

	

HL7	for	Busy
Professionals

	
Your	No	Sweat	Guide	to	Understanding	HL7

Rahul	Bhagat
Illustration	By	Calvin	Hui

Anchiove

2015

Copyright	©	2015	by	Rahul	Bhagat

All	 rights	 reserved.	 This	 book	 or	 any	 portion	 thereof	may	 not	 be	 reproduced	 or	 used	 in	 any	manner	whatsoever
without	 the	 express	 written	 permission	 of	 the	 publisher	 except	 for	 the	 use	 of	 brief	 quotations	 in	 a	 book	 review	 or
scholarly	journal.

First	Printing:	2015

ISBN	978-0-9939945-1-7

Anchiove	Inc.

135	Wynford	Dr.,	Toronto,	ON,	Canada	M3C	OJ4

www.HL7Book.com

Although	the	author	and	publisher	have	made	every	effort	to	ensure	that	the	information	in	this	book	was	correct	at
press	time,	the	author	and	publisher	do	not	assume	and	hereby	disclaim	any	liability	to	any	party	for	any	loss,	damage,
or	disruption	caused	by	errors	or	omissions,	whether	such	errors	or	omissions	result	from	negligence,	accident,	or	any
other	cause

	
To	Neelam	Bhagat,

who	knew	this	book	was	for	real	before	I	did.

Thank	you	ma.

Table	of	Contents
		Preface

Part	I
Scratching	the	surface

	1.	Introduction

	2.	What	is	HL7?

	3.	Integration	Concepts

	4.	Evolution	of	HL7

Part	II
Digging	Deeper

	5.	Basic	Concepts

	6.	Message	Building	Blocks

	7.	Working	with	a	Message

	8.	Control	Segments

	9.	Data	Segments

10.	Other	Important	Topics

Preface
After	university,	I	got	a	job	with	a	busy,	Toronto	based,	healthcare	consulting	company.

On	day	two	at	work,	I	was	handed	a	printout	with	cryptic	text	on	it,	and	a	document	called
interface	spec,	to	read	and	understand.

This	was	my	 introduction	 to	HL7.	At	 that	 time,	 I	 did	 not	 realize	 that	 this	 obscure
messaging	protocol	would	become	my	ticket	to	far	off	places,	and	the	reason	to	meet	and
work	with	a	lot	of	people.

It	 didn’t	 take	me	 long	 to	 learn	HL7,	my	programming	background	helped.	Later,	 I
realized	that	my	skill	is	in	high	demand	and	I	became	a	consultant.	I	traveled	to	different
cities	and	worked	on	various	HL7	projects.

I	also	started	running	into	people	from	non-technical	background	who	wanted	me	to
explain	 HL7	 in	 the	 elevator	 or	 while	 chatting	 in	 their	 cubicle.	 There	 wasn’t	 any
introductory	book	I	could	suggest,	so	the	idea	of	writing	one	myself.

I’m	glad	I	collaborated	with	Calvin	Hui	in	writing	this	book.	He	not	only	took	care	of
illustration	and	design	but	also	nudged	me	when	I	was	slacking	after	 the	 first	draft.	My
friend	Erik	Westermann	was	a	great	sounding	board	and	helped	me	refine	my	ideas.	And
thanks	to	many	colleagues	who	helped	me	develop	my	skills.	In	particular,	Derrick	Leung,
who	mentored	me	when	I	was	just	starting	out.

So	here	it	is.	My	idea	of	an	introductory	book	on	HL7.	I	hope	you	enjoy	reading	it.

Part	I
Scratching	the	surface

1.	Introduction
A	technical	book	usually	 implies	a	dry	subject.	So	its	no	surprise	authors	have	a	hard

time	figuring	out	ways	to	make	the	book	interesting	to	the	reader.	HL7	is	one	such	subject.
It	is	a	subject	that	is	so	high	on	the	scale	of	dryness	and	no	one	comes	to	it	willingly.	The
only	reason	someone	would	read	a	book	on	HL7	is	because	of	his	or	her	job.	And	if	you
are	here,	reading	this	book,	then	I	assume	you	work	in	healthcare	IT	or	intend	to	join	the
industry	soon.

I	have	made	every	effort	 to	 take	out	 the	dryness	of	 the	subject	and	make	 this	book
interesting.	There	are	no	needless	jargons	or	esoteric	concepts	thrown	casually	to	trip	you.
In	fact,	you	will	see	a	heavy	reliance	on	everyday	examples	and	inclusion	of	background
information	 to	 paint	 a	 complete	 picture.	But	HL7	 and	healthcare	 system	 integration	 are
complex	 subjects	 so	 there	 will	 be	 topics	 that	 don’t	 make	 sense	 right	 away.	 Please
persevere.	Tie	a	knot	and	hang	in	there.	Gradually	things	will	make	sense.

This	introductory	book	on	HL7	goes	in	detail	to	explain	what	HL7	is.	It	gives	you	the
basic	concepts,	 tells	you	about	 the	organization	behind	 it	 and	helps	you	create	a	mental
map	 of	 the	 voluminous	 HL7	 specification	 document.	 And,	 it	 takes	 you	 through	 a
whirlwind	tour	of	some	of	the	most	commonly	used	HL7	messages,	all	in	a	short	span	of
time.

Early	Railroads
HL7	 was	 created	 to	 solve	 the	 problems	 of	 clinical	 system	 integration.	 But	 to	 truly

understand	the	problems	of	system	integration,	let’s	start	with	another	integration	problem
we	solved	centuries	ago.

The	1800’s	were	 a	 time	when	 railways	were	 coming	of	 age	 in	America	–	 just	 like
battery	driven	cars,	drones	and	other	new	technologies	are	coming	of	age	today.

There	were	literally	hundreds	of	companies	competing	for	a	piece	of	the	railway	pie.
Enterprising	companies	would	buy	up	 land,	 lay	down	 tracks	and	 run	a	 transport	 service
between	cities	which	had	no	other	means	of	transportation	except	for	horse-drawn	wagons
or,	if	one	was	fortunate,	steamships.

By	 the	 time	American	civil	war	started	(1861),	vast	stretches	of	 the	continent	were
already	 connected	 through	 rail	 and	work	was	well	 underway	on	 the	 construction	 of	 the
transcontinental	railroad	to	connect	California	with	the	rest	of	the	country.

However,	 there	was	one	problem.	You	 could	not	 just	 hop	on	 a	 train	 and	get	 off	 at
your	 destination,	 like	 you	 can	 today.	 Because	 these	 railroads	 were	 built	 and	 run	 by
different	 companies,	 they	 used	 different	 track	 gauges	 (horizontal	 distance	 between	 two
rails	 of	 the	 track).	This	meant	you	had	 to	get	 off	 and	 change	 trains	whenever	you	hit	 a
junction	 with	 two	 different	 gauge	 widths.	 There	 were	 well	 over	 twenty	 different	 track
gauges	being	used	at	the	time	of	the	civil	war.	The	army	had	to	constantly	load	and	unload
cargo	in	its	effort	to	get	supplies	to	the	troops.	This	was	a	serious	problem!

And	 it	was	 the	 reason	 that	 finally	made	 the	American	 government	 to	 push	 for	 the
conversion	 of	 all	 railway	 tracks	 to	 a	 standard	 gauge—4	 feet	 and	 8.5	 inches,	 the	 most

commonly	used	gauge	width.	More	than	half	of	the	existing	tracks	were	built	to	this	width
so	it	was	easiest	to	convert	the	remaining	tracks	to	this	width	and	achieve	standardization.

Standardization	of	rail	tracks	was	the	first	step	towards	creating	an	integrated	system
where	goods	and	people	could	move	freely	across	the	whole	network.	It	was	followed	by
the	development	of	a	common	signal	system,	time	zones,	harmonized	train	schedule,	fixed
coach	height,	a	standard	coal	and	water	supply	system	and	on	and	on.

It	was	evident	that	an	integrated	system	needed	a	standard	way	of	doing	things.

Evolution	of	Healthcare	IT	Systems
Today,	 we	 are	 in	 a	 (somewhat)	 similar	 situation	 with	 the	 movement	 of	 healthcare

information.	It	cannot	seamlessly	flow	from	one	system	to	the	next.	Each	organization	has
its	 own	way	 of	 storing	 and	 sharing	 information.	Whenever	 health	 information	 needs	 to
move	 across	 organization	 boundaries,	 it	 hits	 the	 incompatible	 standards	 roadblock.
Someone	has	to	unload	and	reload	the	information.

Healthcare	 IT	 systems	 have	 evolved	 similar	 to	 railroads.	 Initially,	 hardware	 costs
(think	multi-million	 dollar	mainframes)	were	 the	 biggest	 factor,	 so	 only	 a	 few	 teaching
hospitals	with	deep	pockets	had	the	means	to	build	a	system.	These	were	primarily	stand-
alone	 systems	 meant	 to	 serve	 a	 specific	 purpose.	 For	 example,	 to	 manage	 patient
population	in	a	large	hospital.

Then	 the	 hardware	 cost	 came	 down	 and	 minicomputers	 arrived	 on	 the	 scene.	 A
computer	 could	 be	 had	 for	 less	 than	 $25,000	 and	 didn’t	 need	 a	 room	 to	 house	 it.	 This
allowed	 smaller	 players	 and	 even	 departments	within	 a	 hospital	 to	 purchase	 systems	 of
their	own.	Pharmacies	 installed	 systems	 to	 track	prescriptions	and	dispensed	medication
while	laboratories	set	up	systems	to	track	requests	for	tests	and	their	results.

This	 led	 to	 dramatic	 improvement	 in	 productivity	 for	 these	 organizations	 but	 there
was	no	 free	 flow	of	 information	between	 the	clinical	 systems.	The	problem	was	 lack	of
standardization.	Information	from	one	system	had	to	be	unloaded	to	paper	and	transported
to	where	the	other	system	was.	Then	a	human	operator	would	reload	the	information	to	the
other	system	by	manually	typing	it	in.

Of	course	 this	was	 the	worse	case	scenario.	 Improvements	were	made.	 Information
was	loaded	on	floppy	disks	and	electronically	moved	to	the	other	system.	Still,	there	was
no	 free	 flow	of	 information	between	 systems.	This	prevented	us	 from	 realizing	 the	 true
potential	of	electronic	systems.

Then	some	IT	vendors	came	up	with	a	solution.	Replace	stand-alone	systems	with	an
integrated	product	 -	 an	EHR	 (electronic	 health	 record).	 If	 you	 are	 familiar	with	Cerner,
Epic	or	Meditech	then	you	know	what	I	am	talking	about.	A	large	system	with	modules
for	every	department.

This	eliminated	 the	need	 for	health	 information	 to	cross	system	boundaries.	Within
the	system,	the	modules	would	use	a	standard	way	of	storing	and	sharing	information	and
this	would	allow	the	information	to	flow	seamlessly	within	the	organization.

This	 approach	 worked	 well.	 EHRs	 have	 been	 very	 successful	 in	 eliminating	 the
problem	of	integrating	systems	within	an	organization	and	they	continue	to	be	one	of	the

cornerstones	of	the	healthcare	IT	structure.

But	 what	 about	 sharing	 information	 outside	 the	 organization?	 Healthcare
organizations	 don’t	 work	 in	 isolation.	 They	 need	 to	 share	 information	 with	 insurance
companies	and	send	patient	care	information	to	the	government.	They	have	to	constantly
communicate	with	the	outside	world.

To	use	our	railway	analogy,	 this	was	similar	 to	the	situation	where	each	state	could
set	 its	own	standard	gauge.	You	could	 travel	 all	over	a	 state	without	 the	need	 to	 switch
trains	but	when	you	wanted	to	cross	the	state	boundary,	you	would	need	to	disembark	and
get	on	a	train	that	ran	on	the	other	state’s	standard	gauge.

Clearly,	EHRs	were	only	a	limited	solution.

There	was	also	the	question	of	what	to	do	with	existing	standalone	clinical	systems.
These	systems	were	built	over	many	years	 through	substantial	monetary	 investment.	An
organization	would	be	loath	to	scrap	all	that	investment	&	hard	work	and	replace	it	with
an	EHR.

Healthcare	 needed	 a	 better	 solution.	 It	 needed	 a	 standard	 gauge	 to	 connect	 these
EHRs,	 standalone	 systems,	 external	 systems	 and	 systems	 that	 were	 yet	 to	 be	 built.	 It
needed	to	move	away	from	constantly	loading	and	unloading	information.

The	solution	was	HL7.

2.	What	is	HL7?
HL7	 is	 an	 ANSI	 accredited,	 OSI	 level	 7,	 application	 layer	 protocol	 for	 exchanging

clinical	and	administrative	data	between	healthcare	systems.

