®

Statistical Discovery™ From SAS.

Version 12

Scripting Guide

“The real voyage of discovery consists not in seeking new
landscapes, but in having new eyes.”

Marcel Proust

JMP, A Business Unit of SAS
SAS Campus Drive
Cary, NC 27513

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2015.
JMP® 12 Scripting Guide. Cary, NC: SAS Institute Inc.

JMP® 12 Scripting Guide
Copyright © 2015, SAS Institute Inc., Cary, NC, USA

ISBN 978-1-62959-482-8 (Hardcopy)
ISBN 978-1-62959-484-2 (EPUB)
ISBN 978-1-62959-485-9 (MOBI)
ISBN 978-1-62959-483-5 (PDF)

All rights reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms
established by the vendor at the time you acquire this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means
without the permission of the publisher is illegal and punishable by law. Please purchase
only authorized electronic editions and do not participate in or encourage electronic piracy
of copyrighted materials. Your support of others’ rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is
commercial computer software developed at private expense and is provided with
RESTRICTED RIGHTS to the United States Government. Use, duplication or disclosure of
the Software by the United States Government is subject to the license terms of this
Agreement pursuant to, as applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR 227.7202-3(a)
and DFAR 227.7202-4 and, to the extent required under U.S. federal law, the minimum
restricted rights as set out in FAR 52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this
provision serves as notice under clause (c) thereof and no other notice is required to be
affixed to the Software or documentation. The Government'’s rights in Software and
documentation shall be only those set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513-2414.
March 2015

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.

Other brand and product names are trademarks of their respective companies.

Technology License Notices

Scintilla - Copyright © 1998-2014 by Neil Hodgson <neilh@scintilla.org>.
All Rights Reserved.

Permission to use, copy, modify, and distribute this software and its documentation for
any purpose and without fee is hereby granted, provided that the above copyright
notice appear in all copies and that both that copyright notice and this permission
notice appear in supporting documentation.

NEIL HODGSON DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL NEIL
HODGSON BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Telerik RadControls: Copyright © 2002-2012, Telerik. Usage of the included Telerik
RadControls outside of JMP is not permitted.

ZLIB Compression Library - Copyright © 1995-2005, Jean-Loup Gailly and Mark Adler.
Made with Natural Earth. Free vector and raster map data @ naturalearthdata.com.
Packages - Copyright © 2009-2010, Stéphane Sudre (s.sudre.free.fr). All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

Neither the name of the WhiteBox nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

iODBC software - Copyright © 1995-2006, OpenLink Software Inc and Ke Jin
(www.iodbc.org). All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

— Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

— Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

— Neither the name of OpenLink Software Inc. nor the names of its contributors may
be used to endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL OPENLINK OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

bzip2, the associated library “libbzip2”, and all documentation, are Copyright ©
1996-2010, Julian R Seward. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

The origin of this software must not be misrepresented; you must not claim that you
wrote the original software. If you use this software in a product, an acknowledgment
in the product documentation would be appreciated but is not required.

Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

The name of the author may not be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

R software is Copyright © 1999-2012, R Foundation for Statistical Computing.

MATLAB software is Copyright © 1984-2012, The MathWorks, Inc. Protected by U.S.
and international patents. See www.mathworks.com/patents. MATLAB and Simulink
are registered trademarks of The MathWorks, Inc. See www.mathworks.com/
trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

libopc is Copyright © 2011, Florian Reuter. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

— Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

— Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and / or other
materials provided with the distribution.

— Neither the name of Florian Reuter nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED.IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; L0OSs OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

libxml2 - Except where otherwise noted in the source code (e.g. the files hash.c, list.c
and the trio files, which are covered by a similar licence but with different Copyright
notices) all the files are:

Copyright © 1998 - 2003 Daniel Veillard. All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the “Software”), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS Is”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE
DANIEL VEILLARD BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of Daniel Veillard shall not be used in
advertising or otherwise to promote the sale, use or other dealings in this Software
without prior written authorization from him.

Get the Most from JMP®

Whether you are a first-time or a long-time user, there is always something to learn
about JMP.

Visit JMP.com to find the following;:

live and recorded webcasts about how to get started with JMP

video demos and webcasts of new features and advanced techniques
details on registering for JMP training

schedules for seminars being held in your area

success stories showing how others use JMP

a blog with tips, tricks, and stories from JMP staff

a forum to discuss JMP with other users

http://www.jmp.com/getstarted/

http://www.jmp.com/getstarted

Contents
Scripting Guide

1 Learn about JMP

Documentation and Additional Resources 21
Formatting Conventions i i 23
JMP Documentationiutie ittt e e e e e 23
JMP Documentation Library 24
JMP Help . 28
Additional Resources for Learning JMP 28
Tutorials 29
Sample Data Tables o 29
Learn about Statistical and JSL Termsiiuiiiii i, 29
Learn JMP Tips and Trickso i 30
TOOItPS e 30
JMP User Community ... 30
JMPer Cable 30
JMP Books by USers 31
The JMP Starter Window e e e 31
2 Introduction
Welcome to the JMP ScriptingLanguageccoiiiiiiiiiiiiii.. 33
What JSL Can Do fOr YOU . ..ottt e e e e 35
Help with Learning JSL 35
The Scripting Guide 35
The Scripting Index ... 36
Let JMP Teach You JSL ... oo e e e e 37
Terminologyo 38

Basic JSL Syntax ... 41

10 Scripting Guide

3 Getting Started

Let JMP Write Your Scripts 43
Capturing a Script for an Analysis Report i 45
Capturing a Script foraDataTable 46
Capturing a Script toImportaFile 47
Gluing Scripts Together 48
4 Scripting Tools
Using the Script Editor, Log Window, Debugger and Profiler 53
Using the Script Editor 55
Runa Script 55
StopaScript ... 56
Edit a Script 56
Color Coding ... 56
Auto Complete Functions 56
TOOItPS . 57
Splita WINdow 58
Match Parentheses, Brackets, and Braces 59
Select a Rectangular Block of Text i i 59
Select Fragmented Text 60
Drag and Drop Text 60
Findand Replace 61
Automatic Formatting 61
Add Code Folding Markers 61
Advanced Options i 63
Set Preferences for the Script Editor i 63
Working with the Log 66
Show the Log in the Script Window 67
Save the Log 67
Debug or Profile Scripts 68
Debugger and Profiler Window 68
Work with Breakpoints 72
View Variables 75
Work with Watches 75

Modify Preferences in Debugger il 76

Scripting Guide 11

Persistent Debugger Sessions i 76
Examples of Debugging and Profiling Scriptso 77
5 JSL Building Blocks
Learningthe Basics of JSL 83
JSLSyntax Rules 85
Value Separatorsouiiiii 85
Numbers 88
Names 88
CommEents 89
OPerators 90
Global and Local Variables 94
Local Namespacesoiuoiinuiin i 95
Named Namespaces i 95
Show Symbols, Clear Symbols, and Delete Symbols 95
Lock and Unlock Symbols 96
Rules for Name Resolution i 97
Resolving Unscoped Names i 97
Troubleshooting Variables and Column Names 102
Troubleshooting Variables and Keywords, 102
Alternatives for Gluing Expressions Together 104
Tterate 104
BOr 104
While ... 106
Summation 107
Product 108
Break and Continue 108
Conditional Functions 110
P 110
MatCh oo 112
Choose ... 113
Interpolate 114
10 115

12 Scripting Guide

Inquiry Functions 118

6 Types of Data

Working with Numbers, Strings, Dates, Currency,andMore 123
Numbers and Strings o 125
Unicode Charactersiouuui e e 125
Path Variables e 126
Create and Customize Path Variables i 129
Relative Paths 129
File Path Separators 129
Date-Time Functions and Formats e 130
Date-Time Values e 130
Program with Date-Time Functions 131
Date-Time Valuesin Data Tableso i 138
CUITENCY .. 142
Hexadecimal and BLOB Functions i, 143
Work with Character FUNCHONS e 145
L) 1= 145
MUNGET .. 146
Repeat ... 148
Regular EXpressions i 148
Pattern Matching 158
7 Data Structures
Working with Collectionsof Data 163
5T 165
Evaluate Listso 165
Assignments with Lists 166
Perform Operationsin Lists i 166
Find the Number of Itemsina Listooo it 166
SUDSCIIPLS . .o 166
Locate Itemsin a List ... 167
List Operators 168
Iterate through a List 172

Concatenate ListSt 172

Scripting Guide 13

MatTiCes 173
Construct Matrices 173
SUDSCIIPES ..o 174
Inquiry Functions 178
Comparisons, Range Checks, and Logical Operators 178
Numeric Operations 179
Concatenation 182
Transpose 182
Matricesand Data Tables 183
Matrices and Reports ... e 185
LocFunctions 186
Ranking and Sorting 187
Special Matrices 188
Inverse Matrices and Linear Systems il 193
Decompositions and Normalizations oL 196
Build Your Own Matrix Operatorsoooiiiiiiiiiiiiiiniaanan.. 201
Statistical Examples 201

ASSOCIAtiVE ATTAYS ...\ttt 206

8 Programming Methods

Complex Scripting Techniques and Additional Functions 219

Lists and EXpressions i 221
Stored eXpressions 221
MaACTOS . 231
Manipulating lists 231
Manipulating eXpressionsoiiiiii i 233

Advanced Scoping and Namespaceso, 237
Names Default To Hereo i 238
Scoped Names 240
Namespaces 244
Referencing Namespaces and Scopes ..., 249
Resolving Named Variable References ... 253
Best Practices for Advanced Scripting i 254

Advanced Programming Conceptsooiiiiiiiiiiiiii 255

Throwing and Catching Exceptions i .. 255

14

Scripting Guide

Functions ... 256
Recursion 258
Includes 258
Loading and Saving Text Files i 259
Scripting BY Groups ... 259
Organize Files into Projects 260
Encrypt and Decrypt Scriptso 260
Additional Numeric Operatorsiiiiiiiiii i, 263
Derivatives 263
Algebraic Manipulations 265
Maximize and Minimize 266
Scheduling Actions i 268
Functions that Communicate with Users oo i, 269
Writing to the Logo i 269
Send information to the User i 270

9 Data Tables

Working with Data Table Objects 275
Get Started o 277
Basic Data Table Scripting i 279
OpenaDataTable 279
Createa New DataTable e 281
ImportData ... 282
Set the Current Data Table e 290
Name a Data Table e e 290
SaveaDataTable 291
HideaDataTable e 291
Advanced Data Table Scripting i 296
COIUIMINS ettt ettt e e e e e e e e e e e e e 313
ROW S o 334
Accessing Data Values i 360
Add Metadata toaDataTableooiin e 362

Calculationsot 366

Scripting Guide 15

10 Scripting Platforms

Create, Repeat, and Modify Analyses ... 369
OVeIVIEW . 371
Scripting Analysis Platforms 372
Launching Platforms Interactively and Obtaining the Equivalent Script 373
Launch a Platform 373
Save Sript ... 373
Make Some Changesoiiiiii i 374
Syntax for Platform Scripting i 375
BY Group Reports 375
Saving BY Group Scripts ... 378
Sending Script Commands to a Live Analysis o 378
Conventions for Commands and Arguments i, 379
Sending Several Messagesoiuuiiiiii 380
Learning the Messages an Object Respondsto, 381
How to Interpret the Listing from Show Properties 381
Launching Platforms e 382
Specifying COIUMNS 382
Platform Action Command 384
Invisible Reports 384
Report Titles 385
General Messages for Platform Windows 385
Additional Notes 389
Supercategories in Categorical 389
Spline Fits 390
Fit Model Effects 390
Fit Model Send Command i 392
DOE Scripting 392
Scatterplot Scripting 394
Process Capability Scripting 394
Control Charts 395

11 Display Trees

Create and Use WINdOWS i e 401

Manipulating Displays 403

16 Scripting Guide

Introduction to Display Boxes i 403
Display Box Object References i, 408
Sending MeSsagest 411
How to Access Built-in Windows 420
Using the Pick Windows 421
Files in Directoryo 422
Constructing Display Trees i 423
Basics ... 423
Updating an Existing Display i 425
Interactive Display Elements 428
Modal and Non-Modal Windows o i i 433
Send Messages to Constructed Displayso i, 451
Build Your Own Displays from Scratch 452
Construct Display Boxes Containing Platforms 452
Construct a Custom Platform i i 455
Sheets ... 458
JOUINAlS .. 460
Picture Display Typeo 461
Modal WIndows 461
Constructing Modal Windows i 462
General-Purpose Modal Window i 462
Convert Deprecated Dialog to New Window 463
Comparison of Dialog and New Window 468
Constructing Dialogs and Column Dialogs 474
Scripting the Script Editor 477
Syntax Reference 478
12 Scripting Graphs
Create and Edit 2-Dimensional Plots ... 487
Adding Scripts to Graphs 489
Ordering Graphics Elements Using JSLo o oot 490
Adding alegend toa Grapho i 495
Creating New Graphs From Scratch o o .. 495

Making Changesto Graphs 496

Scripting Guide 17

Graphing Elements 498
Plotting Functions 498
Getting the Properties of a Graphics Frame 503
Adding aLegend 503

Drawing Lines, Arrows, Points, and Shapes o i 504
Lines .o 504
ATTOWS L 506
MarKers 507
Pies and ATCSt 509
Regular Shapes: Circles, Rectangles, and Ovals 510
Irregular Shapes: Polygons and Contours 513
Adding text ... 515
Colors o 516
TranSPareNCyoviitt ittt 518
Fill patternso 519
Line types ... 519
Drawing With Pixels 520

Interactive graphiso 521
Handle ... 521
MOUSETIAP ... 524
Drag FUNCtionso i 525
Troubleshooting 527

Creating Background Maps 527

13 Three-Dimensional Scenes

Scripting in Three Dimensions i 531

ADOUL JSL 3-D SCENES . . vttt e et ettt e 533

JSL 3-D Scene BOXeSttt 533

Setting the Viewing Space 536
Setting Up a Perspective Scene i 537
Setting up an OrthographicScene i i, 538

Changing the View 539
The Translate Command 539
The Rotate Command 539

The Look At Command i 541

18

Scripting Guide

The ArcBall 542
Graphics Primitives 543
Primitives Example 546
Controlling the Appearance of Primitives 547
Otherusesof Beginand End 553
Drawing Spheres, Cylinders, and Disks i i i 553
Drawing Text 555
Using the Matrix Stack 556
Lighting and Normals e 559
Creating Light Sources 559
Lighting Models 561
NOTmMAal VECIOTS . ..ottt e e 562
Shading Model 562
Material Properties i 563
AlphaBlending 564
Bog 564
Example ... 564
BEZIer CUTVES ...ttt et et et e e 566
Using the MOUSE 569
ATgUMENTS ... 571
14 Extending JMP
External Data Sources, Analytical Tools, and Automation 573
Real-Time Data Capture it e 575
Create a Datafeed Object i 575
Read in Real-Time Datat 576
Manage a Datafeed with Messages 577
Dynamic Link Libraries (DLLs) 581
Using Sockets in JSLo 584
Database ACCESS 587
Working with SAS ... 590
Make a SASDATA Stepo 590
Create SAS DATA Step Code for Formula Columns 590

SAS Variable Names 591

Scripting Guide 19

Get the Values of SAS Macro Variables i 591
Connect to a SAS Metadata Server i i 592
Preferences i 595
Sample Scripts ... 595
Working with MATLAB 596
Installing MATLAB 597
Working with R ... 598
Installing R 598
JMP to RINtEIfacesottt e e e e e e 600
R JSL Scriptable Object Interfaces i 600
Conversion Between JMP Data Types and R Data Types 600
Troubleshooting 603
Examples 604
Working with Excel 605
Parsing XML ... 606
OLE Automation i 608
Automating JMP through Visual Basic ool 608
Automating JMP through Visual C++ 616
15 Creating and Sharing Applications
Application Builder and Add-InBuilder 621
Application Builder 623
Example 623
Application Builder Terminology i i 625
Design an Application i 627
Application Builder Window 627
Red Triangle Options i 629
Create an Application 630
Edit or Run an Application 642
Options for Saving Applications i i 642
JMP Add-INS ..ot 646
Create an Add-In Using Add-InBuilder 646
Editan Add-In ... 650
Remove an Add-In from the Add-InsMenu o 650

Uninstall an Add-In 650

20 Scripting Guide

Share an Add-Ino 651
Register an Add-In Using JSL 652
Create an Add-InManually 652
16 Common Tasks
Getting Started with Sample Scripts 655
RunaScriptatStart Up 657
Convert Character Dates to Numeric Dates i, 657
Format Date/Time Values and Subset Datao 659
Create a Formula Column ... e 660
Extract Values from an Analysisintoa Report oL 661
Create an Interactive Program 664
A Compatibility Notes
Changes in Scripting from JMP 11 to JMP 12 669
Compatibility Issues 669
Deprecated JSL 671
B Glossary
Terms, Concepts, and Placeholders, 673
Index

Scripting GuUIde 677

Chapter 1

Learn about JMP

Documentation and Additional Resources

This chapter includes the following information:

* book conventions

e JMP documentation

e JMP Help

¢ additional resources, such as the following:

— other JMP documentation

— tutorials
— indexes

— Web resources

Figure 1.1 The JMP Help Home Window on Windows

p
[IMP 12.0.0 Help

Hide: Home Print

Conterts Indexl Seaich | Favorites

Options

@ Basic Analysiz

@ E zzential Graphing

@ Profilers

@ Dresign of Experiments Guide
0 Fitting Linear Models

0 Specialized Models

0 Multivariate Methods

0 Guality and Process Methods
0 Reliability and Survival Methods
O Conzumer Research

O Seripting Guide

Q J5L Syntax Fieference

Welcome to JMP 12
Using JMP

Basic Analysis

Essential Graphing

Profilers

Design of Experiments Guide
Fitting Linear Models
Specialized Models
Multivariate Methods

Quality and Process Methods
Reliability and Survival Methods
Consumer Research
Scripting Guide

JSL Syntax Reference

Contents

Formatting Conventions 23
JMP Documentation vv vttt e e e e e e e e 23
JMP Documentation Library 24
IMP Help ..o 28
Additional Resources for Learning JMP o o i 28
Tutorials 29
Sample Data Tables. 29
Learn about Statistical and JSL Termsttt et 29
Learn JMP Tipsand Tricks.......... ... i i i 30
TOOItIPS . o oo 30
JMP User Community i 30
JMPer Cable e 30
JMP Books by USers 31

The JMP Starter Windowo oo e ettt 31

Chapter 1

Scripting Guide

Learn about JMP 23
Formatting Conventions

Formatting Conventions

The following conventions help you relate written material to information that you see on

your screen.

* Sample data table names, column names, pathnames, filenames, file extensions, and
folders appear in Helvetica font.

® Code appears in Lucida Sans Typewriter font.

* Code output appears in Lucida Sans Typewriteritalic font and is indented farther than
the preceding code.

* Helvetica bold formatting indicates items that you select to complete a task:

buttons

check boxes

commands

list names that are selectable
menus

options

tab names

text boxes

® The following items appear in italics:

words or phrases that are important or have definitions specific to JMP
book titles
variables

script output

* Features that are for JMP Pro only are noted with the JMP Pro icon -;,""{0 . For an overview
of JMP Pro features, visit http://www.jmp.com/software/pro/.

Note: Special information and limitations appear within a Note.

Tip: Helpful information appears within a Tip.

JMP Documentation

JMP offers documentation in various formats, from print books and Portable Document
Format (PDF) to electronic books (e-books).

http://www.jmp.com/software/pro/

24 Learn about JMP Chapter 1
JMP Documentation Scripting Guide

* Open the PDF versions from the Help > Books menu or from the JMP online Help footers.

* All books are also combined into one PDF file, called JMP Documentation Library, for
convenient searching. Open the J[MP Documentation Library PDF file from the Help > Books
menu.

® e-books are available at online retailers. Visit http://www.jmp.com/support/downloads/
documentation.shtml for details.

* You can also purchase printed documentation on the SAS website:
http://support.sas.com/documentation/onlinedoc/jmp/index.html
JMP Documentation Library

The following table describes the purpose and content of each book in the JMP library.

Document Title Document Purpose Document Content

Discovering JMP If you are not familiar Introduces you to JMP and gets you
with JMP, start here. started creating and analyzing data.

Using JMP Learn about JMP data Covers general JMP concepts and
tables and how to features that span across all of JMP,
perform basic including importing data, modifying
operations. columns properties, sorting data, and

connecting to SAS.

Basic Analysis Perform basic analysis ~ Describes these Analyze menu platforms:

ing thi . o
using this document e Distribution

e FitYbyX
e Matched Pairs
e Tabulate

How to approximate sampling
distributions using bootstrapping and
modeling utilities are also included.

http://www.jmp.com/support/downloads/documentation.shtml
http://www.jmp.com/support/downloads/documentation.shtml
http://support.sas.com/documentation/onlinedoc/jmp/index.html

Chapter 1
Scripting Guide

Document Title

Essential Graphing

Profilers

Design of
Experiments Guide

Document Purpose

Find the ideal graph
for your data.

Learn how to use
interactive profiling
tools, which enable you
to view cross-sections
of any response
surface.

Learn how to design
experiments and
determine appropriate
sample sizes.

Learn about JMP
JMP Documentation

Document Content
Describes these Graph menu platforms:

® Graph Builder
* Opverlay Plot

e Scatterplot 3D
¢ Contour Plot

* DBubble Plot

e Parallel Plot

e Cell Plot

e Treemap

® Scatterplot Matrix
e Ternary Plot

* Chart

The book also covers how to create
background and custom maps.

Covers all profilers listed in the Graph
menu. Analyzing noise factors is
included along with running simulations
using random inputs.

Covers all topics in the DOE menu and
the Screening menu item in the Analyze >
Modeling menu.

25

26 Learn about JMP
JMP Documentation

Document Title

Fitting Linear Models

Specialized Models

Multivariate
Methods

Document Purpose

Learn about Fit Model
platform and many of
its personalities.

Learn about additional
modeling techniques.

Read about techniques
for analyzing several
variables
simultaneously.

Chapter 1
Scripting Guide

Document Content

Describes these personalities, all
available within the Analyze menu Fit
Model platform:

* Standard Least Squares

e Stepwise

* Generalized Regression

* Mixed Model

¢ MANOVA

¢ Loglinear Variance

¢ Nominal Logistic

* Ordinal Logistic

* Generalized Linear Model

Describes these Analyze > Modeling
menu platforms:

e Partition

e Neural

¢ Model Comparison
¢ Nonlinear

e Gaussian Process

e Time Series

* Response Screening

The Screening platform in the Analyze >
Modeling menu is described in Design of
Experiments Guide.

Describes these Analyze > Multivariate
Methods menu platforms:

e Multivariate

¢ (Cluster

® Principal Components
e Discriminant

¢ Partial Least Squares

Chapter 1
Scripting Guide

Document Title

Quality and Process
Methods

Reliability and
Survival Methods

Consumer Research

Document Purpose

Read about tools for
evaluating and
improving processes.

Learn to evaluate and
improve reliability in a
product or system and
analyze survival data
for people and
products.

Learn about methods
for studying consumer
preferences and using
that insight to create
better products and
services.

Learn about JMP 27
JMP Documentation

Document Content

Describes these Analyze > Quality and
Process menu platforms:

Control Chart Builder and individual
control charts

Measurement Systems Analysis
Variability / Attribute Gauge Charts
Process Capability

Pareto Plot

Diagram

Describes these Analyze > Reliability and
Survival menu platforms:

Life Distribution
Fit Life by X
Recurrence Analysis

Degradation and Destructive
Degradation

Reliability Forecast
Reliability Growth
Reliability Block Diagram
Survival

Fit Parametric Survival

Fit Proportional Hazards

Describes these Analyze > Consumer
Research menu platforms:

Categorical

Multiple Correspondence Analysis
Factor Analysis

Choice

Uplift

Item Analysis

28 Learn about JMP
Additional Resources for Learning JMP

Document Title

Scripting Guide

JSL Syntax Reference

Document Purpose

Learn about taking
advantage of the
powerful JMP
Scripting Language
(JSL).

Read about many JSL
functions on functions
and their arguments,
and messages that you
send to objects and
display boxes.

Chapter 1
Scripting Guide

Document Content

Covers a variety of topics, such as writing
and debugging scripts, manipulating
data tables, constructing display boxes,
and creating JMP applications.

Includes syntax, examples, and notes for
JSL commands.

Note: The Books menu also contains two reference cards that can be printed: The Menu Card
describes JMP menus, and the Quick Reference describes JMP keyboard shortcuts.

JMP Help

JMP Help is an abbreviated version of the documentation library that provides targeted
information. You can open JMP Help in several ways:

On Windows, press the F1 key to open the Help system window.

Get help on a specific part of a data table or report window. Select the Help tool 2 from
the Tools menu and then click anywhere in a data table or report window to see the Help

for that area.

Within a JMP window, click the Help button.

Search and view JMP Help on Windows using the Help > Help Contents, Search Help, and
Help Index options. On Mac, select Help > JMP Help.

Search the Help at http://jmp.com/support/help/ (English only).

Additional Resources for Learning JMP

In addition to JMP documentation and JMP Help, you can also learn about JMP using the
following resources:

Tutorials (see “Tutorials” on page 29)

Sample data (see “Sample Data Tables” on page 29)

Indexes (see “Learn about Statistical and JSL Terms” on page 29)

http://jmp.com/support/help/

Chapter 1 Learn about JMP 29
Scripting Guide Additional Resources for Learning JMP

e Tip of the Day (see “Learn JMP Tips and Tricks” on page 30)

* Web resources (see “JMP User Community” on page 30)

® JMPer Cable technical publication (see “JMPer Cable” on page 30)
* Books about JMP (see “JMP Books by Users” on page 31)

e JMP Starter (see “The JMP Starter Window” on page 31)

Tutorials

You can access JMP tutorials by selecting Help > Tutorials. The first item on the Tutorials menu
is Tutorials Directory. This opens a new window with all the tutorials grouped by category.

If you are not familiar with JMP, then start with the Beginners Tutorial. It steps you through the
JMP interface and explains the basics of using JMP.

The rest of the tutorials help you with specific aspects of JMP, such as creating a pie chart,
using Graph Builder, and so on.

Sample Data Tables

All of the examples in the JMP documentation suite use sample data. Select Help > Sample
Data Library to do the following actions to open the sample data directory.

To view an alphabetized list of sample data tables or view sample data within categories,
select Help > Sample Data.

Sample data tables are installed in the following directory:

On Windows: C:\Program Files\SAS\JMP\<version_number>\Samples\Data
On Macintosh: \Library\Application Support\JMP\<version_number>\Samples\Data

In JMP Pro, sample data is installed in the JMPPRO (rather than JMP) directory. In JMP
Shrinkwrap, sample data is installed in the JMPSW directory.

Learn about Statistical and JSL Terms

The Help menu contains the following indexes:
Statistics Index Provides definitions of statistical terms.

Scripting Index Lets you search for information about JSL functions, objects, and display
boxes. You can also edit and run sample scripts from the Scripting Index.

30 Learn about JMP Chapter 1
Additional Resources for Learning JMP Scripting Guide

Learn JMP Tips and Tricks
When you first start JMP, you see the Tip of the Day window. This window provides tips for
using JMP.

To turn off the Tip of the Day, clear the Show tips at startup check box. To view it again, select

Help > Tip of the Day. Or, you can turn it off using the Preferences window. See the Using JMP
book for details.

Tooltips
JMP provides descriptive tooltips when you place your cursor over items, such as the
following:
¢ Menu or toolbar options
¢ Labels in graphs

* Text results in the report window (move your cursor in a circle to reveal)
¢ Files or windows in the Home Window

* Code in the Script Editor

Tip: You can hide tooltips in the JMP Preferences. Select File > Preferences > General (or JMP
> Preferences > General on Macintosh) and then deselect Show menu tips.

JMP User Community

The JMP User Community provides a range of options to help you learn more about JMP and
connect with other JMP users. The learning library of one-page guides, tutorials, and demos is

a good place to start. And you can continue your education by registering for a variety of JMP
training courses.

Other resources include a discussion forum, sample data and script file exchange, webcasts,
and social networking groups.

To access JMP resources on the website, select Help > JMP User Community.

JMPer Cable

The JMPer Cable is a yearly technical publication targeted to users of JMP. The JMPer Cable is
available on the JMP website:

http://www.jmp.com/about/newsletters/jmpercable/

http://www.jmp.com/about/newsletters/jmpercable/

Chapter 1 Learn about JMP 31
Scripting Guide Additional Resources for Learning JMP

JMP Books by Users

Additional books about using JMP that are written by JMP users are available on the JMP
website:

http://www.jmp.com/support/books.shtml

The JMP Starter Window

The JMP Starter window is a good place to begin if you are not familiar with JMP or data
analysis. Options are categorized and described, and you launch them by clicking a button.
The JMP Starter window covers many of the options found in the Analyze, Graph, Tables, and
File menus.

* To open the JMP Starter window, select View (Window on the Macintosh) > JMP Starter.

e To display the JMP Starter automatically when you open JMP on Windows, select File >
Preferences > General, and then select JMP Starter from the Initial JMP Window list. On
Macintosh, select JMP > Preferences > Initial JMP Starter Window.

http://www.jmp.com/support/books.shtml

32 Learn about JMP Chapter 1
Additional Resources for Learning JMP Scripting Guide

Chapter 2

Introduction
Welcome to the JMP Scripting Language

The JMP Scripting Language, or JSL, lets you write scripts to recreate results in JMP. Power
users often develop scripts to extend JMP’s functionality and automate a regularly scheduled

analysis in production settings. If you do not want to learn JSL, JMP can write the scripts for
you.

JSL is used to perform many actions:
e implements column formulas

* launches platforms

¢ interactively modifies platforms

® creates graphics

Contents

What JSL Can Do fOr YOU. . ..o vv ittt e e et et ettt et ettt e 35
Help with Learning JSL oo 35
The Scripting Guide 35
The Scripting Index. 36
LetJMP Teach YOu JSL . ..ot e e et et e et et ettt e e e 37
Terminologyt 38

Basic JSL Syntax.o 41

Chapter 2 Introduction 35
Scripting Guide What JSL Can Do for You

What JSL Can Do for You

JMP can automatically save scripts to reproduce any data table or analysis in its current state.
You can pause any time in your analysis to save a script to a script window (or script editor), in
a data table, or in an analysis report. You can then modify the script as needed for future
projects. When you are finished with your work, you can then save a script to reproduce your
final results.

Here are some examples where JSL scripts can be helpful:

¢ Suppose you need to describe an analysis process in detail, from beginning to end. An
example is to create an audit trail for a governing agency, or for peers reviewing your
journal article.

* Suppose you have a set of analysis steps that should be followed routinely by your lab
technicians.

* Suppose you fit the same model to new data every day, and the steps are always the same.

You can use JMP interactively as usual, save scripts to reproduce your work, and in the future
run those scripts to reproduce your results.

There are a few things that JSL is not designed to do:

® JMP cannot record scripts while you are working. Though script-recording is a useful
feature in some other scripting languages, it is less important for software like JMP, where
the results are what matter. You cannot use script-recording to observe how a sequence of
interactive steps is performed.

¢ JSLis not an alternative command-line interface for using the program.

Help with Learning JSL

There are several places within JMP to get help with writing or understanding a JSL script.

The Scripting Guide

The Scripting Guide book begins with basic information (such as terminology and syntax) for
JMP users who are not familiar with the scripting language. The book progresses to more
advanced information.

Chapters 2 through 4 Includes information about learning JSL, producing
basic scripts, and introduces you to the JSL scripting
environment.

36 Introduction Chapter 2
Help with Learning JSL Scripting Guide

Chapters 5 through 8 Introduces the building blocks of the language;
working with basic data types, such as numbers and
strings; writings lists, matrices, and associate arrays;

namespaces; and the fundamentals of programming in
JSL.

Chapters 9 through 13 Covers using JSL with objects in JMP, such as data
tables, platforms, windows, and graphics.

Chapter 14 Describes how to write scripts that work with external
programs, such as SAS, R, and Excel.

Chapter 15 Introduces creating JMP applications in Application
Builder, a drag-and-drop environment for visually
designing windows with buttons, lists, graphs, and
other objects. The chapter also describes how to use

Add-In Builder to compile scripts into one easily shared
file.

Chapter 16 Contains a collection of recipes, or script examples, that
you can copy and modify for your own use.

Appendices A and B Provides information about compatibility issues with
the previous version of JMP and defines JSL concepts
and terminology.

The Scripting Index

The Scripting Index on the Help menu provides a brief description and the syntax for JSL
functions, objects, and display boxes. Each entry includes an example that you can run and
modify to test your own code. And an embedded log window lets you see messages as
examples are run.

The Scripting Index window includes the following buttons:

@| Click the Search button to begin the search.

@| Click the Clear button to clear the search text box to begin a new search.
E| Click the Settings button to set search types and parameters.
Several types of searches are available from the Settings button:

Partial Match returns all entries that contain at least a part of the “string” for example, a
search for “leas” will return messages such as “Release Zoom” and “Partial Least Squares”.
This option is the default search type.

Chapter 2 Introduction 37
Scripting Guide Help with Learning JSL

Exact Phrase returns entries that contain the exact string, for example, a search for “text” will
return all elements that contain the “text” string.

All Terms returns entries that contain either or both strings, for example, a search for “t test”
will return all elements that contain either or both of the search strings, “Pat Test”,
“Shortest Edit Script” and “Paired t test”.

Any Term returns entries that contain either of the search strings, for example, a search for
“text string” returns “Context Box”, “Drag Text”, and “Is String”.

Regular Expression allows you to use the wildcard (*) and period (.) in the search box, for
example, searching for “get *name” returns messages such as “Get Name Info” and “Get
Namespace”. Searching for “get.*name” returns items such as “Get Color Theme Names”,
“Get Name Info”, and “Get Effect Names”.

Several search parameters are also available from the Settings button:

All Fields specifies that JMP search all fields in the index for the search string.
Titles Only specifies that JMP search only index titles for the search string.
Examples Only specifies that JMP search only index examples for the search string.
Without Examples specifies that JMP exclude examples from the search.

Click an item’s Topic Help button to read more about the item in JMP’s online Help system.

Let JMP Teach You JSL

The best JSL writer is JMP. You can work in JMP interactively and then save the results as a
script to reuse later. With simple modifications, your script can serve as a template for
speeding up routine tasks.

Because JSL is a very flexible language, you can reach your goals in many different ways. Here
is an example. Typically, the script that JMP saves for you specifies every detail of your
analysis, even if most of the details happen automatically by default. Does that mean that the
scripts that you write have to be just as complete and detailed? Not at all. You usually need to
specify only those details that you would select in the graphical user interface (GUI). For
example, if you open Big Class.jmp from the sample data folder and want to launch
Distribution for height, weight, and sex, the following script is all that is necessary:

Distribution(Y(:height, :weight, :sex));

Suppose you run the Distribution platform in the GUI and then select Script > Save Script to
Script Window from the red triangle menu for the report. The following script appears:

Distribution(
Nominal Distribution(Column(:sex)),
Continuous Distribution(Column(:height)),
Continuous Distribution(Column(:weight))

38

Introduction Chapter 2
Terminology Scripting Guide

);
Both scripts give the same result.

Feel free to experiment with JSL. If you think something ought to be possible, it probably is.
Give it a try, and see what happens.

Terminology

Before you begin creating scripts, you should become familiar with basic JSL terms used
throughout this book.

Operators and Functions

An operator is one- or two-character symbol (such as + or =) for common arithmetic actions.
A function is a command that might contain additional information for the function to use.

Certain JSL functions work the same as operators but provide access to more complex actions.
For example, the following two lines are equivalent:

2 + 3;
Add(2, 3);

The first line uses the + operator. The second line uses the Add() function equivalent.

Although all JSL operators have function equivalents, not all functions have operator
equivalents. For example, Sqrt(a) can be represented only by the Sqrt() function.

Note: In previous versions of JMP and its documentation, the terms operators and functions
were used interchangeably. Now each term has a specific meaning.

Objects and Messages

An object is a dynamic entity in JMP, such as a data table, a data column, a platform results
window, a graph, and so on. Most objects can receive messages that instruct the object to
perform some action on itself.

A message is a JSL expression that is directed to an object. That object knows how to evaluate
the message. In the following example, dt is the data table object. << indicates that a message
follows. In the following example, the message tells JMP to create a summary table with the
specified variables.

dt << Summary(Group(:age), Mean(:height))

In this expression, dt is the name of a variable that contains a reference to a data table. You
could use any name for this variable. This book commonly uses dt to represent data table

Chapter 2 Introduction 39
Scripting Guide Terminology

references. Here are some of the more common names used in this book to represent
references to certain objects:

Abbreviation Object

dt data table

col column in a data table

colname the name of a column in a data table
obj an object

db display box

These variables are not pre-assigned references. Each one must be assigned prior to its use. In
the following example, the global variable named A is assigned the value “Hello, World”.
When the Show(A) command is processed, the result is the value of A.

A = "Hello, World";
Show(A);
A = "Hello, World";

Arguments and Parameters

An arqument is additional information that you can provide to a function or message. For
example, in Root (25), 25 is an argument to the Root () function. Root() acts on the argument
that you provide and returns the result: 5.

Programming and scripting books commonly talk about parameters as well. A parameter is a
description of the argument that a function accepts. For example, the general specification for
Root () might be Root(number), where number is the parameter.

Parameter and argument express two perspectives of the same concept: information that a
function needs.

For simplicity in this book, we use the word argument in both cases.

A named arqument is an optional argument that you select from a predetermined set and
explicitly define. For example, title("My Line Graph") in the Graph Box() function is a
named argument because the title is explicitly defined as such.

Graph Box(title("My Line Graph™),
Frame Size(300, 500),
Marker(Marker State(3), [11 44 77], [75 25 50]);
Pen Color("Blue");
Line([10 30 70], [88 22 44]));

40

Introduction Chapter 2
Terminology Scripting Guide

Note that the Frame Size() arguments 300 and 500 are not named. The position of these
arguments implies meaning; the first argument is always the width, the second argument is
always the height.

Optional Arguments

Functions and messages require certain arguments, and other arguments are optional. You
can include them, but you do not have to. In specifications, optional arguments are enclosed in
angle brackets. For example:

Root(x, <n>)
The x argument is required. The nargument is optional.

Optional arguments often have a default value. For example, for Root (), the default value of n
is 2:

Code Output Explanation

Root(25) 5 Returns the square root of 25.

Root(25, 2) 5 Returns the square root of 25.

Root(25, 3) 2.92401773821287 Returns the cube root of 25.
Expressions

An expression is a section of JSL code that accomplishes a task. JSL expressions hold data,
manipulate data, and send commands to objects. For example, the following expression opens
the Big Class.jmp sample data table and creates a Bivariate graph:

Open("$SAMPLE_DATA/Big Class.JMP");
Bivariate(Y(:weight), X(:height));
Or and the Vertical Bar Symbol

A single vertical bar (|) represents a logical OR. For brevity, | represents the word or when
referring to alternative values.

For example, a pathname can be either absolute or relative. When you see an argument such
as absolute|relative, this means that you enter either one of the following two options:

* absolute indicates an absolute pathname.

¢ relativeindicates a relative pathname.

More than two options can also be strung together with a vertical bar in this way.

Chapter 2 Introduction 41
Scripting Guide Basic JSL Syntax

Script Formatting

Whitespace characters (such as spaces, tabs, and newlines) and capitalization are ignored in
JSL. This means that the following two expressions are equivalent:

// Expression 1
sum=0; for(i=1,1i<=10,i++,sum+=1i;show(i,sum))

// Expression 2

Sum = 0;
For(i =1, i <= 10, i++,
Sum += 1;

Show(i, Sum);
)

You can format your script in any way that you like. However, the script editor can also format
your script for you. This book uses the script editor’s default formatting for capitalization,
spaces, returns, tabs, and so on. See “Using the Script Editor” on page 55 in the “Scripting
Tools” chapter for details about using the script editor.

Note: The only white space exception is two-character operators (such as <= or ++). The
operators cannot be separated by a space.

Basic JSL Syntax

A JSL script is a series of expressions. Each expression is a section of JSL code that
accomplishes a task. JSL expressions hold data, manipulate data, and send commands to
objects.

Many expressions are nested message names, with message contents enclosed in parentheses:
Message Name (argument 1, argument 2, ...)

The meaning of JSL names depends on the context. The same name might mean one thing in a
data table context and something entirely different in a function context. See “Rules for Name
Resolution” on page 97 in the “JSL Building Blocks” chapter for more information.

Almost anything that follows certain punctuation rules, such as matching parentheses, is a
valid JSL expression. For example:

New Window("A Window",

<< modal,
Text box("Hello, World"),
Text Box("----- ",

ButtonBox("OK")
s

Introduction Chapter 2
Basic JSL Syntax Scripting Guide

Notice the following:

Names can have embedded spaces. See “Names” on page 88 in the “JSL Building Blocks”
chapter for more information.

Message contents are enclosed in parentheses, which must be balanced. See “Parentheses”
on page 85 in the “JSL Building Blocks” chapter.

Items are separated by commas. See “Commas” on page 85 in the “JSL Building Blocks”
chapter.

JSL is not case sensitive; you can type “text box();” or “Text Box()”.

Messages are commonly nested inside other messages.

Chapter 3

Getting Started
Let JMP Write Your Scripts

You often have to produce the same reports for the same data on a regular basis. This chapter
shows you how to let JMP write scripts for common tasks like importing text data, opening
Excel files, and producing reports. A final tutorial shows you how to put it all together into a
single script to open an Excel file and produce three reports automatically.

This book is written for users who are familiar with JMP but might not be familiar with JSL.
For information about performing common tasks, refer to the Using JMP book. The Discovering
JMP book is also a good resource for learning basic concepts and understanding the JMP
workflow.

Contents

Capturing a Script for an Analysis Report o i i 45
Capturing a Script foraDataTable i 46
Capturing a Script toImporta File.o o 47

Gluing Scripts Together 48

Chapter 3 Getting Started 45
Scripting Guide Capturing a Script for an Analysis Report

Capturing a Script for an Analysis Report

The basic steps for capturing a script to reproduce an analysis are as follows:
1. Launch a platform, such as Distribution.
2. Make any changes or additions that you need. For example, add tests and other graphs.

3. Capture the script to recreate your results.

You can save the script in the data table, so that if you send the data table to others, they can
run your script and duplicate your reports.

Example

Follow these steps to produce a distribution report, capture the script to reproduce it, and save
it to the data table.

Note: The data tables that you use in examples are located in JMP’s Samples/Data folder.

1. Select Help > Sample Data Library and open the Companies.jmp.

2. Select Analyze > Distribution to open the Distribution launch window.

3. Select Profits ($M) in the Select Columns box and click the Y, Columns button.
4. Click OK.

The Distribution report window appears.

5. From the red triangle menu next to Distributions, select Stack to make your report
horizontal.

6. From the red triangle menu next to Profits ($M), deselect Outlier Box Plot to turn the
option off.

7. From the red triangle menu next to Profits ($M), select Test Mean.
The Test Mean window appears.

8. Type 500 in the Specify Hypothesized Mean box.

9. Click OK.
The test for the mean is added to the report window.

Now you have your customized report.

46 Getting Started Chapter 3
Capturing a Script for a Data Table Scripting Guide
Figure 3.1 Customized Distribution Report

4~ Distributions

4~ Profits ($M)

4 Quantiles 4= Summary Statistics <~/ Test Mean
1000% maximum 3758 Mean 40931875 Hypothesized Value 500
99.5% 3758 Std Dev 780.28708 Actual Estimate 409.319
97.5% 3758 Std Err Mean 13793657 DF Eil
90.0% 109614 Upper95% Mean 69064224 Std Dev 780.287
75.0% quartile 730525 Lower 95% Mean 127.99526 t Test
7 50.0% median 2017 N 32 Test Statistic -0.6574
-1000 0 1000 2000 3000 4000 25.0% quartile 42.975 Prob > |t| 05158
10.0% -33282 Prob > t 07421
25% -680.4 Prob < t 0.2579
0.5% -680.4 T
0.0% minimum -680.4 (hY

1] 200 400 600 800 1000

10. From the red triangle menu next to Distributions, select Script > Save Script to Data Table.

Your data table now has a script named Distribution saved to it. From the red triangle
menu for the script, select Edit to see the script.

Figure 3.2 Distribution Script Saved to the Data Table

MNotes Selected Data on thif| =
= Distribution

> Companies Py Name: |Distributic>n | [oK |
Script: Distribution(-

Stack(1), [R]
Continuous Distribution(Debug Script|
Column(:Name("Profits (SM)")),
Horizontal Layout(1), Save |
Vertical(@),
Outlier Box Plot(@), @'

Test Mean(500)

11. To run the script and reproduce your final report exactly, select Run Script from the red
triangle menu for the script.

Capturing a Script for a Data Table

The basic steps for capturing a script to reproduce a data table are as follows:

1. Open the data table.

2. Make any changes that you need. For example, add a script, correct values, add new
columns.

Chapter 3 Getting Started 47
Scripting Guide Capturing a Script to Import a File

3. Capture the script to recreate your data table.

Example

Use the data table from the previous example, where you saved a script to it.

1. In the data table, select the red triangle next to the data table’s name.
2. Select Copy Table Script.

Figure 3.3 Copy the Table Script
File Edit Tables Rows Cols DOE

HREH ¥ a8l
@mpanies qu hd

Tables "
MNew Table Variable

MNew Script

Suppress Formula Eval
Lock Data Table

Compress file when saved

Copy Table Script L\\)

!

;

}

|
Disable Undo !

]

L
Rerun Formulas]
3. Open a script window by selecting File > New > Script.
4. Select Edit > Paste.

You now have a script that duplicates your data table. You can save this script and run it at
any time to recreate your data table, with all its scripts attached.

Capturing a Script to Import a File

To capture a script that imports a file, you open the file in JMP. JMP automatically records the
steps that occurred when you opened the file.

