click,	long	click,	and	so	on,	on	a	located	View.
ViewAssertions:	This	is	used	to	check	the	state	of	a	View	after	an	action	has	been
performed.

Espresso	has	a	really	powerful	API,	which	allows	you	to	test	the	positions	of	views	next	to
each	other,	match	data	in	a	ListView,	get	data	straight	from	a	header	or	footer,	and	check
the	views	in	your	ActionBar/ToolBar	and	many	more	assertions.	Another	feature	is	its
capability	to	deal	with	threading;	Espresso	will	wait	for	asynchronous	tasks	to	finish
before	it	asserts	whether	the	UI	has	changed.	An	explanation	of	these	features	and	much
more	is	listed	on	the	wiki	page	(https://code.google.com/p/android-test-kit/w/list).

https://code.google.com/p/android-test-kit/w/list

Summary
In	this	chapter,	several	real-world	examples	of	tests	that	cover	a	wide	range	of	cases	were
presented.	You	can	use	them	as	a	starting	point	while	creating	your	own	tests.

We	covered	a	variety	of	testing	recipes	that	you	can	extend	for	your	own	tests.	We	used
mock	contexts	and	showed	how	RenamingDelegatingContext	can	be	used	in	various
situations	to	change	the	data	obtained	by	the	tests.	We	also	analyzed	the	injection	of	these
mock	contexts	into	test	dependencies.

Then,	we	used	ActivityUnitTestCase	to	test	Activities	in	complete	isolation.	We	tested
Views	in	isolation	using	AndroidTestCase.	We	demonstrated	the	use	of	Mockito	to	mock
objects	combined	with	ArgumentMatchers	to	provide	custom	matchers	on	any	object.
Finally,	we	treated	the	analysis	of	potential	memory	leaks	and	took	a	peek	into	the	power
of	testing	UI	with	Espresso.

The	next	chapter	focuses	on	managing	your	test	environment	to	enable	you	to	run	tests	in
a	consistent,	fast,	and	always	deterministic	way,	which	leads	to	automation	and	those
mischievous	monkeys!

Chapter	4.	Managing	Your	Android
Testing	Environment
Now	that	we	have	a	complete	understanding	of	the	available	Android	testing	SDK	and
have	a	nice	range	of	testing	recipes	ready	to	assert	and	verify	our	app’s	behavior,	it	is	time
to	provide	different	conditions	to	run	our	tests,	explore	other	tests,	or	even	use	the
application	manually	to	understand	what	the	end	user	experience	would	be.

In	this	chapter,	we	will	cover:

Creating	Android	Virtual	Devices	(AVD)	to	provide	different	conditions	and
configurations	for	an	application
Understanding	the	different	configurations	that	we	can	specify	while	creating	AVDs
How	to	run	AVDs
How	to	create	headless	emulators
Unlocking	the	screen	to	be	able	to	run	all	the	tests
Simulating	real-life	network	conditions
Speeding	up	your	AVD	with	HAXM
Alternatives	to	the	Android	Virtual	Device
Running	monkey	to	generate	events	to	send	to	the	application

Creating	Android	Virtual	Devices
To	have	the	best	chance	of	detecting	problems	related	to	the	device	on	which	the
application	is	running,	you	need	the	widest	possible	coverage	of	device	features	and
configurations.

While	final	and	conclusive	tests	should	always	be	run	on	real	devices,	with	the	ever-
increasing	number	of	devices	and	form	factors,	it	is	virtually	impossible	that	you	will	have
one	device	of	each	to	test	your	application.	There	are	also	device	farms	in	the	cloud	to	test
on	a	variety	of	devices	(Google	for	cloud	device	testing),	but	sometimes,	their	cost	is
above	the	average	developer	budget.	Android	provides	a	way	of	emulating,	more	or	less
verbatim,	a	great	variety	of	features	and	configuration	just	for	the	convenience	of	different
AVD	configurations	(an	emulator).

Note
All	the	examples	in	this	chapter	are	run	from	OSX	10.9.4	(Mavericks)	32	bit	using
Android	SDK	Tools	23.0.5	with	platform	4.4.2	(API	20)	installed.

To	create	an	AVD,	you	can	use	the	android	avd	command	from	a	terminal,	or	from	inside
Android	Studio,	using	Tools	|	Android	|	AVD	Manager	or	its	shortcut	icon.	If	you	run	the
AVD	Manager	from	a	terminal,	you	get	a	GUI	that	is	slightly	different	than	what	you	get
by	running	from	Android	Studio,	but	they	both	do	the	same	job.	We’re	going	to	be	using
the	AVD	Manager	from	Android	Studio	as	this	is	the	most	likely	use	case.

By	clicking	on	the	icon,	you	can	access	the	AVD	Manager.	Here,	you	press	the	Create
Device…	button	to	create	a	new	AVD,	and	the	following	dialog	box	is	presented:

Now,	you	can	select	a	profile	phone	for	the	hardware	(let’s	pick	Nexus	5),	hit	Next,	and

select	an	Android	version	(KitKat	x86).	Hit	Next	again,	and	you	get	a	summary	of	your
device.	You	can	click	on	Finish	and	you	create	the	AVD	using	the	default	values.
However,	if	you	need	to	support	specific	configurations,	you	can	specify	different
hardware	properties.	Let’s	change	the	AVD	name	to	testdevice.	Even	more	properties
are	available	by	using	the	Show	Advanced	Settings	button.

A	wide	range	of	properties	can	be	set.	Some	highlights	are:

Ram	size	/	SD	card	size
Emulate	or	use	your	webcam	as	front	/	back	camera
Change	the	network	speed	/	simulate	latency

Setting	the	scale	is	also	very	useful	to	test	your	application	in	a	window	that	resembles	the
size	of	a	real	device.	It	is	a	very	common	mistake	to	test	your	application	in	an	AVD	with
a	window	size	that	is	at	least	twice	the	size	of	a	real	device,	and	using	a	mouse	pointer,
believing	that	everything	is	fine,	to	later	realize	on	a	physical	device	with	a	screen	of	5	or
6	inches	that	some	items	on	the	UI	are	impossible	to	touch	with	your	finger.

Finally,	it	is	also	helpful	to	test	your	application	under	the	same	conditions	repeatedly.	To
be	able	to	test	under	the	same	conditions	again	and	again,	it	is	sometimes	helpful	to	delete
all	the	information	that	was	entered	in	the	previous	sessions.	If	this	is	the	case,	ensure
Store	a	snapshot	for	faster	startup	is	unticked	so	as	to	start	afresh	every	time.

Running	AVDs	from	the	command	line
Wouldn’t	it	be	nice	if	we	could	run	different	AVDs	from	the	command	line	and	perhaps
automate	the	way	we	run	or	script	our	tests?

By	freeing	the	AVD	from	its	UI	window,	we	open	a	whole	new	world	of	automation	and
scripting	possibilities.

Well,	let’s	explore	these	alternatives.

Headless	emulator
A	headless	emulator	(its	UI	window	is	not	displayed)	comes	in	very	handy	when	we	run
automated	tests	and	nobody	is	looking	at	the	window,	or	the	interaction	between	the	test
runner	and	the	application	is	so	fast	that	we	hardly	see	anything.

Also,	it	is	worth	mentioning	that,	sometimes,	you	can’t	understand	why	some	tests	fail
until	you	see	the	interaction	on	the	screen,	so	use	your	own	judgment	when	selecting	a
running	mode	for	your	emulator.

One	thing	that	we	may	have	noticed	while	running	AVDs	is	that	their	network
communication	ports	are	assigned	at	runtime,	incrementing	the	last	used	port	by	2	and
starting	with	5554.	This	is	used	to	name	the	emulator	and	set	its	serial	number;	for
example,	the	emulator	using	port	5554	becomes	emulator-5554.	This	is	very	useful	when
we	run	AVDs	during	the	development	process	because	we	don’t	have	to	pay	attention	to
port	assignment.	However,	it	can	be	very	confusing	and	difficult	to	track	which	test	runs
on	which	emulator	if	we	are	running	more	than	one	simultaneously.

In	such	cases,	we	will	be	specifying	manual	ports	to	keep	the	specific	AVD	under	our
control.

Usually,	when	we	are	running	tests	on	more	than	one	emulator	at	the	same	time,	not	only
do	we	want	to	detach	the	window,	but	also	avoid	sound	output.	We	will	add	options	for
this	as	well.

The	command	line	to	launch	the	test	AVD	that	we	just	created	is	as	follows,	and	the	port
must	be	an	integer	between	5554	and	5584:

$	emulator	-avd	testdevice	-no-window	-no-audio	-no-boot-anim	-port	5580

We	can	now	check	whether	the	device	is	in	the	device	list:

$	adb	devices

List	of	devices	attached

emulator-5580		device

The	next	step	is	to	install	the	application	and	the	tests:

$	adb	-s	emulator-5580	install	YourApp.apk

347	KB/s	(16632	bytes	in	0.046s)	:	/data/local/tmp/YourApp.apk

Success

$	adb	-s	emulator-5580	install	YourAppTests.apk

222	KB/s	(16632	bytes	in	0.072s)

		pkg:	/data/local/tmp/YourAppTests.apk

Success

Then,	we	can	use	the	specified	serial	number	to	run	the	tests	on	it:

$	adb	-s	emulator-5580	shell	am	instrument	-w\	

com.blundell.tut.test/android.test.InstrumentationTestRunner

com.blundell.tut.test.MyTests:......

com.blundell.tut.test.MyOtherTests:..........

Test	results	for	InstrumentationTestRunner=..................

Time:	15.295

OK	(20	tests)

Disabling	the	keyguard
We	can	see	the	tests	being	run	without	them	requiring	any	intervention	and	access	to	the
emulator	GUI.

Sometimes,	you	might	receive	some	errors	for	tests	that	are	not	failing	if	you	run	in	a
more	standard	approach,	like	in	a	standard	emulator	launched	from	your	IDE.	In	such
cases,	one	of	the	reasons	is	that	the	emulator	might	be	locked	at	the	first	screen,	and	we
need	to	unlock	it	to	be	able	to	run	tests	that	involve	the	UI.

To	unlock	the	screen,	you	can	use	the	following	command:

$	adb	-s	emulator-5580	emu	event	send	EV_KEY:KEY_MENU:1	EV_KEY:KEY_MENU:0

The	lock	screen	can	also	be	disabled	programmatically.	In	the	instrumentation	test	class,
you	should	add	the	following	code,	most	probably	in	setup():

	@Override

	public	void	setUp()	throws	Exception	{

			Activity	activity	=	getActivity();

			Window	window	=	activity.getWindow();

			window.addFlags(WindowManager.LayoutParams.FLAG_DISMISS_KEYGUARD);

	}

This	will	dismiss	the	keyguard	for	these	tests	and	has	the	added	advantage	of	not	needing
any	extra	security	permissions	or	changes	to	the	app	under	test	(which	the	deprecated
alternative	does,	see
http://developer.android.com/reference/android/app/KeyguardManager.html).

http://developer.android.com/reference/android/app/KeyguardManager.html

Cleaning	up
On	certain	occasions,	you	also	need	to	clean	up	services	and	processes	that	are	started
after	running	tests.	This	prevents	the	results	of	the	latter	from	being	influenced	by	the
ending	conditions	of	the	previous	tests.	In	these	cases,	it	is	always	better	to	start	from	a
known	condition,	freeing	all	the	used	memory,	stopping	services,	reloading	resources,	and
restarting	processes,	which	is	achievable	by	warm-booting	the	emulator:

$	adb	-s	emulator-5580	shell	'stop';	sleep	5;	start'

This	command	line	opens	the	emulator	shell	for	our	emulator,	and	runs	the	stop	and	start
commands,	or	as	people	say,	turning	it	off	and	on	again.

The	output	of	these	commands	can	be	monitored	using	the	logcat	command:

$	adb	-s	emulator-5580	logcat

You	will	see	messages	like	these:

D/AndroidRuntime(1):

D/AndroidRuntime(1):	>>>>>>>>>>	AndroidRuntime	START	<<<<<<<<<<

D/AndroidRuntime(1):	CheckJNI	is	ON

D/AndroidRuntime(1):	---	registering	native	functions	---

I/SamplingProfilerIntegration(1):	Profiler	is	disabled.

I/Zygote		(1):	Preloading	classes…

I/ServiceManager(2):	service	'connectivity''connectivity''connectivity'''	

died

I/ServiceManager(2):	service	'throttle''throttle''throttle'''	died

I/ServiceManager(2):	service	

'accessibility''accessibility''accessibility'''	died

Terminating	the	emulator
Once	we	finish	working	with	one	of	the	headless	emulator	instances,	we	start	using	the
command	mentioned	earlier.	We	use	the	following	command	line	to	kill	it:

$	adb	-s	emulator-5580	emu	kill

This	will	stop	the	emulator	from	freeing	the	used	resources	and	terminating	the	emulator
process	on	the	host	computer.

Additional	emulator	configurations
Sometimes,	what	we	need	to	test	is	outside	the	reach	of	the	options	that	can	be	set	when
the	AVD	is	created	or	configured.

One	of	the	cases	could	be	the	need	to	test	our	application	under	different	locales.	Let’s	say
we	want	to	test	our	application	on	a	Japanese	phone—an	emulator,	with	the	language	and
country	set	to	Japanese	and	Japan	respectively.

We	have	the	ability	to	pass	these	properties	in	the	emulator	command	line.	The	-prop
command	line	option	allows	us	to	set	any	of	the	properties	we	could	set:

$	emulator	-avd	testdevice	-no-window	-no-audio	-no-boot-anim	-port	5580			

-prop	persist.sys.language=ja	-prop	persist.sys.country=JP

To	verify	that	our	settings	were	successful,	we	can	use	the	getprop	command	to	verify
them,	for	example:

$	adb	–s	emulator-5580	shell	"getprop	persist.sys.language"

ja

$	adb	–s	emulator-5580	shell	"getprop	persist.sys.country"

JP

If	you	want	to	clear	all	the	user	data	after	playing	with	the	persistent	settings,	you	can	use
the	following	command:

$	adb	-s	emulator-5580	emu	kill

$	emulator	-avd	testdevice	-no-window	-no-audio	-no-boot-anim	-port	5580	-

wipe-data

After	this,	the	emulator	will	start	afresh.

Note
More	information	and	a	list	of	available	properties	for	setting	the	emulator	hardware
options	can	be	found	at	http://developer.android.com/tools/devices/managing-avds-
cmdline.html#hardwareopts.

http://developer.android.com/tools/devices/managing-avds-cmdline.html#hardwareopts

Simulating	network	conditions
It	is	extremely	important	to	test	under	different	network	conditions,	but	it	is	neglected
more	often	than	not.	This	can	lead	to	misconceptions	that	the	application	behaves
differently	because	we	use	the	host	network	that	presents	a	different	speed	and	latency.

The	Android	emulator	supports	network	throttling,	for	example,	to	support	slower	network
speeds	and	higher	connection	latencies.	This	can	be	selected	when	you	first	create	your
AVD,	but	can	also	be	done	in	the	emulator	at	any	time	from	the	command	line	using	the	-
netspeed	<speed>	and	-netdelay	<delay>	options.

The	complete	list	of	supporting	options	is	as	follows:

For	network	speed:

Option Description Speeds	[kbits/s]

-netspeed	gsm GSM/CSD Up:	14.4,	down:	14.4

-netspeed	hscsd HSCSD Up:	14.4,	down:	43.2

-netspeed	gprs GPRS Up:	40.0,	down:	80.0

-netspeed	edge EDGE/EGPRS Up:	118.4,	down:	236.8

-netspeed	umts UMTS/3G Up:	128.0,	down:	1920.0

-netspeed	hsdpa HSDPA Up:	348.0,	down:	14400.0

-netspeed	full No	limit Up:	0.0,	down:	0.0

-netspeed	<num> Select	both	the	upload	and	download	speed Up:	as	specified,	down:	as	specified

-netspeed	<up>:<down> Select	the	individual	up	and	down	speed Up:	as	specified,	down:	as	specified

For	latency:

Option Description Delay	[msec]

-netdelay	gprs GPRS Min	150,	max	550

-netdelay	edge EDGE/EGPRS Min	80,	max	400

-netdelay	umts UMTS/3G Min	35,	max	200

-netdelay	none No	latency Min	0,	max	0

-netdelay	<num> Select	exact	latency Latency	as	specified

-netdelay	<min>:<max> Select	min	and	max	latencies Minimum	and	maximum	latencies	as	specified

If	the	values	are	not	specified,	the	emulator	uses	the	following	default	values:

The	default	network	speed	is	full
The	default	network	latency	is	none

This	is	an	example	of	an	emulator	using	these	options	to	select	the	GSM	network	speed	of
14.4	kbits/sec	and	a	GPRS	latency	of	150	to	500	msecs:

$	emulator	-avd	testdevice	-port	5580	-netspeed	gsm	-netdelay	gprs

Once	the	emulator	is	running,	you	can	verify	these	network	settings	or	change	them
interactively	using	the	Android	console	inside	a	Telnet	client:

$	telnet	localhost	5580

Trying	127.0.0.1…

Connected	to	localhost.

Escape	character	is	'^]'.

Android	Console:	type	'help'	for	a	list	of	commands

OK

After	we	are	connected,	we	can	type	the	following	command:

network	status

Current	network	status:

		download	speed:						14400	bits/s	(1.8	KB/s)

		upload	speed:								14400	bits/s	(1.8	KB/s)

		minimum	latency:		150	ms

		maximum	latency:		550	ms

OK

You	can	use	the	emulator	to	test	applications	using	network	services	either	manually	or	in
an	automated	way.

In	some	cases,	this	not	only	involves	throttling	the	network	speed	but	also	changing	the
state	of	the	GPRS	connection	to	investigate	how	the	application	behaves	and	copes	with
these	situations.	To	change	this	status,	we	can	also	use	the	Android	console	in	a	running
emulator.

For	example,	to	unregister	the	emulator	from	the	network,	we	can	use:

$	telnet	localhost	5580

After	receiving	the	OK	subprompt,	we	can	set	the	data	network	mode	as	unregistered	by
issuing	the	following	command.	This	will	turn	off	all	data:

gsm	data	unregistered

OK

quit

Connection	closed	by	foreign	host.

After	testing	the	application	under	this	condition,	you	can	connect	it	again	by	using	the
following	command	line:

gsm	data	home

OK

To	verify	the	status,	you	can	use	the	following	command	lines:

gsm	status

gsm	voice	state:	home

gsm	data	state:		home

OK

Speeding	up	your	AVD	with	HAXM
When	using	Android	Virtual	Devices,	you’ll	notice	that	they	aren’t	the	most	responsive	of
emulators.	This	is	due	to	the	fact	that	the	AVD	emulator	does	not	support	hardware	GL,
and	so	the	GL	code	gets	translated	into	ARM	software,	which	gets	run	on	hardware
emulated	by	QEMU	(QEMU	is	the	hosted	virtual	machine	monitor	that	AVDs	run	on	top
of).	Google	has	been	working	on	this	problem,	and	now,	efficient	use	of	the	host	GPU	is
boosting	speed	(SDK	17).	Responsiveness	has	improved	on	this	and	above	levels	of
emulator.

Another	speed	boost	can	be	gained	by	using	Intel’s	Hardware	Accelerated	Execution
Manager	(HAXM).	You	can	get	a	5	to	10	times	speed	boost	on	your	AVDs	that	run	x86	as
it	will	execute	the	CPU	commands	natively.

HAXM	works	by	allowing	the	CPU	commands	to	be	run	on	your	hardware	(that	is	your
Intel	CPU),	whereas	earlier,	QEMU	would	be	simulating	the	CPU,	and	all	commands
would	be	through	software,	which	is	why	the	original	architecture	is	cumbersome.

As	per	the	requirements,	you	need	to	have	an	Intel-based	processor	with	VT
(Virtualization	Technology)	support	and	an	x86-based	emulator	with	minimum	SDK	10
(Gingerbread).	Intel	claims	that	most	Intel	processors	from	2005	onwards	will	support	VT
offloading	as	standard.

Installation	is	straightforward;	download	HAXM	from	the	extras	section	of	the	Android
SDK	Manager,	locate	the	downloaded	file,	and	follow	the	installer	instructions.	You	can
clarify	a	successful	installation	by	running	this	command	from	a	terminal:

kextstat	|	grep	intel	

If	you	get	a	message	that	contains	com.intel.kext.intelhaxm,	you’ve	installed	and	can
now	run	your	speedy	x86	emulator.	There	is	nothing	else	you	have	to	do,	just	ensure	the
CPU/ABI	of	your	Android	emulator	is	x86	and	HAXM	will	be	running	in	the	background
for	you.

Alternatives	to	the	AVD
The	Android	Virtual	Device	is	not	your	only	way	of	running	Android	apps.	There	are	now
a	few	solutions	you	can	choose	from.	A	quick	search	on	Google	can	bring	up	this	list	(I
won’t	write	it	here	as	they	can	quickly	get	out	of	date).	One	of	these	that	I	personally
recommend	is	the	GenyMotion	emulator.	This	is	an	Android	emulator	that	uses	x86
architecture	virtualization	to	make	it	much	more	efficient.	It	runs	much	faster	and
smoother	than	the	AVD.	The	downside	being	it	is	only	free	for	personal	use,	and	as	of	this
writing,	it	does	not	emulate	all	the	sensors	of	a	device,	but	I	know	they	are	busy	working
on	this.

Running	monkey
You	might	know	about	the	infinite	monkey	theorem.	This	theorem	states	that	a	monkey
that	hits	keys	at	random	on	a	typewriter	keyboard	for	an	infinite	amount	of	time	will
eventually	type	a	given	text,	such	as	the	complete	works	of	William	Shakespeare.	The
Android	version	of	this	theorem	states	that	a	monkey	that	produces	random	touches	on	a
device	could	crash	your	application	in,	well,	much	less	than	an	infinite	amount	of	time.

With	this,	Android	features	a	monkey	application	(http://goo.gl/LSWg85)	that	will
generate	the	random	events	instead	of	a	real	monkey.

The	simplest	way	to	run	monkey	against	our	application	to	generate	random	events	is:

$	adb	-e	shell	monkey	-p	com.blundell.tut	-v	-v	1000

You	will	be	receiving	this	output:

Events	injected:	1000

:Sending	rotation	degree=0,	persist=false

:Dropped:	keys=0	pointers=4	trackballs=0	flips=0	rotations=0

##	Network	stats:	elapsed	time=2577ms	(0ms	mobile,	0ms	wifi,	2577ms	not	

connected)

//	Monkey	finished

The	monkey	will	send	events	only	to	the	specified	package	(-p),	in	this	case
com.blundell.tut,	in	a	very	verbose	manner	(-v	-v).	The	count	of	events	sent	will	be
1000.

http://goo.gl/LSWg85

The	client-server	monkey
There	is	another	way	of	running	monkey.	It	also	presents	a	client-server	model	that
ultimately	allows	for	the	creation	of	scripts	that	control	what	events	are	sent	and	does	not
rely	only	on	random	generation.

Usually,	the	port	used	by	monkey	is	1080,	but	you	can	use	another	one	if	it	better	suits
your	preferences:

$	adb	-e	shell	monkey	-p	com.blundell.tut	--port	1080	&

Then,	we	need	to	redirect	the	emulator	port:

$	adb	-e	forward	tcp:1080	tcp:1080

Now,	we	are	ready	to	send	events.	To	do	it	manually,	we	can	use	a	Telnet	client:

$	telnet	localhost	1080

After	the	connection	is	established,	we	can	type	the	specific	monkey	command:

tap	150	200

OK

To	finish,	exit	the	telnet	command.

If	we	need	to	exercise	the	application	repeatedly,	it	is	much	more	convenient	to	create	a
script	with	the	commands	we	want	to	send.	A	monkey	script	could	look	like	this:

#	monkey

tap	200	200

type	HelloWorld

tap	200	350

tap	200	200

press	DEL

press	DEL

press	DEL

press	DEL

press	DEL

type	Monkey	

tap	200	350

Note
The	API	for	monkey	tap	is	tap	<x	pixel	position>	<y	pixel	position>.

Therefore,	if	you	are	not	running	an	emulator	with	the	same	§	resolution	as	the	one	your
monkey	command	was	recorded	with,	you	could	get	incorrect	touch	events	from	your
monkey.

After	having	started	the	example	application	for	this	chapter,	we	can	run	this	script	to
exercise	the	user	interface.	To	start	the	application,	you	can	use	the	emulator	window	and
click	on	its	launcher	icon	or	use	the	command	line	that	states	the	activity	you	want	to	start,
which	is	the	only	alternative	if	the	emulator	is	headless,	as	follows:

$	adb	shell	am	start	-n	com.blundell.tut/.MonkeyActivity

This	is	informed	in	the	log	by	this	line:

Starting:	Intent	{	cmp=com.blundell.tut/.MonkeyActivity}

Once	the	application	has	started,	you	can	send	the	events	using	the	script	and	the	netcat
utility:

$	nc	localhost	1080	<	ch_4_code_ex_10.txt

This	will	send	the	events	contained	in	the	script	file	to	the	emulator.	These	are	the
following	events:

1.	 Touch	and	select	the	edit	text	input.
2.	 Type	Hello	World.
3.	 Tap	the	button	to	show	the	toast.
4.	 Touch	and	select	the	edit	text	again.
5.	 Delete	its	content.
6.	 Type	Monkey.
7.	 Tap	the	button	to	show	the	toast	Hello	Monkey.

In	this	manner,	simple	scripts	that	consist	of	touch	events	and	key	presses	can	be	created.

Test	scripting	with	monkeyrunner
The	possibilities	of	monkey	are	fairly	limited,	and	the	lack	of	flow	control	restricts	its	use
to	very	simple	cases.To	circumvent	these	limitations,	a	new	project	was	created,	which
was	named	monkeyrunner.	Notwithstanding	this,	the	name	is	almost	the	same	and	leads	to
a	huge	amount	of	confusion	because	they	are	not	related	in	any	way.

Monkeyrunner,	which	is	already	included	in	the	latest	versions	of	the	Android	SDK,	is	a
tool	that	provides	an	API	for	the	purpose	of	writing	scripts	that	externally	control	an
Android	device	or	emulator.

Monkeyrunner	is	built	on	top	of	Jython	(http://jython.org/),	a	version	of	the	Python
programming	language	(http://python.org/),	which	is	designed	to	run	on	the	Java	platform.

According	to	its	documentation,	the	monkeyrunner	tool	provides	these	unique	features	for
Android	testing.	These	are	just	the	highlights	of	the	complete	list	of	features,	examples,
and	reference	documentation	that	can	be	obtained	from	the	monkeyrunner	home	page
(http://developer.android.com/tools/help/monkeyrunner_concepts.html):

Multiple	device	control:	The	monkeyrunner	API	can	apply	one	or	more	test	suites
across	multiple	devices	or	emulators.	You	can	physically	attach	all	the	devices	or
start	up	all	the	emulators	(or	both)	at	once,	connect	to	each	one	in	turn
programmatically,	and	then	run	one	or	more	tests.	You	can	also	start	up	an	emulator
configuration	programmatically,	run	one	or	more	tests,	and	then	shut	down	the
emulator.
Functional	testing:	monkeyrunner	can	run	an	automated	start-to-finish	test	of	an
Android	application.	You	provide	input	values	with	keystrokes	or	touch	events,	and
view	the	results	as	screenshots.
Regression	testing:	monkeyrunner	can	test	the	application	stability	by	running	an
application	and	comparing	its	output	screenshots	to	a	set	of	screenshots	that	are
known	to	be	correct.
Extensible	automation:	Since	monkeyrunner	is	an	API	toolkit,	you	can	develop	an
entire	system	of	Python-based	modules	and	programs	to	control	Android	devices.
Besides	using	the	monkeyrunner	API	itself,	you	can	use	the	standard	Python	OS	and
subprocess	modules	to	call	Android	tools	such	as	Android	Debug	Bridge.	You	can
also	add	your	own	classes	to	the	monkeyrunner	API.	This	is	described	in	more	detail
in	the	online	documentation	under	Extending	monkeyrunner	with	plugins.

http://jython.org/
http://python.org/
http://developer.android.com/tools/help/monkeyrunner_concepts.html

Getting	test	screenshots
Currently,	one	of	the	most	evident	uses	of	monkeyrunner	is	getting	screenshots	of	the
application	under	test	to	be	further	analyzed	or	compared.

These	screenshots	can	be	obtained	with	the	help	of	the	following	steps:

1.	 Import	the	required	modules.
2.	 Create	the	connection	with	the	device.
3.	 Check	whether	the	device	is	connected.
4.	 Start	the	activity.
5.	 Add	some	delay	for	the	activity	start	up.
6.	 Type	‘hello’.
7.	 Add	some	delay	to	allow	for	the	events	to	be	processed.
8.	 Obtain	the	screenshots.
9.	 Save	it	to	a	file.
10.	 Press	BACK	to	exit	the	Activity.

The	following	is	the	code	for	the	script	needed	to	perform	the	preceding	steps:

#!	/usr/bin/env	monkeyrunner

import	sys

#	Imports	the	monkeyrunner	modules	used	by	this	program

from	com.android.monkeyrunner	import	MonkeyRunner,	MonkeyDevice,	

MonkeyImage

#	Connects	to	the	current	device,	returning	a	MonkeyDevice	object

device	=	MonkeyRunner.waitForConnection()

if	not	device:

				print	>>	sys.stderr,	"Couldn't"	"get	connection"

				sys.exit(1)

device.startActivity(component='com'.blundell.tut/.MonkeyActivity')

MonkeyRunner.sleep(3.0)

device.type("hello")

#	Takes	a	screenshot

MonkeyRunner.sleep(3.0)

result	=	device.takeSnapshot()

#	Writes	the	screenshot	to	a	file

result.writeToFile('/tmp/device.png')

device.press('KEYCODE_BACK',	'DOWN'_AND_UP')

Once	this	script	runs,	you	will	find	the	screenshot	of	the	activity	in	/tmp/device.png.

Record	and	playback
If	you	need	something	simpler,	there	is	no	need	to	manually	create	these	scripts.	To
simplify	the	process,	the	monkey_recorder.py	script,	which	is	included	in	the	Android
source	repository	in	the	SDK	project	(http://goo.gl/6Qv0z0),	can	be	used	to	record	event
descriptions	that	are	later	interpreted	by	another	script	called	monkey_playback.py.

Run	monkey_recorder.py	from	the	command	line,	and	you	will	be	presented	with	this	UI:

This	interface	has	a	toolbar	with	buttons	to	insert	different	commands	in	the	recorded
script:

Button Description

Wait
This	denotes	how	many	seconds	to	wait.

This	number	is	requested	by	a	dialog	box.

Press	a	Button This	sends	the	MENU,	HOME,	RECENTS,	and	SEARCH	buttons.	Press	the	Down	or	Up	event.

Type	Something This	sends	a	string.

Fling This	sends	a	fling	event	in	the	specified	direction,	distance,	and	number	of	steps.

http://goo.gl/6Qv0z0

Export	Actions This	saves	the	script.

Refresh	Display This	refreshes	the	copy	of	the	screenshot	that	is	displayed.

Once	the	script	is	completed,	save	it,	let’s	say	as	script.mr,	and	then,	you	can	re-run	it	by
using	this	command	line:

$	monkey_playback.py	script.mr

Now,	all	the	events	will	be	replayed.

Summary
In	this	chapter,	we	covered	all	the	alternatives	we	had	to	expose	our	application	and	its
tests	to	a	wide	range	of	conditions	and	configurations,	ranging	from	different	screen	sizes,
the	availability	of	devices	such	as	cameras	or	keyboards,	to	simulating	real-life	network
conditions	to	detect	problems	in	our	application.

We	also	analyzed	all	of	the	options	we	have	in	order	to	be	able	to	control	emulators
remotely	when	they	are	detached	from	its	window.	This	prepares	the	foundation	of	doing
test	first	development,	and	we	will	come	back	to	this	topic	in	Chapter	6,	Practicing	Test-
driven	Development.

We	discussed	the	speed	of	the	AVD	and	saw	how	we	can	improve	this,	as	well	as	looked
at	emulator	choices	in	GenyMotion	and	HAXM.	Finally,	some	scripting	alternatives	were
introduced,	and	examples	to	get	you	started	were	provided.

In	the	next	chapter,	we	will	discover	continuous	integration—a	way	of	working	that	relies
on	the	ability	to	automatically	run	all	the	test	suites	and	configure,	start,	and	stop
emulators	in	order	to	automate	the	complete	build	process.

Chapter	5.	Discovering	Continuous
Integration
Continuous	integration	is	one	agile	technique	for	software	engineering	that	aims	to
improve	software	quality	and	reduce	the	time	taken	to	integrate	changes	by	continuously
applying	integration	and	testing	frequently,	as	opposed	to	the	more	traditional	approach	of
integrating	and	testing	at	the	end	of	the	development	cycle.

Continuous	integration	has	received	a	broad	adoption,	and	a	proliferation	of	commercial
tools	and	open	source	projects	is	a	clear	demonstration	of	its	success.	That	is	not	very
difficult	to	understand,	as	anybody	who	during	their	professional	career	has	participated	in
a	software	development	project	using	a	traditional	approach	is	very	likely	to	have
experienced	the	so-called	integration	hell,	where	the	time	it	takes	to	integrate	the	changes
exceeds	the	time	it	took	to	make	the	changes.	Does	this	remind	you	of	anything?On	the
contrary,	continuous	integration	is	the	practice	of	integrating	changes	frequently	and	in
small	steps.	These	steps	are	negligible	and,	if	an	error	is	noticed,	it	is	so	small	that	it	can
be	fixed	immediately.	The	most	common	practice	is	to	trigger	the	build	process	after	every
commit	to	the	source	code	repository.

This	practice	also	implies	other	requirements,	beside	the	source	code	being	maintained	by
a	version	control	system	(VCS):

Builds	should	be	automated	by	running	a	single	command.	This	feature	has	been
supported	for	a	very	long	time	by	tools	such	as	make	and	ant,	and	more	recently	by
maven	and	gradle.
Builds	should	be	self-testing	to	confirm	that	the	newly	built	software	meets	the
expectations	of	the	developers.
Build	artifacts	and	results	of	the	tests	should	be	easy	to	find	and	view.

When	we	write	tests	for	our	Android	projects,	we	would	like	to	take	advantage	of
continuous	integration.	To	achieve	this,	we	want	to	create	a	model	that	coexists	with	the
traditional	IDE	environment	and	Android	build	tools,	so	we	can	run	and	install	our	app	no
matter	the	environment	such	as	CI	box,	IDE	or	manually.

