

Intel	Galileo	Essentials

Table	of	Contents

Intel	Galileo	Essentials

Credits

About	the	Author

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	color	images	of	this	book

Errata

Piracy

Questions

1.	Getting	Started	with	the	Galileo

Unpacking	and	connecting	the	Galileo

Downloading	the	software	and	connecting	the	Galileo	to	a	Windows	machine

Downloading	the	software	and	connecting	the	Galileo	to	a	Mac

Downloading	the	software	and	connecting	the	Galileo	to	a	Linux	machine

Running	the	IDE	for	the	Galileo

Setting	the	IDE	to	connect	to	your	board

Selecting	the	proper	COM	port	for	Windows

Selecting	the	proper	COM	port	for	the	Mac

Selecting	the	proper	COM	port	for	a	Linux	Machine

Updating	the	firmware

Opening	and	uploading	a	file	to	the	Galileo

Accessing	the	Galileo’s	Linux	capabilities

Summary

2.	Accessing	the	GPIO	Pins

The	GPIO	capability	of	the	Galileo

Using	the	GPIO	pins

Connecting	your	first	external	hardware

Plugging	your	wires	into	the	breadboard

Setting	up	the	electronics

The	IDE	and	LED	Code

Getting	signals	from	the	outside	world

Interfacing	digital	input	signals	with	Galileo

Interfacing	analog	input	signals	with	Galileo

Summary

3.	Adding	Display	Functionality

The	simple	serial	display

Enabling	the	serial	display	in	the	IDE

The	TFT	shield

Accessing	the	display	with	the	IDE

Summary

4.	Controlling	DC	Motors

DC	motor	basics

Connecting	a	DC	motor	directly	to	the	Galileo

Galileo	code	for	DC	motor	speed	control

Connecting	a	DC	motor	using	an	H-bridge	and	the	Galileo

Galileo	code	for	DC	motor	direction	control

Controlling	DC	motors	using	a	shield

Galileo	code	for	the	DC	motor	shield

Summary

5.	Adding	Sensors

Sensing	distance

The	Infrared	sensor

Connecting	an	IR	sensor	to	the	Galileo

Accessing	the	IR	sensor	from	the	Galileo	IDE

Connecting	a	digital	compass	to	the	Galileo

Accessing	the	compass	from	the	IDE

Connecting	an	accelerometer	or	gyro	to	the	Galileo

Accessing	the	accelerometer	from	the	IDE

Connecting	an	altimeter/pressure	sensor	to	the	Galileo

Accessing	the	altimeter/pressure	Sensor	from	the	Galileo	IDE

Summary

6.	Remote	Control

Connecting	an	XBee	interface	to	the	Galileo

Configuring	the	XBee	devices

Enabling	an	XBee	Interface	in	the	IDE

Configuring	a	Wi-Fi	connection	on	the	Galileo

Using	Wi-Fi	from	the	IDE

Summary

7.	Going	Further	with	Galileo

The	Galileo	and	Linux

Creating	and	booting	the	Debian	Linux	SD	card	image	on	the	Galileo

Building	robots	that	can	walk

How	servo	motors	work

Building	the	quadruped	platform

Using	a	servo	controller	to	control	the	servos

Communicating	with	the	servo	controller	via	a	PC

Connecting	the	servo	controller	to	the	Galileo

Creating	a	program	in	Linux	so	that	you	can	control	your	quadruped

Summary

8.	Speech	Output

Hooking	up	the	hardware	to	make	an	input	sound

Using	an	application

Using	Espeak	to	allow	our	projects	to	respond	in	a	robot	voice

Summary

Index

Intel	Galileo	Essentials

Intel	Galileo	Essentials
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	February	2015

Production	reference:	1180215

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78439-890-3

www.packtpub.com

http://www.packtpub.com

Credits
Author

Richard	Grimmett

Reviewers

Austin	Hughes

Alan	Plotko

Jason	Wright

Commissioning	Editor

Ashwin	Nair

Acquisition	Editor

Sam	Wood

Content	Development	Editor

Mohammed	Fahad

Technical	Editor

Naveenkumar	Jain

Copy	Editors

Neha	Karnani

Merilyn	Pereira

Project	Coordinator

Purav	Motiwalla

Proofreaders

Stephen	Copestake

Paul	Hindle

Indexer

Rekha	Nair

Production	Coordinator

Shantanu	N.	Zagade

Cover	Work

Shantanu	N.	Zagade

About	the	Author
Richard	Grimmett	has	always	been	fascinated	by	computers	and	electronics	from	his
very	first	programming	project	that	used	Fortran	on	punch	cards.	He	has	a	bachelor’s	and
master’s	degree	in	electrical	engineering	and	a	PhD	in	leadership	studies.	He	also	has	26
years	of	experience	in	electronics	and	computers.	He	possesses	one	of	the	original	brick
phones	as	well	as	a	Google	glass.	He	now	teaches	computer	science	and	electrical
engineering	at	Brigham	Young	University-Idaho,	where	his	office	is	filled	with	his	many
robotics	projects.

I	would	certainly	like	to	thank	my	wife,	Jeanne,	and	family	for	providing	me	with	a
wonderful,	supportive	environment	that	encourages	me	to	take	on	projects	like	this.	I
would	also	like	to	thank	my	students;	they	show	me	that	amazing	things	can	be
accomplished	by	those	who	are	unaware	of	the	barriers.

About	the	Reviewers
Austin	Hughes	is	a	software	engineer	with	an	interest	in	microcontrollers,	embedded
systems,	and	robotics.

Alan	Plotko	is	a	technology	enthusiast	with	experience	in	developing	across	the	full
stack.	He	was	first	exposed	to	programming	at	the	age	of	9	when	he	discovered	the	view
source	code	option	in	his	browser.	Coding	then	quickly	turned	into	a	hobby;	this	led	to	his
studying	computer	science	at	the	university	level.	Alan	loves	developing	applications	for
the	Web	and	always	makes	time	to	attend	hackathons,	which	are	typically	weekend-long
programming	competitions	where	participants	build	projects	from	scratch	to	benefit	the
community.	Alan’s	experience	extends	to	Python	development,	various	database
technologies,	including	NoSQL,	and	frameworks	for	rapid	application	development.
When	he’s	not	writing	code,	Alan	spends	his	time	writing	stories;	he	is	an	avid	writer,
having	previously	self-published	a	fantasy	novel.

Jason	Wright	is	a	hardware	engineer	in	Intel’s	New	Devices	Group,	where	he	works	on
projects	in	the	area	of	low-power	embedded	and	wearable	computing.	Previously,	he
worked	on	Galileo-based	urban	sensing	devices	within	Intel	Labs	Europe.	Jason	received
his	BS	and	MEng	degrees	in	electrical	and	computer	engineering	from	Cornell	University
in	2012	and	2013.

Jason	would	like	to	thank	his	family	and	friends	for	their	continued	love	and	support.

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
Over	the	last	few	years,	a	number	of	important	technological	tools	have	been	introduced
that	have	enabled	the	migration	of	complex	electronics	projects	from	the	University	or
Government	Lab	to	almost	anyone’s	project	desk.	The	Galileo,	an	inexpensive	processor
system	by	Intel,	is	an	example	of	one	of	these	toolkits.	This	small,	inexpensive,	but
powerful	board	can	be	used	in	a	wide	range	of	projects.

But	just	as	important	as	the	hardware	is	the	community	of	developers	who	not	only
provide	help	in	the	area	of	software	development,	but	also	provide	hardware	add-ons	for
the	processor	board	itself.	Still,	it	can	be	a	bit	intimidating	to	start	using	Galileo	to	build
your	very	own	projects.

This	book	is	designed	to	help	anyone,	even	those	with	no	programming	background	or
experience,	to	be	successful	in	building	both	simple	but	also	quite	complex	projects.	It
will	lead	you	through	the	process	step	by	step	so	that	your	project	designs	can	come	to
life.	Hopefully,	this	book	will	inspire	those	with	the	imagination	and	creative	spirit	to
build	those	wildly	inventive	designs	that	will	revolutionize	the	world!

What	this	book	covers
Chapter	1,	Getting	Started	with	the	Galileo,	begins	with	a	discussion	of	how	to	connect
power	and	ends	with	a	full	system,	configured	and	ready	to	begin	connecting	amazing
devices	and	SW	capabilities	to	fulfill	almost	any	project.

Chapter	2,	Accessing	the	GPIO	Pins,	shows	you	to	how	to	access	these	pins,	both	input
and	output,	so	you	can	do	all	sorts	of	amazing	things.	One	of	the	capabilities	you’ll	need
to	complete	your	projects	is	a	basic	knowledge	of	how	to	access	the	GPIO	pins	so	that	you
can	access	all	sorts	of	additional	hardware	capabilities.

Chapter	3,	Adding	Display	Functionality,	shows	you	how	the	Galileo	can	be	connected	to
a	display	so	that	you	can	both	see	output	and	also	get	input	from	a	touchscreen.	One	of	the
first	things	you	might	want	to	do	is	to	connect	a	display	up	to	the	Galileo.

Chapter	4,	Controlling	DC	Motors,	details	how	to	control	a	DC	motor	so	that	the	unit	can
drive	wheels	or	tracks.

Chapter	5,	Adding	Sensors,	shows	you	how	to	add	IR,	Sonar,	and	even	a	compass	to	your
project.

Chapter	6,	Remote	Control,	covers	how	to	communicate	wirelessly	with	your	Galileo
projects,	as	you	may	want	to	access	your	projects	without	connecting	wires.

Chapter	7,	Going	Further	with	Galileo,	introduces	you	to	the	Linux	capabilities	of	the
Galileo	using	the	example	of	constructing	a	quadruped	robot.

Chapter	8,	Speech	Output,	covers	how	to	make	your	project	talk	as	an	example	of	how	to
use	free,	open	source	software	to	add	complex	functionality	to	your	projects.	One	of	the
amazing	features	of	today’s	computer	systems	is	the	ability	to	provide	output	without	a
screen	or	keyboard.

What	you	need	for	this	book
The	most	important	piece	of	software	required	for	the	first	six	chapters	of	the	book	is	the
Galileo	IDE,	which	is	available	at	https://communities.intel.com/docs/DOC-22226.	The
only	other	software	that	will	be	required	for	these	chapters	is	the	software	drivers
associated	with	the	hardware	that	you	might	add	to	your	project;	these	will	be	detailed	in
the	individual	chapters	themselves.

For	Chapter	7,	Going	Further	with	Galileo,	you’ll	need	to	download	a	version	of	Debian
Linux	available	at	https://communities.intel.com/message/231688.	To	burn	the	image	to	an
SD	card,	you’ll	need	Win32DiskImage	available	at
http://sourceforge.net/projects/win32diskimager/.	You’ll	also	need	a	terminal	emulator
program;	PuTTY	is	one	such	program,	available	at
http://www.chiark.greenend.org.uk/~sgtatham/putty/.	Finally,	you’ll	need	a	control
program	for	servos,	available	at	www.pololu.com/docs/0J40/3.b.

For	Chapter	8,	Speech	Output,	you’ll	need	a	free,	open	source	software	package	called
Espeak	that	is	available	by	using	the	command	sudo	apt-get	install	espeak.

https://communities.intel.com/docs/DOC-22226
https://communities.intel.com/message/231688
http://sourceforge.net/projects/win32diskimager/
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://www.pololu.com/docs/0J40/3.b

Who	this	book	is	for
This	book	is	for	anyone	with	a	little	programming	skill,	a	bit	of	imagination,	and	the
desire	to	create	their	own	dazzling	projects.	The	book	is	designed	to	start	by	teaching
beginners	the	basics	of	Galileo	and	how	to	program	it.	You’ll	tackle	more	and	more
challenging	projects	until	you	have	the	know-how	to	build	your	own	amazing	projects.

Conventions
In	this	book,	you	will	find	a	number	of	styles	of	text	that	distinguish	between	different
kinds	of	information.	Here	are	some	examples	of	these	styles,	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“This
will	un-archive	a	set	of	files	and	directories	under	the	arduino-1.5.3-Intel.1.0.3
directory	structure.”

A	block	of	code	is	set	as	follows:

qData	=	false;	//	Initialize	on	reset

gSerialStdPtr->begin(9600);	//	Receiver

gSerialTwoPtr->begin(9600);	//	Sender

waitForUser(5);	//	Give	usr	time	to	open	serial	terminal

gSerialStdPtr->println("XBee-Receiver-setup");

pinMode(led,	OUTPUT);

Any	command-line	input	or	output	is	written	as	follows:

mv	maestro-linux-100507.tar.gz\?file_id\=0J315	maestrolinux-100507.tar.gz

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	in
menus	or	dialog	boxes	for	example,	appear	in	the	text	like	this:	“Select	the	Start	|	Control
Panel	|	Device	Manager	inside	Windows.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	may	have	disliked.	Reader	feedback	is	important	for	us	to
develop	titles	that	you	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	send	an	e-mail	to	<feedback@packtpub.com>,	and
mention	the	book	title	via	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	on	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	color	images	of	this	book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams
used	in	this	book.	The	color	images	will	help	you	better	understand	the	changes	in	the
output.	You	can	download	this	file	from:
https://www.packtpub.com/sites/default/files/downloads/B03435.pdf.

https://www.packtpub.com/sites/default/files/downloads/B03435.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	would	report	this	to	us.	By	doing	so,	you	can	save
other	readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If
you	find	any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-
errata,	selecting	your	book,	clicking	on	the	errata	submission	form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	on	our	website,	or	added	to	any	list	of	existing	errata,	under	the
Errata	section	of	that	title.	Any	existing	errata	can	be	viewed	by	selecting	your	title	from
http://www.packtpub.com/support.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Piracy
Piracy	of	copyright	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works,	in	any	form,	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors,	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
You	can	contact	us	at	<questions@packtpub.com>	if	you	are	having	a	problem	with	any
aspect	of	the	book,	and	we	will	do	our	best	to	address	it.

mailto:questions@packtpub.com

Chapter	1.	Getting	Started	with	the
Galileo
You’ve	chosen	Intel’s	new	Galileo	processor	board	and	you	are	ready	to	start	some
amazing	projects.	However,	you	might	be	new	to	this	kind	of	processor,	or	you	might	have
used	another	similar	processor	but	not	the	Galileo.	This	book	is	designed	to	lead	you	step-
by-step	through	a	number	of	examples	that	will	provide	you	with	the	knowledge	you	need
to	access	the	power	of	the	Galileo.	You’ll	also	learn	how	to	add	additional	hardware	to
sense	the	world	around	you,	display	information,	and	even	control	motors	or	servos.

In	this	chapter,	you’ll	start	by	unpacking	and	connecting	the	Galileo	to	your	host	machine,
then	you’ll	learn	how	to	use	the	Galileo	from	your	remote	computer.	If	you	know	how	to
use	Mac	or	Linux	machines,	this	chapter	will	show	you	how	to	use	them.	You’ll	take	a
peek	into	the	internals	of	the	Galileo	and	learn	about	the	Linux	machine	hiding	behind	the
simple	Galileo	exterior.

For	this	chapter,	the	objectives	are	as	follows:

Unpacking	and	connecting	the	Galileo	to	a	host	computer
Loading	and	configuring	the	Galileo	IDE,	based	on	the	Arduino	IDE
Downloading	and	running	some	simple	example	programs
Taking	a	peek	at	the	Linux	machine	at	the	heart	of	the	Galileo

Unpacking	and	connecting	the	Galileo
The	Galileo	is	packaged	with	a	power	cable.	Here	is	a	picture	of	the	board:

This	is	how	the	board	will	look	without	the	adapter:

Note
This	particular	Galileo	is	a	Gen	2	board.	This	version	is	a	slightly	improved	version	of	the
original	Gen	1	board,	and	has	a	few	connector	changes.	The	examples	in	this	book	have
been	tested	on	both	versions,	and	should	work	unless	noted.

The	power	connection	is	very	straightforward.	However,	you’ll	also	need	another	cable	to
start	working	with	the	Galileo.	This	is	a	USB-to-micro	USB	cable.	Here	is	a	picture:

This	cable	will	go	between	the	Galileo	and	the	host	machine	to	develop	and	debug	the
code.	Here	are	the	specific	connections:

To	prepare	for	developing	the	Galileo,	plug	the	power	into	an	outlet	and	the	board.	A
green	power	LED	close	to	the	USB	connector	should	light.	Now	you	are	ready	to	connect
your	board	to	a	remote	computer	to	begin	programming	The	next	sections	will	cover	how
to	connect	your	Galileo	to	a	computer	running	Windows,	OS	X,	or	Linux.

Downloading	the	software	and	connecting
the	Galileo	to	a	Windows	machine
The	first	step	in	setting	up	your	remote	computer	for	development	with	the	Galileo	is	to
download	the	Integrated	Development	Environment	(IDE)	software	from
https://communities.intel.com/docs/DOC-22226.	Choose	the	download	link	for	Windows.
This	will	download	the	IDE	as	well	as	the	drivers	for	the	Galileo.	When	this	file	is
downloaded,	unzip	the	file	using	an	archive	manager	(for	example	7-zip)	to	a	location	on
your	C:.	This	will	un-archive	a	set	of	files	and	directories	under	the	arduino-1.5.3-
Intel.1.0.3	directory	structure.

Plug	the	USB	from	the	Galileo	into	your	computer.	If	you	are	using	a	newer	version	of
Microsoft	Windows,	when	you	plug	the	Galileo	into	the	system	it	will	try	to	install	the
drivers	automatically.	The	device	will	fail	to	install.	You’ll	need	to	install	the	drivers
manually,	using	the	following	steps:

1.	 Select	the	Start	|	Control	Panel	|	Device	Manager	inside	Windows.	Under	the
Other	devices	menu,	select	the	Gadget	Serial	v2.4	device.	Then	select	Update
Driver	Software,	as	shown	in	the	following	screenshot:

2.	 Next	click	on	Browse	my	computer	for	driver	software.

https://communities.intel.com/docs/DOC-22226

3.	 Click	on	Browse…	next	to	the	file	path	input	box.
4.	 If	you	installed	your	Arduino	IDE	folder	in	the	root	of	your	hard	drive,	navigate	to

C:\ardunio-1.5.3\hardware\arduino\x86\tools	and	click	on	OK.	If	you	have
installed	it	in	a	different	location,	navigate	to	this	directory,	select	it,	and	then	click
on	OK.

You	will	get	a	security	warning;	click	on	OK	and	the	drivers	will	install.	When	your
drivers	are	installed,	you	should	see	the	following	device	when	you	navigate	to	Start
Menu	|	Devices	and	Printers:

In	this	case,	the	device	is	connected	to	COM	port	34.	Note	down	the	COM	port	the
Galileo	is	connected	to	as	you’ll	need	that	in	a	minute.

Downloading	the	software	and	connecting
the	Galileo	to	a	Mac
If	you	are	using	an	OS	X	machine,	download	the	OS	X	version	of	the	IDE	software	at
https://communities.intel.com/docs/DOC-22226.	Unzip	this	file	into	your	Applications
folder.	Then	connect	the	5V	power	to	the	Galileo.	Connect	the	USB	cable	from	the	Galileo
to	an	available	USB	socket	on	your	computer.	Wait	for	a	minute	while	the	Galileo	boots
up.	To	verify	that	the	Galileo	has	loaded	properly,	open	the	System	Information	window.
Then	check	under	the	USB	tab	for	a	Gadget	Serial	v2.4	entry	as	demonstrated	in	the
following	screenshot:

You	should	also	check	under	the	Network	tab	to	find	the	device	name	of	your	Galileo.	It
should	be	something	like	usbmodemXXXX.	Note	down	this	name	as	you	will	need	it	to
select	the	correct	port	later	when	you	configure	the	connection	to	the	Galileo.	You	are	now
ready	to	run	the	software.

https://communities.intel.com/docs/DOC-22226

Downloading	the	software	and	connecting
the	Galileo	to	a	Linux	machine
If	you	are	using	a	Linux	machine,	download	the	Linux	version	of	the	IDE	software	from
https://communities.intel.com/docs/DOC-22226.	Unpack	this	file	using	tar	-zxvf
arduino-1.5.3-linux32.tar.gz.	You	will	also	need	to	disable	the	modem	manager	on
most	Linux	distributions	to	enable	uploading	to	the	board.	How	you	do	this	will	vary	by
distribution	but,	if	you	are	using	the	Ubuntu	distribution,	type	sudo	apt-get	remove
modemmanager.