Chances	 are,	 if	 you	 are	not	 a	network	 engineer	or	 did	not	 study	computer	 science,
then	“OSI	level	7,	application	layer	protocol”	probably	means	nothing	to	you.

In	lay	terms,	you	can	say	that	HL7	is	a	language	that	clinical	systems	use	to	exchange
information	with	each	other.	But	even	that	doesn’t	tell	you	anything.	When	I	was	learning
HL7,	the	definition	raised	its	own	questions	and	left	me	with	a	vague	sense	of	unease.	It
took	a	fair	bit	of	research	to	figure	out	what	HL7	is.

So	instead	of	leaving	with	a	sense	of	unease,	why	don’t	we	take	the	time	and	figure
out	what	HL7	really	is?

Application	Layer	Protocol
HL7	is	an	application	layer	protocol.	This	means	that	it	defines	the	rules	for	exchanging

data	(clinical	and	administrative)	between	applications.

We	often	use	the	word	system	and	application	in	an	informal	way,	which	clouds	the
distinction	between	the	two.	Historically	an	application	was	the	same	as	a	system.	An	old
accounting	 system,	 with	 its	 hardware	 and	 printers	 and	 monitors	 had	 only	 one	 job	 or
application–	preparing	and	maintaining	financial	records.

Things	changed	when	systems	became	more	powerful	and	started	taking	on	multiple
roles.	A	great	example	is	your	smartphone.	It’s	not	just	a	phone	anymore.	Making	a	phone
call	is	just	one	of	the	many	functions	of	the	device.	It	has	numerous	“apps”	or	applications
for	all	sorts	of	things.

Similarly,	modern	computer	 systems	or	 servers	 run	multiple	applications,	 including
clinical	applications.	When	applications	communicate	with	each	other,	they	have	to	do	so
through	 their	 system.	 Basically,	 applications	 create	 a	 message	 in	 a	 language	 that	 is
understood	by	their	counterpart	applications	–	in	our	case	HL7	–	and	hand	it	over	to	their
system	 for	 delivery.	 The	 system	 doesn’t	 understand	 the	 message.	 Its	 job	 is	 to	 reliably
deliver	the	message	to	the	destination	system.

HL7	 is	 one	 such	 specialized	 application-to-application	 language/messaging	 rule
book/protocol	–	whatever	you	call	it	–	for	communication	between	clinical	applications.

OSI	Level	7
HL7	 is	 also	 an	 OSI	 (Open	 System	 Interconnection)	 Level	 7	 protocol.	 This	 is	 just	 a

formal	way	of	saying	that	it	is	an	application	layer	protocol.

Now,	we	are	going	 to	discuss	OSI	and	 its	 levels	 and	 that	means	 splashing	 through
packet	 based,	 network	 communication.	 If	 you	 are	 not	 interested	 in	 it,	 I	 would	 suggest
skipping	over	to	the	next	chapter.

OSI	 is	 a	 reference	model	 that	 networking	 guys	 use	 to	make	 sense	 of	 the	 network
communication	model	and	how	things	really	happen	at	the	bit	and	byte	level.

It	 is	 not	 difficult	 to	 understand	 the	 OSI	 model.	 The	 secret	 is	 proper	 background
knowledge	and	an	understanding	of	the	key	concepts.	Let’s	see	if	we	can	do	that	in	a	few
short	pages	here.

Historical	Background
Using	 electricity	 for	 communication	 started	 with	 Samuel	Morse,	 the	 inventor	 of	 the

telegraph.	 He	 created	 a	 simple	 circuit	 with	 a	 battery,	 a	 bowl	 of	mercury	 and	 two	 long
wires	grounded	at	ends.

If	 he	 dipped	 a	 wire	 in	 the	 bowl	 of	 mercury,	 it	 completed	 the	 circuit	 and	 current
flowed	through	it.	To	send	a	short	burst	of	electricity,	he	would	dip	the	wire	and	pull	it	out
quickly.	This	was	like	sending	electric	“smoke	puffs”	to	the	other	end.

This	 basic	 idea	was	 refined	 into	 the	 telegraph	 and	Morse	 code.	 The	 code	 had	 two
letters	–	a	dot	and	a	dash.	A	dot	was	a	short	puff	of	electricity	and	a	dash	was	a	longer	puff
(about	3	times	the	duration	of	a	dot).	Dots	and	dashes	were	combined	to	represent	letters
and	voila!	We	had	electronic	communication.

SOS,	the	universal	distress	signal,	owes	its	origin	to	Morse	code.	In	Morse	code,	the	pattern	for	the	letter	S	is
three	dots	and	for	the	letter	O,	it	is	three	dashes	-	hence	the	familiar	sound	of	three	short	beeps,	three	long	beeps	and

three	short	beeps	for	SOS.

Morse	 code	 evolved	 into	 Baudet	 code	 for	 Teletypes,	 which	 replaced	 the	 dots	 and
dashes	with	bits.	Basically,	instead	of	looking	out	for	puffs	of	electricity,	systems	checked
if	current	was	flowing	in	a	slice	of	time.	This	slice	of	time	was	called	a	bit.		Each	bit	had
two	states;	either	current	was	flowing	or	not	flowing.	They	used	 to	call	 them	a	marking
state	and	a	spacing	state.	Today	we	know	them	as	1	and	0.

The	time	duration	of	a	bit	is	called	bit	time.	To	understand	bit	time,	let’s	assume	a	bit
time	of	one	second.	If	electricity	was	flowing	for	one	second	then	that	means	a	1	was	sent.
If	 the	electricity	kept	 flowing	during	 the	next	 second	 then	 that	means	another	1.	But,	 if
there	was	no	electricity	after	the	first	second,	then	that	was	a	0.	In	real	life,	bit	times	are
extremely	small.	You	can	pack	millions	of	bits	in	a	second.	This	is	also	known	as	the	bit
rate	(bits	per	second).

The	success	of	electronic	communication	increased	the	need	for	communication	lines
for	 transmission.	Back	 in	 the	days,	 there	were	very	 few	 lines.	 	 So	devices	 had	 to	 share
lines	to	transmit	their	bits.	The	problem	with	this	approach	was	that	other	devices	had	to

wait	until	the	transmitting	device	finished	sending	its	message.

To	give	you	an	analogy,	consider	when	we	only	had	 landlines.	People	had	multiple
handsets	in	the	house	but	there	was	just	one	line.	So	if	your	teenage	daughter	was	on	the
phone	in	her	bedroom	upstairs,	you	had	better	get	busy	doing	whatever	else	you	had	to	do.
It	would	be	a	long	time	before	it	was	your	turn	to	make	a	call.	Devices	that	had	to	share
lines	had	a	similar	problem.

Packets
The	solution	was	timesharing.	The	long	stream	of	bits	in	a	message	was	divided	into

smaller	pieces	called	packets.	Each	computer	on	the	network	was	given	its	share	of	time
(say	1/100th	of	a	second)	on	a	rotating	basis	and	when	its	time	came,	it	would	transmit	as
many	 packets	 as	 it	 could.	 If	 all	 the	 packets	 were	 not	 sent	 in	 the	 allocated	 time,	 the
computer	would	wait	its	turn	to	send	the	remaining	packets.	This	way	multiple	computers
were	 able	 to	 use	 the	 same	 transmission	 line	 without	 having	 to	 wait	 for	 an	 inordinate
amount	of	time.

This	method	 of	message	 transmission	 has	 been	 so	 successful	 that	 today	 almost	 all
communication	is	in	the	form	of	packets,	even	voice	communication.	If	you	have	ever	had
a	 bad	 connection	 during	 a	 phone	 call,	 you	may	 have	 noticed	 a	 number	 of	 gaps	 in	 the
conversation.	Those	gaps	were	nothing	but	missing	packets.	They	never	made	it	in	time!

For	a	message	to	be	sent	as	packets	requires	a	couple	of	things.	One,	the	packets	have
to	be	numbered	sequentially.	 If	 the	packets	are	not	assembled	 in	 the	same	order	as	 they
were	 sent,	 the	message	will	 become	garbled.	As	 a	 result,	 your	 thank	 you	 could	 end	 up
before	the	hello.

And	second,	 in	a	network	with	many	computers,	each	packet	will	have	 to	have	 the
address	of	the	destination	computer.	Otherwise	where	does	the	packet	get	delivered?

These	details	 are	attached	 to	a	packet	 in	 the	 form	of	a	header,	 as	additional	bits	 in
front	of	the	packet.

When	 the	 packet	 reaches	 its	 destination,	 the	 headers	 are	 stripped	 and	 the	 data	 is
pieced	together	one	by	one	to	rebuild	the	original	message.

Ethernet
The	 Ethernet	 is	 the	 de-facto	 standard	 for	 connecting	 computers	 in	 a	 network.	 There

were	 others,	 SNA,	 AppleTalk	 etc.	 but	 they	 didn’t	 survive	 the	 Darwinian	 laws	 of	 free
market.

To	set	up	an	Ethernet,	you	first	 lay	down	 the	communication	backbone,	which	 is	a
simple	 coaxial	 cable.	 	 The	 network	 is	 built	 by	 connecting	 individual	 devices	 to	 this
backbone.	If	a	device	wants	to	send	a	message	to	another	device	(a	computer,	printer	etc.)
on	 the	network,	 it	 transmits	 the	packets	 to	 the	backbone.	Every	device	connected	 to	 the
backbone	will	hear	and	read	the	header	of	the	packet.	If	the	packet	is	not	addressed	to	it,	it
will	be	ignored.	Only	the	device	with	the	matching	address	will	save	the	packet.

To	 assign	 a	 unique	 address	 to	 each	 device,	 an	 addressing	 system	 called	MAC	 ID
(Media	 Access	 Control	 ID)	 has	 been	 developed.	 It	 is	 a	 six-byte	 number,	 which	 is
permanently	stamped	on	every	Network	Interface	Card	(part	of	the	device	that	connects	to
the	 network)	 by	 the	manufacturer.	 That’s	why	 it	 is	 also	 called	 the	 hardware	 address	 or
physical	address.	You	cannot	change	it.	It	is	permanently	etched	in	the	chip.

Packets	 carry	 this	 MAC	 ID	 in	 their	 header.	 When	 a	 device	 receives	 a	 packet,	 it
compares	the	MAC	ID	of	the	packet	with	its	own	MAC	ID.	If	it	matches,	it	will	store	the
packet,	otherwise,	 it	will	 ignore	it.	Once	all	 the	packets	are	received,	the	system	stitches
together	the	original	message	and	sends	it	to	the	application	for	processing.

TCP/IP	and	the	Internet
MAC	ID	works	great	for	local	networks	where	the	administrator	knows	all	the	devices

and	their	addresses.	Communication	breaks	down	when	messages	have	to	travel	between
networks.	 How	 are	 you	 going	 to	 find	 out	 the	 MAC	 ID	 of	 a	 computer	 on	 a	 far	 away
network?

Back	 in	 the	 days,	 for	 American	 armed	 forces,	 this	 was	 a	 serious	 problem.	 Army,
Navy	and	Air	Force	networks	didn’t	have	the	capability	to	communicate	with	each	other.
Imagine	the	confusion	in	a	theatre	of	war!	But	believe	it	or	not,	this	was	not	the	primary
reason	 for	 the	 invention	of	 the	 Internet.	 It	was	much	more	mundane.	Computer	 science
researchers	were	 looking	 for	 a	way	 to	 access	 supercomputers	 on	 other	 networks.	There
were	only	a	few	supercomputers	around	and	if	you	were	in	San	Diego	and	wanted	to	use
the	supercomputer	at	 the	University	of	California,	Los	Angeles,	 then	your	only	recourse
was	to	get	on	I5	and	drive	to	LA.

So	the	researchers	at	ARPA	(Advanced	Research	Projects	Agency)	created	something
called	 TCP/IP	 and	 used	 it	 to	 successfully	 connect	 four	 research	 networks,	 three	 in
California	 and	 one	 in	 Utah,	 to	 each	 other.	 This	 first	 network	 of	 networks	 was	 called
ARPANET.	 It	was	 the	 acorn	 that	 grew	 into	 the	massive	oak	 tree	we	know	 today	 as	 the
Internet.

So	how	did	the	folks	at	ARPA	do	it?

They	 created	 a	 system	 of	 virtual	 global	 addresses.	 Instead	 of	 using	 the	MAC	 ID,
which	is	fixed	and	burned	on	a	device,	they	developed	a	virtual	addressing	system	of	four
numbers	where	each	number	can	have	a	value	from	0	to	255,	for	example,	125.0.200.75.	A
device	 was	 assigned	 a	 unique	 combination	 of	 these	 four	 numbers,	 which	 became	 its
global,	unique	IP	(Internet	Protocol)	address.