In	this	chapter,	we	are	going	to	discuss:

Automating	the	build	process
Introducing	version	control	systems	to	the	process
Continuous	integration	with	Jenkins
Automating	tests

After	this	chapter,	you	will	be	able	to	apply	continuous	integration	to	your	own	project	no
matter	its	size,	whether	it	is	a	medium	or	large	software	project	employing	dozens	of
developers	or	it	is	just	you	programming	solo.

Note
The	original	article	on	continuous	integration	was	written	by	Martin	Fowler	back	in	2000

(http://www.martinfowler.com/articles/continuousIntegration.html),	and	describes	the
experience	of	putting	together	continuous	integration	on	a	large	software	project.

http://www.martinfowler.com/articles/continuousIntegration.html

Building	Android	applications	manually
using	Gradle
If	we	aim	to	incorporate	continuous	integration	into	our	development	process,	the	first
step	will	be	to	build	Android	applications	manually,	as	we	can	combine	an	integration
machine	with	the	manual	building	technique	to	automate	the	procedure.

In	doing	this,	we	intend	to	keep	our	project	compatible	with	the	IDE	and	command-line
building	process,	and	this	is	what	we	are	going	to	do.	Automated	building	is	a	great
advantage	and	speeds	up	the	development	process	by	building	and	eventually	showing	the
errors	that	may	exist	in	your	project	immediately.	When	editing	resources	or	other	files
that	generate	intermediate	classes,	a	CI	is	an	invaluable	tool;	otherwise,	some	simple
errors	would	be	discovered	too	late	in	the	building	process.	Following	the	mantra	of	fail
often,	fail	fast	is	a	recommended	practice.

Fortunately,	Android	supports	manual	building	with	the	existing	tools	and	not	much	effort
is	needed	to	merge	manual	IDE	builds	and	automatic	CI	builds	in	the	same	project.	In
such	cases,	building	manually	inside	your	IDE	with	Gradle	is	supported.	However,	other
options	such	as	Ant	exist	too	that	are	no	longer	supported	by	default,	and	Maven	or	Make
that	are	not	supported	out	of	the	box.

Note
Gradle	is	build	automation	evolved.	Gradle	combines	the	power	and	flexibility	of	Ant
with	the	dependency	management	and	conventions	of	Maven	into	a	more	effective	way	to
build.

More	information	can	be	found	at	its	home	page,	http://gradle.org/.

At	the	time	of	writing,	projects	based	on	Android	Gradle	require	at	least	Gradle	2.2	or
newer	versions.

It	is	worth	noting	here	that	the	entire	Android	open	source	project	is	not	built	by	Gradle
but	built	by	an	incredibly	complex	structure	of	make	files,	and	this	method	is	used	even	to
build	the	applications	that	are	included	by	the	platform	such	as	Calculator,	Contacts,
Settings,	and	so	on.

When	creating	a	new	project	with	Android	Studio,	the	template	project	will	already	be
being	built	with	Gradle.	This	means	you	can	already	build	the	project	manually	from	the
command	line.	Executing	./gradlew	tasks	from	the	base	of	your	project	will	give	you	a
full	list	of	tasks	that	can	be	run.	The	most	commonly	used	tasks	are	as	shown	in	the
following	table:

Target Description

build Assembles	and	tests	this	project

clean Deletes	the	build	directory

http://gradle.org/

tasks
Displays	the	tasks	runnable	from	root	project	x	(some	of	the	displayed	tasks	may	belong	to
subprojects)

installDebug Installs	the	Debug	build

installDebugTest Installs	the	Test	build	for	the	Debug	build

connectedAndroidTest Installs	and	runs	the	tests	for	Build	debug	on	connected	devices

uninstallDebug Uninstalls	the	Debug	build

The	commands	prefixed	with	./gradlew	use	an	installation	of	Gradle	that	is	actually
shipped	inside	your	project	source	code.	This	is	known	as	the	gradle	wrapper.	Therefore,
you	do	not	need	Gradle	installed	on	your	local	machine!	However,	if	you	do	have	Gradle
installed	locally,	all	commands	using	the	wrapper	can	be	replaced	with	./gradle.	If	there
are	several	devices	or	emulators	connected	to	the	build	machine,	these	commands	will
run/install	on	them	all.	This	is	great	for	our	CI	setup,	meaning	we	can	run	our	tests	on	all
the	provided	devices	so	that	we	can	handle	a	number	of	configurations	and	Android
versions.	If	you	do	want	to	install	on	just	one	for	some	other	reason,	this	is	possible
through	the	Device	Providers	API	but	is	out	of	the	scope	of	this	book.	I	encourage	you	to
read	more	at	http://tools.android.com	and	also	check	out	the	wide	range	of	Gradle	plugins
available	to	help	you	with	this.

Now	we	can	run	this	command	to	install	our	application:

$./gradlew	installDebug

This	is	the	start	and	end	of	the	output	generated:

Configuring	>	3/3	projects

…

:app:assembleDebug	

:app:installDebug

Installing	APK	'app'-debug.'apk'	on	'emulator-5554'Installing	APK	'app'-

debug.'apk'on	'Samsung'Galaxy	'S4'

Installed	on	2	devices.

BUILD	SUCCESSFUL

Total	time:	11.011	secs

Running	the	preceding	command	mentioned,	the	following	steps	are	executed:

Compilation	of	the	sources,	including	resource,	AIDL,	and	Java	files
Conversion	of	the	compiled	files	into	the	native	Android	format
Package	creation	and	signing
Installation	onto	the	given	device	or	emulator

Once	we	have	the	APK	installed,	and	because	we	are	now	doing	everything	from	the
command	line,	we	can	even	start	an	Activity	such	as	EspressoActivity.	Using	the	am
start	command	and	an	Intent	using	the	MAIN	action	and	the	Activity	we	are	interested	to
launch	as	the	component,	we	can	create	a	command	line	as	follows:

adb	-s	emulator-5554	shell	am	start	-a	android.intent.action.MAIN	-n	

http://tools.android.com

com.blundell.tut/.EspressoActivity

The	Activity	is	started	as	you	can	verify	in	the	emulator.	Now	the	next	thing	to	do	would
be	to	install	the	test	project	for	our	application,	and	then	use	the	command	line	to	run	these
tests	(as	discussed	in	previous	chapters).	Finally,	when	they	are	completed,	we	should
uninstall	the	application.	If	you	read	the	command	list	carefully,	you	may	have	noticed
that	luckily	this	has	been	done	for	us	with	the	connectedAndroidTest	Gradle	task.

After	running	the	command,	we	will	obtain	the	tests	results.	If	they	pass,	the	output	is
simply	as	follows:

:app:connectedAndroidTest

BUILD	SUCCESSFUL

Total	time:	9.812	secs

However	if	they	fail,	the	output	is	more	detailed	and	a	link	to	the	file	where	you	can	see
the	full	stack	trace	and	the	reasons	why	each	test	failed	is	presented:

:app:connectedAndroidTest

com.blundell.tut.ExampleEspressoTest	>	

testClickingButtonShowsImage[emulator-5554]FAILED	

android.view.ViewRootImpl$CalledFromWrongThreadException:	Only	the	original	

thread	that	created	a	view	hierarchy	can	touch	its	views.

		at	android.view.ViewRootImpl.checkThread(ViewRootImpl.java:6024)

FAILURE:	Build	failed	with	an	exception.

*	What	went	wrong:

Execution	failed	for	task	':app:connectedAndroidTest.

>	There	were	failing	tests.	See	the	report	at:	

file:///AndroidApplicationTestingGuide/app/build/outputs/reports/androidTes

ts/connected/index.html

…

BUILD	FAILED

Total	time:	15.532	secs.

We	have	done	everything	from	the	command	line	by	just	invoking	some	simple
commands,	which	is	what	we	were	looking	for	in	order	to	feed	this	into	a	continuous
integration	process.

Git	–	the	fast	version	control	system
Git	is	a	free	and	open	source,	distributed	version	control	system	designed	to	handle
everything	from	small	to	very	large	projects	with	speed	and	efficiency.	It	is	very	simple	to
set	up	so	I	strongly	recommend	its	use	even	for	personal	projects.	There	is	no	project
simple	enough	that	could	not	benefit	from	the	application	of	this	tool.	You	can	find
information	and	downloads	at	http://git-scm.com/.

A	version	control	system	or	VCS	(also	known	as	source	code	management	or	SCM)	is	an
unavoidable	element	for	development	projects	where	more	than	one	developer	is	involved
and	the	best	practice	even	if	coding	solo.	Furthermore,	even	though	it	is	possible	to	apply
continuous	integration	with	no	VCS	in	place	(as	a	VCS	is	not	a	requisite	of	CI),	it	is	not	a
reasonable	or	recommended	practice	to	avoid	it.

Other	and	probably	more	traditional	(see	legacy),	options	exist	in	the	VCS	arena	such	as
Subversion	or	CVS,	which	you	are	free	to	use	if	you	feel	more	comfortable.	Otherwise,
Git	is	used	extensively	by	the	Android	project	to	host	Google’s	own	code	and	examples	so
it	is	worth	investing	some	time	to	at	least	understand	the	basics.

Having	said	that	and	remembering	that	this	is	a	very	broad	subject	to	justify	a	book	in
itself	(and	certainly	there	are	some	good	books	about	it),	we	are	discussing	here	the	most
basic	topics	and	supplying	examples	to	get	you	started	if	you	haven’t	embraced	this
practice	yet.

Creating	a	local	Git	repository
These	are	the	simplest	possible	commands	to	create	a	local	repository	and	populate	it	with
the	initial	source	code	for	our	projects.	In	this	case	we	are	again	using	the
AndroidApplicationTestingGuide	project	created	and	used	in	previous	chapters.	We
copy	the	code	we	used	in	the	previous	section,	where	we	built	manually:

$	mkdir	AndroidApplicationTestingGuide

$	cd	AndroidApplicationTestingGuide

$	git	init

$	cp	-a	<path/to/original>/AndroidApplicationTestingGuide/

$	gradlew	clean

$	rm	local.properties

$	git	add	.

$	git	commit	-m	"Initial	commit"

We	create	the	new	project	directory,	initialize	the	Git	repository,	copy	the	initial	content,
clean	and	delete	our	previous	autogenerated	files,	remove	the	local.properties	file,	add
everything	to	the	repository,	and	commit.

Tip
The	local.properties	file	must	never	be	checked	in	a	version	control	system	as	it
contains	information	specific	to	your	local	configuration.	You	might	also	want	to	look	at
creating	a	.gitignore	file.	This	file	allows	you	to	define	what	files	are	not	checked	in
(such	as	auto-generated	files).	An	example	of	the	.gitignore	file	can	be	found	at
https://github.com/github/gitignore.

At	this	point,	we	have	our	project	repository	containing	the	initial	source	code	for	our
application	and	all	of	its	tests.	We	haven’t	altered	the	structure	so	the	project	is	still
compatible	with	our	IDE	and	Gradle	for	when	we	continue	developing,	locally	building,
and	continuously	integrating.

The	next	step	is	to	have	our	project	built	and	tested	automatically	every	time	we	commit	a
change	to	the	source	code.

https://github.com/github/gitignore

Continuous	integration	with	Jenkins
Jenkins	is	an	open	source,	extensible	continuous	integration	server	that	has	the	ability	to
build	and	test	software	projects	or	monitor	the	execution	of	external	jobs.	Jenkins	is	easy
to	install	and	configure,	and	is	thus	widely	used.	That	makes	it	ideal	as	an	example	to
learn	continuous	integration.

Installing	and	configuring	Jenkins
We	mentioned	easy	installation	as	one	of	the	advantages	of	Jenkins	and	installation	could
not	be	any	easier.	Download	the	native	package	for	the	operating	system	of	your	choice
from	http://jenkins-ci.org/.	There	are	native	packages	for	all	major	server	and	desktop
operating	systems.	In	the	following	examples,	we	will	be	using	version	1.592.	We	will	run
the	.war	file	after	downloading	it,	since	it	does	not	require	administrative	privileges	to	do
so.

Once	finished,	copy	the	war	into	a	selected	directory,	~/jenkins,	and	then	run	the
following	command:

$	java	-jar	~/jenkins/jenkins-1.592.war

This	expands	and	starts	Jenkins.

The	default	configuration	uses	port	8080	as	the	HTTP	listener	port,	so	pointing	your
browser	of	choice	to	http://localhost:8080	should	present	you	with	the	Jenkins	home
page.	You	can	verify	and	change	Jenkins’	operating	parameter	if	required,	by	accessing	the
Manage	Jenkins	screen.	We	should	add	to	this	configuration	the	plugins	needed	for	Git
integration,	building	with	Gradle,	checking	test	results,	and	support	for	Android	emulator
during	builds.	These	plugins	are	named	Git	plugin,	Gradle	plugin,	JUnit	plugin,	and
Android	Emulator	plugin,	respectively.

This	following	screenshot	displays	the	information	you	can	obtain	about	the	plugins
following	the	link	available	on	the	Jenkins	plugin	administration	page:

http://jenkins-ci.org/

After	installing	and	restarting	Jenkins,	these	plugins	will	be	available	for	use.	Our	next
step	is	to	create	the	jobs	necessary	to	build	the	projects.

Creating	the	jobs
Let’s	start	by	creating	the	AndroidApplicationTestingGuide	job	using	New	Item	on	the
Jenkins	home	page.	Name	it	after	the	project.	Different	kinds	of	jobs	can	be	created;	in
this	case,	we	select	Freestyle	project,	allowing	you	to	connect	any	SCM	with	any	build
system.

After	clicking	on	the	OK	button,	you	will	be	presented	with	the	specific	job	options,
which	are	described	in	the	following	table.	This	is	at	the	top	of	the	job	properties’	page	as
follows:

All	of	the	options	in	the	New	Item	screen	have	a	help	text	associated,	so	here	we	are	only
explaining	the	ones	we	enter:

Option Description

Project	name The	name	given	to	the	project.

Description Optional	description.

Discard	Old	Builds This	helps	you	save	on	disk	consumption	by	managing	how	long	to	keep
records	of	the	builds	(such	as	console	output,	build	artifacts,	and	so	on).

This	build	is	parameterized
This	allows	you	to	configure	parameters	that	are	passed	to	the	build	process
to	create	parameterized	builds,	for	instance,	using	$ANDROID_HOME	instead
of	hardcoding	a	path.

Source	Code	Management

Also	known	as	VCS,	where	is	the	source
code	for	the	project?	In	this	case,	we	use
Git	and	a	repository	where	the	URL	is	the
absolute	path	of	the	repository	we	created
earlier.	For	example,	/git-
repo/AndroidApplicationTestingGuide.

	

How	this	project	is	automatically	built.	In	this	case,	we	want	every	change
in	the	source	code	to	trigger	the	automatic	build,	so	we	select	Poll	SCM.

The	other	option	is	to	use	Build	periodically.	This	feature	is	primarily	to

Build	Triggers

use	Jenkins	as	a	cron	replacement,	and	it	is	not	ideal	to	continuously	build
software	projects.	When	people	first	start	continuous	integration,	they	are
often	so	used	to	the	idea	of	regularly	scheduled	builds	such	as
nightly/weekly	that	they	use	this	feature.	However,	the	point	of	continuous
integration	is	to	start	a	build	as	soon	as	a	change	is	made,	to	provide	a
quick	feedback	to	the	change.

This	option	can	be	used	for	longer	running	builds	like	test	suites	that
perhaps	test	performance	when	the	build	runs	for	1	hour	for	example
(configure	it	to	run	at	midnight).	It	also	can	be	used	to	release	new
versions,	nightly,	or	weekly.

Schedule

This	field	follows	the	syntax	of	Cron	(with	minor	differences).	Specifically,
each	line	consists	of	five	fields	separated	by	TAB	or	whitespace:

MINUTE	HOUR	DOM	MONTH	DOW.

For	example,	if	we	want	to	poll	continuously	at	30	minutes	past	the	hour,
specify:
30	*	*	*	*

Check	the	documentation	for	a	complete	explanation	of	all	the	options.

Build	environment This	option	lets	you	specify	different	options	for	the	build	environment	and
for	the	Android	emulator	that	may	run	during	the	build.

Build

This	option	describes	the	build	steps.	We	select	Invoke	Gradle	script	as
we	reproduce	the	steps	we	did	before	to	manually	build	and	test	the	project.

We	will	select	Use	Gradle	Wrapper	so	that	our	project	doesn’t	rely	on	the
CI	boxes	built	in	the	Gradle	version.

Then,	in	the	Tasks	box,	we	want	to	write	clean	connectedAndroidTest.

Post	build	actions

These	are	a	series	of	actions	we	can	do	after	the	build	is	done.	We	are
interested	in	saving	the	APKs	so	we	enable	Archive	the	artifacts	and	then
define	the	path	for	them	as	Files	to	archive;	in	this	precise	case,	it	is	**/*-
debug.apk.

Save Saves	the	changes	we	just	made	and	completes	the	build	job	creation.

Now	that	our	CI	build	is	set	up,	there	are	following	two	options:

You	can	force	a	build	using	Build	Now
Or	introduce	some	changes	to	the	source	code,	push	with	Git,	and	wait	for	them	to	be
detected	by	our	polling	strategy

Either	way,	we	will	get	our	project	built	and	our	artifacts	ready	to	be	used	for	other
purposes,	such	as	dependency	projects	or	QA.	Unfortunately,	if	you	did	run	the	CI	build,	it
would	fail	spectacularly	as	there	are	no	devices	attached.	Your	choices	are,	attach	a	real
device	or	use	the	Android	Emulator	plugin	that	we	just	installed.	Let’s	use	the	plugin.
From	Jenkins,	go	to	the	job	we	just	created	and	click	on	Configure.

Option Description

Our	intention	is	to	install	and	run	the	tests	on	an	emulator.	So	for	our	build	environment,	we	use	the
facilities	provided	by	the	Android	Emulator	Plugin.	This	comes	in	handy	if	you	wish	to	automatically
start	an	Android	emulator	of	your	choice	before	the	build	steps	execute,	with	the	emulator	being	stopped

Build
environment

after	the	building	is	complete.

You	can	choose	to	start	a	predefined,	existing	Android	emulator	instance	(AVD).

Alternatively,	the	plugin	can	automatically	create	a	new	emulator	on	the	build	slave	with	properties	you
specify	here.

In	any	case,	the	logcat	output	will	automatically	be	captured	and	archived.

Select	Run	emulator	with	properties.

Then,	select	4.4	for	the	Android	OS	version,	320	DPI	for	the	Screen	density	and	WQVGA	for	Screen
resolution.

Feel	free	to	experiment	and	select	the	options	that	better	suit	your	needs.

Common
emulator
options

We	would	like	to	Reset	emulator	state	at	start-up	to	wipe	user	data	and	disable	Show	emulator
window,	so	the	emulator	window	is	not	displayed.

After	configuring	and	building	this	project,	we	have	the	APK	installed	on	the	target
emulator	and	the	tests	are	running.

Obtaining	Android	test	results
Once	the	tests	are	run,	the	results	are	saved	as	XML	files	inside	the	project’s	build	folder
at	/AndroidApplicationTestingGuides/app/build/outputs/androidTest-
results/connected/.

They	are	no	good	to	us	there.	It	would	be	nice	if	we	could	read	the	results	of	our	tests	in
Jenkins	and	have	them	displayed	in	a	nice	HTML	format;	another	Jenkins	plugin	to	the
rescue.	JUnit	Plugin	enables	a	post	build	action	that	asks	you	where	your	JUnit	reports	are
stored	and	will	then	retrieve	them	for	easy	viewing	in	the	project	screen	of	Jenkins	as	test
results.	In	this	scenario,	we	use	the	Post-build	Actions	also	in	the	job	configuration’s	page.

Having	done	all	of	the	steps
previously	described,	only
forcing	a	build	is	left	to	see
the	results.	Option

Description

Publish	JUnit	test	result
report

When	this	option	is	configured,	the	JUnit	plugin	on	Jenkins	can	provide	useful
information	about	test	results,	such	as	historical	test	result	trends,	a	web	UI	to	view	test
reports,	tracking	failures,	and	so	on.

It	requires	a	regex	to	look	up	the	JUnit	result	files.	I	would	recommend	**/TEST*.xml.
This	regex	should	match	all	JUnit	test	results,	including	those	of	the	Android	connected
tests;	praise	in	research	here	goes	to	Adam	Brown.	If	you	change	the	regex,	be	sure	not
to	include	any	non-report	files	into	this	pattern.

Once	a	few	builds	have	run	with	test	results,	you	should	start	seeing	some	trend	charts
displaying	the	evolution	of	tests.

Click	on	Build	Now	and	after	a	few	moments,	you	will	see	your	test	results	and	statistics
displayed	in	a	similar	way	as	the	following	screenshot	depicts:

From	here,	we	can	easily	understand	our	project	status.	Clicking	on	Latest	Test	Result
shows	you	how	many	tests	failed	and	why.	You	can	search	through	the	failed	tests	and	can
also	find	the	extensive	Error	message	and	Stack	trace	options.

It	is	also	really	helpful	to	understand	the	evolution	of	a	project	through	the	evaluation	of

different	trends	and	Jenkins	is	able	to	provide	such	information.	Every	project	presents	the
current	trends	using	weather-like	icons	from	sunny,	when	the	health	of	the	project
increases	by	80	percent,	and	to	thunderstorm	when	the	health	lies	below	20	percent.	In
addition,	for	every	project,	the	evolution	of	the	trend	of	the	tests	success	versus	failure
ratio	is	displayed	in	a	chart.	A	failing	test	chart	is	reproduced	here:

In	this	case,	we	can	see	how	at	build	9,	four	tests	where	broken,	three	where	fixed	in	build
10,	and	the	final	one	in	build	11.

To	see	how	a	project	status	changes	by	forcing	a	failure,	let’s	add	a	failing	test	such	as	the
following.	Don’t	forget	to	push	your	commit	to	trigger	the	CI	build	as	follows:

		public	final	void	testForceFailure()	{

				fail("fail	test	is	fail");

		}

Yet	another	very	interesting	feature	that	is	worth	mentioning	is	the	ability	of	Jenkins	to
keep	and	display	the	timeline	and	build	the	time	trend,	as	shown	in	the	following
screenshot:

This	page	presents	the	build	history	with	links	to	every	particular	build	that	you	can	follow
to	see	the	details.	Now	we	have	less	to	be	worried	about	and	every	time	somebody	in	the
development	team	commits	changes	to	the	repository,	we	know	that	these	changes	will	be
immediately	integrated	and	the	whole	project	will	be	built	and	tested.	If	we	further
configure	Jenkins,	we	can	even	receive	the	status	by	e-mail.	To	achieve	this,	enable	E-
mail	Notification	in	the	job	configuration	page	and	enter	the	desired	Recipients.

Summary
This	chapter	introduced	continuous	integration	in	practice	providing	valuable	information
to	start	applying	it	soon	to	your	projects	no	matter	what	their	size,	whether	you	are
developing	solo	or	a	part	of	a	big	company	team.

The	techniques	presented	focus	on	the	particularities	of	Android	projects	maintaining	and
supporting	widely	used	development	tools	such	as	Android	Studio	and	the	Android	Gradle
plugin.

We	introduced	real-world	examples	with	real-world	tools	available	from	the	vast	open
source	arsenal.	We	employed	Gradle	to	automate	the	building	process,	Git	to	create	a
simple	version	control	system	repository	to	store	our	source	code	and	manage	the	changes,
and	finally,	installed	and	configured	Jenkins	as	the	continuous	integration	of	choice.

Within	Jenkins,	we	detailed	the	creation	of	jobs	to	automate	the	creation	of	our	Android
application	and	its	tests,	and	we	emphasized	the	relationship	between	the	continuous
integration	box	and	its	devices/emulators.

Finally,	we	became	aware	of	the	Android-connected	tests	results	and	implemented	a
strategy	to	obtain	an	attractive	interface	to	monitor	the	running	of	tests,	their	results,	and
the	existing	trends.

The	next	chapter	takes	us	through	the	road	of	Test-driven	Development;	you’ll	finally	start
to	understand	why	I	keep	talking	about	the	temperature	in	all	the	examples	so	far	with	a
real-world	project.	Thus,	having	a	continuous	integration	setup	is	perfect	to	empower	us	to
write	great	code	and	have	faith	in	our	CI	built	APKs	being	ready	to	release.

Chapter	6.	Practicing	Test-driven
Development
This	chapter	introduces	the	Test-driven	Development	(TDD)	discipline.	We	will	start
with	TDD	practices	in	the	general	sense,	and	later	on	move	to	the	concepts	and	techniques
more	closely	related	to	the	Android	platform.

This	is	a	code-intensive	chapter,	so	be	prepared	to	type	as	you	read,	which	would	help	you
get	the	most	out	of	the	examples	provided.

In	this	chapter,	we	will	learn	the	following	topics:

Introducing	and	explaining	Test-driven	Development
Analyzing	its	advantages
Introducing	a	real-life	example
Understanding	project	requirements	by	writing	tests
Evolving	through	the	project	by	applying	TDD
Getting	an	application	that	fully	complies	with	the	requirements

Getting	started	with	TDD
Briefly,	Test-driven	Development	is	the	strategy	of	writing	tests	in	parallel	with	the
development	process.	These	test	cases	are	written	in	advance	of	the	code	that	is	supposed
to	satisfy	them.

A	single	test	is	written,	and	then	the	code	needed	to	satisfy	the	compilation	of	this	test	is
written,	then	the	behavior	that	the	test	decrees	should	exist	is	written.	We	continue	writing
tests	and	implementation	until	the	full	set	of	desired	behaviors	is	checked	by	the	tests.

This	contrasts	with	other	approaches	to	the	development	process,	where	the	tests	are
written	at	the	end	when	all	the	coding	has	been	done.

Writing	the	tests	in	advance	of	the	code	that	satisfies	them	has	the	following	advantages:

Tests	get	written	one	way	or	another,	while	if	the	tests	are	left	till	the	end	it	is	highly
probable	that	they	will	never	be	written
Developers	take	more	responsibility	for	the	quality	of	their	work,	when	having	to
consider	the	tests	as	they	code

Design	decisions	are	taken	in	smaller	steps	and	afterwards	the	code	satisfying	the	tests	is
improved	by	refactoring.	Remember,	this	is	while	having	the	tests	running,	so	that	there
are	no	regressions	in	expected	behavior.

Test-driven	Development	is	often	explained	in	a	diagram	like	the	following,	to	help	us
understand	the	process:

The	following	sections	expand	on	the	individual	actions	associated	with	the	TDD,	red,

green,	refactor	cycle.

Writing	a	test	case
We	start	our	development	process	with	writing	a	test	case.	This	apparently	is	a	simple
process	that	will	put	some	machinery	to	work	inside	our	heads.	After	all,	it	is	not	possible
to	write	some	code,	test	it	or	not,	if	we	don’t	have	a	clear	understanding	of	the	problem
domain,	and	its	details.	Usually,	this	step	will	get	you	face	to	face	with	the	aspects	of	the
problem	you	don’t	understand,	and	you	need	to	grasp	these	if	you	want	to	model	and	write
the	code.

Running	all	tests
Once	the	test	is	written	the	next	step	is	to	run	it,	along	with	all	other	tests	we	have	written
so	far.	Here,	the	importance	of	an	IDE	with	built-in	support	of	the	testing	environment	is
perhaps	more	evident	than	in	other	situations,	cutting	the	development	time	by	a	good
fraction.	It	is	expected	that,	firstly,	our	newly	written	test	fails	as	we	still	haven’t	written
any	code.

To	be	able	to	complete	our	test,	we	write	additional	code	and	take	design	decisions.	The
additional	code	written	is	the	minimum	possible	to	get	our	test	to	compile.	Consider	here,
that	not	compiling	is	failing.

When	we	get	the	test	to	compile	and	run,	and	if	the	test	fails,	then	we	try	to	write	the
minimum	amount	of	code	necessary	to	make	the	test	succeed.	This	may	sound	awkward	at
this	point,	but	the	following	code	example	in	this	chapter	will	help	you	understand	the
process.

Optionally,	instead	of	running	all	tests	again	you	can	just	run	the	newly	added	tests	first,	to
save	some	time	as	sometimes	running	the	tests	on	the	emulator	could	be	rather	slow.	Then
run	the	whole	test	suite	to	verify	that	everything	is	still	working	properly.	We	don’t	want
to	add	a	new	feature	by	breaking	any	features	already	existing	in	our	code.

Refactoring	the	code
When	the	test	succeeds,	we	refactor	the	code	added	to	keep	it	tidy,	clean,	and	the	minimal
needed	for	a	maintainable	and	extensible	application.

We	run	all	the	tests	again,	to	verify	that	our	refactoring	has	not	broken	anything,	and	if	the
tests	are	again	satisfied	and	no	more	refactoring	is	needed,	we	finish	our	task.

Running	the	tests	after	refactoring	is	an	incredible	safety	net	that	has	been	put	in	place	by
this	methodology.	If	we	made	a	mistake	refactoring	an	algorithm,	extracting	variables,
introducing	parameters,	changing	signatures,	or	whatever	the	refactoring	mechanism,	this
testing	infrastructure	will	detect	the	problem.	Furthermore,	if	some	refactoring	or
optimization	could	not	be	valid	for	every	possible	case,	we	can	verify	it	for	every	case
used	by	the	application	expressing	this	as	a	test	case.

Advantages	of	TDD
Personally,	the	main	advantage	I’ve	seen	so	far	is	that	it	quickly	focuses	you	on	your
programming	goal,	and	it	is	harder	to	get	distracted	or	eager,	and	implement	options	in
your	software	that	will	never	be	used	(sometimes	known	as	gold	plating).	This
implementation	of	unneeded	features	is	a	waste	of	your	precious	development	time	and	as
you	may	already	know,	judiciously	administering	these	resources	may	be	the	difference
between	successfully	reaching	the	end	of	the	project	or	not.

The	other	advantage	is	that	you	always	have	a	safety	net	for	your	changes.	Every	time	you
change	a	piece	of	code,	you	can	be	absolutely	sure	that	other	parts	of	the	system	are	not
affected,	as	long	as	there	are	tests	verifying	that	the	conditions	haven’t	changed.

Don’t	forget,	TDD	cannot	be	indiscriminately	applied	to	any	project.	I	think	that,	as	well
as	any	other	technique;	you	should	use	your	judgment	and	expertise	to	recognize	where	it
can	be	applied	and	where	not.	Always	remember:	there	are	no	silver	bullets.

Understanding	the	requirements
To	be	able	to	write	a	test	about	any	subject,	we	should	first	understand	the	subject	under
test,	this	means	breaking	apart	the	requirement	you	are	attempting	to	implement.

We	mentioned	that	one	of	the	advantages	is	that	you	focus	upon	a	goal	quickly,	instead	of
revolving	around	the	requirements	as	a	big,	unconquerable	whole.

Translating	requirements	into	tests	and	cross	referencing	them	is	perhaps	the	best	way	to
understand	the	requirements,	and	to	be	sure	that	there	is	always	an	implementation	and
verification	for	all	of	them.	Also,	when	the	requirements	change	(something	that	is	very
frequent	in	software	development	projects),	we	can	change	the	tests	verifying	these
requirements,	and	then	change	the	implementation	to	be	sure	that	everything	was	correctly
understood	and	mapped	to	the	code.

Creating	a	sample	project	–	the
temperature	converter
You	might	have	guessed	it	from	some	of	the	code	snippets	so	far,	that	our	TDD	examples
will	revolve	around	an	extremely	simple	Android	sample	project.	It	doesn’t	try	to	show	all
the	fancy	Android	features,	but	focuses	on	testing	and	gradually	building	the	application
from	the	test,	applying	the	concepts	learned	before.

Let’s	pretend	that	we	have	received	a	list	of	requirements	to	develop	an	Android
temperature	converter	application.	Though	oversimplified,	we	will	be	following	the	steps
you	normally	would,	to	develop	such	an	application.	However,	in	this	case	we	will
introduce	the	Test-driven	Development	techniques	in	the	process.

List	of	requirements
Usually	(let’s	be	honest),	the	list	of	requirements	are	very	vague,	and	there	are	a	high
number	of	details	not	fully	covered.

As	an	example,	let’s	pretend	that	we	receive	this	list:

The	application	converts	temperatures	from	Celsius	to	Fahrenheit	and	vice-versa
The	user	interface	presents	two	fields	to	enter	the	temperatures;	one	for	Celsius	the
other	for	Fahrenheit
When	a	temperature	is	entered	in	one	field,	the	other	one	is	automatically	updated
with	the	conversion
If	there	are	errors,	they	should	be	displayed	to	the	user,	possibly	using	the	same	fields
Some	space	in	the	user	interface	should	be	reserved	for	the	on-screen	keyboard,	to
ease	the	application	operation	when	several	conversions	are	entered
Entry	fields	should	start	empty
Values	entered	are	decimal	values	with	two	digits	after	the	point
Digits	are	right	aligned
Last	entered	values	should	be	retained	even	after	the	application	is	paused

User	interface	concept	design
Let’s	assume	that	we	receive	this	conceptual	user	interface	design	from	the	user	interface
design	team	(I	apologize	right	now	to	all	designers	for	my	lack	of	imagination	and	skill):

Creating	the	project
Our	first	step	is	to	create	the	project.	Now,	since	we	have	done	this	for	five	chapters
already	I	don’t	think	I	need	to	give	you	a	step-by-step	guide.	Just	run	through	the	Android
Studio	new	project	wizard,	and	select	an	Android	mobile	project	with	your	package	name,
plus	other	boilerplate,	and	no	Activity	template.	Android	Studio	will	automatically	create
you	an	example	AndroidApplicationTestCase.	Bear	in	mind,	if	you	get	stuck,	you	can
refer	to	the	code	accompaniment	for	this	book.	When	created,	it	should	look	something
like	this:

Now	let’s	quickly	create	a	new	Activity	called	TemperatureConverterActivity	(we
didn’t	use	the	template	generator,	because	it	adds	loads	of	code	that	is	not	needed	right
now),	don’t	forget	to	add	the	Activity	to	your	AndroidManifest	file.	Fanatic	TDD’ers
might	be	shaking	their	fist	right	now,	as	really	you	should	make	this	Activity	only	when
needed	in	your	tests,	but	I’m	trying	to	guide	you	with	some	familiarity	at	the	same	time.

Creating	a	Java	module
On	top	of	this	template	project,	we	want	to	add	another	module	of	code.	This	will	be	a
Java-only	module	and	will	act	as	a	dependency	or	library,	if	you	will,	for	our	main
Android	module.

The	idea	here	is	two-fold.	First,	it	allows	you	to	separate	code	that	is	Java	only,	and	does
not	have	a	dependency	on	Android,	in	a	big	project	this	can	be	your	core	domain;	the
business	logic	that	runs	your	app,	and	it	is	important	that	you	modularize	this,	so	you	can
work	on	it	without	having	to	think	about	Android	as	well.