To	connect	the	Galileo	board	to	the	Linux	machine,	simply	plug	in	the	USB	connector	to
one	of	the	USB	ports	on	the	Linux	machine.	Open	a	terminal	and	type	sudo	ls
/dev/ttyACM*	and	this	will	list	the	device	connected	to	the	machine.	You	should	note
down	this	value	as	you	will	later	need	to	specify	the	port.

https://communities.intel.com/docs/DOC-22226

Running	the	IDE	for	the	Galileo
Now	that	the	device	is	installed,	you	can	run	the	IDE.	Select	and	run	the	program	based	on
the	type	of	machine	you	are	using.	The	IDE	should	start	and	you	should	see	something
resembling	the	following	screenshot:

This	is	the	environment	you	will	use	to	develop	your	applications.	You	can	use	this	IDE	to
compile	the	code,	upload	it	to	the	device,	and	then	run	it.

Setting	the	IDE	to	connect	to	your	board
The	first	thing	you’ll	need	to	do	is	set	the	IDE	to	create	code	for	the	proper	Galileo	board.
Fortunately,	the	IDE	lets	you	set	that	by	choosing	the	board.	To	do	this,	navigate	to	Tools	|
Board	|	Intel®	Galileo	Gen2,	as	shown	in	the	following	screenshot:

The	next	step,	selecting	a	port	to	connect	the	board	to	the	IDE,	will	depend	on	the	type	of
operating	system	you	are	using.

Selecting	the	proper	COM	port	for	Windows
To	specify	the	port	for	Windows,	navigate	to	Tools	|	Serial	Port	|	COM23,	(the	port	you
noted	earlier)	as	shown	in	the	following	screenshot:

The	IDE	should	now	indicate	that	you	are	using	the	Galileo	on	COM23	in	the	lower-right
corner	of	the	IDE,	as	in	the	preceding	screenshot.

Selecting	the	proper	COM	port	for	the	Mac
To	specify	the	port	for	Mac,	navigate	to	Tools	|	Serial	Port	|	and	select	the	port	you	noted
earlier	when	you	installed	the	drivers.	The	IDE	should	now	indicate	that	you	are	using	the
Galileo	on	the	proper	port	in	the	lower-right	corner	of	the	IDE.

Selecting	the	proper	COM	port	for	a	Linux
Machine
To	specify	the	port	for	a	Linux	machine,	navigate	to	Tools	|	Serial	Port	|	and	select	the
port	you	noted	earlier	when	you	first	connected	to	the	board.	The	IDE	should	now	indicate
that	you	are	using	the	Galileo	on	the	proper	port	in	the	lower-right	corner	of	the	IDE.

Updating	the	firmware
The	first	thing	you’ll	want	to	do	is	update	the	firmware	on	the	Galileo.	To	do	this,	select
Help	|	Galileo	Firmware	Update,	as	shown	in	the	following	screenshot:

Having	the	latest	firmware	is	always	a	good	idea;	you	might	want	to	repeat	this	step	every
week	or	so	just	to	make	sure	you	have	the	latest.

Opening	and	uploading	a	file	to	the	Galileo
Now	that	your	board	is	connected	and	you	are	running	the	latest	firmware,	you	can	open
and	upload	a	simple	example	file.	It	is	called	the	blink	application.	It	has	already	been
written	for	you,	so	you	won’t	need	to	do	any	coding.

To	get	the	blink	application,	perform	the	following	steps:

1.	 Navigate	to	File	|	Examples	|	01.Basics	|	Blink,	as	shown	in	the	following
screenshot:

2.	 You	should	then	see	the	Blink	code	in	the	IDE	window,	as	in	the	following
screenshot:

3.	 Select	the	Upload	button,	as	in	the	following	screenshot:

4.	 Once	you	have	uploaded	the	file,	it	will	tell	you	in	the	lower-left	corner	of	the	IDE
display	that	the	file	is	uploaded,	as	in	the	following	screenshot:

When	the	program	is	uploaded,	it	will	automatically	start	running	and	the	green	LED	that
is	positioned	close	to	the	USB	connection	on	the	Galileo	will	start	blinking.	The	following
images	shows	the	LED:

You	have	now	successfully	uploaded	your	first	program	to	your	Galileo!

Accessing	the	Galileo’s	Linux	capabilities
There	are	several	differences	between	the	Galileo	and	the	more	common	Arduino	board
that	many	of	you	might	be	familiar	with.	The	Galileo	has	significantly	more	processing
power.	However,	it	also	starts	up	into	a	Linux	operating	system,	and	then	exposes	its
programming	environment	in	an	Arduino-like	interface.	While	you’ll	almost	exclusively
use	the	Arduino	IDE	interface	in	this	book,	you	can	also	access	the	Linux	capabilities	of
the	Galileo.	You’ll	learn	more	about	this	in	Chapter	7,	Going	Further	with	Galileo.

Summary
You’ve	completed	the	next	stage	of	your	journey.	You	have	your	Galileo	up-and-talking
with	your	external	computer,	and	know	how	to	connect	to	the	IDE	to	create	code.	Your
next	step	will	be	learning	how	to	access	the	GPIO	pins	so	that	you	can	interact	with	the
outside	world.

Chapter	2.	Accessing	the	GPIO	Pins
Now	that	you	are	familiar	with	the	Galileo	IDE	and	know	how	to	create,	edit,	and	upload	a
program,	this	chapter	will	now	focus	on	hardware.	You’ll	learn	about	the	capabilities	of
the	General	Purpose	Input/Output	(GPIO)	pins	and	how	you	can	connect	to	and	access
them	via	software.	Specifically,	you’ll	learn	about	the	following:

The	GPIO	pins,	what	they	can	and	can’t	do
How	to	use	and	access	them	using	some	very	basic	circuits	and	very	simple
programming	examples	that	demonstrate	how	to	make	the	Galileo	access	the	outside
world

The	GPIO	capability	of	the	Galileo
The	Galileo	was	built	to	model	how	the	Arduino	accesses	the	outside	world.	Much	of	that
access	should	be	through	the	GPIO	pins.	The	Galileo	comes	with	a	standard	set	of	14
digital	and	6	analog	IO	pins,	along	with	some	additional	pins	to	provide	power	and	serial
IO.	Fortunately,	the	pins	are	actually	well	labeled	on	the	board	itself.

Here	is	a	close-up:

Here	is	a	list	of	pins	that	are	available,	and	a	brief	description	of	what	each	pin	can	do,
starting	at	the	upper	right	and	going	clockwise.	A	more	in-depth	description	of	these	pins
will	come	later	as	you	actually	use	them	in	some	example	projects:

Galileo
Pin Description

AREF

This	pin	provides	a	reference	voltage	for	the	analog	inputs.	The	values	on	the	analog	pins	will	be	reported	in
reference	to	this	voltage.	You’ll	also	use	this	in	some	applications	to	provide	a	reference	voltage	for	sensing
devices.	You	can	also	provide	an	external	reference	value	to	this	pin,	which	means	that	the	numerical	values
of	the	inputs	will	be	scaled	according	to	the	value	supplied	on	this	pin.

GND This	pin	provides	a	ground	reference	for	the	AREF	pin.

Digital
(PWM~)
13/2

These	11	pins	can	be	used	to	either	read	or	write	digital	values.	If	input,	the	value	will	be	read	as	either	a	0	or
1	based	on	the	voltage	level	at	the	input.	If	output,	the	value	will	be	set	to	either	a	0	or	1	based	on	the	logic
voltage	level	(the	actual	voltage	will	depend	on	the	voltage	logic	level	of	your	Arduino.	Some	are	5V	logic
level,	others	are	3.3	V	logic	level).

Digital
TX->1

This	pin,	and	the	RX	pin	next	to	it,	provide	a	serial	interface	that	can	be	used	to	communicate	with	other
devices.

Digital
RX->0

This	pin,	and	the	TX	pin	next	to	it,	provide	a	serial	interface	that	can	be	used	to	communicate	with	other
devices.

Analog
IN
A5/A0

These	pins	do	double	duty.	Normally,	they	are	used	as	A/D	inputs	to	the	Galileo	to	read	continuous	voltage
values	and	turn	them	into	integer	values.	However,	they	can	also	be	used	as	Digital	I/O,	very	similar	to	the
Digital	I/O	pins.

Power
Vin

You	can	power	the	Galileo	from	this	pin.	This	can	be	especially	useful	after	you	have	uploaded	your
program.	You	can	then	disconnect	the	USB	port	and,	when	you	apply	voltage	to	this	pin,	your	Galileo	will
boot	and	run	the	uploaded	program.	For	the	Gen1	board,	this	needs	to	be	5	volts.	For	the	Gen2	board,	you
can	use	a	voltage	value	from	7	to	12	Volts,	so	a	wide	variety	of	DC	power	adapter	or	battery	configurations
can	be	used.

Power
GND This	pin	would	give	the	ground	connection	associated	with	the	Power	Vin	connection.

Power
GND This	is	a	ground	normally	associated	with	the	Power	5V	and	Power	3.3V	outputs.

Power
5V This	is	a	voltage	output	set	to	5	Volts.

Power
3.3V This	is	a	voltage	output	set	to	3.3	Volts.

RESET This	pin	will	reset	the	processor,	which	will	cause	the	program	to	run	from	the	beginning.

IOREF This	provides	either	a	3.3V,	or	5	V	reference,	indicating	the	logic	level	of	the	board.

Using	the	GPIO	pins
Now	that	you	are	aware	of	all	the	GPIO	capabilities,	you	can	start	putting	them	to	work.	In
order	to	do	this,	it	is	best	to	purchase	a	small	breadboard	and	some	jumper	wires;	this	will
make	connecting	to	the	outside	world	easier.	Here	is	a	picture	of	such	a	breadboard:

They	are	easy	to	find,	you	can	purchase	one	at	almost	any	electronics	store,	or	on	any
electronic	online	sites.	You’ll	need	some	jumper	wires	to	connect	from	the	Galileo	to	the
breadboard.	The	jumper	wires	you	want	are	the	Male-to-Male	solder-less	jumper	wires.
Here	is	a	picture	of	this	sort	of	wire:

These	jumper	cables	plug	easily	into	the	header	pins	on	the	Galileo	and	the	breadboard.

Now	that	you	have	the	cables	and	the	breadboard,	you	can	start	accessing	and	controlling
hardware.

Connecting	your	first	external	hardware
Your	first	project	will	use	the	Digital	IO	pins	to	light	up	an	LED.	To	do	this,	you’ll	need	to
gather	two	more	hardware	pieces.	The	first	is	an	LED	(Light	Emitting	Diode).	This	is	a
small	part	with	two	leads	that	lights	up	when	voltage	is	applied.	They	come	in	a	wide
variety	of	colors.	If	you	want	to	buy	them	online,	search	for	a	3-mm	LED.	You	can	also
get	them	at	most	electronics	shops.	The	image	shows	an	LED:

You’ll	also	need	a	resistor	to	limit	the	current	to	the	LED;	a	220-ohm	resister	would	be	the
right	size.	Again,	you	can	get	them	online	or	at	most	electronics	shops.	The	following
image	shows	a	resistor:

If	you	get	three	LEDs	and	resistors,	you	can	exercise	three	of	the	Digital	IO	pins.

Plugging	your	wires	into	the	breadboard
Now	that	you	have	all	the	bits	and	bobs,	let’s	build	your	first	hardware	project.	Before	you
plug	anything	in,	let’s	look	at	the	breadboard	for	a	moment	so	that	you	can	understand
how	you	are	going	to	use	it	to	make	connections.	You’ll	be	plugging	your	wires	into	the
holes	on	the	breadboard.	The	holes	on	the	breadboard	are	connected	in	a	unique	way	to
make	the	connections	you	desire.

In	the	middle	of	the	breadboard,	the	holes	are	connected	across	the	board.	So	if	you	plug
in	a	wire,	and	another	wire	in	the	hole	right	next	to	it,	these	two	wires	will	be	connected,
like	this:

The	two	rows	on	each	side	of	the	board	are	generally	designed	to	provide	power,	so	they
are	connected	up	and	down,	like	this:

Setting	up	the	electronics
So	let’s	place	the	electronics	on	the	breadboard.	Place	the	LEDs	in	such	a	way	that	one
wire	is	on	one	side	of	the	middle	split	of	the	breadboard.	The	direction	of	the	LED	is
important;	make	sure	that	the	longer	of	the	two	wires	is	on	the	left	side	of	the	hole,	like
this:

Now	place	the	resistors	on	the	holes	on	one	side.	The	direction	of	the	resistor	does	not
make	any	difference,	but	make	sure	the	second	wire	lead	is	placed	in	the	row	of	holes	at
the	end	of	the	board,	like	this:

These	will	all	be	connected	together,	and	will	be	connected	to	the	GND	of	the	Galileo
using	one	of	the	jumper	cables	like	this:

Finally,	use	jumper	wires	to	connect	the	Digital	IO	pins	13,	12,	and	11	to	the	holes	on	the
breadboard,	like	this:

Now	that	the	hardware	is	configured	correctly,	you’ll	need	to	add	code	to	activate	the
LEDs.

The	IDE	and	LED	Code
To	create	the	code	for	this	example,	start	the	Galileo	IDE.	Recall	the	Blink	example	you
accessed	in	Chapter	1,	Getting	Started	with	the	Galileo.	The	IDE	should	look	like	this:

If	you	remember	this	code,	int	led	=	13	lit	the	orange	LED	on	the	board.	It	turns	out
that	LED	output	pin	13	is	also	the	connection	to	the	13	pin	on	the	Galileo	connector.	If
you	upload	and	run	this	program,	the	LED	connected	to	pin	13	should	flash	at	the	same
rate	as	the	LED	on	the	Galileo.	Here	is	a	picture:

You’ll	need	to	add	a	similar	bit	of	code	to	get	the	LEDs	connected	to	pin	12	and	11.	Add
the	following	to	the	sketch	on	the	IDE:

Here,	you	are	replicating	the	code	but	connecting	the	LED	connected	to	pin	13	to	the
variable	led,	the	LED	connected	to	pin	12	to	the	variable	led1,	and	the	LED	connected	to
pin	13	to	the	variable	led3.	You	then	program	them	all	to	be	output	pins	and	then	in	the
main	loop	toggle	between	high	and	low.	Notice	I	have	two	pins	toggling	together	(pins	13
and	11)	with	the	other	(pin	12)	toggling	in	the	exact	opposite	sequence.	The	outer	two

LEDs	should	light	for	one	second,	then	the	inner	LED	should	light.

If	one	or	more	of	the	LEDs	don’t	light,	check	to	make	sure	they	are	pushed	firmly	down
into	the	board.	You	can	also	change	the	direction	of	the	LED;	perhaps	you	have	the	leads
in	the	wrong	direction	on	the	board.

Getting	signals	from	the	outside	world
You	know	how	to	send	signals	to	the	outside	world.	You	might	also	want	to	receive	input
signals	from	the	outside	world.	These	signals	can	be	divided	into	two	types:	digital	signals
and	analog	signals.

Interfacing	digital	input	signals	with	Galileo
There	are	pins	on	the	GPIO	connectors	of	the	Galileo	than	can	be	used	to	sense	digital
input;	that	is,	an	input	that	will	be	interpreted	as	either	a	0	or	1	by	a	program.	These	are
labelled	on	the	Galileo.	An	example	of	how	to	use	these	is	a	simple	button	press	circuit.
To	create	this	circuit,	you’ll	need	one	of	the	220-ohm	resistors	you	used	in	the	LED
circuit.	You’ll	also	need	a	simple,	single-pole,	single-throw	switch;	you	can	get	these	at
most	electronics	stores.	You’ll	also	need	some	jumper	wires	to	connect	the	Galileo	to	your
circuit.	Here	is	the	circuit	diagram:

Now	you’ll	need	some	code.	You	can	use	one	of	the	example	programs	included	with	the
IDE.	Select	the	Examples	|	02.Digital	|	Button	code,	like	this:

When	you	upload	this	example,	you	will	find	that	pressing	the	button	lights	the	LED	on
the	Galileo	board.	When	you	release	the	button,	the	LED	will	not	be	lit.	You	can	now	get
digital	input	into	your	project.

Interfacing	analog	input	signals	with	Galileo
There	are	some	signals	that	aren’t	either	on,	or	off.	You	will	actually	want	to	measure	the
level	of	the	signal.	These	are	analog	signals,	and	the	Galileo	can	handle	them	as	well.
You’ll	need	to	use	one	of	the	analog	inputs,	however.	These	are	also	labelled	on	the	board.
As	an	example,	you	can	build	a	simple	electronic	circuit	using	a	potentiometer	to	illustrate
this	capability.	A	potentiometer	is	a	variable	resistor;	you	can	change	the	resistance
between	two	points	by	adjusting	the	potentiometer,	normally	by	turning	an	adjustment
either	with	your	fingers,	or	a	screwdriver.	To	create	this	circuit,	you’ll	need	a
potentiometer,	available	at	almost	all	electronics	stores.	Here	is	the	circuit	to	build:

You	have	to	connect	the	5-volt	connection	to	one	side	of	the	potentiometer,	and	the	GND
connection	to	the	other	side	of	the	connector.	The	middle	terminal	of	the	potentiometer
will	change	voltage	value	as	you	adjust	the	potentiometer.	To	measure	this	voltage,	you’ll
use	another	example	program	that	comes	with	the	IDE.	Select	the	Examples	|	03.Analog	|
AnalogInput,	code	like	this:

Adjusting	the	potentiometer	will	cause	the	LED	on	the	Galileo	to	flash	faster	or	blink
more	slowly.	The	Galileo	is	reading	the	voltage	value	and	using	that	value	to	determine
how	long	the	LED	should	be	on	and	off.	You	can	now	get	analog	input	into	your	Galileo.

Summary
That’s	it.	You’ve	completed	your	very	first	example	of	interfacing	with	the	outside	world.
You	can	play	with	different	patterns	of	LED	sequences	by	using	loops	and	different	wait
states.	Now	that	you	have	created	your	very	first	hardware	project,	in	the	next	chapter
we’ll	cover	how	to	add	hardware	capability	using	a	hardware	shield,	a	piece	of	hardware
that	plugs	directly	into	the	IO	connectors	of	the	Galileo.

Chapter	3.	Adding	Display	Functionality
In	Chapter	2,	Accessing	the	GPIO	Pins,	you	learned	how	to	connect	to	the	Galileo	and	its
GPIO	pins	using	jumper	wires,	breadboards,	and	components.	In	this	chapter,	you’ll	learn
more	about	adding	functionality	by	adding	hardware	designed	to	plug	into	the	Galileo.	In
some	of	these	examples,	you’ll	use	special	hardware	designed	to	be	plugged	into	the
Galileo’s	GPIO	pins;	these	are	called	shields.