If	you	are	wondering	how	each	device	on	the	Internet	gets	a	global	unique	IP	address,
then	you	should	know	that	there	is	an	entire	organizational	structure	dedicated	to	the	task.
At	 the	 top	 is	 an	 organization	 called	 ICANN,	 based	 in	 LA,	 which	 does	 high-level
coordination	and	decides	on	big	things,	such	as,	are	we	going	to	allow	the	xxx	domain?
Under	it	are	five	regional	organizations	that	manage	the	actual	allocation	and	assignment
of	IP	numbers	for	their	region.

The	 regional	 organizations	 are	 ARIN	 (North	 America),	 RIPE	 (Europe	 &	 Middle
East),	 APNIC	 (Asia	 Pacific),	 LACNIC	 (Latin	 America	 &	 Caribbean)	 and	 AfriNIC
(Africa).

If	 a	 network	wants	 to	 connect	 to	 the	 Internet,	 it	makes	 a	 request	 for	 a	 block	of	 IP
numbers	 to	 one	 of	 these	 organizations	 or	 their	 affiliates.	 Depending	 on	 the	 size	 of	 its
network,	it	can	get	one	of	three	classes	of	IP	addresses:	Class	A,	Class	B	or	Class	C.

For	a	large	company	like	AT&T,	which	has	a	network	with	hundreds	of	thousands	of
devices	 and	 still	 needs	 room	 for	 more,	 a	 Class	 A	 block	 of	 addresses	 are	 assigned,	 for
example,	12.x.x.x.		All	packets	starting	with	the	IP	address	12	will	go	to	AT&T’s	network,
everything	from	12.0.0.0	to	12.255.255.255.	That’s	almost	seventeen	million	addresses!

But	 if	 AT&T	 were	 smaller,	 it	 would	 receive	 a	 Class	 B	 block	 of	 addresses,	 for
example,	 12.200.x.x.	 In	 this	 case,	 all	 IP	 addresses	 from	 12.200.0.0	 to	 12.200.255.255
would	belong	to	the	AT&T	network.

For	Class	C	addresses,	the	first	three	numbers	are	fixed,	for	example	12.200.50.x.	All
IP	addresses	between	12.200.50.0	and	12.200.50.255	belong	to	the	network.

Once	a	network	has	 its	 list	of	 IP	addresses,	 it	 creates	 an	ARP	 (Address	Resolution
Protocol)	table.	An	ARP	table	is	nothing	but	a	long	list	of	physical	addresses	(MAC	ID)	of
all	the	devices	on	the	network	and	their	corresponding	IP	addresses.	With	the	help	of	this
ARP	 table,	 the	 network	 can	 easily	 translate	 the	 IP	 address	 of	 an	 incoming	packet	 to	 its
corresponding	MAC	ID	and	vice	versa.

This	setup	devised	by	ARPA	freed	 the	networks	 from	the	 requirement	of	having	 to
know	each	other’s	MAC	IDs.	For	a	device	that	wanted	to	communicate	with	the	rest	of	the
world,	all	it	had	to	do	was	share	its	IP	address.	When	the	local	network	received	a	packet
with	this	IP	address,	it	would	use	the	ARP	table	to	find	out	the	MAC	ID	of	the	device	and
attach	it	to	the	header	of	the	packet	before	releasing	it	on	its	network.

If	you	are	thinking	why	didn’t	they	just	use	the	MAC	ID	for	addresses,	keep	in	mind
that	there	were	already	millions	of	devices	out	in	the	world	before	they	started	working	on
the	 problem.	 Cataloguing	 existing	 ID’s	 and	 coordinating	 between	manufacturers	 would
have	been	a	nightmare.	It	was	easier	to	just	start	over	with	a	clean	slate.

To	use	this	virtual	address,	when	a	packet	is	first	created,	a	header	with	the	IP	address
of	 the	 destination	 is	 attached	 to	 it.	 After	 that,	 another	 header	with	 the	MAC	 ID	 of	 the
destination	is	added	and	then	the	packet	is	released	on	the	Ethernet	for	transmission	to	the
destination	system.

If	the	destination	is	on	the	same	network	then	there	is	no	need	for	the	IP	address.	The
device	with	the	matching	MAC	ID	picks	up	the	packet	and	strip	away	both	the	physical
address	(MAC	ID)	and	the	virtual	address	(IP)	headers	of	the	packet	to	get	 to	the	actual
content.

Things	are	different	when	the	message	is	for	a	device	that	is	not	on	the	local	network.

After	a	packet	is	created	and	destination	IP	header	attached,	the	local	system	looks	up
the	ARP	table	to	get	the	corresponding	MAC	ID	of	the	destination.	If	 the	device	is	on	a
different	network,	then	there	will	be	no	entry	for	it	in	the	ARP	table.

In	 that	 case,	 the	 physical	 address	 of	 a	 special	 device	 called	 a	 router	 is	 used.	 The
packet	 is	 sent	 to	 the	 router	 on	 the	 network.	 The	 router	 reads	 the	 IP	 address	 of	 the
destination	and	consults	another	table	called	the	Forwarding	Table,	to	determine	where	to
send	the	packet	on	the	Internet.

Forwarding	 tables	 are	 similar	 to	ARP	 tables	 but	 instead	 of	 the	 physical	 address	 of
local	 devices,	 they	 contain	 addresses	of	 routers	 and	gateways	 for	 other	 networks.	 If	 the
destination	network	is	known	then	the	packet	is	sent	directly	to	it,	otherwise	it	gets	sent	to
the	 gateway,	which	 is	 like	 a	 central	 post	 office.	 From	 there	 it	 gets	 bounced	 around	 the
world,	based	on	a	host	of	factors,	till	it	reaches	its	destination	network.

The	 router	 at	 the	 destination	 network	 uses	 the	 IP	 address	 of	 the	 packet	 to	 find	 the
corresponding	physical	address	in	its	ARP	table.	It	 then	adds	the	corresponding	physical
address	 header	 to	 the	 packet	 and	 releases	 it	 on	 its	 local	 network,	where	 the	 destination
device	with	matching	MAC	ID	picks	it	up	for	processing.

This	is	how	ARPA	was	able	to	connect	different	networks	and	usher	in	the	Internet
age.

Layers
If	 you	 noticed,	 with	 Internet	 there	 were	 two	 headers	 added	 to	 every	 packet,	 which

allowed	 it	 to	 travel	 between	 networks.	One	was	 the	 virtual	 address	 header	 (IP)	 and	 the
second	was	 the	 physical	 address	 header	 (MAC	 ID).	 In	 techie	 speak,	 the	 packets	 passed
through	two	layers	where	these	headers	were	added.	Layers	can	be	seen	as	process	steps
that	transform	a	packet.

If	you	recall	the	discussion	at	the	beginning	of	the	chapter,	communication	between
two	applications	is	independent	of	the	underlying	system.	The	system	does	not	understand
the	message.	 It	 only	 facilitates	 the	movement	 of	messages	 from	 one	 application	 to	 the
other.

But	this	system	level	facilitation	is	not	just	taking	a	message,	chopping	it	into	packets
and	passing	them	down	the	wire	to	the	other	system.	There	is	more	to	it	and	we	saw	some
of	that.	The	packets	had	two	address	headers	attached	to	them.	In	the	real	world	there	are
many	other	things	that	can	happen	to	a	packet	before	it	is	sent	down	the	wire.

For	example,	a	message	can	be	compressed	before	 it	 is	 sent	or	 it	 can	be	encrypted
before	it	is	transmitted.

For	a	better	understanding	of	the	message	transformation	process	let’s	compare	it	to
an	automobile	assembly	 line.	Before	a	car	 rolls	off	 the	assembly	 line,	 its	 chassis	passes
through	a	number	of	workstations	or	 stops.	At	each	stop,	 it	undergoes	a	 transformation.
First	the	chassis	is	welded,	then	the	paint	job	is	done,	then	the	dashboard	is	put	in	place,
the	seats	are	assembled,	and	so	on.

Similarly,	before	a	message	is	transmitted	down	the	wire,	it	passes	through	a	number
of	stops	or	what	technical	folks	like	to	call	layers.	At	each	layer	the	message	undergoes	a
transformation.

Very	often	 there	are	multiple	ways	of	 transformation.	At	 the	welding	stop,	you	can
choose	 between	 gas	welding	 or	 arc	welding	 or	 even	 laser	welding	 for	 something	 really
precise.	Similarly,	 there	 are	different	methods	 for	 transforming	a	message	at	 each	 layer.
Technical	folks	like	calling	them	protocols.

These	are	 the	 fundamental	 concepts	 in	network	communication.	Packets	 that	 travel
on	the	Internet	today	go	through	many	layers	that	implement	all	kinds	of	functionality.	At
each	 layer,	 there	 could	 be	 many	 different	 protocols	 to	 bring	 about	 the	 desired
transformation.

To	 take	 an	 example,	 the	 researchers	 at	 ARPA	 also	 wanted	 to	 make	 sure	 that	 if	 a
packet	was	lost	during	transmission,	there	was	a	process	to	resend	it.	To	achieve	this,	they
added	another	layer	before	the	virtual	address	layer	to	ensure	guaranteed	delivery	of	each
packet.

This	 new	 layer	 was	 the	 transport	 layer.	 It	 added	 another	 header	 with	 a	 tracking

number	to	the	packet.	When	the	destination	system	received	the	packet,	it	was	required	to
send	back	a	short	acknowledgement	with	the	original	tracking	number	of	the	packet.

This	way	the	source	system	was	able	 to	figure	out	which	packets	were	received	by
the	 destination.	 If	 a	 packet	 was	 lost,	 there	 would	 be	 no	 acknowledgement	 for	 it.	 After
waiting	for	a	couple	of	seconds	the	source	system	would	automatically	resend	that	packet.

But	 not	 every	 application	 wanted	 guaranteed	 delivery	 of	 packets.	 For	 some
applications,	 packets	 have	 to	 be	 delivered	 in	 real	 time.	 Think	 of	 video	 conferencing	 or
streaming	 radio.	 If	 a	 packet	 is	 lost,	 it’s	 lost.	 For	 these	 applications,	 techies	 developed	 a
different	protocol,	called	UDP,	which	only	cared	about	sending	the	packets	in	sequence,	in
real	time.	If	a	packet	didn’t	arrive	on	time,	too	bad,	that	will	be	a	blip,	we	are	moving	to
the	next	packet.

Eventually,	this	led	to	a	proliferation	of	protocols.	There	were	protocols	for	Internet
chat,	protocols	 for	peer-to-peer	 file	 sharing,	protocols	 for	 Internet	 telephony	and	on	and
on.	 People	were	 building	 all	 kinds	 of	 crazy	 things	 and	 someone	 needed	 to	 step	 in	 and
bring	order	to	the	situation.

Open	Systems	Interconnection	(OSI)	Model
The	 anarchy	 with	 the	 protocols	 prompted	 the	 international	 standards	 setting

organization	 to	 try	 and	bring	 some	order	 to	 the	 chaos.	Academics	huddled	 together	 and
came	 up	with	 a	 clean,	 seven	 level	 framework	 for	 network	 communication	 called	Open
Systems	Interconnection	(OSI).	It	divided	the	process	of	sending	and	receiving	messages
into	seven	levels	(steps)	and	defined	which	actions	can	be	performed	at	each	level.

Level	7	 -	Application	Layer:	At	 this	 layer,	data	 to	be	 sent	 is	organized	 in	a	message
according	to	the	structure	and	rules	of	the	application	protocol.	(e.g.	HL7)

	

Level	6	 -	Presentation	Layer:	At	 this	 layer,	work	 like	 encryption	and	 compression	of
data	is	carried	out.	Large	files	like	video	and	image	use	this	layer.

	

Level	 5	 -	 Session	 Layer:	 At	 this	 layer,	 functionality	 can	 be	 added	 to	 maintain	 an
ongoing	 conversation	 without	 having	 to	 confirm	 the	 identity	 of	 the	 system	 for	 every
message.	Other	functionalities	like	voice	and	video	synchronization	can	also	be	added.

	

Level	 4	 -	 Transport	 Layer:	 This	 is	 the	 layer	 where	 the	 sending	 system	 divides	 the
message	 into	 packets	 and	 the	 receiving	 system	 reassembles	 them.	 Tracking	 and
acknowledgement	of	packets	is	also	done	at	this	level.	A	commonly	used	protocol	for	this
layer	is	TCP.

	

Level	3	 -	Network	Layer:	At	 this	 layer,	a	virtual	address	 (IP)	 is	added	 to	 the	packet.
The	IP	protocol	is	for	this	layer.