Import a Text File
1. Select File > Open.
The Open Data File window appears.
2. Select Text Files from the list next to File name.
3. In the Open as section, select Data, using best guess.

JMP formats the data based on tabs, commas, white space, and other characters in the text
file.

48

Getting Started Chapter 3
Gluing Scripts Together Scripting Guide

4. Browse to select the file, and then select Open.

The file is opened as a data table. The data table includes a script named Source. This JSL
script imports your text file with the text import rules that you used.

5. From the red triangle menu for Source, select Edit.

You can copy this script, paste it into a new script window, and save it. Then you can run
this script later to reimport the text file.

Tip: The import script is an Open() expression that specifies the text file and the import
options to correctly import the file into JMP. The first part of this expression is the pathname to
the specific file that you imported. If you save this script and want to run it a different place,
you might need to edit the pathname so that it points to the text file. Pathnames are discussed
in greater detail in “Path Variables” on page 126 in the “Types of Data” chapter.

Gluing Scripts Together

Suppose new data is saved out to an Excel file once a week, and you need to produce the same
reports every week. You could open the file and perform the same steps every week. However,
creating a script that imports the new Excel file into JMP and runs all analyses automatically is
more efficient. The following example shows you how to set up your script and run it each
week.

Import the Microsoft Excel File

1. Open a new script window (File > New > Script).

2. In your script window, enter the Open() expression to open the Solubil.xls sample import
data file. The file is located in JMP’s Samples/Import Data folder.

Open("$SAMPLE_IMPORT_DATA/Solubil.x1s");

Be sure to put the semicolon at the end of this expression, because you will add more
expressions. The semicolon glues expressions together.

3. Run your script to import the Excel file by selecting Edit > Run Script.
The Excel file opens as a data table.

Note: You can specify an absolute or relative path to the file rather than using a path variable.
For relative links, the script and file being opened must be in the same relative location each
time you run the script. With absolute links, make sure that other users running the script
have access to the file’s location. See “Path Variables” on page 126 in the “Types of Data”
chapter for more information about using pathnames.

Chapter 3

Getting Started 49

Scripting Guide Gluing Scripts Together

Run Your Reports and Capture Their Scripts

You have three reports to produce: a distribution report, a 3D scatterplot, and a multivariate
report. Perform each one using the GUI, and add its script to the script window.

1.

2
3.
4

10.
11.

12.
13.
14.
15.

With your new data table open, select Analyze > Distribution.
Select all the columns except Labels and click Y, Columns.
Click OK.

Hold down CTRL and select Histogram Options > Show Counts from the red triangle
menu for eth.

Bar counts are added to all six histograms.

In the Distribution window;, select Script > Copy Script from the red triangle menu next to
Distributions.

Place your cursor in the script window a line or two after your Open() expression and
select Edit > Paste.

Type a semicolon after the last close parenthesis.

Select Graph > Scatterplot 3D.

Select all the columns except Labels and click Y, Columns.
Click OK.

Copy and paste the script for Scatterplot 3D into the script window just like you did for
your Distribution report. Be sure to add the semicolon at the end.

Select Analyze > Multivariate Methods > Multivariate.
Select all the columns except Labels and click Y, Columns.
Click OK.

Copy and paste the script for Multivariate into the script window just like you did for
Distributions and Scatterplot 3D.

50 Getting Started Chapter 3
Gluing Scripts Together Scripting Guide

Figure 3.4 The Completed Script
Open ("$SAMPLE_IMPORT_DATA/Solubil.xls™);
Distribution(
Continuous Distribution(Column(:eth), Show Counts(1)
Continuous Distribution(Column(:oct), Show Counts(1)
Continuous Distribution(Column(:ccl4), Show Counts(1
Continuous Distribution(Column(:c6c6), Show Counts(1
Continuous Distribution(Column(:hex), Show Counts(1))
Continuous Distribution(Column(:chcl3), Show Counts(1)),
)3
Scatterplot 3D(
¥(:eth, :oct, :ccl4, :c6cB, thex, :chcl3),
Frame3D(Set Grab Handles(@), Set Rotation(-54, @, 38))
)3
Multivariate(
¥(teth, :oct, :ccl4, :c6ec6, thex, :chcl3),
Estimation Method("Row-wise™),
Matrix Format(“Square")},
Scatterplot Matrix(
Density Ellipses(1),
Shaded Ellipses(@),
Ellipse Color(3)

Save the Script

You now have a script that reproduces all of the steps that you performed manually. Save the
script, and close your data table and all its report windows.

1. In the script window that contains your script, select File > Save or File > Save As.
2. Specify a filename (for example, Weekly Report).
3. Click Save.

Run the Script

As long as your weekly updated Excel file is saved in the same place and contains the same
columns, you can run your script and automatically produce all your reports.

1. Open the script that you saved.
2. Select Edit > Run Script.

Your Excel file is opened in JMP, and all three of your reports appear.
You can send this script to others. As long as they have access to the same Excel file in the
same location, they can also run the script in JMP and see your reports.
Advanced Note: Auto-Submit

If you want a particular script to always be executed instead of opened into the script window,
put the following command on the first line of the script:

/7!

If this is not the very first line, with nothing else on the same line, this command does nothing.

Chapter 3 Getting Started
Scripting Guide Gluing Scripts Together

You can override this command when opening the file.
1. Select File > Open.
2. Hold the CTRL key while you select the JSL file and click Open.

The script opens into a script window instead of being executed.

The command is also ignored when you right-click the file in the Home Window and select
Edit Script.

51

52 Getting Started Chapter 3
Gluing Scripts Together Scripting Guide

Chapter 4

Scripting Tools

Using the Script Editor, Log Window, Debugger and Profiler

JMP provides several programming tools for script writers. The script editor supports syntax
coloring, autocompletes functions as you type, highlights matching braces, allows for code

folding, and has additional features to help you develop scripts more quickly. Error messages
and output are shown in the log window, which can be displayed inside the script editor. The
JMP Scripting Language (JSL) Debugger and Profiler can help you troubleshoot your scripts.

Figure 4.1 Script Editor with Embedded Log and the Debugger

] interactive - JMP Pra

=

[l S|

File Edit Tables DOE Analyze Graph Tools Add-Ins |View | Window Help
EHE | ¥B@E A [notble) ~ |
1 |/* This script was written to demcnstrate JSL debugging techaiques.
2 See the Scripting Guide PDF file for an example. #/
3
4 Names Default To Here(1);:
5
6 New Window("I
7 <<tedal,
8 Text Box(for x and vi"),
9 H List Box(
10 Text Box("x: "),
11 numX = Number Edit Bex(2)
. 12),
B+, JSL Debugger - IMP Pro [2] s Yoot Pt
Fil: Edit Tables Rows Cols DOE Arahme Graph Tooks View 1s Text Box{"y: "),
Hasdl e B 15 nun¥ = Number Edit Bex(5) -
. v
] [(m]o] @@ @ Time Un

interactive.js|

4 @lames Default Te Here(1):

¥i

X = numX<<Get;
¥ = numY<<Get:

5
g New Window("kssign X and ¥", Show(x, ¥):
7 <<Madal,
=) Text Box ("Enter values for x and y:"), Print("Finished!"):
£} H List Box(
10 Text Box ("x: "),
11 numE = HNumber Edit Box (2) x 3:
12 1, ¥y =7:
13 H List Box|("Finished!" -
14 Text Box ("y: "), s
15 num¥ = Number Edit Box (5) 2 0
16]
170
is
19 ¥ = numE<<Get;
20 ¥ = num¥<<Get:
21 .
29 e
1 3
Glabals | Lacals I Watchl Namespaces Call Stack Igreakpmml Optmml Lngl
Variable Value T Location

n b

interactive sl Line 4

Contents

Using the Script Editor. 55
Runa Script 55
Stop a Script. ..o 56
Edita Script 56
Color Codingt 56
Auto Complete Functions i 56
TOOItPS . o oo 57
Splita WINdowo 58
Match Parentheses, Brackets, and Bracest 59
Select a Rectangular Block of Text i i 59
Select Fragmented Text. 60
Dragand Drop Text 60
Findand Replace. 61
Automatic Formatting 61
Add Code Folding Markers. 61
Advanced OptionS 63
Set Preferences for the Script Editor. 63

Working withthe Log. 66
Show the Log in the Script Window. e 67
Savethe Log. ... o 67

Debug or Profile Scripts. 68
Debugger and Profiler Window 68
Work with Breakpoints. o 72
View Variables........... . 75
Work with Watches. oo 75
Modify Preferencesin Debugger il 76
Persistent Debugger Sessions 76

Examples of Debugging and Profiling Scripts, 77

Chapter 4 Scripting Tools 55
Scripting Guide Using the Script Editor

Using the Script Editor

The script editor provides a friendly environment for writing and reading JSL scripts.
Figure 4.2 shows basic features such as syntax coloring, inline commenting, and automatic
formatting. Other common programming options are described later in this section.

Script editor features are also available in the log window and anywhere else that you can edit
or write a script (for example, in the Scripting Index or Application Builder).

Figure 4.2 The Script Editor
] demoKemel - IMP Pro == .

File Edit Tables DOE Analyze Graph Tools Add-Ins View Window Help
GSaE | daBE AR
/ K

1 Buildup
napired by page 21 of Foster, Stine, and Waterman, Basic Business Statistics
HNames Default To Here(1);

data = [5, 7, 8, 9.5, 10, 10.5, 11, 11.2, 12, 13, 15, 17, 18];
sigma = 1.5;

t = New Window("Kernel Addition",
Graph(

FrameSize(400, 300),

X Scale{ 0, 20),

Y Scale{ 0, 2.5),

Doukle Buffer,

n = N Row(data);

For(i =1, i <= n, i++,
xx = datal[i, 1]1;
¥ Function{ Normal Density((x - xx) / sigma) / sigma, x)

)i

Pen Color(3); // the sum is in red

m

¥ Function(
Summation{ i = 1, n, Normal Density((x - data[i, 1]1) / sigma) / sigma),
x

)i

Pen Color({ 0):

Handle(sigma, .5, sigma = x)

Run a Script

To run an entire script, select Edit > Run Script.
To run specific lines in a script, select those lines and then select Edit > Run Script.

To run specific lines that are not adjacent, hold down the Control key, select the lines, and then
select Edit > Run Script.

On Windows, you can also click in a line or select several lines and press ENTER on your
numeric keypad.

Run the script automatically when you open it by using one of the following methods:

e Type //! on the first line.
e Include Run JSL(1) in the Open() statement:

56 Scripting Tools Chapter 4
Using the Script Editor Scripting Guide

Open("$SAMPLE_SCRIPTS/scoping.js1", Run JSLC 1));

Stop a Script

To stop the script, press ESC on Windows (or COMMAND-PERIOD on Macintosh). You can
also select Edit > Stop Script. On Macintosh, Edit > Stop Script is available only when the
script is running.

Edit a Script

To edit a script on Windows, press the Insert key. You can then type directly over (overwrite)
any existing JSL code. Note that this feature is not available on Macintosh.

Color Coding

JMP applies the following colors in the script window:

e Dblack for text, identifiers (JSL functions), braces, and user macros

¢ white for the script editor background

e gray for the Debugger background, disabled background, and guides

* green for comments

* purple for strings

¢ teal blue for numbers

e dark blue for operator symbols, the first keyword, and JSL objects

* medium blue for operator names, second and third keywords, and macros

* red for unknown objects

Customize colors in the preferences. See “Set Preferences for the Script Editor” on page 63.

Auto Complete Functions

If you do not remember the exact name of a function, use auto completion to see a list of
functions that match what you have typed so far. Type part of the name, and then press
CTRL-SPACE on Windows (OPTION-ESC on Macintosh).

Suppose that you want to clear your JSL variables, but do not remember the command. You
can type clear and then press CTRL-SPACE, to see a list of possible clear commands. Select
the command that you want to insert.

Chapter 4 Scripting Tools 57
Scripting Guide Using the Script Editor

Figure 4.3 Autocomplete Example

clearl

Clear Globals
Clear Log
Clear Sywhbols

Tooltips

If you are using a function and do not remember the syntax or need more information about
it, place the cursor over it to see a brief explanation. This works only with JSL function names,
not platform commands, messages, or user-created functions. JSL function names are colored
blue in the script editor.

The tooltip shows the syntax, arguments, and a brief explanation of the function (Figure 4.4).
The tip also appears in the script editor window status bar.

Figure 4.4 Tooltip for a JSL Function

MNormal Density{):

[y = Mormal Densitye q, <mu=0z,
<sigma=1z

Feturns the density at q of a Normal
distribution with mean mu and standard
deviation sigma.

After running a script, you can also place the cursor over variable names to see their current
value. To turn off variable tooltips, deselect Preferences > Script Editor > Show Variable Value
Tips.

To turn off function tooltips, deselect Preferences > Script Editor > Show Operator Tips.

Example of a Tooltip for a JSL Variable

1. Enter and run the following line in a script window:
my_variable = 8;
2. Hover over the variable name after you run the line.
A tooltip shows the name of the variable and its value: 8.
3. Enter and run the following line:
my_variable = "eight";
4. Hover over the variable name after you run the line.

A tooltip shows the name of the variable and its value: “eight”.

58 Scripting Tools Chapter 4
Using the Script Editor Scripting Guide

Split a Window

You can split the Script Editor window into two vertical or horizontal windows. This feature
allows you to independently scroll through your code in two different places and edit the
contents in both. When you make a change in one window, the change is immediately
reflected in the other window.

* To split an open Script Editor window, right-click in the window and select Split >
Horizontal or Vertical.

* To revert back to a single window, right-click and select Remove Split.

Figure 4.5 Example of Splitting a Window Horizontally

ffflag used to turn off point: = =
wmber of iteration=s to go New Window{ "The Chaos Game",

showpoints = 0;
iterations = 10;

userFactor = 2; //factor to shrink by V List Box({
factor = 1 / userFactor: Text Box("™ Drag the vertices to cha
rotate = J{ nPoints, 1, 0 }; // angle to rotalf Text Box{("™ Click to designate start
userRotate = 0; g = Graph(
Framesize(400, 400), M
New Window{ "The Chaos Game", X Scale(-0.2, 1.2),
V List Box({ Y Scale{ -0.2, 1.2),
Text Box(" Drag the wvertices to c'.’.a:E
Text Box{ " Click to designate start: f//draw the initial points —-- draggabl =|
g = Graph({ Marker Size(3);
Framesize(400, 400), Drag Marker({ xXcorners, YCOTIDNers,
X Scale(-0.2, 1.2), L4 Marker Size(mSize):
Y Scale(-0.2, 1.2),

ffwait for mouse click to get seed va —

//draw the initial points -- draggabl: Mousetrap(
Marker Size(3): a = x;
Drag Marker({ xXcorners, yCOTrners, @ b =y;
Marker Size(mSize); showpoints = 1;

):

f/wait for mouse click to get seed val

Mousetrap(//draw the results
a = X: If({ showpoints,
b = y; Marker({ 2, {a, b}):
showpoints = 1; For{ i = 0, i < iterations, i
): wvertex = Random Integer(
fixedPointMatrix = Matrix
f/draw the results rotateMatrix = Matrix(
If{ showpoints, {{Cos(rotate[vertex]
Marker({ 2, {a, b}): Cos{ rotate[vertex])
For(i = 0, i < iterations, i- &
wvertex = Random Integer(1 newPointMatrix = factor #
fixedPointMatrix = Matrix Matrix({ {a - fixedPointMa
rotateMatrix = Matrix(fixedPointMatrix;
{{Cos(rotate[vertex] a = newPointMatrix[1]:
Cos{ rotate[vertex])}’ b = NewPointMatrix[2]:;
): c = vertex + 3;
newPointMatrix = factor # - Marker(Color State{ c)}, .

) T i S) — r

Chapter 4 Scripting Tools 59
Scripting Guide Using the Script Editor

Match Parentheses, Brackets, and Braces

The script editor helps you match fences (or parentheses, square brackets, and curly braces) in
the following ways:

* The matching closing fence is added when you type an opening fence.

* When you place your cursor next to either an opening or closing fence, the fence and its
match are highlighted in blue. If the fence does not have a match, it is highlighted in red.

¢ If you double-click a fence, everything between the matching fence is selected (including
the fences).

* If you put your cursor within an expression and press CTRL-] on Windows
(COMMAND-B on Macintosh), the entire expression is selected. Fences that enclose the
expression are included. Repeat this process to highlight the next-higher expression.
Figure 4.6 shows an example.

Figure 4.6 Each Step in Matching Fences

<<Script|(
tempf = Num{ teblAlpha$ << Get Text):
If(Not(Is Missing(temp#)) & (0 < tempf < 1),
alpha%# = temp#
)i
tebAlpha# << Set Text(Char[RLiloedl]):

evalSummary$;

<<Script|(
) tempf = Num{ teblAlpha$ << Get Text):
If(Not(Is Missing(temp#)) & (0 < tempf < 1),

alpha%# = temp#
)i
tebAlpha# << Set Text[s:CEdEENECtNEN] -

evalSummary$;

<<Script|}

temp$ = Num(tebllpha# << Get Text):

If{ Not({ I= Missing(temp#)) & (0 < temp# < 1),
alpha$ = t

)i

tebAlpha$ << Set Text(Char(alpha#)):

evalSummary#;

When you type an opening brace, JMP adds the closing brace. Enter code between the braces,
type the closing brace, and then your cursor automatically moves after the closing brace that
JMP added. This prevents you from accidentally adding an unnecessary closing brace.

You can turn on and off the auto completion of braces in the JMP preferences. See “Set
Preferences for the Script Editor” on page 63 for details.

Select a Rectangular Block of Text

To select a rectangular block of text, hold down the ALT key and drag your cursor from the
starting point to the end of the block. You can either copy or cut the text enclosed in the block.

Suppose that you want to the select all of the following code except for the comment marks.

60 Scripting Tools Chapter 4
Using the Script Editor Scripting Guide

/7 YC Y),
// XC X),

Select a rectangular portion beginning with Y. When you paste, you get the following code:

YC:Y),
X(C : X)),

The rectangular selection inserts returns where needed to maintain the structure of the text.
Select Get Menu Item State on both lines in the following example.

bb << Get Menu Item State(l1),
bb << Get Menu Item State(2),

When you paste, a return is inserted at the end of each line.

Get Menu Item State
Get Menu Item State

Select Fragmented Text

To select text that is not contiguous, hold down the Ctrl key on Windows or Command key on
Mac and drag your cursor over the text. Continue this action for any other text that you want
to select. You can then copy and paste your selection into a new script or you can run the
selected text. Text will be pasted or run in the order it was selected.

Drag and Drop Text

You can drag and drop text within a script editor window or between windows or from a data
table into a script editor window. On Windows, pressing CTRL before dragging and dropping
copies the text. On Macintosh, the text is copied by default.

Drag and drop text as follows:

* Select a row or column, pause, and then drop it into the script editor window.

* Double-click text in a text field and then drop it into the script editor window. Examples
are text in a data table cell and any other selectable text.

On Windows, you can also drag and drop text into a minimized window.

1. Drag the text over the Home Window button . in the lower right corner of the window.
The Home Window appears.

2. In the Home Window list, drag the text over the destination window.
That window appears.

3. Drop the text where you want it.

Chapter 4 Scripting Tools 61
Scripting Guide Using the Script Editor

Find and Replace
Many find and replace options are available in the script editor, including the support of
regular expressions. For example, searching with the following regular expression:
get.*name
returns messages such as “Get Button Name”, and “GetFontName”.

Basic regular expressions such as A and $ (which match the start of line and end of line) and \n
(which matches a carriage return) are also supported.

See the Using [MP book for details about the Search options.

Automatic Formatting

The script editor can format a script for easier reading. Any generated script (for example, by
saving a platform script) is automatically formatted with tabs and returns in appropriate
places.

You can also reformat individual scripts that are difficult to read (for example, scripts in which
all commands are strung together with no whitespace characters). From the Edit menu, select
Reformat Script.

Tip: This command alerts you if your script is badly formed (for example, if your parentheses
are not matched).

Add Code Folding Markers

You can add code folding markers that show the beginning and the end of the code block,
allowing you to collapse and expand code inside stand-alone functions.

To turn on this feature, select JSL code folding in the Script Editor preferences. Then you can
expand and collapse blocks of code by right-clicking on a script and selecting Advanced >
Expand All or Collapse All.

After you select this preference, Function and Expr expressions are foldable. See “Add More
Folding Keywords” on page 62 for details about adding folding markers to other expressions.

62 Scripting Tools Chapter 4
Using the Script Editor Scripting Guide

Figure 4.7 Code Folding Markers Shown in a Script

HcomputeBayes# = Expr(
computeBayes$;
updateBayes$ = Expr(
computeBayes$;
nch# << Set Values(factorProbability#):

pcb# << Delete;
tb# << Append(pcb# = Plot Col Box("Probability™, factorProbability#)}):

By default, code does not remain collapsed after you save the script and restart JMP. To save
the state of the folded code, select Save and restore document state information in the Script
Editor preferences.

Add More Folding Keywords

Custom code folding is supported for other stand-alone functions as shown in the following
example:

{"If", "For", "For Each Row", "While", "Try", "New Window", "V List Box",
"H List Box"}

JMP supports multiple keyword lists. A system administrator can define a set of keywords in
jmpKeywords.jsl and save the script in C:\ProgramData\SAS\JMP\ or designated directory
listed below. You save your version of jmpKeywords.jsl in your C:\Users\<user>\Documents\
folder. JMP merges all keyword lists from the designated directories.

Note: Path names in this section refer to the JMP folder. In JMP Pro, the folder is named
“JMPPro”. In JMP Shrinkwrap, the folder is named “JMPSW”.

On Windows, the following directories are examined in the order listed:

e C:\ProgramData\SAS\JMP\<version>\

e C:\ProgramData\SAS\JMP\

e (C:\Users\<user>\AppData\Roaming\SAS\JMP\<version>\
e C:\Users\<user>\AppData\Roaming\SAS\JMP\

e C:\Users\<user>\Documents\

On Macintosh, the following directories are examined in the order listed:

e /Library/Application Support/JMP/<version>/
e /Library/Application Support/JMP/

e ~/Library/Application Support/JMP/<version>/
e ~/Library/Application Support/JMP/

e ~/Documents/

Chapter 4 Scripting Tools 63
Scripting Guide Using the Script Editor

Note that jmpKeywords.jsl is stored in the designated JMP directory, even if you are using JMP
Pro.

Notes:
e The list in jmpKeywords.jsl is case insensitive.

e Code folding is not supported for messages, platforms, user-defined functions, and
comments.

e After you edit and save the list in jmpKeywords.js|, turn the Allow additional code folding
keywords preference off and then back on for the changes to take effect. Messages in the
log indicate that the keywords were loaded.

Advanced Options

Right-clicking on selected text in the Script Editor provides the following Advanced options:

Option Description

Expand All (Appears only if JSL code folding is on) Expands all blocks of
code.

Collapse All (Appears only if JSL code folding is on) Collapses all blocks of
code.

Comment Block Makes the selected text comments.

Uncomment Block Uncomments the selected comments.

Make Uppercase Changes all selected text to uppercase.

Make Lowercase Changes all selected text to lowercase.

Set Preferences for the Script Editor

In the JMP preferences, customize the script editor settings such as the font, colors, and
spacing options.
Setting the Fonts

1. Select File > Preferences.
2. Select the Fonts group.
3. Click Mono to set the font for the script editor.

For more details about font preferences, see the Using [MP book.

Scripting Tools
Using the Script Editor

Chapter 4
Scripting Guide

Figure 4.8 Changing the Font Properties for Script Windows

Preference Group

E| Segoe UL 9 Point

[Heading | Segoe UL 9 Point, Bold

[Ttle | Segoe UL 11 Point, Bold
Small | Segoe UL 7 Point

Mono | Courier New, 10 Point

L
General

] Reports
L Graphs
l Styles ‘
IE|%»Tables
_‘-.
B’ Platforms

;Inj Print

- .
1xr| Text Data Files

Q Windows Specific

o

Communications

Formula Editor| Segoe UL 11 Point
@| Segoe UL 9 Point
E| Segoe UL 9 Point
@| Segoe UL 9 Point
@| Segoe UL 9 Point
@| Segoe UL 9 Point

m Change font family for proportional fonts |Font Family|

= [C] Enable special font effects
L| File Locations Use Greek letters

B:rl Script Editor Use math symbols

§ SAS Integration
@ IMP Updates

% J5L Debugger

Menu

Set Script Editor Preferences

Select File > Preferences > Script Editor to further customize the editor.

Preference

Use tabs

Tab width

Extra space at bottom
of document

Description

Select this option to enable tabs in your scripts. This option is
selected by default.

Clear this option to replace any tab that you type with spaces.

Enter how many spaces a tab should indent. If you have disabled
tabs, any tab you type is replaced with the number of spaces
specified. The default value is 4.

Select this option to enable scrolling up from the last blank lines of
a script. This option is selected by default on Windows and
deselected on Macintosh.

Scripting Guide

Preference

Auto-complete
parentheses and
braces

Show line numbers

Show indentation
guides

Show operator tips

Show variable value
tips

Wrap Text

Show embedded log on
script window open

Color unknown object
messages

Save and restore
document state
information

Spaces inside
parentheses

Spaces in operator
names

Scripting Tools
Using the Script Editor

Description

Select this option to enable the script editor to automatically add
closing parentheses, square brackets, and curly braces when you
type an opening one. This option is selected by default.

Select this option to show the line numbers on the left side of the
script editor. This option is cleared by default.

Select this option to see faint vertical lines that mark indention.
This option is selected by default.

Select this option to see tooltips for JSL operators. This option is
selected by default.

Select this option to see tooltips for variable values. This option is
selected by default.

Select this option to always wrap text in the script editor. This
option is off by default.

Select this option to have an embedded log window appear in the
scripting window when editing or running scripts. This option is
deselected by default.

Select this option to cause the script editor to color object
messages that are not defined for the target object. Unknown
object messages will appear in the color specified by Message
unknown color.

Note: This option can affect the performance of the JSL editor due
to the amount of effort to look up message names in context.

Saves the state of collapsed and expanded code, and restores that
state when the script is reopened.

Select this option to cause the script editor to add spaces between
parentheses, brackets, and braces and their contents for
automatically formatted scripts. This is on by default.

Select this option to cause the script editor to add spaces between
words within operator names. For example, turning on this
option results in New Window instead of NewWindow. This option is
selected by default.

65

66 Scripting Tools
Working with the Log

Preference

JSL code folding

Color selection

Chapter 4
Scripting Guide

Description

Select this option to use code folding markers in the script editor,
which mark the opening and closing of Function() and Expr(Q)
expressions. You can expand and collapse these marked blocks of
code. This option is off by default.

You can also choose the appearance of the marker using the JSL
code folding marker menu.

Select Allow additional code folding keywords to enable using
additional keywords for folding markers in the script editor. See
“Add More Folding Keywords” on page 62 for details.

To set your own color for any of the listed types, click the color
box and select your color. See “Color Coding” on page 56 for
details on default settings.

For more details about script editor preferences, see the Using [MP book.

Working with the Log

As you run a script, the output appears in the log window. The actual script is shaded in the
log, and the output appears beneath it (Figure 4.9).

Figure 4.9 The Script Window (left) and the Log Window (right)

i Editor - IMP Pro

= |3 &

| 0 (SR

] Leg - IMP Pro

&8 = % E3

Show(&):

"Hello, World™;

E

File Edit Tables DOE Analyze Graph Tecls
Add-Ins View Window Help

= S & 53 ES
A = "Hello, World"™;
Show(&)

A = "Hello, World";

Syntax and compatibility errors are reported in the log, including the line number and code
that JMP could not process (Figure 4.10).

Chapter 4 Scripting Tools 67
Scripting Guide Working with the Log

Figure 4.10 Syntax Error Message

P - @] =
) Editar - JMP Pro & Lag - IMP Pro — = ==
- o T = =
el G EEY BigClass ~ |Tm - " .
A % = g | S 8E & 53 =NE S
1 A = "Hello, World™ <
2 Show({ &);
5
4 17l Unexpected "Show". Perhaps there is a

IMP Alert @ missing ":" or ","
Line 2 Column 1: »Show(A):

.8. Unexpected "Show". Perhaps there is a missing " or The remaining text that was ignored was

=2 Column 1: =Show(4); Show (&) ; -

— o]

B
<

Open the log by selecting View > Log (Window > Log on Macintosh).
Tips:
* On Windows, you can control when the log opens: when JMP starts, when text is written

to the log, or only when you open it. Select File > Preferences > Windows Specific to
change the Open the JMP Log window setting.

* To omit compatibility warnings from the log, deselect Show log warnings for JSL
compatibility changes in 12 in the JMP General preferences.

Show the Log in the Script Window

You can view the log inside the script window by right-clicking and selecting Show
Embedded Log. This option makes it easy to edit and run a script, quickly see the results of
your changes, and then continue to develop the script.

The embedded log always appears in the Scripting Index script window but is not available in
Application Builder and the Debugger.

Save the Log

You can also save logs as text files, which can be viewed with any text editor. Double-clicking
a log text file opens it in your default text editor, not in JMP.

1. Make the log window active (click the Log window to make it the front-most window).
2. From the File menu, select Save or Save As.

3. Specity a filename, including the extension .txt on Windows. On Macintosh you cannot
save a log as a .txt file. .jsl is appended to the file name.

4. Click Save.

68

Scripting Tools Chapter 4
Debug or Profile Scripts Scripting Guide

Debug or Profile Scripts

In an open script, click the Debug Script button B (or select Edit > Debug Script) to show the
script in the JSL Debugger window. You can also use a keyboard shortcut:

e Press CTRL + SHIFT + R (Windows).
e Press SHIFT + COMMAND + R (Macintosh).
The JSL Debugger helps identify the point at which a script causes an error or fails. Rather

than commenting out portions of the script or adding Print() expressions, you can use the
Debugger to find the problem.

Once the JSL Debugger appears, you can continue in this mode, or you can click the Profile
JSL Script button @ to move into the JSL Profiler mode. The JSL Profiler helps with
optimization. You can profile your scripts during execution to see how much time is spent
executing particular lines or how many times a particular line is executed.

Tip: To debug a script automatically when you open it, include Run JSL(1) in the Open()
statement:

Open("$SAMPLE_SCRIPTS/scoping.js1", Run JSLC 1));

Debugger and Profiler Window

The Debugger opens in a new instance of JMP (Figure 4.11). The original instance is
inoperable until the script produces something that requires interaction. At that point, the
Debugger window becomes inoperable until you perform whatever action is required. Then
control is returned to the Debugger. Close the Debugger to work again in the original instance
of JMP.

Chapter 4
Scripting Guide

Scripting Tools 69
Debug or Profile Scripts

Figure 411 The Debugger Window

] [(me] @I @

scopingjsl I

Time Units| jsec Color Theme| Redl Help |

1 /* This script was written to demonstrate JSL debugging techniques.
2 See the Scripting Guide book for an example. */

3

s Qames Default To Here(o):
5 x=5;

5

7 Names Default To Here(1):

2 x=0;

10

11 Local Here(

12 x = 10;

13 Show (X, global:x, here:x);
14 Write ("\IN");

15 e

18

17 New Namespace("test”,

18 {x = 15}

1s y:

20

21 Show(test:x, here:x, globalix);:

23 Princ("Finished!"):

Globals

Lmls} Watch } Namespaces}

Variable Value

Call Stack } Breakpoins | Opions | Log |

Type Location

scoping.jsl Line 4

Use the buttons at the top to control the Debugger or the JSL Profiler. One or more scripts that
you are debugging or profiling are shown in tabs. If your script includes other scripts, each

one opens in a new tab.

Tabs in the bottom portion of the Debugger provide options to view variables, namespaces,
the log, and the current execution point; work with breakpoints; and set options.

Using the Execution Buttons

Use the buttons at the top to control execution of the script within the Debugger or JSL

Profiler.

Table 4.1 Description of the Debugger Buttons

Button Button Name

[,5-“. Run
> Run without
breakpoints

Run profiler

Action

Runs the script in the Debugger until it reaches either a
breakpoint or the end of the script.

Runs the script through the end without stopping.

70 Scripting Tools Chapter 4
Debug or Profile Scripts Scripting Guide

Table 4.1 Description of the Debugger Buttons (Continued)
Button Button Name Action

00 Break All If the script is busy, click Break All to stop all action in the
script and return to the Debugger or JSL Profiler, for example,
if you are in a very long loop.

The Debugger or JSL Profiler may not be able to break
execution if the executing script is waiting on some interactive
user action, such as completing a dialog or interacting with an
opened window.

" Stop Stops debugging the script and exits the Debugger or the JSL
Profiler.

G Restart Closes the current Debugger session and opens a new session.

Ay Step Into Lets you step into a function or an included file. Otherwise, it

behaves the same as Step Over.

Step Over Runs all expressions on a single line, or a complex expression

=il p P g p p

1 that spans multiple lines, without stepping into a called
expression, function, or Include() file.

[ﬁ Step Out Runs the current script or function to a breakpoint or the end

: and returns to the calling point. If you are in the main script
and the Debugger reaches the end, a message appears:
Program execution terminated. The Debugger remains open in
order for you to inspect the final program conditions.

Profile JSL Opens the JSL Profiler. (Press the Run profiler button to start

Script the JSL Profiler.) Use the JSL Profiler to see how much time is
spent executing particular lines or how many times a
particular line is executed. Note the following;:

* You can switch back and forth between the Debugger and
JSL Profiler modes only prior to the start of the program.

* Some of the debugger buttons are disabled when profiling.
e All breakpoints are disabled when running in the JSL

Profiler mode.

@| Show Profile Shows the number of times each line is executed.
by Line Count

Chapter 4 Scripting Tools 71
Scripting Guide Debug or Profile Scripts

Table 4.1 Description of the Debugger Buttons (Continued)

Button Button Name Action

@| Show Profile Shows how much time is spent executing a line.
by Time

E| Show Profile For line counts, shows the number of times the line is executed.
by Count For time, shows the number of microseconds (or milliseconds

or seconds) the line takes to complete.

E' Show Profile For line counts, shows the individual line count divided by the
by Percent total line count. For time, shows the percentage of time spent
on an individual line (line time/total time*100).

[us = Time Units Sets the time unit to microseconds, milliseconds, or seconds.
Available in the JSL Profiler after you click the Run profiler
button [+ .

Red | Color Theme Sets the color of the shading for the JSL Profiler. Available in
the JSL Profiler after you click the Run profiler button [> .

Variable Lists

The tabs on the bottom left of the Debugger let you examine global variables, local variables,
watch variables, and variables within namespaces.

Globals The Globals tab lists all global variables and updates their values as you step
through the script. Each variable is added as it is initialized. If there are already global
variables defined from running earlier scripts, they will be listed with their current values
when you start the Debugger. See “View Variables” on page 75.

Locals The Locals tab lists all variables by scope and updates their values as you step
through the script. Select a scope in the menu. See “View Variables” on page 75.

Watch If there is a particular variable or value of an expression whose values you want to
watch as you step through the code, you can add them here. This is particularly useful if
your script uses many variables that might be hard to watch in the Globals or Locals lists.
See “Work with Watches” on page 75.

Namespaces As namespaces are defined, they are added to the menu. Select a namespace to
view any variables and their values used within the namespace. See “View Variables” on
page 75.

Debugger Options

The tabs on the bottom right of the Debugger let you view the call stack, work with
breakpoints, set options, and view the log.

72

Scripting Tools Chapter 4
Debug or Profile Scripts Scripting Guide

Call Stack The call stack lists the current execution point in scripts and functions. The main
script is always the first script listed. If you call a function, the function is added on top of
the calling script. Likewise, any included files are added to the top of the list as you step
through them. When you exit any function or script, it is removed from the list and you
return to the next one in the list. The current line numbers are updated as you step
through.

Double-click a row in the call stack to move the cursor to the specified line.

Breakpoints Add, edit, delete, and disable or enable breakpoints. See “Work with
Breakpoints” on page 72. You can also double-click a row on the Breakpoints tab to move
the cursor to the specified line.

Options Set the Debugger preferences interactively on this tab. See “Modify Preferences in
Debugger” on page 76.

Log The log from the script that you are debugging is shown on this tab.

Work with Breakpoints

A breakpoint interrupts the execution of a script. Although you can step through a script line by
line, this can be tedious and lengthy for a long or complex script. You can set breakpoints at
places of interest and simply run the script in the Debugger. The script is run normally until a
breakpoint is reached. At the breakpoint, the Debugger stops executing the script so you can
look at the values of variables or start stepping line by line.

JMP preserves breakpoints across sessions. So when you close and reopen JMP, the
breakpoints still appear.

Tip: Turn on line numbers by right-clicking in the script and selecting Show Line Numbers.
You can also show line numbers by default in all scripts by modifying the Script Editor
preferences.

Create a Breakpoint

When creating a breakpoint, you can specify settings such as conditions and break behavior.
To do so, click] on the Breakpoints tab, and then enter the breakpoint information.

Otherwise, create a quick breakpoint by doing one of the following:

¢ In the Debugger margin, click on the appropriate line (to the right of the line number if
displayed).

¢ In the Debugger margin, right-click in the margin where you want the breakpoint and
select Set Breakpoint.

The red breakpoint icon appears where you inserted the breakpoint and on the Breakpoints
tab.

Chapter 4 Scripting Tools 73
Scripting Guide Debug or Profile Scripts

Delete Breakpoints

Do one of the following:

¢ In the Debugger margin, click the breakpoint icon.
¢ In the Debugger margin, right-click the breakpoint icon and select Clear Breakpoint.
* On the Breakpoints tab, select the breakpoint and then click E|

* On the Breakpoints tab, click E| to delete all breakpoints (not just the selected
breakpoints).

The red breakpoint icon is removed, and the breakpoint no longer appears on the Breakpoints
tab.

Disable and Enable Breakpoints

Disabling a breakpoint is helpful when you potentially fix a problem and then want to see
whether the script will run correctly past that breakpoint. You can then enable the breakpoint
when necessary rather than recreating it.

Do one of the following:

¢ In the Debugger margin, right-click the breakpoint icon and select Enable Breakpoint or
Disable Breakpoint.

* On the Breakpoints tab, select or deselect the breakpoint’s check box.
* On the Breakpoints tab, click El to disable or enable all breakpoints.

A disabled breakpoint turns white; enabled breakpoints are shaded red.

Specify and Clear Conditional Expressions on Breakpoints

Setting a condition on a breakpoint is an alternative to single-stepping through code. Rather
than single-step and view the variables for each expression, you specify that the script break
only when a condition is met. Then you can step through the code and figure out where the
problem arises.

Suppose that a calculation in your script is incorrect, and you suspect the problem occurs
when 1==19. Set a conditional breakpoint for i==18. The Debugger will run until that
condition is met, then you can step through the code to identify the problem.

Specify a Breakpoint Condition
Right-click the breakpoint icon and select Edit Breakpoint.
On the Condition tab, select Condition and enter the conditional expression.

1
2
3. Specify whether to break when the expression Is true or Has Changed.
4. Click OK.

74

Scripting Tools Chapter 4
Debug or Profile Scripts Scripting Guide
Disable or Enable a Condition

1. Right-click the breakpoint icon and select Edit Breakpoint.

2. On the Condition tab, deselect or select Condition.

Delete a Condition

On the Breakpoints tab, click in the breakpoint’s Condition field and press DELETE.

Specify Break Options

Right-clicking the breakpoint and selecting Edit Breakpoint provides a quick way to manage
breakpoint behavior. Alternatively, select the breakpoint on the Breakpoints tab and click [[]].
Both methods display the Breakpoint Information window, where you customize settings on
the Hit Count and Action tabs.

Change the Hit Count

You can control the number of times a breakpoint must be hit and when the break occurs. For
example, to break when the condition is met twice, select break when the hit count is equal to
and type 2 on the Hit Count tab.

Define an Action

You also have the option of defining a JSL expression or script that the Debugger executes
when a breakpoint is hit and execution has stopped. This script is called an action. On the
Action tab, enter the JSL expression to be executed.

Run the Script to the Cursor

When you right-click and select Run To Cursor, all expressions before the location of the cursor
are executed. Select this option when you only want to see values up to the current line. To see
values when each expression is executed, use the stepping options.

Tips for Setting Breakpoints

¢ If you do not want to watch for errors in a specific loop, set a breakpoint after the loop
ends. The Debugger will hit the next breakpoint rather than stepping through each line of
the loop.

¢ Avoid inserting a breakpoint in lines that do not trigger an action (such as comments,
blank lines, and end parentheses). Debugger will not break on these lines.

* When you insert breakpoints, close Debugger, and edit the script, the breakpoints remain
on the original line numbers. You might need to delete and then reinsert the breakpoints.

Chapter 4

Scripting Tools 75

Scripting Guide Debug or Profile Scripts

Breakpoints are remembered across Debugger sessions. This means that your breakpoints
list includes breakpoints that have been set in all scripts, not just the script that you are
currently debugging.

Breakpoints are remembered by the Debugger session, not by each script. This means that
breakpoints are listed even for scripts that have been moved or deleted.

On the Breakpoints tab, click El to remove all breakpoints in scripts whether they are
currently open or not, or for scripts that no longer exist.

View Variables

The variables lists are populated as they appear in the script. Their values are updated every
time the script changes them. If you are uncertain why a variable has a particular value when
you run your script, you can watch its value at every step to see what happens.

You can also assign the variables whatever value you want. For example, if you are stepping
through a For () loop but are interested only in what happens starting with a particular
iteration, you can assign your iterating variable that value. Step through the first part of the
loop that initializes the iteration variable and then assign it the value that you want in the
variable list at the bottom. Then when you step through, the loop begins executing at that
point.

Tips for Managing Variables

If you have run several scripts using the global scope, you might want to clear or delete
global variables. This makes the list of variables in the Debugger shorter and relevant. Use
the Delete Symbols() function to do so. You can also close JMP and restart to clear the
space.

If your script uses so many variables that they are difficult to find and watch in the
variable lists, add watches for the specific variables in which you are interested.

Work with Watches

JMP preserves the Watch variables across sessions. So when you close and reopen JMP, the
Watch variables are still listed on the Watch tab.

Create a Watch

On the Watch tab, click E| and enter the value in the window.

In the Debugger, right-click the line that you want to watch, select Add Watch, and then
enter the variable name in the window.

In the Debugger, place the cursor in or next to a variable name (or select the variable
name), right-click, and select Add Watch.

76 Scripting Tools Chapter 4
Debug or Profile Scripts Scripting Guide

® On the Watch tab, enter the variable in an empty Variable field.

Modify a Watch
Do one of the following on the Watch tab to enter a new value:

e Select the watch and click [i]].

e (lick in the Variable field and enter a new value.

Delete Watches
Do one of the following on the Watch tab to delete watches:

e Select the watch and then click [z|
e C(Click E| to remove all watches.

Modify Preferences in Debugger

The Debugger lets you change preferences as you work in the Debugger. Select the Options
tab to find the following settings:

Show Line Numbers Shows or hides the line numbers for the script in the Debugger.

Break on Multiple Statements Per Line Stops executing the script between each expression in
a single line.

Break On Throw Breaks when the script executes the Throw() function. For example, Throw()
might be enclosed in a Try () expression. The Debugger breaks on Throw() instead of
continuing through the rest of the expression. This lets you identify where the problem
occurred in the script and then return to debugging.

Break On Execution Error Stops executing the script when the error occurs rather than closing
the Debugger.

Warn On Assignment In Condition Shows a warning when you enter a breakpoint condition
that contains the assignment. For example, if you have a breakpoint on x = 1 and add the
condition x = 1 to the breakpoint, you are prompted to verify the assignment of x.

Enter Debugger Upon Termination Keeps the Debugger open after a JSL program terminates
execution. On by default, this option lets you examine attributes of the executed program.

Persistent Debugger Sessions

JMP saves all breakpoints and watches until you delete them. Other user-specific settings,
such as column widths on the tabs and the Debugger window size, persist between sessions of
JMP.

Chapter 4 Scripting Tools 77
Scripting Guide Debug or Profile Scripts

These settings are stored in a file named JMPjdeb, the location of which is defined in the
USER_APPDATA variable:
e Windows 7: "/C:/Users/<username>/AppData/Roaming/SAS/JMP/<version number>/"

e Macintosh: "/Users/<username>/Library/Application Support/JMP/<version number>/"

As usual, the values of local variables, global variables, and namespaces clear when you close
and reopen JMP.

Note: On Windows, the paths differ based on the JMP edition. In JMP Pro, the path refers to
“JMPPro”. In JMP Shrinkwrap, the path refers to “JMPSW”.

Examples of Debugging and Profiling Scripts

This section includes examples of setting breakpoints to watch variables; stepping into, over,
and out of expressions; watching variables in different scopes and namespaces; debugging
interactive scripts; and profiling scripts with the JSL Profiler.

Example scripts are located in the Samples/Scripts folder.

Tip: Make sure that Show Line Numbers is selected on the Debugger Options tab before
proceeding.

Using Breakpoints and Watching Global Variables

The following example shows how to set a breakpoint in a loop and watch variables change
through each iteration of the loop.

1. Open the string.jsl sample script and click the Debug Script button.
2. Click in the margin for line 12 to add a breakpoint (Figure 4.12).
You should have a breakpoint for the following expression inside the For() loop:

stringFunction(i);

78

Scripting Tools
Debug or Profile Scripts

Figure 4.12 Set the Breakpoint

string.js| ‘

):

wom o=l ;o

10

13 0E
14

le

o] [[m]o) @@[a) @

4 .stringFu.nction = Function({i}, {v},
v = Char(i):
str = str || ¥:

str = "";

11 For(i = 0, i <= 9, i++,

iz . stringFunction (i) ;

15 Print("Finished.", str):

3. Click Run.

The first two expressions are evaluated:
— stringFunction is defined as a function.

— stris defined as an empty string.