Secondly,	having	a	Java-only	module	as	we’ve	said	before,	allows	you	to	call	on	the	vast
history	of	Java	as	an	established	programming	language	when	it	comes	to	testing.	Testing
of	the	Java	module	is	fast,	simple,	and	easy.	You	can	write	JUnit	tests	for	the	JVM	and
have	them	running	in	milliseconds	(which	we	will	do!).

From	Android	Studio,	navigate	to	File	|	New	Module,	this	gives	you	the	Create	new
module	dialog.	Under	More	Modules,	select	Java	Library,	and	hit	Next.	Name	your
library	core,	and	ensure	the	package	name	is	the	same	as	your	Android	application,	and
press	on	Finish.	The	last	screen	should	have	looked	something	like	this:

Once	created,	you	need	to	add	the	one-way	dependency	from	your	Android	:app	module
to	the	:core	module.	Within,	/app/build.gradle,	add	the	dependency	on	core:

dependencies	{

				compile	fileTree(dir:	'libs',	include:	['*.jar'])

				compile	'com.android.support:appcompat-v7:21.0.2'

				compile	project(':core')

}

This	allows	us	to	reference	files	from	our	core	module	inside	of	our	Android	application.

Creating	the
TemperatureConverterActivityTests	class
Proceed	with	creating	the	first	test	by	selecting	the	main	test	package	name,
com.blundell.tut.	This	is	under	src/androidTest/Java	in	the	AndroidStudio	project
view,	or	under	app/java/(androidTest)	in	the	AndroidStudio	Android	view.	Then	right-
click	here,	and	select	New	|	Java	Class,	call	it,	TemperatureConverterActivityTests.

Once	the	class	is	created,	we	need	to	go	about	turning	it	into	a	test	class.	We	should	select
our	superclass	depending	on	what	and	how	we	are	going	to	test.	In	Chapter	2,
Understanding	Testing	with	the	Android	SDK,	we	reviewed	the	available	alternatives.	Use
it	as	a	reference	when	you	try	to	decide	what	superclass	to	use.

In	this	particular	case,	we	are	testing	a	single	Activity	and	using	the	system	infrastructure,
therefore,	we	should	use	ActivityInstrumentationTestCase2.	Also	note	that	as
ActivityInstrumentationTestCase2	is	a	generic	class,	we	need	the	template	parameter
as	well.	This	is	the	Activity	under	test,	which	in	our	case,	is
TemperatureConverterActivity.

We	now	notice	that	our	class	has	some	errors	we	need	to	fix	before	running.	Otherwise	the
errors	will	prevent	the	test	from	running.

The	problem	we	need	to	fix	has	been	described	before	in	Chapter	2,	Understanding
Testing	with	the	Android	SDK,	under	the	The	no-argument	constructor	section.	As	this
pattern	dictates,	we	need	to	implement:

		public	TemperatureConverterActivityTests()	{

				this("TemperatureConverterActivityTests");

		}

		

		public	TemperatureConverterActivityTests(String	name)	{

				super(TemperatureConverterActivity.class);

				setName(name);

		}

So	far	we	have	performed	the	following	steps:

We	added	the	no	argument	constructor	TemperatureConverterActivityTests().
From	this	constructor,	we	invoke	the	constructor	that	takes	a	name	as	a	parameter.
Finally,	in	this	given	name	constructor,	we	invoke	the	super	constructor	and	set	the
name.

To	verify	that	everything	has	been	set	up	and	is	in	place,	you	may	run	the	tests	by	right
clicking	on	the	class,	and	selecting	Run	|	The	Name	of	the	Test	Class.	There	are	no	tests
to	run	yet,	but	at	least	we	can	verify	that	the	infrastructure	supporting	our	tests	is	already
in	place.	It	should	fail	with	a	No	tests	found	warning.	Here	is	how	to	run	the	test	class,	in
case	you	missed	it:

Creating	the	fixture
We	can	start	creating	our	test	fixture	by	populating	the	setup()	method	with	the	elements
we	need	in	our	tests.	Almost	unavoidable,	in	this	case,	is	the	use	of	the	Activity	under	test,
so	let’s	prepare	for	the	situation	and	add	it	to	the	fixture:

@Override		

public	void	setUp()	throws	Exception	{

				super.setUp();

				activity	=	getActivity();

}

After	introducing	the	previous	code,	create	the	activity	field	using	AndroidStudio’s
refactoring	tools	to	save	you	time.	(F2	for	next	error,	Alt	+	Enter	for	quick	fix,	Enter	again
to	create	field,	Enter	again	to	confirm	the	fields	type,	done!)

The	ActivityInstrumentationTestCase2.getActivity()	method	has	a	side	effect.	If
the	Activity	under	test	is	not	running,	it	will	be	started.	This	may	change	the	intention	of	a
test	if	we	use	getActivity()	as	a	simple	accessor	several	times	in	a	test,	and	for	some
reason	the	Activity	finishes	or	crashes	before	test	completion.	We	will	be	inadvertently
restarting	the	Activity,	that	is	why	in	our	tests	we	discourage	the	use	of	getActivity()	in
favor	of	having	it	in	the	fixture,	so	that	we	are	implicitly	restarting	the	activity	for	every
test.

Creating	the	user	interface
Back	to	our	Test-driven	Development	track,	we	see	from	our	concise	list	of	requirements
that	there	are	two	entries	for	Celsius	and	Fahrenheit	temperatures,	respectively.	So	let’s
add	them	to	our	test	fixture.

They	don’t	exist	yet,	and	we	haven’t	even	started	designing	the	user	interface	layout,	but
we	know	that	there	should	be	two	entries	like	these	for	sure.

This	is	the	code	you	should	add	to	the	setUp()	method:

celsiusInput	=	(EditText)

		activity.findViewById(R.id.converter_celsius_input);

fahrenheitInput	=	(EditText)

		activity.findViewById(R.id.converter_fahrenheit_input);

There	are	some	important	things	to	notice:

We	choose	the	names	converter_celsius_input	because,	converter_	is	the	location
of	this	field	(in	the	TemperatorConverter	Activity)	celsius_	is	what	the	field
represents,	and	finally	input	is	how	the	fields	behave
We	define	the	fields	for	our	fixture	using	EditText
We	use	the	previously	created	Activity	to	find	the	Views	by	ID
We	use	the	R	class	for	the	main	project	even	though	these	IDs	do	not	exist

Testing	the	existence	of	the	user	interface
components
Once	we	have	added	them	to	the	setUp()	method,	as	indicated	in	the	previous	section,	we
can	write	our	first	test	and	check	the	views	existence:

		public	final	void	testHasInputFields()	{

				assertNotNull(celsiusInput);

				assertNotNull(fahrenheitInput);

		}

We	are	not	able	to	run	the	tests	yet	because	we	must	fix	some	compilation	problems	first.
We	should	fix	the	missing	IDs	in	the	R	class.

Having	created	our	test	fixture	that	references	elements	and	IDs	in	the	user	interface	that
we	don’t	have	yet,	it’s	mandated	by	the	Test-driven	Development	paradigm	that	we	add
the	needed	code	to	satisfy	our	tests.	The	first	thing	we	should	do	is	get	the	test	to	compile,
so	if	we	have	some	tests	testing	unimplemented	features,	they	will	fail.

Getting	the	IDs	defined
Our	first	stop	would	be	to	have	the	IDs	for	the	user	interface	elements	defined	in	the	R
class,	so	the	errors	generated	by	referencing	undefined	constants
R.id.converter_celsius_input	and	R.id.converter_fahrenheit_input	go	away.

You,	as	an	experienced	Android	developer,	will	know	how	to	do	it.	I’ll	give	you	a
refresher	anyway.	Create	an	activity_temperature_converter.xml	layout	in	the	layout
editor,	and	add	the	required	user	interface	components	to	get	something	that	resembles	the
design	previously	introduced	in	the	User	Interface	concept	design	section,	as	shown	in	the
following	code:

<?xml	version="1.0"	encoding="utf-8"?>

<LinearLayout	xmlns:android="http://schemas.android.com/apk/res/android"

		android:layout_width="match_parent"

		android:layout_height="match_parent"

		android:orientation="vertical">

		<TextView

				android:layout_width="match_parent"

				android:layout_height="wrap_content"

				android:layout_marginBottom="@dimen/margin"

				android:text="@string/message"	/>

		<<TextView

				android:id="@+id/converter_celsius_label"

				android:layout_width="wrap_content"

				android:layout_height="wrap_content"

				android:layout_marginStart="@dimen/margin"

				android:text="@string/celsius"	/>

		<EditText

				android:id="@+id/converter_celsius_input"

				android:layout_width="wrap_content"

				android:layout_height="wrap_content"

				android:layout_margin="@dimen/margin"		/>

		<TextView

				android:id="@+id/converter_fahrenheit_label"

				android:layout_width="wrap_content"

				android:layout_height="wrap_content"

				android:layout_marginStart="@dimen/margin"

				android:text="@string/fahrenheit"		/>

		<EditText

				android:id="@+id/converter_fahrenheit_input"

				android:layout_width="wrap_content"

				android:layout_height="wrap_content"

				android:layout_margin="@dimen/margin"		/>

</LinearLayout>

Doing	so,	we	get	our	tests	to	compile	(don’t	forget	to	add	the	strings	and	dimensions),	run
the	tests,	do	they	pass?	They	shouldn’t!	You	need	to	hook	up	your	new	activity	layout	(I

bet	you	beat	me	to	it):

public	class	TemperatureConverterActivity	extends	Activity	{

				@Override

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activity_temperature_converter);

				}

}

Run	the	tests	once	more,	and	you	should	get	the	following	result:

The	testHasInputFields	test	succeeded
Everything	is	green	now

The	output	of	the	test	is	seen	as	follows:

This	clearly	means	that	we	are	on	track	with	applying	TDD.

You	may	also	have	noticed	that	we	added	some	decorative	and	non-functional	items	to	our
user	interface	that	we	are	not	testing	(say	padding),	mainly	to	keep	our	example	as	simple
as	possible.	In	a	real-case	scenario,	you	may	want	to	add	tests	for	these	elements	too.

Translating	requirements	to	tests
Tests	have	a	double	feature.	They	verify	the	correctness	of	our	code	but,	sometimes,	and
more	prominently	in	TDD,	they	help	us	understand	the	design	and	digest	what	we	are
implementing.	To	be	able	to	create	the	tests,	we	need	to	understand	the	problem	we	are
dealing	with,	and	if	we	don’t,	we	should	at	least	have	a	rough	outline	of	the	problem	to
allow	us	to	start	to	handle	it.

Many	times,	the	requirements	behind	the	user	interface	are	not	clearly	expressed,	but	you
should	be	able	to	understand	them	from	the	wireframed	UI	design.	If	we	pretend	that	this
is	the	case,	then	we	can	grasp	the	design	by	writing	our	tests	first.

Empty	fields
From	one	of	our	requirements,	we	get:	Entry	fields	should	start	empty.

To	express	this	in	a	test,	we	can	write	the	following:

				public	void	testFieldsShouldStartEmpty()	{

								assertEquals("",	celsiusInput.getText().toString());

								assertEquals("",	fahrenheitInput.getText().toString());

				}

Here,	we	simply	compare	the	initial	contents	of	the	fields	against	the	empty	string.

This	test	passes	straight	away,	great!	Although	a	tenant	of	TDD	always	starts	with	a	red
test,	you	might	want	to	do	a	quick	sanity	check,	and	add	some	text	to	the	XML	for
EditText	and	run	the	tests,	and	when	it	goes	red	and	green	again	when	you	remove	the
added	text,	you	know	your	test	is	validating	the	behavior	you	expect	(and	it	wasn’t	green
as	a	side	effect	of	something	you	did	not	expect).	We	successfully	converted	one
requirement	to	a	test,	and	validated	it	by	obtaining	the	test	results.

View	properties
Identically,	we	can	verify	other	properties	of	the	Views	composing	our	layout.	Among
other	things,	we	can	verify:

Fields	(appear	on	the	screen	as	expected)
Font	sizes
Margins
Screen	alignment

Let’s	start	verifying	that	the	fields	are	on	the	screen:

				public	void	testFieldsOnScreen()	{

								View	origin	=	activity.getWindow().getDecorView();

								assertOnScreen(origin,	celsiusInput);

								assertOnScreen(origin,	fahrenheitInput);

				}

As	explained	before,	we	use	an	assert	from	here:	ViewAsserts:	assertOnScreen.

Note
Static	imports	and	how	to	make	the	most	of	them	was	explained	in	Chapter	2,
Understanding	Testing	with	the	Android	SDK.	If	you	haven’t	done	it	before,	now	is	the
time.

The	assertOnScreen()	method	needs	an	origin	to	start	looking	for	the	other	Views.	In	this
case,	because	we	want	to	start	from	the	top-most	level,	we	use	getDecorView(),	which
retrieves	the	top-level	window	view	containing	the	standard	window	frame	and
decorations,	with	the	client’s	content	inside.

By	running	this	test,	we	can	ensure	that	the	entry	fields	are	on	the	screen,	as	the	UI	design
dictates.	In	some	way,	we	already	knew	that	Views,	with	these	specific	IDs,	existed.	That
is,	we	made	the	fixture	compile	by	adding	the	Views	to	the	main	layout,	but	we	were	not
sure	they	were	appearing	on	the	screen	at	all.	So,	nothing	else	is	needed	but	the	sole
presence	of	this	test,	to	ensure	that	the	condition	is	not	changed	in	the	future.	If	we	remove
one	of	the	fields	for	some	reason,	this	test	will	tell	us	that	it	is	missing,	and	not	complying
with	the	UI	design.

Following	with	our	list	of	requirements,	we	should	test	that	the	Views	are	aligned	in	the
layout	as	we	expect:

				public	void	testAlignment()	{

								assertLeftAligned(celsiusLabel,	celsiusInput);

								assertLeftAligned(fahrenheitLabel,	fahrenheitInput);

								assertLeftAligned(celsiusInput,	fahrenheitInput);

								assertRightAligned(celsiusInput,	fahrenheitInput);

				}

We	continue	using	asserts	from	ViewAssert—in	this	case,	assertLeftAligned	and
assertRightAligned.	These	methods	verify	the	alignment	of	the	specified	Views.	To	get
this	test	running	we	have	to	add	the	two	lookups	for	the	label	TextView’s	in	the	setUp()
method:

celsiusLabel	=	(TextView)

		activity.findViewById(R.id.converter_celsius_label);

fahrenheitLabel	=	(TextView)

		activity.findViewById(R.id.converter_fahrenheit_label);

The	LinearLayout	class	we	are	using	by	default	arranges	the	fields	in	the	way	we	are
expecting	them.	Again,	while	we	don’t	need	to	add	anything	to	the	layout,	to	satisfy	the
test,	this	will	act	as	a	guard	condition.

Once	we’ve	verified	that	they	are	correctly	aligned,	we	should	verify	that	they	are
covering	the	whole	screen	width,	as	specified	by	the	schematic	drawing.	In	this	example,
it’s	sufficient	to	verify	LayoutParams	having	the	correct	values:

				public	void	testCelciusInputFieldCoversEntireScreen()	{

					LayoutParams	lp;

					int	expected	=	LayoutParams.MATCH_PARENT;

					lp	=	celsiusInput.getLayoutParams();		

					assertEquals("celsiusInput	layout	width	is	not	MATCH_PARENT",	

expected,	lp.width);

				}

				public	void	testFahrenheitInputFieldCoversEntireScreen()	{

					LayoutParams	lp;

					int	expected	=	LayoutParams.MATCH_PARENT;

					lp	=	fahrenheitInput.getLayoutParams();

					assertEquals("fahrenheitInput	layout	width	is	not	MATCH_PARENT",	

expected,	lp.width);

				}

We	used	a	custom	message	to	easily	identify	the	problem,	in	case	the	test	fails.

By	running	this	test,	we	obtain	the	following	message	indicating	that	the	test	failed:
AssertionFailedError:	celsiusInput	layout	width	is	not	MATCH_PARENT	expected:
<-1>	but	was:<-2>.

This	leads	us	to	the	layout	definition.	We	must	change	layout_width	to	be	match_parent
for	the	Celsius	and	Fahrenheit	fields:

<EditText

				android:id="@+id/converter_celsius_input"

				android:layout_width="match_parent"

				android:layout_height="wrap_content"

				android:layout_margin="@dimen/margin"

				android:gravity="end|center_vertical"	/>	

Same	for	Fahrenheit—after	the	change	is	done,	we	repeat	the	cycle,	and	by	running	the
test	again,	we	can	verify	that	it	is	now	successful.

Our	method	is	starting	to	appear.	We	create	the	test	to	verify	a	condition	described	in	the
requirements.	If	it’s	not	met,	we	change	the	cause	of	the	problem,	and	running	the	tests
again,	we	verify	that	the	latest	change	solves	the	problem,	and	what	is	perhaps	more
important	is	that	the	change	doesn’t	break	the	existing	code.

Next,	let’s	verify	that	the	font	sizes	are	defined	as	per	our	requirements:

				public	void	testFontSizes()	{

								float	pixelSize	=	24f;

								assertEquals(pixelSize,	celsiusLabel.getTextSize());

								assertEquals(pixelSize,	fahrenheitLabel.getTextSize());

				}

Retrieving	the	font	size	used	by	the	field	is	enough	in	this	case.

The	default	font	size	is	not	24px,	so	we	need	to	add	this	to	our	layout.	It’s	a	good	practice
to	add	the	corresponding	dimension	to	a	resource	file,	and	then	use	it	where	it’s	needed	in
the	layout.	So,	let’s	add	label_text_size	to	res/values/dimens.xml,	with	a	value	of
24sp.	Then	reference	it	in	the	Text	size	property	of	the	labels,	celsius_label	and
fahrenheit_label.

Now,	the	test	may	pass	or	it	may	not,	depending	on	the	resolution	of	your	device	or
emulator	you	are	using.	This	is	because	we	are	asserting	in	the	test,	the	pixel	size,	but	we
have	declared	in	the	dimens.xml,	to	use	sp	(scale	independent	pixels).	Let’s	harden	this

test.	To	resolve	this	we	could	either	convert	our	px	to	sp	in	the	test	class,	or	use	the	sp
value	in	the	test.	I	have	chosen	to	use	sp	in	the	test,	although	you	could	argue	for	either:

				public	void	testFontSizes()	{

								float	pixelSize	=	getFloatPixelSize(R.dimen.label_text_size);

								assertEquals(pixelSize,	celsiusLabel.getTextSize());

								assertEquals(pixelSize,	fahrenheitLabel.getTextSize());

				}

				private	float	getFloatPixelSize(int	dimensionResourceId)	{

								return	getActivity().getResources()

																	.getDimensionPixelSize(dimensionResourceId);

				}

Finally,	let’s	verify	that	margins	are	interpreted	as	described	in	the	user	interface	design:

				public	void	testCelsiusInputMargins()	{

								LinearLayout.LayoutParams	lp	=

(LinearLayout.LayoutParams)	celsiusInput.getLayoutParams();

								assertEquals(getIntPixelSize(R.dimen.margin),	lp.leftMargin);

								assertEquals(getIntPixelSize(R.dimen.margin),	lp.rightMargin);

				}

				public	void	testFahrenheitInputMargins()	{

								LinearLayout.LayoutParams	lp	=

(LinearLayout.LayoutParams)	fahrenheitInput.getLayoutParams();

								assertEquals(getIntPixelSize(R.dimen.margin),	lp.leftMargin);

								assertEquals(getIntPixelSize(R.dimen.margin),	lp.rightMargin);

				}

This	is	a	similar	case	as	before	(I’ve	skipped	the	step	of	testing	the	raw	pixel	value).	We
need	to	add	the	margin	to	our	layout.	Let’s	add	the	margin	dimension	to	the	resource	file,
and	then	use	it	where	it’s	needed	in	the	layout.	Set	the	margin	dimension	in
res/values/dimens.xml	to	a	value	of	8dp.	Then,	reference	it	in	the
layout_margin_start	property	of	both	fields,	celsius	and	fahrenheit,	and	also	in	the
start	margin	of	the	labels.

The	helper	method	to	get	the	integer	pixel	size	from	a	resource	dimen,	just	wraps	the
float	method	already	discussed:

				private	int	getIntPixelSize(int	dimensionResourceId)	{

								return	(int)	getFloatPixelSize(dimensionResourceId);

				}

One	more	thing	that	is	left	is	to	verify	the	justification	(alignment)	of	the	entered	values.
We	will	validate	the	input	shortly,	to	allow	only	the	permitted	values,	but	for	now	let’s	just
pay	attention	to	the	justification.	The	intention	is	to	have	values	that	are	smaller	than	the
whole	field,	justified	to	the	right	and	vertically	centered:

public	void	testCelsiusInputJustification()	{

		int	expectedGravity	=	Gravity.END	|	Gravity.CENTER_VERTICAL;

		int	actual	=	celsiusInput.getGravity();

		String	errorMessage	=	String.format(

"Expected	0x%02x	but	was	0x%02x",	expectedGravity,	actual);

		assertEquals(errorMessage,	expectedGravity,	actual);

}

public	void	testFahrenheitInputJustification()	{

		int	expectedGravity	=	Gravity.END	|	Gravity.CENTER_VERTICAL;

		int	actual	=	fahrenheitInput.getGravity();

		String	errorMessage	=	String.format(

"Expected	0x%02x	but	was	0x%02x",	expectedGravity,	actual);

		assertEquals(errorMessage,	expectedGravity,	actual);

}

Here,	we	verify	the	gravity	values	as	usual.	However,	we	are	using	a	custom	message	to
help	us	identify	the	values	that	could	be	wrong.	As	the	Gravity	class	defines	several
constants	whose	values	are	better	identified	if	expressed	in	hexadecimal,	we	are
converting	the	values	to	this	base	in	the	message.

If	this	test	is	failing	due	to	the	default	gravity	used	for	the	fields,	then	what	is	only	left	is
to	change	it.	Go	to	the	layout	definition	and	alter	these	gravity	values,	so	that	the	test
succeeds.

This	is	precisely	what	we	need	to	add:

android:gravity="end|center_vertical"

Screen	layout
We	now	want	to	verify	that	the	requirement	specifying	that	enough	screen	space	should	be
reserved	to	display	the	keyboard,	is	actually	fulfilled.

We	can	write	a	test	like	this:

			public	void	testVirtualKeyboardSpaceReserved()	{

								int	expected	=	getIntPixelSize(R.dimen.keyboard_space);

								int	actual	=	fahrenheitInput.getBottom();

String	errorMessage	=	

		"Space	not	reserved,	expected	"	+	expected	+	"	actual	"	+	actual;

								assertTrue(errorMessage,	actual	<=	expected);

				}

This	verifies	that	the	actual	position	of	the	last	field	in	the	screen,	which	is
fahrenheitInput,	is	not	lower	than	a	suggested	value.

We	can	run	the	tests	again	verifying	that	everything	is	green	again.	Run	up	your
application,	and	you	should	have	a	complete	user	interface	backed	by	tests,	as	shown	in
the	following	screenshot:

Adding	functionality
The	user	interface	is	in	place.	Now,	we	can	start	adding	some	basic	functionality.	This
functionality	will	include	the	code	to	handle	the	actual	temperature	conversion.

Temperature	conversion
From	the	list	of	requirements,	we	can	obtain	this	statement:	When	one	temperature	is
entered	in	one	field,	the	other	one	is	automatically	updated	with	the	conversion.

Following	our	plan,	we	must	implement	this	as	a	test	to	verify	that	the	correct
functionality	is	there.	Our	test	would	look	something	like	this:

@UiThreadTest

public	void	testFahrenheitToCelsiusConversion()	{

		celsiusInput.clear();

		fahrenheitInput.clear();

		fahrenheitInput.requestFocus();

		fahrenheitInput.setText("32.5");

		celsiusInput.requestFocus();

		double	f	=	32.5;

		double	expectedC	=	TemperatureConverter.fahrenheitToCelsius(f);

		double	actualC	=	celsiusInput.getNumber();

		double	delta	=	Math.abs(expectedC	-	actualC);

		String	msg	=	""	+	f	+	"F	->	"	+	expectedC	+	"C	but	was	"	

				+	actualC	+	"C	(delta	"	+	delta	+	")";

		assertTrue(msg,	delta	<	0.005);

}

Let’s	run	through	this	step-by-step:

1.	 Firstly,	as	we	already	know,	to	interact	with	the	UI	changing	its	values	we	should	run
the	test	on	the	UI	thread,	and	thus	because	we	use	EditText.setText,	the	test	is
annotated	with	@UiThreadTest.

2.	 Secondly,	we	are	using	a	specialized	class	to	replace	EditText	providing	some
convenience	methods	such	as	clear()	and	setNumber().	This	will	improve	our
application	design.

3.	 Next,	we	invoke	a	converter,	named	TemperatureConverter,	a	utility	class	providing
the	different	methods	to	convert	between	different	temperature	units,	and	using
different	types	for	the	temperature	values.

4.	 Finally,	as	we	will	be	truncating	the	results	to	provide	them	in	a	suitable	format
presented	in	the	user	interface,	we	should	compare	against	a	delta	to	assert	the	value
of	the	conversion.

Creating	the	test	like	this	will	force	us	to	follow	the	planned	path.	Our	first	objective	is	to
add	the	needed	methods	and	code	to	get	the	test	to	compile,	and	then	to	satisfy	the	test’s
needs.

The	EditNumber	class
In	our	main	package,	not	in	the	tests	one	(which	is	not	the	one	under	/androidTest/),	we
should	create	the	EditNumber	class	extending	EditText,	as	we	need	to	extend	its
functionality.	Once	the	class	is	created,	we	need	to	change	the	type	of	the	fields	in	our	test
class	member	types:

public	class	TemperatureConverterActivityTests	extends	

ActivityInstrumentationTestCase2<TemperatureConverterActivity>	{

		private	TemperatureConverterActivity	activity;		

		private	EditNumber	celsiusInput;

		private	EditNumber	fahrenheitInput;

		private	TextView	celsiusLabel;

		private	TextView	fahrenheitLabel;

Then,	change	any	cast	that	is	present	in	the	tests.	Your	IDE	will	highlight	these;	press	F2
to	find	them	in	the	class.

There	are	still	two	problems	we	need	to	fix	before	being	able	to	compile	the	test:

We	still	don’t	have	the	clear()	and	setNumber()methods	in	EditNumber
We	don’t	have	the	TemperatureConverter	utility	class

From	inside	our	test	class,	we	can	use	the	IDE	to	help	us	create	the	methods.	Press	F2
again,	and	you	should	be	taken	to	the	error	for	Cannot	resolve	method	clear().	Now
press	Alt	+	Enter	to	create	the	clear()method	in	type	EditNumber.	Same	for
getNumber().

Finally,	we	must	create	the	TemperatureConverter	class.	This	class	will	hold	the
mathematical	conversions	of	Celsius	and	Fahrenheit,	and	no	Android	code.	Therefore,	we
can	create	this	package	inside	of	our	/core/	module.	As	previously	discussed,	it	will	be
under	the	same	package	structure,	only	this	module	does	not	know	about	Android	and,
therefore,	we	can	write	JVM	tests	that	run	much	faster.

Tip
Be	sure	to	create	it	in	the	core	module	under	the	same	package	as	your	main	code,	and	not
in	the	test	package.

Here’s	how	to	create	that	class	in	the	core	module,	and	the	current	state	of	our	application:

Having	done	this,	in	our	test,	it	creates	the	fahrenheitToCelsius	method.

This	fixes	our	last	problem,	and	leads	us	to	a	test	that	we	can	now	compile	and	run.	Yes
you	will	have	red	Lint	errors,	but	these	are	not	“compile”	errors,	and	so	the	tests	can	still
run.	(AndroidStudio’s	cleverness	is	too	damn	high.)

Surprisingly,	or	not,	when	we	run	the	tests,	they	will	fail	with	an	exception:

java.lang.ClassCastException:

android.widget.EditText	cannot	be	cast	to	com.blundell.tut.EditNumber

at	com.blundell.tut.TemperatureConverterActivityTests.setUp(

TemperatureConverterActivityTests.java:36)

at	android.test.AndroidTestRunner.runTest(

AndroidTestRunner.java:191)

That	is	because	we	updated	all	of	our	Java	files	to	include	our	newly	created	EditNumber
class,	but	forgot	to	change	the	layout	XML.

Let’s	proceed	to	update	our	UI	definition:

<com.blundell.tut.EditNumber

				android:id="@+id/converter_celsius_input"

				android:layout_width="match_parent"

				android:layout_height="wrap_content"

				android:layout_margin="@dimen/margin"

				android:gravity="end|center_vertical"	/>

That	is,	we	replace	the	original	EditText	class	by	com.blundell.tut.EditNumber,	which
is	a	View	extending	the	original	EditText	class.

Now,	we	run	the	tests	again,	and	we	discover	that	all	tests	pass.

But	wait	a	minute;	we	haven’t	implemented	any	conversion	or	any	handling	of	values	in
the	new	EditNumber	class,	and	all	tests	passed	with	no	problem.	Yes,	they	passed	because
we	don’t	have	enough	restrictions	in	our	system	and	the	ones	in	place,	simply	cancel
themselves.

Before	going	further,	let’s	analyze	what	just	happened.	Our	test	invoked	the
fahrenheitInput.setText	("32.5")	method	to	set	the	temperature	entered	in	the
Fahrenheit	field,	but	our	EditNumber	class	doesn’t	do	anything	when	text	is	entered,	and
the	functionality	is	not	implemented.	So,	the	Celsius	field	remains	empty.

The	value	for	expectedC—the	expected	temperature	in	Celsius,	is	calculated	invoking
TemperatureConverter.fahrenheitToCelsius(f),	but	this	is	an	empty	method.	In	this
case	because	we	knew	the	return	type	of	the	method	we	made	it	return	to	a	constant	0.	So,
expectedC	becomes	0.

Then,	the	actual	value	for	the	conversion	is	obtained	from	the	UI.	In	this	case	invoking
getNumber()	from	EditNumber.	But	this	method	was	automatically	generated,	and	to
satisfy	the	restriction	imposed	by	its	signature,	it	must	return	a	value,	namely	0.

The	delta	value	is	again	0,	as	calculated	by	Math.abs(expectedC	–	actualC).

And	finally	our	assertion	assertTrue(msg,	delta	<	0.005)	is	true,	because	delta=0
satisfies	the	condition,	and	the	test	passes.

So,	is	our	methodology	flawed,	as	it	cannot	detect	a	simple	situation	like	this?

No,	not	at	all,	the	problem	here	is	that	we	don’t	have	enough	restrictions,	and	they	are
satisfied	by	the	default	values	used	by	auto-generated	methods.	One	alternative	could	be
to	throw	exceptions	at	all	of	the	auto-generated	methods,	something	like
RuntimeException("not	yet	implemented")	to	detect	its	use	when	not	implemented.	We
will	be	adding	enough	restrictions	in	our	system	to	easily	trap	this	double	zero	condition.

The	TemperatureConverter	unit	tests
It	seems,	from	our	previous	experience,	that	the	default	conversion	implemented	always
returns	0,	so	we	need	something	more	robust.	Otherwise,	our	converter	will	only	be
returning	a	valid	result,	when	the	parameter	takes	the	value	of	32F	(32F	==	0C).

The	TemperatureConverter	class	is	a	utility	class	not	related	with	the	Android
infrastructure,	so	a	standard	unit	test	will	be	enough	to	test	it.

As	this	is	the	first	core	test	we	are	going	to	write,	we	need	to	do	some	setup.	Firstly,	from
the	project	view;	in	your	project	structure	create	a	test	folder	under	/core/src	by
selecting	New	|	Directory	and	using	the	name	test.	Inside	this,	create	a	java	folder	by
selecting	New	|	Directory,	and	using	the	name	java.	With	Gradle	being	magic,	it	will	now
understand	that	this	is	a	place	you	want	to	add	tests,	and	the	folder	should	turn	green
(green	means	that	the	folder	is	a	part	of	the	test	classpath).	Now	add	a	new	package,
technically	it	is	not	new	because	we	are	going	to	use	com.blundell.tut	again,	by
selecting	New	|	Package	|	and	using	the	name	com/blundell/tut.

Now.	we	create	our	tests	in	our	new	folder	and	package.	We	create	our	tests	by	selecting
New	|	Java	Class,	and	calling	it	TemperatureConverterTests.	Your	project	should	now
look	like	this:

Let’s	make	our	first	test,	inside	of	TemperatureConverterTests,	press	Ctrl	+	Enter	to
bring	up	the	Generate	menu,	as	shown	in	the	following	screenshot:

Selecting	the	Test	Method	test,	then	JUnit4	will	generate	us	a	template	method	of	a	test
that	we	want,	name	it	testFahrenheitToCelsius().	Remember	this	shortcut	as	it’s	handy
whenever	creating	a	new	test.	Once	you’ve	generated	this	test,	you’ll	notice	we	have
compile	errors	on	the	JUnit	4	imported	lines	of	code.	Oops!	we	forgot	to	add	the	JUnit
library	to	the	test	classpath	of	our	core	module.	Open	up	the	build	file	in
/core/build.gradle,	and	add	the	JUnit	dependency.	Your	core	build.gradle	will	now
look	like	this:

apply	plugin:	'java''java'

dependencies	{

				compile	fileTree(dir:	'libs''libs',	include:	[''''*.jar'])

				

				testCompile	'junit'junit:junit:4.+''''

}

Note
Notice,	here	we	have	jumped	from	JUnit3	to	JUnit4	the	main	difference	being	we	can	now
use	annotations	to	tell	our	test	runner,	which	of	the	methods	in	the	class	are	tests.
Therefore,	technically	we	don’t	need	to	start	the	methods	with	test	as	in	testFooBar()
anymore,	but	we	will	for	our	own	sanity	when	swopping	between	the	two	(Android	JUnit4
support	is	coming	soon!).