	

Level	2	-	Data	Link	Layer:	This	is	the	layer	where	a	physical	address	is	added	to	the
packet.	This	is	where	the	MAC	ID	is	added.

	

Level	1	-	Physical	Layer:	This	 layer	 transmits	 the	0s	and	1s	of	 the	packet	as	electric
pulses	down	the	wire.	For	cell	phones	the	signal	travels	as	microwaves	and	for	fiber	optic
cables	it	is	a	pulse	of	light.

The	messaging	process	starts	with	the	application	layer	or	level	7	of	the	OSI	model.
After	the	transformation,	the	message	is	passed	to	level	6,	which	does	its	transformation
and	passes	it	 further	down	the	levels	until	 the	message	reaches	level	1.	At	 this	point	 the
packet	gets	converted	to	0’s	and	1’s	and	is	transmitted	down	the	wire.

At	the	receiving	end,	the	packet	undergoes	a	reverse	transformation.	It	starts	at	level
1	and	moves	to	upper	levels	until	it	reaches	level	7.	At	that	point,	the	message	is	handed	to
the	receiving	application,	which	processes	and	consumes	the	message.

By	 creating	 this	 seven-level	 model	 of	 network	 communication,	 the	 standards
committee	expected	everyone	to	adopt	OSI	and	establish	it	as	the	standard.	Unfortunately,
that’s	not	how	it	turned	out	in	real	life.

By	 the	 time	 OSI	 was	 developed,	 TCP	 (for	 guaranteed	 delivery)	 and	 IP	 (virtual
addresses	for	communication	on	Internet)	were	well	entrenched	in	the	networking	world.
Together	 the	 TCP/IP	 combo	 was	 sufficient	 to	 ensure	 transmission	 of	 packets	 over	 the
Internet.	 As	 a	 result,	 organizations	 just	 added	 layers	 for	 application-to-application
communication	 and	 other	 features	 as	 needed,	 and	 didn’t	 bother	 conforming	 to	 the	OSI
model.

Still,	 OSI	 has	 survived	 as	 a	 good	 reference	 model	 for	 understanding	 network
communication.	Many	protocols	have	been	developed	and	continue	to	be	developed	which

implement	the	functionalities	of	a	specific	level.	The	protocol	can	just	say	that	it	conforms
to	 a	 particular	 level	 of	 the	 OSI	 model	 and	 everyone	 will	 know	 the	 functionality	 it
implements.

Health	Level	7	(HL7)
Health	 Level	 7	 is	 one	 such	 specialized	 protocol	 that	 conforms	 to	 level	 7	 of	 the	OSI

model.	It	is	an	application	layer	protocol,	specifically	created	for	communication	between
healthcare	 applications.	 	 So	whenever	 there	 is	 a	 need	 to	 exchange	 health	 data	 between
applications,	guess	which	protocol	is	going	to	be	used?	HL7	of	course!

Accepted,	the	name	Health	Level	7	is	not	exactly	a	friendly	name.	But	if	you	look	at
it	 from	 the	perspective	of	 the	people	who	developed	 it,	 you	can	 see	why	 they	named	 it
Health	Level	7.	It	is	an	application	layer	protocol,	which	corresponds	to	level	7	of	the	OSI
model.	And	the	protocol	is	for	the	exchange	of	health	information,	hence	the	name,	Health
Level	7.	I	would	argue	that	the	name	makes	a	lot	of	sense.

HL7	conforms	to	the	OSI	model	but	it	only	defines	the	protocol	for	seventh	level.	For
other	 levels,	 the	 implementer	 is	 free	 to	 choose	 any	 combo	of	 protocols.	Usually	MLLP
(Minimum	 Lower	 Layer	 Protocol)	 with	 TCP/IP	 is	 used	 to	 implement	 lower	 level
functionalities.

3.	Integration	Concepts
From	a	technical	perspective,	the	word	integration	means	to	connect	different	systems

(and	applications)	together.	When	systems	are	integrated,	they	can	communicate	with	each
other	and	exchange	information.

This	automatic	flow	of	information	is	the	reason	we	integrate	systems.	Because	when
systems	are	able	to	share	information,	it	leads	to	a	lot	of	benefits.	One	such	very	important
benefit	is	maintenance	of	data	consistency	between	different	systems.	Let	me	elaborate.

A	big	 issue	with	 isolated	systems	is	creation	of	data	silos.	Over	a	period	of	 time,	a
system	 will	 accumulate	 a	 mountain	 of	 clinical	 information	 in	 its	 database.	 	 But	 that
database	 is	 only	 for	 its	 exclusive	 use.	 The	 information	 is	 locked	 away.	 This	 limits	 the
usefulness	of	the	data.	Others,	who	need	that	data,	have	to	copy	it	and	maintain	a	separate
database.	 Over	 time,	 the	 data	 becomes	 inconsistent	 in	 the	 copies,	 and	 this	 leads	 to
unwanted	headache.

Consider	 a	 stand-alone	 lab	 system	 that	 keeps	 a	 perfect	 record	 of	 tests	 ordered	 and
their	 corresponding	 results.	 Since	 the	 information	 is	 locked	 away	 in	 the	 lab	 system,	 a
physician	who	 needs	 that	 information	will	 receive	 a	 print	 out	 of	 the	 result.	 That	 paper
result	will	eventually	get	filed	away	in	that	patient’s	folder	for	future	reference.

So	 far	 so	 good.	 Both	 the	 lab	 system	 and	 the	 doctor’s	 office	 have	 the	 same
information.	But	what	happens	if	there	is	a	correction	to	the	lab	test?	The	lab	system	will
update	its	database	and	also	send	a	paper	copy	to	the	doctor’s	office.	What	happens	if	a
staff	member	forgets	to	file	it	or	the	report	is	misplaced	or	ends	up	somewhere	else?

The	point	is,	there	are	endless	ways	for	data	to	become	inconsistent	between	systems.
An	integrated	system	avoids	this	situation	by	automatically	exchanging	information	with
other	 systems	 whenever	 there	 is	 new	 data	 to	 be	 shared	 or	 an	 existing	 data	 element
changes.

Another	benefit	of	integration	is	the	ability	to	automate	business	processes.	Systems
don’t	just	have	to	talk	one-on-one.	They	can	also	be	part	of	an	information	assembly	line
where	one	system	takes	the	order,	another	checks	the	validity	of	 the	credit	card,	and	yet
another	coordinates	shipment	of	the	order.	Integration	allows	for	automatic	movement	of
relevant	 information	 from	 one	 system	 to	 the	 next	 and	 this	 makes	 business	 process
automation	very	simple.

HL7	and	the	healthcare	industry	are	late	to	the	game	of	business	process	automation.
The	granddaddy	protocol	is	EDI	(Electronic	Data	Interchange),	which	is	one	of	the	oldest
and	 most	 widely	 used	 standard	 for	 data	 integration.	 It	 is	 now	 primarily	 used	 by	 the
retail/manufacturing	industry.	Banks	and	other	financial	organizations	have	a	standard	of
their	own,	called	SWIFT,	which	takes	into	account	their	need	for	ultra-high	accuracy	and
security.

And	finally,	 the	ability	to	integrate	systems	gives	us	a	better	method	to	create	large
aggregate	systems	without	having	to	worry	about	the	doomsday	scenario	-	the	day	when	a
large,	 monolithic	 system	 crashes	 down.	 By	 stringing	 together	 smaller,	 independent
systems	 through	 message-based	 integration,	 we	 can	 isolate	 them	 from	 each	 other	 and

minimize	 the	 impact	 a	 particular	 system	 can	 have	 on	 the	 entire	 ecosystem.	 To	 use	 our
example	from	before,	if	the	order	delivery	system	goes	down,	it	will	delay	order	shipment
but	 the	 organization	 is	 still	 open	 for	 business	 and	 accepting	 orders	 -	 probably	 with	 a
warning	that	shipments	could	be	delayed.

Synchronous	and	Asynchronous	Communication
There	 can	be	 two	 types	of	 communication	between	 integrated	 systems	 -	 synchronous

and	asynchronous.

Synchronous	communication	 takes	place	 just	 like	a	conversation.	 It	happens	 in	real
time	and	uses	 the	request/response	model.	One	system	will	ask	a	question	and	 the	other
system	will	respond	with	an	answer.	It	is	like	making	a	phone	call.	You	pick	up	the	phone,
dial	the	number,	and	say	hello.	Then	you	wait	for	the	other	end	to	respond.

Asynchronous	 communication	 is	more	 like	 a	 text	message.	You	 type	 and	 send	 the
message	and	get	on	with	whatever	else	you	were	doing.	You	are	not	waiting	for	the	other
person	 to	 respond.	This	 is	a	better	and	more	efficient	way	 to	deal	with	situations	where
having	the	information	immediately	is	not	necessary.

Imagine	 a	 person	 showing	 up	 at	 the	 registration	 desk	 of	 a	 hospital.	 He	 has	 been
feeling	a	tingling	sensation	in	his	feet	that	keeps	coming	back	and	he	would	like	to	see	a
doctor.	 The	 registration	 clerk	 asks	 for	 the	 man’s	 information,	 including	 his	 insurance
information,	and	creates	a	patient	 record.	The	next	 step	 is	 confirmation	with	 the	 insurer
before	 an	appointment	 is	 scheduled	with	 the	doctor.	This	 step	 is	 a	perfect	 candidate	 for
using	 synchronous	 communication	 to	 integrate	 the	 hospital	 system	 with	 the	 insurance
company’s	 system.	 It	 is	 necessary	 for	 the	 hospital	 system	 to	 confirm	 insurance	 details
before	an	appointment	is	scheduled.

Well,	 finally	 the	 man	 gets	 to	 see	 the	 doctor.	 It	 could	 be	 nothing.	 But	 the	 doctor
notices	that	he	is	overweight.	He	also	has	high	blood	pressure,	and	there	are	blisters	on	his
feet.	This	gets	the	doctor	concerned	and	she	orders	a	blood	test	for	sugar	level	and	A1C	to
check	if	the	patient	has	diabetes.

Here	 the	 synchronous	 communication	method	 to	 integrate	 the	hospital	 system	with
the	lab	system	will	not	work.	Blood	has	to	be	drawn,	labeled,	and	shipped	to	the	lab.	This
will	 take	 time.	The	order	can	be	sent	electronically	 immediately	but	neither	 the	hospital
system	nor	 the	 lab	system	will,	or	should,	keep	waiting	till	 the	 test	 results	are	available.
This	is	where	asynchronous	communication	is	used	to	integrate	systems.

Connection
How	systems	are	physically	connected	is	another	important	topic	in	integration.	If	there

are	only	two	systems,	 then	there	 is	no	issue.	You	can	connect	 them	directly	-	point	A	to
point	B.	This	is	a	point-to-point	connection.

A	 point-to-point	 connection	 works	 fine	 as	 long	 as	 the	 number	 of	 systems	 to	 be
connected	 is	 low.	 And	 by	 low,	 we	 mean	 two	 or	 three.	 Anything	 higher	 and	 it	 starts
becoming	a	serious	issue.	How?	Read	on.

For	a	system	to	be	able	to	send	messages	to	every	other	system	on	the	network,	it	has
to	have	a	connection	to	every	other	system.	To	connect	two	systems,	we	only	need	a	single
connection	 between	 them.	 With	 three	 systems	 (A,	 B,	 and	 C),	 we	 will	 need	 three
connections	-	A	to	B,	B	to	C,	and	C	to	A.

For	 four	 systems,	 the	 number	 of	 connection	 jumps	 to	 six.	 For	 five	 it	 is	 ten,	 six
systems	require	fifteen	connections	and…	ten	systems	require	forty-five	connections!

I	did	not	have	to	manually	count	the	number	of	connections	for	ten	systems	because
there	is	a	mathematical	formula	for	it.	Number	of	connections	=	[(n/2)	*	(n-1)]	where	n	is
the	 number	 of	 systems.	 No	 matter	 how	 much	 you	 hate	 them,	 formulas	 have	 their
usefulness.

You	can	see	how	this	problem	seriously	limits	the	number	of	systems	we	can	have	in
a	network.

Well,	 it	was	not	 the	 first	 time	we	 faced	 this	problem.	Transportation	 systems	 faced
this	 issue	 long	 before	 computers	 and	 they	 solved	 it	with	 the	 help	 of	 the	 hub-and-spoke
model.