Chapter 4
Scripting Guide

Both variables and their types and values have been added to the Globals list. In addition,
the For () loop has been evaluated up to the line with the breakpoint, shown in
Figure 4.12.

— 1 has been assigned to 0.

— 1 has been determined to be less than or equal to 9.

Figure 4.13 View the Initial Global Variables

stringFunction() has not yet been called.

i and its value and type have been added to the Globals list.

Globals l Locals l Watch l Namespaces l

Variable Value Type

i 0 Number
sir String
stringFunction [Function({i}, {y}, v=Char(i); str=str| v} Function

4. Click Run again.

The script runs until it hits the breakpoint. The results are shown in Figure 4.14.

— stringFunction() is called, evaluated, and returns to the loop.
— 1iisincremented and determined to be less than or equal to 9.

— In the Globals list, i is now 1 and str is now “0”.

Chapter 4
Scripting Guide

Figure 4.14 Global Variables at First Breakpoint

Globals l Locals l Watch l Namespaces l

Variable Value Type

" 9 Number
sir 0" String
stringFunction [Function({i}, {y}, v=Char(i); str=str| v} Function

5. Click Run again.

Scripting Tools
Debug or Profile Scripts

The script runs until it hits a breakpoint. The results are shown in Figure 4.15.

— stringFunction() is called, evaluated, and returns to the loop.

— 1iisincremented and determined to be less than or equal to 9.

In the Globals list, i is now 2, and str is now “01”.

Figure 4.15 Global Variables at Second Breakpoint

Globals l Locals l Watch l Namespaces l

Variable Value Type

i 2 Number
sir 01" String
stringFunction [Function({i}, {y}, v=Char(i); str=str| v} Function

79

You can continue to click Run and watch i and str change with each iteration of the loop. Or,
click Run without breakpoints to complete running the script and exit the Debugger.

Stepping Into, Over, and Out

Step Into, Step Over, and Step Out offer flexibility when your script contains expressions,

functions, or includes other JSL files.

1. Open the scriptDriver.jsl sample script and click the Debug Script button.

2. This script writes information to the log, so select the Log tab at the bottom of the
Debugger to view the messages.

3. Click Step Over.

The first line in the script is evaluated.

4. Click Step Over again.

The current expression is evaluated, and the Debugger moves to the following line. In this
case, the expression is a few lines long, and it assigns an expression to a variable.

5. Click Step Over again.

This expression is several lines long, and assigns a function to a variable.

Line 30 calls the expression that was created earlier.

6. Click Step Over.

80 Scripting Tools Chapter 4
Debug or Profile Scripts Scripting Guide

10.

11.

The Debugger steps into the expression, running it line by line.
Continue clicking Step Over until the expression ends.

The Debugger returns to the line following the expression call.
Line 31 calls the function defined earlier.

Click Step Over to run the function without stepping into it. The Debugger runs the entire
function, and returns to the line following the function call.

Line 33 includes another script.

Click Step Into.

The Debugger opens the script in another tab and waits.
Click Step Over.

The next line in the included script is run.

Click Step Out.

The Debugger runs the rest of the included script and returns to the line following the
Include() function.

Watching Variables in Different Scopes and Namespaces

Tabs at the bottom of the Debugger window let you watch variables as they are created and
changed. This example shows variables in several scopes and a namespace.

1.
2.

Open the scoping.jsl sample script and click the Debug Script button.
Click Step Over.

The fourth line turns off Names Default To Here.If you run this script again in the same
JMP session, this line resets the scoping so that the first variable that is created is in the
global scope.

Click Step Over.

A global variable named xis created. On the Globals tab, x has been added to the list,
showing its value as 5 and its type as number.

Select the Locals tab, and then select Global from the list of scopes.
The global variable x is also shown here.
Click Step Over twice.

Names Default To Hereis turned on, which places the rest of the script into a Here scope.
Then a new variable x is created in that scope.

Notice that the value of the global variable x has not changed.
Select Here from the list on the Locals tab.

The local x is listed under Here, with its value and type.

Chapter 4 Scripting Tools 81
Scripting Guide Debug or Profile Scripts
7. Click Step Over.
A Local Here scope is created. A second Here scope is shown in the Locals list.
8. Click Step Over.
A new x variable is created in this Here scope. On the Locals tab, select each of the three
scopes from the list (Here, Here, and Global) to see three different x variables.
9. Click Step Over.
Look in the Debugger’s log to see the output. Notice that here:x scopes to the local here,
not the script window’s here.
10. Click Step Over.
After writing an empty line to the log, the script exits the Local Here scope. The second
Here, along with its’ x variable, has disappeared from the Locals list.
11. Click Step Over.
A namespace called “test” is created, with another variable named x. Select the
Namespaces tab to see it.
12. Click Step Over and look at the log.
13. Click Step Over to exit the Debugger.

Using the Debugger with Interactive Scripts

When your script creates interactive elements, the Debugger hands control back to the main
instance of JMP so that you can interact with it. When you are finished, control returns to the

Debugger.
1. Open the interactive.jsl sample script and click the Debug Script button.
2. Click Step Over twice.
The New Window expression is evaluated, and a modal window waiting for input is created.
You might need to move the Debugger window to see the new modal window.
3. Enter two numbers in the Assign X and Y window and click OK.
Control is given back to the Debugger.
4. Click Step Over three times and look at the log in the Debugger.
The log shows the two new numbers that you entered in the window.
5. Click Step Into to exit the Debugger.

Using the JSL Profiler

Use the JSL Profiler to see how much time is spent executing particular lines or how many
times a particular line is executed.

1.

Open the string.jsl sample script.

82

Scripting Tools Chapter 4
Debug or Profile Scripts Scripting Guide

2. Click the Debug Script button h
3. Click the Profile JSL Script button .

Figure 4.16 Initial JSL Profiler Window
B0 (uffajo] (2)[2] Timevnitlysec <] Coor Theme(Red ~ | ([bicinn)

string.js!

1
2
3
4
5
&
7
8

4. Click the Run button [to start profiling.

The profiler collects information on the number of times a statement is executed and the
time it takes to execute it. Time is cumulative and collected each time a JSL statement is
executed.

Figure 4.17 Profiled Script Window
BJE] @E)E) (2]] ime uni{usec =] ColorTheme(Red +] (e]

string.jsl

L

In the left margin, the selected statistics are displayed. Percent of time is displayed by default.
Click the Show Profile by Count button | = | to switch to percent of statement counts instead.
The left margin is color-coded to allow for quick identification of problematic performance
areas.

Chapter 5

JSL Building Blocks
Learning the Basics of JSL

Studying the syntax and basics of JSL is crucial, whether you are a beginning or an advanced
user. Some concepts (such as loops and variables) are common among many scripting
languages, but punctuation rules differ in JSL.

Figure 5.1 Example of a JSL Script

multiplication concatenate

comment operator operator quoted text string
‘-3 Rad'\us-]ML’ Pro \ / ‘ | o]

File Edit T
= S

1

bles DOE Analyzs
& 53

Graph Togls Add-Ins View Window Hep

o [(nptables) |

// Compute the area of afcircle.

variables Lol R B
circle area = Pi() radiuns * radius:
Print("The 3:21 is " || Format(circle area, "Fixed", 2)];\
functions Commas separate Semicolons separate
arguments. certain expressions.

This chapter introduces you to the basic concepts of JSL, from syntax rules and file path
conventions to conditions and namespaces.

Contents

JSLSyntax Rules 85
Value Separators 85
Numbers. 88
Names . ..o 88
Comments 89

OPerators 90

Global and Local Variables 94
Local Namespaces.t 95
Named Namespaces.t e 95
Show Symbols, Clear Symbols, and Delete Symbols. 95
Lock and Unlock Symbols.......... ... o i 96

Rules for Name Resolution i i i 97
Resolving Unscoped Names e 97
Troubleshooting Variables and Column Names. 102
Troubleshooting Variables and Keywords 102

Alternatives for Gluing Expressions Together 104

Tterate 104
O 104
While. ... 106
Summation. 107
Product 108
Breakand Continue 108

Conditional Functions i i 110
A 110
Match ..o 112
Choose. . .o o e 113
Interpolate 114
=3 115

Compare Incomplete or Mismatched Data................... 115

Chapter 5 JSL Building Blocks 85
Scripting Guide JSL Syntax Rules

JSL Syntax Rules

All scripting and programming languages have their own syntax rules. JSL looks familiar if
you have programmed in languages such as C and Java. However, rules for punctuation and
spaces differ in JSL.

The following sections describe JSL syntax rules for the following basic components of the
language:

® “Value Separators” on page 85

* “Numbers” on page 88

* “Names” on page 88

¢ “Comments” on page 89

Value Separators

Words in JSL are separated by parentheses, commas, semicolons, spaces, and various
operators (such as +, —, and so on). This section describes the rules for using these separators
and delimiters in JSL.

Commas

A comma separates items, such as items in a list, rows in a matrix, or arguments to a function.

my list = {1, 2, 3};
your Tist = List(4, 5, 6);
my matrix = [3 2 1, 0 -1 -2];
IfCY <20, X =Y);
If(Y <20, X=Y; Z <3, A);
Tab1eBox(
stringColBox("Age",a),
NumberCo1Box("Count",c),...)

Note: To glue a sequence of commands into a single argument inside a function, separate each
sequence with a semicolon. For more information, see “Semicolons” on page 86.

Parentheses

Parentheses have several purposes in JSL:

¢ Parentheses group operations in an expression. The following parentheses group the
operations in the If() expression.

If(
Y <20, X=Y,

86 JSL Building Blocks Chapter 5
JSL Syntax Rules Scripting Guide
X =20
);
* Parentheses delimit arguments to a function. In the following example, parentheses
enclose the argument to the Open() function.
Open("$SAMPLE_DATA/Big Class.jmp")
® Parentheses also mark the end of a function name, even when arguments are not needed.
For example, the Pi function has no arguments. However, the parentheses are required so
that JMP can identify Pi as a function.
PiQ);
Note: Be careful that parentheses match. Every (needs a), or errors result.
The script editor can match fences (parentheses, brackets, and braces). Press CTRL-]
(COMMAND-b on Macintosh) with your cursor in any part of a script. The editor searches for
fences, highlighting the text between the first set of opening and closing fences that it finds.
Repeat this process to highlight the next-higher fence. See “Match Parentheses, Brackets, and
Braces” on page 59 in the “Scripting Tools” chapter for an example.
Semicolons

Expressions separated by a semicolon are evaluated in succession, returning the result of the
last expression. In the following code, 0 is assigned to the variable i and then 2 is assigned the
variable j.

i=0;

j=2;
You can also use semicolons to join arguments that are separated by commas as shown in the
following If() expression.

If(x <5, vy = 3; z++; ...);

The semicolon in other languages is used as an expression terminator character. In JSL, the
semicolon is a signal to continue because more commands might follow. For details about
separating expressions with semicolons, see “Alternatives for Gluing Expressions Together”
on page 104.

Semicolons at the end of a script or at the end of a line of arguments are harmless, so you can
also think of semicolons as terminating characters. Trailing semicolons are allowed at the end
of a script stream and after a closing parenthesis or closing curly brace. In fact, terminating
each complete JSL expression with a semicolon helps avoid errors when you copy and paste
small scripts into a larger one.

The semicolon is equivalent to the GTue() function. See “Operators” on page 90 for more
information about semicolons and Glue().

Chapter 5 JSL Building Blocks
Scripting Guide JSL Syntax Rules

Double Quotes

87

Double quotes enclose text strings. Anything inside double quotes is taken literally, including
spaces and upper- or lower-case; nothing is evaluated. If you have "Pi() A 2" (inside double

quotes), it is just a sequence of characters, not a value close to ten.

You do have to be a careful with text strings. Extra spaces and punctuation do affect the

output, because text strings inside double quotes are used literally, exactly as you enter them.

To have double quotes inside a quoted string, precede each quotation mark with the escape

sequence \! (backslash-bang). For example, run the following script and look at the title of the

window:

New Window("\!"Hello\!" is a quoted string.",
Text Box(Char(Repeat("*", 70)))
s

Table 5.1 Escape Sequences for Quoted Strings

\'!'b blank

\!'t tab

\!r carriage return only
\!n linefeed (newline) only

\!N inserts line breaking characters appropriate for the host
environment®

\!f formfeed (page break)
\!0 null character

Note: The null character is dangerous to use, because it is
typically treated as the end of the string. Be sure to type the
number zero, not the letter O.

A\ backslash
\!" double quotation mark

a. On Macintosh, this escape sequence is CR (carriage return character,
hexadecimal ‘0D’). On Windows, this sequence is CR LF (carriage
return followed by a linefeed, hexadecimal ‘0D0A’).

Sometimes, long passages require a lot of escaped characters. In these cases, use the notation

\[...]\ and everything between the brackets does not need or support escape sequences.

Here is an example where \[...]\ is used inside a double-quoted string.

jsTPhrase = "The JSL to do this is :\[

88

Spaces

JSL Building Blocks Chapter 5
JSL Syntax Rules Scripting Guide

a = "hello";

b =al|l " world.";

show(b) ;

I\ and you use the Submit command to run it.";

JSL allows whitespace characters inside names; spaces, tabs, returns, and blank lines inside or
between JSL words are ignored. This is because most JSL words come from the user interface,
and most of those commands have spaces in them. For example, the JSL expression for the Fit
Model platform is Fit Model() or FitModel().

Spaces inside an operator or between digits in a single number are not allowed. In these cases,
the script generates errors. For example, you cannot put spaces between the two plus signs in
i++ (i+ +) or in numbers (4 3 is not the same as 43).

Note: Why does JSL allow whitespace characters inside names? For one reason, the names of
commands and options match the equivalent commands in JMP menus and windows.
Another reason is that data table column names often include spaces.

Numbers

Numbers can be written as integers, decimal numbers, dates, times, or datetime values. They
can also be included in scientific notations with an E preceding the power of ten. For example,
these are all numbers:

1 12 1.234 3E3 0.314159265E+1 1E-20 01JANO98

Note: A single period by itself is considered a missing numeric value (sometimes called NaN
for “not a number”).

For more information about dates, times, and date-time values, see “Date-Time Functions and
Formats” on page 130 in the “Types of Data” chapter. See “Currency” on page 142 in the
“Types of Data” chapter for details about combining numbers with currency symbols.

Names

A name is simply something to call an item. When you assign the numeric value 3 to a variable
in the expression a = 3, ais a name.

Commands and functions have names, too. In the expression Log(4), Log is the name of the
logarithmic function.

Names have a few rules:

Chapter 5 JSL Building Blocks 89
Scripting Guide JSL Syntax Rules

e Names must start with an alphabetic character or underscore and can continue with the
following:

— alphabetic characters (a-z A-Z)

— numeric digits (0-9)

— whitespace characters (spaces, tabs, line endings, and page endings)
— mathematical symbols in Unicode (such as <)

— afew punctuation marks or special characters (apostrophes (*), percent signs (%),
periods (.), backslashes (\), and underscores (_))

* When comparing names, JMP ignores whitespace characters (such as spaces, tabs, and line
endings). Upper case and lower case characters are not distinguished. For example, the
names Forage and for age are equivalent, despite the differences in white space and case.

You can still have a name that is any other sequence of characters. If the name does not follow
the rules above, it needs to be quoted and placed inside a special parser directive called

Name (). For example, to use a global variable with the name taxable income(2011), you must
use Name () every time the variable appears in a script:

Name ("taxable income(2011)") = 456000;

tax = .25;

Print(tax * Name("taxable income(2011)"));
114000

Name () is harmless when it is not needed. For example, tax and Name("tax") are equivalent.

For more information about how JMP interprets names, see “Rules for Name Resolution” on
page 97.

Comments

Comments are notes in the code that are ignored by the JSL processor (or parser). You include
comments to describe sections of the script. Comments are also convenient for removing
portions of a script temporarily. For example, you can insert comment symbols around code
that might be causing an error and then rerun the script.

Type the comment symbols around code that you want to comment. The following example
shows code commented with /* */ in the middle of a line. When the script is run, JMP
considers both expressions to be identical.

tax /*percentage*/ = .25;
tax = .25;

Table 5.2 describes the comment symbols.

920 JSL Building Blocks Chapter 5
Operators Scripting Guide
Table 5.2 Comment Symbols

Symbol Syntax Explanation

// // comment Begins a comment. The comment does not have to be at the
beginning of a line, but everything up to the end of the line is
a comment.

VAR /* comment */ Begins and ends a comment. This comment can appear in the
middle of a line. Script text before and after the comment is
parsed normally.

/7! /7! Add //! to the first line of the script, and the script runs
automatically when opened in JMP. (In other words, the
script editor does not open.)

Operators

Operators are one- and two-character symbols for common arithmetic actions. Operators
come in several varieties:

* infix (with arguments on either side, suchas +in 3 + 4,or=ina = 7)

¢ prefix (with one argument on its right side, such as !a for logical negation)

® or postfix (with one argument on its left side, such as a++ for incrementing a)
JSL operators all have function equivalents.

To make writing algebraic expressions easier, JSL uses certain special character operators.
These operators have the same meaning as if the phrase had been written as a function. For
example, the following two expressions are equivalent.

Net Income After Taxes = Net Income - Taxes;
Assign(Net Income After Taxes, Subtract(Net Income, Taxes));

The assignment operation can be written either as the Assign() function or as an infix
operator =. Similarly, subtraction can be done with the Subtract() function or the infix minus
sign; they are equivalent inside JMP.

Note: Usually white space is ignored in JSL, so that “netincomeaftertaxes” and “net income
after taxes” are the same thing. There is one exception: the two-character operators must not
have a space between characters. Always enter the following operators without spaces in
between:

||! |/’ <=, >=, !=; ==, +=, -=, *=1 /=; ++, ——, << 5, :*1 :/; /*; */

Another common operator is the semicolon (;). You use the semicolon to:

Chapter 5
Scripting Guide

JSL Building Blocks 91
Operators

® Separate yet join one expression to another in a programming sequence. The semicolon
returns the result of its last argument, so a;b is the same as Glue(a,b).

* End an expression. Though the semicolon is permitted at the end of an expression, it is not

the expression terminator used in other languages.

An expression can contain more than one operator. In these instances, the operators are
grouped in order of precedence with decreasing priority. For example, * takes precedence

over +:

a+b*c

Sob * cisevaluated first, and then the result is added to a.

+ takes precedence over -:

a+b*c-d

So b * cisevaluated, and then the result is added to a. d is then subtracted from the result of

a+b*c

Table 5.3 shows operators shaded in order of precedence and each operator’s function

equivalent.

Table 5.3 Operators and Their Function Equivalents in Order of Precedence

Operator

{1} List

[] Subscript

++ Post
Increment

—— Post
Decrement

A Power

- Minus

Function Syntax

{a, b}
List(a,b)

alp, c]
Subscript(a, b, ©)

a++
Post Increment(a)

a__
Post Decrement(a)

arb
Power(a, b)
Power (x)

-a
Minus (a)

Explanation

Construct a list.

Subscripts identify specific
elements within a data element g,
where a could be a list, a matrix, a
data column, a platform object, a
display box, and so on.

Adds one (1) to a, in place.
Subtracts one (1) from a, in place.

Raise a to exponent power b. With
only one argument, 2 is assumed as
the power, so Power (x) computes

Reverses sign of a.

92

JSL Building Blocks
Operators

Chapter 5
Scripting Guide

Table 5.3 Operators and Their Function Equivalents in Order of Precedence (Continued)

Operator

! Not

* Multiply

EMult

/ Divide

2/ EDiv

+ Add

- Subtract

| Concat

|/ VConcat

Function Syntax

la
Not(a)

a*b
Multiply(a, b)

a:*b
EMult(a, b)

a/b
Divide(a, b)
Divide(x)

a:/b
EDiv(a, b)

a+b
Add(a, b)

a-b
Subtract(a, b)

allb
Concat(a, b)

matrixl1|/matrix2
VConcat(matrix1,
matrix2)

Explanation

Logical Not. Maps nonzero (or
true) values to 0 (which means
false). Maps 0 (or false) values to 1
(which means true).

Multiplies a by b.

Elementwise multiplication for
matrices a and b. (Each element in
matrix ais multiplied by each
element in matrix b.)

Divide(a, b) divides aby b.

Divide(x) interprets the argument
as a denominator and implies 1 as
the numerator, yielding the
reciprocal 1/x.

Elementwise division for matrices a
and b. (Each element in matrix ais
divided by each element in matrix
b.)

Adds aand b.
Subtracts b from a.

Joins two or more strings; two or
more lists; and horizontally
concatenates matrices. See
“Concatenate Lists” on page 172 in
the “Data Structures” chapter or
the JSL Syntax Reference for details.

Vertically concatenate matrices.
(Use | | or Concat() to horizontally
concatenate matrices.)

Chapter 5
Scripting Guide

JSL Building Blocks
Operators

Table 5.3 Operators and Their Function Equivalents in Order of Precedence (Continued)

Operator
Index

<< Send

= Equal

= Not Equal

< Less

<= Less or Equal

> Greater

>= Greater or
Equal

<=, < Less Equal
Less

<, <= Less Less
Equal

& And

Function Syntax

a::b
Index(a, b)

object << message
Send(object, message)

==b
Equal(a,b)...
al=b
Not Equal(a,b)...
a<b
Less(a,b)...
a<=b

Less or Equal(a,b)

ab
Greater(a, b)

a=b
Greater or Equal(a,b)

a<=b<c
Less Equal Less(a,b,)

a<b<=c
Less Less Equal(a,b,)

a&b
And(a, b)

Explanation

For matrices, generates the integers
from ato b.

(Colons are also used as prefix
operators for scoping, where :a
means data table column a, and : :a
means JSL global variable a. See
“Scoping Operators” on page 98 for
details.)

Send message to object.

Boolean values for comparisons.
They all return 1 if true, 0 if false.
Missing values in either a or b
causes a return value of missing,
which evaluates as neither true nor
false. See “Missing Values” on
page 117, for treatment of missing
values.

Range check. Return 1 if true, 0 if
false. Missing values in either aor b
propagate missing values.

Logical And. Returns true if both
are true. If the value on the left is
false, the value on the right is not
evaluated. See “Missing Values” on
page 117, for treatment of missing
values.

93

94 JSL Building Blocks
Global and Local Variables

Chapter 5
Scripting Guide

Table 5.3 Operators and Their Function Equivalents in Order of Precedence (Continued)

Operator

| Oor

= Assign
+= Add To

-= Subtract To

= Multiply To
/= Divide To
; Glue

Function Syntax

alb
Or(a, b)

a=b
Assign(a, b)

a+=b
AddTo(a, b)

a-=b
SubtractTo(a, b)

a*=b
MultiplyTo(a, b)

a/=b
DivideTo(a, b)
a;b

Glue(expr, expr,

Explanation

Logical Or. Returns true if either or
both are true. See “Missing Values”
on page 117, for treatment of
missing values.

Put the value of binto a. Replaces
the current value of a.

Add the value of binto a.

Subtract bfrom a, and put back into
a.

Multiply b with a, and put back
into a.

Divide binto a, and put back into a.

First do a, and then do b.

Global and Local Variables

Variables are names that hold values, which you reference later in scripts. There are two types

of variables:

® Global variables are shared among all scripts that you run in a JMP session.

® Local variables apply only to the script context in which you define them. They can also be
local to only a piece of a script, as with variables local to a particular function.

To limit the scope of variables, you can define them in a namespace, which is a collection of
variables, functions, and other unique names. JMP has a single global variable namespace that
all scripts use by default. When you use a name plainly, without a qualifying syntax, the name
is an unscoped variable and therefore in the global namespace.

x =1;

Chapter 5 JSL Building Blocks 95
Scripting Guide Global and Local Variables

Local Namespaces

Putting variables in the global namespace can cause conflicts. When two scripts have variables
with the same names, the value of the variable in the last script that you run last overwrites the
variable’s value in the first script.

To prevent this problem, we recommend that you begin each script with the following line:
Names Default To Here(1);

The Names Default To Here(l); function makes all unscoped variables in the script local to
that script and does not affect the global variable namespace. “Advanced Scoping and
Namespaces” on page 237 provides more details.

Note: The Names Default to Here option is true by default for custom menus and toolbar
buttons. A script that runs when you select a custom menu item or click a custom toolbar
button does not affect global variables.

Named Namespaces

You can also create a variable in a specific namespace. In the following example, the x variable
is created in the aa namespace:

aa:x = 1;

Preceding local variables with the Local() function is another option. Both a and b are local
variables in the following expression:

Local(fa =1, b}, ...)

Scoping operators also distinguish a global variable from a local variable. For more
information, see “Rules for Name Resolution” on page 97.

The following sections describe functions that help you manage variables.

Show Symbols, Clear Symbols, and Delete Symbols

The Show Symbols() function lists all variables and namespaces that are defined both globally
and in the local script, along with their current values. Here is an example of Show Symbols()
messages that are shown in the log:

Show Symbol1sQ);
// Her
a 5;
b = 6;

// 2 Here

// Global
c = 10;

96

JSL Building Blocks Chapter 5
Global and Local Variables Scripting Guide

// 1 Global

Tip: The JSL debugger also shows you the values of variables and namespaces. See “Debug or
Profile Scripts” on page 68 in the “Scripting Tools” chapter for more information.

The Clear Symbols() function erases the values set for variables that are defined both
globally and in the local script. For example, after you clear and then show symbols, the
variables are empty.

Clear Symbol1sQ);
Show Symbols();

// Here

a = Empty;

b = Empty;
// 2 Here

// Global
c = Empty;
// 1 Global

Note: The older Show Globals() and Clear Globals() functions are aliases of the newer Show
Symbo1s() and Clear Symbols() functions.

To remove all global variables and namespaces, use the function Delete Symbols(). After the
last Show Symbol1s() in the following script is run, nothing shows up in the log. All variables
have been completely removed from memory.

Delete Symbols();
Show Symbol1sQ);

To list variables in all namespaces, use Show Namespaces(). To delete only a specific
namespace, use ns << Delete. Clear Symbols() and Delete Symbols() do not clear or delete
variables in each namespace, although they do clear and delete variables that contain
references to namespaces. See “Rules for Name Resolution” on page 97 for details about
unscoped variables.

Note: Clear Symbols() and Delete Symbols() break all scripts that are currently in use.
These functions can be very useful in a programming and debugging environment, but do not
include them in any script that you plan to distribute. If you include Names Default To
Here(1) in your scripts, clearing and deleting global symbols is unnecessary.

Lock and Unlock Symbols

If you want to lock a variable to prevent it from being changed, use the Lock Symbols()
function. (Lock Globals() is an alias.)

Lock Symbols (namel, name2, ...)

Chapter 5 JSL Building Blocks 97
Scripting Guide Rules for Name Resolution

To release the lock and enable the global to be changed, use the Unlock Symbo1s() function.
(UnTock Globals() is an alias.)
Unlock Symbols (namel, name2, ...)

The primary use of these two commands is to prevent inadvertent changes to variables. For
example, locking a variable prevents Clear Symbols() from clearing a variable that is being
used by another script.

Note: You cannot use Lock Symbols() to lock a namespace. Instead, use ns << Lock.

Rules for Name Resolution

In JMP, you identify the following types of objects by a name:

e Columns and table variables in a data table
¢ Global variables, which hold values for the remainder of a JMP session
® Scriptable object types

* Arguments and local variables inside formulas

Most of the time, you can just use an object’s name directly to refer to the object. Consider the
following example:

ratio = height / weight;
Depending on the complexity of your script, it might be obvious that ratio is a variable and

height and weight are data table column names. But what if the meanings are ambiguous? A
script might use ratio as a global variable and as column names.

Resolving Unscoped Names

JMP interprets object names using name resolution. The following rules are applied
sequentially to unscoped names:

1. When the name is part of a script for an object, it is usually the name of an option or
method in the object. For example, Show Points() is an option in the Bivariate object:

obj = Bivariate(y(weight), x(height));
obj << Show Points(1);

2. If aname is not preceded by the : scoping operator, look it up in a namespace, such as
Global or Here.

3. If aname is followed by a pair of parentheses (), look up the name as a built-in function
(not a user-defined function).

98 JSL Building Blocks Chapter 5
Rules for Name Resolution Scripting Guide

4. If aname is preceded by the : scoping operator, look it up as a data table column or table

variable.

5. If aname is preceded by the : : scoping operator, look it up as a global variable.

6. Look it up as a local variable.

7. Look it up as a platform launch name (for example, Distribution or Bivariate).

8. If aname is used as the left side of an assignment (the L-value) and Names Default To
Here(0) is at the top of the script, create and use a global variable.

Exception

® Some names are variables that refer to an object such as a data table, data column, or
platform; they are not used for getting or setting a value. These names are passed through
(or interpreted literally) rather than resolved.

* For function definitions, column formulas, and Nonlinear platform formulas, the scope is
the same for each row in a column.

e If a name is a direct reference to a column in a data table that has been closed, the name is
resolved again to that column when the table is reopened.

dt = Open("$SAMPLE_DATA/Big Class.jmp");

Show(weight << Get As Matrix); // weight resolves to a column name
Close(dt, NoSave);

Show(weight << Get As Matrix); // weight cannot be resolved

/* Reopen the data table */

dt = Open("$SAMPLE_DATA/Big Class.jmp");

Show(weight << Get As Matrix); // weight resolves to a column name

However, the following example does not resolve the variable to the second instance of the
data table:

dt = Open("$SAMPLE_DATA/Big Class.jmp");

col = Column(dt, 1); // col 1is Column("weight")

Close(dt, NoSave);

/* Reopen the data table */

dt = Open("$SAMPLE_DATA/Big Class.jmp ");

Show(col << Get As Matrix); // The reference to the first data table no
Tonger exists.

The following sections describe how JMP resolves the names of data table columns. For more
information about name resolution, see “Advanced Scoping and Namespaces” on page 237 in
the “Programming Methods” chapter.

Scoping Operators

Using scoping operators is an easy way to help JMP resolve ambiguous names (for example,
when a name refers to both a variable and a column name).

Chapter 5 JSL Building Blocks 99
Scripting Guide Rules for Name Resolution

In the following example, the prefix double-colon operator (: :) identifies z as a global
variable. The single-colon prefix operator (:) identifies x and y as column names.

11Z = X 4+ iy;
Tip: The Names Default to Here(l) function also affects name resolution. See “Names
Default To Here and Global Variables” on page 239 in the “Programming Methods” chapter

for details.

Two JSL functions are interchangeable with scoping operators. Table 5.4 describes the
functions and syntax.

Table 5.4 Scoping Operators

Operator and Function Syntax Explanation
Equivalent Function
As Column :name Forces name to be evaluated as a data table
dt:name column. The optional data table reference
As Column(dt, argument, dt, sets the current data table. See
name) ug ”
coped Column Names” on page 99 for
examples.
As Global : 1name Forces name to be evaluated as a global variable.

As Global(name)
Note: The double-colon is also used as an infix

operator to represent ranges.

Scoped Column Names

Scoping column names is the simplest way to prevent conflicts with variable names. Use
scoping operators to force names in a script to refer to columns.

1. The prefix colon (:) means that the name refers to a table column or table variable only,
never a global variable. The prefix colon refers to the current data table context.
:age;

2. The infix colon (:) operator extends this notion by using a data table reference to specify

which data table has the column. This is particularly important when multiple data tables
are referenced in a script.

In the following example, the dt variable sets the data table reference to Big Class. jmp.
The infix colon separates the data table reference and age column.

dt = Data Table("Big Class.jmp");
dt:age // The colon 1is an infix operator.

As Column achieves the same results:

100 JSL Building Blocks Chapter 5
Rules for Name Resolution Scripting Guide

dt = Data Table("Big Class.jmp");
As Column(dt, age);

Therefore, the following expressions are equivalent when only Big Class.jmp is open:

:age;
As Column(dt, age);
dt:age;

The Column function can also identify a column. For Big Class.jmp, the following expressions
all refer to age, the second column in the table:

Column("age");
Column(2);
Column(dt, 2);
Column(dt, "age");

Preventing Column Name and Variable Name Conflicts

When you run a script that includes a column and variable with the same name, an Invalid
Row Number error occurs. To prevent this problem, use unique column and variable names, or
scope the names as follows:

* When a global variable and a column have the same name, the global variable name takes
precedence. In this situation, you must scope the column name.

riage = [1;
age = :age << Get As Matrix;

¢ To avoid ambiguity between the global variable and column name, scope both variables.
::age = :age << Get As Matrix;

e If more than one data table might be open, assign data table references to variables. Scope
your columns to the appropriate table.

dtl = Open("$SAMPLE_DATA/Big Class.jmp");
dt2 = Open("$SAMPLE_DATA/Students.jmp");
::age = dtl:age << Get As Matrix;

:theight = dt2:height << Get As Matrix;

Note that JMP evaluates column formulas through each consecutive cell of the column, so
scoping the column name is usually unnecessary. However, if a variable assigned in a formula
has the same name as a column, you must scope the column name. For details, see “Scoped
Names” on page 240 in the “Programming Methods” chapter.

Unscoped Column Names

Sometimes an unscoped name gets or sets a value. JMP resolves it as a column in a data table
(rather than a global variable) under these circumstances:

* if no global variable, local variable, or an argument using that name already exists,

Chapter 5 JSL Building Blocks 101
Scripting Guide Rules for Name Resolution

e and the data table in context has a column of that name,
e and
— either the current row is set to a positive value

— or the name is subscripted (for example, the subscript [1] in weight[1] selects the first
value in the weight column).

If the data table has a table variable by that name, then the table variable takes precedence. In
all other cases, it binds to a global, local, or argument. For more information about global and
local variables, see “Global and Local Variables” on page 94.

Exception

In column formulas and Nonlinear formulas, column names take precedence over global
variables.

Set the Current Data Table Row

By default, the current row is 0, an illegal row number. So the following expression assigns a
missing value to the ratio global variable:

ratio = height / weight;

Specify the row number with the Row() function. In the following example, the row is set to 3.
The height in that row is divided by the weight, and the result is assigned to the ratio global

variable.
Row() = 3;
ratio = height / weight;

Another possibility is to use subscripts to specify the row number. The following expression
divides the height in row 3 by the weight in row 4.

ratio = height[3] / weight[4];

Specifying the row number is unnecessary when the script iterates a row at a time down the
whole column. The following example creates the ratio column. For each row, the height is
divided by the weight.

New Column("ratio");
For Each Row(:ratio = height / weight);

JMP evaluates formulas and calculates pre-evaluated statistics iteratively down a column. In
these instances, identifying the row number is also unnecessary. (Pre-evaluated statistics are
single numbers computed from the data table, as discussed in “Pre-Evaluated Statistics” on
page 366 in the “Data Tables” chapter.)

102 JSL Building Blocks Chapter 5
Rules for Name Resolution Scripting Guide

Troubleshooting Variables and Column Names

When you reference a column name using As Name(), and Names Default To Here(1) is set,
JMP returns a variable reference. That reference is then processed using the standard reference
rules.

In the following example, there is no height variable in the Here: scope, so JMP returns an
error.

Names Default To Here(1);
Open("$SAMPLE_DATA/Big Class.jmp");
As Name("height")[3];

As Name("height")[/*###%*/3];

To prevent this problem, use one of the following methods:

e UseAs Column() instead of As Name():

Names Default To Here(1);
Open("$SAMPLE_DATA/Big Class.jmp");
As Column("height")[3];

e Explicitly scope height with As Name() :

Names Default To Here(1);
dt = Open("$SAMPLE_DATA/Big Class.jmp");
dt: (As Name("height"))[3];

These scripts return 55, the value of height in the third row of Big Class.jmp.

Troubleshooting Variables and Keywords

Name resolution errors can also occur when a variable and unquoted keyword have the same
name. For example, one argument for <<Preselect Role() is “Y”. Quote this argument if
your script also uses Y as a variable.

Frequently Asked Questions about Name Resolution

Should you always scope?

Yes. When in doubt, scope. Scoping is especially important in scripts that might be used by
many people on a variety of data tables; you will not necessarily know whether a name is used
in two contexts (such as for both a global variable and column name).

If you are writing such scripts, consider using explicit scoping and namespaces. See
“Advanced Scoping and Namespaces” on page 237 in the “Programming Methods” chapter
for more information.

Prefix scope operators do not take run-time overhead after the first resolution. Infix scope
operators, which follow data table references, always take run-time overhead.

Chapter 5 JSL Building Blocks 103
Scripting Guide Rules for Name Resolution

What is the difference between a column reference and a column referred to by name? If I
have a column reference in a global variable, how do I assign a value to a cell in the
column?

With a column reference, you can send messages to change specific characteristics of the
column or to access its values (for example, coloring cells or setting a formula).

When a column has been assigned to a global variable, assign a value to a cell in the column
using a subscript. Suppose that the name of the column height has been assigned to the x
variable:

x = Column("height™);
Assign a value to the third row in the height column as follows:

x[3] = 64 //sets the third row of height to 64

Note: The current row in a JSL script is not determined by selecting rows or positioning your
cursor in the row. The current row is defined to be zero (no row) by default. You can set a
current row with Row() (for example, Row() = 3). Please note that such a setting only lasts for
the duration of that script. Then, Row() reverts to its default value, zero. This behavior means
that submitting a script all at once can produce different results than submitting a script a few
lines at a time.

Another way to establish a current row for a script is to enclose it in For Each Row(). This
method executes the script once for each row of the current data table. For an example, see
“If” on page 110. See “Data Tables” chapter on page 275 for more information about working
with data tables.

Will a Scoping Operator “Stick” to its Name?

Yes. Once you use a scoping operator with a name, that name continues to be resolved
accordingly for all subsequent occurrences of the name. For example, a script might contain a
column and a variable named age. When you declare the global variable age with the scoping
operator :: at the beginning of the script, age is always interpreted as a global variable in the
script. The values in the age column are not affected by the variable.

::age=70;

Open (" $SAMPLE_DATA/Big Class.jmp™);

age=5; // age 1is a global variable.
Show(age); // age 1is still a global variable.

Which Has Precedence When Scoping, ":" or "[]"?
Scoping occurs before subscripting. This means that these two lines of code are equal:

dataTable:colName[i]
(dataTable:colName) [i]

104

JSL Building Blocks Chapter 5
Alternatives for Gluing Expressions Together Scripting Guide

Alternatives for Gluing Expressions Together

You can separate expressions with a semicolon, either on the same line or on different lines.
JMP then evaluates each expressions in succession, returning the result of the last one. Here is
an expression that first sets a to 2 and then sets b to 3:

a=2;
b =3;

The semicolon joins the two expressions and returns the value of the last one. Soif x = (a =
2; b = 3), the value of xis 3.

The Glue() function returns the result of the last expression. This function is equivalent to
using semicolons. The following expressions both return 3:

Glue(a=2, b=3)
a=2;b=3

The First() function also evaluates each argument sequentially but returns the result of the
first expression. The following expression returns 2:

First(a=2,b=3)

Example
What does First() do in the following script?

x = 1000;
First(x, x=2000)

The First function returns the value of x (1000). 2000 is then assigned to x.

Iterate

For

JSL provides the For (), While(), Summation(), and Product() functions to repeat (or iterate)
actions according to the conditions that you specify.

Note: A similar function called For Each Row() is for iterating actions over rows of a data
table. See “If” on page 110 for an example. “Additional Ways to Access Data Values” on
page 362 in the “Data Tables” chapter also describes iterating through table rows.

The For () function expects four arguments separated by commas. The first three arguments
are rules for how many times to repeat the loop, and the fourth is what to do each time the
loop is executed.

Chapter 5 JSL Building Blocks 105
Scripting Guide lterate
The basic syntax for For() is as follows:
For(initialization, while, iteration, body);
For example, the following script sums the numbers from 0 to 20:

s = 0;
For(i =0, i <= 20, i++, s += 1i);

The script works like this:

s = 0; Sets the s variable to 0. This variable holds the sum.
For(Begins the For() loop.
i=0, Sets the initialization variable (i) to 0. This expression is performed
only once.
i <= 20, Each time the loop begins, compares i to 20. As long as 1 is less than

or equal to 20, continue evaluating the loop. If 1 is greater than 20,
immediately break out of the loop.

i++, At the end of the loop, increments i by 1. Note that this step is done
after the body of the loop (next line) is evaluated.

s += 1 Evaluates the body of the loop. Adds the value of i to s. After the
body is finished, 7 is incremented (previous line).

J; Ends the loop.

Infinite Loops

For loops that always evaluate as true create an infinite loop, which never stops. To stop the
script, press ESC on Windows (or COMMAND-PERIOD on Macintosh). You can also select
Edit > Stop Script. On Macintosh, Edit > Stop Script is available only when the script is
running.

Comparing For Loops in JSL to C and C++

The JSL For () loop works just like it does in the C (and C++) programming language,
although the punctuation is different.

Tip: If you know C, watch out for the difference between JSL and C in the use of semicolons
and commas. In JSL, For() is a function where commas separate arguments and semicolons
join expressions. In C, for is a special clause where semicolons separate arguments and
commas join them.

106 JSL Building Blocks Chapter 5
lterate Scripting Guide

While

A related function is While(), which repeatedly tests the condition and evaluates its body
script as long as the condition is true. The syntax is:

While(condition, body);

For example, here are two different programs that use a While() loop to find the least power
of 2 that is greater than or equal to x (287). The result of both programs is 512.

x = 287;

// loop 1:

y =1;

While(y < x, y *= 2);
Show(y) ;

// loop 2:

k = 0;

While(2 A k < x, k++);
Show(2 A k);

The scripts work like this:

X = 287; Sets x to 287.
// Toop 1
y =1; Sets y to 1.
While(Begins the While() loop.
y <X, As long as y is less than x, continues evaluating the
loop.
y *=2 Multiplies 1 by 2 and then assigns the result to y. The
loop then repeats while y is less than 287.
)3 Ends the loop.
Show(y) ; Shows the value of y (512).
// Tloop 2
k = 0; Sets k to 0.
WhiTe(Begins the While() loop.
2 Ak <x, Raises 2 to the exponent power of k and continues

evaluating the loop as long as the result is less than 287.

Chapter 5
Scripting Guide

k++

);
Show(2 A k);

JSL Building Blocks 107
lterate

Increments k to 1. The loop then repeats while 2 A k is
less than 287.

Ends the loop.
Shows the value of 2 A k (512).

As with For() loops, Which() loops that always evaluate as true create an infinite loop, which
never stops. To stop the script, press ESC on Windows (or COMMAND-PERIOD on
Macintosh). You can also select Edit > Stop Script. On Macintosh, Edit > Stop Script is
available only when the script is running.

Summation

The Summation() function adds the body results over all i values. The syntax is:

Summation(initialization, Timitvalue, body);

For example:

s = Summation(i = 1, 10, 1i);

returns 55, the result of 1+2+3+4+5+6+7+8+9+10.

The script works like this:

S =

Summation(
i=1,
10,

.i

);

Sets the s variable to the value of the function.
Begins the Summation() loop.

Sets i to 1.

Sets the limit of i to 10.

All values of i from 1 to 10 are added together,
resulting in 55.

Ends the loop.

This behavior is similar to £ in the Formula Editor. The following expression:

Summation(i = 1, N Row(), x A 2);

is equivalent to the following formula in the Formula Editor:

NRow _ 2
Xi-1 *

108 JSL Building Blocks Chapter 5
lterate Scripting Guide

Product
The Product() function is similar to Summation() except that it multiplies the body results
rather than adding them. The syntax is the same as for Summation(). For example:
p = Product(i =1, 5, 1i);
returns 120, the result of 1*2*3%4%*5,

In this example, the initial value of 1 is 1, the upper limit is 5, then all integer values of i up to
5 are multiplied.

Here is the equivalent in the Formula Editor:
5

[Ti- 1

Break and Continue

The Break () and Continue() functions give you more control over looping. Break ()
immediately stops the loop and proceeds to the next expression that follows the loop.
Continue() is a gentler form of Break (). It immediately stops the current iteration of the loop
and continues with the next iteration of the loop.

Break

Break () is typically used inside a conditional expression. For example:

For(i =1, i <= 5, i++,
If(i == 3, Break());

Print("i=" || Char(i));
s
results in:
"7'=l”
"7':2"

The script works like this:

For(Begins the For() loop.
i=1, Sets i to 1.
i <=5, As long as 1 is less than or equal to 5, continues

evaluating the loop.

i+, Increments i by 1. Note that this step is done after the
If loop is evaluated.

Chapter 5 JSL Building Blocks 109

Scripting Guide lterate
If(Begins the I loop.
i == 3, Break() If i is equal to 3, breaks the loop.
); Ends the loop.
Print(When 1 equals 3, opens the Print() loop.
"i=" Prints the string "i=" to the log.

[Places "i=" on the same line as the value that follows.
Char(i)); Prints the value of i to the log.

The For() loop then repeats until the value of i is less
than or equal to 5, breaking and printing only when i is
less than 3.

)3 Ends the loop.

Note that when the If() and Break() expressions follow Print(), the script prints the values
of i from 1 to 3, because the loop breaks after "i=3" is printed.

"7'=l n

"7':2 n

"7‘:3 n

Continue

As with Break(), Continue() is typically used inside a conditional expression. For example:

For(i =1, i <=5, i++,
If(i < 3, Continue());

Print("i=" || Char(i));
);
results in:
Il_l'=3ll
"-i:4"
II_,'=5'I

The script works like this:

For(Begins the For () loop.
i=1, Sets i to 1.

i <=5, Evaluates 1 as less than or equal to 5.

110 JSL Building Blocks
Conditional Functions

i++,

If(

i < 3, Continue()

Char(i));

Chapter 5
Scripting Guide

Increments i by 1. Note that this step is done after the
If loop is evaluated.

Begins the If() loop.

Evaluates i as 1 and continues as long as 1 is less than 3.
Ends the IO loop.

When 1 is no longer less than 3, opens the Print() loop.
Prints the string "i=" to the log.

Places "i=" on the same line as the value that follows.
Prints the value of i to the log.

The For () loop then repeats until the value of 1 is less
than or equal to 5, continuing and printing only when i
is equal to or greater than 3.