Do	a	project	sync	by	selecting	Project	Sync,	and	we	are	compiling	and	ready	to	code.
Let’s	start	writing	the	test:

@Test

public	void	testFahrenheitToCelsius()	{

				for	(double	knownCelsius	:	conversionTable.keySet())	{

								double	knownFahrenheit	=	conversionTable.get(knownCelsius);

								double	resultCelsius	=

TemperatureConverter.fahrenheitToCelsius(knownFahrenheit);

								double	delta	=	Math.abs(resultCelsius	-	knownCelsius);

								String	msg	=	knownFahrenheit	+	"F	->	"	+	knownCelsius	+	"C"+	"but	

is	"	+	resultCelsius;

								assertTrue(msg,	delta	<	0.0001);

					}

}

Creating	a	conversion	table	with	values	for	different	temperature	conversion,	we	know
from	other	sources,	would	be	a	good	way	to	drive	this	test:

Map<Double,	Double>	conversionTable	=	new	HashMap<Double,	Double>()	{

		//	initialize	(celsius,	fahrenheit)	pairs

		put(0.0,	32.0);

		put(100.0,	212.0);

		put(-1.0,	30.20);

		put(-100.0,	-148.0);

		put(32.0,	89.60);

		put(-40.0,	-40.0);

		put(-273.0,	-459.40);

}};

To	run	tests	in	the	core	module,	we	can	right	click	on	the	file	in	the	project	view,	and
select	Run.	As	the	screenshot	also	shows,	you	can	use	the	shortcut	Cmd	+	Shift	+	F10:

When	this	test	runs,	we	verify	that	it	fails,	giving	us	this	trace:

java.lang.AssertionError:	-40.0F	->	-40.0C	but	is	0.0

		at	org.junit.Assert.fail(Assert.java:88)

		at	org.junit.Assert.assertTrue(Assert.java:41)

		at	

com.blundell.tut.TemperatureConverterTests.testFahrenheitToCelsius(Temperat

ureConverterTests.java:31).

Note
See	how	fast	those	core	tests	ran!	Aim	for	moving	as	much	of	your	application	logic	into
your	core	module	as	you	can,	so	you	can	take	advantage	of	this	speed	when	doing	Test-
driven	Development.

Well,	this	was	something	we	were	expecting	as	our	conversion	always	returns	0.
Implementing	our	conversion,	we	discover	that	we	need	some	ABSOLUTE_ZERO_F	constant:

				private	static	final	double	ABSOLUTE_ZERO_F	=	-459.67d;

				private	static	final	String	ERROR_MESSAGE_BELOW_ZERO_FMT	=							

"Invalid	temperature:	%.2f%c	below	absolute	zero";

				private	TemperatureConverter()	{

								//	non-instantiable	helper	class

				}

				public	static	double	fahrenheitToCelsius(double	fahrenheit)	{

								if	(fahrenheit	<	ABSOLUTE_ZERO_F)	{

												String	msg	=	String.format(ERROR_MESSAGE_BELOW_ZERO_FMT,															

fahrenheit,	'F''F');

												throw	new	InvalidTemperatureException(msg);

								}

								return	((fahrenheit	-	32)	/	1.8d);

				}

Absolute	zero,	is	the	theoretical	temperature	at	which	entropy	would	reach	its	minimum
value.	To	be	able	to	reach	this	absolute	zero	state,	according	to	the	laws	of
thermodynamics,	the	system	should	be	isolated	from	the	rest	of	the	universe.	Thus,	it	is	an
unreachable	state.	However,	by	international	agreement,	absolute	zero	is	defined	as	0K	on
the	Kelvin	scale,	and	as	-273.15°C	on	the	Celsius	scale	or	to	-459.67°F	on	the	Fahrenheit
scale.

We	are	creating	a	custom	exception,	InvalidTemperatureException,	to	indicate	a	failure
providing	a	valid	temperature	to	the	conversion	method.	This	exception	doesn’t	know
anything	about	Android,	and	so	can	also	sit	in	our	core	module.	Create	it	by	extending
RuntimeException:

public	class	InvalidTemperatureException	extends	RuntimeException	{

		public	InvalidTemperatureException(String	msg)	{

				super(msg);

		}

}

Running	the	core	tests	again,	we	discover	that	testFahrenheitToCelsius	succeeds.
Therefore,	we	move	back	to	our	Android	tests,	and	running	these	show	us	such	that
testFahrenheitToCelsiusConversion	test	fails.	This	tells	us,	that	now	the	converter
class	correctly	handles	conversions,	but	there	are	still	some	problems	with	the	UI	handling
this	conversion.

Note
Don’t	despair	about	running	two	separate	test	classes.	It	is	common	for	you	to	be	selective
about	what	tests	to	run;	this	is	partly	a	learnt	skill	when	doing	TDD.	However,	if	you	so
wish,	you	can	write	custom	test	runners	that	will	run	all	of	your	tests.	Also,	using	Gradle
to	run	build	connectedAndroidTest	will	run	all	your	tests	at	once,	which	is	advised
whenever	you	consider	you	have	completed	a	feature,	or	want	to	commit	to	your	upstream
version	control.

A	closer	look	at	the	testFahrenheitToCelsiusConversion	failure	trace	reveals	that
there’s	something	still	returning	0,	when	it	shouldn’t.

This	reminds	us	that	we	are	still	lacking	a	proper	EditNumber	implementation.	Before

proceeding	to	implement	the	mentioned	methods,	let’s	create	the	corresponding	tests	to
verify	what	we	are	implementing	is	correct.

The	EditNumber	tests
From	the	previous	chapter,	we	can	now	determine	that	the	best	base	class	for	our	custom
View	tests	is	AndroidTestCase,	as	we	need	a	mock	Context	class	to	create	the	custom
View,	but	we	don’t	need	system	infrastructure.

Create	the	tests	for	EditNumber,	let’s	call	it	EditNumberTests,	and	extend
AndroidTestCase.	Reminder,	this	is	under	the	app	module	in	the	androidTest	path.

We	need	to	add	the	constructors	to	reflect	the	pattern	we	identified	before	with	the	given
name	pattern:

public	EditNumberTests()	{

								this("EditNumberTests");

				}

				public	EditNumberTests(String	name)	{

								setName(name);

				}

The	next	step	is	to	create	the	fixture.	In	this	case,	this	is	a	simple	EditNumber	class	that	we
will	be	testing:

				@Override

				protected	void	setUp()	throws	Exception	{

								super.setUp();

								editNumber	=	new	EditNumber(mContext);

								editNumber.setFocusable(true);

				}

The	mock	context	is	obtained	from	the	protected	field	mContext
(http://developer.android.com/reference/android/test/AndroidTestCase.html#mContext),
available	in	the	AndroidTestCase	class.

At	the	end	of	the	setUp	method,	we	set	editNumber	as	a	focusable	View,	meaning	it	will
be	able	to	gain	focus,	as	it	will	be	participating	in	a	bunch	of	tests	simulating	UIs	that	may
need	to	request	its	focus	explicitly.

Next,	we	test	that	the	required	clear()	functionality	is	implemented	correctly	in	the
testClear()	method:

@UiThreadTest

public	void	testClear()	{

String	value	=	"123.45";

										editNumber.setText(value);

										editNumber.clear();

										assertEquals("",	editNumber.getText().toString());

}	

Running	the	test	we	verify	that	it	fails:

junit.framework.ComparisonFailure:	expected:<[]>	but	was:<[123.45]>

http://developer.android.com/reference/android/test/AndroidTestCase.html#mContext

at	com.blundell.tut.EditNumberTests.testClear(EditNumberTests.java:31)

at	java.lang.reflect.Method.invokeNative(Native	Method)

at	android.test.AndroidTestRunner.runTest(AndroidTestRunner.java:191)

We	need	to	implement	EditNumber.clear()	correctly.

This	is	a	simple	case,	so	just	by	adding	this	implementation	to	EditNumber,	we	satisfy	the
test:

		public	void	clear()	{

				setText("");

		}

Run	the	test	and	proceed.	We	are	going	to	add	a	new	method	to	EditNumber.	Here,	we
already	have	getNumber(),	and	we	are	adding	setNumber()	so	that	we	can	use	it	later	on.
Now	let’s	complete	the	testSetNumber()	implementation:

											public	void	testSetNumber()	{

								editNumber.setNumber(123.45);

								assertEquals("123.45",	editNumber.getText().toString());

				}

Which	fails	unless	we	implement	EditNumber.setNumber(),	similar	to	this
implementation:

				private	static	final	String	DEFAULT_FORMAT	=	"%."%.2f";";

		

				public	void	setNumber(double	number)	{

								super.setText(String.format(DEFAULT_FORMAT,	number));

				}

We	are	using	a	constant,	DEFAULT_FORMAT,	to	hold	the	desired	format	to	convert	the
numbers.	This	can	be	later	converted	to	a	property	that	could	also	be	specified	in	the	XML
layout	definition	of	the	field.

The	same	goes	for	the	testGetNumber()	and	getNumber()	pair:

						public	void	testGetNumber()	{

								editNumber.setNumber(123.45);

								assertEquals(123.45,	editNumber.getNumber());

				}

And	the	getNumber()	method	is	as	follows:

				public	double	getNumber()	{

								String	number	=	getText().toString();

								if	(TextUtils.isEmpty(number))	{

												return	0D;

								}

								return	Double.valueOf(number);

				}

These	tests	succeed,	so	run	your	other	tests	to	see	where	we	are	up	to;	I	did	this	on	the

command	line	running	the	gradlew	build	cAT	command.	This	runs	all	of	the	tests	we
have	written	so	far;	but	testFahrenheitToCelsiusConversion()	is	failing.	We	have	a	lot
of	well	tested	code,	take	a	step	back,	and	reflect.

Here	are	our	Android	test	results:

Here	are	our	core	Java	test	results:

With	testFahrenheitToCelsiusConversion()	if	you	closely	analyze	the	test	case,	can
you	can	discover	where	the	problem	is.

Got	it?

Our	test	method	is	expecting	the	conversion	to	happen	automatically	when	the	focus
changes,	as	was	specified	in	our	list	of	requirements:	“when	one	temperature	is	entered	in
one	field,	the	other	one	is	automatically	updated	with	the	conversion”.

Remember,	we	don’t	have	buttons	or	anything	else	to	convert	temperature	values,	so	the
conversion	is	to	be	done	automatically,	once	the	values	are	entered.

This	leads	us	back	to	our	TemperatureConverterActivity	class,	and	the	way	it	handles
the	conversions.

The	TemperatureChangeWatcher	class
One	way	of	implementing	the	required	behavior	of	constantly	updating	the	other
temperature	value,	is	once	the	original	has	changed	is	through	a	TextWatcher.	From	the
documentation,	we	can	understand	that	a	TextWatcher	is	an	object	of	a	type	that	is
attached	to	an	Editable;	its	methods	will	be	called,	when	the	text	is	changed
(http://developer.android.com/reference/android/text/TextWatcher.html).

It	seems	that	is	what	we	need.

We	implement	this	class	as	an	inner	class	of	TemperatureConverterActivity.	The	idea
behind	this	is,	because	we	act	directly	on	the	Views	of	the	Activity,	having	it	as	an	inner
class	shows	this	relationship,	and	keeps	it	obvious,	should	someone	think	of	changing	this
Activity’s	layout.	If	you	implement	the	minimum	TextWatcher,	your	Activity	will	look
like	this:

public	class	TemperatureConverterActivity	extends	Activity	{

				@Override

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activity_temperature_converter);

				}

				/**

					*	Changes	fields	values	when	the	text	changes;	applying	the	correlated	

conversion	method.

					*/

				static	class	TemperatureChangedWatcher	implements	TextWatcher	{

								@Override

								public	void	beforeTextChanged(CharSequence	s,	int	start,	int	count,	

int	after)	{

								}

								@Override

								public	void	onTextChanged(CharSequence	s,	int	start,	int	before,	

int	count)	{

								}

								@Override

								public	void	afterTextChanged(Editable	s)	{

								}

				}

}

And	now	this	is	our	code,	after	some	additions	to	the	recently	created	class:

/**

	*	Changes	fields	values	when	the	text	changes;

	*	applying	the	correlated	conversion	method.

	*/

http://developer.android.com/reference/android/text/TextWatcher.html

static	class	TemperatureChangedWatcher	implements	TextWatcher	{

private	final	EditNumber	sourceEditNumber;

private	final	EditNumber	destinationEditNumber;

private	final	Option	option;

private	TemperatureChangedWatcher(Option	option,

EditNumber	source,

EditNumber	destination)	{

this.option	=	option;

			this.sourceEditNumber	=	source;

			this.destinationEditNumber	=	destination;

}

static	TemperatureChangedWatcher	newCelciusToFehrenheitWatcher(EditNumber	

source,	EditNumber	destination)	{

return	new	TemperatureChangedWatcher(Option.C2F,	source,	destination);

}

static	TemperatureChangedWatcher	newFehrenheitToCelciusWatcher(EditNumber	

source,	EditNumber	destination)	{

return	new	TemperatureChangedWatcher(Option.F2C,	source,	destination);

}

@Override

public	void	onTextChanged(CharSequence	input,	int	start,	int	before,	int	

count)	{

if	(!destinationEditNumber.hasWindowFocus()

||	destinationEditNumber.hasFocus()

||	input	==	null)	{

							return;

}

			String	str	=	input.toString();

			if	("".equals(str))	{

							destinationEditNumber.setText("");

										return;

}

			try	{

						double	temp	=	Double.parseDouble(str);

						double	result	=	(option	==	Option.C2F)

?	TemperatureConverter.celsiusToFahrenheit(temp)

:	TemperatureConverter.fahrenheitToCelsius(temp);

				String	resultString	=	String.format("%.2f",	result);

				destinationEditNumber.setNumber(result);

				destinationEditNumber.setSelection(resultString.length());

			}	catch	(NumberFormatException	ignore)	{

						//	WARNING	this	is	generated	whilst	

	//	numbers	are	being	entered,

	//	for	example	just	a	'-'	

	//	so	we	don''t	want	to	show	the	error	just	yet

			}	catch	(Exception	e)	{

					sourceEditNumber.setError("ERROR:	"	+	e.getLocalizedMessage());

			}

}

@Override

public	void	afterTextChanged(Editable	editable)	{

//	not	used

}

@Override

public	void	beforeTextChanged(CharSequence	s,	int	start,	int	count,	int	

after)	{

//	not	used

}

}

We	will	be	using	the	same	TemperatureChangeWatcher	implementation	for	both	fields,
Celsius	and	Fahrenheit;	therefore	we	keep	a	reference	to	the	fields	used	as	source	and
destination,	as	well	as	the	operation	needed	to	update	their	values.	To	specify	this
operation,	we	are	introducing	enum,	which	is	pure	Java	and	so	can	go	into	the	core
module:

/**

	*	C2F:	celsiusToFahrenheit

	*	F2C:	fahrenheitToCelsius

	*/

public	enum	Option	{

				C2F,	F2C

}

This	operation	is	specified	in	the	creation	factory	methods,	and	the	destination	and	source
EditNumber	are	selected	accordingly.	This	way	we	can	use	the	same	watcher	for	different
conversions.

The	method	of	the	TextWatcher	interface	we	are	interested	in,	is	onTextChanged.	This
will	be	called	any	time	the	text	changes.	At	the	beginning,	we	avoid	potential	loops,
checking	who	has	focus,	and	returning	if	the	conditions	are	not	met.

We	also	set	the	destination	field	as	an	empty	string,	if	the	source	is	empty.

Finally,	we	try	to	set	the	resulting	value	of	invoking	the	corresponding	conversion	method
to	set	the	destination	field.	We	flag	the	error	as	necessary,	avoiding	showing	premature
errors,	when	the	conversion	was	invoked	with	a	partially	entered	number.

We	need	to	set	the	listener	on	the	input	fields	in
TemperatureConverterActivity.onCreate():

@Override

protected	void	onCreate(Bundle	savedInstanceState)	{

		super.onCreate(savedInstanceState);

		setContentView(R.layout.activity_temperature_converter);

		EditNumber	celsiusEditNumber	=

		(EditNumber)	findViewById(R.id.converter_celsius_input);	

		EditNumber	fahrenheitEditNumber	=

		(EditNumber)	findViewById(R.id.converter_fahrenheit_input);

		celsiusEditNumber

		.addTextChangedListener(

newCelciusToFehrenheitWatcher(celsiusEditNumber,	fahrenheitEditNumber));

fahrenheitEditNumber

		.addTextChangedListener(

		newFehrenheitToCelciusWatcher(fahrenheitEditNumber,	

				celsiusEditNumber));

}

To	be	able	to	run	the	tests,	we	should	compile	them.	To	compile,	we	need	to	at	least	define
the	celsiusToFahrenheit()	method,	which	is	not	yet	defined.

More	TemperatureConverter	tests
We	need	to	implement	celsiusToFahrenheit,	and	as	usual	we	start	from	the	test.

This	is	fairly	equivalent	to	the	other	conversion	method	fahrenheitToCelsius,	and	we
can	use	the	infrastructure	we	devised	while	creating	this	test:

@Test

				public	void	testCelsiusToFahrenheit()	{

								for	(double	knownCelsius	:	conversionTable.keySet())	{

												double	knownFahrenheit	=	conversionTable.get(knownCelsius);

												double	resultFahrenheit	=	

TemperatureConverter.celsiusToFahrenheit(knownCelsius);

												double	delta	=	Math.abs(resultFahrenheit	-	knownFahrenheit);

												String	msg	=	knownCelsius	+	"C	->	"	+	knownFahrenheit	+	"F"

+	"	but	is	"	+	resultFahrenheit;

												assertTrue(msg,	delta	<	0.0001);

								}

				}

We	use	the	conversion	table	to	exercise	the	method	through	different	conversions,	and	we
verify	that	the	error	is	less	than	a	predefined	delta.

Then,	the	correspondent	conversion	implementation	in	the	TemperatureConverter	class	is
as	follows:

				static	final	double	ABSOLUTE_ZERO_C	=	-273.15d;

				

				public	static	double	celsiusToFahrenheit(double	celsius)	{

								if	(celsius	<	ABSOLUTE_ZERO_C)	{

												String	msg	=	String.format(

ERROR_MESSAGE_BELOW_ZERO_FMT,	celsius,	'C');

												throw	new	InvalidTemperatureException(msg);

								}

								return	(celsius	*	1.8d	+	32);

				}

Now,	all	the	tests	are	passing	but	we	are	still	not	testing	all	the	common	conditions.	What	I
mean	by	this	is	that	we	have	been	checking	the	happy	path	so	far.	You	should	check
whether	errors	and	exceptions	are	correctly	generated,	besides	all	the	normal	cases	we
created	so	far.

Create	this	test	to	check	the	correct	generation	of	exceptions,	when	a	temperature	below
absolute	zero	is	used	in	a	conversion:

				@Test(expected	=	InvalidTemperatureException.class)

				public	void	testExceptionForLessThanAbsoluteZeroF()	{

								TemperatureConverter.fahrenheitToCelsius(ABSOLUTE_ZERO_F	-	1);

				}

In	this	test,	we	decrement	the	absolute	zero	temperature,	to	obtain	an	even	smaller	value,
and	then	we	attempt	the	conversion.	We	wrote	this	test	in	our	core	module,	and	therefore

used	JUnit4,	which	allows	us	to	use	annotations	to	assert	that	we	expect	an	exception	to	be
thrown.	If	you	wanted	to	do	the	same	thing	in	JUnit3,	you	would	have	to	use	a	try	catch
block,	and	fail	the	test	if	the	code	did	not	enter	the	catch	block:

				@Test(expected	=	InvalidTemperatureException.class)

				public	void	testExceptionForLessThanAbsoluteZeroC()	{

								TemperatureConverter.celsiusToFahrenheit(ABSOLUTE_ZERO_C	-	1);

				}

In	a	similar	manner,	we	test	for	the	exception	being	thrown,	when	the	attempted
conversion	involves	a	temperature	in	Celsius,	that	is	lower	than	the	absolute	zero.

The	InputFilter	tests
Another	error	requirement	could	be:	We	want	to	filter	the	input	that	is	received	by	the
conversion	utility,	so	no	garbage	reaches	this	point.

The	EditNumber	class	already	filters	valid	input,	and	generates	exceptions	otherwise.	We
can	verify	this	condition	by	creating	a	new	test	in	TemperatureConverterActivityTests.
We	choose	this	class	because	we	are	sending	keys	to	the	entry	fields,	just	as	a	real	user
would	do:

public	void	testInputFilter()	throws	Throwable	{

								runTestOnUiThread(new	Runnable()	{

												@Override

												public	void	run()	{

																celsiusInput.requestFocus();

												}

								});

								getInstrumentation().waitForIdleSync();

								sendKeys("MINUS	1	PERIOD	2	PERIOD	3	PERIOD	4");

								double	number	=	celsiusInput.getNumber();

								String	msg	=	"-1.2.3.4	should	be	filtered	to	-1.234	"	

										+	"but	is	"	+	number;

								assertEquals(msg,	-1.234d,	number);

				}

This	test	requests	the	focus	onto	the	Celsius	field	using	the	pattern	reviewed	previously.
This	allows	us	to	run	parts	of	a	test	in	the	UI	thread,	and	send	key	input	to	the	view.	The
keys	sent	are	an	invalid	sequence	containing	more	than	one	period,	which	is	not	accepted
for	a	well-formed	decimal	number.	It	is	expected	that	when	the	filter	is	in	place,	this
sequence	will	be	filtered,	and	only	the	valid	characters	reach	the	field.	Asserting	that	the
value	returned	by	celsiusInput.getNumber(),	is	what	we	expect	after	filtering.

To	implement	this	filter,	we	need	to	add	InputFilter	to	EditNumber.	Because	this	should
be	added	to	all	of	the	constructors,	we	create	an	additional	init()method,	which	we
invoke	from	each.	To	achieve	our	goal	we	use	an	instance	of	DigitsKeyListener,
accepting	digits,	signs,	and	decimal	points	as	follows:

			public	EditNumber(Context	context)	{

								super(context);

								init();

			}

			public	EditNumber(Context	context,	AttributeSet	attrs)	{

								super(context,	attrs);

								init();

			}

			public	EditNumber(Context	context,	AttributeSet	attrs,	int	defStyle)	{

								super(context,	attrs,	defStyle);

								init();

			}

			private	void	init()	{

				//	DigistKeyListener.getInstance(true,	true)

				//	returns	an	instance	that	accepts	digits,	sign	and	decimal	point

				InputFilter[]	filters	=

						new	InputFilter[]{DigitsKeyListener.getInstance(true,	true)};

							setFilters(filters);

			}

This	init	method	is	invoked	from	each	constructor,	so	that	if	this	view	is	used
programmatically	or	from	XML,	we	still	have	our	filter.

Running	the	tests	again,	we	can	verify	that	all	have	passed,	and	now	everything	is	green
again.

Viewing	our	final	application
Well	done!	We	now	have	our	final	application	that	satisfies	all	the	requirements.

In	the	following	screenshot	we	are	showing	one	of	these	requirements,	which	is	the
detection	of	an	attempt	to	convert	a	temperature	below	the	absolute	zero	temperature	in
Celsius	(-1000.00C):

The	UI	respects	the	guidelines	provided;	the	temperatures	can	be	converted	by	entering
them	in	the	corresponding	unit	field.

To	recap,	this	is	the	list	of	requirements	that	we	have	implemented:

The	application	converts	temperatures	from	Celsius	to	Fahrenheit,	and	vice	versa
The	user	interface	presents	two	fields	to	enter	the	temperatures,	one	for	Celsius	and
the	other	for	Fahrenheit
When	one	temperature	is	entered	in	one	field,	the	other	one	is	automatically	updated
with	the	conversion
If	there	are	errors,	they	should	be	displayed	to	the	user,	possibly	using	the	same	fields
Some	space	in	the	user	interface	should	be	reserved	for	the	on-screen	keyboard,	to
ease	the	application	operation	when	several	conversions	are	entered
Entry	fields	should	start	empty
Values	entered	are	decimal	values	with	two	digits	after	the	point
Digits	are	right	aligned

What	is	more	important	is	that	we	can	now	be	certain	that	the	application	not	only	satisfies

the	requirements,	but	also	has	no	evident	problems	or	bugs.	We	took	every	step	by
analyzing	the	test	results,	and	fixing	the	problems	at	their	first	appearance.	This	will
ensure	that	any	individual	bug,	once	discovered,	tested	and	fixed,	will	not	resurface	again.

Summary
We	presented	Test-driven	Development	introducing	its	concepts,	and	applying	them	step-
by-step	in	a	potential	real-life	problem.

We	started	with	a	concise	list	of	requirements,	describing	the	temperature	converter
application.

We	implemented	every	test	followed	by	the	code	that	satisfies	it.	In	this	manner,	we
implemented	the	application	behavior	as	well	as	its	presentation,	conducting	tests	to	verify
that	the	UI	we	designed	follows	the	specifications.

Having	the	tests	in	place,	lead	us	to	analyze	the	different	possibilities	we	have	in	running
them.	Evolving	from	the	previous	chapter,	now	our	continuous	integration	machine	can
run	the	tests	to	guarantee	any	changes	from	the	team	will	still	result	in	a	well-tested
application.

The	next	chapter	introduces	Behavior-driven	Development,	and	continues	our	aim	for
bug-free	well-tested	code,	this	time	with	a	focus	upon	behavior	and	agreement,	on	what	a
requirement	means	throughout	the	team.

Chapter	7.	Behavior-driven	Development
Behavior-driven	Development	(BDD)	can	be	understood	as	the	evolution	and	confluence
of	Test-driven	Development	(TDD)	and	acceptance	testing.	Both	techniques	were
discussed	in	previous	chapters,	so	you	may	want	to	look	back	at	Chapter	1,	Getting
Started	with	Testing,	and	Chapter	6,	Practicing	Test-driven	Development,	before
proceeding.

Behavior-driven	Development	introduces	some	new	concepts,	such	as	the	use	of	a
common	vocabulary	to	describe	the	tests,	and	the	inclusion	of	business	participants	in	the
software	development	project,	such	as	product	owners	or	business	analysts.

We	have	visited	Test-driven	Development	before,	and	we	focused	on	converting	low-level
requirements	into	tests	that	could	drive	our	development	process.	Behavior-driven
Development	forces	us	to	concentrate	on	higher	level	requirements,	and	by	using	a
specific	vocabulary,	we	can	express	these	requirements	in	a	way	that	can	be	further
analyzed	or	evaluated.	Some	people	believe	BDD	is	only	the	philosophy	of	TDD	done
right.

We	will	explore	these	concepts	through	examples,	so	that	you	can	draw	your	own
conclusions.

Given,	When,	and	Then
Given/When/Then	words	are	the	common	vocabulary	that	spans	the	divide	between
business	and	technology,	and	as	described	at	http://behaviour-driven.org,	they	can	also	be
referred	to	as	the	ubiquitous	language	of	Behavior-driven	Development.	The	framework	is
based	on	the	following	three	core	principles	that	we	reproduce	here,	verbatim:

Business	and	technology	should	refer	to	the	same	system	in	the	same	way
Any	system	should	have	an	identified,	verifiable	value	to	the	business
Up-front	analysis,	design,	and	planning,	all	have	a	diminishing	return

Behavior-driven	Development	relies	on	the	use	of	this	specific	vocabulary.	Additionally,
the	format	in	which	requirements	are	expressed	is	predetermined,	allowing	tools	to
interpret	and	execute	them:

Given:	This	is	to	describe	the	initial	state	before	an	external	stimuli	is	received.
When:	This	is	to	describe	the	key	action	the	user	performs.
Then:	This	is	to	analyze	the	results	of	the	actions.	To	be	observable,	the	actions
performed	should	have	some	kind	of	outcome.

http://behaviour-driven.org

FitNesse
FitNesse	is	a	software	development	collaboration	tool	that	can	be	used	to	manage	BDD
scenarios.	Strictly	speaking	FitNesse	is	a	set	of	tools,	described	as	follows:

As	a	software	testing	tool,	FitNesse	is	a	lightweight,	open	source	framework	that
allows	teams	to	collaborate
It	is	also	a	Wiki	where	you	can	easily	create,	edit	pages,	and	share	information
A	web	server,	so	it	doesn’t	require	additional	configuration	or	administrative
privileges	to	set	up,	or	configure

Download	the	FitNesse	distribution	from	http://www.fitnesse.org.	The	distribution	is	a
JAR	file	that	installs	itself	on	first	run.	Throughout	these	examples,	we	used	FitNesse
standalone	release	20140901	but	newer	versions	should	also	work.

http://www.fitnesse.org

Running	FitNesse	from	the	command	line
By	default,	when	FitNesse	runs,	it	listens	on	port	80,	so	to	run	unprivileged,	you	should
change	the	port	on	the	command	line.	In	this	example,	we	use	8900:

$	java	-jar	fitnesse.jar	-p	8900

This	is	the	output	obtained	when	we	run	the	command:

Bootstrapping	FitNesse,	the	fully	integrated	standalone	wiki	and	acceptance	

testing	framework.

root	page:	fitnesse.wiki.fs.FileSystemPage	at	./FitNesseRoot#latest

logger:	none

authenticator:	fitnesse.authentication.PromiscuousAuthenticator

page	factory:	fitnesse.html.template.PageFactory

page	theme:	fitnesse_straight

Starting	FitNesse	on	port:	8900

Once	running,	you	can	direct	your	browser	to	the	local	FitNesse	server	home	page
(http://localhost:8900/FrontPage),	and	you	will	be	presented	with	this	content:

Creating	a	TemperatureConverterTests	subwiki
Once	FitNesse	is	up	and	running,	we	can	start	by	creating	a	subwiki	to	organize	our	tests.
You	may	already	be	familiar	with	the	wiki	concept.	If	not,	wiki	is	a	website	that	allows
page	editing	and	creation	by	its	users.	This	editing	process	is	done	from	within	the
browser,	and	uses	a	markup	language	that	greatly	simplifies	the	process.

Note
You	can	find	out	more	about	wikis	in	what	could	perhaps	be	the	most	famous	wiki	at
http://en.wikipedia.org/wiki/Wiki.

Though	this	subwiki	organization	is	not	mandatory,	it	is	highly	recommended,	especially
if	you	plan	to	use	FitNesse	for	acceptance	testing	on	multiple	projects.

One	of	the	most	simplified	processes	is	hyperlink	creation,	which	is	done	only	by	using
CamelCase	or	WikiWords;	that	is	a	word	that	starts	with	a	capital	letter	and	has	at	least	one
or	more	capital	letter	in	it.	This	WikiWord	will	be	converted	into	a	hyperlink	to	a	page,
with	that	name.

To	create	the	TemperatureConverterTests	subwiki,	we	simply	press	the	Edit	button	to
the	right	of	the	FitNesse	logo,	to	edit	the	home	page,	adding	the	following:

|	'''My	Tests'''	|

|	TemperatureConverterTests	|	''Temperature	Converter	Tests''	|

This	adds	a	new	table	to	the	page	by	using	the	“|”	markup	as	the	first	character	and	to
delimit	the	columns.

We	also	add	a	column	with	a	descriptive	comment	about	the	tests.	This	comment	is	turned
into	italics	by	surrounding	it	with	two	single	quotes	(”).	This	text	will	create	a	wiki	link
named,	TemperatureConverterTests.

Press	Save,	and	the	page	will	be	modified.

Once	the	page	is	displayed,	we	can	verify	that	TemperatureConverterTests	is	now
followed	by	a	[?]	(question	mark)	because	the	page	has	not	been	created	yet,	and	will	be
created	when	we	click	on	it.	Click	on	it	now,	this	puts	us	straight	into	edit	mode	of	the	new
page.	We	can	add	some	comments	to	clearly	identify	this	newly	created	front	page	of	the
subwiki:

!contents	-R2	-g	-p	-f	-h

This	is	the	!-TemperatureConverterTests	SubWiki-!.

Here,	the	text	TemperatureConverterTests	SubWiki	is	escaped	using	!-	and	-!	to
prevent	it	from	being	converted	to	another	page	link.

Press	Save	again.

Adding	child	pages	to	the	subwiki
Now,	we	add	a	new	child	page	by	using	the	[Add]	link	that	appears	next	to	the	page	title.

http://en.wikipedia.org/wiki/Wiki

There	are	different	options	for	creating	the	child	page,	and	we	can	select:

Static:	This	is	a	normal	Wiki	page
Suite:	This	is	a	page	containing	other	tests	composing	a	suite
Test:	This	is	a	page	that	contains	tests

We	will	select	to	add	a	suite	page	and	call	it	TemperatureConverterTestSuite	as	shown
in	the	following	screenshot:

After	pressing	Save,	this	page	is	created	and	has	been	automatically	added	as	a	link	to	the
TemperatureConverterTests	subwiki.

Let’s	follow	this	newly	created	link	to	reach	the	test	suite	page.

Once	you’re	here,	add	another	child	using	[Add]	|	[Test	Page].	This	adds	a	test	page,	and
we	will	name	it	TemperatureConverterCelsiusToFahrenheitFixture,	as	this	will
contain	our	fixture.	The	naming	here	is	just	a	convention	to	organize	our	wiki.

Click	on	Save	to	finish	the	operation.

Adding	the	acceptance	test	fixture
Up	until	now,	we	were	only	creating	wiki	pages.	Nothing	exciting	about	that!	Now,	we
will	be	adding	our	acceptance	test	fixture	directly	to	the	page.	Be	sure	you	have	navigated
to	the	newly	added	page,	TemperatureConverterCelsiusToFahrenheitFixture,	click	on
Edit,	and	replace	<test	page>	with	the	following:

!contents

!|TemperatureConverterCelsiusToFahrenheitFixture										|

|celsius|fahrenheit?																																						|

|0.0				|~=	32																																												|

|100.0		|212.0																																												|

|-1.0			|30.2																																													|

|-100.0	|-148.0																																											|

|32.0			|89.6																																													|

|-40.0		|-40.0																																												|

|-273.0	|~=	-459.4																																								|

|-273			|~=	-459.4																																								|

|-273			|~=	-459																																										|

|-273			|~=	-459.40000000000003																											|

|-273			|-459.40000000000003																														|

|-273			|-459.41	<	_	<	-459.40																												|

|-274.0	|Invalid	temperature:	-274.00C	below	absolute	zero|

This	table	defines	several	items	for	our	test	feature:

TemperatureConverterCelsiusToFahrenheitFixture:	This	is	the	table	title	and	the
test	fixture	name.
celsius:	This	is	the	column	name	for	the	value	we	are	providing	as	input	to	the	test.
fahrenheit?:	This	is	the	column	name	for	the	value	expected	as	the	result	of	the
conversion.	The	question	mark	indicates	that	this	is	a	result	value.
~=:	This	indicates	that	the	result	is	approximately	this	value.
<	_	<:	This	indicates	that	the	expected	value	is	within	this	range.
Invalid	temperature:	-274.00	C	below	absolute	zero	is	the	value	expected	by	the
failed	conversion.

Save	this	content	by	clicking	on	Save.

Adding	the	supporting	test	classes
If	we	press	the	Test	button,	which	is	below	the	FitNesse	logo	(see	the	following
screenshot	for	details),	we	will	receive	an	error.	In	some	way	this	is	expected	because	we
haven’t	created	the	supporting	test	fixture	yet.	The	test	fixture	will	be	a	very	simple	class
that	invokes	the	TemperatureConverter	class	methods.