Delta	Airlines	pioneered	 the	hub-and-spoke	model	back	 in	 the	1950s.	Their	merger
with	Chicago	 and	Southern	Airlines	meant	 they	 had	 to	 create	 a	 network	 that	 integrated
many	more	cities.	They	did	this	by	coming	up	with	the	idea	of	an	airline	hub	in	Atlanta.
One	set	of	planes	would	ferry	passengers	to	Atlanta	and	another	 to	the	final	destination.
Today,	 almost	 all	 airlines	 operate	 on	 this	 model,	 although,	 there	 are	 exceptions	 like

SouthWest	Airlines,	which	only	flies	point-to-point.

The	 company	 that	 really	 turned	 this	 model	 into	 an	 art	 was	 FedEx.	 To	 guarantee
overnight	package	delivery,	not	only	between	San	Francisco	and	New	York	City	but	also
between	Albany	and	El	Paso,	they	set	up	a	central	clearinghouse	in	Memphis	(their	hub)
and	implemented	the	hub	and	spoke	model	for	overnight	package	delivery.

All	 overnight	 packages	 are	 flown	 from	 various	 destinations	 to	 Memphis	 where
incoming	 packages	 are	 sorted	 with	 the	 help	 of	 a	 high-tech	 conveyor	 belt	 system.	 The
sorting	 is	 done	within	 a	 four-hour	window	 according	 to	 the	 destination	 location	 and	 at
2:50	AM,	the	first	plane	leaves	Memphis	for	its	destination.	For	the	next	hour	(probably
longer	now)	a	plane	takes	off	every	minute	to	another	destination.	I	would	love	to	watch
this	symphony	of	modern	age.	Someday,	maybe.

The	 hub-and-spoke	 model	 solved	 the	 problem	 of	 exponentially	 increasing
connections	 in	computer	systems	by	using	a	hub	 in	 the	network.	 	 If	A	wanted	 to	send	a
message	to	Z,	it	sent	that	message	to	the	hub,	which	in	turn	passed	it	on	to	Z.	This	way,
the	number	of	connections	was	equal	to	the	number	of	systems.	In	other	words,	to	connect
ten	systems,	we	only	needed	ten	connections.

Publish-Subscribe	Model
Using	 a	 hub	 to	 connect	 systems	 has	 other	 advantages.	 One	 such	 advantage	 is

optimization	of	message	generation	from	the	source	system	to	the	destination.

Consider	 the	 case	where	 system	A	has	 to	 send	messages	 to	 systems	B	and	Z.	One
option	is	that	system	A	creates	two	identical	copies	of	each	message	and	sends	one	to	B
and	the	other	one	to	Z.	Under	a	different	approach,	system	A	creates	only	one	message	and
sends	it	to	the	hub.	Other	systems	that	want	to	receive	messages	from	A	let	the	hub	know
that.

So,	when	the	hub	receives	a	message	from	A,	it	checks	its	instructions	and	notes	that
systems	 B	 and	 Z	 want	 to	 receive	 messages	 from	 A.	 It	 then	 creates	 two	 copies	 of	 the
message	and	sends	them	to	both	the	destination	systems.

This	 is	 the	 publish-subscribe	 model	 of	 message	 routing.	 It	 not	 only	 reduces	 the
number	of	messages	and	traffic	on	the	network,	it	also	frees	up	sending	systems	(like	A)
from	having	to	keep	track	of	who	wants	to	receive	what.	This	becomes	the	job	of	the	hub.

The	hub	 is	very	 important	 in	 integration.	You	must	have	come	across	software	 like
eGate,	 BizTalk,	 or	 Rhapsody.	 They	 are	 a	 class	 of	 software	 products	 called	 integration
engines.	At	their	heart,	these	products	are	hubs	which	route	messages	between	systems	on

the	network.

Message	Triggers
Message	triggers	are	real-life	events	that	trigger	generation	of	a	message	by	a	system.

There	are	two	situations.

One,	it	can	be	a	service	request.	This	is	the	request/	response	model	we	discussed	in
the	 section	 on	 synchronous	 communication.	 For	 example,	 a	 doctor’s	 office	 makes	 a
service	 request	 to	 the	 lab	 system	 for	 an	 old	 test	 result.	The	 lab	 system	 responds	with	 a
message	that	contains	details	of	the	old	test	result.

The	second	situation	is	event	notification.	Here	a	real	world	event	triggers	automatic
generation	of	a	message.	For	example,	the	lab	system	will	generate	an	event-notification
message	when	the	result	of	a	new	test	becomes	available.	Ordering	systems	don’t	have	to
keep	asking	if	the	result	is	available.

Scope	of	HL7
System	integration	is	a	vast	topic.	HL7	only	occupies	a	small	niche	in	healthcare	system

integration	and	exchange	of	healthcare	data.

Even	 within	 healthcare	 system	 integration,	 HL7	 doesn’t	 set	 the	 standard	 for
everything.	 If	 you	 divide	 it	 broadly,	 there	 are	 three	 standards	 that	 are	 required	 for
integration:	a	message-transfer	standard	(how	a	message	will	be	sent),	a	message-format
standard	(what	a	message	will	look	like),	and	a	data	standard	(how	healthcare	information
will	be	organized	in	a	message).

We	saw	in	the	last	chapter	how	the	Internet	and	TCP/IP	protocol	can	be	used	to	send
messages	 between	 applications.	 HL7	 does	 not	 reinvent	 the	 wheel.	 It	 leaves	 message-
transfer	 standard	 to	 implementers.	 They	 can	 either	 use	 the	 Internet	 and	 TCP/IP	 or	 a
dedicated	network	and	their	own	custom	protocol.	HL7	doesn’t	care.

What	 HL7	 does	 care	 about	 and	 defines	 standards	 for,	 are	 the	 message-format
standards	and	data	standards.

Message	Format	Standard
The	message-format	 standard	defines	 the	 structure	of	 a	message	 so	 that	 the	 receiving

system	can	make	sense	of	its	content.	If	the	data	is	not	organized	in	a	standard	way	then
the	system	won’t	know	where	 to	 look	for	 it	 in	 the	message.	 In	 that	case,	along	with	 the
message,	 the	sending	system	will	also	have	to	send	information	about	where	 to	 look	for
data	and	what	each	value	means.	That	will	be	a	very	inefficient	way	of	communicating.

If	the	same	were	true	in	our	everyday	life,	then	every	speed	limit	sign	on	the	highway
will	 have	 to	be	 a	 large	descriptive	board.	 	This	will	 be	 required	because	 instead	of	 just
saying	 “Max	 100	 km/hr.”,	 it	 will	 have	 to	 say,	 “The	 vehicle	 you	 are	 operating	 on	 this
stretch	of	the	highway	is	not	allowed	to	exceed	the	speed	limit	of	100	km	per	hour.	This	is
against	the	law	and	if	you	are	caught	you	will	be	penalized.”

The	 point	 is,	 with	 a	 standard	 message	 format,	 you	 can	 have	 a	 short,	 to-the-point
message,	which	is	understood	by	everyone.

By	 defining	 a	 standard-message	 format,	 HL7	 allows	 clinical	 systems	 to	 exchange
short	messages	without	them	having	to	grapple	with	explaining	the	meaning	of	each	field,
every	time	they	send	a	message.

Data	Standard
Data	standards	deal	with	how	 information	 is	 represented	 in	a	message.	 It	might	 seem

like	a	simple	thing	but	real	tragedies	have	occurred	because	we	mixed	up	the	measuring
unit	(remember	Mars	orbiter?).	By	defining	a	comprehensive	data	standard,	HL7	ensures
that	there	is	no	ambiguity	in	the	information	that	is	shared	between	systems.

To	illustrate,	let’s	consider	the	simple	example	of	the	patient	name	field.	A	hospital
system	stores	a	patient’s	name	in	three	different	fields:	first	name,	middle	name	and	last
name.	 In	 contrast,	 a	 lab	 system	 stores	 the	 patient’s	 name	 in	 just	 one	 field	 with	 space
between	each	part	of	the	name.

These	 two	 systems	 cannot	 be	 integrated	 unless	 they	 agree	 on	 a	 common	 data
standard.	If	the	hospital	sends	the	patient’s	name	as	is,	the	lab	system	will	need	an	extra
layer	of	software	to	stitch	the	name	fields	together	and	then	save	it	to	its	database.	And	a
patient’s	name	is	just	one	field.	There	could	be	thirty	or	forty	fields	in	a	message.	Can	you
imagine	 the	 enormity	 of	 work	 involved	 in	 reconciling	 those	 fields?	 It	 would	 be	 a
nightmare.

HL7	 solves	 the	 problem	 by	 defining	 standard	 data	 format.	 If	 two	 systems	want	 to
integrate,	 then	both	of	 them	will	have	 to	use	 the	HL7	data	standard	for	messaging.	This
way	there	will	be	no	ambiguity	with	field	content	and	there	will	be	no	need	to	undergo	the
laborious	process	of	reconciling	fields	every	time	two	systems	are	integrated.

4.	Evolution	of	HL7
We	live	in	a	world	of	standards.	As	new	technologies	emerge,	a	necessary	condition	for

their	 wide	 adoption	 is	 standardization.	We	 notice	 it	 when	 there	 is	 a	 problem	 with	 the
standard.	As	must	be	evident	to	anyone	in	a	foreign	country	not	able	to	plug	in	a	laptop
because	the	power	outlet	is	different.

Standards	 emerge	 from	 different	 sources.	 A	 standard	 could	 be	 imposed	 by	 the
government,	as	was	the	case	with	the	conversion	from	the	imperial	to	the	metric	system	of
measurement.	 	 Both	 the	 USA	 and	 Canada	 started	 the	 conversion	 but	 in	 the	 States,	 the
government	defunded	the	Metric	Board,	stalling	their	conversion.	In	Canada	however,	the
conversion	 was	 completed	 and	 we	 started	 measuring	 distance	 in	 kilometers	 and
temperature	in	Celsius.

Another	source	of	standard	is	the	industry	itself.	Companies	at	the	forefront	of	a	new
technology	vie	for	competitive	advantage	by	promoting	adoption	of	their	technology.	We
have	all	heard	about	 the	 famous	videotape	 standards	battle	between	Betamax	and	VHS.
Sony’s	Betamax	was	 a	 superior	 technology	but	VHS	became	 the	 standard	because	 JVC
was	relentless	in	promoting	it	to	electronics	manufacturers.

A	third	source	of	standard	is	market	forces,	which	leads	to	a	de-facto	standard.	This
was	 the	 case	 with	 TCP/IP.	 It	 became	 the	 dominant,	 and	 ultimately	 standard,	 network-
communication	protocol	as	a	result	of	gradual	adoption	by	universities	and	businesses.	By
the	 time	 the	 ISO	 model	 was	 developed,	 it	 was	 too	 late	 for	 a	 switchover.	 TCP/IP	 was
already	baked	in.

And	 finally,	 there	 is	 the	 deliberate	 approach	 where	 experts	 get	 together	 with	 the
specific	intent	of	creating	a	standard.	This	is	how	the	HL7	standard	came	into	being.

Development	of	HL7
The	 story	 of	 HL7	 started	 in	 1987.	 An	 international	 group	 of	 experts	 got	 together	 to

work	on	the	problem	and	created	a	rudimentary	version	of	what	we	know	today	as	HL7.	It
had	many	gaps	and	was	not	detailed	enough	for	practical	use,	but	it	got	the	ball	rolling.

A	dedicated,	not	for	profit	organization	called	Health	Level	Seven	International	was
founded	to	manage	ongoing	development	of	the	standard.

The	 organization	 is	 completely	 volunteer	 driven.	 It	 draws	 its	 members	 from
healthcare	 providers,	 vendors,	 consultants,	 government	 groups	 and	 others	 who	 have	 an
interest	in	the	development	of	standards.

Within	a	couple	of	years	of	its	formation,	it	had	the	first	usable	version	of	HL7	(v2.1)
ready,	which	was	released	in	1990.	This	was	followed	by	a	revised	version	(v	2.2)	in	1994.

Industry	 adoption	 of	HL7	was	 not	 very	 successful	 initially,	 but	 the	 user	 base	 kept
growing	 slowly.	 	 The	 turning	 point	 came	 in	 1997	when	 version	 2.3	was	 released.	 This
version	was	ANSI	approved	which	signaled	 to	 the	 industry	 that	 the	standard	was	robust
and	mature.

ANSI	approval	was	like	a	shot	in	the	arm	for	HL7.	Adoption	accelerated	and	picked
up	further	pace	with	the	release	of	version	2.3.1	in	1999.	This	led	to	much	broader	market

recognition,	wider	industry	adoption,	and	eventually	to	the	current	status	as	the	dominant
industry	standard	for	the	exchange	of	clinical	and	administrative	health	information.