The	simple	serial	display
In	order	to	understand	how	to	use	a	shield,	let’s	start	with	one	of	the	most	basic	display
modules	available	for	the	Galileo,	the	serial	LCD	display.	There	are	several	different
versions	out	there,	but	most	provide	a	simple	2	x	16	character	display	that	can	be	driven
by	the	serial	TX	pin	on	the	Arduino.	They	are	available	at	most	locations	where	the
Galileo	is	offered.	The	following	image	shows	the	display:

You’ll	need	three	pins	to	drive	this	display.	They	are	a	GND	and	VCC	pin,	and	the	TX	pin.
The	VCC	and	GND	will	come	from	the	5V	and	GND	pins	on	the	Galileo.	You’ll	use
digital	I/O	pin	1	on	the	Galileo	as	a	TX.	To	connect	the	Galileo	to	the	display,	connect	the
male	to	male	jumpers	to	5	Volts,	GND,	and	digital	input.	Connect	the	three	connectors	to
the	proper	connections	on	the	board,	like	this:

This	should	complete	the	hardware	connections	to	the	board.	Now	you’ll	need	some	code
to	write	characters	to	the	board.

Enabling	the	serial	display	in	the	IDE
Now	bring	up	the	IDE.	Before	you	start	coding,	you’ll	need	to	get	the	library	associated
with	your	display	and	install	it	in	the	IDE.	For	this	particular	display,	you’ll	use	the	serial
library	found	at	https://github.com/downloads/nkcelectronics/SerialLCD/SerialLCD.zip.

The	.zip	file	should	then	exist	in	your	Downloads	directory.	Now	you’ll	need	to	place
these	files	in	the	libraries	directory	of	your	DE	installation.	Perform	the	following	steps:

1.	 To	include	this	library	in	your	IDE,	first	start	your	IDE	and	then	select	Sketch	|
Import	Library…	|	Add	Library…,	like	this:

2.	 Now	go	to	your	Downloads	directory	and	select	the	ZIP	file	that	holds	your	library.
When	complete,	this	library	should	be	added	to	your	library	choices.	You	can	check
this	by	again	selecting	Sketch	|	Import	Library…	|	Add	Library…like	this:

https://github.com/downloads/nkcelectronics/SerialLCD/SerialLCD.zip

3.	 Once	the	library	is	installed,	go	back	to	the	main	IDE	screen	and	you	can	write	the
following	code:

This	code	was	written	using	the	LCD	documentation	at
http://media.nkcelectronics.com/datasheet/LCM1602SK-NSW-BBW.pdf.	It	is	quite
simple.

Lets	explain	the	code	line	by	line:

char	ESC	=	0xFE;-	This	character	needs	to	be	sent	to	the	display	each	time	a
command	is	sent
void	setup()–	The	setup	function	is	called	by	the	Galileo	each	time	the
program	is	run
Serial1.begin(9600);:-	Sets	the	serial	port	to	a	baud	rate	of	9600
Serial1.write(ESC);:-	Sends	the	preceding	character	set	each	time	a	command
is	sent
Serial1.write(0x51);:-	This	command	clears	the	display
Serial1.write(ESC);:-	Sends	the	previous	character	set	each	time	a	command
is	sent
Serial1.write(0x46);:-	Sets	the	cursor	to	the	first	line,	the	first	position
Serial1.print("Hello	World!");:-	Prints	out	Hello	World!

http://media.nkcelectronics.com/datasheet/LCM1602SK-NSW-BBW.pdf

Serial1.write(ESC);:-	Sends	the	preceding	character	set	each	time	a	command
is	sent
Serial1.write(0x45);:-	Sets	the	cursor	to	the	second	line
Serial1.write(0x40);:-	Sets	the	cursor	to	the	first	position
Serial1.print("Intel	Galileo");:-	Prints	out	Intel	Galileo!
void	loop():–	This	loop	is	called	over	and	over	after	the	setup()	function	is
complete

4.	 Now	upload	the	sketch	and	you	should	see	Hello	World!	Intel	Galileo	on	the
display,	like	this:

Now	you	can	add	all	sorts	of	text.	If	you	place	a	message	in	the	loop,	be	sure	to	add	in
delay(2000).	This	is	a	function	that	pauses	for	a	number	of	milliseconds	(in	this	case
2000),	thus	allowing	the	user	time	to	read	the	display	before	it	is	changed.

Now	you	can	display	information	from	the	Galileo.	You	might,	however,	want	even	more
flexibility	than	this	display	can	provide,	so	you’ll	now	learn	how	to	add	a	TFT	display.

The	TFT	shield
Using	a	TFT	display	shield	is	another	way	of	adding	display	capability	to	your	Galileo.
There	is	a	limited	set	of	TFT	displays	that	will	work	with	the	Galileo	and	the	performance
isn’t	very	fast,	but	it	does	work.	First,	you’ll	need	a	display,	for	example	the	Adafruit	2.8
inch	TFT	V2	available	from	adafruit.com.	The	following	image	shows	the	unit:

You’ll	place	this	shield	onto	the	Galileo,	like	this:

http://adafruit.com

The	unit	will	light	up	and	show	that	it	is	connected.	Once	the	hardware	is	connected,
you’ll	now	need	to	access	the	display	via	the	IDE.

Accessing	the	display	with	the	IDE
To	access	the	display,	you’ll	need	to	follow	these	steps:

1.	 Go	to	the	IDE	libraries	directory	and	delete	the	Robot_Control	library.	This	has
some	duplicate	files	that	will	cause	problems	later	if	you	don’t	get	rid	of	them.

2.	 Download	the	Adafruit_GFX	library	and	install	it	in	the	IDE	library.	You	can	get	this
library	at	https://learn.adafruit.com/adafruit-gfx-graphics-library.	You’ll	need	to
unzip	it,	change	the	name	from	Adafruit-GFX-Library-master	to	Adafruit_GFX
and	move	it	into	the	IDE	libraries	directory.

3.	 Download	a	modified	version	of	the	Adafruit_ILI9341	library	from
https://github.com/wallacezq/Adafruit_ILI9341.	Unzip	this	library.

4.	 Go	to	the	directory	Adafruit_ILI9341-master.	In	that	directory,	you	will	find	the
Arduino	directory	and	inside	that	directory	the	file	Arduino.h.	You	must	copy	that
file	into	the	IDE	at	the	location	\arduino-1.5.3-
Intel.1.0.4\hardware\arduino\x86\cores\arduino.	Make	sure	you	replace	the
existing	Arduino.h	file.

5.	 In	the	Adafruit_ILI9341-master	directory,	there	is	another	directory	named
Adafruit_ILI9341-Library.	Rename	it	to	Adafruit_ILI9341	and	move	it	into	the
IDE	libraries	directory.

Now	you	are	ready	to	open	the	IDE	and	an	example	program	that	will	access	the	display.
Open	the	Examples	|	Adafruit_ILI9341	|	graphicstest	example,	like	this:

https://learn.adafruit.com/adafruit-gfx-graphics-library
https://github.com/wallacezq/Adafruit_ILI9341

Now	upload	the	file	using	the	IDE	and	you	should	see	the	following	result:

You	can	now	display	graphics	on	the	display!	The	only	example	from	this	directory	that
will	work	is	the	graphicstest	example.	The	others	require	access	to	the	touchscreen
capability	that	is	not	yet	available	via	the	library.

Summary
That’s	it.	You’ve	learned	how	to	add	display	capability	to	your	Galileo	projects	using
shields.	You’ll	use	these	same	concepts	in	later	chapters	to	add	other	types	of
functionalities.	In	fact	in	the	next	chapter,	you’ll	use	the	shield	concept	to	control	DC
motors.

Chapter	4.	Controlling	DC	Motors
In	Chapter	3,	Adding	Display	Functionality,	you	learned	how	to	connect	to	the	outside
world	using	jumper	wires	and	specially	designed	hardware	called	shields.	In	this	chapter,
you’ll	learn	the	following:

How	to	use	the	Galileo	to	control	small	DC	motors
How	to	take	this	to	the	next	level,	learning	how	to	add	more	functionality	using	a
shield	to	control	the	speed	and	direction	of	more	powerful	DC	motors

DC	motor	basics
Before	we	get	started	with	connecting	everything	and	making	it	all	move,	let’s	spend	some
time	understanding	some	of	the	basics	of	DC	motor	control.	Whether	you	choose	a	two	or
four	wheeled	mobile	platform,	or	a	tracked	platform,	the	basic	movement	control	is	the
same.	The	unit	moves	by	engaging	the	motors.	If	the	desired	direction	is	straight,	the
motors	are	run	at	the	same	speed.	If	you	want	to	turn	the	unit,	the	motors	are	run	at
different	speeds.	The	unit	can	actually	turn	in	a	circle	if	you	run	one	motor	forward	and
one	backwards.

DC	motors	are	fairly	straightforward	devices.	The	speed	and	direction	of	the	motor	is
controlled	by	the	magnitude	and	polarity	of	the	voltage	applied	to	its	terminals.	The	higher
the	voltage,	the	faster	the	motor	will	turn.	If	you	reverse	the	polarity	of	the	voltage,	you
can	reverse	the	direction	the	motor	is	turning	in.

However,	the	magnitude	and	polarity	of	the	voltage	are	not	the	only	factor	that	is
important	when	it	comes	to	controlling	your	motors.	The	power	that	your	motor	can	apply
to	moving	your	platform	is	also	determined	by	the	voltage	and	the	current	supplied	at	its
terminals.

Now,	there	are	actually	GPIO	pins	on	the	Galileo	that	you	could	use	to	create	the	control
voltage	and	drive	your	motors	directly.	The	challenge	with	this	method	is	that	the	Galileo
cannot	normally	source	enough	current	and	voltage	and	thus	your	motors	would	not	be
able	to	generate	enough	power	to	move	a	mobile	platform.

There	are	several	solutions	to	this	problem.	The	first	is	to	use	a	simple	transistor	circuit
and	an	external	voltage	source.	You’ll	use	this	solution	in	the	first	example	of	this	chapter.
Another	solution	is	to	use	an	H-bridge,	a	chip	that	the	Galileo	can	control	but	that	is
connected	to	a	power	source	and	can	provide	enough	current.	The	second	example	in	this
chapter	will	show	you	how	to	use	this	sort	of	chip.	The	third	solution	to	the	problem	is	to
use	a	shield	that	contains	all	the	circuitry	and	can	connect	to	an	external	power	source
input.	Then	your	Galileo	can	provide	both	voltage	and	current	so	that	your	platform	can
move	reliably.	The	last	example	in	this	chapter	will	use	a	motor	controller	shield	designed
for	the	Arduino	to	make	DC	motor	control	simple.

Connecting	a	DC	motor	directly	to	the
Galileo
The	first	step	in	connecting	a	DC	motor	to	the	Galileo	is	to	actually	obtain	a	DC	motor.
The	motors	that	you	will	be	dealing	with	here	are	simple,	small	DC	motors.	For	this
example,	you	can	use	a	small	6V	DC	motor	available	at	most	electronics	or	hobby	stores,
or	online	at	www.amazon.com.	Here	is	a	picture	of	one	such	motor:

In	order	to	connect	this	motor	to	your	Galileo,	you’ll	need	some	additional	parts.	You’ll
need	two	male-to-male	jumper	cables	and	two	alligator	clip	jumper	cables.	You’ll	also
need	a	transistor,	TIP120	to	be	specific.	You’ll	also	need	a	diode,	the	1N4004	diode,	a
1,000-ohm	resistor,	and	a	1	µFarad	ceramic	capacitor.	The	last	four	parts	should	be
available	at	almost	any	electronics	store,	or	online.	To	control	this	motor,	you’ll	connect
one	motor	connector	to	digital	pin	11,	and	the	other	connector	to	GND.	You	could	use	one
of	the	voltage	sources	on	the	Galileo,	but	some	DC	motors	can	draw	lots	of	current,	more
than	your	Galileo	can	supply.	A	safer	way	is	to	connect	the	DC	motor	supply	to	a	battery
holder	with	4	AA	batteries.

Connect	the	Galileo,	transistor,	diode,	resistor,	and	power	supply	like	this:

Now	you	can	start	the	IDE	so	that	you	can	enter	a	program	to	send	a	control	signal	to	the
DC	motor.

Galileo	code	for	DC	motor	speed	control
Open	the	IDE	and	then	enter	the	following	code:

This	code	sends	basic	commands	to	the	Galileo	to	control	the	speed	of	the	motor.	Here	are
the	details:

int	motorPin	=	11;:-	This	sets	digital	I/O	pin	11	to	the	control	pin	you’ll	be	using.
void	setup():–	The	setup	function	executes	once	you	set	up	your	Galileo.
pinMode(motorPin,	OUTPUT);:-	This	sets	this	pin	to	function	as	an	output	pin.
Serial.begin(9600);:-	This	starts	the	serial	port	with	a	baud	rate	of	9600.
Serial.println("Set	Speed	0	-	255");:-	This	prints	the	line	“Set	Speed	0	–	255”.
void	loop():–	This	loop	is	performed	over	and	over	again	on	the	Galileo.

if	(Serial.available()):–	If	there	is	a	serial	input	date	on	the	serial	port,	then	do
the	following	statements.
int	speed	=	Serial.parseInt();:-	This	brings	in	the	data	as	an	integer.
Serial.println("Speed");:-	This	prints	the	line	“Speed”.
Serial.print(speed);:-	This	prints	the	value	input	from	the	serial	port.
Serial.println("	");:-	This	finishes	the	line	and	goes	to	the	next	line.
if	(speed	>=	0	&&	speed	<=	255):–	If	the	speed	is	in	the	proper	range,	then	this
sends	it	on.
analogWrite(motorPin,	speed);:-	This	writes	this	value	to	the	pin	11.	This	will	set
the	PWM	signal	to	the	proper	value	to	control	the	speed	of	the	motor.

Now	upload	the	code	to	your	Galileo.	Your	motor	should	start	running.	Once	you	have
uploaded	the	code,	you’ll	want	to	open	up	the	Serial	Monitor	so	you	can	command	your
motor	to	run	at	different	speeds.	To	open	this,	you’ll	select	Tools	|	Serial	Monitor.	When
you	open	this,	you	should	see	the	following	window	pop	up,	displaying	the	text	from	your
program:

Enter	a	value,	say	255,	and	then	click	on	Send.	Your	motor	should	speed	up.	Enter	another
number,	say	0,	click	on	Send,	and	your	motor	should	stop.	Numbers	between	these	two
values	should	adjust	the	speed	of	your	DC	motor.	Unfortunately,	the	motor	can	only	go	in
one	direction.	The	next	example	will	provide	a	solution	if	you’d	like	bidirectional	control
of	your	DC	motor.

Connecting	a	DC	motor	using	an	H-bridge
and	the	Galileo
The	next	step	is	to	add	a	bit	more	functionality	with	a	new	type	of	chip,	an	H-bridge.	An
H-bridge	is	a	fairly	simple	device;	it	basically	consists	of	a	set	of	switches	and
functionalities	to	allow	the	direction	of	the	current	to	be	reversed	so	that	the	motor	can
either	be	run	in	the	forward,	or	in	the	reverse,	direction.

Let’s	start	this	example	by	building	the	H-bridge	circuit	and	controlling	just	one	motor.	To
do	this,	you’ll	need	to	get	an	H-bridge.	One	of	the	most	common	ones	is	the	L293	dual	H-
bridge	chip.	This	chip	will	allow	you	to	control	the	direction	of	the	DC	motors.	These
chips	are	available	at	most	electronics	stores	or	online.	You’ll	also	need	a	capacitor;	you
can	use	the	1	µFarad	from	the	previous	example,	if	you	like.	Once	you	have	your	H-
bridge,	build	the	following	circuit	with	the	Galileo,	the	motor,	and	breadboard:

Specifically,	you’ll	want	to	connect	these	pins	on	the	Galileo	to	the	pins	on	the	H-bridge.
Here	is	the	connection	list:

Galileo	Pin H-Bridge	Pin

9 1

4 2

3 7

Once	you	have	the	connections,	you	can	test	the	system.	To	do	that,	you’ll	need	to	add
some	code.

Galileo	code	for	DC	motor	direction
control
Open	the	IDE	and	type	in	the	following	code:

This	code	sets	up	pins	3,	4,	and	9	to	enable	the	chip	and	control	the	direction	of	the	motor.
As	mentioned	before,	you	can	use	the	Tools	|	Serial	Port	to	send	data	to	the	program.
Sending	a	0	sets	pin	3	to	HIGH	and	pin	4	to	LOW,	causing	the	motor	to	spin	in	one
direction.	Sending	a	1	sets	pin	3	to	LOW	and	pin	4	to	HIGH,	causing	the	motor	to	spin	in
the	other	direction.

Now	you	know	how	to	build	circuits	to	control	both	the	speed	and	the	direction	of	DC
motors.	However,	instead	of	procuring	all	the	parts	and	building	the	circuits	yourself,	you
can	actually	buy	a	DC	motor	control	shield.

Controlling	DC	motors	using	a	shield
For	this	final	example,	let’s	graduate	from	a	simple	DC	motor	to	a	wheeled	platform.
There	are	several	simple,	two-wheeled	robotics	platforms.	In	this	example,	you’ll	use	one
that	is	available	on	several	online	electronics	stores.	It	is	called	the	Magician	Chassis,
sourced	by	SparkFun.	The	following	image	shows	this:

To	make	this	wheeled	robotic	platform	work,	you’re	going	to	control	the	two	DC	motors
connected	directly	to	the	two	wheels.	You’ll	want	to	control	both	the	direction	and	the
speed	of	the	two	wheels	to	control	the	direction	of	the	robot.

You’ll	do	this	with	an	Arduino	shield	designed	for	this	purpose.	The	Galileo	is	designed	to
accommodate	many	of	these	shields.	The	following	image	shows	the	shield:

Specifically,	you’ll	be	interested	in	the	connections	on	the	front	corner	of	the	shield,	which
is	where	you	will	connect	the	two	DC	motors.	Here	is	a	close-up	of	that	part	of	the	board:

It	is	these	three	connections	that	you	will	use	in	this	example.	First,	however,	place	the
board	on	top	of	the	Galileo,	much	as	you	did	with	the	display	shield	from	the	last	chapter’s
example.	Then	mount	the	two	boards	to	the	top	of	your	two-wheeled	robotic	platform,	like
this:

In	this	case,	I	used	a	large	cable	tie	to	mount	the	boards	to	the	platform,	using	the	foam
that	came	with	the	motor	shield	between	the	Galileo	and	plastic	platform.	This	particular
platform	comes	with	a	4	AA	battery	holder,	so	you’ll	need	to	connect	this	power	source,	or
whatever	power	source	you	are	going	to	use,	to	the	motor	shield.	The	positive	and
negative	terminals	are	inserted	into	the	motor	shield	by	loosening	the	screws,	inserting	the
wires,	and	then	tightening	the	screws,	like	this:

The	final	step	is	to	connect	the	motor	wires	to	the	motor	controller	shield.	There	are	two
sets	of	connections,	one	for	each	motor	like	this:

Insert	some	batteries,	and	then	connect	the	Galileo	to	the	computer	via	the	USB	cable,	and
you	are	now	ready	to	start	programming	in	order	to	control	the	motors.