FitNesse	supports	the	following	two	different	test	systems:

fit:	This	is	the	older	of	the	two	methods	and	uses	HTML,	parsed	just	prior	to	the
fixture	being	called
slim:	This	is	newer;	all	the	table	processing	is	done	inside	FitNesse	within	slim
runners

Further	information	about	these	test	systems	can	be	found	at
http://fitnesse.org/FitNesse.UserGuide.WritingAcceptanceTests.TestSystems.

In	this	example,	we	use	slim,	by	setting	the	variable	TEST_SYSTEM	within	the	same	page	as
follows:

!define	TEST_SYSTEM	{slim}

Now,	we	are	going	to	create	the	slim	test	fixture.	Remember	the	text	fixture	is	a	simple
class	that	allows	us	to	run	our	already	written	temperature	conversion	code	from	the
FitNesse	test	suite.	We	create	a	new	package,	named
com.blundell.tut.fitnesse.fixture,	inside	of	our	existing	project
TemperatureConverter	and	inside	the	core	module.	We	will	be	creating	the	fixture	inside
this	package.

Next,	we	have	to	create	the	TemperatureConverterCelsiusToFahrenheitFixture	class,

http://fitnesse.org/FitNesse.UserGuide.WritingAcceptanceTests.TestSystems

which	we	defined	in	our	acceptance	test	table:

public	class	TemperatureConverterCelsiusToFahrenheitFixture	{

				private	double	celsius;

				public	void	setCelsius(double	celsius)	{

								this.celsius	=	celsius;

				}

				public	String	fahrenheit()	throws	Exception	{

								try	{

												double	fahrenheit	=	TemperatureConverter

.celsiusToFahrenheit(celsius);

												return	String.valueOf(fahrenheit);

								}	catch	(RuntimeException	e)	{

												return	e.getLocalizedMessage();

								}

				}

}

As	a	reminder	it	should	look	something	like	this	when	done:

This	fixture	should	delegate	to	our	real	code	and	not	do	anything	by	itself.	We	decided	to
return	String	from	fahrenheit(),	so	we	can	return	the	Exception	message	in	the	same
method.

At	this	point,	run	the	core	module	tests	to	ensure	you	have	not	broken	anything	(and	to
compile	the	newly	created	class	for	later).

On	the	FitNesse	test	page,	we	should	also	define	the	package	the	test	resides	in.	This
allows	the	tests	written	in	FitNesse	to	find	the	test	fixture	written	in	our	Android	project.
In	the	same	page	we	are	still	editing,	add:

|import|

|com.blundell.tut.fitnesse.fixture|

Now,	we	add	our	Android	project	class	files	to	the	path	of	our	FitNesse	tests.	This	allows
FitNesse	to	use	our	newly	written	test	fixture	and	our	TemperatureConverter;	the	code
under	test:

!path	

/Users/blundell/AndroidApplicationTestingGuide/core/build/classes/test

!path	

/Users/blundell/AndroidApplicationTestingGuide/core/build/classes/main

Note
This	should	be	adapted	to	your	system	paths.	The	main	point	here	is	the	path	after	/core/.
This	is	pointing	to	where	the	compiled	*.class	files	are	for	your	application	under	test.
Note,	that	we	need	to	add	the	test	sources	and	the	project	sources	separately.

After	finishing	these	steps,	we	can	click	on	the	Test	button	to	run	the	tests,	and	the
following	screenshot	will	reflect	the	results:

We	can	easily	identify	every	test	that	succeeded	by	their	green	color,	and	the	failed	ones
by	their	red	color.	In	this	example,	we	don’t	have	any	failure,	so	everything	is	green.
Notice,	it	also	shows	the	classpath	and	TEST_SYSTEM	variables	we	declared.

FitNesse	has	another	useful	feature,	Test	History.	All	the	test	runs	and	a	specific	number
of	results	are	saved	for	a	period	of	time,	so	that	you	can	review	the	results	later	on	and
compare	them,	and	thus,	analyze	the	evolution	of	your	changes.

This	feature	is	accessed	by	clicking	Test	History	located	at	the	bottom	of	the	list,	under
Tools,	on	the	top	menu.

In	the	following	screenshot,	we	can	see	the	results	for	the	last	3	test	runs,	where	2	failed
and	1	succeeded.	Also	by	clicking	on	the	+	(plus)	or	-	(minus)	signs,	you	can	expand	or
collapse	the	view	to	show	or	hide	detailed	information	about	the	test	run:

GivWenZen
GivWenZen	is	a	framework	that	builds	upon	FitNesse	and	Slim	to	allow	the	user	to	exploit
the	Behavior-driven	Development	technique	of	expression,	using	the	Given-When-Then
vocabulary	to	describe	tests.	These	test	descriptions	are	also	created	using	the	FitNesse
wiki	facility,	of	expressing	the	tests	as	plain	text	contained	in	tables	in	a	wiki	page.

The	idea	is	simple	and	straightforward,	and	follows	up	with	what	we	have	been	doing	with
FitNesse,	but	this	time	instead	of	writing	acceptance	tests	giving	a	table	of	values,	we	will
use	the	three	Behavior-driven	Development	magic	words,	Given-When-Then,	to	describe
our	scenarios.

Firstly,	let’s	install	FitNesse	with	GivWenZen.	Download	the	full	distribution	from	its
download	list	page	at	http://goo.gl/o3Hlpo.	Once	unzipped,	the	GivWenZen	JAR	starts	up
exactly	the	same	way	as	FitNesse	did	(because	it’s	just	a	modification	on	top):

$	java	-jar	/lib/fitnesse.jar	-p	8900

Further	reading,	comprehensive	instructions	and	examples	can	be	found	on	the	wiki	at
https://github.com/weswilliams/GivWenZen/wiki.	We	used	GivWenZen	1.0.3	in	these
examples,	but	newer	versions	should	work	as	well.

The	GivWenZen	full	distribution	includes	all	the	dependencies	needed,	including
FitNesse,	so	if	you	have	FitNesse	running	from	previous	examples	it	is	better	to	stop	it,	as
you	must	use	a	different	JAR	for	GivWenZen.

Upon	startup,	point	your	browser	to	the	home	page	and	you	will	find	a	familiar	FitNesse
front	page,	or	if	you	have	configured	the	port	like	we	did	previously,	check	out	some	tests
at	http://localhost:8900/GivWenZenTests.	You	can	take	some	time	to	explore	the
examples	included.

http://goo.gl/o3Hlpo
https://github.com/weswilliams/GivWenZen/wiki

Creating	the	test	scenario
Let’s	create	a	simple	scenario	for	our	temperature	converter,	so	we	can	understand	Given-
When-Then	a	bit	better.

As	a	plain	English	sentence,	our	scenario	would	be:

Given	I’m	using	the	Temperature	Converter,	When	I	enter	100	into	the	Celsius	field,	Then
I	obtain	212	in	the	Fahrenheit	field.

The	value	is	directly	translated	into	a	GivWenZen	scenario	by	adding	this	to	a	wiki	page:

-|script|

|given|I'm	using	the	!-TemperatureConverter-!|

|when	|I	enter	100	into	the	Celsius	field|

|then	|I	obtain	212	in	the	Fahrenheit	field|

The	translation	is	straightforward.	The	table	title	must	be	script,	and	in	this	case	it	is
preceded	by	a	dash	(-)	to	hide	it.	Then	each	of	the	Given-When-Then	scenarios	is	placed
in	a	column,	and	the	predicate	in	the	other	column.

Before	running	this	script,	when	the	whole	page	is	executed,	we	need	to	initialize
GivWenZen	by	running	another	script.	You	do	this	by	adding	it	to	the	top	of	the	wiki	page:

|import|

|org.givwenzen|

-|script|

|start|giv	wen	zen	for	slim|

We	also	need	to	initialize	the	classpath	and	add	the	corresponding	imports	for	all	scripts.
Usually,	this	is	done	in	one	of	the	SetUp	pages,	which	are	executed	before	running	every
test	script	(like	the	setUp()	method	in	a	JUnit	test),	but	for	the	sake	of	simplicity,	we	are
adding	the	initialization	to	this	same	page:

!define	TEST_SYSTEM	{slim}

!path	./target/classes

!path	./target/examples

!path	./lib/clover-2.6.1.jar

!path	./lib/commons-logging.jar

!path	./lib/commons-vfs-1.0.jar

!path	./lib/dom4j-1.6.1.jar

!path	./lib/fitnesse.jar

!path	./lib/guava-18.0.jar

!path	./lib/javassist.jar

!path	./lib/log4j-1.2.9.jar

!path	./lib/slf4j-simple-1.5.6.jar

!path	./lib/slf4j-api-1.5.6.jar

!path	./givwenzen-20150106.jar

!path	

/Users/blundell/AndroidApplicationTestingGuide/core/build/classes/test

!path	

/Users/blundell/AndroidApplicationTestingGuide/core/build/classes/main

You	will	need	to	change	the	last	two	path	variables	to	match	your	TemperatureConverter

project;	you’ll	see	why	you	need	these	later.

If	you	run	the	tests	at	this	point	by	clicking	the	Test	button,	you	will	receive	the	following
message:

__EXCEPTION__:org.givwenzen.DomainStepNotFoundException:

The	second	column	in	the	table,	for	our	test	outline,	holds	the	domain	steps,	hence,	the
exception	DomainStepNotFound.	You	need	a	step	class	with	an	annotated	method	matching
this	pattern:	“I’m	using	the	TemperatureConverter”.

Typical	causes	of	this	error	are	as	follows:

StepClass	is	missing:	This	is	our	error
StepClass	is	missing	the	@DomainSteps	annotation
StepMethod	is	missing	the	@DomainStep	annotation
The	StepMethod	annotation	has	a	regular	expression	that	does	not	match	the	current
test	step	you	have	written

An	example	step	class	could	be:

		@DomainSteps

		public	class	StepClass	{

				@DomainStep("I'm	using	the	TemperatureConverter")

				public	void	domainStep()	{

						//	TODO	implement	step	by	invoking	your	own	code

				}

}

The	step	class	should	be	placed	in	the	package	or	subpackage	of	bdd.steps,	or	you	could
alternatively	define	your	own	custom	package.	This	package	is	going	to	live	inside	the
/core/test/	module	of	our	application.	If	you	noticed,	above	the	setUp	page,	we	added
our	application	on	the	path,	so	this	DomainStep	can	be	found	after	we	build	the	project.

In	order	to	use	the	@DomainStep(s)	annotation	in	our	project,	we	need	the	GivWenZen
JAR	on	our	project	test	path.	This	can	be	done	by	copying	the	givwenzen.jar	file	into
/core/libs,	or	even	better	with	Gradle	by	adding	it	as	a	remote	dependency	to
build.gradle:

testCompile	'com.github.bernerbits:givwenzen:1.0.6.1'

Tip
You’ll	notice	that	this	testCompile	dependency	isn’t	the	official	GivWenZen	release	but
someone	has	forked	(copied)	the	code,	and	uploaded	it.	This	doesn’t	matter	to	us	for	now
because	we	are	only	using	the	two	annotation	classes	(which	I	know	are	identical	in	this
version),	but	it’s	worth	keeping	in	mind	and	reverting	to	the	original	GivWenZen	library	if
it	is	ever	released	as	a	remote	dependency.

Following	the	small	outline	example,	in	our	particular	case	the	implementation	of
StepClass	will	be:

package	bdd.steps.tc;

import	com.blundell.tut.TemperatureConverter;

import	org.givwenzen.annotations.DomainStep;

import	org.givwenzen.annotations.DomainSteps;

@DomainSteps

public	class	TemperatureConverterSteps	{

				private	static	final	String	CELSIUS	=	"Celsius";

				private	static	final	String	FAHRENHEIT	=	"Fahrenheit";

				private	static	final	String	UNIT_NAME	

=	"("	+	CELSIUS	+	"|"	+	FAHRENHEIT	+	")";

				private	static	final	String	ANY_TEMPERATURE	

=	"([-+]?\\d+(?:\\.\\d+)?)";

				private	double	inputTemperature	=	Double.NaN;

				@DomainStep("I(?:	a|')m	using	the	TemperatureConverter")

				public	void	createTemperatureConverter()	{

								//	do	nothing

				}

				@DomainStep("I	enter	"	+	ANY_TEMPERATURE	

	+	"	into	the	"	+	UNIT_NAME	+	"	field")

				public	void	setField(double	inputTemperature,	String	unitName)	{

								this.inputTemperature	=	inputTemperature;

				}

				@DomainStep("I	obtain	"	+	ANY_TEMPERATURE	

		+	"	in	the	"	+	UNIT_NAME	+	"	field")

				public	boolean	verifyConversion(double	expectedTemperature,	String	

unitName)	{

								double	outputTemperature	=	convertInputInto(unitName);

								return	Math.abs(outputTemperature	-	expectedTemperature)	<	0.01D;

				}

				private	double	convertInputInto(String	unitName)	{

								double	convertedInputTemperature;

								if	(CELSIUS.equals(unitName))	{

												convertedInputTemperature	=	getCelsius();

								}	else	if	(FAHRENHEIT.equals(unitName))	{

												convertedInputTemperature	=	getFahrenheit();

								}	else	{

												throw	new	RuntimeException("Unknown	conversion	unit"	+	

unitName);

								}

								return	convertedInputTemperature;

				}

				private	double	getCelsius()	{

								return	TemperatureConverter.fahrenheitToCelsius(inputTemperature);

				}

				private	double	getFahrenheit()	{

								return	TemperatureConverter.celsiusToFahrenheit(inputTemperature);

				}

}

In	this	example,	we	are	using	a	subpackage	of	bdd.steps	because,	by	default,	this	is	the
package	hierarchy	GivWenZen	searches	for	step’s	implementations.	Otherwise,	extra
configuration	is	needed.

Classes	implementing	steps	should	be	annotated	by	@DomainSteps,	and	each	of	the	step’s
methods	annotated	by	@DomainStep.	Each	step	method	annotation	receives	a	String
regular	expression	as	a	parameter.	This	regular	expression	is	used	by	GivWenZen	to	match
the	steps.

For	example,	in	our	scenario,	we	have	defined	this	step:

I	enter	100	into	the	Celsius	field

Our	annotation	is	as	follows:

@DomainStep("I	enter	"	+	ANY_TEMPERATURE	

		+	"	into	the	"	+	UNIT_NAME	+	"	field")

This	will	match,	and	the	regular	expression	group	values	defined	by	ANY_TEMPERATURE	and
UNIT_NAME	will	be	obtained	and	provided	to	the	method	as	its	argument’s	value	and
unitName:

public	void	setField(double	inputTemperature,	String	unitName)	

Recall	that	in	a	previous	chapter	I	recommended	reviewing	regular	expressions	because
they	could	be	useful.	Well	this	is	probably	one	of	these	places	where	they	are	extremely
useful.	It	allows	for	a	flexible	use	of	the	English	language.	Here	I(?:	a|'m)	was	used	to
allow	I	am	and	I’m.	In	ANY_TEMPERATURE,	we	are	matching	every	possible	temperature
value	with	the	optional	sign	and	decimal	point.	Consequently	UNIT_NAME	matches	the	unit
name;	that	is,	Celsius	or	Fahrenheit.

These	regular	expressions	are	used	in	the	construction	of	the	@DomainStep	annotation
parameters.	Groups	delimited	by	()	parenthesis	in	these	regular	expressions	are	converted
into	method	parameters.	This	is	how	setField()	obtains	its	parameters.

Then	we	have	a	verifyConversion()	method	that	returns	true	or	false	depending	on
whether	the	actual	conversion	matches	the	expected	one,	within	a	difference	of	two
decimal	places.

Finally,	we	have	some	methods	that	actually	invoke	the	conversion	methods	in	the
TemperatureConverter	class.

On	running	the	tests	once	again,	all	the	tests	pass.	We	can	confirm	this	by	analyzing	the
output	message:

Assertions:	1	right,	0	wrong,	0	ignored,	0	exceptions.

We	should	not	only	create	scenarios	for	normal	situations,	but	cover	exceptional
conditions	as	well.	Say,	in	plain	text,	our	scenario	is	something	like	this:

Note

Given	I’m	using	the	Temperature	Converter,	when	I	enter	-274	into	the	Celsius	field,	then
I	obtain	an	Invalid	temperature:	-274.00C	below	absolute	zero	exception.

It	can	be	translated	into	a	GivWenZen	table	like	the	following:

-|script|

|given|I	am	using	the	!-TemperatureConverter-!													|

|when	|I	enter	-274	into	the	Celsius	field																	|

|then	|I	obtain	'Invalid	temperature:	-274.00C	below	absolute	zero'	

exception|

By	adding	a	single	supporting	step	method,	we	will	be	able	to	run	it.	The	step	method	can
be	implemented	like	this:

				@DomainStep("I	obtain	'(Invalid	temperature:	"	+	ANY_TEMPERATURE	+	"	

C|F	below	absolute	zero)'	exception")

				public	boolean	verifyException(String	message,	String	value,	String	

unit)	{

								try	{

										if	("C".equals(unit))	{

												getFahrenheit();

										}	else	{

												getCelsius();

										}

								}	catch	(RuntimeException	ex)	{

										return	ex.getMessage().contains(message);

								}

								return	false;

						}

This	method	obtains	the	exception	message,	temperature	value,	and	unit	from	the	regular
expression.	Then	this	is	compared	against	the	actual	exception	message	to	verify	that	it
matches.

Note
Don’t	forget	when	you	add	Java	code	to	your	StepClass	annotation	you	will	need	to
compile	the	class	again	so	that	FitNesse	can	use	the	new	code.	One	way	to	do	this	is	just
to	run	your	Java	tests	from	the	IDE,	forcing	a	recompile.

Additionally,	we	can	create	other	scenarios	that,	in	this	situation,	will	be	supported	by	the
existing	step’s	methods.	These	scenarios	could	be:

-|script|

|given	|I'm	using	the	!-TemperatureConverter-!			|

|when		|I	enter	-100	into	the	Celsius	field						|

|then		|I	obtain	-148	in	the	Fahrenheit	field				|

-|script|

|given	|I'm	using	the	!-TemperatureConverter-!			|

|when		|I	enter	-100	into	the	Fahrenheit	field			|

|then		|I	obtain	-73.33	in	the	Celsius	field					|

-|script|

|given|I'm	using	the	!-TemperatureConverter-!										|

|when	|I	enter	-460	into	the	Fahrenheit	field										|

|then	|I	obtain	'Invalid	temperature:	-460.00F	below	absolute	zero'	

exception|

Because	GivWenZen	is	based	on	FitNesse,	we	are	free	to	combine	both	approaches	and
include	the	tests	from	our	previous	session,	in	the	same	suite.	Doing	so,	we	can	run	the
entire	suite	from	the	suite	page,	obtaining	the	overall	results	as	follows:

Summary
In	this	chapter,	we	discovered	Behavior-driven	Development	as	an	evolution	of	Test-
driven	Development,	which	we	examined	in	previous	chapters.

We	discussed	the	driving	forces	behind	Behavior-driven	Development.	We	analyzed	the
concepts	serving	as	the	foundations,	explored	the	Given-When-Then	vocabulary	idea,	and
introduced	FitNesse	and	Slim	as	helpful	tools	in	deploying	tests.

We	presented	GivWenZen,	a	tool	based	on	FitNesse	that	gives	us	the	ability	to	create	near-
English,	prose-style	scenarios,	and	test	them.

We	introduced	these	techniques	and	tools	to	our	sample	Android	project.	However,	we	are
still	limited	to	test	subjects	that	are	testable	under	the	JVM,	avoiding	the	use	of	Android-
specific	classes	and	the	user	interface.	We	will	be	exploring	some	alternatives	to	overcome
this	limitation	in	Chapter	9,	Alternative	Testing	Tactics.

The	next	chapter	deals	with	a	different	aspect	of	testing,	concentrating	on	performance	and
profiling,	which	is	a	natural	step	to	follow	after	we	have	our	application	behaving
correctly,	and	according	to	our	test	specifications.

Chapter	8.	Testing	and	Profiling
Performance
In	the	previous	chapters,	we	studied	and	developed	tests	for	our	Android	application.
Those	tests	let	us	evaluate	compliance	against	a	specification	and	allowed	us	to	determine
whether	the	software	was	behaving	correctly	or	not	according	to	these	rules	by	taking	a
binary	verdict,	whether	it	complied	green	or	not.	If	all	test	cases	pass,	it	means	our
software	is	behaving	as	expected.	If	one	of	the	test	cases	fails,	the	software	needs	to	be
fixed.

In	many	other	cases,	mainly	after	we	have	verified	that	the	software	conforms	to	all	these
specifications,	we	want	to	move	forward	and	know	how	or	in	what	manner	the	criteria	are
satisfied.	At	the	same	time,	we	would	want	to	know	how	the	system	performs	under
different	situations	to	analyze	other	attributes	such	as	usability,	speed,	response	time,	and
reliability.

According	to	the	Android	developer	guide	(http://developer.android.com/),	these	are	the
best	practices	when	it	comes	to	designing	our	application:

Designing	for	performance
Designing	for	responsiveness
Designing	for	seamlessness

It’s	extremely	important	to	follow	these	best	practices	and	to	think	about	performance	and
responsiveness	from	the	very	beginning	of	the	design.	Since	our	application	will	run	on
Android	devices	with	limited	computer	power,	identifying	the	targets	for	optimization
once	our	application	is	built,	at	least	partially,	and	then	applying	the	performance	testing
(which	we	will	be	discussing	soon)	can	bring	us	bigger	gains.

Donald	Knuth	popularized	this	years	ago:

“Premature	optimization	is	the	root	of	all	evil”.

Optimizations,	which	are	based	on	guesses,	intuition,	and	even	superstition,	often	interfere
with	the	design	over	short-term	periods,	and	with	readability	and	maintainability	over
long-term	periods.	On	the	contrary,	micro-optimizations	are	based	on	identifying	the
bottlenecks	or	hot	spots	that	require	optimization,	applying	the	changes,	and	then
benchmarking	again	to	evaluate	the	improvements	of	the	optimization.	So,	the	point	we
are	concentrating	on	here	is	measuring	the	existing	performance	and	the	optimization
alternatives.

This	chapter	will	introduce	a	series	of	concepts	related	to	benchmarking	and	profiling,	as
follows:

Traditional	logging	statement	methods
Creating	Android	performance	tests
Using	profiling	tools

http://developer.android.com/

Microbenchmarks	using	Caliper

Ye	Olde	Logge	method
Sometimes,	this	is	too	simplistic	for	real-life	scenarios	but	I’m	not	going	to	say	that	it
could	not	help	in	some	cases,	mainly	because	its	implementation	takes	minutes	and	you
only	need	the	logcat	text	output	to	analyze	the	case.	This	comes	in	handy	during
situations	where	you	want	to	automate	procedures	or	apply	continuous	integration,	as
described	in	previous	chapters.

This	method	consists	of	timing	a	method	(or	a	part	of	it),	surrounding	it	by	two	time
measures,	and	logging	the	difference	at	the	end:

private	static	final	boolean	BENCHMARK_TEMPERATURE_CONVERSION	=	true;

@Override

public	void	onTextChanged(CharSequence	input,	int	start,	int	before,	int	

count)	{

if	(!destinationEditNumber.hasWindowFocus()	

		||	destinationEditNumber.hasFocus()	||	input	==	null)	{

					return;

}

String	str	=	input.toString();

if	("".equals(str))	{

				destinationEditNumber.setText("");

				return;

}

long	t0;

if	(BENCHMARK_TEMPERATURE_CONVERSION)	{

				t0	=	System.currentTimeMillis();

}

try	{

				double	temp	=	Double.parseDouble(str);

				double	result	=	(option	==	Option.C2F)

									?	TemperatureConverter.celsiusToFahrenheit(temp)

									:	TemperatureConverter.fahrenheitToCelsius(temp);

				String	resultString	=	String.format("%.2f",	result);

				destinationEditNumber.setNumber(result);

				destinationEditNumber.setSelection(resultString.length());

}	catch	(NumberFormatException	ignore)	{

				//	WARNING	this	is	generated	whilst	numbers	are	being	entered,

				//	for	example	just	a	'-'	

				//	so	we	don't	want	to	show	the	error	just	yet

}	catch	(Exception	e)	{

				sourceEditNumber.setError("ERROR:	"	+	e.getLocalizedMessage());

}

if	(BENCHMARK_TEMPERATURE_CONVERSION)	{

				long	t	=	System.currentTimeMillis()	-	t0;

				Log.v(TAG,	"TemperatureConversion	took	"	+	t	

						+	"	ms	to	complete.");

		}

}

This	is	very	straightforward.	We	take	the	times	and	log	the	difference.	For	this,	we	are
using	the	Log.v()	method,	and	we	can	see	the	output	in	the	logcat	when	we	run	the
application.	You	can	control	the	execution	of	this	benchmark	by	setting	true	or	false	to
the	BENCHMARK_TEMPERATURE_CONVERSION	constant	that	you	defined	outside	the	method.

When	we	launch	the	activity	with	the	BENCHMARK_TEMPERATURE_CONVERSION	constant	set
to	true	in	the	logcat,	we	will	receive	messages	like	these	every	time	the	conversion	takes
place:

TemperatureConversion	took	5	ms	to	complete.

TemperatureConversion	took	1	ms	to	complete.

TemperatureConversion	took	5	ms	to	complete.

Timing	logger
Now,	the	one	better	than	this	is	the	android.util.TimingLogger	Android	class.	The
TimingLogger	object	can	help	you	time	your	method	calls	without	having	to	worry	about
maintaining	those	time	variables	yourself.	It	also	has	a	higher	degree	of	accuracy	than
System.currentTimeMillis():

private	static	final	String	TAG	=	"TemperatureTag";

@Override

public	void	onTextChanged(CharSequence	input,	int	start,	int	before,	int	

count)	{

if	(!destinationEditNumber.hasWindowFocus()	

||	destinationEditNumber.hasFocus()	||	input	==	null)	{

											return;

								}

							String	str	=	input.toString();

							if	("".equals(str))	{

									destinationEditNumber.setText("");

													return;

								}

		TimingLogger	timings	=	new	TimingLogger(TAG,	"onTextChanged");

		timings.addSplit("starting	conversion");

			try	{

									double	temp	=	Double.parseDouble(str);

		double	result	=	(option	==	Option.C2F)

						?	TemperatureConverter.celsiusToFahrenheit(temp)

						:	TemperatureConverter.fahrenheitToCelsius(temp);

		String	resultString	=	String.format("%.2f",	result);

									destinationEditNumber.setNumber(result);

									destinationEditNumber.setSelection(resultString.length());

}	catch	(NumberFormatException	ignore)	{

//	WARNING	this	is	generated	whilst	numbers	are	being	entered,

							//	for	example	just	a	'-'	

//	so	we	don't	want	to	show	the	error	just	yet

}	catch	(Exception	e)	{

sourceEditNumber.setError("ERROR:	"	+	e.getLocalizedMessage());

}

timings.addSplit("finish	conversion");

						timings.dumpToLog();

}

If	you	launch	the	application	now,	you	will	notice	that	nothing	comes	out	in	your	logcat.
This	is	because	TimingLogger	needs	you	to	explicitly	turn	on	the	logging	for	the	Tag	you
defined.	Otherwise,	the	method	calls	will	do	nothing.	From	a	terminal,	run	the	following
command:

adb	shell	setprop	log.tag.TemperatureTag	VERBOSE

Tip
You	can	check	what	level	your	logging	tag	is	set	to	with	the	getprop	command:

adb	shell	getprop	log.tag.TemperatureTag

You	can	list	all	other	properties	from	your	device	using	this	command:
adb	shell	getprop

Now,	when	we	launch	the	application,	we	will	receive	messages	like	these	every	time	a
conversion	completes:

onTextChanged:	begin

onTextChanged:						0	ms,	starting	conversion

onTextChanged:						2	ms,	finish	conversion

onTextChanged:	end,	2	ms

Something	you	should	take	into	account	is	that	these	benchmark-enabling	constants
should	not	be	enabled	in	the	production	build,	as	other	common	constants,	such	as	DEBUG
or	LOGD,	are	used.	To	avoid	mistakes,	you	should	integrate	the	verification	of	these
constants’	values	in	the	build	process	you	are	using	for	automated	builds,	such	as	Gradle.
Further,	personally,	I	would	remove	all	benchmarking	or	verification	logging	from	the
build	before	it	ships	to	production—not	comment	out	but	delete.	Remember	that	you	can
always	find	it	again	in	your	version	control	system,	in	the	history	or	on	a	branch.

Logging	code	execution’s	speed	like	this	is	simple,	but	for	more	complex	performance
issues,	you	might	want	to	use	more	detailed—though	more	complex—techniques.

Performance	tests	in	Android	SDK
If	the	previous	method	of	adding	log	statements	does	not	suit	you,	there	are	different
methods	of	getting	performance	test	results	from	our	application.	This	is	known	as
profiling.

When	running	instrumented	code	(as	with	our	Android	instrumented	test	cases),	there	is
no	standard	way	of	getting	performance	test	results	from	an	Android	application,	as	the
classes	used	by	Android	tests	are	hidden	in	the	Android	SDK	and	only	available	to	system
applications,	that	is,	applications	that	are	built	as	part	of	the	main	build	or	system	image.
This	strategy	is	not	available	for	us,	so	we	are	not	digging	deeper	in	that	direction.	Instead,
we	will	focus	on	other	available	choices.

Launching	the	performance	test
These	tests	are	based	on	an	approach	similar	to	what	we	just	discussed,	and	they	are	used
by	Android	to	test	system	applications.	The	idea	is	to	extend
android.app.Instrumentation	to	provide	performance	snapshots,	automatically	creating
a	framework	that	we	can	even	extend	to	satisfy	other	needs.	Let’s	understand	better	what
this	means	with	a	simple	example.

Creating	the	LaunchPerformanceBase	instrumentation
Our	first	step	is	to	extend	Instrumentation	to	provide	the	functionality	we	need.	We	are
using	a	new	package	named	com.blundell.tut.launchperf	to	keep	our	tests	organized:

public	class	LaunchPerformanceBase	extends	Instrumentation	{

				private	static	final	String	TAG	=	"LaunchPerformanceBase";

				protected	Bundle	results;

				protected	Intent	intent;

				public	LaunchPerformanceBase()	{

								this.results	=	new	Bundle();

								this.intent	=	new	Intent(Intent.ACTION_MAIN);

								this.intent.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK);

								setAutomaticPerformanceSnapshots();

				}

				/**

					*	Launches	intent	{@link	#intent},	

		*	and	waits	for	idle	before	returning.

					*/

				protected	void	launchApp()	{

								startActivitySync(intent);

								waitForIdleSync();

				}

				@Override

				public	void	finish(int	resultCode,	Bundle	results)	{

								Log.v(TAG,	"Test	results	=	"	+	results);

								super.finish(resultCode,	results);

				}

}

We	are	extending	Instrumentation	here.	The	constructor	initialized	the	two	fields	in	this
class:	results	and	intent.	At	the	end,	we	invoke	the
setAutomaticPerformanceSnapshots()	method,	which	is	the	key	here	to	creating	this
performance	test.

The	launchApp()	method	is	in	charge	of	starting	the	desired	Activity	and	waiting	before
returning.

The	finish()	method	logs	the	results	received	and	then	invokes	the	Instrumentation’s
finish().

Creating	the	TemperatureConverterActivityLaunchPerformance	class
This	class	sets	up	the	Intent	to	invoke	TemperatureConverterActivity	and	furnish	the
infrastructure	provided	by	the	LaunchPerformanceBase	class	to	test	the	performance	of
launching	our	Activity:

public	class	TemperatureConverterActivityLaunchPerformance	

extends	LaunchPerformanceBase	{

				@Override

				public	void	onCreate(Bundle	arguments)	{

						super.onCreate(arguments);

						String	className	=	"com.blundell.tut.TemperatureConverterActivity";

						intent.setClassName(BuildConfig.APPLICATION_ID,	className);

						start();

				}

				@Override

				public	void	onStart()	{

						super.onStart();

						launchApp();

						finish(Activity.RESULT_OK,	results);

				}

}

Here,	onCreate()	calls	super.onCreate()	as	the	Android	lifecycle	dictates.	Then	the
Intent	is	set,	specifying	the	class	name	and	the	package.	Then	one	of	the	Instrumentation’s
methods,	start(),	is	called.	It	creates	and	starts	a	new	thread	in	which	to	run
instrumentation.	This	new	thread	will	make	a	call	to	onStart(),	where	you	can	implement
the	instrumentation.

Then	the	onStart()	implementation	follows,	invoking	launchApp()	and	finish().

Running	the	tests
To	be	able	to	run	this	test,	we	need	to	define	the	specific	Instrumentation	in	the
Build.gradle	file	of	the	TemperatureConverter	project.

This	is	the	snippet	of	code	we	have	to	add	to	the	app/build.gradle:

defaultConfig	{

								//	other	code

								testInstrumentationRunner	

"com.blundell.tut.launchperf.TemperatureConverterActivityLaunchPerformance"

				}

Once	everything	is	in	place,	we	are	ready	to	start	running	the	test.

First,	install	the	APK	that	includes	these	changes.	Then,	we	have	several	options	to	run	the
tests,	as	we	reviewed	in	previous	chapters.	In	this	case,	we	are	using	the	command	line,	as
it	is	the	easiest	way	of	getting	all	the	details.	If	you	only	have	one	device	connected,	use
this:

$	adb	shell	am	instrument	-w	

com.blundell.tut.test/com.blundell.tut.launchperf.TermeratureConverterActiv

ityLaunchPerformance

Note
If	you	are	ever	wondering	what	Instrumentation	test	runners	you	have	installed	on	your
device,	you	can	use	this	command:
adb	shell	pm	list	instrumentation

We	receive	the	set	of	results	for	this	test	in	the	standard	output:

IINSTRUMENTATION_RESULT:	other_pss=7866

INSTRUMENTATION_RESULT:	global_alloc_count=4009

INSTRUMENTATION_RESULT:	java_allocated=7271

INSTRUMENTATION_RESULT:	execution_time=347

INSTRUMENTATION_RESULT:	gc_invocation_count=0

INSTRUMENTATION_RESULT:	native_pss=0

INSTRUMENTATION_RESULT:	received_transactions=-1

INSTRUMENTATION_RESULT:	other_shared_dirty=7128

INSTRUMENTATION_RESULT:	native_shared_dirty=0

INSTRUMENTATION_RESULT:	java_free=4845

INSTRUMENTATION_RESULT:	java_size=12116

INSTRUMENTATION_RESULT:	global_freed_size=155012

INSTRUMENTATION_RESULT:	java_pss=1095

INSTRUMENTATION_RESULT:	pre_sent_transactions=-1

INSTRUMENTATION_RESULT:	java_private_dirty=884

INSTRUMENTATION_RESULT:	pre_received_transactions=-1

INSTRUMENTATION_RESULT:	other_private_dirty=6228

INSTRUMENTATION_RESULT:	native_private_dirty=0

INSTRUMENTATION_RESULT:	cpu_time=120

INSTRUMENTATION_RESULT:	sent_transactions=-1

INSTRUMENTATION_RESULT:	native_allocated=10430

INSTRUMENTATION_RESULT:	java_shared_dirty=8360

INSTRUMENTATION_RESULT:	global_freed_count=1949

INSTRUMENTATION_RESULT:	native_free=14145

INSTRUMENTATION_RESULT:	native_size=10430

INSTRUMENTATION_RESULT:	global_alloc_size=372992

INSTRUMENTATION_CODE:	-1

We	have	highlighted	two	of	the	values	we	are	interested	in:	execution_time	and
cpu_time.	They	account	for	the	total	execution	time	and	the	CPU	time	used	respectively.