Ends the loop.

Conditional Functions

JSL provides five functions to evaluate an expression conditionally: If(), Match(), Choose(),

Interpolate(), and Step().

The IfQ function evaluates the first result expression when its condition evaluates as true (a
nonzero or nonmissing value). Otherwise, it evaluates the second result expression.

The syntax is:

If (condition, resultl, result2)

For example, the following script returns "Young" when the age is less than 12. Otherwise, the

script returns "Young at Heart".

If (age < 12,
”Young",
"Young at Heart"

);

You can also string together multiple conditions and results. The syntax is:

If (conditionl, resultl,
condition2, result2,

Chapter 5 JSL Building Blocks 111
Scripting Guide Conditional Functions

resultElse);

In the preceding example, if condition] is not true, the function continues evaluating until it
finds a true condition. Then that condition’s result is returned.

The last result is returned when all conditions are false. And when a value is missing, the
missing value is returned. For these reasons, it’s very important to include a default result at
the end of the expression. Consider the following example, which recodes gender
abbreviations in Big Class.jmp:

For Each Row(sex =

If(
sex == "F", "Female",
sex == ||Mll’ "Ma1e",

"Unknown') ;

);
The script works like this:

For Each Row(sex = For each row in the table, sex is the column that is
recoded.
If(Begins the If() loop.
sex == "F", "Female", If the value of sex is F, replaces the value with Female.
sex == "M", "Male", If the value of sex is M, replaces the value with Male.
"Unknown™) ; If neither of the above conditions are true, replaces the

value with Unknown. If this result were omitted and
the value of sex were missing, the script would return a
missing value.

); Ends the loop.

You can also put actions and assignments in the result expression. The following example
assigns 20 to x, because the first condition (y < 20) is false:

y = 25;
z=IfCy <20, x=y, x =20);

Note: Be careful to use two equal signs (==) for equality tests, not one equal sign (=). An If
with an argument such as name=vaTlue assigns rather than tests the value.

112 JSL Building Blocks Chapter 5
Conditional Functions Scripting Guide

Match
You can use the Match() function to make several equality comparisons without needing to
rewrite the value to be compared. The syntax is:
Match(x, valuel, resultl, value2, result2, ..., resultElse)
For example, the following script recodes gender abbreviations in Big Class.jmp:

For Each Row (sex =

Match(
sex,
"F", "Female",
"M", "Male",
"Unknown") ;

);

The script works like this:

For Each Row(sex = For each row in the table, sex is the column that is
recoded.
Match(Begins the Match() loop.
sex, Specifies sex as the match argument.
"F", "Female", If the value matches "F" replace it with “Female”.
"M", "Male", If the value matches "M", replace it with "Male.
"Unknown™) ; If F or M are not matched, replaces the value with
"Unknown".
)3 Ends the loop.

This Match() example is a simplified version of the example in “If” on page 110. The
advantage of Match() is that you define the comparison value once rather than repeat it in
each condition. The disadvantage is that you cannot use expressions with operators as you can
with If; the argument sex == "F" returns an error in a Match() expression.

With more groups of conditions and results, the value of Match() becomes more apparent.
The following script would require many additional lines of code with If().

dt=open("$SAMPLE_DATA/Travel Costs.jmp");

For Each Row(Booking Day of Week =
Match(Booking Day of Week, "Sunday", "SUN", "Monday", "MON", "Tuesday",
"TUE", "Wednesday", "WED", "Thursday", "THU", "Friday", "FRI", "Saturday",
"SAT", "Not Specified™);

s

Chapter 5 JSL Building Blocks 113
Scripting Guide Conditional Functions

Be careful with the data type of the condition and result. In the preceding example, the
conditions and results are both character data. If the data types do not match, JMP
automatically changes the column’s data type. The results are not what you want.

The following script changes the column’s data type from numeric to character based on the

first cell’s data type. The first value, "12", is replaced with "Twelve", and the remaining cells are
filled with "Other".

dt=open("$SAMPLE_DATA/Big Class.jmp");

For Each Row(age =
Match(age, 12, "Twelve", 13, "Thirteen", 14, "Fourteen", 15, "Fifteen", 16,
"Sixteen", "Other'");

s

When data consists of integers such as 1, 2, and 3, you can save even more typing by using
Choose(). See “Choose” on page 113 for more information.

Choose

The Choose() function shortens scripts even more than Match(), provided the arguments are
tested against integers. The syntax is:

Choose(expr, resultl, result2, result3, ..., resultElse)

Suppose you have a data table with a column of numeric values from 1 through 7. If the first
cell contains the number 1, the following script returns x = "Low".

x = (Choose(group,
IILOWII’
"Medium",
"High",
"Unknown"

R
s
Show(x) ;

The script works like this:

X = Creates the x variable.

Choose(Begins the Choose() loop.
group, Evaluates the value of group.
"Low", If the value of group is 1, return "Low".
"Medium", If the value of group is 2, return "Medium".

"High", If the value of group is 3, return "High".

114

JSL Building Blocks Chapter 5
Conditional Functions Scripting Guide
"Unknown" Otherwise, return "Unknown".
) Ends the loop.
J; Closes the x variable.
Show(x) ; Returns the value of x.

If the expression evaluates to an out-of-range integer (such as 7 when only 4 replacement
values are listed), the last result is returned. In the preceding example, "Unknown" is
returned.

Notice that If() and Match() require more code to achieve the same results as the Choose
function:

if(group==1, "Low", group==2, "Medium", group==3, "High", "Unknown");
match(group, 1, "Low", 2, "Medium", 3, "High", "Unknown");

Note: If the data types in the expression do not match, JMP automatically changes the
column’s data type.

Interpolate

The Interpolate() function finds the y value corresponding to a given x value between two
points (x1, y1l and x2, y2). A linear interpolation is applied to the values. You might use
Interpolate() to calculate missing values between data points.

The data points can be specified as a list:
Interpolate(x, x1, yl, x2, y2, ...)

or as matrices containing the x and y values:
Interpolate(x, xmatrix, ymatrix)

Suppose that your data set includes the height of individuals from age 20 through 25.
However, there is no data for age 23. To estimate the height for 23-year-olds, use interpolation.
The following example shows the value that you want to evaluate (age 23), followed by
matrices for ages (20 through 25) and heights (59 through 75).

Interpolate(23, [20 21 22 24 25], [59 62 56 69 75]);
returns:
62.5

The value 62.5 is halfway between the y values 56 and 69, just as 23 is halfway between the x
values 22 and 24.

Notes:

Chapter 5 JSL Building Blocks 115
Scripting Guide Compare Incomplete or Mismatched Data

Step

* The data points in each list or matrix must create a positive slope. For example,
Interpolate(2,1,1,3,3) returns 2. However, Interpolate(2,3,3,1,1) returns a missing
value (.).

e Interpolate is best used for continuous data, but Step() is for discrete data. See “Step”
on page 115 for details.

The Step() is like Interpolate() except that it finds the corresponding y for a given x from a
step-function fit rather than a linear fit. Use Step() with discrete y values (that is, when the y
value’s corresponding x value can be only y; or y;). However, when the y value’s
corresponding x value can fall between y; and y,, use Interpolate().

As with Interpolate, the data points can be specified as a list:
Step(x, x1, yl, x2, y2, ...)

or as matrices containing the x and y values:
Step(x, xmatrix, ymatrix)

Suppose that your data table shows the discount percentage for purchases of $25, $50, $75,
and $100. You want to create a graph that shows the discount for a $35 purchase, which the
data table does not specify. The following example shows the value that you want to evaluate,
35, followed by matrices for purchases from $25 to $100.

Step(35, [25 50 75 100], [5 10 15 251);
returns:
5

If the discounts were on a sliding scale (in this example, between 5 and 10, you would use
Interpolate():

Interpolate(35, [25 50 75 100], [5 10 15 251);
returns:
7

As with Interpolate(), the data points must create a positive slope.

Compare Incomplete or Mismatched Data

Comparing data that contains missing values can return misleading results unless you specify
a condition that is always true or use functions such as Is Missing() or Zero Or MissingQ.
Comparisons of data with mismatched types (numeric versus character) or data in matrices
can also be confusing.

116

JSL Building Blocks

Compare Incomplete or Mismatched Data

Chapter 5
Scripting Guide

Table 5.5 shows examples of such comparisons and matrices and explanations of the results.
For a review of operators used in comparisons, see “Operators” on page 90. The sections that
follow the table provide more details about comparison and logical operators.

Note: Matrices must include the same number of columns or rows.

Table 5.5 Some Special-Case Comparison Tests

Test

m=.; m==1

m=.; ml=1

m=.; m<l; m>1; and
S0 on

m=.; l<m<0

{a, b}==1ist(a, b)

{a, b}<{a, c}
1==|labcll
1<="abc"

[1 2 3]==[2 2 5]

[12 3]=

[123] <[225]

[123] <2

Is Missing(m)

Result

[0 10]

[0 10]

[101]

[100]

Explanation
An equality test with a missing value returns missing.
An inequality test with a missing value returns missing.

A comparison with a missing value returns missing
(unless it could not possibly be true, see next).

A comparison involving a missing value that could not
possibly be true returns false; false takes precedence
over missing for comparisons with more than two
arguments (as with logical operators).

An equality test of list arguments returns a single result.
A comparison test of list arguments is not allowed.

An equality test with mixed data types returns false.

A comparison with mixed data types returns missing.

An equality test of matrices returns a matrix of
elementwise results. When a matrix is compared to a
matrix, comparison is done element-by-element and
returns a matrix of 1s and 0s.

An equality test of a matrix and a matrix filled with 2s.
If a matrix is compared to a number, the number is
treated as a matrix filled with that number.

A comparison of matrices returns a matrix of
elementwise results.

A comparison of a matrix and a matrix filled with 2s.

Returns 1 for a missing value and returns 0 otherwise.
For missing character values, you can also use empty
quotes for the comparison, as in m =""

Chapter 5 JSL Building Blocks 117
Scripting Guide Compare Incomplete or Mismatched Data

Table 5.5 Some Special-Case Comparison Tests (Continued)

Test Result Explanation

Zero Or Missing(m) 1 Returns 1 when the value is 0 or missing. The argument
must be numeric or a matrix and not a string.

A11([2 2]==[1 2]) 0 Summarizes elementwise comparisons; returns 1 only if
all comparisons are true and returns 0 otherwise.

Any([2 2]==[1 2]) 1 Summarizes elementwise comparisons; returns 1 if any
comparison is true and returns 0 otherwise.

Missing Values

In a comparison, missing values typically return missing, not true or false. For this reason, it is
very important to include a result that is always true. Suppose that a data table column
contains the values 1, 2, 3, and a missing value in column A. A formula in column B sets up the
comparison. For example, the following script:

New Table("Testing Comparisons",
Add Rows(4),
New Column("A",
Numeric,
"Continuous",
Format("Best", 10),
Set Values([1, 2, 3, .])

s
New Column("B", Character, "Nominal",
Formula(
If(
:A, "true",
1, "false"
)
)
))
returns the following results:
"true"
"true"
"true"
"false"

The script works like this:

If(Begins the comparison.

118 JSL Building Blocks Chapter 5
Inquiry Functions Scripting Guide

tA, "true”, If the value of A is nonmissing and nonzero, the result is
"true". This comparison is true for the first three rows.

1, "false" The value of 1 is always true, so the missing value
returns "false".

) Closes the comparison.

The two exceptions to this rule involve comparing a missing value to a known value:

* If one value is true and another is missing, Or () returns true. (Only one value in an Or()
test needs to be true to get a true result.)

¢ If one value is false and another is missing, And() returns false. (Both values in an And()
test must be true to get a true result.)
Is Missing

If you know that some values are missing, you can also compare with Is Missing(). The
comparison in the preceding example can be rewritten as follows:

IfC :A, "true", Is Missing(:A), "missing", "false");

Is Missing(:A) returns “missing” when A is missing and “false” otherwise.

Zero Or Missing

If the missing value could be 0, use the Zero Or Missing() function instead:
Zero Or Missing(A);

This expression returns 1 when A is 0 or missing.

Tip: You cannot compare a known value with an explicitly defined missing value, only with
variables, matrices, or other things that could contain missing values.

Inquiry Functions

Inquiry functions identify the type of an element, such as a string, list, or matrix. You can then
write a script specific to that element type.

JMP also uses inquiry functions to determine the writability of a directory or file and to
identify a computer’s operating system and the JMP version.

General Element Types

The Type () function returns a string naming the type of the resulting value. For example:

Chapter 5 JSL Building Blocks 119
Scripting Guide Inquiry Functions

Show(Type(1), Type("hi"), Type({"a",2}), Type([10 24 3251));
results in:
Type(1) = "Integer"
Type("hi") = "String"

Type('{”a”, 2}) = "L_istn
Type([10 24 325]) = "Matrix";

Specific Element Types

Other inquiry operators (such as Is Matrix(), Is List(), Is Scriptable(), and so on) let
you test for specific types of objects. In the following example, Is Matrix() evaluates as true,
then the specified calculations are run:

a = [2 3];
b = [1,11;
c=a* b;

if(Is Matrix(c),
(crha) / (@*bh),
Print("c is not a matrix."));
[5 25]

Is Scriptable() returns 1 when the object is scriptable. Four variables in the following
example refer to a data table, column, platform, and report. All four objects are scriptable, so
Is Scriptable() returns 1 for each example.

dt=0Open("$SAMPLE_DATA/Big Class.jmp");
col=Column("weight™);
plat=Bivariate(Y(:weight), X(:height));
rep=Report(plat);
Show(Is Scriptable(dt));
1
Show(Is Scriptable(col));
1
Show(Is Scriptable(plat));
1
Show(Is Scriptable(rep));
1

Is Empty() tests to see whether a variable has a value, a function, an expression, or a reference
to an object. Otherwise, you get errors when referring to something that has not been created
or assigned a value yet. Programmers call this an uninitialized variable.

Here is an example of a test to see whether a data table is opened and therefore assigned to the
dt variable. If a data table is not opened, the Open() function prompts the user to open the
table.

If(Is Empty(dt = Current Data Table()),
dt = Open()

120 JSL Building Blocks
Inquiry Functions

Chapter 5
Scripting Guide

)
You can use Is Empty() for any variable (such as global variable, local variable, and columns).

Table 5.6 shows functions that identify object types.

Table 5.6 Inquiry Functions That Identify Object Types

Syntax Explanation

Is Associative Returns 1 if the evaluated argument is an associative array or 0
Array (X otherwise.

Is Directory(x) Returns 1 if the x argument is a directory and 0 otherwise.

Is Empty(global) Returns 1 if the global variable, data table, or data column does not

Is Empty(dt) have a value (is uninitialized) or 0 otherwise.

Is Empty(col)

Is Expr() Returns 1 if the evaluated argument is an expression or 0 otherwise.

Is File() Returns 1 if the x argument is a file and 0 otherwise.

Is List(x) Returns 1 if the evaluated argument is a list or 0 otherwise.

Is Matrix(x) Returns 1 if the evaluated argument is a matrix or 0 otherwise.

Is Name(x) Returns 1 if the evaluated argument is a name or 0 otherwise. See
“Retrieve a stored expression, not its result” on page 223 for details.

Is Namespace(x) Returns 1 if the evaluated argument is a namespace or 0 otherwise.

Is Number () Returns 1 if the evaluated argument is a number or missing
numeric value or 0 otherwise.

Is Scriptable(x) Returns 1 if the evaluated argument is a scriptable object or 0
otherwise.

Is String(x) Returns 1 if the evaluated argument is a string or 0 otherwise.

Type(X) Returns a string naming the type of x.

Object Attributes

JMP provides the following functions to determine whether a file or directory is writable
before attempting to write to them. Use these functions in combination with Is
Directory(path) and Is File(path) to verify a script destination and attribute. See the
Functions chapter in the JSL Syntax Reference book for additional information.

The Is Directory Writable(path) function returns 1 if the directory specified in the path
argument is writable and 0 otherwise.

Chapter 5 JSL Building Blocks 121
Scripting Guide Inquiry Functions

The Is File Writable(path) function returns 1 if the file specified in the path argument is
writable and 0 otherwise.

For example, the following code verifies the path refers to a directory and then checks to
ensure the directory is writable:

If(
Is Directory(
"$SAMPLE_DATA\Loss Function Templates"

) ’
If(
Is Directory Writable(
"$SAMPLE_DATA\Loss Function Templates"

),
"Directory is writable.",
"Directory is read only!"

),

"Is a read only directory."

);

Host Information

The Host Is() inquiry function identifies the current operating system. Then actions specific
to that operating system can be performed.

For example, if the operating system is Windows, the following script loads a Windows
Dynamic Link Library (DLL):

If(Host is("Windows"),
d11_obj = Load DLL("C:/Windows/System32/user32.d11")
s

You could also use Host Is() to specify text sizes in reports for different operating systems. If
you commonly write your scripts on Windows and share them with Macintosh users, the
results can look different from what you intended. For example, the following expression sets
the text to a larger size on Macintosh and a smaller size on Windows:

textsize = if(host is("Mac"),12,10);

Version Information
The IJMP Version() inquiry function returns the JMP version as a string. You might use this
function to determine the JMP version and then run a script compatible with that version.

JMP Version(); // returns "12.0.0" in IMP 12
JMP Version(); // returns " 9.0.0" in IMP 9

122 JSL Building Blocks Chapter 5
Inquiry Functions

Scripting Guide
Notice that a leading blank is inserted before versions less than 10.0.0. This blank helps when

comparing version numbers. Without the leading blank, 9.0.0 is interpreted as greater than
10.0.0.

Chapter 6

Types of Data

Working with Numbers, Strings, Dates, Currency, and More

This chapter discusses basic data types:

numbers and strings

paths, which are a special type of string

dates and times, which can be either special numbers or special strings
currency

hexadecimal values and blobs

At the end of the chapter are two sections that show more advanced methods of interacting
with strings and pattern matching with regular expressions.

Contents

Numbers and Strings 125
Unicode Characters. vvu ettt ettt e e et e et e et 125
Path Variables 126
Create and Customize Path Variables i 129
Relative Paths.o 129
File Path Separators. oo 129
Date-Time Functions and Formats. i e 130
Date-Time Valuest e e e e 130
Program with Date-Time Functions. i i i, 131
Date-Time Valuesin Data Tables i 138
CUITENCY . oottt e 142
Hexadecimal and BLOB Functions.o i 143
Work with Character FUNCHONSottt e et 145
L) 4T PP 145
MUNEET . oo 146
Repeat. ... 148
Regular EXpressions 148

Chapter 6 Types of Data 125
Scripting Guide Numbers and Strings

Numbers and Strings

Numbers can be written as integers, decimal numbers, in scientific notation with an E
preceding the power of ten, and as date-time values. A single period by itself is the missing
numeric value.

For example, these are all numbers:
1 12 1.234 3E3 0.314159265E+1 1E-20

One or more characters placed within double quotation marks constitute a string. For
example, these are all strings:

"Green" "Hello,\NWorld!" "54"

Notice that if a number is in quotation marks, it is a string, not a number. There are two
functions you can use to change a number into a string or a string into a number.
* Use Num(Q) to convert a string into a number. For example:
Num("54");
54

Note: Num() cannot convert non-numeric characters, so it produces a missing value.

Num("Hello");

® Use Char() to convert a number into a string. For example:

Char(54);

"54"
Char(3E3)

"3000 "

To preserve locale-specific numeric formatting in Num() or Char() output, include <<Use
Locale(1). option as shown in the following example:

Char(42,5,2, <<Use Locale(1l));
// results in the character value "42,00" in the French Tocale

Unicode Characters

JMP supports both Unicode UTF-8 and UTF-16 standards for encoding and representing text
for most of the world languages. Refer to the The Unicode Consortium for code charts and
details on the Unicode standard.

To display Unicode characters in JMP, precede the Unicode code for the character with "\ .
For example:

* Greek letter sigma (o) in Unicode = U+03C3; in JMP, use \!U03C3
e Greek letter mu () in Unicode = U+03BC; in JMP, use \'U03BC

http://www.unicode.org/

126

Types of Data Chapter 6
Path Variables Scripting Guide

To use Unicode to express superscripts and subscripts:

e subscript 1 () in Unicode = U+2081; in JMP, use \!U2081

e superscript 2 (%) in Unicode = U+00B2; in JMP, use \U00B2
To express x%in Unicode, in JMP, use \!U0078\!U00B2.

Path Variables

Path variables are shortcuts to directories or files. Rather than enter the entire path to the
directory or file, you use the path variable in a script. A path variable is a special type of string
and is always contained within double quotation marks.

One common predefined path variable in JMP is $SAMPLE_DATA. This variable points to the
sample data folder in your JMP or JMP Pro installation folder. The following example opens
the Big Class.jmp sample data table.

Open("$SAMPLE_DATA/Big Class.jmp")

Several path variables are predefined in JMP. The following table shows the definitions for the
current JMP version. Variables in previous versions of JMP might differ.

Table 6.1 Predefined Path Variable Definitions
Variable Path

ADDIN_HOME The second argument in Register Addin() is assigned to this
variable. See the Register Addin() section of the JSL Syntax
Reference for details.

When you create an add-in through Add-In Builder, the
$ADDIN_HOME definition is based on your computer’s operating
system:

e Windows: "C:/Users/<username>/AppData/Roaming/SAS/
JMP/Addins/"

e Macintosh: "/Users/<username>/Library/Application
Support/JMP/Addins/"

Chapter 6 Types of Data 127
Scripting Guide Path Variables

Table 6.1 Predefined Path Variable Definitions (Continued)

Variable Path
ALL_HOME e Windows (JMP): "/C:/ProgramData/SAS/JMP/<version
number>/"

e Windows (JMP Pro): "/C:/ProgramData/SAS/JMPPro/
<version number>/"

¢ Windows (JMP Shrinkwrap): "/C:/ProgramData/SAS/
JMPSW/<version number>/"

e Macintosh: "/Library/Application Support/JMP/<version
number>/"

DESKTOP e Windows: "/C:/Users/<username>/Desktop/"

¢ Macintosh "/Users/<username>/Desktop/"

DOCUMENTS e Windows: "/C:/Users/<username>/Documents/"

e Macintosh: "/Users/<username>/Documents/"
GENOMICS_HOME "/<JMP Genomics installation directory>/"

HOME ¢ Windows (JMP): "C:/Users/<username>/AppData/Roaming/
SAS/JMP/<version number>/"

e Windows (JMP Pro): "/C:/ProgramData/SAS/JMPPro/
<version number>/"

¢ Windows (JMP Shrinkwrap): "/C:/ProgramData/SAS/
JMPSW/<version number>/"

e Macintosh: "/Users/<username>/"

SAMPLE_APPS ¢ Windows: /C:/<JMP installation directory>/Samples/Apps/"
¢ Macintosh: "/Library/Application Support/<JMP installation
directory>/Samples/Apps/"
SAMPLE_DATA e Windows: "/C:/<JMP installation directory>/Samples/Data/"
e Macintosh: "/Library/Application Support/<JMP installation
directory>/Samples/Data/"
SAMPLE_IMAGES e Windows: "/C:/<JMP installation directory>/Samples/
Images/"

e Macintosh: "/Library/Application Support/<JMP installation
directory>/Samples/Images/"

128 Types of Data
Path Variables

Chapter 6
Scripting Guide

Table 6.1 Predefined Path Variable Definitions (Continued)

Variable Path

SAMPLE_IMPORT_DATA o

SAMPLE_SCRIPTS .
o
TEMP .
[]
USER_APPDATA .
Changes to JMP

preferences, menus, and ®
the Home Window are
stored here, along with .
Debugger session

settings.

Windows: "/C:/<JMP installation directory>/Samples/Import
Data/"

Macintosh: "/Library/Application Support/<JMP installation
directory>/Samples/Import Data/"

Windows: "/C:/<JMP installation directory>/Samples/
Scripts/"

Macintosh: "/Library/Application Support/<JMP installation
directory>/Samples/Scripts/"

Windows: "/C:/Users/<username>/AppData/Roaming/
Temp/"

Macintosh: "/private/var/folders/.../Temporary ltems/"
Windows (JMP): "/C:/Users/<username>/AppData/
Roaming/SAS/JMP/<version number>/"

Windows (JMP Pro): "/C:/ProgramData/SAS/JMPPro/
<version number>/"

Windows (JMP Shrinkwrap): "/C:/ProgramData/SAS/
JMPSWY/<version number>/"

Macintosh: "/Users/<username>/Library/Application
Support/JMP/<version number>/"

Path variable definitions are updated automatically based on the version of JMP you are
using. For example, when you run a JMP 9 script in JMP 12, the JMP 12 path variable

definitions are used.

To see the definition of any path variable, use the function Get Path VariabTe:

Get Path Variable("HOME");
"/C:/Users/<username>/AppData/Roaming/SAS/IMP/12/"

Note that you don’t include a dollar sign for Set Path Variable() or Get Path VariableQ.
But you must include the dollar sign when using the variable in a script.

Trailing Slashes

Make sure to include a trailing slash after the path variable. In the following example, the root
name "Big Class" is assigned to the dtName variable. The Open expression evaluates
$SAMPLE_DATA and the trailing slash and then appends the dtName value along with the file

extension . jmp.

Chapter 6 Types of Data 129
Scripting Guide Path Variables

dtName = "Big Class";
dt = Open("$SAMPLE_DATA/"|| dtName ||".jmp");

The path is interpreted as:
C:/Program Files/SAS/JMP/11/Samples/Data/Big Class.jmp
Without the slash that follows $SAMPLE_DATA, the path is interpreted as:
C:/Program Files/SAS/JMP/11/Samples/DataBig Class.jmp

Create and Customize Path Variables

You can create your own path variables or override some of the built-in variables with the Set
Path Variable(). In the following example, the path variable is called root. The variable
points to the c:/ directory.

Set Path Variable("root", "c:/");
To get the value of the new variable, use Get Path VariableQ).
Get Path Variable("root"); // returns "c:/"

Use your path variable as you would other variables. The following expression opens the
myimportdata.txt file in the c:/ directory.

Open("$root/myimportdata.txt™)

As with getting path variables, omit the dollar sign when setting path variables.

Relative Paths

If you plan to use relative paths in variables, you must set the default directory. Then any path
not preceded by a drive letter is relative to the default directory. Here is an example:

Set Default Directory("c:/users/smith/data™);

To return the value of the default directory, use Get Default Directory().
Get Default Directory(); // returns "c:/users/smith/data"

So the following expression:
Open("cleansers.jmp");

resolves as C:/users/smith/data/cleansers.jmp.

File Path Separators

In JMP, the preferred file path format is the Portable Operating System Interface (POSIX), or
UNIX, format with forward slashes (/) as separators. This means that you do not have to

130

Types of Data Chapter 6
Date-Time Functions and Formats Scripting Guide

identify the current operating system in scripts run on both Windows and Macintosh.
However, each host still accepts its native format for compatibility.

You can a convert file path format from Windows to POSIX (and vice versa) using Convert
File Path(). Converting from a POSIX to a Windows path might be useful when you need to
output a path to a file or to another application. The syntax is:

Convert File Path (path, <absolute|relative>, <POSIX|windows>, <base(path)>);
For example, the following script converts a POSIX path to a Windows path:
Convert File Path("c:/users/smith", windows); //returns c:\users\smith

You can substitute a path variable (such as $HOME) for the path inside quotes.

Date-Time Functions and Formats

A date-time value consists of any portion of a date or time. The value can be seconds
(3388594698), a complete date (such as “Wednesday, May 18, 2011”), the date and time (“05/
18/2011 8:18:18 PM”), the week number (3), and so on.

JMP lets you convert date-time values to common formats, perform arithmetic on the values,
and manipulate the data in a number of ways.

Tip: For descriptions of all date-time functions and their arguments, see the JSL Syntax
Reference.

Date-Time Values

Date-time values are stored and calculated as the number of seconds since midnight, January
1, 1904. For example:

Today(); // returns 3388649872 on May 19, 2011 at 12:00:00 AM

As with Today (), the Date DMY() and Date MDY(Q) functions also return month, day, and year
arguments as seconds. For example, if it were 12:00:00 a.m. on May 19, 2011, all of the
following statements would return the same value:

Date DMY(19,5,2011);
Date MDY(5,19,2011);
Today(O;

3388608000

The As Date() function takes the number of seconds and displays it as a date or duration.

® Values that represent one year or more are returned as dates:

As Date(3388608000) ;
19May2011

Chapter 6
Scripting Guide

Types of Data 131
Date-Time Functions and Formats

® Values that represent less than a year are returned as durations.

As Date(50000);
:0:13:53:20

You can use date-time values in two ways:

® aliteral value, for example 19May2011:10:10

* astring, for example "Thursday, May 19, 2011"

You can perform arithmetic with date-time literals, which use the number of seconds as the

base number.

As Date(19May2011 + 1);

19May2011:00:00:01

Program with Date-Time Functions

Table 6.2 shows functions that convert seconds into date-time values and date-time values into

seconds.

Table 6.2 Date-Time Functions

Function

Abbrev Date(date)

As Date(expression)

Explanation

Returns a string representation for the date supplied. The format
is based on your computer’s regional setting. So for the English
(United States) locale, the date is formatted like "02,/29/2004".
Even if you are running JMP in English with a different locale,
the locale format is applied.

Formats a number or expression so that it shows as a date or
duration in a text window. For example, values that represent
one year or more are returned as dates.

x = As Date(8Dec2000 + inDays(2));
shows as:

10Dec2000

Values that represent less than a year are returned as durations.
As Date(50000);
shows as:

:0:13:53:20

Types of Data

Date-Time Functions and Formats

Chapter 6
Scripting Guide

Table 6.2 Date-Time Functions (Continued)

Function

Date DMY(day, month,

year)

Date MDY(month, day,

year)

Day Of Week(date)

Day Of Year(date)

Day(date)

Format(date,
"format'")

Hour (datetime)

In Days(n)
In Hours(n)
In Minutes(n)
In Weeks(n)
In Years(n)

Long Date(date)

MDYHMS (date)

Explanation

Returns the specified date expressed as the number of seconds
since midnight, 1 January 1904. For example, the second Leap
Day of the third millennium is DateDMY (29, 2,2004), which
returns 3160857600.

Returns the specified date expressed as the number of seconds
since midnight, 1 January 1904. For example, the second Leap
Day of the third millennium is DateMDY(2,29,2004), which
returns 3160857600.

Returns an integer representation for the day of the week of the
date supplied. Weeks are Sunday-Saturday.

Returns an integer representation for the day of the year of the
date supplied.

Returns an integer representation for the day of the month of the
date supplied.

Returns the value in the format specified in the second argument.
Most typically used for formatting datetime values from a
number of seconds to a formatted date. Format choices are those
shown in the Column Info dialog box. Also see Table 6.3 “How
JMP Interprets Two-Digit Years” on page 137.

Returns an integer representation for the hour part of the
date-time value supplied.

These functions return the number of seconds per n minutes,
hours, days, weeks, or years. Divide by these functions to
express an interval in seconds as an interval in other units.

Returns a string representation for the specified date. The
format is based on your computer’s regional setting. So for the
English (United States) locale, the date is formatted like
"Sunday, February 29, 2004". Even if you are running JMP in
English with a different locale, the locale format is applied.

Returns a string representation for the date supplied, formatted
like ""2/29/2004 00:02:20 AM".

Chapter 6
Scripting Guide

Types of Data 133
Date-Time Functions and Formats

Table 6.2 Date-Time Functions (Continued)

Function

Minute(date-time)

Month(date)

InFormat(string,
"format")

Parse Date(string,
"format')

Second(date-time)

Short Date(date)

Time Of Day(date)

Today)

Week Of Year(date,
<rule_n>)

Year(date)

Explanation

Returns an integer representation for the minute part of the
date-time value supplied.

Returns an integer representation for the month of the date
supplied.

Parses a string of a given format and returns datetime value
expressed as if surrounded by As Date(), returning the date in
ddMonyyyy format.

Returns an integer representation for the second part of the
date-time value supplied.

Returns a string representation for the date supplied, in the
format mm/dd/yyyy, regardless of locale (for example, "02/29/
2004").

Returns an integer representation for the time of day of the
date-time supplied.

Returns the current date and time expressed as the number of
seconds since midnight, 1 January 1904. No arguments are
accepted, but the parentheses are still needed.

Returns the week of the year as a date-time value. Three rules
determine when the first week of the year begins.

e With rule 1 (the default), weeks start on Sunday, with the
first Sunday of the year being week 2. Week 1 is a partial
week or empty.

e With rule 2, the first Sunday begins with week 1, with
previous days being week 0.

e With rule 3, the ISO-8601 week number is returned. Weeks
start on Monday. Week 1 is the first week of the year with
four days in that year. It is possible for the first or last three
days of the year to belong to the neighboring year’s week
number.

Returns an integer representation for the year of the specified
date.

134 Types of Data Chapter 6
Date-Time Functions and Formats Scripting Guide

Examples of Common Date-Time Functions

You can use any function that returns seconds within a function that returns a date-time.

For example, if today is May 19, 2011 and the time is 11:37:52 AM, Today () returns the number
of seconds, and the functions that follow show that number of seconds since the base time in
different date-time formats:

Today)
3388649872

Short Date(Today());

"05/19/2011"
Long Date(Today());

"Thursday, May 19, 2011"
Abbrev Date(Today());

"5/19/2011"
MDYHMS (Today () ;

"05/19/2011 11:37:52 AM"

The date argument in parentheses can be seconds (or any function that returns seconds), or
any date-time literal value. For example, both of the following expressions return the same
value:

Long Date(3388649872);
Long Date(19May2011);
"Thursday, May 19, 2011"

Note: Long Date() and Abbrev Date() values are formatted according to your computer’s
regional settings.

Extract Parts of Dates

You can extract parts of date values using the functions Month(), Day O, Year(), Day Of
Week (), Day Of Year(), Week Of Year(), Time Of Day, Hour(), Minute(), and Second(),
which all return integers. If today is May 24th, 2011, each of the following examples returns
the 144th day of the year:

Day of Year(Today());

Day of Year(24May2011);

Day of Year(Date MDY(5,24,2011));
144

Example

A data table column named Date contains date-time values that are formatted as "m/d/y". You
want to create a column that shows only the time. In the following script, the second column’s
formula extracts the time of day from the Date value in the first column.

Chapter 6 Types of Data 135
Scripting Guide Date-Time Functions and Formats

New Table("Assembly Tests",
Add Rows(1),
New Column("Date",
Numeric, Continuous,
Format("m/d/y"),
Set Values([3389083557])
)
New Column("Time",
Numeric, Continuous,
Formula(Format(Time Of Day(:Date), "h:m:s"))
)
s

Figure 6.1 shows the result. Note that the time of day does not appear in the Date column,
because the Format function applies the “m/d/y” format.

Figure 6.1 Example of Extracting the Time
4q -

= Date Time
1 05/24i2011 12:05:57 FM

Rules for Determining the Week of the Year

Week of Year() returns the week of the year as a date-time value. Three rules determine when
the first week of the year begins.

e With rule 1 (the default), weeks start on Sunday, with the first Sunday of the year being
week 2. Week 1 is a partial week or empty.

Week Of Year(Date DMY(19,6,2013),1);
25
e With rule 2, the first Sunday begins with week 1, with previous days being week 0.

Week Of Year(Date DMY(19,6,2013),2);
24

e With rule 3, the ISO-8601 week number is returned. Weeks start on Monday. Week 1 is the
first week of the year with four days in that year. It is possible for the first or last three days
of the year to belong to the neighboring year’s week number.

Week Of Year(Date DMY(19,6,2013),3);
25

Arithmetic on Dates

You can perform the usual arithmetic operations with date-time data as with any other
numeric data. One option is simple arithmetic, such as subtracting a number from a date-time
value.

Another option is writing a formula to perform the arithmetic.

136 Types of Data Chapter 6
Date-Time Functions and Formats Scripting Guide

Example

The Date column in your data table shows when a customer uses his credit card to buy gas.
You want to know how many days elapse between purchases. The following script creates a
Days elapsed column. The formula in that column subtracts the Date value in the current row
from that of the previous row.

New Table("Gas Purchases",
Add Rows(3),
New Column("Date",
Numeric, "Continuous",
Format("m/d/y"),
Set Values([3392323200 3393532800 3394828800])

)
New Column("Days elapsed",
Formula(
If(row()==1, ., // returns a missing value for the first row
(:Date[row()]-:Date[row() - 1])/in days())));
J;

Figure 6.2 shows the result.

Figure 6.2 Example of Calculating Date-Time Values
q -

= Date Days elapsed
1/ 07/01/2011
2| 071572011 14
3 07/30/2011 15

Time Intervals

The In Minutes, In Hours, In Days, In Weeks, and In Years functions are used to express
time intervals in units rather than seconds. Each of these functions returns the number of
seconds associated with a particular period of time. For example, the following expression
returns the number of weeks between now and July 4, 2012.

(Date DMY(04,07,2012)-Today())/InWeeks();
55.6559441137566

When the argument for the interval function is empty, JMP counts by 1. You can enter another
number to change the count. For example, In Years(10) converts the interval to decades. The
following expression returns the number of decades between now and December 31, 2037.

(Date DMY(31,12,2037)-Today())/InYears(10);
2.65581440286967

Chapter 6 Types of Data 137
Scripting Guide Date-Time Functions and Formats

Two- and Four-Digit Years

JMP applies its own algorithms for interpreting and displaying datetime strings rather than
supporting operating system-specific datetime formats. However, JMP uses the datetime
separators selected in the Region and Language control panel (Windows) or the Date & Time
preferences (Macintosh) to interpret and display dates.

Two-digit years are interpreted according to the current system clock year and JMP rules. For
example, when the year in a script is 11, and you run the script after 1990, the year shows as
2011.

Long Date(25Mayll);
"Wednesday, May 25, 2011"

To avoid ambiguity, enter four-digit years. The following expression returns 1911 (rather than
2011) as indicated:

Long Date(25May1911);
"Thursday, May 25, 1911"

Table 6.3 explains how JMP interprets two-digit years.

Table 6.3 How JMP Interprets Two-Digit Years

Two-Digit When it is Evaluated Result Examples Result
Year Value
00-10 before 1990 (on Windows) 19__ enter 5 in year 1905
1979
before or during 1990 (on
Macintosh)
during or after 1990 (on 20__ enter 5 in year 2005
Windows) 1991
after 1990 (on Macintosh)
11-89 (on any time current enter 13 in year 1913
Windows) century 1988
11-90 (on enter 13 in year 2013
Macintosh 2024
)
90-99 (on before 2011 19__ enter 99 in year 1999
Windows) 1999
9199 (on during or after 2011 20__ enter 99 in year 2099

Macintosh 2015
)

138

Types of Data Chapter 6
Date-Time Functions and Formats Scripting Guide

Note: JMP always displays four-digit years regardless of the regional settings. If you need to
show two-digit years, use character string functions. See the “Types of Data” chapter on
page 123.

Date-Time Values in Data Tables

Change Date-Time Input and Display Formats

In data tables, JMP can accept the input of date-time values in one format (the input format),
store them internally as the number of seconds since the base date, and display them in a
different date-time format. The Informat () and Format() functions give you this control.

* Informat() takes a string date-time value, defines the date format used in that string, and
returns the date in ddMonyyyy format.

Informat("19May2011 11:37:52 AM","ddMonyyyy h:m:s");
19May2011:11:37:52
e Format() takes the number of seconds since the base date (or a date-time function that
returns that number) and returns the date in the specified format.

Format (3388649872, "ddMonyyyy h:m:s");
"19May2011 11:37:52 AM"

Format(Today(), "ddMonyyyy h:m:s");
"19May2011 11:37:52 AM"

Suppose that you are entering dates into a column using the d/m/y h:m format, but you want
to see the dates in the m/d/y format. The Informat () function defines the input format, and
the Format () function defines the display format. For example,

New Table("Widget Assembly",
Add Rows(1),
New Column("Date",
Numeric, "Continuous",
Format("m/d/y"),
Informat("d/m/y h:m"),
Set Values([3126917100])

s

The Format() and Informat() values are shown in the data table’s column properties
(Figure 6.3). Note that when you click in the cell to edit it, the date-time value appears in the
input format. When you edit the value, or add a new value, the format specified in the data
table column Format list is used to display the value.

Chapter 6 Types of Data 139
Scripting Guide Date-Time Functions and Formats

Figure 6.3 Example of Date-Time Display and Input Values

4 O 4 =
= Date = Date

1 02/01/2003 1 01402 U3 4:05 Al

‘Date’ in Table "Widget Assembly'

R —

Lock

Data Type Numeric v |

Modeling Type | Cantinueus ~ |

Format m/dgy v | width
InpUE Formmat (afmgy hm =

[

Notes:

e In ascript that converts a column from character to numeric, specify Format() and
Informat() to prevent missing values. See “Convert Character Dates to Numeric Dates”
on page 657 in the “Common Tasks” chapter for details.

® The date-separator character on your computer might differ from the forward slash (/)
character shown in this book.

* You can enter time values in 24-hour format (military time) or with AM or PM designators.

Table 6.4 describes the formats used as arguments in date-time functions or as data table
formats. You can also use the formats for the format argument to a Format message to a data
column. See “Set or Get Formats” on page 325 in the “Data Tables” chapter.

For descriptions of specific date-time functions, see the [SL Syntax Reference.

Table 6.4 Date-Time Formats

Type Format argument Example

Date only "m/d/y" "01/02/1999"
"mmddyyyy" "01021999"
"m/y" "01/1999"
"d/m/y" "02/01/1999"
"ddmmyyyy" "02011999"
"ddMonyyyy" "02Jan1999"
"Monddyyyy" "Jan021999"
"y/m/d" "1999/01/02"

"yyyymmdd" "19990102"

140

Types of Data
Date-Time Functions and Formats

Type

Date and time

Day number
and time

Table 6.4 Date-Time Formats (Continued)

Format argument

"yyyy-mm-dd
"yyyyQq"
"m/d/y h:m"

"m/d/y h:m:

"d/m/y h:m"

"d/m/y h:m:

"y/m/d h:m"

"y/m/d h:m:

"ddMonyyyy

"ddMonyyyy

"ddMonyyyy:

"ddMonyyyy:

"Monddyyyy

"Monddyyyy

":day:hr:m"

":day:hr:m:

"h:im:s"

|lh:mll

n

h:m"

h:m:s"

h:m"

h:m:s"

h:m"

h:m:s"

Sll

Example
“1999-01-02
1999Q1

"01/02/1999
"01/02/1999

"01/02/1999
"01/02/1999

"02/01/1999
"02/01/1999

"02/01/1999
"02/01/1999

£1999/01/02
£1999/01/02

£1999/01/02
£1999/01/02

"02Jan1999
"02Jan1999

"02Jan1999
"02Jan1999

"02Jan1999:
"02Jan1999:

"02Jan1999:
"02Jan1999:

"Jan021999
"Jan021999

"Jan021999
"Jan021999

"34700:13:0

13:01"
1:01 PM"

13:01:55"
1:01:55 PM"

13:01"
1:01 PM"

13:01:55"
1:01:55 PM"

13:01’
1:01 PM’

13:01:02
1:01:02 PM’

13:01"
1:01 pM"

13:01:02"
1:01:02 PM"

13:01"
1:01 pM"

13:01:02"
1:01:02 PM"

13:01"
1:01 pM"

13:01:02"
1:01:02 PM"

1"

":33:001:01 PM"

"34700:13:0

1:02"

":33:001:01:02 PM"

"13:01:02"

"01:01:02 PM"

"13:01"
"01:02 PM"

Chapter 6
Scripting Guide

Chapter 6
Scripting Guide

Table 6.4 Date-Time Formats (Continued)

Type

Duration

Format argument
"yyyy-mm-ddThh:mm"
"yyyy-mm-ddThh:mm:ss"

":day:hr:m"

":day:hr:m:s"

"hrem"

"hr:m:s"

"min:s"

Types of Data 141
Date-Time Functions and Formats

Example
1999-01-02T13:01
1999-01-02T13:01:02

“52:03:01”

reads fifty-two days, three hours, and one
minute

“52:03:01:30”

reads fifty-two days, three hours, one minute,
and thirty seconds

“17:37”

reads seventeen hours and thirty-seven
minutes

“17:37:04”

reads seventeen hours, thirty—seven minutes,
and 4 seconds

“37:04”

reads thirty-seven minutes and 4 seconds

Note: The following formats display the date-time according to your computer’s regional
settings. They are available only for the display of dates, not for date input in a data table.
Examples are shown for the United States locale.

Abbreviated
date

Long date
Locale date

Locale date
and time

"Date Abbrev"

"Date Long"
“Locale Date”
“Locale Date Time h:m”

“Locale Date Time
h:m:s”

(Display only) “01/02/1999"

(Display only) "Saturday, January 02, 1999"
(Display only) “01/02/1999"

(Display only) “01/02/1999 13:01“ or “01/
02/1999 01:01 P™M“

(Display only) “01/02/1999 13:01:02“ or
“01/02/1999 01:01:02 PM“

142 Types of Data Chapter 6
Currency Scripting Guide

Currency

JMP displays numbers as currency using the Format () function, which uses the following
syntax:

Format(x,"Currency", <"currency code">, <decimal>);
Where:
e xisa column or a number
® currency code"is an International Standards Organization (ISO) 4217 code
® decimal is the number of decimal places
To illustrate the Format function:

Format(12345.6, "Currency", "GBP", 3);
"£12,345.600"

If you do not specify the currency code, the currency symbol is based on the computer’s
operating system locale. For example, running the following script in a Japanese operating
system formats the number with the yen symbol.

Format(12345.6, "Currency", 3);
"¥12,345.600"

If the currency code is not supported by JMP, the currency code string appears before the
number.

Format(12345.6, "Currency", "BBD", 3);
"BBD 12,345.600"

Table 6.5 lists the currencies supported in JMP.