ANSI	(American	National	Standards	Institute)
ANSI	 is	 a	 private,	 not-for-profit	 organization	 in	 the	 United	 States,	 which	 facilitates,

coordinates	 and	 oversees	 standards	 development	 activities.	ANSI	 itself	 doesn’t	 develop
any	standard,	it	only	defines	guidelines	and	a	process	for	standard	development.	If	another
organization,	like	HL7,	follows	the	guidelines	and	process	to	develop	its	standard	then	it
gets	ANSI	approval.

The	ANSI	process	is	a	consensus-driven	standard	development	process.	The	idea	is
to	ensure	that	no	single	party	dominates	and	every	interested	party	has	an	opportunity	to
voice	 its	 opinion.	 It	 also	 requires	 standard	 development	 to	 be	 conducted	 in	 an	 open
environment	under	public	scrutiny.

ANSI	 approval	 is	 granted	 for	 five	 years	with	 an	 additional	 five	 years	 extension	 if
requested.	At	 the	end	of	 the	approval	period,	 the	standard	 is	 reviewed	 to	determine	 if	 it
should	be	reapproved,	revised,	or	withdrawn.

HL7	Organizational	Structure
A	 board	 of	 directors,	 composed	 of	 elected	 and	 appointed	 members,	 oversees	 the

development	of	HL7	standard.	The	organization	also	has	numerous	technical	committees
and	 special	 interest	 groups	 (SIG),	 made	 entirely	 of	 volunteers.	 They	 are	 the	 ones	 who
develop	and	revise	 the	standards.	Each	technical	committee	or	SIG	has	 two	or	more	co-
chairs	who	manage	 the	work	within	 the	 group.	 Together,	 co-chairs	 from	 all	 the	 groups
form	the	Technical	Steering	Committee,	which	 is	 the	clearinghouse	 for	new	and	revised
standards.	Once	the	Technical	Steering	Committee	votes	and	agrees	to	a	new	standard,	it	is
sent	to	the	board	of	directors,	which	makes	the	final	decision	on	releasing	the	standard	to
general	audience.

Anyone	can	volunteer	and	get	involved	in	the	development	of	HL7	standards.	All	one
needs	to	do	is	become	a	member	of	HL7.org	or	its	affiliate	(if	outside	the	USA)	and	then
register	with	one	of	the	active	work	groups.

Versions	of	HL7
Since	the	release	of	the	first	version	of	HL7	in	1987,	the	organization	has	made	regular

revisions	of	the	standard.

With	 each	 new	 version,	 the	 standard	 has	 been	 improved	 by	 adding	 new	 rules,
modifying	existing	rules,	or	by	finding	solutions	to	issues	raised	by	the	implementers.	It
has	also	been	necessary	to	ensure	that	each	new	version	is	backward	compatible.	In	other
words,	 a	 new	 version	 is	 able	 to	 communicate	with	 systems	 using	 older	 versions	 of	 the
standard.

Backward	compatibility	adds	a	lot	of	legacy	burden	and	makes	it	much	more	difficult
to	 improve	 a	 standard.	We	 saw	what	 a	quirky	 task	 it	 is	with	 the	 release	of	Windows	8.
Users	 of	Windows	 operating	 system	 were	 used	 to	 the	 start	 button	 to	 run	 applications.
When	Windows	 8	 came	 out	with	 a	 revamped	 user	 interface	where	 instead	 of	 using	 the
start	button,	users	were	presented	with	 tiles	 to	 run	 the	applications,	all	hell	broke	 loose.

Microsoft	 had	 to	 quickly	 release	 version	8.1	 and	bring	back	 the	 start	 button	 to	 keep	 its
customer	base	happy.

Similarly,	HL7	has	had	 to	ensure	 that	with	each	new	version,	 the	old	structure	and
format	is	not	disturbed.	Version	2.1	of	HL7	was	the	first	implementable	version	and	since
its	 release	 there	has	been	eight	 revisions	of	 the	 standard:	v2.2,	v2.3,	v2.3.1,	v2.4,	v.2.5,
v2.5.1,	v2.6	 and	v2.7.	Of	 these,	HL7	v2.3	and	v2.3.1	 are	 the	most	widely	 implemented
versions.	They	account	for	over	three	quarters	of	all	HL7	messages.

All	versions	are	compatible	with	each	other.	If	an	older-version	message	is	sent	to	a
system	using	a	new	version,	the	system	will	still	be	able	to	read	the	message.	Similarly,	a
system	compatible	with	an	older	version	will	be	able	to	read	a	newer	version	message	by
ignoring	additional	features	present	in	the	message.

But	 there	 are	 serious	 problems	 with	 this	 approach.	 To	 maintain	 backward
compatibility,	HL7	has	had	to	leave	many	attributes	optional	and	allow	a	lot	of	room	for
customization.	This	 has	 prompted	 some	 to	 even	 call	HL7	 a	 non-standard	 standard.	The
problem	 is	 that	 you	 cannot	 just	 send	 an	 HL7	message	 to	 any	 system.	 Every	 time	 two
systems	 need	 to	 communicate,	 a	 unique	 HL7	 interface	 has	 to	 be	 created	 with	 all	 the
options	and	customization	involved.

HL7	Version	3
To	address	these	issues,	it	became	necessary	to	break	from	the	past	and	build	a	standard

from	the	ground	up.	The	result	is	HL7	v3.0,	which	was	first	released	in	2005.	The	version
number	no	longer	changes	with	this	new	form	of	HL7,	but	it	is	revised	annually.	HL7	v3.0
exists	alongside	HL7	v2.x	but	they	are	not	compatible.	Incompatibility	between	v2.x	and
v3.0	means	 that	 systems	 implementing	 v3.0	 interfaces	will	 not	 be	 able	 to	 communicate
with	systems	implementing	v2.x	messages.	Although	not	impossible,	it	takes	considerable
time	and	effort	to	convert	v2.x	messages	to	v3.0	and	because	of	that,	the	adoption	of	v3.0
is	still	very	low.

HL7	 v3.0	 is	 being	 implemented	 in	 places	 where	 there	 are	 little	 or	 no	 existing
systems.	Governments	in	Europe	have	used	v3.0	to	create	new	healthcare	networks,	and	in
Canada,	 v3.0	 adoption	 is	 being	 driven	 by	 the	 federal	 and	 provincial	 governments’
initiative	to	create	drug-information	networks	and	registries	of	healthcare	providers.	In	the
United	States,	the	CDC	has	implemented	some	networks	with	v3.0	messaging,	but	overall
the	adoption	remains	low.

Given	the	widespread	adoption	of	v2.x	and	its	incompatibility	with	v3.0,	it	will	be	a
long	time	before	v3.0	replaces	it	as	the	dominant	standard.	And	even	then,	v2.x	will	exist
long	 into	 the	future.	 If	 it	ain’t	broken,	organizations	are	not	going	 to	 fix	 it.	My	first	 job
was	 production	 support	 of	 an	 S/390	 IBM	mainframe.	 Its	 software	 code	 was	 written	 in
COBOL	in	the	60’s.	No	one	is	going	to	replace	that	code	as	long	as	it	does	its	job.

Other	Healthcare	Standards
People	working	 in	healthcare	IT	know	that	HL7	is	not	 the	only	standard	 they	have	 to

deal	with.	X12,	SNOMED,	ICD-9/10,	DICOM,	there	are	a	lot	of	standards	vying	for	their
attention.

Generally	speaking,	most	standards	have	been	developed	for	a	particular	healthcare
area	 such	 as	medical	 imaging	or	 insurance	 or	 for	 some	kind	of	 classification.	Although
HL7’s	area	 is	clinical	and	administrative	data,	 it	can	handle	 the	messaging	requirements
(internal	and	external)	of	an	entire	organization.	This	distinguishes	it	from	other	standards,
which	are	primarily	focused	on	the	needs	of	a	particular	area.

Take	the	example	of	DICOM	(Digital	Imaging	and	Communications	in	Medicine).	It
is	 the	standard	used	by	PACS	and	other	 imaging	systems	 to	 transmit,	 retrieve,	and	store
medical	 images.	But	DICOM	can	only	be	used	between	 imaging	 systems.	 If	 a	different
system	needs	an	image,	it	will	have	to	be	translated	or	embedded	within	an	HL7	message.

Similarly,	 the	 X12N	 standard	 is	 used	 only	 for	 transmitting	 patient	 insurance	 and
financial	data	to	the	insurance	company.	If	additional	patient	information	has	to	be	sent,	an
HL7	 message	 containing	 the	 information	 will	 have	 to	 be	 embedded	 within	 the	 X12N
message.

Then	 there	 are	 standards	 just	 for	 classification,	 which	 have	 nothing	 to	 do	 with
messaging.

ICD-9/10	(International	Classification	of	Diseases)	is	a	standard	that	clinicians	use	to
classify	 diseases,	 injuries	 and	 causes	 of	 death.	Revision	 10	 is	 the	most	 current	 version,
which	also	includes	codes	for	classifying	health-risk	factors	(occupational,	environmental,
lifestyle	etc.).	ICD	codes	are	regularly	sent	as	data	elements	in	HL7	messages.

LOINC	 (Logical	 Observation	 Identifier	 Names	 and	 Codes)	 is	 a	 standard	 for
classifying	lab	orders	and	tests.	In	this	system,	every	possible	lab	test	has	a	unique,	three
to	seven	digit	ID	number.	An	HL7	order	message	will	only	need	to	have	this	unique	ID	in
its	 “ordered	 test”	 field	 for	 the	 receiving	 system	 to	 know	 which	 test	 has	 been	 ordered.
Similarly,	when	the	result	is	sent	back,	LOINC	codes	are	used	to	specify	the	test	that	the
result	is	for.

LOINC	has	more	than	seventy	thousand	codes.	Each	code	corresponds	to	a	different
kind	of	lab	test.	For	example,	there	is	a	test	called	Serum	Sodium	or	Blood	Sodium	Level
or	Sodium-Blood,	depending	on	who	you	are	talking	to.	Its	LOINC	code	is	2951-2.	When
this	code	is	sent	in	an	order	message,	the	receiving	system	knows	exactly	that	the	test	is	to
measure	the	concentration	of	salt	in	the	blood.	It	is	unambiguous	and	does	away	with	the
confusion	of	different	names.	If	you	have	had	a	lot	of	salty	food,	your	reading	for	2951-2
will	be	north	of	140.	(The	normal	range	is	135–145).

Then	 there	 is	 SNOMED-CT	 (Systematized	 Nomenclature	 of	 Medicine-Clinical
Terminology),	 which	 is	 like	 a	 thesaurus	 for	 medical	 terms,	 diseases,	 anatomy	 and
procedures.	 It	 uses	 ConceptID	 and	 DescriptionID	 to	 define	 codes,	 synonyms,	 and
descriptions	 of	 medical	 terms.	 For	 example,	 myocardial	 infarction	 is	 a	 concept
(ConceptID	 22298006),	 which	 refers	 to	 infraction	 (death	 of	 tissue)	 in	 the	 myocardium
(muscular	wall	of	the	heart).

These	 standards	 take	 you	 deep	 into	 the	 clinical	 world.	 If	 you	 not	 queasy	 about
syringes	and	scalpels	and	stitches	then	keep	wandering.	For	me	this	much	information	was
more	than	enough	and	I	never	had	any	issues	with	these	standards.	As	long	as	you	have	a
rough	 idea	what	 the	 content	 of	 a	 field	 represents,	 there	won’t	 be	 any	 problem	working
with	these	standards.

This	brings	us	to	the	end	of	part	I.	We	have	covered	the	background	information	and
now	 it’s	 time	 to	 look	at	 the	 standard	 itself.	Even	 if	you	only	 read	 the	next	 two	or	 three
chapters,	it	will	give	you	a	fairly	good	idea	of	the	standard.

PART	II
Digging	Deeper

5.	Basic	Concepts
So	now	you	understand	that	HL7	is	an	application	layer	(level	7)	protocol	that	clinical

systems	 use	 for	 sharing	 information.	 Also,	 because	 of	 a	 lot	 of	 optional	 elements	 and
customization,	 HL7	 is	 almost	 a	 non-standard	 standard.	 We	 can’t	 just	 send	 any	 HL7
message	to	a	system	and	expect	it	to	understand	the	message.

When	 two	or	more	 systems	 are	 integrated,	 they	have	 to	 first	 agree	on	 the	 types	of
messages	 that	 will	 be	 exchanged	 and	 triggers	 events	 that	 will	 be	 supported.	 All	 this
information	(and	more)	is	then	documented	in	an	Interface	Specification	document	before
actual	work	begins	to	integrate	the	systems.

If	you	have	an	environment	where	HL7	messages	are	used,	then	all	this	information
on	message	type,	trigger	events,	acknowledgement	etc.	is	there	somewhere	in	the	form	of
one	or	more	interface	specification	document.