Running	this	test	on	an	emulator	increases	the	potential	for	mismeasurement,	because	the
host	computer	is	running	other	processes,	which	also	take	up	the	CPU,	and	the	emulator
does	not	necessarily	represent	the	performance	of	a	real	piece	of	hardware.

Needless	to	say,	in	this	and	any	other	case	where	you	measure	something	that	is	variable
over	time,	you	should	use	a	measurement	strategy	and	run	the	test	several	times	to	obtain
different	statistical	values,	such	as	average	or	standard	deviation.

Using	the	Traceview	and	dmtracedump
platform	tools
The	Android	SDK	includes	among	its	various	tools	two	that	are	specially	intended	to
analyze	performance	problems	and	profiles,	and	potentially	determine	the	target	to	apply
optimizations.	Android	also	offers	us	the	Dalvik	Debug	Monitor	Service	(DDMS),
which	collates	these	tools	all	in	one	place.	DDMS	can	be	opened	from	Android	Studio	by
navigating	to	Tools	|	Android	|	Device	Monitor,	or	from	the	command	line	with	the
command	monitor.	You	can	use	Traceview	and	other	tools	inside	DDMS	by	using	handy
GUI	shortcuts.	Here,	however,	we	are	going	to	use	the	command-line	options	so	that	you
can	understand	the	tools	behind	the	GUI.

These	tools	have	an	advantage	over	other	alternatives:	usually,	no	modification	to	the
source	code	is	needed	for	simpler	tasks.	However,	for	more	complex	cases,	some	additions
are	needed,	but	they	are	very	simple,	as	we	will	see	shortly.

If	you	don’t	need	precision	about	starting	and	stopping	tracing,	you	can	drive	it	from	the
command	line	or	Android	Studio.	For	example,	to	start	tracing	from	the	command	line,
you	can	use	the	following	command.	Remember	to	add	the	serial	number	with	–s	if	you
have	multiple	devices	attached:

$	adb	shell	am	start	-n	com.blundell.tut/.TemperatureConverterActivity

$	adb	shell	am	profile	com.blundell.tut	start	/mnt/sdcard/tc.trace

Do	something	such	as	entering	a	temperature	value	in	the	Celsius	field	to	force	a
conversion,	then	run	this:

$	adb	shell	am	profile	com.blundell.tut	stop

$	adb	pull	/mnt/sdcard/tc.trace	/tmp/tc.trace

7681	KB/s	(1051585	bytes	in	0.133s)

$	traceview	/tmp/tc.trace

Otherwise,	if	you	need	more	precision	about	when	profiling	starts,	you	can	add	the
programmatic	style:

@Override

public	void	onTextChanged(CharSequence	input,	int	start,	int	before,	int	

count)	{

		if	(!destinationEditNumber.hasWindowFocus()	

											||	destinationEditNumber.hasFocus()	||	input	==	null)	{

					return;

}

String	str	=	input.toString();

if	("".equals(str))	{

			destinationEditNumber.setText("");

			return;

}

if	(BENCHMARK_TEMPERATURE_CONVERSION)	{

Debug.startMethodTracing();

}

try	{

double	temp	=	Double.parseDouble(str);

			double	result	=	(option	==	Option.C2F)

						?	TemperatureConverter.celsiusToFahrenheit(temp)	

						:	TemperatureConverter.fahrenheitToCelsius(temp);

String	resultString	=	String.format("%.2f",	result);

			destinationEditNumber.setNumber(result);

			destinationEditNumber.setSelection(resultString.length());

}	catch	(NumberFormatException	ignore)	{

//	WARNING	this	is	generated	whilst	numbers	are	being	entered,

			//	for	example	just	a	'-'	

//	so	we	don't	want	to	show	the	error	just	yet

}	catch	(Exception	e)	{

			sourceEditNumber.setError("ERROR:	"	+	e.getLocalizedMessage());

}

		if	(BENCHMARK_TEMPERATURE_CONVERSION)	{

				Debug.stopMethodTracing();

		}

}

This	will	create	a	trace	file,	using	the	default	name,	dmtrace.trace,	on	the	SD	card	by
invoking	Debug.startMethodTracing(),	which	starts	method	tracing	with	the	default	log
name	and	buffer	size.	When	we	are	done,	we	call	Debug.stopMethodTracing()	to	stop	the
profiling.

Note
Remember	that	enabling	profiling	really	slows	down	the	application	execution,	so	the
results	should	be	interpreted	by	their	relative	weight,	not	by	their	absolute	values.

To	be	able	to	write	to	the	SD	card,	the	application	requires	an
android.permission.WRITE_EXTERNAL_STORAGE	permission	to	be	added	to	the	manifest.

For	Traceview	using	DDMS,	the	stream	is	sent	through	the	JDWP	connection	straight	to
your	development	computer,	and	the	permission	is	not	needed.

You	need	to	exercise	the	application	in	order	to	obtain	the	trace	file.	This	file	needs	to	be
pulled	to	the	development	computer	to	be	further	analyzed	using	traceview:

$	adb	pull	/mnt/sdcard/dmtrace.trace	/tmp/dmtrace.trace

			8491	KB/s	(120154	bytes	in	0.013s)

$	traceview	/tmp/dmtrace.trace

After	running	this	command,	the	traceview’s	window	appears,	displaying	all	the
information	collected,	as	shown	in	this	screenshot:

The	top	part	of	the	window	shows	the	timeline	panel	and	a	colored	area	for	every	method.
Time	increases	to	the	right	along	the	scale.	There	are	also	small	lines	under	the	colored
row,	displaying	the	extent	of	all	the	calls	to	the	selected	method.

We	profiled	a	small	segment	of	our	application,	so	only	the	main	thread	was	running	from
our	process.	In	the	cases	where	other	threads	run	during	the	profiling,	this	information	will
also	be	displayed.	For	instance,	this	shows	that	an	AsyncTask	was	executed	by	the	system.

The	bottom	part	shows	the	profile	panel,	every	method	executed,	and	its	parent-child
relationships.	We	refer	to	calling	methods	as	parents	and	the	called	methods	as	children.
When	clicked	on,	a	method	expands	to	show	its	parents	and	children.	Parents	are	shown
with	a	purple	background	and	children	with	a	yellow	background.

Also,	the	color	selected	for	the	method,	done	in	a	round-robin	fashion,	is	displayed	before
the	method	name.

Finally,	at	the	bottom,	there’s	a	Find:	field,	where	we	can	enter	a	filter	to	reduce	the
amount	of	information	displayed.	For	example,	if	we	are	interested	in	displaying	only	the
methods	in	the	com.blundell.tut	package,	we	should	enter	com/blundell/tut.

Clicking	on	a	column	will	set	the	order	of	the	list	according	to	that	column	in	ascending	or
descending	order.

This	table	shows	you	the	available	columns	and	their	descriptions:

Column Description

Name The	name	of	the	method,	including	its	package	name,	in	the	form	we	just	described,	which	is	by	using	/
(slash)	as	the	delimiter.	Also,	the	parameters	and	the	return	type	are	displayed.

Incl	Cpu
Time% The	inclusive	time,	as	a	percentage	of	the	total	time,	used	by	the	method.	This	includes	all	its	children.

Incl	Cpu
Time

The	inclusive	time,	in	milliseconds,	used	by	the	particular	method.	This	includes	the	method	and	all	its
children.

Excl	Cpu
Time% The	exclusive	time,	as	a	percentage	of	the	total	time,	used	by	the	method.	This	excludes	all	its	children.

Excl	Cpu
Time

The	exclusive	time,	in	milliseconds.	This	is	the	total	time	spent	in	the	particular	method.	It	excludes	all
its	children.

Incl	Real
Time% Inclusive	time	plus	the	waiting	time	of	the	process	to	execute	as	a	percentage	(waiting	for	I/O).

Incl	Real
Time Inclusive	time	plus	the	waiting	time	of	the	process	to	execute.

Excl	Real
Time% Exclusive	time	plus	the	waiting	time	of	the	process	to	execute	as	a	percentage	(waiting	for	I/O).

Excl	Real
Time Exclusive	time	plus	the	waiting	time	of	the	process	to	execute.

Calls+Recur

Calls/Total

This	column	shows	the	number	of	calls	for	the	particular	method	and	the	number	of	recursive	calls.

The	number	of	calls	compared	with	the	total	number	of	calls	made	to	this	method.

Cpu
Time/Call The	time	of	every	call	in	milliseconds.

The	final	word	on	Traceview	is	a	word	of	warning:	Traceview	currently	disables	the	JIT
compiler	from	running,	which	may	cause	Traceview	to	misattribute	time	to	code	blocks,
which	the	JIT	may	be	able	to	win	back.	Therefore,	it	is	imperative	after	making	changes
you	imply	from	Traceview	data,	that	you	ensure	that	the	resulting	code	actually	runs	faster
when	run	without	Traceview.

Dmtracedump
Dmtracedump	is	an	alternative	to	traceview.	It	allows	you	to	generate	your	trace	data	in
alternative	formats,	including	HTML,	and	also	a	call-stack	diagram,	using	the	trace	files
already	gathered.	The	later	diagram	is	of	a	tree	structure,	and	each	node	of	the	tree
represents	one	call	in	the	stack.

You	can	use	the	same	traceview	files	we	have	pulled	from	the	device	with	the	new
command:

dmtracedump	–t	40	–g	dmtrace.png	/tmp/dmtrace.trace	

When	running	dmtracedump,	if	you	get	the	dot	command	not	found	error	and	no	*.png
file	output,	it	means	you	need	to	install	GraphViz.	GraphViz	creates	the	visual	graphical
output	of	your	trace.	You	can	read	more	about	it	and	download	it	at	www.graphviz.org.
Once	it	is	installed,	your	error	should	go	away.

The	graphs	produced	can	be	very	big,	and	it’s	recommended	that	you	pass	a	detailed	but
pinpointing	trace	file	so	that	your	output	is	directed	towards	your	code	as	much	as
possible,	Alternatively,	as	we	just	did,	you	can	make	use	of	the	–t	parameter	so	that	you
attempt	to	include	only	those	child	nodes	that	take	up	a	fair	amount	of	CPU	time	(such	as
your	foreground	app	code).	Here	is	a	snippet	of	the	graph	produced	from	a	trace	when	we
enter	a	temperature	conversion:

http://www.graphviz.org

To	view	your	trace	data	as	HTML,	run	the	following:

dmtracedump	–h	/tmp/dmtrace.trace	>	dmtrace.html

This	alternative	HTML	view	allows	you	to	navigate	around	the	details	of	your	trace	and
filter	the	call	stacks	of	each	call,	in	a	way	different	from	how	the	original	traceview	GUI
does:

This	table	describes	the	extra	command-line	arguments	you	can	use	with	dmtracedump:

Command Description

-d	<trace-

file-name>
Carry	out	a	comparison	against	this	trace	file	and	print	the	difference.

-g	<graph-out-

file-name.png>

Generate	the	graph	in	this	file.	Technically,	it	might	not	generate	PNG	images,	but	if	you	name	it
something.png,	you	can	open	the	file	to	see	the	graph.

-h
Turn	on	the	HTML	output.	This	will	be	printed	on	your	console	just	as	HTML	code,	so	remember	to
pipe	this	output	to	a	file,	such	as	example.html.

-o Dump	the	trace	file	instead	of	profiling.

-s	<trace-

file-name>

URL	base	to	the	location	of	the	sortable	JavaScript	file	(I’m	not	sure	what	the	use	of	this	parameter
is!	https://code.google.com/p/android/issues/detail?id=53468).

-t	<percent>
Minimum	threshold	for	including	child	nodes	in	the	graph	(the	child’s	inclusive	time	as	a	percentage
of	the	parent’s	inclusive	time).	If	this	option	is	not	used,	the	default	threshold	is	20	percent.

https://code.google.com/p/android/issues/detail?id=53468

Microbenchmarks
Benchmarking	is	the	act	of	running	a	computer	program	or	operation	in	order	to	compare
operations	in	a	way	that	produces	quantitative	results,	normally	by	running	a	set	of	tests
and	trials	against	them.

Benchmarks	can	be	organized	in	the	following	two	big	categories:

Macrobenchmarks
Microbenchmarks

Macrobenchmarks	exist	as	a	means	to	compare	different	platforms	in	specific	areas	such
as	processor	speed,	number	of	floating-point	operations	per	unit	of	time,	graphics	and	3D
performance,	and	so	on.	They	are	normally	used	against	hardware	components,	but	can
also	be	used	to	test	software-specific	areas,	such	as	compiler	optimization	or	algorithms.

As	opposed	to	these	traditional	macrobenchmarks,	a	microbenchmark	attempts	to
measure	the	performance	of	a	very	small	piece	of	code,	often	a	single	method.	The	results
obtained	are	used	to	choose	between	competing	implementations	that	provide	the	same
functionality,	when	deciding	the	optimization	path.

The	risk	here	is	to	microbenchmark	something	different	than	what	you	think	you	are
measuring.	This	is	something	to	take	into	account	mainly	in	the	case	of	JIT	compilers,	as
used	by	Android,	starting	with	version	2.2	Froyo.	The	JIT	compiler	may	compile	and
optimize	your	microbenchmark	differently	than	the	same	code	in	your	application.	So,	be
cautious	when	taking	your	decision.

This	is	different	from	the	profiling	tactic	introduced	in	the	previous	section,	as	this
approach	does	not	consider	the	entire	application	but	a	single	method	or	algorithm	at	a
time.

Caliper	microbenchmarks
Caliper	is	Google’s	open	source	framework	for	writing,	running,	and	viewing	results	of
microbenchmarks.	There	are	many	examples	and	tutorials	on	its	website	at
http://code.google.com/p/caliper.

Caliper	is	endorsed	on	developer.android.com	and	is	used	by	Google	to	measure	the
performance	of	the	Android	programming	language	itself.	We	are	exploring	its	essential
use	here,	and	will	introduce	more	Android-related	usage	in	the	next	chapter.

Its	central	idea	is	to	benchmark	methods,	mainly	to	understand	how	efficient	they	are.	We
may	decide	that	this	is	the	target	for	our	optimization,	perhaps	after	analyzing	the	results
provided	by	profiling	the	app	via	Traceview.

Caliper	benchmarks	use	annotations	to	help	you	build	your	tests	correctly.	Benchmarks	are
structured	in	a	fashion	similar	to	JUnit	tests.	Previously,	Caliper	mirrored	JUnit3	in	its
conventions;	for	instance,	where	tests	had	to	start	with	the	prefix	test,	benchmarks	started
with	the	prefix	time.	With	the	latest	version,	it	is	like	JUnit4	where	JUnit	has	@Test,
Caliper	uses	@Benchmark.	Every	benchmark	then	accepts	an	int	parameter,	usually	named
reps,	indicating	the	number	of	repetitions	to	benchmark	the	code	that	sits	inside	the
method,	which	is	surrounded	by	a	loop	counting	the	repetitions.

The	setUp()	method	or	@Before	annotation	is	present	and	is	used	as	@BeforeExperiment.

Benchmarking	the	temperature	converter
Let’s	start	by	creating	a	new	Java	module	inside	our	project.	Yes,	this	time,	it	is	not	an
Android	module—just	Java.

For	consistency,	use	the	com.blundell.tut	package	as	the	main	package.

Add	a	dependency	to	this	module	on	your	core	module	in	the	/benchmark/build.gradle
file.	This	allows	you	to	access	the	temperature	converter	code:

compile	project(':core').

Also,	add	the	Caliper	library	as	a	dependency;	this	is	hosted	on	Maven	central.	However,
at	the	time	of	writing	this	book,	the	version	released	by	Google	is	Caliper	1.0-beta-1,
which	does	not	include	the	annotations	we	have	just	discussed.	I	have	tried	to	poke	them
to	fix	this,	at	https://code.google.com/p/caliper/issues/detail?id=291,	star	that	issue	if	you
feel	so	inclined.	Therefore,	in	the	meantime,	another	developer	has	released	Caliper	under
his	package	to	Maven	central	to	allow	us	to	use	annotations.	This	is	the	import	you	need:

compile	'net.trajano.caliper:caliper:1.1.1'

Create	the	TemperatureConverterBenchmark	class	that	will	be	containing	our
benchmarks:

public	class	TemperatureConverterBenchmark	{

		public	static	void	main(String[]	args)	{

CaliperMain.main(CelsiusToFahrenheitBenchmark.class,	args);

http://code.google.com/p/caliper
https://code.google.com/p/caliper/issues/detail?id=291

		}

		public	static	class	CelsiusToFahrenheitBenchmark	{

			private	static	final	double	MULTIPLIER	=	10;

			@Param({"1",	"10",	"100"})

			int	total;

			private	List<Double>	temperatures	=	new	ArrayList<Double>();

			@BeforeExperiment

			public	void	setUp()	{

						temperatures.clear();

						generateRandomTemperatures(total);

}

			private	void	generateRandomTemperatures(int	total)	{

							Random	r	=	new	Random(System.currentTimeMillis());

						for	(int	i	=	0;	i	<	total;	i++)	{

								double	randomTemperature	=	MULTIPLIER	*	r.nextGaussian();

										temperatures.add(randomTemperature);

			}

			}

			@Benchmark

			public	void	timeCelsiusToFahrenheit(int	reps)	{

			for	(int	i	=	0;	i	<	reps;	i++)	{

									for	(double	t	:	temperatures)	{

												TemperatureConverter.celsiusToFahrenheit(t);

									}

}

			}

			}

}

We	have	a	setUp()	method	similar	to	JUnit	tests	that	use	the	@BeforeExperiment
annotation.	It	is	run	before	the	benchmarks	are	run.	This	method	initializes	a	collection	of
random	temperatures	used	in	the	conversion	benchmark.	The	size	of	this	collection	is	a
field	and	is	annotated	here	with	the	@Param	annotation	so	that	Caliper	knows	about	its
existence.	Caliper	will	allow	us	to	provide	the	value	of	this	parameter	when	we	run	the
benchmarks.	However,	for	this	example,	we	have	given	the	param	some	default	values	of
"1",	"10",	"100".	This	means	we	will	have	at	least	three	benchmarks,	with	one,	then	10,
and	then	100	values	of	temperature.

We	use	a	Gaussian	distribution	for	the	pseudo-random	temperatures,	as	this	can	be	a	good
model	of	the	reality	of	a	user.

The	benchmark	method	itself	uses	the	@Benchmark	annotation	so	that	caliper	can	recognize
and	run	this	method,	in	this	timeCelsiusToFahrenheit()	instance.	Inside	this	method,	we
loop	for	the	number	of	repetitions	passed	to	us	as	a	method	parameter,	each	time	invoking
the	TemperatureConverter.celsiusToFahrenheit()	conversion,	which	is	the	method	we
wish	to	benchmark.

Running	Caliper
To	run	Caliper,	right-click	on	the	class	and	select	from	the	menu	and	run
TemperatureConverterBenchmark.main().	If	you	want	to	change	the	total	parameter
from	the	default	of	1,	10,	100,	edit	the	run	configuration,	and	in	the	Program	arguments
field,	input	–Dtotal=5,50,500.

Either	way,	this	will	run	the	benchmarks,	and	if	everything	goes	well,	we	will	be	presented
with	the	results:

	Experiment	selection:	

		Instruments:			[allocation,	runtime]

		User	parameters:			{total=[1,	10,	100]}

		Virtual	machines:		[default]

		Selection	type:				Full	cartesian	product

This	selection	yields	6	experiments.

Starting	trial	1	of	6:	{instrument=allocation,	

benchmarkMethod=timeCelsiusToFahrenheit,	vm=default,	parameters={total=1}}…	

Complete!

		bytes(B):	min=32.00,	1st	qu.=32.00,	median=32.00,	mean=32.00,	3rd	

qu.=32.00,	max=32.00

		objects:	min=1.00,	1st	qu.=1.00,	median=1.00,	mean=1.00,	3rd	qu.=1.00,	

max=1.00

….

Starting	trial	6	of	6:	{instrument=runtime,	

benchmarkMethod=timeCelsiusToFahrenheit,	vm=default,	parameters=

{total=100}}…	Complete!

		runtime(ns):	min=158.09,	1st	qu.=159.52,	median=161.16,	mean=162.42,	3rd	

qu.=163.06,	max=175.13

Execution	complete:	1.420m.

Collected	81	measurements	from:

		2	instrument(s)

		2	virtual	machine(s)

		3	benchmark(s)

Results	have	been	uploaded.	View	them	at:	

https://microbenchmarks.appspot.com/runs/33dcd3fc-fde7-4a37-87d9-

aa595b6c9224

To	help	visualize	these	results,	there	is	a	service	hosted	on	Google	AppEngine
(http://microbenchmarks.appspot.com)	that	accepts	your	result	data	and	lets	you	visualize
it	in	a	much	better	way.	You	can	see	this	URL	in	the	preceding	output,	where	the	results
have	been	published.

If	you	wish	to	access	a	suite	of	benchmarks,	or	collate	your	results	over	time,	you	can	log
in	to	this	server	and	gain	an	API	key	to	help	congregate	your	results.	Once	you	have
obtained	this	key,	it	should	be	placed	in	the	~/.caliper/config.properties	file	in	your
home	directory,	and	the	next	time	you	run	the	benchmarks,	the	results	will	be	linked	to
your	login.

The	config.properties	will	look	like	this	snippet	after	you	pasted	the	API	key	obtained:

#	Caliper	config	file

#	Run	with	--print-config	to	see	all	of	the	options	being	applied

http://microbenchmarks.appspot.com

#	INSTRUMENT	CONFIG

#	instrument.micro.options.warmup=10s

#	instrument.micro.options.timingInterval=500ms

#	instrument.micro.options.reportedIntervals=7

#	instrument.micro.options.maxRuntime=10s

#	VM	CONFIG

vm.args=-Xmx3g	-Xms3g

#	See	the	Caliper	webapp	to	get	a	key	so	you	can	associate	results	with	

your	account

results.upload.options.key=abc123-a123-123a-b123-a12312312

The	result	will	be	as	follows:

As	well	as	the	run	speeds,	the	generated	website	shows	you	the	configuration	of	the	JVM
used	to	run	the	tests.	The	blue	and	red	sections	are	expandable	for	seeing	more	properties,
helping	you	to	detect	when	the	environment	being	run	on	is	actually	affecting	the	different
results	being	reported.

Summary
In	this	chapter,	we	dissected	the	available	alternatives	for	testing	the	performance
measures	of	our	application	by	benchmarking	and	profiling	our	code.

Some	options	that	should	be	provided	by	the	Android	SDK	are	not	available	at	the	time	of
writing	this	book,	and	there	is	no	way	to	implement	Android	PerformanceTestCases
because	some	of	the	code	is	hidden	in	the	SDK.	We	visited	and	analyzed	some	other	valid
alternatives.

Among	these	alternatives,	we	found	that	we	can	use	simple	log	statements	or	more
sophisticated	code	that	extends	instrumentation.

Subsequently,	we	analyzed	profiling	alternatives	and	described	and	exemplified	the	use	of
traceview	and	dmtracedump.

Finally,	you	discovered	Caliper,	a	microbenchmarking	tool	that	has	native	support	for
Android.	However,	we	introduced	its	most	basic	usage,	and	postponed	more	specific
Android	and	Dalvik	VM	usage	for	the	next	chapter.

To	be	able	to	quantify	your	testing	efforts	in	the	next	chapter,	we	will	be	executing
coverage	reports	on	our	code.	We	will	also	introduce	alternative	testing	and	discuss	new
upcoming	libraries	and	topics	in	the	Android	testing	world	to	hopefully	give	you	some
jumping-off	points	to	explore	and	continue	on	your	own	testing	voyage.

Chapter	9.	Alternative	Testing	Tactics
Up	to	this	point,	we	have	analyzed	the	most	common	and	accessible	tactics	to	implement
testing	in	our	projects.	However,	there	are	a	few	missing	pieces	in	our	puzzle,	which	we’ll
hope	to	cover	in	this	final	chapter.	The	Android	ecosystem	is	always	moving	forward,
with	the	advent	of	Android	Studio	and	Gradle.	The	toolbox	for	testing	is	also	always	being
added	too.	In	this	area,	we’ll	look	at	some	third-party	libraries	that	can	help	us	expand	our
testing	framework;	such	as	Robolectric	for	Android	testing	on	the	JVM,	as	well	as
potential	bleeding	edge	and	future	developments,	like	Fork;	imagine	threading	for	your
tests.

In	this	chapter,	we	will	be	covering	the	following	topics:

Jacoco	code	coverage
Robotium
Testing	on	host’s	JVM
Robolectric
Fest
Spoon/Fork

Code	coverage
Perhaps	Android’s	Achilles’	heel	would	be	the	lack	of	documentation,	and	the	number	of
places	you	have	to	visit	to	get	the	complete	version	of	what	you	are	trying	to	find,	or
what’s	even	worse,	in	many	cases	the	official	documentation	is	incorrect,	or	has	not	been
updated	to	match	the	current	release.	The	documentation	for	the	new	Gradle	build	system
is	very	sparse	on	the	ground,	and	this	is	where	most	people	start	when	trying	to	read	up	on
code	coverage;	so	let’s	light	up	a	few	dark	corners.

Code	coverage	is	a	measure	used	in	software	testing	that	describes	the	amount	of	source
code	that	was	actually	tested	by	the	test	suite,	and	to	what	degree,	following	some	criteria.
As	code	coverage	inspects	the	code	directly,	it	is	therefore	a	form	of	white	box	testing.

Note
White-box	testing	(also	known	as	clear	box	testing,	glass	box	testing,	transparent	box
testing,	and	structural	testing),	is	a	method	of	testing	software	that	tests	internal	structures
or	workings	of	an	application,	as	opposed	to	its	functionality	(say	black-box	testing).

From	the	several	tools	available,	providing	code	coverage	analysis	for	Java	we	are	using
Jacoco,	an	open-source	toolkit	for	measuring	and	reporting	Java	code	coverage	that	is
supported	by	the	Android	project.	The	infrastructure	to	start	using	it	for	your	own	projects
is	already	there,	therefore,	minimizing	the	effort	needed	to	implement	it.	Jacoco
supersedes	the	EMMA	code	coverage	tool,	while	taking	knowledge	from	lessons	learned
in	this	endeavor,	and	being	built	by	the	same	team.

Jacoco	distinguishes	itself	from	other	tools	by	going	after	a	distinctive	feature
combination;	support	for	large-scale	enterprise	software	development,	while	keeping
individual	developer’s	work	fast	and	iterative.	This	is	fundamental	in	a	project	the	size	of
Android,	and	Jacoco	shines	at	its	best,	providing	code	coverage	for	it.

Jacoco	features
Java,	the	Android	Gradle	plugin	and	the	Gradle	build	system,	all	have	native	support	for
Jacoco.	From	the	latest	Jacoco	version	available	at	this	book’s	release,	paraphrasing	its
documentation,	the	most	distinctive	set	of	features	are	the	following:

Jacoco	can	instrument	classes	for	coverage	either	offline	(before	they	are	loaded)	or
on	the	fly	(using	an	instrumenting	application	classloader).
Supported	coverage	types:	class,	method,	line,	branch,	and	instruction.	Jacoco	can
detect	when	a	single	source	code	line	is	covered	only	partially.
Coverage	stats	are	aggregated	at	method,	class,	package,	and	“all	classes”	levels.
Output	report	types:	plain	text,	HTML,	XML.	All	report	types	support	drill-down	to	a
user-controlled	detail	depth.	The	HTML	report	supports	source	code	linking.
Output	reports	can	highlight	items	with	coverage	levels,	below	user-provided
thresholds.
Coverage	data	obtained	in	different	instrumentation	or	test	runs	can	be	merged
together.
Jacoco	does	not	require	access	to	the	source	code	and	degrades	gracefully	with
decreasing	amounts	of	debug	information	available	in	the	input	classes.
Jacoco	is	relatively	fast;	the	runtime	overhead	of	added	instrumentation	is	small	(5	to
20%),	and	the	bytecode	instrumentor	itself	is	very	fast	(mostly	limited	by	file	I/O
speed).	Memory	overhead	is	a	few	hundred	bytes	per	Java	class.

Temperature	converter	code	coverage
The	Android	Gradle	plugin	has	support	for	Jacoco	code	coverage	out	of	the	box.	The
setup	involves	selecting	which	build	flavor	you	want	to	obtain	coverage	reports	for,	and
selecting	your	Jacoco	version.	We	want	to	instrument	our	debug	flavor	so	that	we	can	have
coverage	without	affecting	release	code.	Under	the	android	closure,	add	these	lines	to
your	android/build.gradle	file:

android	{

		…

		buildTypes	{	

								debug	{

												testCoverageEnabled	true

								}

						}

				jacoco	{

								version	=	'0.7.2.201409121644'

				}

}

The	Jacoco	version	does	not	actually	have	to	be	added	here,	however,	the	version	of
Jacoco	shipping	with	Android	is	currently	behind	the	latest	release.	The	latest	version	of
the	Jacoco	coverage	library	can	be	found	on	their	GitHub	page	at
https://github.com/jacoco/jacoco	or	Maven	central.	Therefore,	it	is	recommended	that	you
make	the	version	explicit.

https://github.com/jacoco/jacoco

Generating	code	coverage	analysis	report
You	will	need	to	have	an	emulator	running	as	Jacoco	instruments	your	android	tests,	and
these	are	run	on	a	device	so	an	emulator	is	appropriate.	When	the	tests	are	complete,	a
code	coverage	report	is	generated	on	the	device	and	then	pulled	to	your	local	machine.	If
you	choose	to	use	a	real	device	instead	of	an	emulator,	it	will	need	to	be	rooted.	Otherwise
this	pull	of	the	reports	will	fail	with	a	Permission	Denied	exception.

Run	code	coverage	from	the	command	line	as	follows:

$./gradlew	build	createDebugCoverageReport

Alternatively,	you	can	use	this	command	if	you	have	multiple	flavors:

$./gradlew	build	connectedCheck

This	following	message	verifies	that	our	tests	have	been	run	and	the	coverage	data	is
retrieved:

:app:connectedAndroidTest																	

:app:createDebugCoverageReport																	

:app:connectedCheck																	

															

BUILD	SUCCESSFUL

This	has	created	the	report	files	inside	the
/app/build/outputs/reports/coverage/debug/	directory.	If	you	use	multiple	flavors,
your	path	will	be	slightly	different.

Now	before	we	go	any	further,	if	you	haven’t	realized	yet,	we	have	not	only	been
generating	the	report	for	the	Android	app	module,	but	we	also	have	code	in	our	Java	core
module.	Let’s	create	a	report	for	this	as	well.

With	Gradle	having	support	for	Jacoco,	we	only	need	to	apply	the	Jacoco	plugin	to	our
code/build.gradle	file:

apply	plugin:	'jacoco''jacoco''jacoco''jacoco'''

More	configurations	are	possible	with	the	same	closure	that	we	are	using	for	our	Android
module.	Details	of	properties	that	can	be	changed	are	found	on	the	Gradle	Jacoco	plugin
website	at	http://gradle.org/docs/current/userguide/jacoco_plugin.html.

Now,	if	you	run	the	./gradlew	command	tasks,	you	should	see	a	new	Gradle	task	that	is
generated,	jacocoTestReport.	Run	this	task	to	generate	code	coverage	for	our	core
module:

$./gradlew	jacocoTestReport		

This	has	created	the	report	files	inside	the	/core/build/reports/jacoco/test/	directory.

Excellent!	Now	we	have	code	coverage	reports	for	both	our	app	code	and	our	core	code.

Note
It	is	possible	to	take	both	of	these	reports	and	merge	them	into	one	file.	You	will	most

http://gradle.org/docs/current/userguide/jacoco_plugin.html

likely	have	to	work	with	the	XML	output	to	do	this.	This	is	left	as	a	task	for	the	reader	but
take	a	look	on	the	Jacoco	website	and	the	Gradle	plugin	site	for	hints	(it	has	been	done
before).

Let’s	open	the	app	modules	index.html	to	display	the	coverage	analysis	report.

The	information	presented	in	the	report	includes	coverage	metrics	in	a	way	that	allows
drilling	down	into	data,	in	a	top-down	fashion,	starting	with	all	classes,	and	going	all	the
way	to	the	level	of	individual	methods	and	source	lines	(in	the	HTML	report).

The	fundamental	component	of	code	coverage	in	Jacoco	is	the	basic	block;	all	other	types
of	coverage	are	derived	from	the	basic	block	coverage	in	some	way.	Line	coverage	is
mostly	used	to	link	to	the	source	code.

This	table	describes	the	important	pieces	of	information	in	the	Jacoco	coverage	report:

Label Description

Element The	name	of	the	class	or	package.

Missed
Instructions,
Coverage

A	visual	indicator	showing	the	number	of	instructions	not	covered	by	tests	(in	red),	next	to	the	percentage
of	instructions	covered	by	tests.	Example:	if(x	=	1	&&	y	=	2)	would	be	two	instructions	but	one	line	of
code.

Missed
Branches,
Coverage

A	visual	indicator	of	the	number	of	branches	not	covered	by	tests	(in	red),	next	to	the	percentage	of
branches	covered.	Think	of	an	if/else	statement	as	two	branches.

The	number	of	branches	in	a	method	is	a	good	measure	of	its	complexity.

Missed,
Cxty

The	number	of	complex	paths	(cyclomatic	complexity)	missed,	next	to	the	total	complexity.	A	complexity
path	is	defined	as	a	sequence	of	bytecode	instructions,	without	any	jumps	or	jump	targets.	Adding	a
branch	to	the	code	(an	if	statement)	would	add	two	pathways	(true	or	false),	thus	making	the	complexity
increase	by	1.	However,	adding	an	instruction	(x	=	1;)	would	not	increase	the	complexity.