Galileo	code	for	the	DC	motor	shield
Now	that	the	HW	is	in	place,	bring	up	the	IDE,	make	sure	that	the	proper	port	and	device
are	selected,	and	enter	the	following	code:

The	code	is	straightforward.	It	consists	of	the	following	three	blocks:

1.	 The	declaration	of	the	six	variables	that	connect	to	the	proper	Galileo	pins:

int	pwmA	=	3;

int	pwmB	=	11;

int	brakeA	=	9;

int	brakeB	=	8;

int	directionA	=	12;

int	directionB	=	13;

2.	 The	setup()	function,	which	sets	the	directionA,	directionB,	brakeA,	and	brakeB
digital	output	pins:

pinMode(directionA,	OUTPUT);

pinMode(brakeA,	OUTPUT);

pinMode(directionB,	OUTPUT);

pinMode(brakeB,	OUTPUT);

3.	 The	loop()	function.	This	is	an	example	of	how	to	make	the	wheeled	robot	go
forward,	then	turn	to	the	right.	At	each	of	these	steps,	you	use	the	brake	to	stop	the
robot:

//	Move	Forward

digitalWrite(directionA,	HIGH);

digitalWrite(brakeA,	LOW);

analogWrite(pwmA,	255);

digitalWrite(directionB,	HIGH);

digitalWrite(brakeB,	LOW);

analogWrite(pwmB,	255);

delay(2000);

digitalWrite(brakeA,	HIGH);

digitalWrite(brakeB,	HIGH);

delay(1000);

//Turn	Right

digitalWrite(directionA,	LOW);	//Establishes	backward	direction	of	

Channel	A

digitalWrite(brakeA,	LOW);	//Disengage	the	Brake	for	Channel	A

analogWrite(pwmA,	128);	//Spins	the	motor	on	Channel	A	at	half	speed

digitalWrite(directionB,	HIGH);	//Establishes	forward	direction	of	

Channel	B

digitalWrite(brakeB,	LOW);	//Disengage	the	Brake	for	Channel	B

analogWrite(pwmB,	128);	//Spins	the	motor	on	Channel	B	at	full	speed

delay(2000);

digitalWrite(brakeA,	HIGH);

digitalWrite(brakeB,	HIGH);

delay(1000);

Once	you	have	uploaded	the	code,	the	program	should	run	in	a	loop.	If	you	want	to	run
your	robot	without	connecting	to	the	computer,	you’ll	need	to	add	a	battery	to	power	the
Galileo.	The	Galileo	will	need	at	least	2	Amps,	but	you	might	want	to	consider	providing
3	Amps	or	more	based	on	your	project.	To	supply	this	from	a	battery,	you	can	use	one	of
several	different	choices.	My	personal	favorite	is	to	use	an	emergency	cell	phone	charging
battery,	like	this:

If	you	are	going	to	use	this,	you’ll	need	a	USB-to-2.1	mm	DC	plug	cable,	available	at
most	online	stores.	Once	you	have	uploaded	the	code,	you	can	disconnect	the	computer,
then	press	the	reset	button.	Your	robot	can	move	all	by	itself!

Summary
By	now,	you	should	be	feeling	a	bit	more	comfortable	with	configuring	HW	and	writing
code	for	the	Galileo.	This	example	is	fun,	and	provides	you	with	a	moving	platform.	In	the
next	chapter,	you’ll	change	this	platform	from	one	based	on	DC	motors	to	one	based	on
servos,	and	you’ll	build	a	robot	that	can	walk.

Chapter	5.	Adding	Sensors
In	Chapter	4,	Controlling	DC	Motors,	you	learned	how	to	use	the	Galileo	to	control	DC
motors.	In	this	chapter,	you’ll	learn	how	to	add	sensors	to	your	projects.	Sensors	are
important	because	you	can	use	them	to	find,	or	avoid,	objects.	You	can	use	them	to	sense
your	direction	and	speed,	and	also	temperature.	You	can	also	use	them	to	sense	acoustic
and	electromagnetic	waves,	pressure,	and	many	other	physical	phenomena.	One	of	the
challenges	of	using	the	Galileo	is	that	it	uses	the	Linux	operating	system	at	its	core,	so
there	are	challenges	if	a	sensor	needs	to	do	real—	time	processing	of	signals	with	tight
timing.	Linux	is	not	a	real-time	operating	system,	and	might	be	doing	other	things	when
you	need	to	make	something	specific	happen.	This	will	limit	some	of	the	sensors	you	can
use	on	your	project.	For	a	complete	list	of	sensors	and	other	hardware	that	are	currently
supported	by	the	Galileo,	see	https://communities.intel.com/docs/DOC-23423.	The	goal	of
this	chapter	is	to	walk	you	through	a	few	of	the	examples	from	this	list	to	show	you	how
to	connect	sensors	to	the	Galileo.

https://communities.intel.com/docs/DOC-23423

Sensing	distance
There	are	two	basic	sensors	that	will	return	information	on	the	distance	to	an	object:	sonar
and	infrared.	In	the	case	of	sonar,	the	sensor	uses	ultrasonic	sound	to	calculate	the	distance
to	an	object.	The	sensor	consists	of	a	transmitter	and	receiver,	the	transmitter	creates	a
sound	wave	that	travels	out	from	the	sensor,	as	illustrated	here:

The	device	is	triggered	by	an	electronic	signal	to	send	out	a	sound	wave.	If	an	object	is	in
the	path	of	these	waves,	then	the	waves	reflect	off	the	object,	sending	waves	that	return	to
the	sensor,	as	shown	here:

The	basic	sensor	then	measures	the	received	sound	wave	and	sends	out	an	electronic
signal.	The	user	can	then	calculate	the	time	difference	between	when	the	sound	wave	was
sent	out	and	when	it	returns	to	measure	the	distance	to	the	object.	Unfortunately,	the	return
time	must	be	measured	with	precision	for	this	type	of	sensor	to	work.	This	is	challenging
for	a	processor	such	as	the	Galileo,	that	runs	Linux	as	the	base	operating	system.	There	are
ways	to	make	this	work,	but	it	is	not	simple.	Please	see	the	shield	compatibility	guide	at
https://communities.intel.com/docs/DOC-23423	for	details.

https://communities.intel.com/docs/DOC-23423

The	Infrared	sensor
Now,	a	little	tutorial	on	IR	sensors.	The	sensor	you	are	using	has	both	a	transmitter	and	a
sensor.	The	transmitter	transmits	a	narrow	beam	of	light,	and	the	sensor	receives	this	beam
of	light.	The	difference	in	transit	ends	up	as	an	angle	measurement	at	the	sensor,	as	shown
here:

The	different	angles	give	you	an	indication	of	the	distance	to	the	object.	Unfortunately,	the
relationship	between	the	output	of	the	sensor	and	the	distance	is	not	linear,	so	you’ll	need
to	do	some	calibration	to	predict	the	actual	distance	and	its	relationship	to	the	output	of	the
sensor.

The	voltage	to	distance	chart	for	the	device	looks	like	this:

This	kind	of	chart	will	come	from	the	sensor’s	date	sheet.	There	are	really	two	parts	to	the
curve;	the	first	is	the	distance	up	to	about	15	centimeters,	then	the	distance	from	15
centimeters	out	to	150	centimeters.	You	can	simplify	the	code	if	you	ignore	distances
closer	than	15	centimeters,	and	model	the	distance	from	15	centimeters	and	out	as	a
decaying	exponential	with	the	form	Constant	*	InputValue-exponential	value.	This	will	be
the	calculation	that	you	will	use	later	in	the	program.

Connecting	an	IR	sensor	to	the	Galileo
The	first	step	in	connecting	an	IR	sensor	to	your	Galileo	is	to	obtain	a	sensor.	One	popular
choice	is	the	Sharp	series	of	IR	sensors.	The	following	image	shows	one	of	the	models,
the	Sharp	2Y0A02,	a	unit	that	provides	sensing	to	a	distance	of	150	cm:

To	connect	this	unit,	you’ll	connect	the	three	pins	that	are	available	on	the	bottom	of	the
sensor.	Here	is	the	connection	list:

Galileo	Pin Sensor	Pin

5V Vcc

GND Gnd

A3 Vo

Unfortunately,	there	are	no	labels	on	the	unit,	but	here	are	the	pins	you’ll	connect:

One	of	the	challenges	of	making	this	connection	is	that	the	female-to-male	connection
jumpers	are	too	big	to	connect	directly	to	the	sensor.	You’ll	want	to	order	a	three-wire
cable	with	connectors	with	the	sensor.	Many	versions	come	with	this	cable.	You	can	make
the	connections	between	this	cable	and	the	Galileo	using	the	male-to-male	jumper	wires.
Here	is	the	diagram:

Once	the	pins	are	connected,	you	are	ready	to	access	the	sensor	via	the	IDE.

Accessing	the	IR	sensor	from	the	Galileo	IDE
Now	bring	up	the	IDE.	The	following	that	provides	access	to	the	sensor	and	returns	via	the
serial	link	the	distance	to	the	object:

This	is	quite	simple.	The	three	global	variables	at	the	top	set	the	input	pin	to	3,	and
provide	a	storage	location	for	the	input	value	and	distance.	The	setup()	function	simply
sets	the	serial	port	baud	rate	to	9600	and	prints	out	single	line	to	the	serial	port.	The	Serial
Monitor	communicates	with	the	Galileo	via	a	serial	port,	and	the	baud	rate	specifies	the
communication	rate	between	the	Galileo	and	the	host	computer.

In	the	loop()	function,	you	first	get	the	value	from	the	A3	input	pin.	The	next	step	is	to
convert	it	to	a	distance	based	on	the	voltage.

If	you	open	the	Serial	Monitor	window	and	place	an	object	in	front	of	the	sensor,	you’ll
see	the	readings	for	the	distance	to	the	object,	like	this:

By	the	way,	when	you	place	the	object	closer	than	15	cm,	you	should	begin	to	see
distances	that	seem	much	larger	than	indicated.	This	is	due	to	the	voltage-to-distance
curve	at	these	much	shorter	distances.	If	you	truly	need	very	short	distances,	you’ll	want	a
different	sensor.

Connecting	a	digital	compass	to	the
Galileo
One	of	the	important	pieces	of	information	that	might	be	useful	for	your	project	is	its
direction	of	travel.	This	could	be	given	by	a	GPS	unit,	but	a	GPS	unit	can	be	expensive,
and	it	often	doesn’t	work	well	inside	buildings.	You	can	also	just	“keep	track”	of	the
direction	associated	with	your	hardware,	but	you’ll	need	to	carefully	update	this	whenever
your	project	might	move.	Using	a	compass	frees	you	from	always	having	to	keep	track,
and	will	also	allow	you	to	avoid	inaccuracies	that	can	accumulate	from	inaccuracies	in
your	control	system.	So,	let’s	learn	how	to	hook	up	a	digital	compass	to	the	Galileo.

There	are	several	chips	that	provide	digital	compass	capability;	one	of	the	most	common
is	the	HMC5883L	3-Axis	Digital	Compass	chip.	This	chip	is	packaged	onto	a	module	by
several	companies,	but	almost	all	of	them	result	in	a	similar	interface.	Here	is	an	image	of
one	by	a	company	called	SainSmart,	that	is	available	at	a	number	of	online	retailers,	such
as	www.amazon.com:

The	connections	to	this	chip	are	straightforward,	the	device	communicates	with	the
Galileo	using	the	I2C	bus,	a	standard	serial	communications	bus.	On	the	back	of	the
module,	the	connections	are	labelled,	like	this:

http://www.amazon.com

Here	are	the	connections	that	you’ll	need	to	make	between	the	Galileo	and	the	device:

Galileo	Pin Sensor	Pin

5V 5V

GND GND

A5 SCL

A4 SDA

You	won’t	connect	to	the	3.3	volt	pin,	as	you	are	using	the	5	volt	to	connect	to	the	device.
The	DRDY	pin	is	an	optional	connection	that	is	used	when	you	want	to	communicate	at
higher	data	rates.	Now	you	are	ready	to	talk	with	the	device	using	the	IDE.

Accessing	the	compass	from	the	IDE
The	first	step	in	accessing	the	compass	capability	for	the	IDE	is	to	install	a	library.	Finding
a	library	to	support	the	module	is	a	bit	difficult,	but	the	one	that	works	well	for	this	device
is	available	at
www.emartee.com/product/42254/HMC5883L%203%20Axis%20Digital%20Compass%20Module

Follow	these	steps	to	install	the	library	and	run	the	example:

1.	 Select	the	Arduino	Library	for	HMC5883L	link	on	this	page	and	it	will	take	you	to	a	set
of	library	selections.

2.	 You	need	to	select	the	HMC5883L	/	HMC5883L	Library	for	Arduino.rar	link	towards
the	bottom	of	this	page,	and	this	will	download	a	.rar	file	that	holds	the	library.

3.	 Unzip	this	file	into	the	libraries	directory	of	your	Galileo	IDE	installation.
4.	 Now,	bring	up	the	IDE.	If	the	IDE	was	already	open,	you’ll	want	to	close	it	and	open

it	again	so	it	can	recognize	the	new	library.	Select	File	|	Examples	and	you	should	be
able	to	select	the	HMC5883L	library	example,	like	this:

Once	you	have	selected	this	example,	upload	it	to	your	Galileo	and	open	the	Serial
Monitor.	You	might	have	to	resize	the	display	to	get	a	good	look	at	the	results,	but	you
should	see	something	like	this:

http://www.emartee.com/product/42254/HMC5883L%203%20Axis%20Digital%20Compass%20Module

Now	you	can	add	direction	to	your	project!	As	you	move	the	device	around,	you	should
see	the	Heading	value	change.	This	is	very	useful	for	helping	you	give	direction	to	your
projects.	The	first	three	numbers	are	the	raw	magnetic	sensor	readings,	and	the	middle
three	are	angle	readings	from	the	magnet	sensors.	The	last	two	are	the	headings	in	radians
and	degrees.	The	magnetic	sensor	is	sensing	the	magnetic	field	of	the	earth.	As	you	move
the	device	around,	you	should	see	these	readings	change.	This	data	can	be	then	used	to
sense	what	direction	your	project	is	facing.	The	device	has	lots	of	capability,	including	the
ability	to	calibrate	the	device	so	that	a	particular	position	is	in	the	0	position.	For	more
information	about	these	capabilities,	feel	free	to	look	at	both	example	programs	provided
by	the	library.	However,	you	might	want	to	add	even	more	information	to	your	project,
such	as	the	speed	and	tilt.	Fortunately,	there	are	sensors	for	this	as	well.

Connecting	an	accelerometer	or	gyro	to
the	Galileo
The	ability	to	measure	speed	and	tilt	is	important	in	many	robotics	applications.	This	can
tell	you	how	fast	your	robot	is	traveling,	and	in	what	direction.	Fortunately,	there	are	chips
that	can	do	this	for	you.	One	of	those	is	the	MPU-6050,	which	provides	a	complete	set	of
information	on	movement,	including	acceleration	and	tilt.	For	more	information	on	this
type	of	device,	see	https://www.sparkfun.com/pages/accel_gyro_guide.	There	are	several
different	manufacturers	who	place	this	chip	on	a	small	board	accessible	to	the	Galileo.
One	of	these	is	the	SparkFun	version,	the	Sparkfun	SEN-11028,	available	at
www.sparkfun.com.	It	is	pictured	here:

https://www.sparkfun.com/pages/accel_gyro_guide
http://www.sparkfun.com

The	interface	to	the	board	is	quite	simple,	with	only	one	issue.	This	particular	chip	will
require	you	to	solder	header	pins	to	the	board	to	connect	the	jumper	wires	to	the	Galileo.
You	can	purchase	these	at	www.sparkfun.com	as	well,	just	search	for	the	Arduino
stackable	header,	the	10-pin	version.	Or,	if	you	don’t	like	to	solder,	you	can	try	a
solderless	version,	at	https://www.sparkfun.com/products/10527.	Once	the	header	is
connected	to	the	board,	the	device	will	look	like	this:

http://www.sparkfun.com
https://www.sparkfun.com/products/10527

Now	you	can	use	male-to-male	jumper	cable	to	connect	the	Galileo	and	the	board.	Here	is
the	table	for	the	connections:

Galileo	Pin Sensor	Pin

3.3V VDD

GND GND

A5 SCL

A4 SDA

3.3V VIO

You’ll	notice	that	you	need	to	make	two	connections	to	the	3.3V	supply,	so	you	might
want	to	create	a	male-to-male	jumper	cable	with	two	connections	on	one	end.	This	can	be
done	by	using	two	male-to-male	cables,	by	cutting	off	one	end	and	stripping	back	the
insulation,	soldering	the	three	cables	together,	and	then	wrapping	the	solder	connection	in
electrical	tape.

Accessing	the	accelerometer	from	the	IDE
Now	that	the	two	devices	are	connected,	you’ll	need	to	bring	up	the	IDE	and	add	a	library
so	that	you	can	access	the	functionality	from	the	SW.	To	get	the	libraries,	do	the	following
steps:

Note
From	the	Sparkfun	page	on	the	device	at	www.sparkfun.com/products/11028	you’ll	find	a
github	repository	that	supports	not	only	this	device,	but	a	number	of	devices	that	use	the
I2C	interface.

1.	 Go	to	https://github.com/jrowberg/i2cdevlib	and	look	on	the	right	side	of	the	page	for
the	download	link.	This	will	download	the	entire	library.

2.	 Now	you	should	unzip	the	file	to	a	handy	location,	I	unzipped	mine	in	the	download
directory.	What	you	want	is	just	the	files	associated	with	the	Arduino,	so	go	to	the
directory	that	supports	those	files,	like	this:

http://www.sparkfun.com/products/11028
https://github.com/jrowberg/i2cdevlib

3.	 Even	though	you	won’t	need	all	these	libraries	right	now,	you	can	just	copy	all	these
to	the	libraries	directory	of	your	Galileo	for	future	use.	By	the	way,	you’ll	notice	that
there	is	a	duplicate	of	the	HMC5883L	library	you	installed	earlier,	so	you	can	decide
to	merge	these	directories.

4.	 Once	you	have	these	directories	installed,	bring	up	the	Galileo	IDE.	If	the	IDE	is
already	running,	you’ll	want	to	restart	it	so	it	can	recognize	the	library.	Now	bring	up
the	example	program	that	reads	the	raw	values	of	the	accelerometer	and	gyro	by
selecting	Examples	|	MPU6050	|	Examples	|	MPU6050_raw,	like	this:

This	will	open	a	window	that	provides	the	code	to	read	the	raw	data	from	your	sensor.
When	you	upload	the	code	and	open	the	Serial	Monitor,	you	should	see	something	like
this:

The	first	three	numbers	are	the	x,	y,	and	z	raw	accelerometer	readings,	and	the	last	three
are	x,	y,	and	z	angle	readings	from	the	gyroscope.	If	you	mount	the	device	flat	in	your
project,	x,	y,	and	z	would	be	associated	with	the	yaw,	pitch,	and	roll	of	the	device.	Here	is
a	diagram	of	how	the	yaw,	pitch,	and	roll	indicate	the	position	of	a	device:

As	you	move	the	device	around,	you	should	see	these	readings	change.	This	data	can	then
be	used	to	sense	when	your	device	is	moving,	and	in	what	direction.	The	device	has	lots	of
capability,	including	the	ability	to	set	the	offsets	of	the	device	so	that	a	particular	position
is	in	the	0	position.	For	more	information	about	these	capabilities,	feel	free	to	look	at	both
example	programs	provided	by	the	library.

Connecting	an	altimeter/pressure	sensor
to	the	Galileo
The	final	sensor	you’ll	learn	about	in	this	chapter	is	the	altimeter/pressure	sensor.	The
altimeter	is	useful	when	you	want	to	know	the	altitude	of	your	project.	This	is	particularly
useful	when	you	want	to	build	a	robot	that	can	fly.	For	more	on	pressure	sensors	and	how
they	work,	see	http://www.sensorsmag.com/sensors/pressure/fundamentals-pressure-
sensor-technology-846.	First,	you’ll	need	to	select	a	device.	One	device	that	can	provide
this	information	is	the	SainSmart	BMP085	Module,	Digital	Barometric	Pressure
Sensor,	available	at	many	online	retailers,	including	www.amazon.com.	This	device	uses
piezo-resistive	technology	to	measure	altitude.	The	following	image	shows	this:

It	looks	very	similar	to	the	digital	compass;	just	like	the	two	previous	devices,	it	connects
via	the	I2C	interface.	You	can	even	use	the	same	libraries	you	just	downloaded	for	the
accelerometer/gyro	for	I2C	support.