Table 6.5 Currencies Supported in JMP

Code Currency Code Currency Code Currency

AUD Australiandollar HKD Hong Kong dollar PHP Philippine peso

BRL Brazilian real ILS Israeli new shekel PLN Polish zloty

CAD Canadian dollar INR Indian rupee RUB Russian ruble

CHF Swiss franc JPY Japanese yen SEK Swedish krone
CNY Chinese yuan KRW South Korean won SGD Singapore dollar
COP Colombian peso MXN Mexican peso THB Thaibaht

DKK Danish krone MYR Malaysian ringgit TWD New Taiwan dollar

EUR Euro NOK Norwegian krone USD USdollar

Chapter 6
Scripting Guide

Types of Data 143

Hexadecimal and BLOB Functions

Table 6.5 Currencies Supported in JMP (Continued)

Code Currency

GBP British pound

Code Currency Code Currency

NZD New Zealand dollar ZAR South African rand

Hexadecimal and BLOB Functions

JMP can also handle binary (large) objects, commonly called BLOBs. The functions below
convert between hexadecimal values, numbers, characters, and BLOBs. Some of the functions
are covered in more detail following Table 6.6.

These functions are listed in the JSL Syntax Reference.

Table 6.6 Hexadecimal and BLOB Functions

Syntax

Hex("text™)
Hex Cnum)
Hex(bTob)

Hex To
Blob(“hexstring”)

Hex To
Char(“hexstring”,
encoding)

Hex to Number

Char To Blob(string)
Char To Blob(string,
encoding)

Blob To Char(blob)
Blob To Char(blob,
encoding)

Explanation

Returns the hexadecimal codes for the characters in text, number,
or blob.

Char To Hexis an alias.

Returns a BLOB representation of the hexadecimal code
supplied as a quoted string.

Returns a character string that corresponds to the hexadecimal
code suppled as a quoted string.

The default encoding supported for the hex code is utf-8. You
can also specify one of these encodings: utf-16le, utf-16be,
us-ascii, i50-8859-1, ascii-hex, shift-jis, and euc-jp.

Returns the number that corresponds to the hexadecimal code
suppled as a quoted string.

Converts a string of characters into a binary (blob).

The default encoding supported for the hex code is utf-8. You
can also specify one of these encodings: utf-8, utf-16le, utf-16be,
us-ascii, is0-8859-1, and ascii-hex.

Converts binary data to a Unicode string.

The default encoding supported for the hex code is utf-8. You
can also specify one of these encodings: utf-8, utf-16le, utf-16be,
us-ascii, is0-8859-1, and ascii-hex.

144

Types of Data Chapter 6
Hexadecimal and BLOB Functions Scripting Guide

Table 6.6 Hexadecimal and BLOB Functions (Continued)

Syntax Explanation

Blob Peek(blob, Returns a new BLOB that is a subset of the given BLOB that is

offset, Tength) length bytes long and begins at the offset. Note that the offset is
0-based.

Hex (string) returns the hexadecimal codes for each character in the argument. For example,
Hex("Abc")

returns
"416263"

since 41, 62, and 63 are the hexadecimal codes (in ASCII) for “A”, “b”, and “c”.

Hex to Char (string) converts hexadecimal to characters. The resulting character string
might not be valid display characters. All the characters must be in pairs, in the ranges 0-9,
A-Z, and a-z. Blanks and commas are allowed, and skipped. For example,

Hex To Char (“4142)
returns
"AR"
since 41 and 42 are the hexadecimal equivalents of “A” and “B”.
Hex and Hex To Char are inverses of each other, so
Hex To Char (Hex("Abc"))
returns
"Abc"

Hex To Blob(string) takes a string of hexadecimal codes and converts it to a binary object.

a = Hex To Blob("6A6B6C"); Show(a);
a = Char To Blob("jk1", "ascii~hex")

Blob Peek(blob,offset,length) extracts bytes as defined by the arguments from a blob.

b = Blob Peek(a,1,2); Show(b);

b = Char To Blob("k1", "ascii~hex")

b = Blob Peek(a,0,2); Show(b);

b = Char To Blob("jk", "ascii~hex")
= Blob Peek(a,2); Show(b);

b = Char To Blob("1", "ascii~hex')

Hex(b1ob) converts a blob into hexadecimal.

c = Hex(a); Show(c);
c = "6A6B6C"

b

Chapter 6 Types of Data
Scripting Guide Work with Character Functions

d = Hex To Char(c); Show(d);
d = l’jk]”

Concat(blobl,blob2) or bTobl || blob2 concatenates two blobs.

Hex To Blob("6D6E6F"); Show(e);

alle; show(f);

e = Char To Blob("mno", "ascii~hex'")

f = Char To Blob("jkimno", "ascii~hex")

e
f

Tength(blob) returns the number of bytes in a blob.

g = length(f); show(g);
g==6
Note: When blobs are listed in the log, they are shown with the constructor function

Char To Blob("...").

Any hex code outside the ASCII range (space to }, or hex 20 - 7D) is encoded as the
three-character sequence [~][hexdigit][hexdigit]. For example,

h= Hex To B1ob("19207D7E"); Show(h);

i Hex(h); Show(i);

Char To Blob("~19 }~7E", "ascii~hex'")
"19207D7E"

Char To Blob(string) creates a blob from a string, converting ~hex codes.

h
7

145

Blob To Char(blob) creates a string with ~hex codes to indicate non-visible and non-ASCII

codes.

Work with Character Functions

This section shows how to use some of the more complex character functions that are
described in the JSL Syntax Reference.

Concat

In the Concat function, expressions yielding names are treated like character strings, but

globals that have the name values are evaluated. The following example demonstrates that if
you have a stored name value, you need to either use Char before storing it in a global, or Name

Expr on the global name.

n = { abc };

c=n[1] || "def";
show(c);

//result is "abcdef"

m=expr(mno) ;

Types of Data Chapter 6

Work with Character Functions Scripting Guide
c=m | | llxyzn ;
show(c);

//result is an error message that mno is unresolved

m = expr(mno) ;

c = Name Expr(m) || "xyz";
show(c);

//result is "mnoxyz"

m=char(expr(mno));
c=m || "xyz";
show(c);

//result is "mnoxyz"

Concat Items() converts a list of string expressions into a single string, with each item
separated by a delimiter. If unspecified, the delimiter is a blank. Its syntax is

resultString = Concat Items ({list of strings}, <“delimiter string”>);
For example,

a = {“ABC!!’ “DEFII’ llHIJl!};
result = Concat Items(a, “/");

returns

“ABC/DEF/HIJ”
Alternatively,

result = Concat Items(a);
returns

“ABC DEF HIJ”

Munger

Munger works many different ways, depending on what you specify for its arguments:

Munger(string, offset, find | length, <replace>);

Table 6.7 Munger behaviors for various types of arguments

Find, length, and replace arguments Example
If you specify a string as the find and Munger("the quick brown fox", 1,
specify no replace string, Munger returns qul Ck5) ;

the position (after offset) of the first
occurrence find string.

Chapter 6
Scripting Guide

Types of Data 147
Work with Character Functions

Table 6.7 Munger behaviors for various types of arguments (Continued)

Find, length, and replace arguments

If you specify a positive integer as the
Tength and specify no replace string,
Munger returns the characters from offset
to offset+ length.

If you specify a string as the find and
specify a replacestring, Munger replaces the
first occurrence after offset of text with
replace.

If you specify a positive integer as the
Tength and specify a replace string, Munger
replaces the characters from offset to
offset+ length with replace.

If you specify a positive integer as the
length, and offset + Tength exceeds the
length of text, Munger either returns text
from offset to the end or replaces that
portion of text with the replace string, if it
exists.

If you specify zero as the Tength and specify
no replace string, Munger returns a blank
string.

If you specify zero as the Tength and specify
a replace string, the string is inserted
before the offset position.

If you specify a negative integer as the
Tength value and specify no replace string,
Munger returns all characters from the offset
to the end of the string.

If you specify a negative integer for Tength
and specify a replace string, Munger
replaces all characters from the offset to the
end with the replace string.

Example

Munger('the quick brown fox",1,5);
llthe ql'

Munger("the quick brown fox", 1, "quick",
"fast");
"the fast brown fox"

Munger("the quick brown fox", 1, 5,
"fast");
"fastuick brown fox"

Munger("the quick brown fox",5,25);
"quick brown fox"
Munger("the quick brown fox",5,25,
"fast");

"the fast"

Munger("the quick brown fox", 1, 0);

i

Munger("the quick brown fox", 1, 0, "see
")
"see the quick brown fox"

Munger("the quick brown fox", 5, -5);
"quick brown fox"

Munger("the quick brown fox", 5, -5,
"fast");
"the fast"

148 Types of Data Chapter 6
Regular Expressions Scripting Guide

Repeat

The Repeat function makes copies of its first argument into a result. The second (and
sometimes a third) argument is the number of repeats, where 1 means a single copy.

If the first argument evaluates to a character value or list, the result is that many copies.

repeat("abc",2)
"abcabc"

repeat({"A"},2)
{"A", "A"}

repeat({1,2,3},2)
{1,2,3,1,2,3}

If the first argument evaluates to a number or matrix, the result is a matrix. The second
argument is the number of row repeats, and a third argument can specify the number of
column repeats. If only two arguments are specified, the number of column repeats is 1.

repeat([1 2, 3 4]1,2,3)

Wk Wwhk

The repeat function is compatible with the function of the same name in the SAS/IML

language, but is incompatible with the SAS character DATA step function, which repeats one
more time than this function.

Regular Expressions

A regular expression is a specification of a pattern frequently used to clean up or extract
pieces of data. You can search for a pattern and replace it with a different string or extract
specific parts of the string. Define the pattern in the Regex() or Regex Match() function.

Regex()

Regex () searches for a patternwithin a source string and returns a string. It simply identifies
a pattern in a string or transforms a string into another string.

Regex(source, pattern, (<replacementString>, <GLOBALREPLACE>), <format>,
<IGNORECASE>) ;

IGNORECASE disregards case. GLOBALREPLACE repeats the match until the entire string is

processed. format is a backreference to the matched group. Regex() returns missing if the
match fails.

Chapter 6 Types of Data 149
Scripting Guide Regular Expressions

Example of Matching a String

bus|car is the regular expression (in quotation marks because it is also a string). The
expression means match “bus” or “car”.

sentence = "I took the bus to work.";
vehicle = Regex(sentence, "bus|car");
"busll

Examples of Replacing a String

The third argument in Regex () is a specification of the result string. In the previous example,
the value defaults to \0, which means replace everything that was matched. The example
could also be written as follows:

sentence = "I took the bus to work.";
Regex(sentence, "bus|car", "\0");
Ilbusll

\0 is a backreference to everything that was matched by the regular expression.
A more interesting variation uses parentheses to create additional backreferences.

sentence = "I took the bus to work.";
Regex(sentence, "(.*) bus (.*)", "\1 car \2");
"I took the car to work."

The (.*) before and after bus are part of the regular expression. The parentheses create a
capturing group. The . matches any character. The * matches zero or more of the previous
expression. As a result, the first parenthesis pair matches everything before bus, and the
second parenthesis pair matches everything after bus. The third argument, \1 car \2,
reassembles the text; it leaves out bus and substitutes car.

See “Backreferences and Capturing Groups” on page 157 for more information.

Example of Global Replacement

GLOBALREPLACE changes the behavior of Regex(). If the match succeeds, the entire source
string is returned with substitutions made for each place where the pattern matches. If there
are no matches, an unchanged source string is returned.

sentence = "I took the red bus followed by the blue bus to get to work
today.";

Regex(sentence, "bus", "car", GLOBALREPLACE);
"I took the red car followed by the blue car to get to work today."

You can also use backreferences. This example starts with a different sentence.

sentence = "I took the red bus followed by the blue car to get to work
today.";

Regex (
sentence,

150

Types of Data Chapter 6
Regular Expressions Scripting Guide

"Q\w*) (bus|car)",

"bicycle (not \2) that was \1",

GLOBALREPLACE

);
"I took the bicycle (not bus) that was red followed by the bicycle (not car)
that was blue to get to work today."

The \w* matches zero or more word characters and becomes backreference 1 because of the
parentheses. bus | car becomes backreference 2 because of the parentheses. The third
argument, bicycle (not \2) that was \1, describes how to build the substitution text for
the part of the source text that was matched.

Notice how the backreferences can be used to swap data positions. This might be useful for
swapping the position of first names and last names.

Regex Match()

Regex Match() returns an empty list with zero elements if the match fails. If the match
succeeds, the first list is the text of the entire match (backreference 0). The second list is the text
that matches backreference 1, and so on.

Regex Match(source, pattern, <NULL>, <MATCHCASE>);

Unlike Regex (), Regex Match() is case insensitive. Include MATCHCASE for a case-sensitive
match. Include NULL if you want to match case but there is no replacement text.

Example of Parsing Name-Value Pairs
The following example parses pairs of names and values.

Regex Match(
"person=Fred id=77 friend= favorite=tea",
"AwH)=A\S*) QAw)=A\S*) QAwH)=AS*) Qw+)=(\S*)"
s
{"person=Fred id=77 friend= favorite=tea", "person", "Fred", "id", "77",
"friend", "", "favorite", "tea'}
The \w+ matches one or more word characters. The \S* matches zero or more characters that
are not spaces. In the resulting JSL list, the field names (person, id, friend, favorite)and
their corresponding values (fred, 77, "", tea) are separate strings.

If the first argument to Regex Match() is a variable and a third argument specifies the
replacement value, the matched text is replaced in the variable.
Comparing Regex() and Regex Match()

Regex() and Regex Match() match a pattern in a given string but return different results. To
transforms your string into another string, use Regex(). To identify the substrings that match
specific parts of the pattern, use Regex Match(Q.

Chapter 6 Types of Data 151
Scripting Guide Regular Expressions

This example shows the efficiency of Regex Match() compared to Regex(). The sourceis a list
of six strings. The goal is to extract portions of those six strings into the subject, verb, and
object columns of a data table (Figure 6.4).

Figure 6.4 Final Data Table

subject wverb | object
cat ate chicken
dog chased cat
ralph like mary
girl pets dog

[VR

cat chased deg

source = {"the cat ate the chicken", "the dog chased the cat", "did ralph Tike
mary", "the girl pets the dog", "these words are strange", "the cat was
chased by the dog"};

// Create the data table.

dt = New Table("English 101",
New Column("subject", character),
New Column("verb", character),
New Column("object", character)

)

// Iterate through the strings in the Tist.
For(i =1, i <= N Items(source), i++,

// Assign the result of each match to matchList.
matchList = Regex Match(
source[i],

// Scan each string. Match zero or more characters

// and one qitem in each group.

".*?(cat|dog|ralph|girl).*?(ate|chased|Tike|pets).*?(chicken|cat|mary|dog)"
);

// If matchList has zero items (string 5), don’t add a row
// to the table. Put each matched string in separate
// data table cells.
If(N Items(matchList) > O,
dt << Add Rows(1);
dt:subject = matchList[2]; // Match the first open parenthesis.
dt:verb = matchList[3]; // Match the second open parenthesis.
dt:object = matchList[4]; // Match the third open parenthesis.
);
J;

152 Types of Data Chapter 6
Regular Expressions Scripting Guide

Regex Match() returns {"the cat was chased by the dog", "cat", "chased", "dog"}ina
single try with each answer in a separate string. Compare this example to a similar one using
Regex() , which returns one answer at a time and builds the final string using backreferences.

For(i =1, i <= N Items(source), i++,
s = Regex(source[i],
".*?(cat|dog|ralph|girl).*?(ate|chased|Tike|pets).*?(chicken|cat|mary]|dog)
", "\1"); // Match an item in the first group.
v = Regex(source[i],
".*?(cat|dog|ralph|girl).*?(ate|chased|Tike|pets).*?(chicken|cat|mary]|dog)
, "\2"); // Match an item in the second group.
o = Regex(sourcel[i],
".*?(cat|dog|ralph|girl).*?(ate|chased|Tike|pets).*?(chicken|cat|mary]|dog)
", "\3"); // Match an item in the third group.
If(!'Is Missing(s) & !Is Missing(v) & !Is Missing(o),
dt << Add Rows(1);
dt:subject = s; // Return the match for \1.
dt:verb = v; // Return the match for \2.
dt:object = o; // Return the match for \3.
);

s

Backreferences are discussed in “Backreferences and Capturing Groups” on page 157.

Special Characters in Regular Expressions

Special characters are commonly used in regular expressions. The period is a special character
that matches one instance of the specified character. It must be escaped with a backslash to be
interpreted as a period. In the following expression, the period is replaced with an
exclamation point.

Regex("Bicycling makes traveling to work fun.", "\.", "!", GLOBALREPLACE);
"Bicycling makes traveling to work fun!"

Table 6.8 describes the special characters and provides examples.

Table 6.8 Special Characters in Regular Expressions

\ * DPrecedes a literal character.
<\/a> interprets the forward slash literally in the end HTML anchor tag.
* Precedes an escape sequence.
\n matches a newline character.
A Matches the beginning of a string, not including the newline character.

Aapple matches “apple” at the beginning of a string.

Chapter 6
Scripting Guide

Types of Data
Regular Expressions

Table 6.8 Special Characters in Regular Expressions (Continued)

$

)

[]

{1

Matches the end of a string, not including the newline character.
apple$ matches “apple” at the end of a string.

Matches any single character including a newline character.
.apple matches any single character and then “apple”.
Represents a logical OR to separate alternative values.
(apple|orange|banana) matches “apple”, “orange”, or “banana”.
Matches zero or one instance.

apple (pie)? matches one or more instances of “pie”.

Matches zero or more instances.

Matches one or more instances.

Encloses a sub-expression.

(apple|orange|banana) matches “apple”, “orange”, or “banana”.

AQ\w+) matches the beginning of a line and then one or more word
characters.

Encloses an expression that matches set of characters.

[\s] matches a whitespace character or a digit.

[a-z0-9] matches “a” through “z” and numbers “0” through “9”.
Encloses an expression that represents repetition.

apple{3} repeats three times.

apple{3,} repeats at least three times as many times as possible.

apple{3, 10} repeats three times but no more than 10 times.

Append a question mark to indicate repeating as few times as possible. For
example, apple{3,}? repeats at least three times as few times as possible.

Escaped Characters in Regular Expressions

The backslash in a regular expression precedes a literal character. You also escape certain
letters that represent common character classes, such as \w for a word character or \s for a

153

space. The following example matches word characters (alphanumeric and underscores) and

spaces.

154 Types of Data Chapter 6
Regular Expressions Scripting Guide

Regex (
"Are you there, Alice?, asked Jerry.", // source
"(here|there) .+(\w+) .+(said|asked) (\s) \w+)\."); // regular expression
"there, Alice?, asked Jerry."

(here|there) .+ Matches “there”, a comma, and a space.

Aw+) Matches “Alice”.

S Matches “?, “.

(said]asked) (\s) Matches “asked” followed by a space. Without the space, the

match would end here; “asked” is followed by a space in the
source string.

QwH\. Matches “Jerry” and a period.

Table 6.9 describes the escaped characters supported in JMP. \C, \G, \X, and \z are not
supported.

Table 6.9 Escaped Characters

\A start of a string

\b word boundary. The zero-length string between \w and \W or \W and
\w.

\B not at a word boundary

\cX ASCII control character

\d single digit [0-9]

\D single character that is NOT a digit [A0-9]

\1 match a single lowercase letter [a-z]

\L single character that is not lowercase [Aa-z]

\s single whitespace character

\S single character that is NOT white space

\u single uppercase character [A-Z]

\U single character that is not uppercase [AA-Z]

\w word character [a-zA-Z0-9_]

\W single character that is NOT a word character [Aa-zA-Z0-9_]

Chapter 6 Types of Data 155
Scripting Guide Regular Expressions

Table 6.9 Escaped Characters (Continued)

\Xx00-\xFF hexadecimal character
\x{0000}-\x{FFFF} Unicode code point

\Z end of a string before the line break

Greedy and Reluctant Regular Expressions

The ?, *, and + operators are greedy by default. They match as many of the preceding
character as possible. The ? operator makes them reluctant; ?? matches 0, then 1 if needed; +?
matches 1 and then additional characters; *? matches 0 and then additional characters.

The following example starts at the letter n and compares it to the first \d (digits) in the
pattern. No digit matches. Because the pattern does not begin with A (start of line), the
matcher advances to u. The process repeats until the 3 matches the first \d and the 2 matches
the second \d.

Regex("number=32.5", "\d\d");
"32”

Change the pattern to use the greedy + (match one or more).

Regex("number=324.5", "\d+");
"32411

The preceding example begins much the same, but as soon as the 3 is found and the \d
matches, the + greedily matches the 2 and the 4.

Usually, the greedy behavior makes pattern matching faster because the string is consumed
sooner. Sometimes a reluctant behavior is better. Adding the ? after the * or + changes them
from greedy to reluctant.

Regex("number=324.5", "\d+?");
"3”

Here, + requires at least one match of a digit character, but ? changes it from “as many as
possible” to “as few as possible”. It stopped after the 3 because the pattern was satisfied.

Compare the following results.
Greedy:

Regex("number=324.5", "(\d+) \d)\.", "first=\1 second=\2");
"first=32 second=4"

Reluctant:

Regex("number=324.5", "(\d+?) O\d+?)\.", "first=\1 second=\2");
"first=3 second=24"

156

Types of Data Chapter 6
Regular Expressions Scripting Guide

In the greedy example above, the matcher greedily matched 3, 2, and 4 for the first \d+. The
matcher then had to give back the 4 so that the second \d+ could match something. The
reluctant example followed a different path to get a different answer. Initially, the second
value was 2, but the pattern could not match the period to the 4, so the second \d+? reluctantly
matched the 4 as well.

Use the Reluctant Match for Speed

The greedy and reluctant matches usually produce the same result but not always. See the
previous section. One reason you might need the reluctant match is for speed. Suppose that
you have a million-character string that begins “The quick fox...” and you want to find the
word before “fox”. You might write the following expression and expect \1 to contain
“quick”.

The (.+) fox

\1 might contain “quick” eventually, after the .* grabs the million characters to the end of the
string and then gives them up, one at a time, until “fox” is found. If there is more than one
“fox”, it will be the last fox, not this one. To speed it up and make sure we get the first fox, add
the ? operator.

The (.+?) fox

The ? advances one character at a time to get past “quick” and find the first “fox”. This
method is much faster than going too far.

Typically, the + or * operator is applied to a more restrictive expression such as \d* to match a
run of digits, and greedy is faster than reluctant.

Aside from the multiple fox possibility, greedy and reluctant eventually get the same answer.
Using the right operator speeds up the match. The right one might be greedy, or it might be
reluctant. It depends on what is being matched.

The greedy .* finds the last fox after backing up.

Regex (
"The quick fox saw another fox eating grapes",
"The (.*) fox",
ll\lll

)5

"quick fox saw another"

The reluctant . *? stops on the first fox.

Regex (
"The quick fox saw another fox eating grapes",
"The (.*?) fox",
ll\lll

)5

"quick"

Chapter 6 Types of Data 157
Scripting Guide Regular Expressions

The greedy .* has to back up a lot. There is no second fox.

Regex (
"The quick fox saw another animal eating grapes"”,
"The (.*) fox",
ll\lll
)3
"quick"

The greedy word character match is an even better choice for this problem.

Regex (
"The quick fox saw another fox eating grapes",
"The (\w*) fox",
ll\lll

J;

"qu_ick”

Backreferences and Capturing Groups

A regular expression can consist of patterns grouped in parentheses, also known as capturing
groups. In ([a-zA-Z])\s([0-9]), ([a-zA-Z]) is the first capturing group; ([0-9]) is the
second capturing group.

Use a backreference to replace the pattern matched by a capturing group. In Perl, these groups
are represented by the special variables $1, $2, $3, and so on. ($1 indicates text matched by the
first parenthetical group.) In JMP, use a backslash followed by the group number (\1, \2, \3).

The following example includes a third argument that specifies the replacement text and

backreferences.
Regex (
" Are you there, Alice?, asked Jerry.", // source
" (here|there) .+ (\w+).+(said|asked) (\w+)\.", // regular expression

" I am \1, \4, replied \2."); // optional format argument
" I am there, Jerry, replied Alice."

"I am\1, Creates the text “I am”, a space, “there”, and then the first
matched pattern, “there”.

\4, Creates the text “Jerry” with the fourth matched pattern
Qw+).
replied \2." Creates the text “replied” and a space. Matches “Alice.” with

the second matched pattern (\w+).

158

Types of Data Chapter 6
Pattern Matching Scripting Guide

Lookaround Assertions

Lookaround assertions check for a pattern but do not return that pattern in the results.
Lookaheads look forward for a pattern. Lookbehinds look back for a pattern.

Negative Lookahead Example

Negative lookaheads check for the absence of a pattern ahead of a specific pattern. ?!
indicates a negative lookahead. The following expression matches a comma nof followed by a
number or space and replaces the pattern with a comma and space:

Regex("one,two 1,234 cat,dog,duck fish, and chips,to go", ",(?!\d|\s)", ",
" ,GLOBALREPLACE);
"one, two 1,234 cat, dog, duck fish, and chips, to go"

Positive Lookahead Example

Positive lookaheads check for the presence of a pattern ahead of a specific pattern. ?= indicates
a positive lookahead. The following expression has the same result as the preceding negative
lookahead but matches a comma followed by any lowercase character:

Regex("one,two 1,234 cat,dog,duck fish, and chips,to go", ", (?=[a-z])", ",
" ,GLOBALREPLACE);
"one, two 1,234 cat, dog, duck fish, and chips, to go"

Positive Lookbehind Example

In this example, the positive lookbehind regular expression matches the “ssn=" or “salary="
keywords without including the keyword in the matched text. The matched text is the string
of characters that consists of zero or more dollar signs, digits, and hyphens.

data = "name=bil1l salary=$5 ssn=123-45-6789 age=13,name=mary salary=$6
ssn=987-65-4321 age=14";

redacted = Regex(data, "(?<=(ssn=)|(salary=))[$\d-1*", "###", GLOBALREPLACE);
"name=bill salary=### ssn=### age=13,name=mary salary=### ssn=### age=14"

Here is another way to get the same result using a backreference substitution.
((ssn=) | (salary=)) is the capturing group. "\1" is the backreference to that group.

data = "name=bil1l salary=$5 ssn=123-45-6789 age=13,name=mary salary=$6
ssn=987-65-4321 age=14";

redacted = Regex(data, "((ssn=)|(salary=))[$\d-1*", "\1###", GLOBALREPLACE);
"name=bill salary=### ssn=### age=13,name=mary salary=### ssn=### age=14"

Backreferences are discussed in “Backreferences and Capturing Groups” on page 157.

Pattern Matching

Pattern matching in JSL is a flexible method for searching and manipulating strings.

Chapter 6 Types of Data 159
Scripting Guide Pattern Matching

You define and use pattern variables just like any JMP variable:

= 3; // a numeric variable
"Ralph"; // a character variable
textbox('"Madge"); // a display box variable
("this" | "that") + patSpan(" ")

+ ("car" | "bus"); // a pattern variable

T ot -
o

When the above statement executes, p is assigned a pattern value. The pattern value can be
used either to construct another pattern or to perform a pattern match. The patSpan function
returns a pattern that matches a span of characters specified in the argument;
patSpan("0123456789") matches runs of digits.

non

p2 = "Take " + p + ; // using p to build another pattern
if(patMatch("Take this bus.", p2), print("matches"),
print("no match™)); // performing a match

Sometime all you need to know is that the pattern matched the source text, as above. Other
times, you might want to know what matched; for example, was it a bus or a car?

p = ("this" | "that") + Pat Span(" ") + ("car" | "bus") >?
vehicleType; // conditional assignment ONLY if pattern matches
If(Pat Match("Take this bus.", p),

Show(vehicleType),

Print("no match")
); // do not use vehicleType in the ELSE because it is not set

You could pre-load vehicleType with a default value if you do not want to check the outcome
of the match with an if. The >? conditional assignment operator has two arguments, the first
being a pattern and the second a JSL variable. >? constructs a pattern that matches the pattern
(first argument) and stores the result of the match in the JSL variable (second argument) after
the pattern succeeds. Similarly, >> does not wait for the pattern to succeed. As soon (and as
often) as the >> pattern matches, the assignment is performed.

findDelimString = patLen(3)>>beginDelim + patArb()>?middlePart +

expr(beginDelim);
testString = "SomeoneSawTheQuickBrownFoxJumpOverThelLazyDog'sBack";
rc = PatMatch(testString, findDelimString, "<<<" || middlePart || ">>>");

show(rc, beginDelim, middlePart, testString);

The above example shows a third argument in the patMatch function: the replacement string.
In this case, the replacement is formed from a concatenation (| | operator) of three strings. One
of the three strings, middlePart, was extracted from the testString by >? because the
replacement cannot occur unless the pattern match succeeds (rc == 1).

Look at the pattern assigned to findDelimString. It is a concatenation of 3 patterns. The first
is a >> operator that matches 3 characters and assigns them to beginDelim. The second is a >?
operator that matches an arbitrary number of characters and, when the entire match succeeds,
assigns them to middlePart. The last is an unevaluated expression, consisting of whatever

160

Types of Data Chapter 6
Pattern Matching Scripting Guide

string is in beginDel1im at the time the pattern is executing, not at the time the pattern is built.
Just like expr (), the evaluation of its argument is postponed. That makes the pattern hunt for
two identical three letter delimiters of the middle part.

Other pattern functions might be faster and represent the problem that you are trying to solve
better than writing a lot of alternatives; for example, "a"|"b"|"c" is the same as
patAny("abc"). The equivalent example for patNotAny("abc") is much harder. Similar to
patSpan (above), patBreak(""0123456789") matches up to, but not including, the first number.

Here is a pattern that matches numbers with decimals and exponents and signs. It also
matches some degenerate cases with no digits; look at the pattern assigned to digits.

digits = patSpan("0123456789") | "";
number = (patAny("+-") | "") >? signPart +
(digits) >? wholePart +
("." + digits | "") >? fractionPart +
(patAny("eEdD") + (patAny("+-") | "") + digits | "") >?
exponentPart;

if(patMatch("-123.456e-78", number), show(signPart, wholePart,
fractionPart, exponentPart));

Parsing Strings in Fixed Fields

Sometimes data is in fixed fields. The patTab, patRTab, patLen, patPos, and patRPos functions
make it easy to split out the fields in a fixed field string. PatTab and patRTab work from the
left and right end of the string and take a number as their argument. They succeed by
matching forward to the specified tab position. For example:

p = patPos(10) + patTab(15);

PatPos (10) matches the null string if it is in position 10. So at match time, the matcher works
its way forward to position 10, then patTab(15) matches text from the current position (10)
forward to position 15. This pattern is equivalent to patPos (10)+patLen(5). Another example:

p = patPos(0) + patRTab(0);
This example matches the entire string, from 0 characters from the start to 0 characters from
the end. the patRem() function takes no argument and is shorthand for patRTab(0); it means
the remainder of the string. Pattern matching can also be anchored to the beginning of the
string like this:

patMatch("now is the time", patLen(15) + patRPos(0), NULL, ANCHOR);

The above pattern uses NULL rather than a replacement value, and ANCHOR as an option. Both
are uppercase, as shown. NULL means that no replacement is done. ANCHOR means that the
match is anchored to the beginning of the string. The default value is UNANCHORED.

Patterns can be built up like this, but this is not recursive:

Chapter 6 Types of Data 161

Scripting Guide Pattern Matching
p="a"1| "b"; // matches one character
p=p+p; // two characters

p=p+ p; // four characters
patMatch("babb", patPos(0) + p + patRPos(0));

A recursive pattern refers to its current definition using exprQ:

no_n nmyn n_n | n,n

p="<"+ expr(p) + + expr(p) + "> x";
patMatch("<<x*<x*x>>*x>", patPos(0) + p + patRPos(0));

Remember, expr() is the procrastination operator; when the pattern is assigned to the variable
p, expr() delays evaluating its argument (p) until later. In the next statement, patMatch
performs the pattern match operation, and each time it encounters expr(), it looks for the
current value of the argument. In this example, the value does not change during the match).
So, if p is defined in terms of itself, how can this possibly work?

p consists of two alternatives. The right hand choice is easy: a single letter x. The left side is
harder: <p*p>. Each p could be a single letter X, since that is one of the choices p could match,
or it could be <p*p>. The last few example have used patPos(0) + ... + patRPos(0) to make
sure the pattern matches the entire source text. Sometimes this is what you want, and
sometimes you would rather the pattern match a subtext. If you are experimenting with these
examples by changing the source text, you probably want to match the entire string to easily
tell what was matched. The result from patMatchis O or 1.

This example uses “Left” recursion:
x = expr(x) + "a" | "b"; // + binds tighter than |
If the pattern is used in FULLSCAN mode, it eventually uses up all memory as it expands. By

default, the patMatch function does not use FULLSCAN, and makes some assumptions that
allow the recursion to stop and the match to succeed. The pattern matches either a “b”, or

"1

anything the pattern matches followed by an “a”.

rc = patMatch("baaaaa", x);

Patterns and Case

Unlike regular expressions, pattern matching is case insensitive. To force case sensitivity, you
can add the named argument MATCHCASE to either Pat Match or Regex Match. For
example:

string = "abcABC";

result = Regex Match(string, Pat Regex("[aBc]+"));
Show(string, result);

string = "abcABC"
result {"abcABC"}

result = Regex Match(string, Pat Regex("[cba]+"), NULL, MATCHCASE);

162 Types of Data
Pattern Matching

Show(string, result);
string = "abcABC"
result = {"abc"}

Chapter 6
Scripting Guide

Chapter 7

Data Structures
Working with Collections of Data

JSL provides these basic data structures that can hold a variety of data in a single variable:

¢ Alist holds a number of other values, including nested lists and expressions.

* A matrix is a row-by-column table of numbers.

* An associative array maps keys to values, which can be almost any other type of data.

Contents

5 165
Evaluate Lists.o o e 165
Assignments with Lists o i i i 166
Perform Operationsin Lists. 166
Find the Number of Itemsina List. o i i 166
SUDSCIIPES . . 166
Locate Itemsina List 167
List Operators 168
Iterate through a List 172
Concatenate Lists 172

Matrices 173
Construct Matrices 173
SUDSCIIPES . . 174
Inquiry FUNCHIONSo 178
Comparisons, Range Checks, and Logical Operators.............................. 178
Numeric Operations. i 179
Concatenation 182
TranSPOSe . ..ot 182
Matricesand Data Tables. 183
Matrices and Reports 185
LocFunctions. ... 186
Ranking and Sorting............ 187
Special Matrices. 188
Inverse Matrices and Linear Systems. i 193
Decompositions and Normalizations. o o oo 196
Build Your Own Matrix Operators. i, 201
Statistical Examples 201

ASSOCIAtIVE ATTAYS .. oottt et 206

Chapter 7 Data Structures 165
Scripting Guide Lists

Lists

Lists are containers to store items, such as the following:

* numbers

e variables

e character strings

* expressions (for example, assignments or function calls)
* matrices

* nested lists

Create a list in one of the following ways:

* use the List function

e use { } curly braces

Examples

Use the List() function or curly braces to create a list that includes numbers and variables:

List(1, 2, b);
{1, 2, b};

X
X

A list can contain text strings, other lists, and function calls:
{"Red", "Green", "Blue", {1, "true"}, sqrt(2)};
You can place a variable into a list and assign it a value at the same time:

x = {a=1, b=2};

Evaluate Lists

When you run a script that contains a list, a copy of the list is returned. The items inside the
list are not evaluated.

b=7;
x = {1, 2, b, Sqrt(3)};
Show(x) ;

x =1{1, 2, b, Sqrt(3)};
To evaluate items in a list, use the Eval List function.
b=17;
x = {1, 2, b, Sqrt(3)};

c = Eval List(x);
{1, 2, 7, 1.73205080756888}

166 Data Structures Chapter 7
Lists Scripting Guide

Assignments with Lists

Create a list to assign values to variables.

Examples
{a, b, ¢} = {1, 2, 3}; // assigns 1 to a, 2 to b, and 3 to c
{a, b, c}--; // decrements a, b, and c

{{a}, {b, c}}++; // increments a, b, and c by 1
mylist = {1, Tog(2), eQApi(), height[40]}; // stores the expressions

Perform Operations in Lists

In lists, you can perform operations.

a = {{15 2}1 3! {4! 5}};
b = {{10, 20}, 30, {40, 50}};
c=a+ b;

c = {{11, 22}, 33, {44, 55}}

Find the Number of Items in a List

To determine the number of items in a list, use the N Items() function.

x = {1, 2, y, Sqrt(3), {a, b, 3}};
N = N Items(x);
Show(n) ;

n=>5;

Subscripts

Subscripts extract specified items from a list. Use a list as a subscript to return multiple items
from a list.

Note: JSL starts counting from 1, so the first element in a list is [1], not [0] as in some other
languages.

Examples
List a contains four items.

a = {"bob", 4, [1,2,3], {x,y,z}};
Show(a[1]);

al1] = "bob";
Show(a[{1,3}]);

af{1, 331 = {"bob", [1, 2, 31};
a[2] = 5; // assigns 5 to the second Tist item

Chapter 7 Data Structures 167
Scripting Guide Lists

You can also use subscripts to select or change items in a list:

Show(a);
a = {”bOb"I 5; [11 2; 3]5 {XJ Y, Z}},’
c=1{1, 2, 3}

c[{1, 231 = {4, 4};

// c[{1, 2}] = 4 produces the same result

Show(¢);

c=1{4, 4, 3};

When you have assignments or functions in a list, you can use a quoted name for the subscript
to extract the value.

x={sqrt(4), 1og(3)};

xx={a=1, b=3, c=5};

X["sqrt"] ;

4
xx["b"];
3

The name must be in quotation marks, or else JMP tries to evaluate it and use its value. The
following example shows the values of the second item in the list, rather than the value of ain
the list.

a=2;
Show(xx[a]);
xx[a] = b = 3;

Note the following;:

¢ Multiple left-side subscripts (for example, a[i][j] = value where a contains a list of
things that are subscriptable) are allowed in the following circumstances:

— Each level except the outermost level must be a list. So, in the example above, a must be
a list but a[i] can be anything subscriptable.

— Each subscript except the last must be a number. So, in the example above, i must be a
number, but j could be a matrix or list of indices.

¢ Subscripting can be done to any level of nesting, such as the following:

alil[310kI (1T [m][n] = 99;

Locate Items in a List

Use the Loc() function or the Contains() function to find values in a list:

Loc(Tlist, value)
Contains(list, value)

Loc() and Contains() return the positions of the values. Loc() returns the results in a matrix,
and Contains() returns the results as a number.

168 Data Structures Chapter 7
Lists Scripting Guide

Note the following:

® The Loc function returns each occurrence of a repeated value. Contains() returns only the
first occurrence of a repeated value.

e If the value is not found, the Loc function returns an empty matrix and Contains () returns
a zero.

e To assess whether an item is in a list, use Loc() and Contains() with >0. A returned value
of zero means that the item is not in the list. A returned value of 1 means that the item is in
the list at least once.

Note: For details about matrix manipulation and a description of the equivalent Loc)
command for matrices, see “Matrices” on page 173.

Examples

nameList = {“Katie”, “Louise”, “Jane”, “Jane”};
numList = {2, 4, 6, 8, 8};

Search for the value "Katie" in the nameList:

Loc(nameList, “Katie”);

[1j

Contains(namelList, "Katie");
1

Search for the value "Erin" in the nameList:

Loc(nhameList, “Erin”);

[1

Contains(nameList, "Erin");
0

Search for the number 8 in the numList:

Loc(nhumList, 8);
[4, 5]

Contains(numList, 8);
4

Find out if the number 5 exists in the numList:

NRow(Loc(humList, 5)) >0;

0
Contains(numList, 5) >0;

0

List Operators

Table 7.1 describes the list operators and their syntax.

Chapter 7
Scripting Guide

Table 7.1 List Operators

Operator and Function

As List(Q)

Assign()

Add To(Q
SubtractTo()
MultiplyTo(Q)
DivideTo()

Post Increment()
Post Decrement()

Concat To(Q)

Concat()

Eval List(Q)

Insert Into()

Syntax

As List(matrix)

{Tist} = {Tist}
{1ist} += value
{list} -= {1ist}

Concat To(listl1,

list2, ...)
Concat(listl, Tist2,
vel)s

Eval List(7ist)

Insert Into(list, x,
<7>)

Data Structures 169

Lists

Explanation

Returns the matrix as a list. A matrix
with multiple columns is returned as
a list of lists, one list per row.

If the target of an assignment
operator is a list and the value to be
assigned is a list, then it assigns item
by item. The ultimate values in the
left list must be L-values (in other
words, names capable of being
assigned values).

Notes:

e If you want to test equality of
lists, use ==, not =.

e JMP does not have a
pre-decrement operator. Use the
SubtractTo() operator instead

(-).

Inserts the second and subsequent
lists at the end of the first list.

Returns a copy of the first list with
any additional lists inserted at after
it.

Returns a list of the evaluated

expressions inside list. See “Evaluate
Lists” on page 165.

Inserts a new item (x) into the Tistat
the given position (7). If 7 is not
given, the item is added to the end of
the list. This function does change
the original list.

170

Data Structures

Lists

Table 7.1 List Operators (Continued)

Operator and Function

{3

Insert()

Is ListQ

List

N Items

Remove From()

Remove ()

Syntax

list = Insert(list,
X, <1>)

Is List(arg)

List(a, b, ©
{a, b, c}

N Items(Tist)

Remove From(7ist,
<7>, <m>)

Remove(list, <i>,
<n>)

Chapter 7
Scripting Guide

Explanation

Returns a copy of the Tist with a
new item (x) inserted into the 7ist at
the given position (7). If 7 is not
given, the item is added to the end of
the list. This function does not
change the original list.

Returns true (1) if argis a classical
list (in other words, one that would
result from the construction by
List(items) or {7tems}) and returns
false (0) otherwise. An empty list is
still a list, so IsList({ }) returns
true. If miss=., then IsList(miss)
returns false, not missing.

Constructs a list from a set of items.
An item can be any expression,
including other lists. Items must be
separated by commas. Text should
either be enclosed in double
quotation marks (" ") or stored in a
variable and called as that variable.

Returns the number of elements in
the 7ist specified. Can be assigned
to a variable.

Deletes nitems from the Tist,
starting from the indicated position
(7). If nis omitted, the item at 7 is
deleted. If nand 7 are omitted, the
item at the end is removed. This
function does change the original list.

Returns a copy of the Tist with the n
items deleted, starting from the
indicated position (7). If nis omitted,
the item at 7 is deleted. If nand 7 are
omitted, the item at the end is
removed. This function does not
change the original list.

Chapter 7
Scripting Guide

Table 7.1 List Operators (Continued)

Operator and Function

[]

Reverse Into()

Reverse()

Shift Into()

Shift(Q)

Sort Ascending()

Sort

Descending()

Sort List Into(Q)

Sort List()

Subscript()

Syntax

Reverse Into(71ist)

Reverse(71ist)

Shift Into(list, <n>)

Shift(list, <n>)

Sort Ascending(7ist)

Sort Descending(7ist)

Sort List Into(7ist)

Sort List(7ist)

T1ist[17]

x = 1ist[1]
1ist[i] = value
alb, cJ

Subscript(a, b, ©

Data Structures 171

Lists

Explanation

Reverses the order of the items in the
1ist. This function does change the
original list.

Returns a copy of the Tist with the
items in reverse order. This function
does not change the original list.

Shifts nitems from the front of the
Tistto the end of the Tist. If nis
omitted, the first item is moved to the
end of the list. This function does
change the original list.

Returns a copy of the Tist with n
items shifted from the front of the list
to the end of the Tist. If nis omitted,
the first item is moved to the end of
the list. This function does not
change the original list.

Returns a copy of the Tist sorted in
ascending order. This function does
not change the original list.

Returns a copy of the Tistsorted in
descending order. This function does
not change the original list.

Sorts the 775t in ascending order.
This function does change the
original list.

Returns a copy of the Tistsorted in
ascending order. This function does
not change the original list.

Subscripts for lists extract the 7
item from the 77st. Subscripts can in
turn be lists or matrices.

172 Data Structures Chapter 7
Lists Scripting Guide

Table 7.1 List Operators (Continued)

Operator and Function Syntax Explanation
Substitute() Substitute(7ist, Returns a copy of a list or expression,
pattExprl,

replacing instances of each pattern
expression with the corresponding
replacement expression.

replExprl, ...)

Substitute Substitute Into(77st, Changes a list or expression,
IntoQ pattexprl, replacing instances of each pattern
replExprl, ...) . . .
expression with the corresponding
replacement expression. Note: The
1ist or expression must be a
variable.

Iterate through a List

Iterate through a list to do something with each value or look for a particular value. The
following script looks at each item in the list. If the item in the list is less than or equal to 10, it
is replaced with its square.

X {2, 12, 8, 5, 18, 25};
n =N Items (X);
for (i=1, i<=n, i++,
if (x[11<=10, x[i]l=x[i1]A2)
J;
Show (x)
x = {4, 12, 64, 25, 18, 25};

You can use Loc() to locate the items in the new list that are equal to 25:

Loc (x,25)
[4, 6] // The fourth and sixth items in the Tist are equal to 25.

Concatenate Lists

Join two or more lists into one list with Concat() or the | | operator.
The following example uses Concat() to join lists a and b:

a = {1, 2};

b={7, 8, 93};

Concat(a, b);
{1, 2, 7, 8, 9}

The following example joins the same lists using the | | operator:

{1, 23 I {7, 8, 9}

Chapter 7 Data Structures 173
Scripting Guide Matrices
{1, 2, 7, 8, 9}

Lists of different types can be concatenated (for example, lists that contain character strings
and numbers).

d = {"apples", "bananas"};
e = {"oranges", 'grapes'"};
f=1{1, 2, 3}

Concat(d, e, f);
{"apples", "bananas'", "oranges", 'grapes'", 1, 2, 3}

Matrices

A matrix is a rectangular array of numbers that are arranged in rows and columns. Use
matrices to store numbers and perform calculations on those numbers using matrix algebra.