Missed,
Lines The	number	of	lines	not	executed	by	any	test,	next	to	the	total	number	of	lines.

Missed,
Methods

The	number	of	methods	missed,	next	to	the	total	number	of	methods.	This	is	a	basic	Java	method	that	is
composed	by	a	given	number	of	basic	paths.

Missed,
Classes The	number	of	classes	without	a	single	test,	next	to	the	total	number	of	classes.

We	can	drill-down	from	the	package	to	classes,	to	specific	methods,	and	the	lines	covered
are	presented	in	green,	uncovered	ones	appear	in	red,	while	partially	covered	ones	are	in
yellow.

This	is	an	example	of	the	report	for	the	core/	TemperatureConverter	class:

In	this	report,	we	can	see	that	the	class	TemperatureConverter	is	not	100%	covered.
When	we	look	into	the	code,	it	is	the	constructor	that	is	never	tested.

Do	you	know	why?	Think	for	a	moment.

Yes,	because	a	private	constructor	is	never	called.	This	is	a	utility	class	that	is	not
supposed	to	be	instantiated	at	all.

If	you	can	imagine	creating	a	new	class	with	just	a	static	method,	you	don’t	often	create
the	private	constructor;	it	would	be	left	as	the	non-visible	default	public	constructor.	In
this	case,	I	have	been	rather	diligent	and	wrote	this	private	constructor,	because	I	was	a
good	boy	scout	at	the	time	(and	still	am!).

We	can	see	here	not	only	how	this	analysis	is	helping	us	to	test	our	code	and	find	potential
bugs,	but	also	to	improve	the	design.

Once	we	consider	this	private	constructor	as	a	sensible	piece	of	code	not	to	be	running
tests	upon,	we	can	see	now	that	even	though	the	class	is	not	yet	100	percent	covered	and
thus	not	green,	we	can	be	assured	that	this	constructor	won’t	be	invoked	from	any	other
class.

I	think	a	very	important	lesson	here	is;	100	percent	code	coverage	does	not	have	to	be
your	goal.	Understanding	your	domain	and	the	architecture	of	your	application	allows	you
to	make	much	more	reachable	and	realistic	estimates	for	the	amount	of	code	coverage
that:

Gives	you	the	confidence	to	change	code	without	repercussions
Gives	you	belief	that	the	product	you	were	asked	to	deliver,	is	the	product	you	have
created

Covering	the	exceptions
Continuing	with	our	examination	of	the	coverage	report	will	lead	us	to	discover	another
block	that	is	not	exercised	by	our	current	tests.	The	block	in	question	is	the	last	catch	in
the	following	try-catch	block	in	app/TemperatureConverterActivity:

try	{

			double	temp	=	Double.parseDouble(str);

			double	result	=	(option	==	Option.C2F)

?	TemperatureConverter.celsiusToFahrenheit(temp)

:	TemperatureConverter.fahrenheitToCelsius(temp);

			String	resultString	=	String.format("%.2f",",("%.("%."",","	result);

			destinationEditNumber.setNumber(result);

			destinationEditNumber.setSelection(resultString.length());

}	catch	(NumberFormatException	ignore)	{

//	WARNING	this	is	generated	whilst	numbers	are	being	entered,

			//	for	example	just	a	-''''''

			//	so	we	don'tdon'tdon'tdon't'	want	to	show	the	error	just	yet

}	catch	(Exception	e)	{

sourceEditNumber.setError("ERROR:	"	+	e.getLocalizedMessage());

}

First	things	first,	why	are	we	catching	generic	Exception?	Let’s	make	this	more	specific
to	the	error	we	are	expecting	to	handle.	That	way	we	don’t	handle	exceptions	we	aren’t
expecting,	and	also	if	someone	reads	the	code	they	will	know	explicitly	what	we	are	trying
to	do	here.

Now	we	know	what	code	is	causing	us	not	to	have	full	test	coverage,	we	know	what	tests
to	write	to	throw	this	exception	and	update	our	test	suite	and	our	Jacoco	report:

}	catch	(InvalidTemperatureException	e)	{

sourceEditNumber.setError("ERROR:	"	+	e.getLocalizedMessage());

}

We	should	provide	a	test,	or	better	a	pair	of	tests,	one	for	each	temperature	unit	that	given
an	invalid	temperature	verifies	that	the	error	is	displayed.	The	following	is	the	test	in
TemperatureConverterActivityTests	for	the	Celsius	case,	and	you	can	easily	convert	it
to	provide	the	Fahrenheit	case:

public	void	testInvalidTemperatureInCelsius()	throws	Throwable	{

								runTestOnUiThread(new	Runnable()	{

												@Override

												public	void	run()	{

																celsiusInput.requestFocus();

												}

								});

								getInstrumentation().waitForIdleSync();

								//	invalid	temp	less	than	ABSOLUTE_ZERO_C

								sendKeys("MINUS	3	8	0");");");");"

								String	msg	=	"Expected	celsius	input	to	contain	an	

error.";.";.";.";"

								assertNotNull(msg,	celsiusInput.getError());

}

We	request	the	focus	for	the	field	under	test.	As	we	did	before,	we	should	achieve	this	by
using	a	Runnable	on	the	UI	thread	otherwise	we	will	receive	an	exception.

Then	set	the	invalid	temperature	and	retrieve	the	error	message	to	verify	that	it	is	not	null.
Running	the	end-to-end	process	again,	we	can	attest	that	the	path	is	now	covered,	giving
us	total	coverage	as	intended.

This	is	the	iterative	process	you	should	follow	to	change	as	much	as	possible	of	the	code
to	green.	As	was	said	before,	when	the	line	of	code	is	not	green,	as	long	as	you	have
considered	the	options	and	are	still	confident	in	changing	other	code	while	this	path	is
untested,	then	that	is	ok.

Introducing	Robotium
One	component	of	the	vast	emerging	robotic	fauna	is	Robotium	(http://robotium.org),	a
test	framework	created	to	simplify	the	writing	of	tests,	requiring	minimal	knowledge	of
the	application	under	test.	Robotium	is	mainly	oriented	to	writing	powerful	and	robust
automatic	black-box	test	cases	for	Android	applications.	It	can	cover	function,	system,	and
acceptance	test	scenarios,	even	spanning	multiple	Android	activities	of	the	same
application	automatically.	Robotium	can	also	be	used	to	test	applications	that	we	don’t
have	the	source	code	for,	or	even	pre-installed	applications.

Let’s	put	Robotium	to	work	creating	some	new	tests	for	TemperatureConverter.	To	keep
our	tests	organized,	we	create	a	new	package	named	com.blundell.tut.robotium	in	our
TemperatureConverter	project,	under	the	androidTest	directory.	We	will	initially	be
testing	TemperatureConverterActivity,	it	is	reasonable	to	call	it
TemperatureConverterActivityTests,	even	though	we	already	have	a	class	with	the
same	name	in	another	package	also	extending	ActivityInstrumentationTestCase2.
After	all,	this	class	will	contain	tests	for	this	same	Activity	too.

http://robotium.org

Adding	Robotium
Let’s	add	Robotium	to	our	project,	we’ll	only	be	using	it	in	test	cases	and	so	it	should	go
on	the	testcase	classpath.	As	of	this	writing,	the	latest	version	of	Robotium	is	5.2.1.	In
app/build.gradle,	we	add	the	following:

dependencies	{

				...

				androidTestCompile('com.jayway.android.robotium:robotium-solo:5.2.1')

}

Creating	the	test	cases
From	the	previous	chapters,	we	know	that	if	we	are	creating	test	cases	for	an	Activity	that
should	run	connected	to	the	system	infrastructure,	we	should	base	it	on
ActivityInstrumentationTestCase2,	and	that	is	what	we	are	going	to	do.

The	testFahrenheitToCelsiusConversion()	test
More	or	less	the	test	cases	have	the	same	structure	as	other	Instrumentation-based	tests.
The	main	difference	is	that	we	need	to	instantiate	Robotium’s	Solo	in	the	test	setUp(),
and	clean	up	Robotium	in	the	tearDown():

public	class	TemperatureConverterActivityTests	extends	

ActivityInstrumentationTestCase2<TemperatureConverterActivity>	{

				private	TemperatureConverterActivity	activity;

				private	Solo	solo;

				public	TemperatureConverterActivityTests()	{

								super(TemperatureConverterActivity.class);

				}

				@Override

				protected	void	setUp()	throws	Exception	{

								super.setUp();

								activity	=	getActivity();

								solo	=	new	Solo(getInstrumentation(),	activity);

				}

				@Override

				protected	void	tearDown()	throws	Exception	{

								solo.finishOpenedActivities();

								super.tearDown();

				}

}

To	instantiate	Solo,	we	have	to	pass	a	reference	to	the	Instrumentation	class	and	to	the
Activity	under	test.

On	the	other	hand,	to	clean	up	Solo	we	should	call	the	finishOpenedActivities()
method.	This	will	finalize	Solo	and	then	finish	our	Activity,	and	we	then	invoke
super.tearDown().

Solo	provides	a	variety	of	methods	to	drive	UI	tests	and	some	assertions.	Let’s	start	by	re-
implementing	the	testFahrenheitToCelsiusConversion()	that	we	previously
implemented	using	the	conventional	approach,	but	in	this	case	using	Solo	facilities:

public	void	testFahrenheitToCelsiusConversion()	{

solo.clearEditText(CELSIUS_INPUT);

			solo.clearEditText(FAHRENHEIT_INPUT);

			solo.clickOnEditText(FAHRENHEIT_INPUT);

			solo.enterText(FAHRENHEIT_INPUT,	"32.5");

			solo.clickOnEditText(CELSIUS_INPUT);

			double	f	=	32.5;

			double	expectedC	=	TemperatureConverter.fahrenheitToCelsius(f);

			double	actualC	=	

((EditNumber)	solo.getEditText(CELSIUS_INPUT)).getNumber();

			double	delta	=	Math.abs(expectedC	-	actualC);

			String	msg	=	f	+	"F	->	"	+	expectedC	+	"C	"

					+	"""""but	was	"	+	actualC	+	"C	(delta	"	+	delta	+	")";

			assertTrue(msg,	delta	<	0.005);

}

This	is	pretty	similar,	however,	the	first	difference	you	may	have	noticed	is	that	in	this
case	we	are	not	getting	references	to	the	UI	elements	as	we	previously	did	in	the	setUp()
method,	using	findViewById()	to	locate	the	view.	However,	we	are	using	one	of	the
biggest	advantages	of	Solo,	which	is	locating	the	views	for	us	using	some	criteria.	In	this
case,	the	criterion	is	the	order	in	which	the	EditText	appears.	The
solo.clearEditText(int	index)	method	expects	an	integer	index	of	the	position	on	the
screen	starting	from	0.	Consequently,	we	should	add	these	constants	to	the	test	case,	just
like	in	our	user	interface	the	Celsius	field	is	on	top,	and	Fahrenheit	beneath:

		private	static	final	int	CELSIUS	=	0;

		private	static	final	int	FAHRENHEIT	=	1;

The	other	Robotium	methods	follow	the	same	convention,	and	we	are	supplying	these
constants	when	necessary.	This	test	is	very	similar	to	the	one	in
com.blundell.tut.TemperatureConverterActivityTest,	but	you	may	have	noticed	that
there	is	a	subtle	difference.	Robotium	is	located	at	a	much	higher	level	and	we	don’t	have
to	worry	about	as	many	internals	or	implementation	details;	for	example,	when	in	our
previous	test	we	invoked	celciusInput.requestFocus()	to	trigger	the	conversion
mechanism,	here	we	just	simulate	what	the	user	does	and	issue	a
solo.clickOnEditText(CELSIUS).

We	simplified	the	test	sensibly,	but	the	biggest	advantage	of	using	Solo	is	yet	to	come.

Testing	between	Activities
As	Robotium	is	situated	at	a	much	higher	level,	and	we	don’t	deal	with	implementation
details,	it	is	not	our	problem	if	a	new	Activity	is	launched	when	we	click	on	an	Android
widget;	we	only	treat	this	case	from	the	UI	perspective.

Here,	I	am	going	to	discuss	some	functionality	theoretically.	This	has	not	yet	been	created
and	is	left	up	to	the	user	as	a	further	step,	if	you	so	wish.

Now	that	we	have	a	working	temperature	converter,	it	would	be	nice	if	we	could	let	the
user	decide	up	to	how	many	decimal	places	they	want	to	see	a	conversion.	Allowing	the
user	to	change	this	option,	via	an	Android	Dialog,	sounds	like	a	sensible	option.

Our	purpose	is	to	change	the	value	of	decimal	places	preference	to	five,	and	verify	that	the
change	actually	took	place.	Because	of	the	high	level	of	Robotium,	this	test	is	readable
and	understandable	without	actually	having	the	functionality	implemented.	This	is	an
example	of	a	BDD	approach	to	implement	this	feature.

The	following	code	snippet	illustrates	the	details	of	the	test:

public	final	void	testClickOptionMenuSavesDecimalPreference()	{

int	decimalPlaces	=	5;

			String	numberRegEx	=	"^[0-9]+$";

			solo.sendKey(Solo.MENU);

			solo.clickOnText("Preferences");

			solo.clickOnText("Decimal	places");

			assertTrue(solo.searchText(numberRegEx));

			solo.clearEditText(DECIMAL_PLACES);

			assertFalse(solo.searchText(numberRegEx));

			

			solo.enterText(DECIMAL_PLACES,	Integer.toString(decimalPlaces));

solo.clickOnButton("OK");

			solo.goBack();

			solo.sendKey(Solo.MENU);

			solo.clickOnText("Preferences");

			solo.clickOnText("Decimal	places");

			assertTrue(solo.searchText(numberRegEx));

			int	editTextDecimalPlaces	=	

Integer.parseInt(solo.getEditText(DECIMAL_PLACES)

.getText().toString());

assertEquals(decimalPlaces,	editTextDecimalPlaces);

}

There	are	no	gory	details	about	how	shared	preferences	and	options	menus	are
implemented.	We	only	test	its	functionality.	We	start	by	pressing	the	MENU	key	and
clicking	on	Preferences.

Wow,	we	just	specified	the	menu	item	title	and	that’s	it!

The	new	Activity	has	started,	but	we	don’t	have	to	worry	about	that	implementation	detail.
We	continue	and	click	on	Decimal	places.

We	verify	that	some	field	containing	a	number,	the	prior	value	of	this	preference,
appeared.	Do	you	remember	what	I	said	about	regular	expressions?	They	always	come	in
handy	in	one	way	or	another,	to	match	any	decimal	integer	number	(any	digit	followed	by
zero	or	more	digits).	Then,	we	clear	the	field	and	verify	that	it	was	in	fact	cleared.

We	enter	the	string,	representing	the	number	we	want	to	use	as	a	preference,	5	in	this	case.
Click	on	the	OK	button	and	the	preference	is	saved.

Finally,	we	need	to	verify	that	it	actually	happened.	The	same	procedure	is	used	to	get	the
menu	and	the	field.	Finally,	we	verify	that	the	actual	number	is	already	there.

You	may	wonder	where	DECIMAL_PLACES	come	from.	We	previously	defined	CELSIUS	and
FAHRENHEIT	index	constants	for	the	fields	on	the	screen,	and	this	is	the	same	case,	because
this	will	be	the	third	EditText	we	should	define	in	our	class:

		private	static	final	int	DECIMAL_PLACES	=	2;

Tests	can	be	run	from	your	IDE	or	the	command	line,	according	to	your	preferences.

Testing	on	the	host’s	JVM
We	left	this	subject	for	the	end	of	this	chapter,	as	it	seems	this	is	the	Holy	Grail	of	the
Android	platform.

Android	is	based	on	a	virtual	machine	named	Dalvik,	after	a	village	in	Iceland,	optimized
for	mobile	resources	with	limited	capabilities	such	as	constrained	amount	of	memory	and
processor	speed.	Thus	representative	of	a	mobile	device	but	certainly	a	very	different
environment	than	our	memory	rich	and	speedy	host	computers,	typically	having	plenty	of
memory	and	processor	speed	to	enjoy.

Ordinarily,	we	run	our	applications	and	tests	on	an	emulator	or	device.	These	targets	have
a	much	slower	real	or	emulated	CPU.	Thus,	running	our	tests	is	a	time-consuming	activity,
mainly	when	our	project	starts	to	grow.	Applying	Test-driven	Development	techniques
compels	us	to	run	hundreds	of	tests	to	verify	every	change	we	introduced.

Note
It’s	worth	noticing	that	this	technique	can	be	used	only	as	a	workaround	during	the
development	process	to	speed	things	up,	and	it	should	never	replace	final	testing	on	the
real	platform,	as	incompatibilities	between	the	Dalvik	and	JavaSE	runtime	may	affect	the
accuracy	of	the	tests.

We	are	half	way	there	already	with	the	creation	of	our	core	module.	Now	we	are	in	the
Java	world	and	free	to	run	our	tests	on	the	JVM	(and	use	JUnit4,	coming	to	an	Android
near	you	soon).	There	is	one-way	dependency	from	the	app	Android	module	to	the	core
Java	module.	Allowing	us	to	free	ourselves	from	the	shackles	of	Android	testing,
encumbrance	when	running	tests	in	the	core	module.

Later,	we	should	find	out	a	method	that	allows	us	to	intercept	the	standard	compilation-
dexing-running	on	an	emulator	or	a	device	sequence,	and	be	able	to	run	Android	on	our
host	computer	directly.

Comparing	the	performance	gain
A	quick	reminder	about	the	speed	gain	when	running	these	Java-only	tests	compared	to
Android	instrumentation	tests.

The	distinction	is	evident.	There	is	no	emulator	start	up,	or	any	device	communication,
and	therefore	the	speed	gain	is	important.	Analyzing	the	evidence,	we	can	find	out	these
differences.

Running	all	tests	in	my	development	computer	takes	0.005	seconds;	with	some	tests
taking	so	little	time	that	they	are	not	even	accounted	for,	and	are	displayed	as	0.000
seconds.

If	I	move	these	tests	to	our	app	module,	and	run	the	same	tests	on	the	emulator,	this	makes
the	huge	difference	evident.	These	same	tests	took	0.443	seconds	to	run,	almost	100	times
more,	and	that’s	a	huge	difference	if	you	consider	hundreds	of	tests	running,	tens	of	times
a	day.

It	is	also	good	to	notice	that	other	advantages	exist,	besides	the	speed	gain,	and	they	are
the	availability	of	years	of	Java,	tooling,	library,	and	plugin	creation,	including	several
mock	frameworks	and	code	analysis	tools.

Adding	Android	to	the	picture
We	intentionally	left	Android	outside	our	picture.	Let’s	analyze	what	happens	if	we
include	a	simple	Android	test	inside	core.	Remember	that	for	an	Android	test	to	compile
android.jar	from	the	SDK,	it	should	also	be	added	to	the	modules’	libraries.

And	here	is	what	we	obtain:

java.lang.RuntimeException:	Stub!

		at	android.content.Context.<init>(Context.java:4)

		at	android.content.ContextWrapper.<init>(ContextWrapper.java:5)

		at	android.app.Application.<init>(Application.java:6)

Note
Adding	the	android.jar	to	the	class	path	for	core	is	slightly	awkward	and	longwinded.	It
is	not	something	that	is	done	by	default.	This	is	a	good	thing	as	it	stops	us	accidentally
using	Android-specific	classes	when	writing	code	inside	core.

The	reason	is	that	android.jar	provides	only	the	API,	not	the	implementation.	All
methods	have	the	same	implementation:

throw	new	RuntimeException("Stub!");

If	we	want	to	circumvent	this	limitation	to	test	some	classes	outside	of	the	Android
operating	system,	we	should	create	an	android.jar	that	mocks	every	class.	However,	we
would	also	find	problems	for	subclasses	of	Android	classes,	like
TemperatureConverterApplication.	This	would	be	a	daunting	task	and	a	significant
amount	of	work,	so	we	should	look	for	another	solution.

Introducing	Robolectric
Robolectric	(http://robolectric.org)	is	a	unit	test	framework	that	intercepts	the	loading	of
Android	classes	and	rewrites	the	method	bodies.	Robolectric	re-defines	Android	methods
so	they	return	default	values,	such	as	null,	0,	or	false.	If	available,	it	forwards	method
calls	to	shadow	objects,	mimicking	Android	behavior.

A	large	number	of	shadow	objects	are	provided,	but	this	is	far	from	complete	coverage,
however,	it	is	improving	constantly.	This	should	also	lead	you	to	treat	it	as	an	evolving
open	source	project,	for	which	you	should	be	ready	to	contribute	to	make	it	better,	but	also
to	depend	on	it	with	caution	because	you	may	discover	that	what	you	need	for	your	tests
has	not	been	implemented	yet.	This	is	not	in	any	way	to	diminish	its	existing	prospects.

http://robolectric.org

Installing	Robolectric
Robolectric	can	be	installed	by	using	the	latest	Robolectric	JAR	from	the	Maven	central
repository.	At	the	time	of	this	writing,	the	latest	available	is	version	2.4:

testCompile	'org.robolectric:robolectric:2.4'

Usually,	adding	a	dependency	is	as	simple	as	this	one	line,	however,	with	Robolectric	a	bit
of	jiggery	pokery	is	needed	for	it	to	work	with	the	Gradle	build	types.

First,	Robolectric	tests	require	their	own	module	to	run	in.	This	is	nothing	new.	Create	a
new	Java	module,	we’ll	call	it	robolectric-tests.	Keep	the	package	the	same	as	always
com.blundell.tut.	Now,	we	have	to	modify	the	robolectric-tests/build.gradle,	so
we	can	hook	Robolectric	in	place	of	the	android.jar:

def	androidModuleName	=	":app";

def	flavor	=	"debug"

evaluationDependsOn(androidModuleName)

apply	plugin:	'java'

dependencies	{

				def	androidModule	=	project(androidModuleName)

				testCompile	project(path:	androidModuleName,	

configuration:	"${flavor}Compile")

				def	debugVariant	=	androidModule.android.applicationVariants

.find({	it.name	==	flavor	})

				testCompile	debugVariant.javaCompile.classpath

				testCompile	debugVariant.javaCompile.outputs.files

				testCompile	files(

androidModule.plugins.findPlugin("com.android.application")

.getBootClasspath())

				testCompile	'junit:junit:4.12'

				testCompile	'org.robolectric:robolectric:2.4'

}

This	is	a	big	chunk	of	configuration	to	take	in,	let’s	break	it	down	into	steps.

Firstly,	we	define	the	module	name	for	our	Android	application,	and	then	we	name	the
flavor	that	we	will	want	to	test	against.

The	EvaluationDependsOn	class	tells	Gradle	to	ensure	that	our	application	module	is
evaluated	before	our	tests,	this	stops	any	strange	errors	from	order	of	execution	quirks.

Next,	we	apply	the	java	plugin	as	per	normal	convention	for	a	Java	project.

The	dependencies	closure	is	where	we	add	all	of	the	Android	dependencies	to	our
classpath.	First,	we	add	the	selected	build	variant	of	our	module,	debug,	then	the	classpath
and	its	dependencies,	also	ensuring	we	have	system	dependencies	from	our	Android
plugin.

Lastly,	we	apply	JUnit4	and	Robolectric	as	test	dependencies.

Note
Remember,	if	you	have	multiple	product	flavors	and	build	types,	then	this	configuration
needs	the	full	build	variant	adding	to	the	script.	It	would	be	pretty	straightforward	to
amend	this	build	script.

Adding	resources
When	you	run	your	tests,	Robolectric	attempts	to	look	up	your	AndroidManifest.xml	so	it
can	find	resources	for	your	application,	and	know	about	your	target	SDK	version,	among
other	properties.	With	the	current	Robolectric	version	and	our	choice	of	using	a	separate
module,	Robolectric	cannot	find	your	resources	or	your	Android	manifest.	You	can	still
write	tests	and	get	feedback	without	this	optional	step,	but	you	may	find	some	strangeness
when	accessing	classes	that	use	resources;	for	example,	R.string.hello_world,	and	will
get	messages	like	this	in	your	console:

WARNING:	No	manifest	file	found	at	./AndroidManifest.xml.Falling	back	to	

the	Android	OS	resources	only.	To	remove	this	warning,	annotate	your	test	

class	with	@Config(manifest=Config.NONE).

This	can	be	fixed	by	doing	as	it	says	with	an	@Config	annotation,	or	creating	a	custom	test
runner	that	specifies	the	manifest	location	or	as	we	choose	to	do	here,	creating	a
configuration	file	and	adding	it	to	your	classpath.	Inside	the	robolectric-tests	module,
create	the	folder	/src/test/resources,	and	create	a	file
org.robolectric.Config.properties.	This	will	contain	our	Android	manifest	location;
it	will	also	contain	our	minimum	SDK	version,	as	we	don’t	state	this	in	our	manifest.	It
will	have	these	contents:

manifest=../app/src/main/AndroidManifest.xml

emulateSdk	=	16

Note
Robolectric	attempts	to	look	up	your	minimum	SDK	inside	the	AndroidManifest.xml.
However,	with	the	Gradle	build	system	you	do	not	declare	it	here,	but	declare	it	in	the
app/build.gradle.

We	are	now	set	up	and	ready	to	create	some	Robolectric	tests!

Writing	some	tests
We	will	get	acquainted	with	Robolectric	by	reproducing	some	of	the	tests	we	wrote
before.	One	good	example	can	be	re-writing	the	EditNumber	tests.	Let’s	create	a	new
EditNumberTests	class,	this	time	in	the	newly	created	project,	and	copy	the	tests	from	the
EditNumberTests	class	in	the	TemperatureConverterTest	project:

@RunWith(RobolectricTestRunner.class)

public	class	EditNumberTests	{

		private	static	final	double	DELTA	=	0.00001d;

		private	EditNumber	editNumber;

In	the	previous	snippet,	we	declare	the	test	runner	with	the	@RunWith	annotation.	Then	we
defined	the	editNumber	field,	to	hold	the	reference	to	the	EditNumber	class:

				@Before

				public	void	setUp()	throws	Exception	{

								editNumber	=	new	EditNumber(Robolectric.application);

								editNumber.setFocusable(true);

				}	

This	snippet	comprises	the	usual	setup()	method.	In	the	setUp()	method,	we	created	an
EditNumber	with	an	application	context,	and	then	we	set	it	as	focusable.	The	context	is
used	to	create	the	view,	and	Robolectric	handles	this	for	us:

				@Test

				public	final	void	testClear()	{

								String	value	=	"123.45";";";";"

								editNumber.setText(value);

								editNumber.clear();

								assertEquals("",		editNumber.getText().toString());

				}

				@Test

				public	final	void	testSetNumber()	{

								editNumber.setNumber(123.45);

								assertEquals("123.45",	editNumber.getText().toString());

				}

				@Test

				public	final	void	testGetNumber()	{

								editNumber.setNumber(123.45);

								assertEquals(123.45,	editNumber.getNumber(),	DELTA);

				}

In	this	last	snippet,	we	have	the	basic	tests	that	are	the	same	as	the	EditNumber	tests	of	our
previous	examples.

We	are	highlighting	the	most	important	changes.	The	first	one	is	to	specify	the	test	runner

JUnit	that	will	delegate	the	processing	of	the	tests	to,	by	using	the	annotation	@RunWith.	In
this	case,	we	need	to	use	RobolectricTestRunner.class	as	the	runner.	Then	we	create	an
EditText	class,	using	a	Robolectric	Context,	as	this	is	a	class	that	couldn’t	be	instantiated
without	some	help.	Finally,	a	DELTA	value	is	specified	in	testGetNumber	as	assertEquals
since,	the	floating	point	number	requires	it	in	JUnit	4.	Additionally,	we	added	the	@Test
annotation	to	mark	the	method	as	tests.

The	other	test	methods	that	existed	in	the	original	EditNumberTests	cannot	be
implemented,	or	simply	fail	for	a	variety	of	reasons.	For	example,	as	we	mentioned
before,	Robolectric	classes	return	default	values,	such	as	null,	0,	false,	and	so	on,	and
this	is	the	case	for	Editable.Factory.getInstance(),	which	returns	null	and	causes	the
test	to	fail;	because	there	is	no	other	way	of	creating	an	Editable	object,	we	are	at	a	dead
end.

Similarly,	the	InputFilter	that	EditNumber	sets	is	non	functional.	It	is	futile	to	create	a
test	that	expects	some	behavior.

The	alternative	to	these	shortcomings	would	be	to	create	Shadow	classes,	but	this	requires
alteration	of	the	Robolectric	source	and	the	creation	of	Robolectric.shadowOf()
methods.	This	procedure	is	described	in	the	documentation	that	you	may	follow,	if	you	are
interested	in	applying	this	approach	to	your	tests.

Having	identified	these	issues,	we	can	proceed	to	run	the	tests,	and	they	will	run	in	the
host’s	JVM	with	no	need	to	start	or	communicate	with	an	emulator	or	device.

Google’s	march	on	shadows
For	some	reason,	Google	does	not	like	Robolectric,	they’ve	never	acknowledged	that	it
works,	or	never	said	that	it’s	a	solution	to	a	problem.	If	they	ignore	the	solution,	then	that
means	the	problem	of	slow	running	tests	doesn’t	exist,	right.	They	seem	to	feel	that
Robolectric	detracts	from	Android,	and	so	have	kind	of	publicly	given	it	the	cold	shoulder.
Surreptitiously	pushing	it	away	by	ignoring	its	existence,	that	is	up	until	now.

Google	has	created	exactly	what	we	said	before,	an	android.jar	file	with	default	method
implementations.	This	means	no	more	stub!	errors	when	accessing	a	method.	Further,
they	have	removed	all	of	the	final	modifiers	from	classes,	allowing	mocking	Frameworks
to	have	a	field	day.	Unfortunately,	at	the	time	of	this	writing	it	is	undocumented.	No
surprise!	I	don’t	want	to	give	usage	steps,	as	while	undocumented	these	will	be	changing
rapidly.	However,	what	I	will	say	is,	if	Google	got	this	right,	then	it	means	for	the	testing
scenario	described	previously,	Robolectric	is	out	of	the	window,	and	we	can	use	the
standard	Android	testing	SDKs.	The	same	principles	will	apply,	and	so	I	think	it’s	still
valuable	if	you	understand	how	Robolectric	works.	You	can	apply	this	understanding	to
the	future	that	I	cannot.

Introducing	Fest
Another	weapon	for	our	testing	arsenal	is	better	testing	assertions.	Have	you	noticed	how
sometimes	stacktraces	for	failed	tests	are	really	unfriendly	and/or	mystically	wrong?	They
give	you	little	information	about	the	real	failure	and	you	end	up	confused,	having	to	read
the	entire	source	to	fathom	out	how	to	fix	the	problem.

As	an	example,	look	at	this	assertion:

org.junit.Assert.assertEquals(3,	myList.size());

We	are	asserting	that	a	collection	of	objects	after	some	task	has	a	size	of	three,	look	at	our
error	message	when	the	test	fails:

java.lang.AssertionError:	

Expected	:3

Actual			:2

Ok,	that	kind	of	makes	sense,	but	it’s	a	bit	abstract.	What	item	is	missing	from	our	list?	I
am	going	to	have	to	run	the	tests	again	to	find	out,	or	I	could	add	a	custom	error	message:

assertEquals("List	not	the	correct	size	"	+	myList,	

3,	myList.size());

Giving	me	the	error	message:

java.lang.AssertionError:	List	not	the	correct	size	[A,	B]	

Expected	:3

Actual			:2

That	error	message	is	much	better.	It	shows	I’m	missing	C	from	my	list.	However,	looking
back	at	the	assertion,	it’s	getting	kind	of	unreadable.	Sometimes,	at	a	glance,	it	might	even
appear	like	I	am	trying	to	assert	whether	that	initial	string	is	equal	to	the	other	vars,	the
parameter	ordering	does	not	help	at	all.	What	if	I	had	another	object	that	doesn’t	so	easily
implement	toString?	I	would	need	to	create	more	custom	code	to	print	a	nice	error
message,	probably	repeating	myself	quite	a	lot	with	boiler	plate	error	messages.

Stop	all	that	worrying	right	now!	Take	a	look	at	how	we	can	do	the	same	assertion	with
Fest:

org.fest.assertions.api.assertThat(myList).hasSize(3);

Now,	our	error	message	looks	like:

java.lang.AssertionError:	expected	size:<3>	but	was:<2>	in:<['A',	'B'']>

Nice,	with	no	extra	effort	by	us,	we	get	an	error	message	showing	us	what	is	in	the	list	and
how	the	sizes	differentiate.	Also	looking	back	at	the	assertion,	it’s	much	more	readable
and	even	coding	it	was	easier	with	the	fluid	interface.	This	improves	the	readability	of	our
test	code,	and	speeds	up	debugging	and	test	fixing.

After	doing	this	change,	I	came	to	realize	we	actually	might	have	wanted	to	test	the
contents	of	the	List,	but	due	to	the	encumbrance	of	the	JUnit	assertions,	we	were	not

bothering.	Fest	to	the	rescue	once	more:

assertThat(myList).contains("A",	""B",	""C");

output:	

		java.lang.AssertionError:	expecting:

<['A',]>

	to	contain:

<['A',	'B',	'C']>

	but	could	not	find:

<['C']>

Think	how	we	would	have	had	to	do	that	with	JUnit	assertions,	and	I	think	you’ll
appreciate	the	power	of	Fest.

Fest	comes	in	multiple	flavors	for	assertions	on	different	libraries;	these	include	the	java
flavor,	as	shown	previously,	and	an	Android	flavor,	which	allows	you	to	do	fluid-style
interface	assertions	on	Android	components,	like	Views	and	Fragments.	Here	is	an
example	of	JUnit	asserting	visibility,	and	then	Fest:

assertEquals(View.VISIBLE,	layout.getVisibility());

assertThat(layout).isVisible();

Adding	either	library	to	your	project	is	just	another	Gradle	dependency,	the	latest	versions
can	be	found	on	Maven	central.	Here	is	the	example	for	Java	fest,	the	latest	at	the	time	of
writing:

testCompile	'org'.easytesting:fest-assert-core:2.0M10'

Note
Note,	that	Android	Fest	has	been	rebranded	into	Assert-J	and	is	split	into	many
dependencies	depending	on	what	you	want	to	test.	The	assertions	will	work	exactly	the
same	way.	More	information	and	instructions	to	add	as	a	dependency	can	be	found	at
https://github.com/square/assertj-android.

https://github.com/square/assertj-android

Introducing	Spoon
Device	fragmentation	is	always	talked	about	around	Android	and	it	is	something	you
should	be	considerate	of.	The	number	of	different	devices	and	form	factors	means	you
really	need	to	be	confident	that	your	application	runs	well,	on	all	the	aforementioned.
Spoon	is	right	here	to	help;	Spoon	(http://square.github.io/spoon)	is	an	open-source	project
that	gives	you	a	test	runner	that	allows	instrumentation	tests	to	be	run	on	all	connected
devices	in	parallel.	It	also	allows	you	to	take	screenshots	as	the	tests	are	running.	Not	only
does	this	speed	up	your	testing	and	feedback	cycle,	it	also	allows	you	to	potentially
visually	see	where	tests	went	wrong.