The	connections	between	the	Galileo	and	the	device	will	be	the	same	as	the	digital
compass,	like	this:

Galileo	Pin Sensor	Pin

5V 5V

GND GND

A5 SCL

A4 SDA

http://www.sensorsmag.com/sensors/pressure/fundamentals-pressure-sensor-technology-846
http://www.amazon.com

The	connections,	just	like	those	of	the	digital	compass,	are	clearly	marked	on	the	back	of
the	device,	and	you	can	use	the	female-to-male	jumpers	to	make	the	connections.

Accessing	the	altimeter/pressure	Sensor	from	the
Galileo	IDE
As	with	the	previous	two	examples,	the	first	step	in	accessing	the	device	is	to	download
the	appropriate	library.	You	can	use	the	library	described	in	the	section	on	the
accelerometer/gyro,	or	you	can	download	a	library	just	for	this	device.	If	you	want	to
download	the	library	for	this	device,	go	to	www.sainsmart.com/sainsmart-bmp085-digital-
pressure-sensor-module-board.html	page	and	select	the	Download	Link	selection	towards
the	bottom	of	the	Description.	This	will	download	a	.rar	file	that	will	include	an	example
sketch.	I	personally	prefer	to	use	the	I2C	library	version,	it	is	more	up-to-date,	so	I	will
follow	that	example	here.

Open	the	example	by	selecting	File	|	Examples	|	BMP085	|	Examples	|	BMP085_basic,
like	this:

Now	you	can	upload	the	sketch	on	the	Galileo	and,	when	you	open	the	Serial	Monitor,	you
should	see	something	that	looks	like	this:

http://www.sainsmart.com/sainsmart-bmp085-digital-pressure-sensor-module-board.html

You	can	see	not	only	the	altitude,	but	the	temperature	and	pressure	as	well.	The	T	is	the
temperature	in	Celsius,	the	P	is	the	pressure	in	Pascals,	and	the	A	is	the	altitude	in	meters.

Summary
There	are	many	more	sensors	we	could	have	covered	in	this	chapter,	but	hopefully	you
have	a	feel	for	how	you	might	be	able	to	add	them	after	following	the	instructions	for
these	sensors.	Your	project	now	has	lots	of	possible	capabilities,	but	you	are	still	tethered
to	the	computer.	In	the	next	chapter,	you’ll	learn	how	to	communicate	with	your	project
wirelessly	so	it	won’t	need	a	cable	to	accept	commands.

Chapter	6.	Remote	Control
Now	you	might	want	your	project	to	be	mobile.	You’ll	at	least	want	to	disconnect	it	from
the	tether	cable	that	you	have	been	using	to	communicate	with	it	to	send	control
commands.	In	this	chapter,	you’ll	learn	how	to	communicate	wirelessly	with	your	project.
Depending	on	your	choice	of	device,	you’ll	be	able	to	communicate	across	the	room	or
across	a	distance	of	up	to	a	mile.

In	this	chapter,	you’ll	learn	the	following:

How	to	communicate	with	the	Galileo	using	an	XBee	transmitter/receiver,	a	point-to-
point	communication	system	that	allows	you	to	communicate	between	two	Galileos
or	between	a	Galileo	and	a	host	computer
How	to	configure	the	Galileo	using	a	Wi-Fi	mini	PCI	Express	card	so	you	can
communicate	via	Wireless	LAN

Connecting	an	XBee	interface	to	the
Galileo
One	of	the	most	popular	and	well-documented	ways	of	connecting	to	the	Galileo	via	an
RF	connection	is	to	use	an	XBee	device.	This	device	uses	a	technology	called	ZigBee	and
it	is	made	for	longer-range	wireless	communications.	These	types	of	devices	can	work	up
to	a	range	of	one	mile.	The	ZigBee	standard	is	built	upon	the	IEEE	802.15.4	standard,	a
standard	that	was	created	to	allow	a	set	of	devices	to	communicate	with	each	other	to
enable	low	data	rate	coordination	of	multiple	devices.

The	other	standard	that	you	might	hear	about	as	you	try	to	purchase	or	use	devices	such	as
these	is	XBee.	This	is	a	specific	company’s	implementation,	Digi,	of	several	different
wireless	standards	with	standard	hardware	modules	that	can	connect	in	many	different
ways	to	different	embedded	systems.	They	make	some	that	support	ZigBee.	Here	is	an
image	of	this	type	of	device	that	supports	ZigBee	attached	to	a	small,	XBee-specific	shield
that	provides	a	USB	port:

The	advantage	of	using	this	device	is	that	it	is	configured	to	make	it	very	easy	to	create
and	manage	a	simple	link	between	two	XBee	series	#1	devices.	To	make	this	work,	you’ll
need	four	items:

1.	 Make	sure	you	have	two	XBee	devices	that	support	ZigBee	series	#1.
2.	 You’ll	also	need	to	purchase	a	small,	XBee-specific	shield	that	provides	a	USB	port

connection	to	one	of	the	two	devices.	This	will	provide	communication	from	a	host
computer.

3.	 You’ll	also	need	to	buy	a	shield	that	plugs	into	your	Arduino	so	you	can	interface	to
the	XBee	devices.	This	shield	is	the	Wireless	SD	card	shield,	and	has	header	pins
ready	for	the	XBee	device.	Here	is	an	image	of	the	shield	plugged	into	a	Galileo,

with	the	XBee	device	plugged	in:

Now	let’s	get	started	with	configuring	your	two	devices	to	talk.

Configuring	the	XBee	devices
You’ll	need	to	configure	both	devices	by	plugging	them	into	your	host	computer.	Plug	one
of	the	devices	into	the	small,	XBee-specific	USB	shield	and	then	connect	the	shield	to
your	personal	computer.	Your	computer	should	find	the	latest	drivers	for	the	device.	If
your	computer	does	not	find	the	device	or	is	unable	to	correctly	install	the	drivers,	see
http://ftp1.digi.com/support/images/Win7DriverInstall.pdf	for	help.	You	should	see	your
device	after	you’ve	selected	Devices	and	Printers	from	the	Start	menu,	like	this:

The	device	is	now	available	to	communicate	via	the	IEEE	802.15.4	wireless	interface.	You
could	set	up	a	full	ZigBee-compliant	network,	but	you’re	just	going	to	communicate	from
one	device	to	another	directly,	so	you’ll	just	use	the	device	as	a	serial	port	connection.
Double-click	on	the	device,	select	the	Hardware	tab,	and	you	should	see	this:

http://ftp1.digi.com/support/images/Win7DriverInstall.pdf

Note	that	the	device	is	connected	to	the	COM20	serial	port.	You’ll	use	this	to
communicate	with	the	device	and	configure	the	device.	You	can	use	any	terminal	emulator
program;	I	like	to	use	PuTTY.	If	you	don’t	have	PuTTY,	you	can	download	it	from
www.chiark.greenend.org.uk/~sgtatham/putty/download.html.	This	will	provide	an
executable	that	you	can	run	to	talk	with	and	configure	the	devices.

Note
Digi	has	recently	introduced	a	new	graphical	tool	for	configuring	XBee	devices.	It
provides	access	to	all	the	configuration	settings	on	the	XBee.	If	you	would	like	to	use	this
tool,	see	http://www.digi.com/products/wireless-wired-embedded-solutions/zigbee-rf-
modules/xctu

Perform	the	following	steps	to	configure	the	device:

1.	 Open	up	PuTTY,	select	Serial,	and	the	(in	this	case)	COM20	port.	Here	is	how	to	fill
in	the	PuTTY	window	to	do	this:

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.digi.com/products/wireless-wired-embedded-solutions/zigbee-rf-modules/xctu

2.	 Configure	the	terminal	window	as	shown	in	the	screenshot:

3.	 Now,	in	the	Terminal	window,	make	sure	you	also	select	Local	echo	Force	on,	and
check	the	Implicit	CR	in	every	LF	and	Implicit	LF	in	every	CR	(available	under
Terminal	in	the	Category:	selection.):

4.	 Connect	to	the	device	by	selecting	Open.
5.	 Enter	the	following	commands	by	typing	them	into	the	terminal	window:

The	OK	response	comes	back	from	the	device	as	you	enter	each	command.	The	first
device	is	now	configured.	Remove	it	from	the	small,	XBee-specific	shield	and	plug	it	into
the	Arduino	XBee	shield.

Now	plug	the	second	device	into	the	small,	XBee	shield	and	then	plug	it	into	the	PC.	Note
that	it	might	choose	a	different	COM	port,	go	to	the	Devices	and	Printers	option,	double-
click	on	the	device,	and	select	the	Hardware	tab	to	find	the	COM	port.	Follow	the	same
steps	to	configure	the	second	device,	except	there	are	two	changes.	Here	is	the	terminal
window	for	these	commands:

The	two	devices	are	now	ready	to	communicate.

Configuring	the	device	using	a	Mac	is	very	similar.	Follow	these	steps	to	start	a	terminal
connection	with	the	device:

1.	 Plug	the	XBee	module	into	the	XBee	shield	and	hook	it	to	your	Mac	via	USB.
2.	 Open	up	a	CoolTerm	window	and	then	hit	the	Options	on	the	toolbar.
3.	 Select	the	correct	port	for	your	XBee	device.	It	will	look	something	like	usbserial-

XXXXXXXX.
4.	 If	your	device	doesn’t	appear,	plug	it	back	in	and	click	on	Re-Scan	Serial	Ports.
5.	 Hit	the	Ok	button	and	the	rest	of	the	defaults	will	work	just	fine.
6.	 Hit	the	Connect	button	on	the	toolbar	and	you	should	be	talking	to	your	XBee.

Now	you	can	configure	your	device	as	shown	previously.	If	you	are	using	Linux	to
configure	your	device,	you	will	similarly	open	a	terminal	window,	connect	it	to	the	proper
USB	serial	port,	and	then	configure	the	device.

Enabling	an	XBee	Interface	in	the	IDE
Let’s	first	set	up	the	IDE	for	the	XBee	that	will	be	connected	to	the	Galileo.	Once	you
have	connected	the	shield	to	the	Galileo,	simply	connect	the	Galileo	with	the	USB	cable	to
your	host	computers.	Bring	up	the	IDE	and	then	type	in	the	following	code	into	the	sketch
window:

Here	is	an	explanation	of	this	set	of	code:

This	set	of	code	initializes	the	serial	port	on	the	Galileo,	so	you	can	receive	via	the
serial	interface:

TTYUARTClass*	gSerialStdPtr	=	&Serial;	//	Galileo,	/dev/ttyGSO,	Tx	pin

TTYUARTClass*	gSerialTwoPtr	=	&Serial1;	//	Galileo,	/dev/ttySO,	Rx	pin

bool	gGalileo	=	true;

bool	qData;

int	led	=	13;

This	set	of	code	starts	the	send	and	receive	process,	you’ll	only	use	the	receive
process	for	this	application:

qData	=	false;	//	Initialize	on	reset

gSerialStdPtr->begin(9600);	//	Receiver

gSerialTwoPtr->begin(9600);	//	Sender

waitForUser(5);	//	Give	usr	time	to	open	serial	terminal

gSerialStdPtr->println("XBee-Receiver-setup");

pinMode(led,	OUTPUT);

This	code	waits	for	a	valid	input	from	the	serial	port	on	the	Xbee	and	then	prints	it	to
the	Serial	Monitor	screen.	It	also	takes	the	data	and	turns	on	the	onboard	LED,
connected	to	Pin	13,	if	the	input	is	a	1;	it	turns	it	off	if	the	data	is	a	0:

		if(qData	==	false)

				gSerialStdPtr->println("XBee-Receiver-waiting");

//Get	data	from	Sender	and	print	to	Receiver	serial	port

		while(gSerialTwoPtr->available())

		{

				char	c=	gSerialTwoPtr->read();//	Read	XBee	data

		if	(c	==	'1')

				digitalWrite(led,	HIGH);

		if	(c	==	'0')

				digitalWrite(led,	LOW);

				gSerialStdPtr->write(c);	//	Write	local

				qData	=	true;

		}

		if(qData	==	false)	delay(1000*1);	//	Slow	down	until	data	is	rec

}

This	code	waits	for	a	set	time	for	the	user	to	bring	up	the	serial	port:

void	waitForUser(unsigned	int	aSec)

{

//	Give	user	time	to	bring	up	the	serial	port

		for(int	i=aSec;	i>0;	i--)

		{

				delay(1000*1);

				gSerialStdPtr->print(i);

		}

		gSerialStdPtr->println("");

}

Once	the	code	is	uploaded,	you’ll	need	to	physically	change	a	switch	setting	on	the
Wireless	Shield,	so	the	device	will	now	accept	commands	from	your	XBee	controller.	It	is
on	the	opposite	end	of	the	shield	from	the	device,	and	looks	like	this:

This	switch	connects	the	XBee	to	either	the	USB	serial	port	or	the	microcontroller	(in	this
case,	the	Galileo)	serial	port.	Change	it	to	the	MICRO	setting	once	your	sketch	has
finished	compilation	and	uploaded	to	the	Galileo.

Now	connect	the	other	XBee	device	via	the	small,	Xbee-specific	USB	shield	to	the

computer.	Open	PuTTY	or	an	other	terminal	emulator	window.	Make	sure	you	set	the
terminal	emulator	data	rate	to	9600	baud.	In	PuTTY,	your	configuration	will	look	like	this:

Now	open	the	terminal	window.	You	should	now	be	able	to	enter	commands	into	the	Putty
window	and	monitor	them	using	the	Serial	Monitor	on	the	Galileo.	Here	is	a	picture	of	the
Putty	application:

Here	is	what	you	should	see	if	you	open	the	Serial	Monitor	on	your	Galileo:

Most	importantly,	each	time	you	enter	a	1	you	should	see	the	LED	on	the	Galileo	turn	on
and,	when	you	type	a	0,	you	should	see	it	turn	off.	Now,	if	your	system	is	not	working,
there	are	a	couple	of	ways	to	try	and	determine	what	is	going	wrong.	First	and	foremost,
make	sure	the	Galileo	is	turned	on	and	is	executing	the	correct	code.	Second,	check	to	see
that	characters	are	being	typed	in	the	Putty	window.	Third,	check	the	baud	rate	of	the
PuTTY	window.	If	it	is	too	high,	you	will	see	characters	come	through	the	system,	but	you
they	will	not	be	interpreted	correctly	on	the	Galileo.	Fourth,	make	sure	you	actually
configured	both	the	devices	instead	of	just	one.	Fifth,	make	sure	the	serial	switch	on	the
Xbee	shield	is	in	the	right	position.	Finally,	make	sure	the	devices	are	in	range.

Configuring	a	Wi-Fi	connection	on	the
Galileo
You	can	also	communicate	with	the	Galileo	via	Wireless	LAN.	To	do	this,	you’ll	need
some	additional	hardware.	The	first	piece	of	hardware	you’ll	need	is	a	mini	PCI	wireless
device.	The	basic	Galileo	Poky	operating	system	supports	two	devices:	the	Intel®
Centrino®	Wireless-N	135	and	Intel®	Centrino®	Advanced-N	6205	adapters.	If	you
don’t	want	to	compile	your	own	drivers,	you	should	purchase	one	of	these	two	devices.

Note
If	you	wish	to	purchase	a	different	mini	PCI	wireless	device,	see
http://www.malinov.com/Home/sergey-s-blog/intelgalileo-addingwifi	for	how	to	compile
drivers	for	your	device.

You’ll	also	need	some	cables	and	antennas.	You’ll	need	two	6dBi	RPSMA	antennas	and
two	8-inch	UFL	cables.	There	are	kits	available,	for	example	at
http://www.amazon.com/gp/product/B00DP64JRG.	Also	useful	is	a	Half	to	Full	Height
Mini	PCI	Express	(PCI-E)	Card	Bracket	Adapter,	this	makes	the	wireless	card	easier	to
install.	Once	you’ve	gathered	all	the	hardware,	install	the	card	into	the	Galileo.	It	is
straightforward	but,	if	you	get	confused,	follow	the	instructions	at
http://ionospherics.com/intel-galileo-setting-up-wifi/	to	install	all	the	hardware	into	the
Galileo.	Here	is	what	it	should	look	like:

http://www.malinov.com/Home/sergey-s-blog/intelgalileo-addingwifi
http://www.amazon.com/gp/product/B00DP64JRG
http://ionospherics.com/intel-galileo-setting-up-wifi/

Once	you	have	the	wireless	hardware	setup,	you’ll	also	need	a	cable	to	establish	a	terminal
connection	to	the	Linux	operating	system	on	your	device.	For	the	Intel	Galileo	Gen2
board,	the	cable	you	will	need	is	a	USB	connector	on	one	end	and	a	FDTI	6	pin	connector
on	the	other.	These	are	available	at	most	online	electronics	stores:

If	you	are	using	the	Galileo	Gen1	board,	this	is	3.5mm	to	USB	cable.	Plug	this	cable	into
the	terminal	port	on	the	Galileo,	and	the	USB	connector	on	your	host	computer.

Now	that	you	have	all	the	hardware,	here	are	the	steps	to	get	your	Galileo	up	and
connected	to	Wi-Fi:

1.	 First,	you’ll	need	a	new	version	of	the	Linux	operating	system	for	your	Galileo.	To
get	this	go	to	http://www.intel.com/content/www/us/en/do-it-yourself/downloads-
and-documentation.html#galileo	software	and	select	Download	SD-Card	Linux
Image	for	Intel	Galileo	(48	MB,	.bz2).	This	will	download	a	.tar	file	(an	archived
file)	with	the	support	for	your	wireless	connection.

2.	 You’ll	need	to	un-archive	this	file	using	an	archive	utility	such	as	7-Zip.
3.	 Now	copy	all	the	files	under	the	SDCard	directory	onto	a	micro	SD	card.
4.	 You’ll	need	a	terminal	window	to	interact	with	your	Galileo.	If	you	are	using

Windows,	you’ll	need	a	terminal	emulator	window	to	communicate	with	the	Galileo.
One	popular,	free	version	is	called	Putty.	For	more	information	on	Putty	and	how	to
download,	see	http://www.chiark.greenend.org.uk/~sgtatham/putty/.	However,	any
terminal	emulator	program	will	do.	Both	Linux	and	the	Apple	OS	come	with	terminal
emulator	programs.

5.	 Open	a	terminal	window	and	select	the	serial	port	that	is	connected	to	the	USB	to	the
FTDI	connector	using	a	baud	rate	of	115200.	Every	time	the	Galileo	boots,	it	will
look	for	an	image	on	the	SD	card	and	boot	that	image	if	it	is	present.	If	it	is	not
present,	it	will	boot	the	Poky	version	that	is	in	the	internal	memory.	The	terminal

http://www.intel.com/content/www/us/en/do-it-yourself/downloads-and-documentation.html#galileo
http://www.chiark.greenend.org.uk/~sgtatham/putty/

window	will	allow	you	to	select	between	the	two.	You’ll	now	want	to	boot	the	unit
using	the	micro	SD	card	and	the	new	version	of	the	Galileo	operating	system	by
installing	the	card	and	applying	power.	You	should	see	this	boot	up	screen:

If	not	already	highlighted,	select	the	second	choice	here	to	boot	from	the	card.