Note the following for this section:

* Matrices are represented with an uppercase bold variable (for example, A).

* A matrix with one row or one column is a vector (or more specifically, a row vector or a
column vector respectively).

¢ For clarity, we represent matrices that are vectors with lowercase bold letters (such as x).

e A scalar is a numeric value that is not in a matrix.

Construct Matrices

Note the following when creating matrices:

® Place matrix literals in square brackets. [...]

® Matrix values can contain decimal points, can be positive or negative, and can be in
scientific notation.

® Separate items across a column with blank spaces. You can use any number of blank
spaces.

® Separate rows with a comma.

For constructing more advanced matrices, see “Special Matrices” on page 188.

Examples

Create matrix A with 3 rows and 2 columns:
A=1[12, 34,5 6];

R is a row vector and C is a column vector:

R = [10 12 14];

174 Data Structures Chapter 7
Matrices Scripting Guide
C = [11, 13, 15];
B is a 1-by-1 matrix, or a matrix with one row and one column:
B = [20];
E is an empty matrix:
E=1[1

Specifying the number of rows and columns in an empty matrix is optional. JMP creates the
matrix as necessary.

A script can return an empty matrix. In Big Class.jmp, the following expression looks for rows
in which age equals 8, finds none, and returns an empty matrix:

a = dt << Get Rows Where(age == 8);
Show(a);
a=[]00,1;

Construct Matrices from Lists

If you want to convert lists into a matrix, use the Matrix() function. A single list is converted
into a column vector. Two or more lists are converted into rows.

Create a column vector from a single list:

A = matrix({1,2,3});
[1,2,3]

Create a matrix from a list of lists. Each list is a row in the matrix.

A = matrix({{1,2,3}, {4,5,6}, {7,8,911);
[12 3,

456,
7 89
Construct Matrices from Expressions

To construct matrices from expressions, use Matrix(). Elements must be expressions that
resolve to numbers.

A = matrix({4*5, 8A2, sqrt(D});
[20, 64, 3]

Subscripts

Use the subscript operator ([1) to pick out elements or submatrices from matrices. The
Subscript() function is usually written as a bracket notation after the matrix to be
subscripted, with arguments for rows and columns.

Chapter 7 Data Structures 175
Scripting Guide Matrices

Single Element

The expression A[1,j] extracts the element in row 1, column j, returning a scalar number. The
equivalent functional form is Subscript(A,1i,J).

P=[123, 456, 7 8 9];
P[2,3]; // returns 6
Subscript(P,2,3); // returns 6

Assign the value that is in the third row and the first column in the matrix A (which is 5) to the
variable test.

A=[1 2, 3 4, 5 6];
test = A[3,1];
Show(test);

test = 5;

Matrix or List Subscripts

To extract a sub-matrix, use matrix or list subscripts. The result is a matrix of the selected rows
and columns. The following expressions select the 2nd and 3rd rows with the 2nd and 1st
columns.

P=[12 3, 456, 78 9];
PL[2 3]1,[1 31]1; // matrix subscripts
P[{2,3},{1,3}]; // 1list subscripts

Both of these methods provide the following output:

[4 6,
7 9]

Single Subscripts

A single subscript addresses matrices as if all the rows were connected end-to-end in a single
row. This makes the double subscript A[1, j] the same as the single subscript
A[G-D*ncol (A)+3].

Examples

Q=1[246,8 10 12,14 16 18];
Q[8]; // same as Q[3,2]
16

The following examples all return the column vector [10, 14, 18]:

Q=1[246, 81012, 14 16 18];
QL{5, 7, 9}1;

QLL5 7 911;

ii = [5 7 9];

QLiil;

176 Data Structures Chapter 7
Matrices Scripting Guide

i1 = {5, 7, 9};
Qliil;
Subscript(Q, ii);
This script returns the values 1 through 9 from the matrix P in order:

P=1[123,456, 78 9];
For(i =1, i <= 3, i++,
For(j =1, j <= 3, j++,
Show(P[i, j1)
)
J;

Delete Rows and Columns

Deleting rows and columns is accomplished by assigning an empty matrix to that row or
column.

Alk, 0] = [1; // to delete the kth row
A[0, kI [1; // to delete the kth column

Select Whole Rows or Columns

A subscript argument of zero selects all rows or columns.
P=1[123,456, 78 9];
Select column 2:

P[0, 2];
[2, 5, 8]

Select columns 3 and 2:

P[0, [3, 2]11;
[32, 65, 98]

Select row 3:

P[3, 01;
[7 8 9]

Select rows 2 and 3:

PC[2, 3], 0;
[4 56, 78 9]

Select all columns and rows (the whole matrix):

P[0, 01;
[123, 456, 789]

Chapter 7 Data Structures 177
Scripting Guide Matrices

Assignment through Subscripts

You can change values in matrices using subscripts. The subscripts can be single indices,
matrices or lists of indices, or the zero index representing all rows or columns. The number of
selected rows and columns for the insertion must either match the dimension of the inserted
argument, or the argument can be inserted repeatedly into the indexed positions.

Examples
Change the value in row 2, column 3 to 99:

P=1[123,456, 7 8 9];
P[2, 3] = 99;
Show(P);

P=[123, 4599, 789]

Change the values in four locations:

P=1[123,456, 78 9];
PL[1 2], [2 3]] = [66 77, 88 99];
Show(P);

P=[1 66 77, 4 88 99, 7 8 9]

Change three values in one column:

P=1[123,456, 78 9];
P[0, 2] = [11, 22, 33];
Show(P);

P=[1 11 3, 4 22 6, 7 33 9]

Change three values in one row:

P=1[123,456, 78 9];
P[3, 0] = [100 102 1047;
Show(P);
P=[12 3, 456, 100 102 104]

Change all the values in one row to the same value:

P=1[123,456, 7 8 9];
P[2, 0] = 99;
Show(P);

P=[12 3, 99 99 99, 7 8 9]

Operator Assignment

You can use operator assignments (such as +=) on matrices or subscripts of matrices. For
example, the following statement adds 1 to the i - jth element of the matrix:

P=[12 3,456, 78 9];

P[1,1]+=1;
Show(P) ;

178 Data Structures Chapter 7
Matrices Scripting Guide

P[1,1]+=1;
Show(P) ;
P=[3 2 3,
456,
7 8 9];

Ranges of Rows or Columns

If you are working with a range of subscripts, use the Index() function : : to create matrices of
ranges.

T1=1::3; // creates the vector [1 2 3]
T2=4::6; // creates the vector [4 5 6]
T3=7::9; // creates the vector [7 8 9]
T=T1|/T2|/T3; // concatenates the vectors into a single matrix
T[1::3, 2::3]; // refers to rows 1 through 3, columns 2 and 3

[2 3, 56, 8 9]
T[index(1,3), index(2,3)]; // equivalent Index function

[2 3, 56, 8 9]

Inquiry Functions

The NCo1() and NRow() functions return the number of columns and rows in a matrix (or data
table), respectively:

NCol([1 2 3,4 5 6]); // returns 3 (for 3 columns)
NRow([1 2 3,4 5 6]); // returns 2 (for 2 rows)

To determine whether a value is a matrix, use the Is Matrix() function, which returns a 1 if
the argument evaluates to a matrix.

A = [20, 64, 3];
B = {20, 64, 3};
IsMatrix(A); // returns 1 for yes
IsMatrix(B); // returns 0 for no

Comparisons, Range Checks, and Logical Operators

JMP’s comparison, range check, and logical operators work with matrices and produce
matrices of elementwise Boolean results. You can compare conformable matrices.

A<B; // Tless than

A<=B; // less or equal
A>B; // greater than
A>=B; // greater or equal

Chapter 7 Data Structures 179
Scripting Guide Matrices

A==B; // equal to

A!'=B; // not equal to

A<B<C; // continued comparison (range check)
A|B; // logical OR

A&B; // logical AND

You can use the Any () or A11() operators to summarize matrix comparison results. Any ()
returns a 1 if any element is nonzero. A11(Q) returns a 1 if all elements are nonzero.

[2 2]==[1 2] // returns [0 1], therefore:
ATT([2 2]==[1 21) // returns O
Any([2 2]==[1 2]) // returns 1

Min(Q) or Max() return the minimum or maximum element from the matrix or matrices given
as arguments.

A=[123, 456, 789, 10 11 12];
B=[012,210,011, 20 0];
Min(A); // returns 1

Max(A); // returns 12

Min(A,B); // returns 0O

Numeric Operations

You can perform numeric operations (such as subtraction, addition, and multiplication) on
matrices. Most statistical methods are expressed in compact matrix notation and can be
implemented in JSL.

For example, the following expression uses matrix multiplication and inversion to illustrate
least squares regression:

b=(X'X)Xy
Implement this equation through the following JSL expression:

b = Inv(X *X)*X *y;

Basic Arithmetic

You can perform the following basic arithmetic on matrices:
* addition

* subtraction

e multiplication

e division (multiplying by the inverse)

Note: The standard multiply operator is a matrix multiplier, not an elementwise multiplier.

180 Data Structures Chapter 7
Matrices Scripting Guide

To perform matrix multiplication, use one of the following methods:
® * operator
e Multiply(Q function

e Matrix Mult() function
To perform matrix division, use one of the following methods:

* /operator

e Divide() function
Note the following about matrix multiplication and division:

* Remember that while multiplication or division of scalars is commutative (ab = ba),
multiplication or division of matrices is not commutative.

* When one of the two elements is a scalar, elementwise multiplication or division is
performed.

* To use elementwise multiplication, use :* or the EMu1t() function.

* To use elementwise division, use :/, or the equivalent EDiv() function.

Matrix addition:

R = A+B;
[135,
6 66,
7 9 10,
12 11 12]

Matrix subtraction:

Matrix multiplication (inner product of rows of A with columns of C):

R = A*C;
[9 11 7 9,
24 29 22 27,
39 47 37 45,
54 65 52 63]

Chapter 7 Data Structures 181
Scripting Guide Matrices

Matrix division (equivalent to A*Inverse(D)):

R = A/D;[1.5 0.5 O,
320,
4.5 3.5 0,
6 5 0]

Matrix elementwise multiplication:

R = A:*B;
[0 2 6,
850,
0809,
20 0 0]

Matrix scalar multiplication:

R = C*2;
[2 468,
8642,
020 2]

Matrix scalar division:

R =C/2;
[0.511.5 2,
21.510.5,
00.500.5]

Matrix elementwise division (division by zero results in missing values):

R = A:/B;
2 1.5,

-

5
. 89

[.
2
5

—

Numeric (Scalar) Functions on Matrices

Numeric functions work elementwise on matrices. Most of the pure numeric functions can be
applied to matrices, resulting in a matrix of results. You can mix conformable matrix and
scalar arguments.

Examples of numeric functions include the following:

e Sqrt(), Root(), Log(Q), Exp(), A Power(), Logl0()

e Abs(),Mod(), Floor(), Ceiling(), Round(), Modulo()

* Sine, () Cosine(), Tangent(), ArcSine(), and other trigonometry functions.

e Normal Distribution(), and other probability functions.

Example

A=[1 23,456, 789, 10 11 12];

182 Data Structures Chapter 7
Matrices Scripting Guide

B = Sqrt(A); // elementwise square root

[1 1.414213562373095 1.732050807568877,
2 2.23606797749979 2.449489742783178,
2.645751311064591 2.82842712474619 3,
3.16227766016838 3.3166247903554 3.464101615137754]

Concatenation

The Concat() function combines two matrices side by side to form a larger matrix. The
number of rows must agree. A double vertical bar (| |) is the infix operator, equivalent for
horizontal concatenation.

Identity(2)113(2,3,4);
[104 44,
01444]

B=[1,1]; B || Concat(Identity(2),3j(2,3,4));
[110444,
10144 4]

The VConcat () function stacks two matrices on top of each other to form a larger matrix. The
number of columns must agree. A vertical-bar-slash (|/) is the infix operator, equivalent for
vertical concatenation.

Identity(2) |/ 1(3,2,1); // or VConcat(Identity(2),](3,2,1));

Both Concat() and VConcat() support concatenating to empty matrices, scalars, and lists.

a=[];
a || [11; // yields [1]

a || {2}; // yields [2]
a || [345]; // yields [3 4 5]
There are two in place concatenation operators: | |=and |/=. They are equivalent to the

Concat To(Q)and V Concat To() functions, respectively.
* al|=bisequivalent to a=a| |b

* a|/=bisequivalent to a=a|/b

Transpose

The Transpose () function transposes the rows and columns of a matrix. A back-quote (") is
the postfix operator, equivalent to Transpose (). In matrix notation, Transpose() is expressed
as the common prime or superscript-T notation (A’ or A).

Chapter 7 Data Structures 183
Scripting Guide Matrices

A=[123, 456, 789, 10 11 12];
A

[14 7 10,

258 11,

369 12]
Transpose([1 2,3 4]1);

[1 3,
2 4]

Matrices and Data Tables

You can move information between a matrix and a JMP data table. You can use matrix algebra
to perform calculations on numbers that are stored in JMP data tables, and you can save the
results back to JMP data tables.

Move Data into a Matrix from a Data Table

These sections describe how to move data from a data table into a matrix.

Move All Numeric Values

The Get As Matrix() function generates a matrix containing all of the numeric values in a
data table or column:

dt=Open("$SAMPLE_DATA/Big Class.jmp");
A = dt<<GetAsMatrix;

dt=Open("$SAMPLE_DATA/Big Class.jmp");
col=Column("Height");
A = col<<GetAsMatrix;

Move All Numeric Values and Character Columns

The Get A11 Columns As Matrix() function returns the values from all columns of the data
table in a matrix, including character columns. Character columns are numbered according to
the alphanumeric order, starting at 1.

dt=0pen (" $SAMPLE_DATA/Big Class.jmp");
A = dt<<GetAlTCoTlumnsAsMatrix;

Move Only Certain Columns
To get certain columns of a data table, use column list arguments (names or characters).

dt=current data table(Q;
x=dt<<Get As Matrix({"height", "weight"});

or

x=dt<<Get As Matrix({height, weight});

184

Data Structures Chapter 7
Matrices Scripting Guide
Currently Selected Rows

To get a matrix of the currently selected row numbers in the data table:

dt<<Get Selected Rows

Note: If no rows are selected, the output is an empty matrix.

Find Rows Where
To see a matrix of row numbers where the expression is true:
dt<<Get Rows Where (expression)
For example, the following script returns the row numbers where the sex is male (M):

dt=Open("$SAMPLE_DATA/Big Class.jmp");
A = dt<<GetRowsWhere(Sex=="M");

Move Data into a Data Table from a Matrix

This section describes how to move data from a matrix into a data table.

Move a Column Vector

The SetValues () function copies values from a column vector into an existing data table
column:

col<<SetValues(x);
col is a reference to the data table column, and x is a column vector.

For example, the following script creates a new column called test and copies the values of
vector x into the test column:

dt=Open("$SAMPLE_DATA/Big Class.jmp");
dt<<New Column ("test");
col=Column("test");

x = 1::40;

col<<SetValues(x);

Move All Matrix Values

The Set Matrix() function copies values from a matrix into an existing data table, making
new rows and new columns as needed to store the values of the matrix. The new columns are
named Col1, Col2, and so on.

dt=New Table("B");
dt<<Set Matrix([1 2 345, 6 7 8 9 10]);

This script creates a new data table called B containing two rows and five columns.

Chapter 7 Data Structures 185
Scripting Guide Matrices

To create a new data table from a matrix argument, use the As Table(matrix) command. The
columns are named Col1, Col2, and so on. For example, the following script creates a new data
table containing the values of A:

A=[12 3, 456, 789, 10 11 12];
dt=As Table(A);

Summarize Columns

There are several functions that return a row vector based on summary values for each
column.

mymatrix = [11 22, 33 44, 55 66];
V Max(mymatrix) // returns the maximum of each column

[55 66]
V Min(mymatrix) // returns the minimum of each column

[11 22]
V Mean(mymatrix) // returns the mean of each column

[33 44]
V Sum(mymatrix) // returns the sum of each column

[99 132]
V Std(mymatrix) // returns the standard deviations of each column

[22 22]

Matrices and Reports

You can extract matrices of values from reports. First, you need to locate the items that you
want to extract. This information is in the tree structure of the report.

Run the following script to create a table of parameter estimates in a Bivariate report:

dt=0pen ("$SAMPLE_DATA/Big Class.jmp");
biv = dt<<Bivariate(X(height),Y(weight),Fit Line);

Now, open the tree structure to identify which item contains the parameter estimates:

¢ Right-click a gray disclosure icon and select Edit > Show Tree Structure.

The parameter estimates are contained in NumberCo1Box(13). Continue with the script as
follows:

colBox=Report(biv) [NumberColBox(13)];
beta = colBox<<GetAsMatrix;
[-127.145248610915, 3.711354893859555]

Note the following:

e When a variable contains a reference to a table box, Get As Matrix() creates a matrix A
that contains the values from all numeric columns in the table:

A = tableBox<<GetAsMatrix;

186 Data Structures Chapter 7
Matrices Scripting Guide

* When a variable contains a reference to a numeric column in a report table, Get As
Matrix() creates a matrix A as a column vector of values from that column.

A = colBox<<GetAsMatrix;
Loc Functions

The Loc(), Loc Nonmissing(), Loc Min(), Loc Max(), and Loc Sorted() functions all return
matrices that show positions of certain values in a matrix.

LocO
The Loc() function creates a matrix of positions that locate where A is true (nonzero and
nonmissing).
A=[01.340];

B=[200256];

The following example returns the indices for the values of A that are nonmissing and
nonzero.

I = Loc(A);
[2, 4, 51
The following example returns the indices for the values of A that are less than the
corresponding values of B. Note that the two matrices must have the same number of rows
and columns.

I = Loc(A<B);
[1, 5, 6]
The following script replaces all values less than 4 in A with 0.
A=1[010340];
AlLoc(A < 4)] = 0;

Show(A);
A=[000040];

Loc Nonmissing()

The Loc Nonmissing() function returns a vector of row numbers in a matrix that do not
contain any missing values. For example,

A=[123,4.6,78., 876];
Loc Nonmissing(A);

[1, 4]

Chapter 7 Data Structures 187
Scripting Guide Matrices

Loc Min() and Loc Max()

The Loc Min(Q) and Loc Max() functions return the position of the first occurrence of the
minimum and maximum elements of a matrix. Elements of a matrix are numbered
consecutively, starting in the first row, first column, and proceeding left to right.

A [122,244,111];
B = [6, 12, 9];
Show(Loc Max(
Show(Loc Min(

));
))s

Loc Max(A)
Loc Min(B)

1

H

A
B
5.
1

Loc Sorted()

The Loc Sorted() function is mainly used to identify the interval that a number lies within.
The function returns the position of the highest value in A that is less than or equal to the
value in B. The resulting vector contains an item for each element in B.

A = [10 20 30 40];

B = [35];

LocSorted(A,B);
[3]

A = [10 20 40];

B = [35 5 45 20];

LocSorted(A,B);
[2, 1, 3, 2]

Note the following:

* A must be sorted in ascending order.

¢ The returned values are always 1 or greater. If the element in B is smaller than all of the
elements in A, then the function returns a value of 1. If the element in B is greater than all
of the elements in A, then the function returns n, where nis the number of elements in A.

Ranking and Sorting

The Rank () function returns the positions of the numbers in a vector or list, as if the numbers
were sorted from lowest to highest.

E=[1-23-40518 -7];
R=Rank(E);
[9141215171113’618]

If E were sorted from lowest to highest, the first number would be -7. The position of -7 in E is
9.

The original matrix E can then be sorted using the matrix R as subscripts to E.

188 Data Structures Chapter 7
Matrices Scripting Guide

sortedE=E[R];
[_71 _41 _2101111131 518]
The Ranking Tie() function returns ranks for the values in a vector or list, with ranks for ties
averaged. Similarly, Ranking() returns ranks for the values in a vector or list, but the ties are
ranked arbitrarily.

E=[1-23 -40518 -7];
Ranking Tie (E);
[5.5, 3, 7, 2, 4, 8, 5.5, 9, 1]

E=[1-23 -40518 -7];
Ranking (E);
[5, 3, 7,2, 4,8,6, 9, 1]
The Sort Ascending() and Sort Descending() functions sort vectors.

E=[1-23-40518 -7];
Sort Ascending (E);
[-7 -4 -2 01135 8]

E=[1-23-40518 -7];
Sort Descending (E);
[853110-2-4-7]

If the argument is not a vector or list, an error message is generated.

Special Matrices

Construct an Identity Matrix

The Identity() function constructs an identity matrix of the dimension that you specify. An
identity matrix is a square matrix of zeros except for a diagonal of ones. The only argument
specifies the dimension.

Identity(3);

[100,
010,
00 1]

Construct a Matrix with Specific Values

The J) function constructs a matrix with the number of rows and columns that you specify as
the first two arguments, whose elements are all the third argument, for example:

1(3,4,5);
[5555,
5555,
55557
J(3,4,random normal());

Chapter 7 Data Structures 189
Scripting Guide Matrices

[0.407709113182904 1.67359154091978 1.00412665221308 0.240885679837327,
-0.557848036549455 -0.620833861982722 0.877166783247633 1.50413740148892,
-2.09920574748608 -0.154797501010655 0.0463943433032137 0.064041826393316]

Create a Diagonal Matrix

The Diag() function creates a diagonal matrix from a square matrix (having an equal number
of rows and columns) or a vector. A diagonal matrix is a square matrix whose nondiagonal
elements are zero.

D=[1 -1 1];
Diag(D);
[100,
0-10,
00 1]
Diag([1,2,3,41);
[1000,

y

y

SO O
SOoN
QWO
ANOO

A=[1 2,3 4];

f=[5];

D=Diag(A,f);
[120
340
00 5]

In the third example, at first glance, not all of the nondiagonal elements are zero. Using matrix
notation, the matrix can be expressed as follows:

[A O,
0" f]

Where A and f are the matrices from the example, and 0 is a column vector of zeros.

Create a Column Vector from Diagonal Elements

The VecDiag() function creates a column vector from the diagonal elements of a matrix.

v=vecdiag(
[L0O 1,

1
8,
3

3

= O wuv
vl O W
N oo N

)
,8,3]

~

[

Calculate Diagonal Quadratic Forms

The VecQuadratic() function calculates the hats in regression that go into the standard errors
of prediction or the Mahalanobis or T2 statistics for outlier distances. Vec Quadratic(Sym, X)

190 Data Structures Chapter 7
Matrices Scripting Guide

is equivalent to calculating VecDiag(X*Sym*X").The first argument is a symmetric matrix,
usually an inverse covariance matrix. The second argument is a rectangular matrix with the
same number of columns as the symmetric matrix argument.

Return the Sum of Diagonal Elements

The Trace() function returns the sum of the diagonal elements for a square matrix.

D=[0 12,210, 120];
trace(D); // returns 1

Generate a Row Vector of Integers

The Index() function generates a row vector of integers from the first argument to the last
argument. A double colon : : is the equivalent infix operator.
6::10;
[6 7 8 9 10]
Index(1,5);
[12345]

The optional 7ncrement argument changes the default increment of +1.

Index(0.1, 0.4, 0.1);
[0.1, 0.2, 0.3, 0.4]

The increment can also be negative.

Index(6, 0, -2);
[6, 4, 2, 0]

The default value of the increment is 1, or -1 if the first argument is higher than the second.

Reshape a Matrix

The Shape () function reshapes an existing matrix across rows to be the specified dimensions.
The following example changes the 3x4 matrix a into a 12x1 matrix:

a=[111, 222, 333, 444];
shape(a, 12, 1)
[1,1,1,2,2,2,3,3,3,4,4,4]

Create Design Matrices

The Design() function creates a matrix of design columns for a vector or list. There is one
column for each unique value in the vector or list. The design columns have the elements 0
and 1. For example, x below has values 1, 2, and 3, then the design matrix has a column for 1s,
a column for 2s, and a column for 3s. Each row of the matrix has a 1 in the column
representing that row’s value. So, the first row (1) has a 1 in the 1s column (the first column)
and Os elsewhere; the second row (2) has a 1 in the 2’s column and 0s elsewhere; and so on.

Chapter 7 Data Structures 191
Matrices

Scripting Guide
x=[1, 2, 3, 2, 1];
Design(x);
[100,
010,
001,
010,
10 0]
A variation is the DesignNom() or Design F(Q) function, which removes the last column and
subtracts it from the others. Therefore, the elements of DesignNom() or Design F() matrices
are 0, 1, and -1. And the DesignNom() or Design F() matrix has one less column than the
vector or list has unique values. This operator makes full-rank versions of design matrices for

effects.

X=[1’ 21 3! 21 1];
DesignNom(x);

[1 0,
01,

DesignNom() is further demonstrated in the "ANOVA Example” on page 203.

To facilitate ordinal factor coding, use the DesignOrd() function. This function produces a
full-rank coding with one less column than the number of unique values in the vector or list.
The row for the lowest value in the vector or list is all zeros. Each succeeding value adds an
additional 1 to the row of the design matrix.

x=[1, 2, 3, 4, 5, 6];
DesignOrd(x);
[000O0O,
10

’

-

-

[
[R

RNRROO
~NROOO
NOOOO

Design(), DesignNom(), and DesignOrd() support a second argument that specifies the levels
to be looked up and their order. This feature allows design matrices to be created one row at a

time.
* Design(values, levels) creates a design matrix of indicator columns.

* DesignNom(values, levels) creates a full-rank design matrix of indicator columns.

Note the following:
® The values argument can be a single element or a matrix or list of elements.
e The Tevels argument can be a list or matrix of levels to be looked up.

® The result has the same number of rows as there are elements in the values argument.

192 Data Structures Chapter 7
Matrices Scripting Guide

® The result always has the same number of columns as there are items in the Tevels
argument. In the case of DesignNom() and DesignOrd(), there is one less column than the
number of items in the Tevels argument.

e If a value is not found, the whole row is zero.

Examples

Design(20, [10 20 301);

[0 1 0]

Design(30, [10 20 30]);
[0 0 1]

DesignNom(20, [10 20 30]);
[0 1]

DesignNom(30, [10 20 30]);
[-1 -1]

DesignOrd(20, [10 20 30]1);
[1 0]

Design([20, 10, 30, 20], [10 20 30])
[0 10,
100,
001,
01 0]

Design({"b", "a", "c", "b"}, {"a", "b", "c"});
[0 10,
100,
00 1,
010

Find the Direct Product

The Direct Product() function finds the direct product (or Kronecker product) of two square
matrices. The direct product of a m x mmatrix and a n x nmatrix is the mn x mn matrix whose
elements are the products of numbers, one from A and one from B.

G=[1 2,
3 5];
H=[2 3,
57];
Direct product(G,H);
[2 346,
5 7 10 14,
6 9 10 15,
15 21 25 35]

The H Direct Product() function finds the row-by-row direct product of two matrices with
the same number of rows.

HD1irectProduct(G,H) ;

[2 346,
15 21 25 35]

Chapter 7 Data Structures 193
Scripting Guide Matrices

HDirect Product() is useful for constructing the design matrix columns for interactions.

XA = Design Nom(A);
XB = Design Nom(B);
XAB = HDirect Product(XA,XB);
X = J(NRow(A),1) | |[XA| |XB| | XAB;

Inverse Matrices and Linear Systems

JMP has the following functions for computing inverse matrices: Inverse(), GInverse(), and
Sweep (). The Solve () function is used for solving linear systems of equations.

Inverse or Inv

The Inverse() function returns the matrix inverse for the square, nonsingular matrix
argument. Inverse() can be abbreviated Inv. For a matrix A, the matrix product of A and
Inverse(A) (often denoted A(A'l)) returns the identity matrix.

A=[5 6,7 8];
AInv=Inv(A);
A*Alnv;

[1 0,0 1]

A=[1 2,3 4];
AInv=Inverse(A);
A*Alnv;

[1 1.110223025e-16,0 1]

Note: There can be small discrepancies in the results due to floating point limitations, as
illustrated in the second example.

Glnverse

The (Moore-Penrose) generalized inverse of a matrix A is any matrix G that satisfies the
following conditions:

AGA=A
GAG=G
(AG)" =AG
(GA)' =GA

The GInverse() function accepts any matrix, including non-square ones, and uses
singular-value decomposition to calculate the Moore-Penrose generalized inverse. The
generalized inverse can be useful when inverting a matrix that is not full rank. Consider the
following system of equations:

194 Data Structures Chapter 7

Matrices Scripting Guide
x+2y+2z =6
2x +4y +4z = 12
x+ty+z=1

Find the solution to this system using the following script:

A=[1 22,244, 11 1];
B=[6,12,1];
Show(GInverse(A)*B);

G Inverse(A)*B=[-4,2.5,2.5]

Solve

The Solve() function solves a system of linear equations. Solve() finds the vector x so that
x = A”lb where A equals a square, nonsingular matrix and b is a vector. The matrix A and the
vector b must have the same number of rows. Solve(A,b) is the same as Inverse(A)*b.

A=[1-42, 332,04 -1];
b=[1, 2, 11;
x=solve(A,b);

[-16.9999999999999, 4.99999999999998, 18.9999999999999]
A%*X;
[1, 2, 0.999999999999997]

Note: There can be small discrepancies in the results due to floating point limitations, as
illustrated in the example.

Sweep

The Sweep () function inverts parts (or pivots) of a square matrix. If you sequence through all of
the pivots, you are left with the matrix inverse. Normally the matrix must be positive definite
(or negative definite) so that the diagonal pivots never go to zero. Sweep() does not check
whether the matrix is positive definite. If the matrix is not positive definite, then it still works,
as long as no zero pivot diagonals are encountered. If zero (or near-zero) pivot diagonals are
encountered on a full sweep, then the result is a g2 generalized inverse if the zero pivot row
and column are zeroed.

About the Sweep Function

Suppose matrix E consists of smaller matrix partitions, A, B, C, and D:

AB
CD

E =

The syntax for Sweep() appears as follows:

Sweep(E, [...]); // where [...] indicates partition A

Chapter 7 Data Structures 195
Scripting Guide Matrices

This produces the matrix result equivalent to the following;:

Al A'B

-cA” D-cA'B
Note the following:
® The submatrix in the A position becomes the inverse.

¢ The submatrix in the B position becomes the solution to Ax = B.

® The submatrix in the C position becomes the solution to xA = C.

Use of the Sweep Function

Sweep () is sequential and reversible:

* A=Sweep(A,{i,]j}) is the same as A=Sweep(Sweep(A,i),]). It is sequential.
* A=Sweep(Sweep(A,i),1) restores A to its original values. It is reversible.

If you have a cross-product matrix partitioned as follows:

c - {XX Xy}
yX y'y

Then after sweeping through the indices of X'X, the result appears as follows:

XX XX XYy
-1 ' ’ ’ -1 ’
YXX'X) T yy-yXX'X) X'y
The partitions are recognizable to statisticians as follows:

¢ the least squares estimates for the model Y = Xb + e in the upper right
¢ the sum of squared errors in the lower right

* amatrix proportional to the covariance of the estimates in the upper left

The Sweep function is useful in computing the partial solutions needed for stepwise
regression.

The index argument is a vector that lists the rows (or equivalently the columns) on which you
want to sweep the matrix. For example, if E is a 4x4 matrix, to sweep on all four rows to get E!
requires these commands:

E=[5411, 4511, 1142,1124];
sweep(E, [1,2,3,4]);

[0.56 -0.44 -0.02 -0.02,

-0.44 0.56 -0.02 -0.02,

-0.02 -0.02 0.34 -0.16,

196 Data Structures Chapter 7
Matrices Scripting Guide

-0.02 -0.02 -0.16 0.34]
inverse(E); // notice that these results are the same

[0.56 -0.44 -0.02 -0.02,
-0.44 0.56 -0.02 -0.02,
-0.02 -0.02 0.34 -0.16,
-0.02 -0.02 -0.16 0.34]

Note: For a tutorial on Sweep (), and its relation to the Gauss-Jordan method of matrix
inversion, see Goodnight, J.H. (1979) “A tutorial on the SWEEP operator.” The American
Statistician, August 1979, Vol. 33, No. 3. pp. 149-58.

Sweep() is further demonstrated in the "/ANOVA Example” on page 203.

Determinant

The Det) function returns the determinant of a square matrix. The determinant of a 2 x 2
matrix is the difference of the diagonal products, as demonstrated below. Determinants for
n x nmatrices are defined recursively as a weighted sum of determinants for (1 - 1) x (1 - 1)
matrices. For a matrix to have an inverse, the determinant must be nonzero.

121 -a.5-32 =1
F=[1 2,3 51;
Det(F);

-1

Decompositions and Normalizations

This section contains functions that calculate eigenvalues and eigenvectors and functions that
decompose matrices.

Eigenvalues

The Eigen() function performs eigenvalue decomposition of a symmetric matrix. Eigenvalue
decompositions are used in many statistical techniques, most notably in principal components
and canonical correlation, where the transformation associated with the largest eigenvalues
are transformations that maximize variances.

Eigen() returns a list of matrices. The first matrix in the returned list is a column vector of
eigenvalues; the second matrix contains eigenvectors as the columns.

A=E[5411,4511,1142,1124];
Eigen(A);
{[10, 5, 2, 1]
[0.632455532033676 - 0.316227766016838 - 2.77555756156289%e-16
-0.707106781186547, 0.632455532033676 - 0.316227766016837
- 1.66533453693773e-16 0.707106781186547, 0.316227766016838

Chapter 7 Data Structures 197
Scripting Guide Matrices

0.632455532033676 0.707106781186548 0, 0.316227766016837
0.632455532033676 - 0.707106781186547 0]}

Since the function returns a list of matrices, you might want to assign it to a list of two global
variables. That way, the column vector of eigenvalues is assigned to one variable, and the
matrix of eigenvectors is assigned to another variable:

{evals,evecs}=Eigen(A);
For some n x nmatrix A, eigenvalue decomposition finds all A (lambda) and vectors x, so that
the equation Ax = Ax has a nonzero solution x. The A’s are called eigenvalues, and the

corresponding x vectors are called eigenvectors. This is equivalent to solving (A - AI)x =0. You
can reconstruct A from eigenvalues and eigenvectors by a statement like the following:

newA=evecs*diag(evals)*evecs;
Note the following about eigenvalues and eigenvectors:

* The eigenvector matrices are orthonormal, such that the inverse is the transpose:
E'E=EE =1.

¢ Eigenvectors are uniquely determined only if the eigenvalues are unique.
® Zero eigenvalues correspond to singular matrices.

* Inverses can be obtained by inverting the eigenvalues and reconstituting with the
eigenvectors. Moore-Penrose generalized inverses can be formed by inverting the nonzero
eigenvalues and reconstituting. (See “GInverse” on page 193.)

Note: You must decide whether a very small eigenvalue is effectively zero.

® The eigenvalue decomposition enables you to view any square-matrix multiplication as
the following:

— arotation (multiplication by an orthonormal matrix)
— ascaling (multiplication by a diagonal matrix)

— areverse rotation (multiplication by the orthonormal inverse, which is the transpose),
or in notation:

A*x = E'*diag(M)*E*x; // E rotates, diag(M) scales, E reverse-rotates

Cholesky Decomposition

The Cholesky O function performs Cholesky decomposition. A positive semi-definite matrix
A is re-expressed as the product of a nonsingular, lower-triangular matrix L and its transpose:
L*L'= A.

E=[5411, 4511, 1142, 112 4];
L=Cholesky(E);

[2.23606797749979 0 0 0,
1.788854381999832 1.341640786499874 0 0,

198

Data Structures Chapter 7
Matrices Scripting Guide

0.447213595499958 0.149071198499986 1.9436506316151 O,
0.447213595499958 0.149071198499986 0.914659120760047 1.71498585142509]

To verify the results, enter the following:

About Cholesky Decomposition

ChoTesky() is useful for reconstituting expressions into a more manageable form. For
example, eigenvalues are available only for symmetric matrices in JMP, so the eigenvalues of
the product AB could not be obtained directly. (Although A and B can be symmetric, the
product is not symmetric.) However, you can usually rephrase the problem in terms of
eigenvalues of L'BL where L is the Cholesky root of A, which has the same eigenvalues.

Another use of Cholesky() is in reordering matrices within Trace() expressions. Expressions
such as Trace (A*B*A") might involve huge operations counts if A has many rows. However, if
B is small and can be factored into LL’ by Cholesky, then it can be reformulated to
Trace(A*L*L"*A"). The resulting matrix is equal to Trace(L A" *AL). This expression involves
a much smaller number of operations, because it consists of only the sum of squares of the AL
elements.

Use the function Chol Update() to update a Cholesky decomposition. If L is the Cholesky root
of an x n matrix A, then after using cholUpdate(L, C, V), L will be replaced with the
Cholesky root of A+V*C*V'. Cis an m x msymmetric matrix and V is an n x mmatrix.

Examples
Manually update the Cholesky decomposition, as follows:

exS=[161011-112,111-11-11,0-112-110,111-111-19, -1-1
1-19-1, 1210 9 -1 12];

// conducts the Cholesky decomposition

exAchol = Cholesky(exS);

// adds two column vectors to the design matrix
exW=[11,00,01, 00, 00, 011;

/* The first column vector is added to one of the rows in the design matrix.

The second column vector is subtracted from one of the rows in the design
matrix. */

exC = [10, 0-1];

// updates the Cholesky decomposition manually
exAnew = exS + exV * exC * exV';

Chapter 7 Data Structures 199
Scripting Guide Matrices

exAcholnew = Cholesky(exAnew);

Instead of manual updating, use Chol Update() to update the Cholesky decomposition, as
follows:

// updates the Cholesky decomposition more efficiently
exAcholnew_test =
Chol Update(exAchol, exV, exC);

// results are the same as the manual process
Show(exAcholnew_test);
Show(exAcholnew);

Singular Value Decomposition

The SVDQ) function finds the singular value decomposition of a matrix. That is, for a matrix A,
SVD() returns a list of three matrices U, M, and V, so that U*diag(M) *V " =A.

Note the following:

* When A is taller than it is wide, M is more compact, without extra zero diagonals.
¢ Singular value decomposition re-expresses A in the form USV’, where:

— Uand V are matrices that contain orthogonal column vectors (perpendicular,
statistically independent vectors)

— Sisan x ndiagonal matrix containing the nonnegative square roots of the eigenvalues
of A’A, the singular values of A.

e Singular value decomposition is the basis of correspondence analysis.

Example

A=[1 210,
2 01,
1 15,
0 51];

{U,M,V}=svd(A);

newA=U*diag(M)*V";
[1 2 0.999999999999997 -2.99456640040496e-15,
2 3 -1.17505831453979e-15 1,

0.999999999999997 -2.16851276518826e-15 0.999999999999999 5,
2.22586706011274e-15 1 5 0.999999999999997]

= o w

Orthonormalization

The Ortho() function orthogonalizes the columns and then divides the vectors by their
magnitudes to normalize them. This function uses the Gram-Schmidt method. The column

200 Data Structures Chapter 7
Matrices Scripting Guide

vectors of orthogonal matrices are unit-length and are mutually perpendicular (their dot
products are zero).

B= ortho([1 -1,1 0,0 1]);
[0.408248290463863 -0.707106781186548, 0.408248290463863 0.707106781186548,
-0.816496580927726 3.14018491736755e-16]
To verify that these vectors are orthogonal, multiply B by its transpose, which should yield the
identity matrix.

C=B " *B;
[1 -3.119061760824e-16, -3.119061760824e-16 1]

By default, vectors are normalized, meaning that they are divided by their magnitudes, which
scales them to have length 1. Include the option Scaled(0) to turn scaling off:

ortho([1 -1,1 0,0 1], scaled(0));

[0.408248290463863 -0.353553390593274, 0.408248290463863 0.353553390593274,
-0.816496580927726 1.57009245868377e-16]

To create vectors whose elements sum to zero, include the Centered(1) option. This option is
useful when constructing a matrix of contrasts.

result=ortho([1 -1,1 0,0 1], centered(1));
[0.408248290463863 -0.707106781186548, 0.408248290463863 0.707106781186548,
-0.816496580927726 3.14018491736755e-16]

To verify that the elements of each column sum to zero, premultiply by a vector of ones to sum
the columns.

J(1,3)*result;
[1.11022302462516e-16 2.02996189274239e-16]

Orthogonal Polynomials

The OrthoPoly () function returns orthogonal polynomials for a vector of indices. The
polynomial order is specified as a function argument. Orthogonal polynomials can be useful
for fitting polynomial models where some regression coefficients might be highly correlated.

OrthoPoly([1 2 3],2);

[-0.707106781186548 0.408248290463862, 0 -0.816496580927726,
0.707106781186548 0.408248290463864]

The polynomial order must be less than the dimension of the vector. Use the Scaled(1) option
to produce vectors of unit length, as described in “Orthonormalization” on page 199.
QR Decomposition

QRO factorization is useful for numerically stable matrix work. QR() returns a list of two
matrices. The typical usage is as follows:

{Q, R} = QRRXO;

Chapter 7 Data Structures 201
Scripting Guide Matrices

Qand R hold the results. For a m x nmatrix, QR() creates an orthogonal m x mmatrix Q and an
upper triangular m x nmatrix R, so that X = Q*R.

Update Inverse Matrices

To add or drop one or more rows in an inverse of an M'M matrix, use the Inv Update(S, X,
w) function. Updating inverse matrices is helpful in drop-1 influence diagnostics and also in
candidate design evaluation.

Note the following:
* The first argument, S, is the matrix to be updated.
® The second argument, X, is the matrix of rows to be added or dropped.

* The third argument, w, is either 1 to add or -1 to delete the row or rows.

* Multiple rows can be added or deleted.
Using the Inv Update(S, X, w) function is equivalent to calculating the following:
S-w*S*X" *InV(I+W*X* S*X*) *X*S

Where I is an identity matrix and Inv(A) is an inverse matrix of A.

Build Your Own Matrix Operators

You can store your own operations in macros. See “Macros” on page 231 in the “Programming
Methods” chapter. Similarly, you can create custom matrix operations. For example, you can
make your own matrix operation called Mag() to find the magnitude of a vector, as follows:

mag=function({x},sqrt(x *x));

Similarly, you could create an operation called Normalize to divide a vector by its magnitude,
as follows:

normalize=function({x},x/sqrt(x *x));
Statistical Examples
This section contains statistical examples of using matrices.

Regression Example

Suppose that you want to implement your own regression calculation, rather than use the
facilities built into JMP. Because of the compact matrix notation, it might require only a few
lines of code:

Y =[98,112.5,84,102.5,102.5,50.5,90,77,112,150,128,133,85,112];
X = [65.3,69,56.5,62.8,63.5,51.3,64.3,56.3,66.5,72,64.8,67,57.5,66.5];
X = J(nrow(X),1) || X; // put in an intercept column of 1s

202

Data Structures
Matrices

beta = Inv(X *X)*X *Y; // the least square estimates
resid = Y-X*beta; // the residuals, Y - predicted
sse = resid *resid; // sum of squared errors
show(beta,sse);

// open the data table
bigClass = open("$SAMPLE_DATA/Big Class.jmp™);

// get data into matrices

x = (Column("Age™")<<getValues) || (Column("Height")<<getValues);
x = j(nrow(x),1,1) | |x;
y = Column("Weight")<<getValues;

// regression calculations
xpxi = Inv(x *x);

beta = xpxi*x *y; // parameter estimates

resid = y-x*beta; // residuals

sse = resid *resid; // sum of squared errors

dfe = nrow(x)-ncol(x); // degrees of freedom

mse = sse/dfe; // mean square error, error variance estimate

// additional calculations on estimates

stdb = sqrt(vecDiag(xpxi)*mse); // standard errors of estimates
alpha = .05;

gt = Students t Quantile(l-alpha/2,dfe);

betau95 = beta+qt*stdb; // upper 95% confidence Timits
betal95 = beta-qt*stdb; // lower 95% confidence 1imits
tratio = beta:/stdb; // Student's T ratios

probt = (1-TDistribution(abs(tratio),dfe))*2; // p-values

// present results
newwWindow("Big Class Regression",
tabTleBox(

StringColBox("Term",{"Intercept","Age","Height"}),
NumberCo1Box("Estimate", beta),
NumberCo1Box("Std Error", stdb),
NumberCo1Box("TRatio", tratio),
NumberCol1Box("Prob>|t|", probt),
NumberCo1Box("Lower95%", betal95),
NumberCol1Box("Upper95%", betau95)));

Chapter 7

Scripting Guide

This could be expanded into a script that gets its data from a data table, calculates additional
results, and shows the results in a report window:

Chapter 7 Data Structures 203
Scripting Guide Matrices

ANOVA Example

You can implement your own one-way ANOVA. This example presents a problem involving a
three-level factor indicating Low, Medium, and High doses and a response measurement.
Therefore, this example solves the general linear model, as follows:

Y=a+bX+e
Where:

* Yis a vector of responses

* ais the intercept term

* bisa vector of coefficients

¢ Xis a design matrix for the factor

® eijsan error term

factor=[1,2,3,1,2,3,1,2,3];
Y=[1;2;3;4;3;2;5;4;3];

First, build a design matrix for the factor:

designNom(factor);
[10,
0 1,
-1 -1,
10,
0 1,
-1 -1,
10,
0 1,
-1 -1]

Next, add a column of 1s to the design matrix for the intercept term. You can do this by
concatenating J and Design Nom(), as follows:

x = J(9,1,1) || designNom(factor);
110,

0 1,

-1 -1,

10,

0 1,
-1 -1,

[
>

R —
o
~

I
I~
[}
I~
—

Now, to solve the normal equation, you need to construct a matrix M with partitions:

X'X X'y
yX y'y

You can construct matrix M in one step by concatenating the pieces, as follows:

204 Data Structures Chapter 7
Matrices Scripting Guide

M= L] XTHY)

[/
Gy *x || y*y);
[900 27,
06 32,
0361,
27 2 1 93]

Now, sweep M over all the columns in X'X for the full fit model, and over the first column
only for the intercept-only model:

FullFit=sweep(M,[1,2,3]); // full fit model
InterceptOnly=sweep(M, [1]); // model with intercept only

Recall that some of the standard ANOVA results are calculated by comparing the results of
these two models. This example focuses on the full fit model, which produces this swept
matrix:

[0.111111111111111 O O 3,

0 0.222222222222222 -0.11111111117117 0.333333333333333,
0 -0.11111111111111 0.222222222222222 0,

-3 -0.33333333333333 0 11.33333333333333]

Examine the model coefficients from the upper right partition of the matrix. The lower left
partition is the same, except that the signs are reversed: 3, 0.333, 0. The results can be
interpreted as follows:

* The coefficient for the intercept term is 3.
e The coefficient for the first level of the factor is 0.333.
e The coefficient for the second level is 0.

e Because of the use of Design Nom(), the coefficient for the third level is the difference,
-0.333.

e The lower right partition of the matrix holds the sum of squares, 11.333.
You could modify this into a generalized ANOVA script by replacing some of the explicit

values in the script with arguments. These results match those from the Fit Model platform.
See Figure 7.1.