Spoon	can	be	added	to	your	project	with	this	dependency:

testCompile	com.squareup.spoon:spoon-client:1.1.2

You	can	then	take	screenshots	inside	your	tests,	allowing	you	to	see	the	state	of	your
application	when	you	are	also	asserting	behavior:

Spoon.screenshot(activity,	"max_celcius_to_fahrenheit");

If	you	take	the	screenshot	right	before	your	assertion,	you	can	use	the	screenshots	to	help
you	determine	failures.	Another	cool	feature	is	Spoon	will	collate	your	screenshots	from
one	test	into	an	animated	GIF.	so	you	can	watch	the	sequence	of	events.

Spoon	is	then	run	from	the	command	line,	using	this	command:

$java	-jar	spoon-runner-1.1.2-jar-with-dependencies.jar	\

				--apk	androidApplicationTestGuide.apk	\

--test-apk	androidApplicationTestGuideTests.apk

Note
You	can	find	your	APK	files	inside	the	/build/	folder.	If	you	need	more	information	of
using	the	APK	files	in	this	way,	and	testing	from	the	command	line,	take	a	look	back	at
Chapter	7,	Behavior-driven	Development.

http://square.github.io/spoon

Introducing	Fork
Another	humorous	name	for	a	library,	but	stick	with	it	reader,	this	similarity	is	not	just	a
co-incidence.	After	telling	you	how	amazing	Spoon	is	at	speeding	up	your	tests	by	running
all	your	instrumentation	tests	in	parallel	on	all	connected	devices,	well	here	comes	Fork,
to	tell	you	that	this	naïve	scheduling	(their	words	not	mine),	is	a	burden	on	yourself	and
your	CI.	Fork	can	run	your	tests	even	faster!

Fork	increases	your	tests’	speed	by	introducing	a	concept	called	Device	Pools.	In	simple
terms,	imagine	you	had	two	identical	devices,	which	are	two	Sony	Xperia	Z1s	running
Android	5.0.	Fork	will	take	your	test	suite	and	split	it	in	half,	running	half	the	tests	on	each
device.	Thus,	it	saves	you	50	percent	of	the	test	run	speed	(roughly	excluding	warm
up/setup	time).

These	device	pools	come	in	different	flavors	for	things	such	as,	api	level,	smallest	width,
tablet	devices,	or	manual	pools,	where	you	declare	the	device	serial	id	you	want	to	use.
More	information	about	device	pools	and	custom	parameters	for	the	fork	task	can	be
found	at	http://goo.gl/cIm6GQ.

Fork	can	be	used	with	Gradle,	by	adding	the	plugin	to	your	build	script	and	applying	it:

buildscript	{

				dependencies	{

								classpath	'com'.shazam.fork:fork-gradle-plugin:0.10.0'

				}

}

apply	plugin:	'fork'

Now,	you	can	run	fork	tests	instead	of	your	normal	instrumentation	tests	with	this
command:

./gradlew	fork

Note
If	you	have	multiple	flavors	in	your	project,	you	can	see	what	fork	tasks	are	available	with
the	command:	./gradlew	tasks	|	grep	fork.

Spoon	and	Fork	are	powerful	tools,	and	combined	now	with	your	knowledge	of
instrumentation	tests,	unit	testing,	benchmarking,	and	code	analysis,	you	can	put	together
a	robust,	informational,	and	well-rounded	test	suite,	which	gives	you	confidence	and
agility	when	it	comes	to	writing	your	Android	applications.

http://goo.gl/cIm6GQ

Summary
This	chapter	has	been	a	little	more	involved	than	previous	ones,	with	the	sole	intention	of
facing	realistic	situations	and	state-of-the-art	Android	testing.

We	started	by	enabling	code	coverage	through	Jacoco,	running	our	tests,	and	obtaining	a
detailed	code	coverage	analysis	report.

We	then	used	this	report	to	improve	our	test	suite.	Writing	tests	to	cover	code	we	were	not
aware	had	not	been	tested.	This	led	us	to	better	tests,	and	in	some	cases	improved	the
design	of	the	project	under	test.

We	introduced	Robotium,	a	very	useful	tool	to	ease	the	creation	of	test	cases	for	our
Android	applications,	and	we	improved	some	tests	with	it.

Then	we	analyzed	one	of	the	hottest	topics	in	Android	testing;	testing	on	the	development
host	JVM,	optimizing,	and	reducing	considerably	the	time	needed	to	run	the	tests.
Something	that	is	highly	desirable	when	we	are	applying	Test-driven	Development	to	our
process.	Within	this	scope,	we	analyzed	Robolectric	and	created	some	tests	as
demonstrations	to	get	you	started	on	these	techniques.

To	round	off	our	knowledge,	we	looked	at	Fest	and	some	cutlery	these	can	help	us	have
more	expressive	tests,	improved	feedback,	and	a	more	powerful	overall	test	suite.

We	have	reached	the	end	of	this	journey	through	the	available	methods	and	tools	for
Android	testing.	You	should	now	be	much	better	prepared	to	start	applying	this	to	your
own	projects.	The	results	will	be	visible	as	soon	as	you	begin	to	use	them.

Finally,	I	hope	that	you	have	enjoyed	reading	this	book	as	much	as	I	did	writing	it.

Happy	testing!

Index
A

AccessPrivateDataTest	class	/	Android	unit	tests
activities

testing	/	Testing	activities	and	applications,	Testing	activities
ActivityInstrumentationTestCase2	class

about	/	The	ActivityInstrumentationTestCase2	class
constructor	/	The	constructor
setUp	method	/	The	setUp	method
tearDown	method	/	The	tearDown	method

ActivityInstrumentationTestCase2.getActivity()	method	/	Creating	the	fixture
Activity	Manager

URL	/	Instrumentation
ActivityMonitor	inner	class

about	/	The	ActivityMonitor	inner	class
example	/	Example

ActivityTestCase	class
about	/	The	ActivityTestCase	class
scrubClass	method	/	The	scrubClass	method

Android
unit	tests	/	Android	unit	tests

android-test-kit
URL	/	Testing	with	Espresso

android.test.mock	subpackage
MockApplication	class	/	Mock	objects
MockContentProvider	class	/	Mock	objects
MockContentResolver	class	/	Mock	objects
MockContext	class	/	Mock	objects
MockCursor	class	/	Mock	objects
MockDialogInterface	class	/	Mock	objects
MockPackageManager	class	/	Mock	objects
MockResources	class	/	Mock	objects

Android	applications
building	manually,	Gradle	used	/	Building	Android	applications	manually	using
Gradle

Android	Emulator	Plugin
about	/	Creating	the	jobs

Android	Emulator	plugin	/	Installing	and	configuring	Jenkins
Android	project

creating	/	Creating	the	Android	project
package,	exploring	/	Package	explorer
test	case,	creating	/	Creating	a	test	case

test	annotations	/	Test	annotations
tests,	running	/	Running	the	tests
tests,	debugging	/	Debugging	tests

Android	SDK
performance	tests	/	Performance	tests	in	Android	SDK

Android	Studio
support,	for	system	tests	/	Android	Studio	and	other	IDE	support
tests,	running	/	Running	all	tests	from	Android	Studio

AndroidTestCase	base	class
about	/	The	AndroidTestCase	base	class
assertActivityRequiresPermission()	method	/	The
assertActivityRequiresPermission()	method
assertWritingContentUriRequiresPermission()	method	/	The
assertWritingContentUriRequiresPermission()	method

Android	testing	framework
about	/	Android	testing	framework
features	/	Android	testing	framework
instrumentation	framework	/	Instrumentation
Gradle	/	Gradle
test	targets	/	Test	targets

annotations,	tests
about	/	Test	annotations
@SmallTest	/	Test	annotations
@MediumTest	/	Test	annotations
@LargeTest	/	Test	annotations
@Smoke	/	Test	annotations
@FlakyTest	/	Test	annotations
@UIThreadTest	/	Test	annotations
@Suppress	/	Test	annotations

AOSP	tests
URL	/	The	BrowserProvider	tests

applications
testing	/	Testing	activities	and	applications
mocking	/	Mocking	applications	and	preferences
RenamingMockContext	class	/	The	RenamingMockContext	class
contexts,	mocking	/	Mocking	contexts

Assert-J
URL	/	Introducing	Fest

assertActivityRequiresPermission()	method
about	/	The	assertActivityRequiresPermission()	method
packageName	parameter	/	Description
className	parameter	/	Description
permission	parameter	/	Description
example	/	Example

assertInsertQuery()	method	/	The	BrowserProvider	tests
assertions

about	/	Assertions	in	depth
custom	message	/	Custom	messages
static	imports	/	Static	imports
assertAssignableFrom	method	/	Even	more	assertions
assertContainsRegex	method	/	Even	more	assertions
assertContainsInAnyOrder	method	/	Even	more	assertions
assertContainsInOrder	method	/	Even	more	assertions
assertEmpty	method	/	Even	more	assertions
assertEquals	method	/	Even	more	assertions
assertMatchesRegex	method	/	Even	more	assertions
assertNotContainsRegex	method	/	Even	more	assertions
assertNotEmpty	method	/	Even	more	assertions
assertNotMatchesRegex	method	/	Even	more	assertions
checkEqualsAndHashCodeMethods	method	/	Even	more	assertions

assertLeftAligned	method	/	View	properties
assertOnScreen	method	/	View	properties
assertReadingContentUriRequiresPermission	method

about	/	The	assertReadingContentUriRequiresPermission	method
uri	/	Description
uri	parameter	/	Description
permission	parameter	/	Description
example	/	Example

assertRightAligned	method	/	View	properties
assertWritingContentUriRequiresPermission()	method

about	/	Description
uri	parameter	/	Description
permission	parameter	/	Description
example	/	Example

AVD
creating	/	Creating	Android	Virtual	Devices
running,	from	command	line	/	Running	AVDs	from	the	command	line
headless	emulator	/	Headless	emulator
keyguard,	disabling	/	Disabling	the	keyguard
services,	cleaning	up	/	Cleaning	up
processes,	cleaning	up	/	Cleaning	up
emulator,	terminating	/	Terminating	the	emulator
speeding	up,	with	HAXM	/	Speeding	up	your	AVD	with	HAXM
alternatives	/	Alternatives	to	the	AVD

AVD	Manager
about	/	Creating	Android	Virtual	Devices

B
Behavior-driven	Development

about	/	Functional	or	acceptance	tests
URL	/	Functional	or	acceptance	tests

Behavior-driven	Development	(BDD)
Given	/	Given,	When,	and	Then
When	/	Given,	When,	and	Then
Then	/	Given,	When,	and	Then

benchmarking
about	/	Microbenchmarks

BrowserProvider	tests	/	The	BrowserProvider	tests
buttons,	monkey_recorder.py

about	/	Record	and	playback

C
Calabash

URL	/	Functional	or	acceptance	tests
Caliper

running	/	Running	Caliper
Caliper	microbenchmarks

about	/	Caliper	microbenchmarks
URL	/	Caliper	microbenchmarks
temperature	converter,	benchmarking	/	Benchmarking	the	temperature	converter

code	coverage
about	/	Code	coverage

command	line
tests,	running	/	Running	tests	from	the	command	line

command	line,	options
-r	/	Running	tests	from	the	command	line
-e	<NAME>	<VALUE>	/	Running	tests	from	the	command	line
-p	<FILE>	/	Running	tests	from	the	command	line
-w	/	Running	tests	from	the	command	line
-e	unit	true	/	Running	specific	tests	by	category
-e	func	true	/	Running	specific	tests	by	category
-e	perf	true	/	Running	specific	tests	by	category
-e	size	{small	|	medium	|	large}	/	Running	specific	tests	by	category
-e	annotation	<annotation-name>	/	Running	specific	tests	by	category
debug	/	Other	command-line	options
package	/	Other	command-line	options
class	/	Other	command-line	options
coverage	/	Other	command-line	options

Compatibility	Test	Suite	(CTS)	/	Android	unit	tests
content	providers

testing	/	Testing	files,	databases,	and	content	providers
contexts

mocking	/	Mocking	contexts
continuous	integration

with	Jenkins	/	Continuous	integration	with	Jenkins
custom	message

about	/	Custom	messages

D
Dalvik	Debug	Monitor	Service	(DDMS)	/	Using	the	Traceview	and	dmtracedump
platform	tools
Dalvik	JIT	compiler

about	/	Performance	tests
Dalvik	virtual	machine

about	/	Test	targets
/	Testing	on	the	host’s	JVM
databases

testing	/	Testing	files,	databases,	and	content	providers
demonstration	application

creating	/	The	demonstration	application
Dependency	Injection	(DI)	/	Testing	local	and	remote	services
Device	Pools

about	/	Introducing	Fork
dmtracedump

using	/	Using	the	Traceview	and	dmtracedump	platform	tools,	Dmtracedump
command-line	arguments	/	Dmtracedump

E
EditNumber	class	/	The	EditNumber	class
emulator

tests,	running	/	Running	from	the	emulator
terminating	/	Terminating	the	emulator

emulator	configurations
about	/	Additional	emulator	configurations
network	conditions,	simulating	/	Simulating	network	conditions

Espresso
URL	/	Testing	with	Espresso
used,	for	testing	outside	in	/	Testing	with	Espresso

EvaluationDependsOn	class	/	Installing	Robolectric
exceptions

testing	/	Testing	exceptions

F
Fest

URL	/	Static	imports
about	/	Introducing	Fest

files
testing	/	Testing	files,	databases,	and	content	providers

FitNesse
URL	/	Functional	or	acceptance	tests,	FitNesse
about	/	FitNesse
running,	from	command	line	/	Running	FitNesse	from	the	command	line
TemperatureConverterTests	subwiki,	creating	/	Creating	a
TemperatureConverterTests	subwiki
test	systems	/	Adding	the	supporting	test	classes

fit	test	system	/	Adding	the	supporting	test	classes
Fork

about	/	Introducing	Fork
functionality,	adding

about	/	Adding	functionality
temperature	conversion	/	Temperature	conversion
EditNumber	class	/	The	EditNumber	class
TemperatureConverter	unit	tests	/	The	TemperatureConverter	unit	tests
EditNumber	tests	/	The	EditNumber	tests
TemperatureChangeWatcher	class	/	The	TemperatureChangeWatcher	class
TemperatureConverter	tests	/	More	TemperatureConverter	tests
InputFilter	tests	/	The	InputFilter	tests

functional	or	acceptance	tests
about	/	Functional	or	acceptance	tests
example	/	Test	case	scenario

functional	testing
about	/	Test	scripting	with	monkeyrunner

G
Git

about	/	Git	–	the	fast	version	control	system
local	Git	repository,	creating	/	Creating	a	local	Git	repository

Git	plugin	/	Installing	and	configuring	Jenkins
Given-When-Then	vocabulary	/	GivWenZen
GivWenZen

about	/	GivWenZen
URL	/	GivWenZen
wiki	URL	/	GivWenZen
test	scenario,	creating	/	Creating	the	test	scenario

Google	Gradle	plugin
URL	/	Instrumentation

Gradle
URL	/	Android	Studio	and	other	IDE	support,	Building	Android	applications
manually	using	Gradle
about	/	Gradle,	Building	Android	applications	manually	using	Gradle
used,	for	running	tests	/	Running	tests	using	Gradle
custom	annotation,	creating	/	Creating	a	custom	annotation
performance	tests,	running	/	Running	performance	tests
dry	run,	of	tests	/	Dry	run
used,	for	building	Android	applications	manually	/	Building	Android
applications	manually	using	Gradle
tasks	/	Building	Android	applications	manually	using	Gradle

Gradle	Jacoco	plugin
URL	/	Generating	code	coverage	analysis	report

Gradle	plugin	/	Installing	and	configuring	Jenkins
GraphViz

URL	/	Dmtracedump

H
HAXM

AVD,	speeding	up	with	/	Speeding	up	your	AVD	with	HAXM
headless	emulator	/	Headless	emulator

I
instrumentation

about	/	Instrumentation
ActivityMonitor	inner	class	/	The	ActivityMonitor	inner	class

instrumentation	framework
about	/	Instrumentation

InstrumentationTestCase	class
about	/	The	InstrumentationTestCase	class
launchActivity	method	/	The	launchActivity	and	launchActivityWithIntent
methods
launchActivityWithIntent	method	/	The	launchActivity	and
launchActivityWithIntent	methods
sendKeys	method	/	The	sendKeys	and	sendRepeatedKeys	methods
sendRepeatedKeys	method	/	The	sendKeys	and	sendRepeatedKeys	methods
runTestOnUiThread	helper	method	/	The	runTestOnUiThread	helper	method

integration	tests
about	/	Integration	tests
UI	tests	/	UI	tests

IsolatedContext	class
about	/	The	IsolatedContext	class

J
Jacoco

URL	/	Why,	what,	how,	and	when	to	test?
about	/	Jacoco	features
features	/	Jacoco	features

Jacoco	coverage	report
about	/	Generating	code	coverage	analysis	report

Java	testing	framework
about	/	Java	testing	framework

jbehave
about	/	Functional	or	acceptance	tests
URL	/	Functional	or	acceptance	tests

Jenkins
about	/	Continuous	integration	with	Jenkins
installing	/	Installing	and	configuring	Jenkins
configuring	/	Installing	and	configuring	Jenkins
URL	/	Installing	and	configuring	Jenkins
jobs,	creating	/	Creating	the	jobs
Android	test	results,	obtaining	/	Obtaining	Android	test	results

JUnit	plugin	/	Installing	and	configuring	Jenkins
Jython

URL	/	Test	scripting	with	monkeyrunner

K
keyguard

disabling	/	Disabling	the	keyguard

L
LaunchPerformanceBase	instrumentation

creating	/	Creating	the	LaunchPerformanceBase	instrumentation
libraries

using	/	Using	libraries	in	test	projects
local	and	remote	services

testing	/	Testing	local	and	remote	services

M
macrobenchmarks	/	Microbenchmarks
memory	usage

testing	for	/	Testing	for	memory	usage
microbenchmarks

about	/	Microbenchmarks
Caliper	/	Caliper	microbenchmarks

MockContentResolver	class
about	/	The	MockContentResolver	class

MockContext	class
about	/	An	overview	of	MockContext

Mockito
URL	/	Extensive	use	of	mock	objects
about	/	Extensive	use	of	mock	objects
benefits	/	Extensive	use	of	mock	objects
usage	example	/	Mockito	usage	example

mock	objects
about	/	Mock	objects,	Mock	objects
reference	link	/	Mock	objects
MockContext	class	/	An	overview	of	MockContext
IsolatedContext	class	/	The	IsolatedContext	class
alternate	route,	providing	to	file	/	Alternate	route	to	file	and	database	operations
alternate	route,	providing	to	database	operations	/	Alternate	route	to	file	and
database	operations
MockContentResolver	class	/	The	MockContentResolver	class
using	/	Extensive	use	of	mock	objects
libraries,	importing	/	Importing	libraries
Mockito	usage	example	/	Mockito	usage	example
EditNumber	filter	tests	/	The	EditNumber	filter	tests

monkey	application
running	/	Running	monkey
URL	/	Running	monkey
client-server	monkey	/	The	client-server	monkey

monkeyrunner	tool
used,	for	test	scripting	with	/	Test	scripting	with	monkeyrunner
features	/	Test	scripting	with	monkeyrunner
test	screenshots,	obtaining	/	Getting	test	screenshots
record	/	Record	and	playback
playback	/	Record	and	playback

MoreAsserts	class
about	/	Even	more	assertions

N
network	conditions

simulating	/	Simulating	network	conditions

O
options,	for	latency

about	/	Simulating	network	conditions
options,	for	network	speed

about	/	Simulating	network	conditions
options,	New	Item	screen

about	/	Creating	the	jobs

P
parsers,	testing

about	/	Testing	parsers
Android	assets	/	Android	assets

parser	test
about	/	The	parser	test

performance	tests
about	/	Performance	tests

performance	tests,	Android	SDK
about	/	Performance	tests	in	Android	SDK
launching	/	Launching	the	performance	test
LaunchPerformanceBase	instrumentation	/	Creating	the
LaunchPerformanceBase	instrumentation
TemperatureConverterActivityLaunchPerformance	class,	creating	/	Creating	the
TemperatureConverterActivityLaunchPerformance	class
running	/	Running	the	tests

preferences
mocking	/	Mocking	applications	and	preferences

ProviderTestCase2<T>	class
about	/	The	ProviderTestCase2<T>	class
constructor	/	The	constructor
example	/	An	example

R
regression	testing	/	Test	scripting	with	monkeyrunner
regular	expressions

reference	link	/	Even	more	assertions
RenamingMockContext	class	/	The	RenamingMockContext	class
RenamingMockContext	method	/	Mocking	contexts
Robolectric

about	/	Introducing	Robolectric
URL	/	Introducing	Robolectric
installing	/	Installing	Robolectric
resources,	adding	/	Adding	resources
tests,	writing	/	Writing	some	tests
shadows	/	Google’s	march	on	shadows

Robotium
about	/	Introducing	Robotium
URL	/	Introducing	Robotium
adding,	to	project	/	Adding	Robotium
test	cases,	creating	/	Creating	the	test	cases

S
SCM

about	/	Git	–	the	fast	version	control	system
ServiceTestCase<T>	class

about	/	The	ServiceTestCase<T>
constructor	/	The	constructor

setContext()	method	/	Mocking	contexts
setUp()	method

about	/	The	setUp()	method
/	Testing	activities
SetUp	pages	/	Creating	the	test	scenario
slim	test	system	/	Adding	the	supporting	test	classes
Spoon

about	/	Introducing	Spoon
URL	/	Introducing	Spoon

static	imports
about	/	Static	imports

system	tests
about	/	System	tests
types	/	System	tests
Android	Studio	support	/	Android	Studio	and	other	IDE	support
other	IDE	support	/	Android	Studio	and	other	IDE	support

T
TDD

about	/	Getting	started	with	TDD
advantages	/	Getting	started	with	TDD,	Advantages	of	TDD
test	case,	writing	/	Writing	a	test	case
tests,	running	/	Running	all	tests
code,	refactoring	/	Refactoring	the	code
requisites	/	Understanding	the	requirements

tearDown()	method
about	/	The	tearDown()	method

TemperatureChangeWatcher	class	/	The	TemperatureChangeWatcher	class
temperature	converter

benchmarking	/	Benchmarking	the	temperature	converter
TemperatureConverterActivityLaunchPerformance	class

creating	/	Creating	the	TemperatureConverterActivityLaunchPerformance	class
TemperatureConverterActivityTests	class

creating	/	Creating	the	TemperatureConverterActivityTests	class
fixture,	creating	/	Creating	the	fixture
user	interface,	creating	/	Creating	the	user	interface
user	interface	components	existence,	testing	/	Testing	the	existence	of	the	user
interface	components
IDs,	defining	/	Getting	the	IDs	defined
test	requisites,	translating	/	Translating	requirements	to	tests
screen	layout	/	Screen	layout

temperature	converter	application
creating	/	Creating	a	sample	project	–	the	temperature	converter,	Creating	the
project
requisites	/	List	of	requirements
user	interface	concept	design	/	User	interface	concept	design
Java	module,	creating	/	Creating	a	Java	module
viewing	/	Viewing	our	final	application

TemperatureConverter	class	/	The	TemperatureConverter	unit	tests
Temperature	Converter	code	coverage

about	/	Temperature	converter	code	coverage
code	coverage	analysis	report,	generating	/	Generating	code	coverage	analysis
report
exceptions,	covering	/	Covering	the	exceptions

TemperatureConverterTests	subwiki
creating	/	Creating	a	TemperatureConverterTests	subwiki
child	pages,	adding	/	Adding	child	pages	to	the	subwiki
acceptance	test	fixture,	adding	/	Adding	the	acceptance	test	fixture
supporting	test	classes,	adding	/	Adding	the	supporting	test	classes

testAccessAnotherAppsPrivateDataIsNotPossible()	method	/	Android	unit	tests

test	case
creating	/	Creating	a	test	case

TestCase	base	class
about	/	The	TestCase	base	class
default	constructor	/	The	default	constructor
constructor,	naming	/	The	given	name	constructor
setName()	method	/	The	setName()	method

test	cases,	Robotium
creating	/	Creating	the	test	cases
testFahrenheitToCelsiusConversion()	test	/	The
testFahrenheitToCelsiusConversion()	test
testing,	between	activities	/	Testing	between	Activities

testHasDefaultBookmarks()	method	/	The	BrowserProvider	tests
Test	History	/	Adding	the	supporting	test	classes
testing,	on	JVM

about	/	Testing	on	the	host’s	JVM
performance	gain,	comparing	/	Comparing	the	performance	gain
Android,	adding	/	Adding	Android	to	the	picture

testing	tactics
code	coverage	/	Code	coverage
Temperature	Converter	code	coverage	/	Temperature	converter	code	coverage
Robotium	/	Introducing	Robotium
test,	running	on	JVM	/	Testing	on	the	host’s	JVM
Robolectric	/	Introducing	Robolectric
Fest	/	Introducing	Fest
Spoon	/	Introducing	Spoon
Fork	/	Introducing	Fork

testPartialFirstTitleWord()	method	/	The	BrowserProvider	tests
test	requisites,	translating

empty	fields	/	Empty	fields
View	properties	/	View	properties

tests
advantages	/	Why,	what,	how,	and	when	to	test?
considerations	/	What	to	test
types	/	Types	of	tests
running	/	Running	the	tests
running,	from	Android	Studio	/	Running	all	tests	from	Android	Studio
single	test	case,	running	from	ASide	/	Running	a	single	test	case	from	your	IDE
running,	from	emulator	/	Running	from	the	emulator
running,	from	command	line	/	Running	tests	from	the	command	line
all	tests,	running	/	Running	all	tests
running,	from	specific	test	case	/	Running	tests	from	a	specific	test	case
specific	test,	running	by	name	/	Running	a	specific	test	by	name
specific	tests,	running	by	category	/	Running	specific	tests	by	category

running,	Gradle	used	/	Running	tests	using	Gradle
debugging	/	Debugging	tests

tests,	considerations
activity	life	cycle	events	/	Activity	lifecycle	events
database	and	file	system	operations	/	Database	and	filesystem	operations
physical	characteristics,	of	device	/	Physical	characteristics	of	the	device

tests,	types
unit	tests	/	Unit	tests
integration	tests	/	Integration	tests
functional	or	acceptance	tests	/	Functional	or	acceptance	tests
performance	tests	/	Performance	tests
system	tests	/	System	tests

TestSuiteBuilder.FailedToCreateTests	class
about	/	The	TestSuiteBuilder.FailedToCreateTests	class

test	systems,	FitNesse
fit	/	Adding	the	supporting	test	classes
slim	/	Adding	the	supporting	test	classes
URL	/	Adding	the	supporting	test	classes

test	targets
about	/	Test	targets

TextWatcher
about	/	The	TemperatureChangeWatcher	class

timing	logger
about	/	Timing	logger

touch	mode,	Android	UI
reference	link	/	The	setUp	method

TouchUtils	class
about	/	The	TouchUtils	class

Traceview
using	/	Using	the	Traceview	and	dmtracedump	platform	tools

U
UI	tests

about	/	UI	tests
unit	tests

about	/	Unit	tests
setUp()	method	/	The	setUp()	method
tearDown()	method	/	The	tearDown()	method
execution,	outside	of	test	method	/	Outside	the	test	method
execution,	inside	of	test	method	/	Inside	the	test	method
assert*	methods	/	Inside	the	test	method
mock	objects	/	Mock	objects

V
VCS

about	/	Git	–	the	fast	version	control	system
View	assertions

about	/	View	assertions
reference	link	/	View	assertions
assertBaselineAligned	method	/	View	assertions
assertBottomAligned	method	/	View	assertions
assertGroupContains	method	/	View	assertions
assertGroupIntegrity	method	/	View	assertions
assertGroupNotContains	method	/	View	assertions
assertHasScreenCoordinates	method	/	View	assertions
assertHorizontalCenterAligned	method	/	View	assertions
assertLeftAligned	method	/	View	assertions
assertOffScreenAbove	method	/	View	assertions
assertOffScreenBelow	method	/	View	assertions
assertOnScreen	method	/	View	assertions
assertRightAligned	method	/	View	assertions
assertTopAligned	method	/	View	assertions
assertVerticalCenterAligned	method	/	View	assertions

views
testing,	in	isolation	/	Testing	views	in	isolation

W
wiki

URL	/	Creating	a	TemperatureConverterTests	subwiki

Y
Ye	Olde	Logge	method

about	/	Ye	Olde	Logge	method

	Learning Android Application Testing
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	Questions
	1. Getting Started with Testing
	Why, what, how, and when to test?
	What to test
	Activity lifecycle events
	Database and filesystem operations
	Physical characteristics of the device
	Types of tests
	Unit tests
	The setUp() method
	The tearDown() method
	Outside the test method
	Inside the test method
	Mock objects
	Integration tests
	UI tests
	Functional or acceptance tests
	Test case scenario
	Performance tests
	System tests
	Android Studio and other IDE support
	Java testing framework
	Android testing framework
	Instrumentation
	Gradle
	Test targets
	Creating the Android project
	Package explorer
	Creating a test case
	Test annotations
	Running the tests
	Running all tests from Android Studio
	Running a single test case from your IDE
	Running from the emulator
	Running tests from the command line
	Running all tests
	Running tests from a specific test case
	Running a specific test by name
	Running specific tests by category
	Running tests using Gradle
	Creating a custom annotation
	Running performance tests
	Dry run
	Debugging tests
	Other command-line options
	Summary
	2. Understanding Testing with the Android SDK
	The demonstration application
	Assertions in depth
	Custom messages
	Static imports
	View assertions
	Even more assertions
	The TouchUtils class
	Mock objects
	An overview of MockContext
	The IsolatedContext class
	Alternate route to file and database operations
	The MockContentResolver class
	The TestCase base class
	The default constructor
	The given name constructor
	The setName() method
	The AndroidTestCase base class
	The assertActivityRequiresPermission() method
	Description
	Example
	The assertReadingContentUriRequiresPermission method
	Description
	Example
	The assertWritingContentUriRequiresPermission() method
	Description
	Example
	Instrumentation
	The ActivityMonitor inner class
	Example
	The InstrumentationTestCase class
	The launchActivity and launchActivityWithIntent methods
	The sendKeys and sendRepeatedKeys methods
	The runTestOnUiThread helper method
	The ActivityTestCase class
	The scrubClass method
	The ActivityInstrumentationTestCase2 class
	The constructor
	The setUp method
	The tearDown method
	The ProviderTestCase2<T> class
	The constructor
	An example
	The ServiceTestCase<T>
	The constructor
	The TestSuiteBuilder.FailedToCreateTests class
	Using libraries in test projects
	Summary
	3. Baking with Testing Recipes
	Android unit tests
	Testing activities and applications
	Mocking applications and preferences
	The RenamingMockContext class
	Mocking contexts
	Testing activities
	Testing files, databases, and content providers
	The BrowserProvider tests
	Testing exceptions
	Testing local and remote services
	Extensive use of mock objects
	Importing libraries
	Mockito usage example
	The EditNumber filter tests
	Testing views in isolation
	Testing parsers
	Android assets
	The parser test
	Testing for memory usage
	Testing with Espresso
	Summary
	4. Managing Your Android Testing Environment
	Creating Android Virtual Devices
	Running AVDs from the command line
	Headless emulator
	Disabling the keyguard
	Cleaning up
	Terminating the emulator
	Additional emulator configurations
	Simulating network conditions
	Speeding up your AVD with HAXM
	Alternatives to the AVD
	Running monkey
	The client-server monkey
	Test scripting with monkeyrunner
	Getting test screenshots
	Record and playback
	Summary
	5. Discovering Continuous Integration
	Building Android applications manually using Gradle
	Git – the fast version control system
	Creating a local Git repository
	Continuous integration with Jenkins
	Installing and configuring Jenkins
	Creating the jobs
	Obtaining Android test results
	Summary
	6. Practicing Test-driven Development
	Getting started with TDD
	Writing a test case
	Running all tests
	Refactoring the code
	Advantages of TDD
	Understanding the requirements
	Creating a sample project – the temperature converter
	List of requirements
	User interface concept design
	Creating the project
	Creating a Java module
	Creating the TemperatureConverterActivityTests class
	Creating the fixture
	Creating the user interface
	Testing the existence of the user interface components
	Getting the IDs defined
	Translating requirements to tests
	Empty fields
	View properties
	Screen layout
	Adding functionality
	Temperature conversion
	The EditNumber class
	The TemperatureConverter unit tests
	The EditNumber tests
	The TemperatureChangeWatcher class
	More TemperatureConverter tests
	The InputFilter tests
	Viewing our final application
	Summary
	7. Behavior-driven Development
	Given, When, and Then
	FitNesse
	Running FitNesse from the command line
	Creating a TemperatureConverterTests subwiki
	Adding child pages to the subwiki
	Adding the acceptance test fixture
	Adding the supporting test classes
	GivWenZen
	Creating the test scenario
	Summary
	8. Testing and Profiling Performance
	Ye Olde Logge method
	Timing logger
	Performance tests in Android SDK
	Launching the performance test
	Creating the LaunchPerformanceBase instrumentation
	Creating the TemperatureConverterActivityLaunchPerformance class
	Running the tests
	Using the Traceview and dmtracedump platform tools
	Dmtracedump
	Microbenchmarks
	Caliper microbenchmarks
	Benchmarking the temperature converter
	Running Caliper
	Summary
	9. Alternative Testing Tactics
	Code coverage
	Jacoco features
	Temperature converter code coverage
	Generating code coverage analysis report
	Covering the exceptions
	Introducing Robotium
	Adding Robotium
	Creating the test cases
	The testFahrenheitToCelsiusConversion() test
	Testing between Activities
	Testing on the host's JVM
	Comparing the performance gain
	Adding Android to the picture
	Introducing Robolectric
	Installing Robolectric
	Adding resources
	Writing some tests
	Google's march on shadows
	Introducing Fest
	Introducing Spoon
	Introducing Fork
	Summary
	Index