You	will	need	a	good	idea	of	some	basic	HL7	concepts	before	you	are	comfortably
able	to	navigate	these	documents	and	other	HL7	related	artifacts.	In	the	following	pages
we	will	cover	these	basic	concepts.

Unsolicited	Messages
HL7	messages	are	generally	unsolicited.	Not	always,	but	in	the	vast	majority	of	cases.

Before	we	 get	 to	why	most	messages	 are	 unsolicited,	 let’s	 see	what	 kind	 of	 a	 beast	 an
unsolicited	message	is.

Un-solicited	or	not	solicited	is	the	opposite	of	solicited.	The	word	solicit	means	“to
ask	 for	 something	 from	 someone”.	 So	 its	 opposite,	 unsolicited,	 will	 probably	 mean
“getting	something	from	someone	without	asking	for	it”.

I	remember	Toronto’s	Mayor	Rob	Ford	landing	in	hot	water	while	soliciting	donation
for	 his	 private	 football	 foundation.	 He	 was	 using	 City	 of	 Toronto	 letterhead	 for	 the
purpose,	not	realizing	you	can’t	use	the	power	of	the	office	to	solicit	donation.

Similarly,	 if	 a	 system	 explicitly	 asks	 another	 system	 for	 a	 message,	 then	 that	 is
soliciting.	Messages	in	this	case	are	solicited	messages.

A	database	query	is	a	good	candidate	for	solicited	messages.	If	you	want	to	know	the
number	of	inpatient	admissions	for	the	day,	the	information	is	solicited	as	a	query	to	the
system,	which	responds	with	a	message	containing	the	number	of	admissions	for	the	day.

Now	imagine	a	world	where	all	HL7	messaging	is	like	this.	After	placing	an	order	for
a	lab	test,	the	system	in	the	doctor’s	office	will	keep	pestering	the	lab	system	for	the	test
result.	If	the	result	is	not	ready,	there	is	nothing	the	lab	system	can	do.	It	doesn’t	have	the
information.	This	 is	 an	 inefficient	way	of	communicating	 that	wastes	processing	power,
degrades	performance	and	is	a	real	annoyance	–	like	kids	in	the	backseat	constantly	asking
“Are	we	there	yet?”

The	alternative	is	an	unsolicited	message.	In	this	case,	the	Lab	system	automatically
sends	the	test	result	when	it	becomes	available.	It	doesn’t	require	the	system	placing	the

order	to	keep	asking	for	the	result.	By	placing	an	order,	the	system	has	implicitly	indicated
that	it	wants	the	result.	Or	in	other	words,	it	receives	the	result	as	an	unsolicited	message.

This	 is	 a	 much	 better	 way	 of	 communicating.	 It	 is	 an	 optimal	 solution	 where	 a
message	is	created	only	when	it	 is	needed.	And	for	 that	reason,	most	HL7	messages	are
unsolicited	messages.

Message	Type
While	 working	 with	 HL7	 you	 will	 come	 across	 statements	 like,	 “this	 is	 an	 ADT

message”	or	“we	can	process	an	Order	message”.	These	references,	ADT	and	Order,	are
simply	 different	 message	 types.	Message	 types	 are	 used	 in	 HL7	 to	 group	 and	 classify
similar	messages.

If	you	are	thinking	HL7	message	types	are	probably	based	on	real	world	organization
of	a	healthcare	environment,	then	this	is	a	good	time	to	throw	out	that	idea.

Instead	of	mirroring	real	world,	HL7	message	types	are	organized	by	their	function.
Take	the	example	of	an	order	message.	It	doesn’t	matter	 if	 the	message	is	for	a	 lab	or	a
pharmacy,	as	long	as	the	message	is	an	order	for	something,	a	test,	a	medication	or	even
housekeeping,	it	is	an	order	message	type.	Similarly	messages	that	deliver	results,	be	it	a
lab	test	result,	an	X-Ray	or	an	ultrasound,	they	are	all	result	message	types.

HL7	defines	 thirteen	different	 kinds	of	message	 types	but	 you	don’t	 really	have	 to
know	 them	 all.	 Real	 life	 usage	 of	 HL7	 follows	 the	 80-20	 rule	 of	 the	 Pareto	 principle
(example,	80%	of	accidents	are	caused	by	20%	of	drivers	or	80%	of	sales	come	from	20%
of	 customers).	 Likewise,	 most	 HL7	 messages	 use	 only	 a	 few	 of	 the	 message	 types
available.	Most	healthcare	organizations	use	only	this	small	subset	of	message	types	and	if
you	become	familiar	with	the	top	three	or	four,	you	will	have	covered	between	sixty	and
seventy	percent	of	real	world	implementations.

So	what	are	these	most	commonly	used	message	types?

As	you	know,	HL7’s	area	is	clinical	and	administrative	data.	So	it	is	no	surprise	that
the	most	commonly	used	message	type	is	patient-administration.		This	is	the	message	type
that	 groups	 together	 messages	 that	 have	 anything	 to	 do	 with	 managing	 a	 patient	 -
admitting,	discharging,	updating	their	information,	transferring	to	another	unit	etc.

The	next	two	most	commonly	used	message	types,	in	my	experience,	are	Order	Entry
(orders)	messages	and	Observation	Reporting	 (results)	messages.	But	of	 course	 this	 can
vary	from	place	to	place.

Another	 thing	 to	 know	 about	message	 types	 is	 the	Message	 Type	Code.	 This	 is	 a
three-character	 code	 that	 is	 used	 as	 an	 acronym	 for	 the	 message	 type.	 For	 patient-
administration,	there	is	just	one	code:	ADT	(short	for	Admission,	Discharge	and	Transfer).
All	patient-administration	messages	are	ADT	messages.

For	order-entry	(orders),	there	are	a	few	different	message	type	codes,	depending	on
the	type	of	order	the	message	is	carrying.	The	code	ORM	is	for	the	general	order	message.
Although	 it	 has	 been	 discontinued	 in	 newer	 versions	 of	 HL7,	 ORM	 continues	 to	 be
heavily	used	in	older	implementations.	In	addition	to	ORM,	there	is	OML	for	lab	orders,

OMI	for	imaging	order,	OMD	for	dietary	order	and	so	on.

The	observation-reporting	 (results)	message	 type	has	a	 couple	of	different	message
type	codes	as	well,	but	 the	code	ORU	is	 the	one	that	 is	most	commonly	used.	The	code
OUL	has	something	to	do	with	lab	system	automation	and	not	used	much.	We	won’t	waste
our	time	on	it.

The	HL7	specification	document	(HL7	spec)	 is	organized	by	message	types.	If	you
want	to	know	more	about	a	particular	message	type	and	its	codes,	all	you	have	to	do	is	flip
to	the	chapter	for	that	message	type.

Trigger	Event
HL7	messages	 are	 trigger-event	 driven.	What	 does	 that	mean?	 It	means	 that	 an	HL7

message	 is	 created	 only	 when	 something	 happens	 (an	 event)	 in	 the	 real	 world.	 This
“something”	in	the	real	world	is	the	trigger	that	sets	the	wheels	in	motion.

For	example,	admitting	a	patient	is	a	real	world	event	that	triggers	the	creation	of	an
HL7	message.	When	the	hospital	staff	completes	the	admit	form	and	hits	enter,	it	sets	off	a
chain	reaction	in	the	registration	system	that	leads	to	the	creation	of	the	HL7	message.	The
content	of	 the	message	depends	on	the	event	 that	 triggered	the	message	creation.	In	 this
case,	it	contains	details	of	the	patient	being	admitted.

Not	every	event	in	the	real	world	triggers	message	creation.	HL7	defines	specific	real
world	events	within	the	context	of	a	message	type	that	can	trigger	message	creation.	It	is
these	events	that	are	called	trigger	events.

There	is	a	long	list	of	trigger	events	that	map	to	real	world	events.	For	instance,	ADT
defines	 over	 sixty	 different	 trigger	 events.	 But	 this	 is	 a	 bit	 of	 an	 outlier	 because	 other
message	types	don’t	have	so	many	trigger	events.

Even	with	 so	many	 trigger	events,	 there	could	 still	be	a	 situation	where	a	message
needs	 to	 be	 generated	 for	 a	 real	 world	 event	 that	 doesn’t	 have	 a	 corresponding	 trigger
event.	 In	 such	 cases,	 one	will	 need	 to	 get	 a	 little	 creative	 and	 re-purpose	 another	 close
enough	trigger	event	for	the	situation.

Just	like	message	types,	trigger	events	have	their	own	three-character	Trigger	Event
Code.	But	there	is	a	difference.	Message-type	codes	are	all	uppercase	letters	whereas	for
trigger-event	codes,	the	first	character	is	a	letter	and	the	next	two	characters	are	numbers,
such	as	A01	(patient	admit)	or	A02	(transfer	patient).

Together,	a	message	type	and	a	trigger	event	uniquely	define	an	HL7	message.	It	is
generally	written	by	joining	together	the	message-type	code	and	trigger-event	code	with	a
caret	(^)	symbol.	So,	a	patient	admit	HL7	message	is	represented	as	ADT^A01.	A	patient
transfer	HL7	message	is	represented	as	ADT^A02	and	so	on.	Often	people	drop	ADT	and
just	refer	to	the	messages	as	A01	or	A02.

When	 two	 systems	 are	 being	 integrated,	 it	 is	 decided	 beforehand	 which	 HL7
messages	will	be	sent.	Let’s	say	a	hospital	is	implementing	a	new	pharmacy	system,	which
will	be	integrated	with	the	hospital	EMR.	This	is	to	ensure	that	when	a	medication	order	is
placed,	 the	pharmacy	system	has	 the	 information	 to	confirm	that	 the	order	 is	 for	a	valid

patient.

It	means	 the	 system	will	 need	 to	 know	when	 a	 patient	 is	 registered	 and	when	 that
patient	is	discharged	from	the	hospital.	Or	in	other	words,	the	pharmacy	system	will	need
ADT^A01	 (register	 patient)	 and	ADT^A03	 (discharge	 patient)	 HL7	messages	 from	 the
hospital	EMR.		To	put	it	even	more	simply,	the	pharmacy	will	need	A01	and	A03	from	the
hospital	EMR.

Acknowledgement	Message
Acknowledgement	messages	are	short	messages	that	a	receiving	system	sends	back	to

the	 sender	 to	 confirm	 that	 the	 message	 was	 received.	 This	 is	 on	 top	 of	 packet	 level
acknowledgement	 we	 discussed	 earlier.	 Now	 we	 are	 talking	 about	 application	 level
acknowledgement.	Whether	a	complete,	fully	assembled	message	was	received	or	not.

Message	 acknowledgement	 is	 very	 important	 in	 HL7.	 We	 don’t	 want	 a	 situation
where	messages	are	getting	corrupted	or	 lost	on	 the	way	and	 the	sending	system	has	no
clue.	If	there	was	an	issue	with	the	message	then	it’s	the	acknowledgement	message	that
conveys	 the	 information	 back	 to	 the	 sender.	This	way	 the	 sender	 knows	how	 to	 fix	 the
issue	and	resend	the	message.	If	there	was	no	acknowledgement	at	all	then	that	means	the
message	was	lost	and	its	time	to	resend	it.

It	is	important	to	know	that	HL7	requires	acknowledgement	from	the	application	and
not	 just	 the	 underlying	 system.	 This	 is	 to	 ensure	 that	 the	 message	 was	 successfully
processed	by	 the	 receiving	 application.	The	 Ikea	 in	 the	HL7	world	 just	 doesn’t	want	 to
know	 whether	 you	 received	 the	 parcel,	 it	 wants	 to	 know	 whether	 you	 were	 able	 to
assemble	the	furniture.

There	are	two	kinds	of	acknowledgement	messages	in	HL7:	original	&	enhanced.	As
you	 can	 guess,	 original	 came	 before	 enhanced	 but	 the	 original	 acknowledgement	 is
nowhere	 close	 to	 being	 discarded.	 The	 original	 mode	 of	 acknowledgement	 is	 still	 the
preferred	method.	It	is	simple	and	does	the	job	whereas	the	enhanced	mode	has	too	many
bells	and	whistles	and	takes	a	lot	more	effort	to	implement.

Original	mode	 is	 formally	 known	 as	Accept	Acknowledgement.	 Once	 a	message	 is
received	by	the	destination	system,	it	can	send	back	three	types	of	codes.	The	codes	tell
you	what	happened	to	the	original	message.

AA:	 This	 is	 good	 news.	 It	 means	 the	 message	 was	 successfully	 processed	 by	 the
receiving	system.	It	is	also	commonly	referred	to	as	a	positive	ack	or	just	ACK.