6.	 Now	log	in	to	the	system	using	root	as	the	user.
7.	 Type	ifconfig	–a.	This	should	show	all	LAN	interfaces,	and	should	look	like	this:

You	can	see	the	wlan0	interface	that	is	now	available	to	connect	to	your	Wi-Fi
network.	However,	there	is	no	address	assigned;	as	you	can	see,	there	is	no	inet
addr:	line	in	the	wlan0	section.	You	can	use	the	IDE	to	connect	to	your	network,	this
will	be	shown	in	the	next	section.

Note
If	you	want	to	auto	connect	to	a	given	network	each	time	you	boot	the	Galileo,	you’ll
need	to	add	your	wireless	network	ID	and	password	to	the	wpa_supplicant.conf
file.	To	do	this,	type	wpa_passphrase	WIFI-SSID	WIFI-PASSPHRASE>
/etc/wpa_supplicant.conf.

8.	 You	will	need	to	edit	one	more	file	to	ensure	access	to	the	Wi-Fi	connection	each
time	you	boot	your	Galileo.	The	file	is	/etc/networks/config.	Edit	this	file	using	vi
(vi	is	the	editor	that	comes	on	this	Linux	release.)	Add	auto	wlan0	as	the	last	line.

9.	 Reboot	your	system,	as	before.	Log-in	using	root	as	the	user.

Now	that	the	hardware	is	connected,	you	can	access	the	wireless	capabilities	inside	the
IDE.

Using	Wi-Fi	from	the	IDE
Now	that	the	hardware	is	up-and-running,	you	can	run	the	examples	in	the	IDE.	If	you
bring	up	the	IDE	and	select	Examples	|	Wi-Fi,	you	can	see	that	there	are	many	choices:

The	most	basic	of	these	choices	is	the	ScanNetworks	sketch.	If	you	select	this	sketch	and
then	open	the	Serial	Monitor	Window,	you	should	see	something	like	this:

The	other	sketches	provide	further	capabilities.	There	are	sketches	that	show	how	to
connect	using	WPA	or	WEP	security	protocols.	One	of	the	most	useful	is	the
SimpleWebServer	Wi-Fi	that	shows	how	to	turn	an	LED	on	and	off	over	the	Wi-Fi
network	via	an	external	web	page.	Simply	connect	a	resistor	and	LED	in	series	between
GND	and	digital	IO	pin	nine,	edit	the	sketch	to	include	the	SSID	and	password	of	your
network,	and	then	open	a	web	browser.	When	you	open	the	Serial	Monitor,	it	will	show
you	connected	to	the	network:

Now	go	on	the	host	computer	and	enter	the	address	shown	in	the	address	line.	The

following	should	appear	on	your	browser:

You	can	now	turn	the	LED	on	and	off.

Summary
As	you	now	know,	there	are	several	useful	ways	of	connecting	wirelessly	with	your
Arduino.	In	this	chapter,	you’ve	learned	how	to	connect	your	project	wirelessly	using
XBee,	a	reliable	long-range	interface.	You’ve	also	learned	how	to	connect	via	Wi-Fi.	Now
your	project	can	go	untethered,	needing	only	an	occasional	battery	charge	to	keep	it	up-
and-running.	In	the	next	chapter,	you’ll	learn	how	to	access	the	Linux	system	on	Galileo
and	access	even	more	interesting	capabilities.

Chapter	7.	Going	Further	with	Galileo
With	your	Galileo,	you’ve	learned	how	to	build	projects	that	can	roll,	now	let’s	build	one
that	can	walk.	In	this	final	chapter,	you’ll	move	from	using	the	simple	Galileo	IDE	to
using	the	Linux	capabilities	of	the	Galileo	to	drive	an	external	USB	servo	controller	so
that	you	can	control	the	12	servos	that	will	make	your	quadruped	move.

In	this	chapter,	you	will	learn	how	to	use	the	Galileo’s	Linux	capabilities	to	control	a	basic
quadruped	platform.	To	do	this	you	will	learn	the	following:

Galileo’s	Linux	capabilities
How	servos	work
How	to	use	the	Galileo’s	Linux	capabilities	to	control	a	servo	controller	that	can
control	lots	of	servos
Creating	complex	movements	out	of	simple	servo	commands

The	Galileo	and	Linux
While	you	have	been	accessing	the	Galileo	exclusively	through	the	IDE,	the	Galileo
actually	has	been	running	a	version	of	the	Linux	operating	system	all	along.	Linux	is	an
operating	system	similar	to	Windows,	or	the	Apple	Mac	operating	system.	In	fact,	the	Mac
operating	system	is	built	upon	a	version	of	Unix,	which	is	very	similar	to	Linux.	Now
Linux,	unlike	Windows,	Android,	or	IOS,	is	not	tightly	controlled	by	a	single	company.	It
is	a	group	effort,	mostly	open	source,	and	while	it	is	available	for	free,	it	grows	and
develops	based	on	community	development	and	support.

Thus,	a	number	of	distributions	have	emerged,	each	built	on	a	similar	kernel,	or	core	set	of
capabilities.	These	core	capabilities	are	all	based	on	the	Linux	specification.	However,
they	are	packaged	slightly	differently,	and	developed,	supported,	and	packaged	by
different	organizations.	Angstrom	is	one	of	these	versions.	Debian	is	another.	There	are
others	as	well.	The	one	included	in	the	internal	memory	associated	with	the	Galileo	is
called	Poky,	and	is	built	using	a	set	of	tools	called	Yocto.	Yocto	is	a	toolkit	that	allows
users	to	build	their	own	Linux	distribution.

For	this	project,	you’re	going	to	create	a	new	SD	card	image	of	Linux	with	a	Debian
distribution,	install	it	on	a	microSD	card,	and	boot	the	Galileo	from	the	card.	This	is	a	very
popular	version	of	Linux	that	supports	a	wide	range	of	different	capabilities.

Now	you’ll	need	to	connect	the	Galileo	to	the	LAN	to	add	capability.	There	are	two	ways
to	do	this.	The	first	is	using	a	wired	connection;	you	can	simply	connect	the	Galileo
directly	by	connecting	a	LAN	cable	to	the	connector	on	the	Galileo.	You	can	also	connect
the	Galileo	using	a	Wi-Fi	connection.	This	requires	you	to	add	additional	Hardware	and
configure	your	Wi-Fi	connection.	See	https://software.intel.com/en-
us/blogs/2014/03/13/configuring-wifi-for-the-intel-galileo-board	or
http://www.hackshed.co.uk/how-to-use-wifi-with-the-intel-galileo	for	more	information
on	how	to	assemble,	configure,	and	connect	your	Galileo	to	a	Wi-Fi	network.

https://software.intel.com/en-us/blogs/2014/03/13/configuring-wifi-for-the-intel-galileo-board
http://www.hackshed.co.uk/how-to-use-wifi-with-the-intel-galileo

Creating	and	booting	the	Debian	Linux
SD	card	image	on	the	Galileo
Here	are	the	steps	to	follow	to	install	and	run	the	Debian	image	on	your	Galileo:

1.	 The	first	thing	you’ll	need	is	a	Debian	Linux	image	that	supports	LAN	and	DHCP.
The	site	at	https://communities.intel.com/message/231688	has	a	version,	there	are
others.	If	you	go	to	this	site,	you	can	download	this	file.

2.	 If	you	are	using	Windows	on	your	computer,	this	file	will	now	exist	in	your
Downloads	directory.	Unzip	this	file	and	you	should	end	up	with	a	galileo.img	file.

3.	 Now	you	need	a	program	that	will	write	this	file	to	a	micro	SD	card.	If	you	are	using
Windows,	download	the	program	Win32DiskImager	from
http://sourceforge.net/projects/win32diskimager/.	Install	this	program	on	your	PC.	If
you	are	using	Linux,	you	can	use	the	dd	command	to	write	to	the	card.

4.	 If	you	are	using	a	PC,	run	Win32DiskImager.	Insert	your	microSD	card	into	your
PC.	You	might	need	a	microSD	to	USB	adapter	for	this.	Now,	specify	the	file	and	the
card	in	Win32DiskImager,	like	this:

Be	careful	in	selecting	the	device,	you	can	corrupt	a	drive	if	you	choose	the	wrong
one.	If	you	are	using	Linux,	use	the	command	sudo	dd	if=galileo.img	of=sdX
where	the	sdX	is	the	location	of	the	card	you	want	to	write	to.

5.	 Now	take	the	card	and	insert	it	into	the	Galileo’s	microSD	slot.
6.	 To	monitor	your	system,	you	will	want	to	connect	a	terminal	cable	between	the

Galileo	and	your	host	computer.	If	you	are	using	the	Galileo	Gen2	board,	the	cable
you	will	want	will	have	a	USB	connector	on	one	end	and	a	FDTI	6	pin	connector	on
the	other.	These	are	available	at	most	online	electronics	stores:

https://communities.intel.com/message/231688
http://sourceforge.net/projects/win32diskimager/

If	you	are	using	the	Galileo	Gen1	board,	this	is	a	3.5	mm	to	USB	cable.

7.	 You’ll	now	want	to	boot	the	unit	using	the	microSD	card	and	Debian	by	applying
power,	but	first	also	connect	the	LAN	cable	and	serial	cable.	For	the	Galileo	Gen2,
the	serial	cable	connects	right	next	to	the	LAN	connector;	there	is	a	6	pin	FTDI
connector	for	the	cable.

8.	 You’ll	need	a	terminal	emulator	window	to	communicate	with	the	Galileo.	One
popular,	free	version	is	called	Putty.	For	more	information	on	Putty	and	how	to
download,	see	http://www.chiark.greenend.org.uk/~sgtatham/putty/.	However,	any
terminal	emulator	program	will	do.

9.	 Open	a	terminal	window	and	select	the	serial	port	of	your	USB	to	FTDI	connector	(or
USB-to-3.5	mm	connector,	if	you	have	a	GEN	1	board)	and	a	baud	rate	of	115200.
Every	time	the	Galileo	boots,	it	will	look	for	an	image	on	the	SD	card	and	boot	that
image	if	it	is	present.	If	it	is	not	present,	it	will	boot	the	Poky	version	that	is	in	the
internal	memory.	The	terminal	emulator	will	allow	you	to	select	which	operating
system	you	want	to	run.

10.	 Power	on	the	unit.	You	should	see	this	boot	up	screen:

http://www.chiark.greenend.org.uk/~sgtatham/putty/

11.	 Select	the	last	selection	on	this	list.	The	unit	will	now	boot	from	the	Debian	Linux
distribution	on	the	card.	Type	the	username	and	password,	for	this	distribution	it	is
user	and	user.	The	unit	will	now	provide	a	terminal	connection	from	your	host
computer	where	you	can	type	commands.

12.	 You	will	need	to	edit	a	file	to	get	access	to	the	LAN	connection.	The	file	is
/etc/networks/config.	Edit	this	file	using	either	vi,	or	nano	(both	are	editors	that
come	with	this	Linux	release.)	Make	sure	the	file	looks	like	this:

13.	 Reboot	your	system.
14.	 Run	the	command	sudo	ifconfig.	and	you	should	be	able	to	see	the	IP	address	of

your	Galileo.
15.	 This	image	is	quite	small.	When	you	write	the	image	to	your	card,	the	system	will

now	see	your	SD	card	as	quite	small	as	well,	even	if	you	have	a	much	larger	card
with	more	memory	available.	You	can	follow	the	instructions	at
http://sourceforge.net/p/galileodebian/wiki/How%20to%20expand%20the%20root%20filesystem%20to%20use%20the%20entire%20SD%20card/
to	expand	your	card	to	its	full	size.

http://sourceforge.net/p/galileodebian/wiki/How%20to%20expand%20the%20root%20filesystem%20to%20use%20the%20entire%20SD%20card/

Now	your	system	is	up	and	running	and	connected	to	the	Internet.	This	particular
distribution	also	has	python	available,	which	you	will	use	later.	You	will	want	to	run	the
command	sudo	apt-get	update	to	update	the	links	for	any	installs	you	want	to	do	in	the
future.	You	will	also	want	to	run	the	command	sudo	apt-get	upgrade	to	update	your
system	to	the	latest.

Building	robots	that	can	walk
Now	that	your	Galileo	can	run	Linux,	you’ll	need	to	build	a	quadruped	that	has	four	legs.
You’ll	be	using	12	servos	so	each	leg	has	three	points	that	can	move,	or	three	degrees	of
freedom	(DOF).	You	could	use	the	IDE	and	its	General	Purpose	Input/Output	(GPIO)
pins	to	control	a	limited	number	of	servos.	However,	you	need	to	control	12	servos	for	this
project,	so	this	won’t	work.	In	this	project,	you’ll	use	an	external	servo	controller	that	can
supply	the	control	signals	and	voltages	for	all	12	servos.	This	example	will	also	show	you
how	to	use	the	Linux	capabilities	of	the	Galileo	for	even	more	complex	robotics	projects.

Since	servos	are	the	main	component	of	this	project,	it	is	perhaps	useful	to	go	through	a
tutorial	on	servos	and	how	to	control	them.

How	servo	motors	work
Servo	motors	are	somewhat	similar	to	DC	motors;	however,	there	is	an	important
difference.	While	DC	motors	are	generally	designed	to	move	in	a	continuous	way—
rotating	360	degrees	at	a	given	speed—servos	are	generally	designed	to	move	to	a	limited
set	of	angles.	In	other	words,	in	the	DC	motor	world,	you	generally	want	your	motors	to
spin	with	a	continuous	rotation	speed	that	you	control.	In	the	servo	world,	you	want	your
motor	to	move	to	a	specific	position	that	you	control.

This	is	done	by	sending	a	Pulse-Width-Modulated	(PWM)	signal	on	the	control
connector	of	the	servo.	The	length	of	this	pulse	will	control	the	angle	of	the	servo,	like
this:

These	pulses	are	sent	out	with	a	repetition	rate	of	60	Hz.	You	can	position	the	servo	to	any
angle	by	setting	the	correct	control	pulse.

Building	the	quadruped	platform
You’ll	first	need	some	parts	so	you	can	build	your	quadruped	robot.	There	are	several	kits
out	there,	including	the	ones	found	at	www.trossenrobotics.com/p/PhantomX-AX-12-
Quadruped.aspx.	However,	such	kits	can	be	expensive	so,	for	this	example,	you’ll	create
your	own	kit	using	a	set	of	Lynxmotion	parts.	These	are	available	from	several	online
retailers,	such	as	www.robotshop.com.	To	build	this	quadruped,	you’ll	need	two	sets	each
of	the	two	leg	parts,	and	then	one	set	each	of	the	body.	Here	are	the	parts	with	their
robotshop	part	number:

Quantity Description

1 Lynxmotion	Symmetric	Quadrapod	Body	Kit	-	Mini	QBK-02

2 Lynxmotion	3”	Aluminum	Femur	Pair

2 Lynxmotion	Robot	Leg	“A”	Pair	(No	Servo)	RL-01

4 Lynxmotion	Aluminum	Multi-Purpose	Servo	Bracket	Two	Pack	ASB-04

2
Ball	Bearing	with	Flange	-	3mm	ID	(pair)

Product	Code	:	RB-Lyn-317

The	last	part	is	not	a	Lynxmotion	part,	but	is	a	bearing	you’ll	need	to	connect	the	leg	to	the
body.

You’ll	also	need	12	standard	size	servos.	There	are	several	possible	choices,	but	I
personally	like	the	Hitec	servos.	They	are	a	very	inexpensive	servo	you	can	get	at	most
hobby	shops	and	online	electronics	retailers.	Now	let’s	talk	briefly	about	the	model	of
servo.	Servos	come	in	different	model	numbers,	primarily	based	on	the	amount	of	torque
they	can	generate.

Torque	is	the	force	that	the	servo	can	exert	to	move	the	part	connected	to	it.	In	this	case,
your	servos	will	need	to	lift	and	move	the	weight	associated	with	your	quadruped,	so
you’ll	need	a	servo	with	enough	torque	to	do	this.	In	this	case,	I	suggest	you	use	eight
model	HS-485HB	servos,	you’ll	use	these	for	the	servos	attached	to	the	end	of	the	leg	and
for	the	body.	Then	you’ll	use	four	model	HS-645MG	servos	for	the	middle	of	the	leg;	this
is	the	servo	that	will	require	the	highest	amount	of	torque.	You	can	also	just	use	twelve
HS-645MG	servos,	but	they	are	more	expensive	than	the	HS-485,	so	using	the	two
different	servos	will	be	less	expensive.

Here	are	the	steps	for	assembling	the	quadruped:

1.	 Put	the	lower	part	of	the	right	leg	together;	it	should	look	like	this:

http://www.trossenrobotics.com/p/PhantomX-AX-12-Quadruped.aspx
http://www.robotshop.com

2.	 Now	connect	this	assembly	to	an	interconnecting	piece,	like	this:

3.	 Complete	the	leg	by	connecting	two	of	the	servo	brackets	together	at	right	angles,
mounting	the	HS-645MG	onto	one	of	the	brackets	and	then	connecting	this	servo	to
the	interconnected	piece,	like	this:

4.	 Put	another	right	leg	together.
5.	 Now	put	two	left	legs	together	following	the	same	steps	as	mentioned	previously,	but

in	left	leg	configuration.	They	look	like	this:

6.	 The	next	step	is	to	build	the	body	kit.	There	are	some	instructions	at
www.lynxmotion.com/images/html/sq3u-assembly.htm,	but	it	should	look	like	this:

http://www.lynxmotion.com/images/html/sq3u-assembly.htm

7.	 Then	connect	each	leg	to	the	body	kit.	First,	connect	the	empty	servo	bracket	to	the
body	using	the	bearing,	like	this:

8.	 Now	connect	the	other	servo	to	the	empty	servo	bracket	and	the	body,	like	this:

Your	quadruped	should	now	look	like	this:

Now	that	you	have	the	basic	hardware	assembled,	you	can	turn	your	attention	to	the
electronics.

Using	a	servo	controller	to	control	the
servos
To	make	your	quadruped	walk,	you	first	need	to	connect	the	servo	motor	controller	to	the
servos.The	servo	controller	you	are	going	to	use	for	this	project	is	a	simple	servo	motor
controller	utilizing	USB	from	Pololu	(Pololu	item	#:	1354	available	at	www.pololu.com)
that	can	control	18	servo	motors.	Here	is	an	image	of	the	unit:

Make	sure	you	order	the	assembled	version.	This	piece	of	hardware	will	turn	USB
commands	from	the	Galileo	into	signals	that	control	your	servo	motors.	Pololu	makes	a
number	of	different	versions	of	this	controller,	each	able	to	control	a	certain	number	of
servos.	In	this	case,	you	might	want	to	choose	the	18	servo	version	so	you	can	control	all
12	servos	with	one	controller	and	also	add	an	additional	servo	to	control	the	direction	of	a
camera	or	sensor.	You	could	also	choose	the	12-servo	version.	One	advantage	of	the	18-
servo	controller	is	the	ease	of	connecting	power	to	the	unit	via	screw	type	connectors.

There	are	two	connections	you’ll	need	to	make	to	the	servo	controller	to	get	started;	the
first	to	the	servo	motors,	and	the	second	to	a	battery.