Chapter 7 Data Structures 205
Scripting Guide Matrices

Figure 7.1 ANOVA Report Within Fit Model

£ ~/Responsey

4 Whole Model 4 [=|factor
[Effect Summary [Least Squares Means Table
4 Summary of Fit
RSquare 0.055556
RSquare Adj -0.25926
Root Mean Square Error 1.374369
Mean of Response 3
Observations (or Sum Wagts) 9

< Analysis of Variance

Source ~LiE -4 Mean Square F Ratio
Medel 033333 0.1765
Error 1.88880 Prob> F
C. Total 0.8424

< Parameter Estimates

Term =i =1 Std Error t Ratio Probe[t]
Intercept E] 0458123 6.55 0.0006"
factor[1] BMUEEEEEEEEY 0.647884 051 0.6253
factor[2]) 0.647834 0.00 1.0000

[Effect Tests

Construct the report in Figure 7.1 as follows:

1. Build a data table (described in the “Data Tables” chapter on page 275):
dt = New Table("foo");

dt << New Column("y", Set Values([1, 2, 3, 4, 3, 2, 5, 4, 31));
dt << New Column("factor", "Nominal", Values([1, 2, 3, 1, 2, 3, 1, 2, 31)
K

2. Run a model (described in “Launching Platforms” on page 382 in the “Scripting
Platforms” chapter):

obj = Fit Model(
YC:y),
Effects(:factor),
Personality("Standard Least Squares"),
Run ModeT(
y << {Plot Actual by Predicted(0), Plot Residual by Predicted(0),
Plot Effect Leverage(0)}
)
J;

3. Use JSL techniques for navigating displays (described in “Display Box Object References”
on page 408 in the “Display Trees” chapter):

ranova = obj << report;

ranova[OutlineBox(6)] << Close(0);
ranova[OutlineBox(7)] << Close(1);
ranova[OutlineBox(9)] << Close(1);
ranova[OutlineBox(5), NumberColBox(2)] << select;
ranova[OutlineBox(6), NumberColBox(1)] << select;

206 Data Structures Chapter 7
Associative Arrays Scripting Guide

Associative Arrays

An associative array maps unique keys to values that can be non-unique. An associative array
is also called a dictionary, a map, a hash map, or a hash table. Keys are placed in quotes. The
value associated with a key can be a number, date, matrix, list, and so on.

Note: You can use matrices as both keys and values, or lists as both keys and values, but you
cannot mix the two. In other words, you cannot use a matrix as a key and a list as a value, or
the other way around.

Though associative arrays are not usually ordered, in JMP, keys are returned in alphanumeric
order for the purpose of iteration and serialization.

For very large lists, using an associative array instead is more efficient and faster.

Create Associative Arrays

To create an empty associative array, use the Associative Array() function or [=>].

cary = Associative Array(Q);
cary = [=>];

[= 1

Keys and values can be any JSL objects. Items can be added and changed with subscripting, as
follows:

cary = Associative ArrayQ;
cary["state"] = "NC";
cary["population"] = 116234;

cary["weather"] = "cloudy";
cary["population"] += 10;
cary["weather"] = "sunny";

cary["high schools"] = {"Cary", "Green Hope", "Panther Creek"};

Default Values

A default value determines the value of a key that does not exist in an associative array. If you
try to access a key that does not exist in an associative array, an error results. If you define a
default value for your associative array, accessing a key that does not exist results in the
following:

¢ adds the key to the associative array
* assigns the default value to the new key

* returns the new key’s (default) value instead of an error

Chapter 7 Data Structures 207
Scripting Guide Associative Arrays

If you construct an associative array from a list of strings without assigning values to the keys,
then the keys are assigned values of 1. The default value for the associative array is set to 0.

To set the default value:

cary = Associative Array();
cary << Set Default Value("Cary, NC");

To determine whether there is a default value set for an associative array, use the <<Get
Default Value message.

cary << Get Default Value
"Cary, NC"

If there is no default value, Empty () is returned.

Besides the Set Default Value message, a default value can be set in the literal constructor
using =>value without a key.

counts = ["a"=>10, "b"=>3, =>0]; // default value of 0
counts["c"] += 1;
Show (counts);
[nan = 10’ ubn = 3, ”C” = 1’ = 0]
In the first line, the default value is set to 0. In the second line, the key "c" does not exist in

counts. In the output, the key "c" is created with the default value of 0 and then incremented
by 1.

Associative Array Constructors

Create an empty associative array:

map = [=>];
map = Associative Array();

Create an empty associative array with a default value:

map = [=>0];
map = Associative Array(0);

Create an associative array with specific values:
map = ["yes" => 0, "no" => 1];

Create an associative array with specific values with a default value:
map = ["yes" => 0, "no" => 1, => 2];

Create an associative array from a list that contains two lists of a key-value pair:
map = Associative Array({{"yes", 0}, {"no", 1}});

Create an associative array from a list that contains two lists of a key-value pair with a default
value:

208 Data Structures Chapter 7
Associative Arrays Scripting Guide
map = Associative Array({{"yes", 0}, {"no", 1}}, 2);
Create an associative array from a list of keys and a list of values:
map = Associative Array({"yes", "no"}, {0, 1});
Create an associative array from a list of keys and a list of values with a default value:
map = Associative Array({"yes", "no"}, {0, 1}, 2);

Create an associative array from two column references. The first column contains the keys
and the second contains the values.

map = Associative Array(:name, :height);
Create an associative array from two column references with a default value:
map = Associative Array(:name, :height, .);

Create an associative array from a single list of keys or a single column reference of keys with
a default value of 0:

set
set

Associative Array({"yes", "no"});
Associative Array(:name);

Work with Associative Arrays

Find the Number of Keys

To determine the number of keys that an associative array contains, use the N Items()
function.

cary = Associative ArrayQ;
cary["state"] = "NC";
cary["population"] = 116234;

cary["weather"] = "cloudy";
cary["population"] += 10;
cary["weather"] = "sunny";

cary["high schools"] = {"Cary", "Green Hope", "Panther Creek"};
N Items(cary);
4

Add and Delete Keys and Values

To add or delete key-value pairs from an associative array, use the following functions:

Insert()
Insert Into(Q)
Remove ()
Remove From()

Chapter 7

Data Structures 209

Scripting Guide Associative Arrays

Note the following:

Insert() and Remove() return a named copy of the given associative array with the
key-value pair added or removed.

Insert Into() and Remove From() add or remove the key-value pairs directly from the
given associative array.

Insert() and Insert Into() take three arguments: the associative array, a key, and a
value.

Remove() and Remove From() take two arguments: the associative array and a key.

If you insert a key with no value provided, the key is assigned a value of 1.

Examples

The following examples illustrate Insert() and Insert IntoQ):

newcary = Insert(cary, "time zone", "Eastern");
show(cary, newcary);
cary = Associative Array({
{"high schools",{"Cary", "Green Hope", "Panther Creek"}},
{"population", 116244},
{"state"”, "NC"},
{"weather", "sunny'}
P
newcary = Associative Array({
{"high schools", {"Cary", "Green Hope", "Panther Creek"}},
{"population", 116244},
{"state"”, "NC"},
{"time zone", "Eastern"},
{"weather", "sunny"}

P;

Insert Into(cary, "county", "Wake");
show(cary);
cary = Associative Array({
{"county", "Wake'},
{"high schools", {"Cary", "Green Hope", "Panther Creek"}},
{"population"”, 116244},
{"state", "NC"},
{"weather", "sunny'}

};

Note that aa << Insertis a message sent to an associative array that does the same thing as
the function Insert Into(). For example, these two statements are equivalent:

cary << Insert("county", "Wake");
Insert Into(cary, "county", "Wake");

The following examples illustrate Remove and Remove From:

newcary = Remove(cary, "high schools");
show(cary, newcary);

210 Data Structures Chapter 7
Associative Arrays Scripting Guide

cary = Associative Array({

{"county", "Wake'},

{"high schools", {"Cary", "Green Hope", "Panther Creek"}},
{"population", 116244},

{”_State”, ”NC”},

{"weather", "sunny'}

P
newcary = ["county" => "Wake", "population" => 116244, "state" => "NC",
"weather" => "sunny"];

Remove From(cary, "weather");
show(cary);

cary = Associative Array({

{"county", "Wake'},

{"high schools", {"Cary", "Green Hope", "Panther Creek"}},
{"population”, 116244},

{”state”’ IINCII}

P

Note that aa << Remove is a message sent to an associative array that does the same thing as
the function Remove From(). For example, these two statements are equivalent:

cary << Remove("weather');
Remove From(cary, "weather");

Find Keys or Values in an Associative Array

To determine whether a certain key is contained within an associative array, use the
Contains() function.

cary = Associative Array(Q;
cary["state"] = "NC";
cary["population"] = 116234;

cary["weather"] = "cloudy";
cary["population"] += 10;
cary["weather"] = "sunny";

cary["high schools"] = {"Cary", "Green Hope", "Panther Creek"};
Contains(cary, “high schools™);

1
Contains(cary, “lakes”);

0
To obtain a list of all keys contained in an associative array, use the << Get Keys message.

cary <<Get Keys;
{"high schools", "population", "state", "weather'}

To obtain a list of all values contained in an associative array, use the <<Get Values message.

cary <<Get Values;
{{"Cary", "Green Hope", "Panther Creek"}, 116244, "NC", "sunny"}

Chapter 7 Data Structures 211
Scripting Guide Associative Arrays

If you want to see only the values for certain keys, you can specify them as arguments. The
keys must be given as a list.

cary <<Get Values({"state", "population"});
{"NC", 116244}
To see a value for a single key, use the <<Get Value message. Specify only one key and do not
place it in a list.

cary <<Get Value("weather™);
"sunny"

To obtain a list of all key-value pairs in an associative array, use the <<Get Contents message.

cary <<Get Contents;
{{"high schools", {"Cary", "Green Hope'", "Panther Creek'}},
{"population", 116244},
{"state"”, "NC"},
{"weather", "sunny'"}}

Note: Using the <<Get Contents message, the returned list does not include the default value.
Keys are listed alphabetically.

Iterate through an Associative Array

To iterate through as associative array, use the <<First and <<Next messages. <<First returns
the first key in the associative array. <<Next(key) returns the key that follows the key that is
given as the argument.

The following example removes all key-value pairs from the associative array cary, leaving an

empty associative array:

currentkey = cary <<First;

total = N Items(cary);

for (i =1, i <= total, 1i++,
nextkey = cary<<Next(currentkey) ;
Remove From (cary, currentkey);
currentkey = nextkey;

J;

Show(cary) ;
cary = [=>];

Applications for Associative Arrays

You can use associative arrays to quickly and efficiently perform other tasks.

212 Data Structures Chapter 7
Associative Arrays Scripting Guide

Get the Unique Values from a Data Table Column

A key can exist only once in an associative array, so putting a column’s values into one
automatically results in the unique values. For example, the Big Class.jmp sample data table
contains 40 rows. To see how many unique values are in the column height, run this script:

dt = Open("$SAMPLE_DATA/Big Class.jmp");
unique heights = associative array(dt:height);
nitems(unique heights);

17

There are only 17 unique values for height. You can use those unique values by getting the
keys:

unique heights << get keys;
{51, 52, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70}

Note: This is possible because you can use any JMP data type as keys in an associative array,
not only strings.

Using an associative array to discover unique values in a column is efficient and fast. The
following script takes some time to create a data table with 100,000 rows. Finding the 39
unique values takes very little time.

dt = Open("$SAMPLE_DATA/Big Class.jmp");
nms = dt:name << getvalues;
dtbig = New Table("BigBigClass",
New Column("name",
character,
setvalues(nms[J(100000, 1, Random Integer(N Items(nms)))])
)
J;
Wait(0);
tl = Tick Seconds(Q);
Write(
"\!N# names from BigBigClass = ",
N Items(Associative Array(dtbig:name)),
", elpased time=",
Tick Seconds() - tl1
J;

Sort a Column’s Values in Lexicographic Order

Because keys are ordered lexicographically, putting the values into an associative array also
sorts them. For example, the <<Get Keys message returns the keys (unique values of the
names column) in ascending order:

dt = Open("$SAMPLE_DATA/Big Class.jmp");
unique names = associative array(dt:name);

Chapter 7 Data Structures 213
Scripting Guide Associative Arrays

unique names << get keys;

{"ALFRED", "ALICE", "AMY", "BARBARA", "CAROL", "CHRIS", "CLAY", "DANNY",
"DAVID", "EDWARD", "ELIZABETH", "FREDERICK", "HENRY", "JACLYN", "JAMES",
"JANE", "JEFFREY", "JOE", "JOHN", "JUDY", "KATIE", "KIRK", "LAWRENCE",
"LESLIE", "LEWIS", "LILLIE", "LINDA", "LOUISE", "MARION", "MARK",
"MARTHA", "MARY", "MICHAEL", "PATTY", "PHILLIP", "ROBERT", "SUSAN",
"TIM", "WILLIAM"}

Compare Columns in Two Different Data Tables

Using associative arrays, determining which values in one column are not in another column
(or determining which values are in both columns) is fast. For example, given two data tables
with information about countries, which countries are in both data tables?

Place the columns of each data table that contain country names into associative arrays:

dtl = Open("$SAMPLE_DATA/BirthDeathYear.jmp");

dt2 = Open("$SAMPLE_DATA/World Demographics.jmp");
aal = Associative Array(dtl:Country);

aa2 = Associative Array(dt2:Territory);

Use N Items() to see how many countries appear in each data table:

N Ttems(aal);

23
N Items(aa2);

238

Use the <<Intersect message to find the common values:

aal = Associative Array(dtl:Country);
aal << Intersect(aa2);

Look at the results:

Show(N Items(aal), aal<<get keys);
N Items(aal) = 21;

aal << get keys = {"Australia", "Austria", "Belgium", "France", "Greece",
"Treland", "Israel", "Italy", "Japan", "Mauritius", "Netherlands", "New
Zealand", "Norway", "Panama", "Poland", "Portugal", "Romania",

"Switzerland"”, "Tunisia", "United Kingdom", "United States"};

This example uses a set operation called intersection. For more examples of using set
operations with associative arrays to compare values, see “Associative Arrays in Set
Operations” on page 216.

Associative Arrays in Graph Theory
You can use associative arrays for graph theory data structures, such as the following directed
graph example:

g = Associative ArrayQ);
g[1] = Associative Array({1, 2, 4});

214 Data Structures Chapter 7
Associative Arrays Scripting Guide

g[2]

Associative Array({1, 3});

g[3] = Associative Array({4, 5});
g[4] = Associative Array({4, 51);
g[5] = Associative Array({1, 2});

This is a two-level associative array. The associative array g contains five associative arrays (1,
2, 3,4, and 5). In the containing array g, both the keys (1-5) and the values (the arrays that
define the map) are important. In the inner associative arrays, the values do not matter. Only
the keys are important.

The associative array represents the graph shown in Figure 7.2 as follows:
e node 1isincident on nodes 1, 2, and 4

e node 2 isincident on nodes 1 and 3

® node 3 is incident on nodes 4 and 5

¢ node 4 is incident on nodes 4 and 5

e node 5isincident on nodes 1 and 2

Figure 7.2 Example of a Directed Graph

The following depth-first search function can be used to traverse this graph, or any other
directed graph represented as an associative array:

dfs = Function({ref, node, visited},

Local({chnode, tmp},

Write("Node: " || Char(node) || ", " || Char(ref[node] << get
contents) || "\IN");

visited[node] = 1;

tmp = ref[node];

chnode = tmp << first;

While(!'Is Missing(chnode),

If(!visited[chnode],
visited = Recurse(ref, chnode, visited)

Chapter 7 Data Structures 215

Scripting Guide Associative Arrays

)3
chnode = tmp << next(chnode);

)3

visited;

)
)3
Note the following:

e The first argument is the associative array that contains the map structure.
® The second argument is the node that you want to use as the starting point.

¢ The third argument is a vector that the function uses to keep track of nodes visited.
To see how this function works, try the following:

dfsC g, 2, J(C N Items(g << get keys), 1, 0));
The output is as follows:

Node 2: {1, 3}

Node 1: {1, 2, 4}

Node 4: {4, 5}

Node 5: {1, 2}

Node 3: {4, 5}

(1, 1, 1, 1, 1]
The first five output lines show that starting from node 2, you can reach all the other nodes in
the order in which they are listed. Each node also lists the nodes it is incident on (the keys).
The value for each key is 1. The final line is a matrix that shows that you can reach each node
from 2. If there were nodes that could not be reached from node 2, their values in the matrix
would be 0.

Here is how to read the traversal of the nodes:

1. Start at node 2 and go to node 1.
2. From node 1, go to node 4.

3. From node 4, go to node 5.
4

From node 5, go back to node 2, and then to node 3.

Map Script
Here is the script that produced the map shown in Figure 7.2.

New Window("Directed Graph",
Graph Box(
Frame Size(300, 300),
X Scale(-1.5, 1.5),
Y Scale(-1.5, 1.5),
Local({n =N ItemsCg), k=2 *PiQQO / n, r, i, pt, from, to, edge, v,
d},

216 Data Structures Chapter 7
Associative Arrays Scripting Guide

Fi1ll Color("green");
Pen Size(3);
r=1/(+ 2);
For(i =1, i <= n, i++,

pt = Eval List({Cos(C k * i), SinC k * i)});

edges = g[il;

For(edge = edges << first, !Is Empty(edge), edge = edges <<

Next(edge),
to = Eval List({Cos(k * edge), Sin(k * edge)});

If(i == edge,
Circle(Eval List(1.2 * pt), 0.9 * r), // else
vV = pt - to;

d = Sqgrt(SumC v * v));
{from, to} = Eval List(
{fpt*d-r/d+to*r/d,pt*r/d+to* (d-r)/

d}
D
Arrow(from, to);
s
D
Circle(C pt, r, "fil1");
Text(Center Justified, pt - {0, 0.05}, Char(i));
s
)
)

Associative Arrays in Set Operations

You can also use associative arrays to perform set operations. The following examples show
how to take a union of two sets, a difference of two sets, and an intersection of two sets.

First, create three sets and view them in the log:

set_y = Associative Array({"chair", "person", "relay", "snake", "tripod"});
set_z = Associative Array({"person", "snake"});

set_w = Associative Array({"apple", "orange"});

// write the sets to the Tlog

Write(

"\INExample:\!N\!tset_y = ",
set_y << getkeys,
"\IN\!tset_z = ",
set_z << getkeys,
"\IN\!tset_w =",
set_w << getkeys

);

Example:

Chapter 7 Data Structures 217

Scripting Guide Associative Arrays
set_y = {"chair", "person", "relay", '"snake", "tripod"}
set_z = {"person", '"snake"}
set_w = {"apple"”, "orange"}

Union Operation
To find the union of two sets, insert one set into the other:

set_z << Insert(set_w);

Write("\!N\!NUnion operation (set_w, set_z):,\!N\!tset_z =", set_z <<
getkeys);
Union operation (set_w, set_z):,
set_z = {"apple", "orange", "person", "snake'}

Difference Operation
To find the difference of two sets, remove one set from the other:

set_y << Remove(set_z);
Write("\!N\!NDifference operation (set_z from set_y):\!N\!tset_y = ", set_y
<< getkeys);
Difference operation (set_z from set_y):
set_y = {"chair", "relay", "tripod"}

Intersect Operation
To find the intersection of two sets, use the aa << Intersect message.

set_w << intersect(set_z);
Write("\!N\!NIntersect operation (set_w, set_z):\IN\!tset_w =", set_w <<
getkeys);
Intersect operation (set_w, set_z):
set_w = {"apple"”, "orange"}

Example of Using Set Operations

Given a list of names, which of them are not contained in Big Class.jmp? You can find the
answer by taking the difference of the two sets of names.
1. Get the list of names and open the data table:

names Tist = {"ROBERT", "JEFF", "CHRIS", "HARRY"};
dt = Open("$SAMPLE_DATA/Big Class.jmp");

2. Put the list of names into an associative array:
names = Associative Array(names Tist);

3. Perform a difference operation by removing the column values from your list:
names << Remove(Associative Array(dt:name));

4. Look at the result:

218 Data Structures Chapter 7
Associative Arrays Scripting Guide

Write("\!NWhich of {ROBERT, JEFF, CHRIS, HARRY}, 1is not in Big Class = ",
names << getkeys);
Which of {ROBERT, JEFF, CHRIS, HARRY}, is not in Big Class = {"HARRY", "JEFF"}

Chapter 8

Programming Methods
Complex Scripting Techniques and Additional Functions

This chapter includes advanced techniques, such as throwing and catching exceptions,
encrypting scripts, and using complex expressions.

Contents

Lists and EXPressions 221
Stored eXpressions. 221
Macros. 231
Manipulating listso 231
Manipulating expressions 233

Advanced Scoping and Namespacesooiiiiiiiiiiiiiii 237
Names Default ToHere i, 238
Scoped Names 240
NaAMESPACES . . o ottt 244
Referencing Namespacesand Scopes o i il 249
Resolving Named Variable References i i i, 253
Best Practices for Advanced Scripting i i 254

Advanced Programming Concepts i i i i i 255
Throwing and Catching Exceptions............. o o i oot 255
Functions ... 256
Recursion 258
Includes. 258
Loading and Saving Text Files 259

Scripting BY Groups. ... 259

Organize Files into Projects......... 260

Encrypt and Decrypt Scripts o 260

Additional Numeric Operators. i 263
Derivatives 263
Algebraic Manipulations 265
Maximize and Minimize 266

Scheduling Actions. 268

Functions that Communicate with Users oo oot 269
Writingtothe Log. ... 269

Send information tothe User 270

Chapter 8 Programming Methods 221
Scripting Guide Lists and Expressions

Lists and Expressions

Stored expressions

An expression is something that can be evaluated. The first section of the chapter, “Rules for
Name Resolution” on page 97 in the “JSL Building Blocks” chapter, discussed how JMP
evaluates expressions. Now you must consider when JMP evaluates expressions.

JMP tends to evaluate things as soon as it possibly can, and it returns a result. If an expression
is on the right side of an assignment, the result is what is assigned. Usually, that is what you
want and expect, but sometimes you need to be able to delay evaluation.

Quoting and unquoting expressions

The operators to control when expressions are evaluated are Expr and Eval, which you should
think of as the procrastination and eager operators. Expr just copies its argument as an
expression, rather than evaluating it. Eval does the opposite: it evaluates its argument, and
then takes that result and evaluates it again.

Expr and Eval can be thought of as quoting and unquoting operators, telling JMP when you
mean the expression itself, and when you mean the result of evaluating the expression.

The following examples all assume these two assignments:
x=1; y=20;

If you assign the expression x+y to a4, quoting it as an expression with Expr, then whenever a is
evaluated, it evaluates the expression using the current values of x and y and returns the
result. (Exceptions are the utilities Show, Write, and Print, which do not evaluate expressions
for pure name arguments.)

a = expr(x+y);
a;
21
If you want the expression that is stored in the name, rather than the result of evaluating the
expression, use the NameExpr function. See “Retrieve a stored expression, not its result” on
page 223.

show(nameExpr(a));
NameExpr(a) = x + y
If you assign an extra level of expression-quoting, then when a is evaluated, it unpacks one

layer and the result is the expression x+y.

a = expr(expr(x+y));
show(a);
a = Expr(x + y)

222 Programming Methods Chapter 8
Lists and Expressions Scripting Guide

If you want the value of the expression, then use Eval to unpack all layers:

show(eval(a));
Eval(a) = 21

You can do this to any level, for example:

a=expr (expr(expr(expr(x+y))));
b=a;

Expr(Expr(x + y))
c=eval(a);

expr(x+y)
d=eval(eval(a));
X+y
e=eval (eval(eval(a)));
21

Quote an expression as a string

The JSL Quote() function returns the contents of an expression as a quoted string. Comments
and white space in the string are preserved. Syntax coloring is also applied to the output.

The following script is an example:

x = JSL Quote(/* Begin quote. */
For (i =1, i <=5, i++,
// Print the value of 1.
Print(i);
s
// End expression.
s
Show(x) ;
In the output, the contents of the JSL Quote function are enclosed in quotes.
x =" /* Begin quote. */
For (i =1, 7 <= 5, 1++,

// Print the value of 1.
Print(i);

"

// End expression.

H

Store scripts in global variables
The main use of Expr is to be able to store scripts (such as macros) in global variables.
dist = expr(Distribution(ColumnCheight)));
Now when you want to do the script, just mention the symbol:

dist;

Chapter 8 Programming Methods 223
Scripting Guide Lists and Expressions
You could even put it in a loop to do it many times:
for(i=0, <10, i=i+1, dist);
You can use Eval to evaluate an expression explicitly:
eval(dist);

Note, however, that in column formulas, eval only works if it is outermost in the formula. So,
for example,

Formula(log(eval (column name(i))))
would generate an error. Instead, use

Formula(Eval (Substitute(expr(log(xxx)),expr(xxx), column name(i))))
As another example,

Formula(eval(column name(i))+10)
generates an error, since eval is actually under the Add function. Instead, use

FormuTla(Eval(Substitute(expr(xxx+10), expr(xxx), column name(i))))

Retrieve a stored expression, not its result

What if you wanted the symbolic value of a global (such as the expression
Distribution(Column(height)) stored in dist above), rather than the evaluation of it (the
actual launched platform)? The Name Expr function does this. Name Expr retrieves its
argument as an expression without evaluating it, but if the argument is a name, it looks up the
name’s expression and uses that, unevaluated.

Expr returns its argument exactly, whereas Name Expr looks up the expression stored in its
argument. Name Expr “unpacks” just one layer to get the expression, but does not keep
unpacking to get the result.

For example, you would need to use this if you had an expression stored in a name and you
wanted to edit the expression:

popVar = Expr(Summation(i = 1, N Row(), (y[i] - Col Mean(y)) A 2 / N Row()
));
Summation(i = 1, N Row(), (y[i] - Col Mean(C y)) A 2 / N Row())

unbiasedPopVar = substitute(name expr(popVar), expr(wild(Q/nrow()), expr(
(y[i] - Col Mean(Cy)) A2/ CNRoawQ -1)));
Summation(i = 1, N Row(), (y[i] - Col Mean(C y)) A 2 / (N Row() - 1))

Compare x, Expr(x), NameExpr(x), and Eval(x) after submitting this script:

a=1; b=2; c=3;
x = Expr(a+b+c);

224 Programming Methods Chapter 8
Lists and Expressions Scripting Guide

Table 8.1 Compare Eval, Name Expr, and Expr

Command and result Explanation
X; Evaluates x to the expression a+b+c, and then evaluates the
6 expression, returning the result, 6 (unpacks all layers).
Eval(x); Equivalent to simply calling x.
6

Evaluates x to the expression a+b+c, and then evaluates the
expression, returning the result, 6 (unpacks all layers).

NameExpr(x) ; Returns the expression that was stored in x, which is a+b+c
a+b+c (unpacks the outside layer).

Expr(x); Returns the expression x (packs one layer).
X

JSL also supports functions to access and traverse expressions, all of them either a name or a
literal expression as an argument. In the following, expressionArgis either a single name or a
compound expression to be taken literally.

NArg(expressionArg) finds the number of arguments in expressionArg.

The expressionArg can be a name holding an expression, an expression evaluated to an
expression, or a literal expression quoted by Expr().

NArg (name) obtains the expression held in name (it is not evaluated) and returns the number
of arguments

NArg (expression) evaluates expression and returns the number of arguments
NArg (Expr(expression)) returns the number of arguments to literal expression.
For example, if aExpr = {a+b,c,d,e+f+g};

¢ NArg(aExpr) results in 4.

e NArg(Arg(aExpr,4)) results in 3.
e NArg(Expr({1,2,3,4})) resultsin 4.

Head(expressionArg) returns the head of the expression without any arguments. If the
expression is an infix, prefix, or postfix special character operator, then it is returned as the
functional equivalent.

The expressionArg can be a name holding an expression, an expression evaluated to an
expression, or a literal expression quoted by Expr().

For example, if aExpr = expr(a+b);

e r = Head(aExpr) results in Add().

Chapter 8 Programming Methods 225
Scripting Guide Lists and Expressions

e r = Head (Expr(sqrt(r))) resultsin Sqrt(Q).

Head({1,2,3}) resultsin {}.

e r

Arg(expressionArg, indexArg) extracts the specified argument of the symbolic expression,
resulting in an expression.

For example,
Arg(expressionArg,i) extracts the jth argument of expressionArg

The expressionArg can be a name holding an expression, an expression evaluated to an
expression, or a literal expression quoted by Expr().

* Arg(name,i) obtains the expression held in name (it is not evaluated) and finds the jth
argument

e Arg(expression,i) evaluates expression and finds the jth argument

e Arg(Expr(expression),i) finds the jth argument of expression

As another example, if aExpr = Expr(12+13*sqrt(14-15));

* Arg(aExpr,1) yields 12

e Arg(aExpr,2) yields 13*sqrt(14-15)

* Arg(Expr(12+13*sqrt(14-15)),2) yields 13*sqrt(14-15)

To extract an argument of an argument inside an expression, you can nest Arg commands:

* Arg(Arg(aExpr,2),1) yields the first argument within the second argument of aExpr, or
13.

e Arg(Arg(aExpr,2),2) yields Sqrt(14 - 15)

* Arg(Arg(Arg(aExpr,2),2),1) yields 14 - 15

* Arg(Arg(Arg(aExpr,2),2),3) yields Empty O

Here is a description of how the last example line unwraps itself:

1. The inner Arg statement is evaluated.
Arg(aExpr,2)
13 * Sqrt(14 - 15)
2. Then the next one is evaluated.
Arg(Arg(aExpr,2),2)
// this is equivalent to Arg(Expr (13 * Sqrt(14 - 15)), 2
Sqrt(14 - 15)
3. Finally, the outer Arg is evaluated.
Arg(Arg(Arg(aExpr,2),2),3)
// this is equivalent to Arg (Expr (Sqrt(14 - 15)), 3)
Empty O

226

Programming Methods Chapter 8
Lists and Expressions Scripting Guide

There is only one element to the Sqrt expression, so a request for the third argument yields
Empty). To access the two arguments inside the Sqrt expression, try this:

Arg(Arg(Arg(Arg(akxpr,2),2),1),2);
15

HeadName (expressionArg) returns the name of the head of the expression as a string. If the
expression is an infix, prefix, postfix, or other special character operator, then it is returned as
the functional equivalent.

The expressionArg can be a name holding an expression, an expression evaluated to an
expression, or a literal expression quoted by Expr().

For example, if aExpr = expr(a+b);

e r = HeadName (aExpr) resultsin "Add".
e r = HeadName (Expr(sqrt(r))) resultsin "Sqrt".
e = HeadName ({1,2,3}) resultsin "List".

In previous versions of JMP, other versions of Arg, Narg, Head, and HeadName were
implemented, called ArgExpr, NArgExpr, HeadExpr, and HeadNameExpr, respectively. These did
the same thing, but did not evaluate their argument. These forms are now deprecated and will
not be documented in future versions.

Making lots of substitutions

Eval Insert is for the situation where you want to make a lot of substitutions, by evaluating
expressions inside a character string. [In Perl, this is called interpolation.]

With Eval Insert, you specify characters that delimit the start and end of an expression, and
everything in between is evaluated and expanded.

There are two functions, one to return the result, the other to do it in-place.

resultString = EvalInsert(string with embedded
expressions,startDelimiter,endDelimiter)

EvalInsertInto(string T-value with embedded
expressions,startDelimiter,endDelimiter)

The delimiter is optional. The default start delimiter is "A". The default end delimiter is the
start delimiter.

xstring = "def";
r = Evallnsert("abcAxstringAghi'); // results in "abcdefghi";

// in-place evaluation
r = "abcAxstringAghi”;
EvalInsertInto(r); // r now has "abcdefghi";

// with specified delimiter

Chapter 8 Programming Methods
Scripting Guide Lists and Expressions

r = EvalInsert("abckxstringkghi","%"); // results in "abcdefghi";

// with different start and end delimiters
r = EvalInsert("abc[xstring]ghi","[","]™); // results in "abcdefghi";

When a numeric value contains locale-specific formatting, include the <<Use Locale(1)
option. The following example substitutes a comma for the decimal point based on the
computer’s locale setting.

EvalInsert("Al.2A", <<Use Locale(l));
1,2

Evaluate expressions inside lists

Eval List evaluates expressions inside a list and returns a list with the results:

x = { 142, 3+4 };
y = evallist(x); //result in y is {3,7}

Eval List is useful for loading the list of user choices returned by Column Dialog or New
Window with the Modal argument.

Evaluate expressions inside expressions

227

Eval Expr() evaluates only the inner expressions and returns an expression that contains the

results of the evaluation. By comparison, Eval evaluates the inner expressions, takes the
results, and then evaluates it again.

Suppose that a data table contains a column named X3. Here is an example of using Eval
Expr(Q) to evaluate the inner expression first:

x = Expr(Distribution(column(Expr("X"||char(i)))));
i=3;
y = Eval Expr(x); // returns Distribution(column("X3"))

To evaluate further, you need to either call the result in a subsequent step, or else put Eval ()

around the Eval Expr(). The following examples create a Distribution report.

// two-step method

x = Expr(Distribution(column(Expr("X"||char(i)))));
i=3;

y = Eval Expr(x);

y;

// one-step method

x = Expr(Distribution(column(Expr("X"||char(i)))));
i=3;

Eval(Eval Expr(x));

228

Programming Methods Chapter 8
Lists and Expressions Scripting Guide

See Table 8.3 on page 229 to learn what would happen if you tried to use Eval directly on x
without first doing Eval Expr.

Parsing strings into expressions, and vice versa

Parsing is the syntactic scanning of character strings into language expressions. Suppose that
you have read in a valid JSL expression into a character string, and now want to evaluate it.
The Parse function returns the expression. To evaluate it, use the Eval function.

x = parse("a=1") ; // x now has the expression a=1
eval(parse("a=1")); // a now has the value 1

To go in the reverse, use the Char function, which converts an expression into a character
string. Usually the argument to a Char function is an Expr function (or a NameExpr of a global
variable), since Char evaluates its argument before deparsing it.

y = char(expr(a=1)); // results in y having the character value "a=1"
z = char(42);

The Char function allows arguments for field width and decimal places if the argument is a
number. The default is 18 for width and 99 for decimal (Best format).

char(42,5,2);
// results in the character value "42.00"

To preserve locale-specific formatting in the numeric value, include the <<Use Locale(1)
option as shown in the following example:

char(42,5,2, <<Use Locale(l));
// results in the character value "42,00" in the French locale

The reverse of Char is not quite as simple. To convert a character string into an expression, you
use Parse, but to convert a character string into a number value, you use Num.

parse(y);
num(z);

Table 8.2 Functions to store or evaluate expressions

Function Syntax Explanation
Char Char (Expr(expression)) Converts an expression into a character string.
Char (name) The expression must be quoted with Expr;

otherwise its evaluation is converted to a string.

string = char(number, Converts a number into its character

width, decimal) representation. Width and decimal are optional
arguments to specify formatting; the defaultis 18
for width and 99 for decimal.

Chapter 8 Programming Methods 229
Scripting Guide Lists and Expressions

Table 8.2 Functions to store or evaluate expressions (Continued)

Function Syntax Explanation

Eval Eval(x) Evaluates x, and then evaluates the result of x
(unquoting).

Eval Expr Eval Expr(x) Returns an expression with all the expressions

inside x evaluated.

Eval List Eval List(list) Returns a list of the evaluated expressions inside
list.

Expr Expr(x) Returns the argument unevaluated
(expression-quoting).

NameExpr NameExpr(x) Returns the unevaluated expression of x rather
than the evaluation of x. NameExpr is like Expr
except that if x is a name, NameExpr returns the
unevaluated expression stored in the name
rather than the unevaluated name x.

Num Num("string") Converts a character string into a number.
Parse Parse("string") Converts a character string into a JSL expression.
Summary

Table 8.3 compares various ways that you can use the evaluation-control operators with x.
Assume that a data table contains a column named X3, and x and 7 have been assigned:

// assumes a data table with column named X3
x =Expr(Distribution(coTlumn(Expr("X"||char(i)))));
i=3;

Table 8.3 Compare all the operators for controlling evaluation

Commands and results Explanation

x; // or Eval(x) and simply calling x are equivalent.
Eval(x);

Not Found in access or evaluation of Evaluates the expression distribution(
'distribution’ , Bad Argument({"X" [] column(expr("X" || CharC i)))).
Char(C 7)}) This results in errors. The column name is

recognized as "X"| |Char (i) because it is
packed by the Expr() function.

Expr(x); Returns the expression x (packs an additional
X layer).

Programming Methods
Lists and Expressions

Chapter 8
Scripting Guide

Table 8.3 Compare all the operators for controlling evaluation (Continued)

Commands and results

Name Expr(x);
Distribution(Column(Expr("X" [/
Char(i))))

y=Eval Expr(x);
Distribution(Column("X3"))

y; //or
Eval(Eval Expr(x));
Distribution[]

z = Char(nameexpr(x));
"Distribution(Column(Expr (\!"X\!" []
Char(i))))"

Parse(z);
Distribution(Column(Expr("X" [/
Char(i))))

a = Parse(Char(NameExpr(x)));
Eval(EvalExpr(a));
Distribution[]

Explanation

Returns the expression stored in x exactly as
is: Distribution(Column(Expr("X" ||
Char(i)))).

Evaluates the inner expression but leaves the
outer expression unevaluated, so that y is
Distribution(Column("X3")).

Eval(eval expr(x)) and simply calling y are
equivalent.

Evaluates Distribution(Column(""X3")) to
launch the platform.

Quotes the entire expression as a text string,
adding \!" escape characters as needed.

Note that Char(x) would first attempt to
evaluate x, producing an error and ultimately

returning a quoted missing value: ".

Unquotes the text string and returns an
expression.

Evaluation control taken to its logical extreme.

Note that you must break this into at least two
steps as shown. Combining it into one giant
step produces different results because the
Eval Expr layer causes the Parse layer to be
copied literally, not executed.

Eval(
EvalExpr(
Parse(
Char(
NameExpr(x)))));
Distribution(Column(Expr("X" |[]
Char(i))))

Chapter 8 Programming Methods 231
Scripting Guide Lists and Expressions

Macros

Stored expressions can serve as a macro feature. You can store a generalized action as an
expression in a global, and then call that global wherever you need that action to be
performed. This example has four macros as the arguments to If:

TastStdzdThickness=expr(

(thickness[nrow()]-col mean(thickness)) / col std dev(thickness));
continue=expr(...<script to read in more data>...);
Tog=expr(print("In control at "||char(long date(today()))));
break=expr(...<script to shut down process>...); Timitvalue=1;

if(lastStdzdThickness<limitvalue,log;continue,break) ;

Storing the expression (the script itself, not its evaluation at the moment) with Expr delays its
evaluation until the global is actually called. Any variables, data points, or expressions
included in that expression are evaluated on the fly when the expression is evaluated. See
“Stored expressions” on page 221, for detailed rules for storing expressions and later
evaluating them.

Manipulating lists

The following operators manipulate lists. They can also be used to manipulate expressions, as
shown in the next section, “Manipulating expressions” on page 233. A summary of
commands with explanations is in Table 8.4 on page 235.

Most of the function have two variants, one that produces a new value, and one that works
in-place directly on its arguments. Here are some example pairs:

A = Remove(A,3); // delete the third item in the Tist A, storing result in A
Remove From(A,3); // delete the third item in the Tist A, in place

onetwo=Insert({1},2); // onetwo is {1,2}
InsertInto(A,{1,2},4); // puts 1,2 before the current 4th item

Note: If position is omitted in the Insert Into command, items are placed at the end of
the list.

a=Shift({1,2,3,4},1); // stores the list {2,3,4,1} in a
Shift Into(a,-1); // a is now {1,2,3,4}

b=Reverse(a); // b is now {4,3,2,1}
Reverse Into(a); // a is now {4,3,2,1}, also

s=Sort List({1,4,2,5,-7.2,pi(),-11,cat, apple, cake});
// s is now sorted 1ist

232 Programming Methods Chapter 8
Lists and Expressions Scripting Guide

C={5!pie;2;pi()1_2};
Sort List Into(c); // c is now {-2,2,5,Pi(Q),pie}

In-place operators

In-place operators are those that operate on lists or expressions directly. They have From or Into
in their names (for example, Remove Fromand Insert Into). They do not return a result; you
have to show the list to see the result. The first argument for an in-place operator must be an
L-value. An L-value is an entity such as a global variable whose value can be set.

myList={a, b, c, d};
Insert Into(mylList,2,3);
show(myList);

mylList = {a, b, 2, c, d}

These examples show how to use Insert Into and Remove From with nested lists:

a = {{1, 2, 33}, {"A", "B", "C"}};
Show(a);
a={{1, 2, 3}, {"A", "B", "C"}}

Insert Into(a[l], 99, 1);
Show(a);
a = {{99, 1’ 2, 3}, {IIAII’ I'BII’ llCll}}

Remove From(a[l1], 1);
Show(a);
a={{1, 2, 3}, {"A", "B", "C"}}

Not in-place operators

For the not-in-place operators, you must either state the list directly or else quote a name that
evaluates to a list. Such operators do not have From or Into in their names. They return
manipulated lists or expressions without changing the original list or expression given in the
first argument.

myNewList=Insert({a, b, c, d}, 2, 3);
{fa, b, 2, c, d}

oldList={a, b, c, d};
newList=Insert(oldList, 2, 3);
{a, b, 2, ¢, d}

Substituting

Substitute and Substitute Into merit further discussion. Both find all matches to a pattern
in a list (or expression) and replace them with another expression. Each pattern must be a

Chapter 8 Programming Methods 233
Scripting Guide Lists and Expressions

name. The arguments are evaluated before they are applied, so most of the time you must
quote them with an Expr function.

Substitute({a,b,c}, expr(a), 23); // produces {23,b,c}
Substitute(expr(sine(x)),expr(x),expr(y)); // produces sine(y)

To delay evaluating an argument, use NameExpr instead of Expr:

a={quick,brown, fox, jumped,over,lazy,dogs};
b=Substitute(a,expr(dogs),expr(cat));

canine=expr(dogs) ;equine=expr (horse) ;
c=Substitute(a,nameexpr(canine),nameexpr(equine)); show(a,b,c);

a = {quick,brown, fox, jumped,over, lazy,dogs}
b = {quick,brown, fox, jumped,over, lazy, cat}
¢ = {quick,brown, fox, jumped,over, lazy,hhorse}

Substitute Into does the same work, in place:
Substitute Into(a,expr(dogs),expr(horse));

You can list multiple pattern and replacement arguments to do more than one replacement in
a single step:
d=Substitute(a,
nameexpr(quick) ,nameexpr(fast),

nameexpr(brown) ,nameexpr(black),
nameexpr (fox) ,nameexpr (wolf)

s
{fast,black,wolf, jumped,over, lazy,dogs}

Note that substitutions are done repeatedly over multiple instances of the expression pattern.
For example:

Substitute(expr(a+a), expr(a), expr(aaa));
results in:

daa + aaa

Manipulating expressions

The operators for manipulating lists can also operate on most expressions. Be sure to quote the
expression with Expr. For example:

Remove (Expr (A+B+C+D),2); // results in the expression A+C+D
b=Substitute(expr(log(2)A2/2), 2, 3); // results in the expression Log(3)A3/3

As with lists, remember that the first argument for in-place operators must be an L-value. An
L-value is an entity such as a global variable whose value can be set. In-place operators are
those that operate on lists or expressions directly. They have From or Into in their names (for
example, Remove Fromand Insert Into). They do not return a result; you have to show the
expression to see the result.

234 Programming Methods Chapter 8
Lists and Expressions Scripting Guide

polynomial=expr(a*xA2 + b*x + c);

insertinto(polynomial,expr(d*xA3),1);

show(polynomial);

polynomial =d * x A 3 +a *xA2+b*x+cC

For the not-in-place operators, you must either state the expression directly or else quote a
name that evaluates to an expression using NameExpr. Such operators do not have From or Into
in their names. They return manipulated lists or expressions without changing the original list
or expression given in the first argument.

cubic=insert(expr(a*xA2 + b*x + c),expr(d*xA3),1);
d*xA3+a*xA2+b*x+cC

quadratic=expr(a*xA2 + b*x + C);
cubic=insert(nameexpr(quadratic),expr(d*xA3),1);
d*xA3+a*xA2+b*x+cC

Substituting

Substituting is extremely powerful; please review the earlier discussion “Substituting” on
page 232. Here are a few notes regarding substituting for expressions.