First,	connect	the	servos	to	the	controller.	In	order	to	be	consistent,	let’s	connect	your	12
servos	to	the	connections	marked	zero	through	11	on	the	controller	using	this
configuration:

Servo	Connector Servo

0 Right	Front	Lower	Leg

1 Right	Front	Middle	Leg

http://www.pololu.com

2 Right	Front	Upper	Leg

3 Right	Rear	Lower	Leg

4 Right	Rear	Middle	Leg

5 Right	Rear	Upper	Leg

6 Left	Front	Lower	Leg

7 Left	Front	Middle	Leg

8 Left	Front	Upper	Leg

9 Left	Rear	Lower	Leg

10 Left	Rear	Middle	Leg

11 Left	Rear	Upper	Leg

Here	is	a	picture	of	the	back	of	the	controller;	this	will	tell	us	where	to	connect	our	servos:

Now	you	need	to	connect	the	servo	motor	controller	to	your	battery.	For	this	project,	you
can	use	a	2S	RC	LiPo	battery,	it	will	supply	the	7.4	volts	and	the	current	needed	by	your
servos,	which	can	be	in	the	order	of	2	Amps.	Here	is	a	picture:

This	battery	will	come	with	two	connectors,	one	with	larger-gauge	wires	for	normal	usage
and	a	smaller	connector	for	connecting	to	the	battery	recharger.	You	can	use	the	XT60
Connector	Pairs,	solder	some	wires	to	the	mating	connector	of	the	battery,	and	then	insert
the	bare	end	of	the	wires	into	the	servo	controller.

Your	system	is	now	functional.	Now	you’ll	connect	the	motor	controller	to	your	personal
computer	to	check	to	see	if	you	can	communicate	with	it.	To	do	this,	connect	a	mini	USB
cable	between	the	servo	controller	and	your	personal	computer.

Communicating	with	the	servo	controller
via	a	PC
Now	that	the	hardware	is	connected,	you	can	use	some	software	provided	by	Polulu	to
control	the	servos.	Let’s	do	this	by	using	your	personal	computer.	First,	download	the
Polulu	software	from	www.pololu.com/docs/0J40/3.a	and	install	it	based	on	the
instructions	on	the	website.	Once	it	is	installed,	run	the	software	and	you	should	see	this
screen:

You	will	first	need	to	change	the	configuration	on	Serial	Settings,	so	select	the	Serial
Settings	tabs	and	you	should	see	this:

http://www.pololu.com/docs/0J40/3.a

Make	sure	that	the	USB	Chained	option	is	selected,	this	will	allow	you	to	connect	and
control	the	motor	controller	over	USB.	Now	go	back	to	the	main	screen	by	selecting	the
Status	tab	and	now	you	can	actually	turn	on	the	twelve	servos.	The	screen	should	look	like
this:

Now	you	can	use	the	sliders	to	actually	control	the	servos.	Make	sure	that	the	servo	0
moves	the	right	front	lower	servo,	1	the	right	front	middle	servo,	2	the	right	front	upper
servo,	and	so	on.	You	can	also	use	this	to	center	the	servos.	Set	all	the	servos	so	that	the
slider	is	in	the	middle.	Now,	unscrew	the	servo	horn	on	each	servo	until	the	servos	are
centered	at	this	location.	At	the	zero	location	of	all	servos,	your	quadruped	should	look
like	this:

Connecting	the	servo	controller	to	the
Galileo
You’ve	checked	the	servo	motor	controller	and	the	servos;	you’ll	now	connect	the	motor
controller	up	to	the	Galileo	and	make	sure	you	can	control	the	servos	from	it.

Let’s	now	talk	to	the	motor	controller.	Here	are	the	steps:

1.	 Connect	Galileo	to	the	motor	controller	by	connecting	a	mini	USB-to-mini	USB
cable.	Connect	the	cable	to	the	USB	host	connection	on	the	Galileo,	like	this:

2.	 Download	the	Linux	code	from	Pololu	at	www.pololu.com/docs/0J40/3.b.	Perhaps
the	best	way	is	to	log	onto	your	Galileo,	then	type	wget
http://www.pololu.com/file/download/maestro-linux-100507.tar.gz?file_id=0J315.

3.	 Then,	move	the	file	using	this	command:

	mv	maestro-linux-100507.tar.gz\?file_id\=0J315	maestro-linux-

100507.tar.gz

4.	 Unpack	the	file	by	typing	tar	–xzfv	maestro_linux_011507.tar.gz.	This	will
create	a	directory	called	maestro_linux.	Go	to	that	directory	by	typing	cd
maestro_linux	and	then	type	ls,	you	should	see	something	like	this:

http://www.pololu.com/docs/0J40/3.b
http://www.pololu.com/file/download/maestro-linux-100507.tar.gz?file_id=0J315

The	document	README.txt	will	give	you	explicit	instructions	on	how	to	install	the
software.	Unfortunately,	you	can’t	run	MaestroControlCenter	on	your	Galileo,	your
version	of	windows	doesn’t	support	the	graphics,	but	you	can	control	your	servos	using
the	UscCmd	command	line	application.	First	type./UscCmd	--list	and	you	should	see
the	following:

The	unit	sees	your	servo	controller.	If	you	just	type	mono	./UscCmd,	you	can	see	all	the

commands	you	can	send	to	your	controller:

Notice	you	can	send	a	servo	a	specific	target	angle,	although	the	target	is	not	in	angle
values	so	it	makes	it	a	bit	difficult	to	know	where	you	are	sending	your	servo.	With	a
servo	and	battery	connected	to	the	servo	controller,	try	typing	./UscCmd	--servo	0,	10.
The	servo	will	move	to	its	full	angle	position.	Type	./UscCmd	–	servo	0,	0	and	it	will
stop	the	servo	from	trying	to	move.	In	the	next	section,	you’ll	write	some	python	code	that
will	translate	your	angles	to	the	commands	that	the	servo	controller	will	want	to	see	to
move	it	to	specific	angle	locations.	If	you	are	struggling	with	the	USB	connection,	see
http://www.linux-usb.org/FAQ.html	for	more	information.

Note
If	you	didn’t	run	the	Windows	version	of	Maestro	Controller	and	set	the	Serial	Settings	to
USB	Chained,	your	motor	controller	might	not	respond.	Rerun	the	Maestro	Controller
code	and	set	the	Serial	Settings	to	USB	Chained.

http://www.linux-usb.org/FAQ.html

Creating	a	program	in	Linux	so	that	you
can	control	your	quadruped
You	now	know	that	you	can	talk	to	your	servo	motor	controller,	and	move	your	servos.	In
this	section,	you’ll	create	a	python	program	that	will	let	you	talk	to	your	servos	to	move
them	to	specific	angles.	You’ll	use	python	as	it	is	very	simple	and	easy	to	run.

Let’s	start	with	a	simple	program	that	will	make	your	legged	mobile	robot’s	servos	go	to
90	degrees	(this	should	be	somewhere	close	to	the	middle	of	the	0	to	180	degrees	you	can
set.)	If	you	are	unfamiliar	with	the	editing	code	in	Linux,	the	best	source	is	a	tutorial	on
the	editor	you	are	using.	For	nano	try	http://www.howtogeek.com/howto/42980/the-
beginners-guide-to-nano-the-linux-command-line-text-editor/.	Here	is	the	code:

Here	is	an	explanation	of	the	code:

1.	 #!/usr/bin/python:-	This	first	line	allows	you	to	make	this	python	file	execute	from
the	command	line.

2.	 import	serial:–	This	line	imports	the	serial	library.	You	need	the	serial	library	to
talk	to	your	unit	via	USB.

3.	 def	setAngle(ser,	channel,	angle):-	This	function	converts	your	desired	setting
of	servo	and	angle	into	the	serial	command	that	the	servo	motor	controller	needs.	To
understand	the	specifics	of	the	code	used	to	control	the	servos,	see
https://www.pololu.com/docs/0J40.

http://www.howtogeek.com/howto/42980/the-beginners-guide-to-nano-the-linux-command-line-text-editor/
https://www.pololu.com/docs/0J40

4.	 ser	=	serial.Serial("/dev/ttyACM0",	9600):	–	This	opens	the	serial	port
connection	to	your	servo	controller.

5.	 Now	you	can	set	each	servo	to	the	middle	(home)	position:

for	i	in	range(0,	15):

setAngle(ser,	i,	90)

The	default	would	be	to	set	each	servo	to	90	degrees.	If	your	legs	aren’t	in	their
middle	position,	you	can	adjust	them	by	adjusting	the	position	of	the	servo	horns	on
each	servo.

To	access	the	serial	port,	you’ll	need	to	make	sure	you	have	the	python	serial	library.	If
you	don’t,	then	type	apt-get	install	python-serial.	After	you	have	installed	the	serial
library,	you	can	run	your	program	by	typing	python	quad.py.

Once	you	have	the	basic	home	position	set,	you	can	now	ask	your	robot	to	do	some	things.
Let’s	start	by	having	your	quadruped	wave.	Here	is	the	python	code:

In	this	case,	you	are	using	your	setAngle	command	to	set	your	servos	to	manipulate	your
robot’s	front	right	arm.	The	middle	servo	raises	the	arm,	and	the	lower	survey	then	goes
back	and	forth	between	an	angle	of	100	and	130.

One	of	the	most	basic	actions	you’ll	want	your	robot	to	take	is	to	walk	forward.	Here	is	an
example	of	how	to	manipulate	the	legs	to	make	this	happen:

This	program	lifts	and	then	moves	forward	each	leg,	one	at	a	time,	then	moves	all	the	legs
to	the	home	position,	which	moves	the	robot	forward.	Not	the	most	elegant,	but	it	does
work.	There	are	more	sophisticated	algorithms	for	walking	with	your	quadruped,	see
http://letsmakerobots.com/node/35354	and	https://www.youtube.com/watch?
v=jWP3RnYa_tw.	Once	you	have	the	program	working,	you’ll	want	to	package	all	your
hardware	onto	the	mobile	robot.

You	can	make	your	robot	do	many	amazing	things.	Walk	forward,	walk	backward,	dance,
turn	around;	any	number	of	movements	are	possible.	The	best	way	to	learn	is	to	try	new
and	different	positions	with	the	servos.

http://letsmakerobots.com/node/35354
https://www.youtube.com/watch?v=jWP3RnYa_tw

Summary
You	now	have	a	robot	than	can	walk!	This	should	now	give	you	the	opportunity	to	use	the
Linux	system	to	add	more	complex	capabilities.	Debian	is	quite	powerful,	and	opens	an
entire	set	of	open-source	capabilities.	In	the	next	chapter,	you’ll	explore	using	the	Galileo
to	produce	speech.

Chapter	8.	Speech	Output
Now	that	you’ve	learned	how	to	get	to	the	Linux	operating	system	on	your	Galileo,	you
have	a	whole	new	set	of	capabilities	that	you	can	add	to	your	projects.	One	example	is
speech;	it	is	a	good	basic	project	and	offers	an	example	of	adding	capability	in	both
hardware	and	software.	You’ll	be	adding	a	speaker	to	your	Galileo.	You’ll	also	add
functionality	so	the	robot	can	respond	via	the	speaker.

Specifically,	in	this	chapter	you’ll	learn	how	to:

Hook	up	the	hardware	to	input	sound
Use	Espeak	to	allow	your	projects	to	respond	in	a	robot	voice

This	project	requires	a	USB	microphone	or	speaker	adapter.	The	board	itself	does	not	have
audio	out	or	audio	in.	On	the	Galileo	Gen	1	board,	the	3.5	mm	connector	is	to	connect	to
the	host	computer.	So	you’ll	need	the	following	two	pieces	of	hardware:

A	USB	device	that	supports	microphone	in	and	speaker	out.	These	are	inexpensive
and	can	be	purchased	at	any	online	electronics	outlet.	Refer	to	the	following	image:

A	powered	speaker	that	can	plug	into	the	USB	device.	Again,	these	are	available
online	or	at	any	audio	store.	Refer	to	the	following	image:

Make	sure	the	speaker	is	powered	because	your	board	will	generally	not	be	able	to	drive	a
passive	speaker	with	enough	power	for	your	applications.	The	speaker	can	use	either
internal	battery	power,	or	an	externally	powered	USB	hub.

Hooking	up	the	hardware	to	make	an
input	sound
For	this	task,	you	are	going	to	hook	up	your	hardware	so	that	you	can	record	and	play
sound.	To	do	this,	assemble	your	Galileo	and	the	components.	Plug	in	the	LAN	cable,	or
connect	via	the	wireless	adapter.	Plug	in	the	microphone	or	speaker	USB	device.	Also,
plug	in	your	speakers	and	the	microphone.	Plug	in	the	power,	as	well	as	the	UART
connector.	The	entire	system	should	look	like	the	following	image:

Plug	in	the	power.	Once	the	terminal	window	comes	up,	log	in	with	your	user	name	and
password.	Now	type	in	cat	/proc/asound/cards.	The	Galileo	will	tell	you	what	sound
card	it	sees	attached.	You	should	see	a	response	that	resembles	the	following	screenshot:

There	is	only	one	audio	device,	your	USB	audio	plugin.	First,	let’s	play	some	music	to	test
that	the	USB	sound	device	is	working.	You’ll	need	to	configure	your	system	to	look	for
your	USB	audio	plugin	and	use	it	as	the	default	sound	device	to	play	and	record	sound.	To
do	this,	you’ll	need	to	add	a	couple	of	libraries	to	your	system.	The	first	is	Advanced
Linux	Sound	Architecture	(ALSA).	It	is	going	to	enable	your	sound	system	on	the
Galileo.	Perform	the	following	steps:

1.	 Firstly,	install	two	libraries	associated	with	ALSA	by	typing	sudo	apt-get	install
alsa-base	alsa-utils.	As	a	reminder,	you	need	to	have	a	network	connection	to
download	new	packages,	and	apt-get	will	search	the	default	package	repository	by
name.

2.	 Then,	also	install	some	files	that	help	provide	the	sound	library	by	typing	sudo	apt-
get	install	libasound2-dev.

If	your	system	already	contains	these	libraries,	Linux	will	simply	tell	you	that	they	are
already	installed	or	that	they	are	up-to-date.	After	installing	both	libraries,	reboot	your
Galileo.	It	takes	time,	and	is	not	always	required,	but	the	system	often	needs	a	reboot	after
new	libraries	or	hardware	are	installed.

Using	an	application
Now	you’ll	use	an	application	named	alsamixer	to	control	the	volume	of	both	the	input
and	the	output	of	our	USB	sound	card.	Perform	the	following	steps:

1.	 Type	alsamixer	on	the	prompt.	You	should	see	a	screen	that	looks	like	the	following
screenshot:

2.	 You	can	use	the	arrow	keys	to	set	the	volume	for	both	the	speakers	and	the
microphone.	Use	the	M	key	to	unmute	the	microphone.	In	the	preceding	screenshot,
MM	is	mute	and	∞	is	unmute.

3.	 Let’s	make	sure	your	system	knows	about	your	USB	sound	device.	At	the	prompt,
type	sudo	aplay	–l.	You	should	now	see	a	screen	resembling	the	following
screenshot:

Now	that	you	have	some	sound	hardware,	let’s	first	record	some	sound.	To	do	this,	you’re
going	to	use	the	arecord	program.	At	the	prompt,	type	arecord	-d	5	-r	48000
test.wav.	This	will	record	five	seconds	of	sound	at	a	48,000	Hz	sample	rate	and	save	it	to
a	file	called	test.wav.

Once	you	have	typed	the	command,	either	speak	into	the	microphone	or	make	some	other
recognizable	sound.	You	should	see	the	following	output	in	the	terminal:

Once	you	create	the	file,	play	it	with	aplay.	Type	sudo	aplay	test.wav	and	you	should
hear	the	recording.	If	you	can’t	hear	your	recording,	check	alsamixer	to	make	sure	your
speakers	and	microphone	are	both	unmuted.

Now	you	can	play	music	or	other	sound	files	using	your	Galileo.	You	can	change	the
volume	of	your	speaker	and	record	your	voice	or	other	sounds	on	the	system.	You’re	ready
for	the	next	step.

Using	Espeak	to	allow	our	projects	to
respond	in	a	robot	voice
Sound	is	an	important	tool	in	our	robotic	toolkit,	but	you	will	want	to	do	more	than	just
record	and	play	your	voice.	Let’s	allow	your	robot	to	speak.	You’re	going	to	start	by
enabling	Espeak,	an	open-source	application	that	provides	us	with	a	computer	voice.
Download	the	Espeak	library	by	typing	sudo	apt-get	install	espeak.	The	download
might	take	a	while,	but	the	prompt	will	reappear	when	it	is	complete.	Now	let’s	see	if	your
Galileo	has	a	voice.	Type	the	sudo	espeak	"hello"	command.	The	speaker	should	emit	a
computer-voiced	hello.	If	it	does	not,	check	the	speakers	and	volume	level.

Now	that	you	have	a	computer	voice,	you	might	want	to	customize	it.	Espeak	offers	a
fairly	complete	set	of	customization	features,	including	a	large	number	of	languages,
voices,	and	other	options.	To	access	these,	you	can	type	in	the	options	at	the	command-
line	prompt.	For	example,	type	in	espeak	-v+f3	"hello"	and	you	should	hear	a	female
voice.	You	can	add	a	Scottish	accent	by	typing	espeak	–ven-sc+f3	"hello".	The
command	line	arguments	that	are	available	for	Espeak	are	documented	at
http://espeak.sourceforge.net/commands.html.	Once	you	have	selected	the	kind	of	voice
you’d	like	for	your	projects,	you	can	set	it	as	the	default,	so	you	don’t	always	have	to
include	it	in	the	command	line.

To	set	the	default,	go	to	the	default	file	definition	for	espeak,	which	is	in	the	/
/usr/lib/arm-linux-gnueabihf/espeak-data/voices	directory.	The	default	file	is	the
one	that	espeak	uses	to	choose	a	voice.	To	get	your	desired	voice,	say	one	with	a	female
tone,	you	are	going	to	copy	a	file	into	the	default	file.	The	file,	that	is,	the	female	tone,	is
in	the	!v	directory.	Type	\!v	whenever	you	want	to	specify	this	directory.	We	need	to	type
the	\	character	because	the	!	character	is	a	special	character	in	Linux;	if	we	want	to	use	it
as	a	regular	character,	we	need	to	put	a	\	character	before	it.	Before	starting	the	process,
copy	the	current	default	file	into	a	file	named	default.old,	so	it	can	be	retrieved	later,	if
needed.	The	next	step	is	to	copy	the	f3	voice	as	your	default	file.	Type	the	sudo	cp
./\!v/f3	default	command.	This	has	all	the	settings	for	your	female	voice.	Now	you
can	simply	type	espeak	and	the	desired	text.	You	will	now	get	your	female	computer
voice.

Now	your	project	can	speak.	Simply	type	espeak	followed	by	the	text	you	want	to	speak
in	quotes	and	out	comes	your	speech.	If	you	want	to	read	an	entire	text	file,	you	can	do
that	as	well	using	the	–f	option	and	then	typing	the	name	of	the	file.	Try	this	by	using	your
editor	to	create	a	text	file	called	speak.txt;	then	type	the	espeak	-f	speak.txt
command.

There	are	lots	of	choices	with	respect	to	the	voices	you	might	use	with	espeak.	Feel	free
to	play	around	and	choose	your	favorite.	Then	edit	the	default	file	to	set	it	to	that	voice.
However,	don’t	expect	that	you’ll	get	the	kind	of	voices	that	you	hear	from	computers	in
the	movies.	Those	are	actors	and	not	computers;	one	day,	though,	we	will	hopefully	get	to
the	point	where	computers	will	sound	a	lot	more	like	real	people.

http://espeak.sourceforge.net/commands.html

Summary
Now	your	project	can	speak.	You	can	use	this	later	when	you	want	to	interface	with	your
project	without	using	the	display.	You	should	also	feel	more	comfortable	installing	new
hardware	and	software	in	your	system.	In	the	next	chapter,	you’ll	add	capability	that	will
allow	your	robots	to	see	and	use	vision	to	track	objects,	or	motion,	or	whatever	else	your
robot	needs	to	track.