Substitute(pattern,name, replacement) substitutes for names in expressions
NameExpr looks through the name but copies instead of evaluates:

a = expr(distribution(column(x), normal quantile plot)); show(NameExpr(a));
NameExpr(a) = Distribution(Column(x), normal quantile plot)

Substitute evaluates all its arguments, so they must be quoted correctly:

b = substitute(NameExpr(a),expr(x),expr(weight)); show(NameExpr(b));
NameExpr(b) = Distribution(Column(weight), normal quantile plot)

SubstituteInto needs an L-value, so the first argument is not quoted:

SubstituteInto(a,expr(x),expr(weight)); show(NameExpr(a));
NameExpr(a) = Distribution(Column(weight), normal quantile plot)

Substitute is useful for changing parts of expressions, such as in the following example that
tests the Is functions:

data = {1, {1,2,3}, [1 2 3], "abc", x, x(¥D};
ops = {is number, is 1list, is matrix, is string, is name, is expr};
m=J(n items(data),n items(ops),0);
test = expr(m[r,c] = _op(data[r]));
for (r=1,r<=n items(data), r++,

for (c=1,c<=n items(ops),C++,

eval (substitute(nameexpr(test), expr(_op),ops[cl))));

show(m) ;

m =

[100000O0,

Chapter 8 Programming Methods 235
Scripting Guide Lists and Expressions

-

-

-

QAT O
QAOOO Rk
QOO RO
QOO O
QRSO
RROOoOHR

You can use SubstituteInto to have JMP solve quadratic equations. The following example
solves 4x% -9 =0:

/* FIND THE ROOTS FOR THE EQUATION: */
/* a*xA2 + b*x + c =0 */
// The quadratic formula is x=(-b +- sqrt(bA2 - 4ac))/2a.
// Use a Tist to store both the + and - results of the +- operation
x={expr((-b + sqrt(bA2 - 4*a*c))/(2*a)),
expr ((-b - sqrt(bA2 - 4*a*c))/(2*a))};
// Next, plug in the coefficients:
substitute into(x,expr(a),4, expr(b),0, expr(c),-9);
show(x); //see the result of substitution
show(evalexpr(x)); //see the solution
X = {Expr((-0+5qrt(0/2-4%4%-9))/(2%4)) , Expr((-0-5qrt (0A2-4%4*-9))/(2*4))}
EvalExpr(x) = {1.5,-1.5}
The operators for manipulating lists and expressions are discussed in the previous section,
“Manipulating lists” on page 231, and summarized in Table 8.4.

Table 8.4 Functions for manipulating lists or expressions
Function Syntax Explanation

Remove X =) Copies the list or expression, deleting the item(s)
Remove(Tist|expr) at the indicated position. If position is omitted,

X = . items are deleted from the end. Position can be a
Remove(Tist|expr,

position) list of positions. An extra argument, 1, deletes n
X = items instead of just 1.

Remove(Tist|expr,

{positions})

X =

Remove(Tist|expr,
position, n)

Remove From Remove Remove items in place. The function returns the
From(1ist|expr, removed item(s), but you do not have to assign
position) . .
Remove them to anything. The first argument must be an
From(Tist|expr) L-value.
Remove

From(T1ist|expr,
position, n)

236

Programming Methods
Lists and Expressions

Chapter 8
Scripting Guide

Table 8.4 Functions for manipulating lists or expressions (Continued)

Function

Insert

Insert Into

Shift

Shift Into

Reverse

Reverse Into

Sort List

Sort List
Into

Sort
Ascending

Syntax

X =
Insert(list|expr,
item, position)
X =
Insert(list|expr,
item)

Insert
Into(list|expr,
item, position)
Insert
Into(list|expr,
item)

x = Shift(list|expr)
x=Shift(list|expr,
n

Shift
Into(T1ist|expr)
Shift
Into(list|expr, n)

x=Reverse(Tist|expr

)

Reverse
Into(T1ist|expr)

x=Sort
List(Tist|expr)

Sort List
Into(T1ist|expr)

Sort
Ascending(Tist|matr
iX)

Explanation

Inserts a new item into the list or expression at the
given position. If position is not given, it is
inserted at the end.

Same as Insert, but does it in place. List or
expression must be an L-value.

Shift an item or # items from the front to the back
of the list or expression. Shift items from back to
front if n is negative.

Shift items in place.

Reverse the order of elements of a list or terms of
an expression.

Reverse the order of elements of a list or terms of
an expression in place.

Sort the elements of a list or the terms of an
expression. Numbers sort low, followed by the
name value of names, strings, or operators. For
example 1+2 is lower than 1-2 because the name
value Add sorts lower than the name value
Subtract. {1,2} sorts lower than {1,3}, which sorts
lower than {1,3,0}. {1000} sorts lower than {“a”},
but {a} and {“a”} sort as equal.

Sort the elements of a list or terms of an expression
in place.

Returns a copy of a list or matrix with the items in
ascending order.

Chapter 8
Scripting Guide

Programming Methods 237

Advanced Scoping and Namespaces

Table 8.4 Functions for manipulating lists or expressions (Continued)

Function
Sort

Descending

Loc Sorted

Substitute

Substitute
Into

Syntax

Sort
Descending(T1ist|mat
rix)

Loc Sorted(A, B)

R =
Substitute(Tist|exp
r, Expr(pattern),
Expr(replacement),

Substitute
Into(Tist|expr,
Expr(pattern),
Expr(replacement),

.2

Explanation

Returns a copy of a list or matrix with the items in
descending order.

Creates a matrix of subscript positions where the
values in matrix A match the values in matrix B.
A must be a matrix sorted in ascending order.

Finds all matches to the pattern in the list or
expression, and replaces them with the
replacement expression. Each pattern must be a
name. The second and third arguments are
evaluated before they are applied, so most of the
time you must quote them with an Expr function.
To delay evaluating an argument, use Name Expr
instead of Expr. You can list multiple
pattern-replacement pairs for multiple
substitutions in one statement.

Substitute in place.

Advanced Scoping and Namespaces

Scripts that are used in production environments need to use more advanced scoping
techniques to avoid collisions between scripts. JMP provides three progressively more
advanced techniques:

® The Names Default To Here() function. If you have simple scripting needs, this single
command might be sufficient. See “Names Default To Here” on page 238.

® Scopes that are pre-defined by JMP. See “Scoped Names” on page 240.

¢ Namespaces that you can create for your scripts. See “Namespaces” on page 244.

238

Programming Methods Chapter 8
Advanced Scoping and Namespaces Scripting Guide

Names Default To Here

If you write production scripts, you need to insulate the script from the current user
environment. Otherwise, the variables that you use might interact with variables used by the
user and by other scripts. The way to do this is to keep your names in a local environment,
which you can do by setting an execution mode with the statement:

Names Default To Here(1);

Ungqualified names in a script with the Names Default To Here mode turned on are private to
that script. However, the names persist as long as the script persists, or as long as objects
created by or holding the script are still active. We recommend that all production scripts start
with Names Default To Here(1) unless there is a specific reason not to do so. When the script
uses an unqualified name in this mode, that name is resolved in the local namespace.

To refer to global variables, scope the name specifically as a global variable (for example,
: :global_name). To refer to columns in a data table, scope with name specifically as a data
table column (for example, :column_name).

Note: Names Default To Here(1) defines a mode for a particular script. It is not a global
function. One script can have this mode turned on, while another script can have it turned off.
The default setting is off.

In JMP 8 and earlier, the only method to the insulate scripts was to use lengthy names that
were less likely to collide with names in other scripts. Using Names Default To Here(1)
makes this technique unnecessary.

Local () creates local scopes only in specific contexts within a script and cannot enclose a
longer script with interacting functions, while Names Default To Here(l) creates a local
scope for an entire script.

If you have simple scripting needs, Names Default To Here(1) might be sufficient.

Handling Unqualified Named Variable References

The Names Default To Here() function determines how ungqualified named variable
references are resolved. Explicitly scoping a variable using here:var_name always works,
whether Names Default To Here() is on or off. See “Scoped Names” on page 240 for details
about here and other scopes.

Enabling the Names Default To Here mode associates a scope called Here with an executing
script. The Here scope contains all of the unqualified named variables that are created when
they are the target of an assignment (as an L-value). In JMP 8 and earlier, these variables
normally would have been placed in the Global scope. Using a Here scope keeps variables in
multiple executing scripts separate from each other, avoiding name collisions and simplifying
the scripting and management of variable name collisions. You can still share information
using the Global scope.

Chapter 8

Programming Methods 239

Scripting Guide Advanced Scoping and Namespaces

Names Default To Here and Global Variables

Run this example script one line at a time to see how the Names Default To Here() function
changes the resolution of variable names.

Example Script

4.

a=1;
Names Default To Here(1);
a=5;
show(global:a, a, here:a);
global:a = 1;
a=>5;

here:a = 5;
Run the first line to create a global variable named a that holds the value 1.
Run the second line to turn on the Names Default To Here mode.

Run the third line to create a new variable named 4 in the local space that holds the value
5. This line does not change the value assigned to the global variable a.

Run the fourth line to see how scoped and unscoped variables are resolved.

The unqualified 7 is resolved to here:a. If Names Default To Here() were not on, a would be
resolved to the global variable named a.

Note that if you use : :a instead of global:ain the Show() function, your output is a little
different:

show(::a, a, here:a);
a=1;
a=>5;
here:a = 5;

Example of Using the Names Default To Here() Function

You have two scripts with the following definitions, and Names Default To Here() is turned
off (the default condition) in both scripts.

Note: Both scripts must be in separate script windows for this example.

1.

// Script 1
a=1;
show(a);

// Script 2
a = 3;
show(a);

Run Script 1. The result is as follows:

240 Programming Methods Chapter 8

Advanced Scoping and Namespaces Scripting Guide
a=1

2. Run Script 2. The result is as follows:
a=3

3. Run only the show(a) ; line in Script 1. The result is as follows:
a=3

The log shows a = 3 because variable a is global, and was last modified by Script 2. This is the
default behavior in JMP 9 and later, and it is the only possible behavior in JMP 8 and earlier.

4. Now turn on Names Default To Here() in both scripts.
Names Default To Here(1);

Note: Names Default To Here() is local to a particular script. It is not a global setting.

5. Run Script 1. The result is as follows:

a=1

6. Run Script 2. The result is as follows:
a=3

7. Run only the show(a) ; line in Script 1. The result is as follows:
a=1

The log shows a = 1, because a copy of variable a is maintained for each script.

Note: Problems using this function are generally due to the mixing of unqualified and
qualified references to global variables. Always explicitly scoping a name prevents accessing
an unintended variable.

Scoped Names

Specify where a name is to be resolved by using a scope in the form scope:name where scope
indicates how to resolve the name. For example, here:name indicates that the name should be
resolved locally. Using the Names Default To Here mode, here:name is equivalent to name. The
scope instructs how to look up the name.

The syntax is to use the colon scope operator:
scope:name
There are several types of scopes:

¢ Scope can be a resolution rule. For example, here:x means that x should be resolved to a
name that is local to the script. Global:x means that x should be resolved to a global name.

® Scope can be a namespace reference variable. For example. ref:a means that a should be
resolved within the namespace that ref refers to.

Chapter 8 Programming Methods 241
Scripting Guide Advanced Scoping and Namespaces

® Scope can be a data table reference to look up names as column names. For example,
dt:height means that height should be resolved as a column in the data table that dt
references.

® Scope can be the name of a namespace that you created. For example, myNamespace:b
where myNamespace is a namespace that you created. "myNamespace" :b is equivalent. See
“Namespaces” on page 244.

Examples of Scoping Column Formulas

The following examples demonstrate how to scope columns that contain formulas. In both
scripts, x is a global variable, local variable, and column name.

In the first script, the column name x is unscoped. the formula in the second column
multiplies the value in column x by 100. In this case, The result is a column with the values
100, 200, and 300.
1 ix=5;
New Table("Test",
New Column("x", Values([1,2,3])),
New Column("y", Formula(100%*x)),
);

In the following script, the formula in column y assigns 500 to x and then adds 50 to x. Each
cell in the column contains the value 550.

1ix=5;
New Table("Test",
New Column("x", Values([1,2,3])),
New Column("y", Formula(Local({x=5003}, x+50))),
s
Predefined Scopes

JMP provides predefined that cannot be removed or replaced. Each of these scopes has
specific roles, depending on its associated object.

Table 8.5 Predefined Scopes
Scope Description
Global Global names are shared throughout the JMP environment.

Here Scope of the executing script.

242 Programming Methods Chapter 8
Advanced Scoping and Namespaces Scripting Guide

Table 8.5 Predefined Scopes (Continued)

Scope

Builtin

Local

Local Here

Window

Platform

Box

Description

JMP built-in functions. For example, Builtin:Sqrt(). These names are
shared throughout the JMP environment.

If you over-ride a JSL function with a custom function, you can still access
the built-in JSL function by using this scope.

Nearest local scope. Can be nested within the user-defined functions,
Local and Parameter.

Provides a namespace block inside Names Default to Here(1).
Local({Default Local},) does not always work due to the lifetime of
the local block, but Local Here() is persistent across the call.

Scope of the containing user-defined window. (Rare.)
Scope of the current platform. (Rare.)

Scope of the containing context box. A context box is nested within a
user-defined window. (Rare.)

Example of Using the Window Scope

This example uses the Window scope to pass information during execution. Explicitly scoping
the variables x and y to this window ensures that JMP does not try to scope x and y in other
contexts, such as a data table. The variables x and y are created and used solely inside the
Window environment. The Window scope is similar to using Local (), but more useful because
Local() is limited in the places that it can be used.

New Window(
window: gx
window:gy
Graph Box(

"Example",
= 20;
= 50;

Frame Size(200, 200),

HandTe(

window:gx,
window:gy,
Function({x, vy},

)

)

PR
s

window:gx = X;
window:gy = y;

Circle(C {0, 0}, Sqrt(window:gx * window:gx + window:gy * window:gy));

Chapter 8 Programming Methods 243
Scripting Guide Advanced Scoping and Namespaces

Figure 8.1 Example of Current Window Namespace

100
90
80
704
60

= a0
40
30|
20
10
1]

T T T T T T T T 1T
0 10 20 30 40 50 60 70 80 90
X

Example of Using the Here Scope

This example uses the Here scope to pass information between windows that are created by
the same script. Scoping a variable using Here: is not dependent on turning Names Default
To Here() on. The Here: scope is always available.

This script produces two windows and uses two different scopes.

The Launcher window asks the user for two values. Those two values are passed to the
Output window, which uses them to graph a function. The Launcher window scopes aBox and
bBox to the window: essentially, those two variables (pointers to Number Edit Boxes) exist
only in the Launcher window and are not available to the Output window. The values from
those two boxes are then copied into variables that are scoped to Here, and so are available to
both windows that are produced by this script.

TaunchWin = New Window("Launcher",
<<Modal,
V List Box(
Lineup Box(

N Col(2),
Spacing(10),
Text Box("a"),
window:aBox = Number Edit Box(50),
Text Box("b"),
window:bBox = Number Edit Box(20),

),
Lineup Box(
N Col(2),
Spacing(20),
Button Box("OK",
// copy values before window goes away
here:a = window:aBox << Get;
here:b = window:bBox << Get;

244 Programming Methods Chapter 8

Advanced Scoping and Namespaces Scripting Guide

)

Button Box("Cancel",

Throw(1);
)
)
)
)

New Window("Output",
Graph Box(Y Function(here:a + here:b * Sin(x / 30), x))
)

Figure 8.2 Launcher and Output

100

a a0
a0
b 704
B0+
= A0
40
30+
20+
104

0 T T T T T T T T T

0 10 20 30 40 50 6O 70 80 90 100
X
Namespaces

A namespace is a collection of unique names and corresponding values. You can store
references to namespaces in variables. Namespace names are global, because JMP has only
one namespace map. Namespace references are variables like any other variable that
references an object, so they must be unique within their scope or namespace. The members of
a namespace are referenced with the : scoping operator, such as my_namespace:x to refer to
the object that is named x within the namespace called my_namespace. See “User-Defined
Namespace Functions” on page 244 for details about creating and managing your own
namespaces. Namespaces are especially useful for avoiding name collisions between different
scripts.

User-Defined Namespace Functions

Create your own namespaces to hold related sets of variables and function definitions. There
are several functions that you can use to manage namespaces.

New Namespace

nsref = New Namespace(<"nsname">, <{ name = expr, ... }>);

Chapter 8 Programming Methods 245
Scripting Guide Advanced Scoping and Namespaces

Creates a new namespace called nsname (a string expression) and returns a reference to the
namespace. All arguments are optional.

Nsname is the name of the namespace in the internal global list of namespace names. Nsname
can be used as the prefix in a scoped variable. The function returns a reference to the
namespace, and can also be used as the prefix in a scoped variable reference. If nsname is
absent, the namespace is anonymous and is given a unique name created by JMP. Show
Namespace () shows all namespaces and their names, whether assigned or anonymous.

Important: If you already have a namespace named nsname, it is replaced. This behavior
means that while you are developing your script, you can make your changes and re-run the
script without having to clear or delete your namespace. To avoid unintentional replacement,
you can either use anonymous namespaces, or test to see whether a particular namespace
already exists:

If(!'Namespace Exists("nsname"), New Namespace("nsname"));

A list of named expressions is optional. The names are JMP variables that exist only within the
namespace.

Note: The named expressions must be a comma-separated list. Separating the expressions
with semi-colons causes the list to be ignored.

These namespaces must be uniquely named to prevent collisions in situations where multiple
user-defined namespaces are being used. Using anonymous namespace names prevents
collisions.
Namespace

nsref = Namespace("nsname" | nsref);

Returns a namespace reference. The argument might be either of the following:

* a quoted string that contains a namespace

* areference to a namespace

Note: Namespace() returns a reference to a namespace that already exists. It does not create a
new namespace.

Is Namespace
b = Is Namespace(nsref);

Returns 1 (true) if nsrefis a namespace or 0 (false) otherwise.

246 Programming Methods Chapter 8
Advanced Scoping and Namespaces Scripting Guide
As Scoped

b = As Scoped("nsname", var_name);
nshame:var_name;

As Scoped() is the function form of a scoped reference. The function returns a reference to the
specified variable in the specified scope.
Namespace Exists

b = Namespace Exists("nsname");

Returns 1 (true) if nsname exists in the list of global namespaces, or 0 (false) otherwise.

Show Namespaces
Show Namespaces();

Shows the contents of all namespaces contained in the list of global namespaces. Namespaces
are not visible unless a reference is made to one, using either the New Namespace or Namespace
functions.

Namespace Messages

In addition to the namespace management functions, a namespace also supports a set of
messages to access and manipulate its contents.

Note that these messages, as with all message, must be sent to a scriptable object. A
namespace name is not a defined scriptable object and cannot be used in a Send operation.
However, you can use the name of a namespace in variable references. For example,
nsmane: :var is equivalent to nsref: :var.

Table 8.6 defines the messages that are supported by user-defined namespace references.

Table 8.6 Namespace Messages

Namespace Message Description

ns << Contains("var_name"); Returns 1 or 0, depending on whether var_name
exists within the namespace.

ns << Delete; Removes this namespace from the internal global
list.

To delete variables in the namespace, use
<<Remove. See the entry for <<Remove in this table.

ns << First; Returns a quoted string that contains the first
variable name used within the namespace.

Chapter 8
Scripting Guide

Programming Methods 247

Advanced Scoping and Namespaces

Table 8.6 Namespace Messages (Continued)

Namespace Message

ns << Get Contents;

ns << Get Keys;
ns << Get Name;

ns << Get Value("var_name");

ns << Get Values;

ns << Get Values({
"var_namel", "var_name2", ... }

)N

ns << Insert("var_name", expr

D
ns << Lock;

ns << Unlock;

ns << Lock(<"var_name", ...>
)
ns << Unlock(<"var_name", ...>
)

n = ns << N Items;

next k = ns << Next("var_name"

);

ns << Remove("var_name", ...);

Description

Returns a list of key-value pairs, which are each
enclosed in a list. Each key is a quoted string that
contains a variable name, and each value is the
unevaluated expression that the variable contains.

Returns a list of variable names.
Returns the name of this namespace.

Returns the unevaluated expression that var_name
contains in this namespace.

Returns a list of unevaluated expressions that each
variable in this namespace contains.

Returns a list of unevaluated expressions that each
variable in this namespace specified in the list
argument contains. If a requested variable name is
not found, an error is returned.

Inserts into this namespace a variable named
var_name that holds the expression expr.

Locks all variables in the namespace and prevents
variables from being added or removed. <<Unlock
unlocks all of the namespace’s variables.

Locks the specified variables in this namespace. If
no variables are specified, all variables are either
locked or unlocked.

Returns the number of variables contained in this
namespace.

Returns the name of the variable that follows the
specified variable.

Removes the specified variable or list of variables.

Using Namespace References

The following are all equivalent references to a variable that is named b in the namespace that
is named nsname that has a reference nsref:

248 Programming Methods Chapter 8
Advanced Scoping and Namespaces Scripting Guide

nsref:b

nshame:b

"nsname":b

nsref["b"]

nsref<<Get Value("b") // used as an r-value

Namespaces and Included Scripts

An included script runs in the namespace of the parent script. If the included script has its
own namespace definitions, you need to do one of the following:

* manage the namespace names to avoid name collisions
* use anonymous names created by the New Namespace function
In either case, you still need to manage variable references to namespaces.

There is also an option for the Include function (New Context) that creates a namespace that
the included script runs in. This namespaces is an anonymous namespace and it is
independent from the parent script’s namespace. For example,

Include("file.js1", <<New Context);
This anonymous namespace can be referenced using Here.

See “Includes” on page 258 for more information about the Include function.
Examples of User-Defined Namespaces

Creating and Using a Basic Namespace with Expressions
This example shows creating an anonymous namespace and using functions and variables
within it.

new_emp = New Namespace(

{name_string = "Hello, *NAME*!",

print_greeting = Function({a},
Print(Substitute(new_emp:name_string, "*NAME*", Char(a)))
)}
);

Note that you must use the fully qualified name for variables defined within the namespace.

new_emp:print_greeting(6);
"Hello, 6!"

Complex Number Operations

This example creates a namespace that contains functions to support using 2-element lists to
represent complex numbers, and then locks the namespace.

Chapter 8 Programming Methods 249
Scripting Guide Advanced Scoping and Namespaces

If(!'Namespace Exists("complex"),
New Namespace("complex");

complex:make = Function({a, b}, Eval List({a, b}));
complex:add = Function({a, b}, a + b);
complex:subtract = Function({a, b}, a - b);
complex:multiply = Function({a, b}, Eval List({a[l1l] :* b[1l] - a[2]
b[2], a[1] :* b[2] + a[2] :* b[1]}));
complex:divide = Function({a, b},
d=Db[1] A 2 + b[2] A 2;
Eval List({a[1] :* b[1] - a[2] :* b[2] / d, a[2] :* b[1] - a[l1l] :* b[2]
/ d});
D
complex:char = Function({a}, Char(a[1]) || "+" || Char(C a[2]) || "i");
s

Namespace("complex") << Lock;
Here are examples using functions that are within the above user-defined namespace.

cl = complex:make(3, 4);
{3, 4}

c2 = complex:make(5, 6);

{5, 6}

cml = complex:make([1, 2, 3], [4, 5, 6]);
{[1, 2, 3], [4, 5, 6]}

cadd = complex:Add(cl, c2);
{8, 10}

csum = complex:Subtract(cl, c2);

{_27 _2}

cmul = complex:Multiply(cl1, c2);
{-9, 38}

cdiv = complex:Divide(cl1, c2);
{14.6065573770492, 19.7049180327869}

show(complex:char(cl1));
complex:char(cl) = "3+41";

Referencing Namespaces and Scopes

There are a number of factors in resolving a named variable reference. Table 8.7 describes the
named variable references that are resolved for specific situations.

250 Programming Methods
Advanced Scoping and Namespaces

Table 8.7 Namespace References®

Form

1:a
Global:a
ns:a
dt:a
Here:a
"name":a
expr:a
ns["a"]

ns[expr]

Platform:
a

Reference
Type

Unqualified

Current
data table

Global

Qualified

Subscript

Qualified

Reference Rule

If the Names Default To Here
mode is on, JMP looks for the
variable in these locations:

* local namespaceb

® Here namespace

e current data table

If the Names Default To Here
mode is off, JMP looks for the
variable in these locations:

* Local namespaceb

* Herenamespace
* Global namespace

e current data table

JMP looks for the variable in
the current data table.

JMP looks for the variable in
the Global namespace.

JMP looks for the variable in
the specified namespace. If
the variable is not found, an
error results.

JMP looks for the variable in
the specified namespace. If
the variable is not found, an
error results.

JMP looks for the variable in
the encapsulating platform.

Chapter 8
Scripting Guide

Creation Rule

o If the Names Default To
Here mode is on, then
JMP creates the variable
in the Local namespaceb
or in the Here
namespace.

o If the Names Default To
Here mode is off, then
JMP creates the variable
in the Local r1amespaceb
or in the Global
namespace.

(Not applicable)

JMP creates the variable in
the Global namespace.

JMP creates the variable in
the specified namespace.
Any previous values are
replaced.

JMP creates the variable in
the specified namespace.
Any previous values are
replaced.

JMP creates the variable in
the encapsulating platform.

Chapter 8
Scripting Guide

Programming Methods 251

Advanced Scoping and Namespaces

Table 8.7 Namespace References® (Continued)

Form Reference
Type
Local:a Qualified
Window:a Qualified
Box:a Qualified

Reference Rule

JMP looks for the variable
within any nested local
function, up to and including
a function call boundary. See
“Example of Local:a” on
page 252.

JMP looks for the variable in
the encapsulating New
Window window namespace.

JMP looks for the variable in
the encapsulating Context
Box namespace contained in a
New Window window.

Creation Rule

JMP creates the variable in
the innermost nested local
function or function call
boundary.

JMP creates the variable in
the encapsulating New
Window window namespace.

JMP creates the variable in
the encapsulating Context
Box namespace contained in
a New Window window.

a. These forms existed in JMP 8. In JMP 9 and later, a, :a, and ::a have the same meaning with the
Names Default To Here mode turned off.
b. If the current point of execution is in a user-defined function, or a Local or Parameter JSL
function body, then the Local namespace is used.

Programming Methods
Advanced Scoping and Namespaces

Example of Local:a

Sample Script

Delete Symbols();
Local({d111 = 123},
local:f1fl = Function({fal, fa2},
{f11 = 993},
local:fal2 = fal + fa2;
Local({d211 = 56},
local:1212 = 78;
Show(fal2);

Show(f11);

Try(Show(d111), Write(
"\In\!n***Error=" || Char(exception_msg
D I "™\In"));

Show Symbol1s(Q);

);
local:fal2;
);
f1f1iC 2, 3);

)

Chapter 8
Scripting Guide

Log Output

fal2 = 5;
11 = 99;

***Frror={"Name Unresolved: d111"(1, 2,
"d111", d111 /*###*/)}
// Local

d211 = 56;
1212 = 78;

// 2 Local

// Local

fal = 2;

fal2 = 5;

fa2 = 3;

f11 = 99;

// 4 Local

// Local

dill = 12;

// 1 Local

// Global

exception_msg = {"Name Unresolved:
di111"(1, 2, "d111", d111/*###*/)};
// 1 Global

5

Chapter 8 Programming Methods 253
Scripting Guide Advanced Scoping and Namespaces

Resolving Named Variable References

When variables are referenced within a JMP script, JMP resolves the storage location of the
variable using a specific set of rules. If the variable is referenced by a qualified name, then the
resolution is based on the specific qualification specification. If the variable is referenced by an
unqualified name, the situation is a bit more complex. JMP looks through a hierarchy of
scopes representing the point of execution with the executing script. This section describes the
rules that are used to resolve named variable references.

By default, variable name resolution in JMP 9 and later worked the same way as in JMP 8 and
earlier, allowing your current JSL scripts to be executed unchanged. For JMP 9 and later, the
difference between qualified and unqualified variable named references is important to
understand.

Qualified Named References

A qualified named reference uses the : and :: operators to provide specific information about
where a referenced variable resides, or where it is created. Examples of qualified named
references include the following:

:var
::globalvar
datatable:var
nsref:var
"nsname" :var

Unqualified Named References

An unqualified named reference provides no explicit information to completely identify
where a variable resides or where it is created. No scoping operator (: or ::) is specified in the
reference. To change the behavior of JMP when resolving unqualified named variable
references, use the Names Default To Here(1) function. For more details about variable name
resolution, see the “Rules for Name Resolution” on page 97 in the “JSL Building Blocks”
chapter.

Rules for Resolving Variable References
To resolve variable references, JMP uses the following rules (in the order indicated):

1. If the variable is followed by a pair of parentheses (), look it up as a function.

2. If the variable is prefixed by : scope operator or an explicit data table reference, look it up
as a data table column or table variable.

If the variable is prefixed by :: scope operator, look it up as a global variable.

4. If the variable is an explicit scope reference (such as group:vowel), look it up in the
user-defined group namespace.

254 Programming Methods Chapter 8
Advanced Scoping and Namespaces Scripting Guide

5. If the variable is in a Local or Parameter function, look it up as a local variable. If it is
nested, repeat until a function call boundary is found.

6. If the variable is in a user-defined function, look it up as a function argument or local
variable.

7. Look the variable up in the current scope and its parent scope. Repeat until the Here scope
is encountered.

8. Look the variable up as a variable in the Here scope.

9. Look the variable up as a global variable.

10. If Names Default to Here(1) is at the top of the script, stop looking. The scope is local.
11. Look the variable up as a data table column or table variable.

12. Look the variable up as an operator or a platform launch name (for example, Distribution,
Bivariate, Chart, and so on).

13. When the name cannot be found:
— If the name is used in a reference, print and error to the log.
— If the name is used as the target of an assignment (as an L-value), test the following:
If the variable is preceded by :: scope operator, create and use a global variable.

If the variable is an explicit scope reference, create and use the variable in the specified
namespace or scope.

If Names Default to Here(0) is at the top of the script, create a global variable.

If Names Default to Here(1) is at the top of the script, create a Here namespace
variable.

Best Practices for Advanced Scripting

Minimize Polluting the Global Namespace and Prevent Scripts from Interacting
Always start your script with this line:

Names Default To Here(1);

Share Variables Across Scripts

Use named namespaces. Namespace names are placed in the global scope.

Use Anonymous Namespaces

Using namespace references to anonymous namespaces avoids possible conflicts with other
namespaces.

Chapter 8 Programming Methods 255
Scripting Guide Advanced Programming Concepts

Advanced Programming Concepts

This section covers some more advanced programming techniques that can be useful for
developing complex scripts.

* “Throwing and Catching Exceptions” on page 255
* “Functions” on page 256

* “Recursion” on page 258

* “Includes” on page 258

* “Loading and Saving Text Files” on page 259

Throwing and Catching Exceptions

A script can stop itself by executing the Throw() function. If you want to escape from part of
a script when it is in an error condition, you can enclose it in a Try() expression.

Try takes two expression arguments. It starts by evaluating the first expression, and if or when
the first expression throws an exception by evaluating Throw, it does the following:

1. Immediately stops evaluating that first expression.

2. Returns nothing

3. Evaluates the second expression.

Throw does not require an argument but has two types of optional arguments. If you include a
character-valued expression as an argument, throwing stores that string in a global named
exception_msg; this is illustrated in the first example below.

Examples
For example, you can use Try and Throw to escape from deep inside For loops.

a=[123,45.,7809];

b =a;

nr nrow(a) ;

nc = ncol(a);

//al2,3]=2; //uncomment this line to see the "Missing b" outcome

try(
sum = 0;
for(i=1,i<=nr,i++,
for(j=1,j<=nc, j++,
za = a[i,j]; if(isMissing(za),throw("Missing a"));
zb = b[j,i]; if(isMissing(zb),throw("Missing b"));
sum += za*zb;

256

Programming Methods Chapter 8
Advanced Programming Concepts Scripting Guide

),

show(i,j,exception_msg); throw();

)3

i =2;

Jj=3

exception_msg = "Missing a";

You can also use Try and Throw to catch an exception that JMP itself throws:

try(
dt=open("My dataset.jmp"); // a file that cannot be opened
summarize(a =by(age),c=count,meanHt=mean(Height));
show(a, c,meanHt),
print("This script does not work without the data set"); throw();
J;

You do not have to use Try to make use of Throw. In this example, Throw is not caught by Try
but still stops a script that cannot proceed:

dt=new table(); // to get an empty data table
if (nrow(CurrentDataTable())==0, throw("!Empty Data Table'"));

Functions

JSL also has a function called Function to extend the macro concept with a local context
arguments. Suppose that you want to create a function that takes the square root but tolerates
negative arguments, returning zero rather than errors. You first specify the local arguments in
a list with braces { } and then state the expression directly. You do not need to enclose the
expression in Expr because Function stores it as an expression implicitly.

myRoot = function({x},if(x>0,sqrt(x),0));
a = myRoot(4); // result in a is 2
b = myRoot(-1); // result in b is 0

Functions are stored in globals, the same as values. This means that you cannot have both a
root function and a root value. It also means that you can redefine a function anytime except
when you are inside the function itself.

When a function is called, its arguments are evaluated and given to the local variables
specified in the list forming the first argument. Then the body of the function, the second
argument, is evaluated.

The values of the arguments are for the temporary use of the function. When the function is
exited, the values are discarded. The only value returned is the return value. If you want to
return several values, then return a list instead of a single value.

In defined functions, the stored function is not accessible directly, even by the Name Expr
command. If you need to access the function expression in your script, you have to create the
function within an expr() clause. For example,

Chapter 8 Programming Methods 257
Scripting Guide Advanced Programming Concepts

makeFunction = expr(myRoot=function({x}, if (x>0, sqrt(x), 0)));
d=substitute(
NameExpr (MakeFunction),
expr(x), expr(y)
s
show(d);
makeFunction;

Local Symbols

You can declare variables as local to a function so that they do not affect the global symbol
space. This is particularly useful for recursive functions, which need to keep separate the
values of the local variables at each level of function call evaluation.

As shown above, a function definition looks as follows.
functionName=Function({argl, ...}, body);

You can also have the function definition default all the unscoped names to be local.
functionName=Function({argl, ...}, {Default Local}, body);

The use of Default Local localizes all the names that:

* Are not scoped as globals (for example, : :name)

® Are not scoped as data table column names (for example, :name)

® Occur without parentheses after them (for example, are not of the form name(...))

For example, the following function sums three numbers.

add3 = Function({a, b, c}, {temp}, temp=a+b; temp+c);
X=add3(1, 5, 9);

The following function does the same thing, automatically finding locals.

add3 = Function({a, b, c}, {Default Local}, temp=a+b; temp+c);
X=add3(1, 5, 9);

In both cases, the variable temp is not a global, or, if it is already a global, remains untouched
by evaluating the functions.

Note: If you use an expression initially as local, then use it as a global, JSL changes the context.
However, an expression used globally stays resolved globally regardless of its future use.

Using Default Local in user-defined functions can cause some confusion because it is
context-sensitive. That is, the same function may behave differently in different contexts,
depending on whether same-named outer variables are in scope. The user should enumerate
each and every variable they wish to be local. This reduces the confusion and the potential
incorrect use of outer scope variable values.

258 Programming Methods Chapter 8
Advanced Programming Concepts Scripting Guide

Recursion

The Recurse function makes a recursive call of the defining function. For example, you can
make a function to calculate factorials. A factorial is the product of a number, the number
minus 1, the number minus 2, and so on, down to 1.

myfactorial=function({a},if (a==1, 1, a*recurse(a-1)));
myfactorial(5);
120

You can define recursive calculations without using Recurse. For example, you could replace
Recurse by myfactorial, and the script would still work. However, Recurse offers these
advantages:

e Tt avoids name conflicts when a local variable has the same name as the function.

* You can recurse even if the function itself has not been named (for example, assigned to a
global variable, such as myfactorial above).

Includes

The IncTude function opens a script file, parses the script in it, and executes the JSL in the

specified file.
include("pathname");

For example,
include (" $SAMPLE_SCRIPTS/myStartupScript.jsl™);

There is an option to obtain the parsed expression from the file, rather than evaluating the file.
include("pathname", <<Parse Only);

Another named option creates a namespace that the included script runs in. This namespace is
an anonymous namespace and it is independent from the parent script’s namespace.

Include("file.js1", <<New Context);

See “Advanced Scoping and Namespaces” on page 237 for information about using
namespaces with your scripts.

Note the following about included files:

e JMP files aside from JSL cannot be used.

e Other recognized file types, such as image files, SAS data sets, and Microsoft Excel files
cannot be used.

e Unrecognized file types are treated as a JSL file.

e Files with the .txt extension are treated as a JSL file. A text file that contains data can be
included, however an error will appear since this is not valid JSL.

Chapter 8 Programming Methods 259
Scripting Guide Scripting BY Groups

Loading and Saving Text Files
The Load Text File and Save Text File commands allow manipulation of text files from
JSL. Note that the paths in the following code are strings.

text = Load Text File("path");
Save Text File("path", text);

You can load a text file from a Web site:
Load Text File("URL", <blob>);

The URL is a quoted string that contains the URL for the text file. The text file is returned as a
string. If you add the optional named argument bTob, a blob is returned instead.

Scripting BY Groups

By group arguments are supported for these functions: ColMean(), Co1StdDev(),
CoTNumber(), ColNMissing(), ColMinimum(), ColMaximum().

Any number of BY arguments can be specified, and you can use expressions for the BY
arguments. BY arguments must be used in a column formula, or in the context of
ForEachRow(). The first argument can also be a general numeric expression.

Here are some examples:

New Column("Mean of height by sex", Numeric, Formula(Col Mean(:height, :sex

IDIDF

New Column("Minimum of height by sex and age", Numeric, Formula(Col Minimum(
:height, :sex, :age)));

Distribution(Continuous Distribution(Column(:height)), By(:sex));

Tabulate(
Show Control Panel(0),
Add Table(
Column Table(
Analysis Columns(:height),
Statistics(Mean, N, Std Dev, Min, Max, N Missing)
),

Row Table(Grouping Columns(:age, :sex))

s

260 Programming Methods Chapter 8
Organize Files into Projects Scripting Guide

Organize Files into Projects

JMP projects are fully scriptable. The following script creates a new project, adds groups and
files to it, and retrieves the project’s name:

expj = New Project("My Project");
exgl = expj << Add Group("Data");
exg2 = expj << Add Group("Reports");

exdt = Open("$SAMPLE_DATA/Big Class.jmp");
exgl << Add Window(exdt);

exrp = Bivariate(X(height), Y(weight));
exg2 << Add Window(exrp);

Close(exdt, NoSave);

expj << getname();

To open a project that already has been saved, use the Open Project function. For example,

prj = Open Project("filepath");

Encrypt and Decrypt Scripts

To add a basic level of protection to scripts, you can encrypt it so only someone who knows
the password can view it; you can also require a password to run it. This is useful in situations
when you want to implement controlled sharing of a script.

To encrypt a script:

1.

2
3.
4

Open the script that you want to encrypt.

Select Edit > Encrypt Script.

Enter a decrypt password so that the user needs a password to view the script.
(Optional) Enter a run password to require the user to enter a password before running

the encrypted script.

Note: The passwords must consist of single-byte characters; using a text Input Method
Editor (IME) does not work.

Click OK.

If you entered only a decrypt password, click Yes to confirm that you do not want to
assign a run password.

Chapter 8 Programming Methods 261
Scripting Guide Encrypt and Decrypt Scripts

The encrypted script opens in a new window. For example:

//-€6.0.2

S@FTQ; VGMUTF?J<; LS ; B<=IRLXCU=BV; @S<TW; LR<ZFOP=]JS>NNDA@T<V><DZA>SU@MG; LR<ZFO
P=JJS>NNDA@T<V><DZA>SU@MG ; LR<ZFOP=]JS>NNDA@T<V><DZA>SU@MG ; LR<ZFOP=]JS>NNDA
@T<HNIZ;WDN?RMJ ; FR>KYAXTEPPF? ; XFJJOP=RQGBIAGXOYNNZ>PLIF>SW>L>ACL<KGP;=QQTC
EG??U<PUXLV?TRBO?J>QGWTJCFJA@BNHWLVORNNGQYPIKL<IM<>JX>Q@G?LJ>=;RBODH@PTKK@S
TUE ; TJOR<TUTRMTGSYRSVGOR<XK<F=IWQYE=LVZFP; AUHA?YJLL;EIT?Z]ZC;*

7. Save the encrypted script.

To decrypt a JSL script:

1. Open the encrypted script in JMP.
2. Select Edit > Decrypt Script.
3. Enter the decrypt password and click OK.

The decrypted script opens in a new window.
To run an encrypted JSL script:

Note: You must know which data table the script runs on before running an encrypted script.
If you do not know the name of the data table, you must decrypt the script before running it.

1. Open the encrypted script in JMP.

2. Select Edit > Run Script.

3. Enter the run password and click OK.
The script runs:

— If the script references a data table, you are prompted to open the data table, and then
the script runs.

— If the script requires an empty data table, you must create the table and then run the
encrypted script.

Note that entering the run password runs the script, but does not show the script: you must
supply the decrypt password to actually view the script.

Encryption and Global Variables

Encryption alone does not hide global variables and their values. A Show Globals()
command displays them normally. If you want to hide global variables in an encrypted script,
you can give them special names.

262

Programming Methods Chapter 8
Encrypt and Decrypt Scripts Scripting Guide

Any global variable whose name begins with two underscore characters (__) is hidden, and
Show Globals() displays neither its name nor its value. For example:

myvar = 2;
__myvar = 5;
Show Symbols();

//Globals
myvar = 2;
// 2 Global (1 Hidden)

This strategy works whether your script is encrypted or not.

Encrypting Scripts in Data Tables

You can also encrypt a script that is saved to a data table using the JSL Encrypted() or
Include(Char to Blob()) functions.

* JSL Encrypted() is more straightforward, because it involves one function. You can
include comments inside the encrypted script.

e Include(Char to Blob()) lets you include comments, but not inside the script.
Follow these steps to encrypt a data table script:

1. Place the script in a script window.

You cannot directly encrypt a script that is already saved to a data table.
2. In the script window, select Edit > Encrypt.

Enter a decrypt password.

4. (Optional) Enter a run password to require the user to enter a password before running
the script.

5. If you entered only a decrypt password, click Yes to confirm that you do not want to
assign a run password.

The encrypted script opens in a new script window.
6. Copy the entire encrypted script.
7. Create a new data table script or open an existing script.
In the script portion of the window, type one of the following functions:
JSL Encrypted("");
Include(Char to Blob(""));
9. Paste the encrypted script inside the quotation marks in the function.
10. Click OK.

Chapter 8 Programming Methods 263
Scripting Guide Additional Numeric Operators

Figure 8.3 Example of an Encrypted Data Table Script

J3L Encrypted({

rif-e6.0.2
WERGSACGT< ?CEEG=NG; B<=IRLECT=EV; BN3<TW; LR<EZFOP=JJ2>NNDAR T<V><DZL
FEUAMG; LE<ZFOP=JJ3>NND AR T<V><DZA>3UANG; LR« ZFOP=JJ3>NNDLE T<V><DZIk
=ETENG; LE<ZFOP=JJ23>NND AR T<FFHG=F; GYNENME> ZEMIE ?0; G<»>?; UTGH=HVYCC
ANF Y CHVOEOTHWASNOEV=Y<TCELCQHW>AF¥> : PG3SF<IBIU?H<YLOABVEGSQEMLHW
BIEYHUC=BTP?; ?; LVTT>Z0I=IETJ<P=IHYJIPAC?PGZIH; OCCHMEPOIHLIRHERSW V
AGEIDHDNF < YCHEWLETOF ZRAILT ?L; NT<OOCLLLWYAIVCSPEMVL ? 2 ?PKE=TEZJE KU
ED>=@; EOUFNUUFLEP<HMZWL ?VLHEEE ? 3R WAF ZC>EZ0DQOHREMN YEREEAWI=P3E30
CRYFOPVIRENHIVLE ?ENFVNH=LO>BLT- ?COF ?JHNNQAUEHNHM : BTU><=WFVOC< ; TVEE
sRSBEXTS; QGEEFNDCANFFFP; DYDHTSHONAGVESE: TCWIKEGUNEG>JEESVNECVOEPEE
;PEPYEEP=VE=:YFHD; ; ; +"
)

Additional Numeric Operators

JSL also offers several categories of operations that do not make much sense in the context of
the formula editor: matrix operations and numeric derivatives of functions. Algebraic
derivatives are also available.

The basic arithmetic operators can also be used with matrix arguments for matrix-wise
addition, subtraction, and so on. Matrices also have a few special operators for elementwise
multiplication and division, concatenation, and indexing. See the chapter “Matrices” on
page 173 in the “Data Structures” chapter, for details.

Derivatives

JSL has three internal operators (not all available in the calculator) for taking derivatives.

Derivative takes the first derivative of an expression with respect to names you specify in the
second argument. A single name might be entered as this second argument; or multiple
values can be specified in a list, in other words, surrounded by braces.

Note: Derivative is also available as an editing command inside the formula editor
(calculator), located on the drop-down list in the top center of the formula editor (above the
keypad). To use it, highlight a single variable in the expression (to designate which variable
the derivative should be taken with respect to), then select the Derivative command from the
menu. The whole formula is replaced by its derivative with respect to the highlighted name.

In scripts, the easiest way to use the function is with a single name. In this example, we first
show the mathematical notation and then the JSL equivalent.
d 3 2

For fix) = x3, the first derivative is f’(x) or i 3x".

result = derivative(xA3, x); show(result);
result = 3 * x A 2

264

Programming Methods Chapter 8
Additional Numeric Operators Scripting Guide

If you want an efficient expression to take the derivative with respect to several variables, then
the variables are specified in a list. The result is a list containing a threaded version of the
original expression, followed by expressions for the derivatives. The expression is threaded by
inserting assignments to temporary variables of expressions that are needed in several places
for the derivatives.

Here is an example involving an expression involving three variables. Listing all three
variables returns the first derivatives with respect to each. The result is a list with the original
expression and then the deriva