Index
A

accelerometer
connecting,	to	Galileo	/	Connecting	an	accelerometer	or	gyro	to	the	Galileo
URL	/	Connecting	an	accelerometer	or	gyro	to	the	Galileo
accessing,	from	Galileo	IDE	/	Connecting	an	accelerometer	or	gyro	to	the
Galileo,	Accessing	the	accelerometer	from	the	IDE

Adafruit	2.8	inch	TFT	V2
URL	/	The	TFT	shield

Adafruit_GFX	library
URL,	for	downloading	/	Accessing	the	display	with	the	IDE

Adafruit_ILI9341	library
URL,	for	downloading	/	Accessing	the	display	with	the	IDE

Advanced	Linux	Sound	Architecture	(ALS)	/	Hooking	up	the	hardware	to	make	an
input	sound
altimeter/pressure	sensor

connecting,	to	Galileo	/	Connecting	an	altimeter/pressure	sensor	to	the	Galileo
accessing,	from	Galileo	IDE	/	Accessing	the	altimeter/pressure	Sensor	from	the
Galileo	IDE

Analog	IN	A5/A0	pin	/	The	GPIO	capability	of	the	Galileo
analog	input	signals

interfacing,	with	Galileo	/	Interfacing	analog	input	signals	with	Galileo
AREF	pin	/	The	GPIO	capability	of	the	Galileo

B
blink	application

about	/	Opening	and	uploading	a	file	to	the	Galileo
obtaining	/	Opening	and	uploading	a	file	to	the	Galileo

BMP085	Module,	Digital	Barometric	Pressure	Sensor
URL	/	Connecting	an	altimeter/pressure	sensor	to	the	Galileo

breadboard
wires,	plugging	/	Plugging	your	wires	into	the	breadboard

C
COM	port

selecting,	for	Windows	/	Selecting	the	proper	COM	port	for	Windows
selecting,	for	Mac	/	Selecting	the	proper	COM	port	for	the	Mac
selecting,	for	Linux	machine	/	Selecting	the	proper	COM	port	for	a	Linux
Machine

D
DC	motor

basics	/	DC	motor	basics
connecting,	to	Galileo	/	Connecting	a	DC	motor	directly	to	the	Galileo
connecting,	H-bridge	used	/	Connecting	a	DC	motor	using	an	H-bridge	and	the
Galileo
connecting,	Galileo	used	/	Connecting	a	DC	motor	using	an	H-bridge	and	the
Galileo
controlling,	shield	used	/	Controlling	DC	motors	using	a	shield

Debian	Linux	SD	card	image
creating,	on	Galileo	/	Creating	and	booting	the	Debian	Linux	SD	card	image	on
the	Galileo
booting,	on	Galileo	/	Creating	and	booting	the	Debian	Linux	SD	card	image	on
the	Galileo
URL	/	Creating	and	booting	the	Debian	Linux	SD	card	image	on	the	Galileo

degrees	of	freedom	(DOF)	/	Building	robots	that	can	walk
Digi	/	Configuring	the	XBee	devices
Digital	((PWM~)	13/2	pin	/	The	GPIO	capability	of	the	Galileo
digital	compass

connecting,	to	Galileo	/	Connecting	a	digital	compass	to	the	Galileo
accessing,	from	Galileo	IDE	/	Accessing	the	compass	from	the	IDE
URL	/	Accessing	the	compass	from	the	IDE

digital	input	signals
interfacing,	with	Galileo	/	Interfacing	digital	input	signals	with	Galileo

Digital	RX->0	pin	/	The	GPIO	capability	of	the	Galileo
Digital	TX->1	pin	/	The	GPIO	capability	of	the	Galileo
distance

sensing	/	Sensing	distance

E
electronics

setting	up	/	Setting	up	the	electronics
Espeak

used,	for	responding	in	robot	voice	/	Using	Espeak	to	allow	our	projects	to
respond	in	a	robot	voice
URL	/	Using	Espeak	to	allow	our	projects	to	respond	in	a	robot	voice

external	hardware
connecting	/	Connecting	your	first	external	hardware
wires,	plugging	into	breadboard	/	Plugging	your	wires	into	the	breadboard
electronics,	setting	up	/	Setting	up	the	electronics

F
file

uploading,	to	Galileo	/	Opening	and	uploading	a	file	to	the	Galileo
opening	/	Opening	and	uploading	a	file	to	the	Galileo

firmware
updating	/	Updating	the	firmware

G
Galileo

unpacking	/	Unpacking	and	connecting	the	Galileo
connecting	/	Unpacking	and	connecting	the	Galileo
connecting,	to	Windows	machine	/	Downloading	the	software	and	connecting
the	Galileo	to	a	Windows	machine
connecting,	to	Mac	/	Downloading	the	software	and	connecting	the	Galileo	to	a
Mac
connecting,	to	Linux	machine	/	Downloading	the	software	and	connecting	the
Galileo	to	a	Linux	machine
IDE,	running	for	/	Running	the	IDE	for	the	Galileo
file,	uploading	to	/	Opening	and	uploading	a	file	to	the	Galileo
Linux	capabilities,	accessing	/	Accessing	the	Galileo’s	Linux	capabilities
GPIO	capability	/	The	GPIO	capability	of	the	Galileo
digital	input	signals,	interfacing	/	Interfacing	digital	input	signals	with	Galileo
analog	input	signals,	interfacing	/	Interfacing	analog	input	signals	with	Galileo
DC	motor,	connecting	to	/	Connecting	a	DC	motor	directly	to	the	Galileo
DC	motor,	connecting	with	/	Connecting	a	DC	motor	using	an	H-bridge	and	the
Galileo
IR	sensors,	connecting	to	/	Connecting	an	IR	sensor	to	the	Galileo
digital	compass,	connecting	to	/	Connecting	a	digital	compass	to	the	Galileo
accelerometer,	connecting	to	/	Connecting	an	accelerometer	or	gyro	to	the
Galileo
gyro,	connecting	to	/	Connecting	an	accelerometer	or	gyro	to	the	Galileo
altimeter/pressure	sensor,	connecting	to	/	Connecting	an	altimeter/pressure
sensor	to	the	Galileo,	Accessing	the	altimeter/pressure	Sensor	from	the	Galileo
IDE
altimeter/pressure	sensor,	accessing	from	/	Accessing	the	altimeter/pressure
Sensor	from	the	Galileo	IDE
XBee	devices,	connecting	to	/	Connecting	an	XBee	interface	to	the	Galileo
Wi-Fi	connection,	configuring	/	Configuring	a	Wi-Fi	connection	on	the	Galileo
and	Linux	/	The	Galileo	and	Linux
Debian	Linux	SD	card	image,	booting	/	Creating	and	booting	the	Debian	Linux
SD	card	image	on	the	Galileo
Debian	Linux	SD	card	image,	creating	/	Creating	and	booting	the	Debian	Linux
SD	card	image	on	the	Galileo
servo	controller,	connecting	to	/	Connecting	the	servo	controller	to	the	Galileo

Galileo	code,	DC	motor	direction	control	/	Galileo	code	for	DC	motor	direction
control
Galileo	code,	DC	motor	shield	/	Galileo	code	for	the	DC	motor	shield
Galileo	code,	DC	motor	speed	control	/	Galileo	code	for	DC	motor	speed	control
Galileo	IDE

code,	creating	/	The	IDE	and	LED	Code

IR	sensor,	accessing	from	/	Accessing	the	IR	sensor	from	the	Galileo	IDE
digital	compass,	accessing	from	/	Accessing	the	compass	from	the	IDE
accelerometer,	accessing	from	/	Accessing	the	accelerometer	from	the	IDE
altimeter/pressure	sensor,	accessing	from	/	Accessing	the	altimeter/pressure
Sensor	from	the	Galileo	IDE
XBee	interface,	enabling	/	Enabling	an	XBee	Interface	in	the	IDE
Wi-Fi,	using	/	Using	Wi-Fi	from	the	IDE

Galileo	pins
AREF	/	The	GPIO	capability	of	the	Galileo
GND	/	The	GPIO	capability	of	the	Galileo
Digital	((PWM~)	13/2	/	The	GPIO	capability	of	the	Galileo
Digital	TX->1	/	The	GPIO	capability	of	the	Galileo
Digital	RX->0	/	The	GPIO	capability	of	the	Galileo
Analog	IN	A5/A0	/	The	GPIO	capability	of	the	Galileo
Power	Vin	/	The	GPIO	capability	of	the	Galileo
Power	GND	/	The	GPIO	capability	of	the	Galileo
Power	5V	/	The	GPIO	capability	of	the	Galileo
Power	3.3V	/	The	GPIO	capability	of	the	Galileo
RESET	/	The	GPIO	capability	of	the	Galileo
IOREF	/	The	GPIO	capability	of	the	Galileo

Galileo	Poky	operating	system
Intel®	Centrino®	Wireless-N	135	/	Configuring	a	Wi-Fi	connection	on	the
Galileo
Intel®	Centrino®	Advanced-N	6205	/	Configuring	a	Wi-Fi	connection	on	the
Galileo

GND	pin	/	The	GPIO	capability	of	the	Galileo
GPIO	pins

capability	/	The	GPIO	capability	of	the	Galileo
using	/	Using	the	GPIO	pins

gyro
URL	/	Connecting	an	accelerometer	or	gyro	to	the	Galileo
connecting,	to	Galileo	/	Connecting	an	accelerometer	or	gyro	to	the	Galileo

H
H-bridge

DC	motor,	connecting	with	/	Connecting	a	DC	motor	using	an	H-bridge	and	the
Galileo

hardware
hooking	up,	for	creating	input	sound	/	Hooking	up	the	hardware	to	make	an
input	sound

I
i2cdevlib

URL	/	Accessing	the	accelerometer	from	the	IDE
IDE

downloading	/	Downloading	the	software	and	connecting	the	Galileo	to	a
Windows	machine
OS	X	version,	downloading	/	Downloading	the	software	and	connecting	the
Galileo	to	a	Mac
Linux	version,	downloading	/	Downloading	the	software	and	connecting	the
Galileo	to	a	Linux	machine
running,	for	Galileo	/	Running	the	IDE	for	the	Galileo
setting,	for	connecting	to	board	/	Setting	the	IDE	to	connect	to	your	board
serial	display,	enabling	/	Enabling	the	serial	display	in	the	IDE
used,	for	accessing	display	/	Accessing	the	display	with	the	IDE

input	sound
creating,	by	hooking	up	hardware	/	Hooking	up	the	hardware	to	make	an	input
sound
application,	using	/	Using	an	application

IOREF	pin	/	The	GPIO	capability	of	the	Galileo
IR	sensor

about	/	The	Infrared	sensor
connecting,	to	Galileo	/	Connecting	an	IR	sensor	to	the	Galileo
accessing,	from	Galileo	IDE	/	Accessing	the	IR	sensor	from	the	Galileo	IDE

L
LCD

URL	/	Enabling	the	serial	display	in	the	IDE
LED

connecting	/	The	IDE	and	LED	Code
Linux

and	Galileo	/	The	Galileo	and	Linux
program,	creating	for	quadruped	control	/	Creating	a	program	in	Linux	so	that
you	can	control	your	quadruped

Linux	capabilities,	Galileo
accessing	/	Accessing	the	Galileo’s	Linux	capabilities

Linux	machine
Galileo,	connecting	to	/	Downloading	the	software	and	connecting	the	Galileo	to
a	Linux	machine
COM	port,	selecting	for	/	Selecting	the	proper	COM	port	for	a	Linux	Machine

Linux	operating	system
URL	/	Configuring	a	Wi-Fi	connection	on	the	Galileo

loop()	function	/	Accessing	the	IR	sensor	from	the	Galileo	IDE

M
Mac

Galileo,	connecting	to	/	Downloading	the	software	and	connecting	the	Galileo	to
a	Mac
COM	port,	selecting	for	/	Selecting	the	proper	COM	port	for	the	Mac

MPU-6050	/	Connecting	an	accelerometer	or	gyro	to	the	Galileo

N
nano

URL	/	Creating	a	program	in	Linux	so	that	you	can	control	your	quadruped

P
PC

used,	for	communicating	with	servo	controller	/	Communicating	with	the	servo
controller	via	a	PC

PCI	Express	(PCI-E)	/	Configuring	a	Wi-Fi	connection	on	the	Galileo
PCI	wireless	device

URL	/	Configuring	a	Wi-Fi	connection	on	the	Galileo
Pololu

URL	/	Using	a	servo	controller	to	control	the	servos,	Communicating	with	the
servo	controller	via	a	PC,	Connecting	the	servo	controller	to	the	Galileo

Power	3.3V	pin	/	The	GPIO	capability	of	the	Galileo
Power	5V	pin	/	The	GPIO	capability	of	the	Galileo
Power	GND	pin	/	The	GPIO	capability	of	the	Galileo
Power	Vin	pin	/	The	GPIO	capability	of	the	Galileo
pressure	sensors

URL	/	Connecting	an	altimeter/pressure	sensor	to	the	Galileo
Pulse-Width-Modulated	(PWM)	/	How	servo	motors	work
Putty

URL	/	Configuring	a	Wi-Fi	connection	on	the	Galileo
URL,	for	download	/	Creating	and	booting	the	Debian	Linux	SD	card	image	on
the	Galileo

Q
quadruped

building	/	Building	robots	that	can	walk
controlling,	with	Linux	program	/	Creating	a	program	in	Linux	so	that	you	can
control	your	quadruped

quadruped	platform
building	/	Building	the	quadruped	platform
URL	/	Building	the	quadruped	platform
HS-485HB	servos,	using	/	Building	the	quadruped	platform
HS-645MG	servos,	using	/	Building	the	quadruped	platform

R
RESET	pin	/	The	GPIO	capability	of	the	Galileo

S
sensors

used,	for	sensing	distance	/	Sensing	distance
serial	display

enabling,	in	IDE	/	Enabling	the	serial	display	in	the	IDE
serial	library

URL	/	Enabling	the	serial	display	in	the	IDE
servo	controller

using,	for	controlling	servos	/	Using	a	servo	controller	to	control	the	servos
communicating,	with	PC	/	Communicating	with	the	servo	controller	via	a	PC
connecting,	to	Galileo	/	Connecting	the	servo	controller	to	the	Galileo

servo	motors
working	/	How	servo	motors	work

servos
controlling,	with	servo	controller	/	Using	a	servo	controller	to	control	the	servos

setAngle	command	/	Creating	a	program	in	Linux	so	that	you	can	control	your
quadruped
setup()	function	/	Accessing	the	IR	sensor	from	the	Galileo	IDE
shield

using	/	The	simple	serial	display
used,	for	controlling	DC	motor	/	Controlling	DC	motors	using	a	shield

shield	compatibility	guide
URL	/	Sensing	distance

signals
obtaining,	from	outside	world	/	Getting	signals	from	the	outside	world
digital	input	signals,	interfacing	with	Galileo	/	Interfacing	digital	input	signals
with	Galileo
analog	input	signals,	interfacing	with	Galileo	/	Interfacing	analog	input	signals
with	Galileo

simple	serial	display	/	The	simple	serial	display
solderless	version

URL	/	Connecting	an	accelerometer	or	gyro	to	the	Galileo
Sparkfun

URL	/	Accessing	the	accelerometer	from	the	IDE
Sparkfun	SEN-11028

URL	/	Connecting	an	accelerometer	or	gyro	to	the	Galileo
sudo	apt-get	update	command	/	Creating	and	booting	the	Debian	Linux	SD	card
image	on	the	Galileo

T
TFT	shield

about	/	The	TFT	shield
display,	accessing	with	IDE	/	Accessing	the	display	with	the	IDE

U
USB	Driver

URL,	for	installation	/	Configuring	the	XBee	devices

W
wget

URL	/	Connecting	the	servo	controller	to	the	Galileo
Wi-Fi

configuring,	on	Galileo	/	Configuring	a	Wi-Fi	connection	on	the	Galileo
using,	from	Galileo	IDE	/	Using	Wi-Fi	from	the	IDE

Win32DiskImager
URL	/	Creating	and	booting	the	Debian	Linux	SD	card	image	on	the	Galileo

Windows
COM	port,	selecting	for	/	Selecting	the	proper	COM	port	for	Windows,
Selecting	the	proper	COM	port	for	the	Mac

Windows	machine
Galileo,	connecting	to	/	Downloading	the	software	and	connecting	the	Galileo	to
a	Windows	machine

X
XBee	devices

about	/	Connecting	an	XBee	interface	to	the	Galileo
configuring	/	Configuring	the	XBee	devices

XBee	interface
connecting,	to	Galileo	/	Connecting	an	XBee	interface	to	the	Galileo
enabling,	in	Galileo	IDE	/	Enabling	an	XBee	Interface	in	the	IDE

Z
ZigBee	/	Connecting	an	XBee	interface	to	the	Galileo

	Intel Galileo Essentials
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. Getting Started with the Galileo
	Unpacking and connecting the Galileo
	Downloading the software and connecting the Galileo to a Windows machine
	Downloading the software and connecting the Galileo to a Mac
	Downloading the software and connecting the Galileo to a Linux machine
	Running the IDE for the Galileo
	Setting the IDE to connect to your board
	Selecting the proper COM port for Windows
	Selecting the proper COM port for the Mac
	Selecting the proper COM port for a Linux Machine
	Updating the firmware
	Opening and uploading a file to the Galileo
	Accessing the Galileo's Linux capabilities
	Summary
	2. Accessing the GPIO Pins
	The GPIO capability of the Galileo
	Using the GPIO pins
	Connecting your first external hardware
	Plugging your wires into the breadboard
	Setting up the electronics
	The IDE and LED Code
	Getting signals from the outside world
	Interfacing digital input signals with Galileo
	Interfacing analog input signals with Galileo
	Summary
	3. Adding Display Functionality
	The simple serial display
	Enabling the serial display in the IDE
	The TFT shield
	Accessing the display with the IDE
	Summary
	4. Controlling DC Motors
	DC motor basics
	Connecting a DC motor directly to the Galileo
	Galileo code for DC motor speed control
	Connecting a DC motor using an H-bridge and the Galileo
	Galileo code for DC motor direction control
	Controlling DC motors using a shield
	Galileo code for the DC motor shield
	Summary
	5. Adding Sensors
	Sensing distance
	The Infrared sensor
	Connecting an IR sensor to the Galileo
	Accessing the IR sensor from the Galileo IDE
	Connecting a digital compass to the Galileo
	Accessing the compass from the IDE
	Connecting an accelerometer or gyro to the Galileo
	Accessing the accelerometer from the IDE
	Connecting an altimeter/pressure sensor to the Galileo
	Accessing the altimeter/pressure Sensor from the Galileo IDE
	Summary
	6. Remote Control
	Connecting an XBee interface to the Galileo
	Configuring the XBee devices
	Enabling an XBee Interface in the IDE
	Configuring a Wi-Fi connection on the Galileo
	Using Wi-Fi from the IDE
	Summary
	7. Going Further with Galileo
	The Galileo and Linux
	Creating and booting the Debian Linux SD card image on the Galileo
	Building robots that can walk
	How servo motors work
	Building the quadruped platform
	Using a servo controller to control the servos
	Communicating with the servo controller via a PC
	Connecting the servo controller to the Galileo
	Creating a program in Linux so that you can control your quadruped
	Summary
	8. Speech Output
	Hooking up the hardware to make an input sound
	Using an application
	Using Espeak to allow our projects to respond in a robot voice
	Summary
	Index