	

AE:	This	means	the	message	was	processed	but	there	was	a	problem	in	the	content	of
the	message.	This	is	a	negative	ack	or	a	NAK.

	

AR:	This	means	there	was	a	processing	error.	It	could	be	a	wrong	message	type	or	some
other	problem	with	the	receiving	system.	Maybe	the	server	was	down	or	the	database	was

not	available.	This	error	doesn’t	have	anything	to	do	with	 the	content	of	 the	message.	It
too	is	known	as	negative	ack	or	a	NAK.

Enhanced	mode	 is	 formally	 known	as	Application	Acknowledgement.	 In	 this	 case,
there	 could	 be	 up	 to	 six	 different	 types	 of	 codes.	 Using	 the	 Ikea	 example	 again,	 in
enhanced	mode,	Ikea	will	get	two	acknowledgements.	The	first	acknowledgement	is	sent
when	the	parcel	is	received	at	the	destination,	and	the	second	is	sent	after	the	furniture	is
assembled	(or	not).

The	 first	 acknowledgement,	 confirming	 that	 the	 message	 was	 received	 and	 safely
stored	by	the	receiving	system,	frees	up	the	sending	system	from	having	to	wait	and	see	if
the	message	needs	to	be	resent.

The	first	acknowledgement	could	generate	three	types	of	codes:

CA:	Commit	Accept:	 This	means	 the	message	was	 accepted	 and	 safely	 stored	 by	 the
receiving	system.

CR:	 Commit	 Reject:	 This	 means	 the	 message	 was	 rejected	 and	 not	 stored	 by	 the
receiving	 system.	Maybe	 the	message	 type	was	wrong	or	 there	was	 some	other	problem
with	the	message.	An	error	code	is	included	to	provide	more	information.

CE:	Commit	Error:	This	again	means	the	message	was	rejected	and	not	stored.	In	this
case	the	message	was	rejected	because	of	meta-data	issues.

After	successful	storage,	the	message	is	made	available	to	the	application	and	then	a
second	 acknowledgement	 is	 sent.	 This	 acknowledgement	 is	 more	 elaborate	 where	 the
acknowledgement	message	structure	depends	on	the	message	type	of	the	original	message
and	it	contains	a	lot	more	information	than	the	original	mode.

The	second	acknowledgement	message	generates	the	same	three	error	codes,	AA,	AE
and	AR	that	are	generated	in	the	original	mode.	Enhanced	mode	is	like	the	original	mode
with	an	additional	acknowledgement	for	safe	storage	of	message	by	the	receiving	system.

6.	Message	Building	Blocks
To	 the	 uninitiated,	 the	 sight	 of	 an	 HL7	 message	 is	 often	 intimidating.	 A	 brew	 of

symbols	 and	 characters,	 it	 looks	 like	 something	 out	 of	 the	 Matrix	 that	 is	 beyond	 the
comprehension	 of	 mere	 mortals.	 But	 to	 be	 honest,	 HL7	 really	 is	 quiet	 simple	 and
straightforward,	once	you	know	how	to	read	it.	And	for	that,	you	will	need	to	learn	about
the	building	blocks	of	an	HL7	message.

Let’s	take	the	example	of	registering	a	new	patient.	When	the	staff	at	the	front	desk
completes	 the	 patient	 registration	 and	 hits	 enter,	 it	 triggers	 an	 event:	 A04	 (Register
patient).	This	causes	the	system	to	generate	a	new	ADT^A04	HL7	message,	which	looks
something	like	this.
MSH|^~\&|SENDER_APP|SENT_BY|RECEIVER_APP|RCVD_BY|201310201500||ADT^A04|
MSG_ID001|P|2.5|||AL

EVN|A04|201310201500|||ID221^Dude@Terminal

PID|1||PAT416^^^HEALTH_ID||SEBELUS^KANSAS||194801150600|M|||123 SESAME 
ST^^TORONTO^ON^A1A2B2^CANADA||(416)888-8088||ENGLISH	|M||PAT_AC_721914

NK1|1|SEBELUS^MARY|SPOUSE|||(416)888-9999|(647)123-1234|C|20131020

PV1|1|O|ROOM10^BED12^OUTPATIENT|ELECTIVE|||S21195^DRIKOFF^FRANCIS^^^DR^MD||C90023^PAYNE^TRACY^^^DR^MD|SUR||||1|||S21195^DRIKOFF^FRANCIS^^^DR^MD||37323|
SELF||||||||||||||||||||||||201310201500

PV2|||DAY	SURGERY

AL1|1|FA^PEANUT||PRODUCES	MILD	RASH

See	what	I	mean?	Makes	no	sense.	But	soon	it	will.

Segment
The	primary	building	block	of	a	message	is	a	segment.	A	segment	 is	simply	a	row	of

data	 in	 the	message.	So,	 for	 the	message	 above,	 the	 first	 segment	 starts	with	MSH	and
ends	on	line	two	with	AL.	It	is	actually	just	one	row	of	data,	which	was	wrapped	over	to
the	 second	 line.	There	 is	 a	 line	break	after	AL	and	 that	means	end	of	 the	 segment.	The
second	segment	starts	with	EVN	on	 line	 three	and	ends	at	“Terminal”	on	 the	same	 line,
followed	by	a	line	break	and	so	on.	A	new	segment	always	starts	on	a	new	line.

The	first	 three	characters	of	each	segment	is	 the	segment	ID.	The	segment	ID	is	an
acronym	or	the	nametag	of	the	segment.

Once	we	know	the	segment	name,	we	know	the	information	in	that	segment.	This	is
because	the	main	purpose	of	a	segment	is	to	group	related	information	together.

In	 our	 example	 here,	 there	 are	 seven	 segments	 (IDs	 bolded).	MSH	 is	 the	Message
Header	segment,	EVN	is	the	Event	segment,	PID	is	the	Patient	Identification	segment	and
so	on.	Without	even	looking	at	the	content	of	the	PID	segment,	I	can	tell	you	it	contains
the	name	of	the	patient,	his	health	ID,	date	of	birth,	phone	number,	address	-	basically	all
the	information	that	can	be	used	to	identify	the	patient.	Hence	the	name	of	the	segment	-
Patient	Identification.
MSH|^~\&|SENDER_APP|SENT_BY|RECEIVER_APP|RCVD_BY|201310201500||ADT^A04|

MSG_ID001|P|2.5|||AL

EVN|A04|201310201500|||ID221^Dude@Terminal

PID|1||PAT416^^^HEALTH_ID||SEBELUS^KANSAS||194801150600|M|||123 SESAME ST^^TORONTO^ON^A1A 
2B2^CANADA||(416)888-8088||ENGLISH	|M||PAT_AC_721914

NK1|1|SEBELUS^MARY|SPOUSE||(416)888-9999|(647)123-1234|C|20131020

PV1|1|O|ROOM10^BED12^OUTPATIENT|ELECTIVE|||S21195^DRIKOFF^FRANCIS^^^DR^MD||C90023^PAYNE^TRACY^^^DR^MD|SUR||||1|||S21195^DRIKOFF^FRANCIS^^^DR^MD||37323|
SELF||||||||||||||||||||||||201310201500

PV2|||DAY	SURGERY

AL1|1|FA^PEANUT||PRODUCES	MILD	RASH

Message	Structure

Segments	in	a	message	are	always	organized	in	a	specific	order.	This	order	is	called	the
message	 structure.	 Different	message	 types	 have	 different	message	 structures	 but	 some
things	are	always	the	same.	For	example,	every	message	starts	with	an	MSH	segment.

If	 the	order	of	segments	in	a	message	is	not	exactly	like	its	message	structure,	 then
that	message	will	become	invalid.	It	will	be	rejected	by	the	receiving	system.

You	can	get	the	abstract	message	structure	of	any	message	in	the	HL7	specification
document.	The	abstract	message	structure	of	an	ADT^A04	message	is	in	Chapter	3	of	the
HL7	specification	document	where	event	A04	is	discussed.

Here	is	a	partial	abstract	message	structure	of	an	ADT^A04	message.	It	is	just	a	table
with	 three	 columns:	 segment	 ID,	 segment	 name	 and	 the	 chapter	where	 that	 segment	 is
explained.

If	you	compare	 the	example	message	 to	 its	abstract	message	structure,	 the	segment
order	 does	 not	 match	 between	 the	 two.	 In	 the	 example	 message,	 the	 SFT	 segment	 is
missing	after	MSH;	PD1	&	ROL	are	missing	too.

Does	that	mean	the	example	message	is	invalid?	No,	it’s	not	because	the	[]	and	{}
brackets	around	those	segments	make	them	either	optional	or	repeatable.

Optional	/	Repeatable	/	Mandatory

There	are	 two	kinds	of	brackets:	 square	 []	and	curly	{}.	 If	a	 segment	 ID	 is	enclosed
within	 [square	 brackets],	 it	 means	 the	 segment	 is	 optional.	We	 can	 choose	 whether	 to
include	 that	 segment	 in	 the	message	 or	 not.	 These	 segments	 are	 generally	 for	 optional
information,	such	as	PD1	(additional	patient	information).

If	 the	 segment	 ID	 is	 enclosed	 within	 {curly	 brackets},	 then	 that	 segment	 is
repeatable.	We	can	have	more	than	one	instance	of	that	segment	in	a	real	message.	Curly
brackets	 are	 for	 segments	 like	 NK1	 (Next	 of	 Kin).	 If	 a	 patient	 has	 given	 contact

information	for	two	next	of	kin	(spouse	and	sister),	then	the	information	for	each	next	of
kin	will	need	a	separate	NK1	segment	in	the	message.

If	a	segment	ID	is	enclosed	in	both	[{square	and	curly}]	brackets	then	that	means	the
segment	is	both	optional	and	repeatable.	If	a	segment	ID	is	not	surrounded	by	any	bracket
then	that	means	it	is	a	mandatory	segment.	That	segment	has	to	be	present	in	the	message.
So	 segments	 like	MSH,	EVN,	PID,	PV1,	with	no	brackets,	have	 to	be	present	 in	 a	 real
message.

Based	on	 this	 knowledge	we	 can	 see	why	 the	 example	 is	 a	 valid	message.	All	 the
missing	segments,	SFT,	PD1	and	ROL	are	surrounded	by	square	brackets.	And	that	means
those	segments	are	optional.	We	can	choose	to	leave	them	out.

Pipe	Delimited
So	far	so	good.	Now	we	know	that	a	message	is	nothing	but	a	collection	of	segments.

Let’s	dig	deeper.	Let’s	take	a	single	segment,	for	example	PID	(Patient	Identification),	and
follow	the	sequence	of	characters	in	this	segment.	You	cannot	help	but	notice	the	|	symbol
scattered	all	over	the	place.	This	symbol	is	called	a	pipe.

PID|1||PAT416^^^HEALTH_ID||SEBELUS^KANSAS||194801150600|M|||123 SESAME 
ST^^TORONTO^ON^A1A 2B2^CANADA||(416)888-8088||ENGLISH|M||PAT_AC_721914

A	pipe	is	a	field	separator	in	HL7.	Or,	if	I	were	to	use	the	jargon,	HL7	messages	are
pipe	delimited.

When	 you	 hear	 delimiter,	 think	 separator.	 Have	 you	 ever	 come	 across	 a	 csv	 file?
Often	we	convert	an	excel	file	into	a	csv	(comma-separated-value)	format,	to	export	data.
It	is	a	very	commonly	used	file	format	for	updating	databases.

When	the	data	in	an	excel	file	is	converted	to	csv	format,	it	goes	from	looking	like	a
table	to	simple	rows	of	data,	like	below.

Notice	 how	 the	 data	 has	 been	 stripped	 down	 to	 the	 basics.	 It	 is	 just	 field	 values
separated	by	commas.	In	csv	format,	a	comma	is	the	symbol	that	separates	field	values	or
to	use	the	correct	jargon	–	it	is	the	field	delimiter.	So	now	you	know	what	I	mean,	when	I
say,	a	pipe	is	the	field	delimiter	in	HL7.	It	is	the	symbol	that	is	used	to	separate	fields	in	an
HL7	message.

Does	 that	mean	 a	 segment	 is	 just	 a	 collection	 of	 fields?	That’s	 right,	 a	 segment	 is
nothing	but	a	collection	of	related	fields.	But	in	HL7,	unlike	the	csv	file,	 there	is	no	top
row	 with	 the	 name	 of	 individual	 fields.	 Then	 how	 do	 we	 know	 what	 those	 fields
represent?

Positional

Fields	in	a	segment	are	positional.	This	is	another	way	of	saying	that	the	position	of	a

field	 in	 the	 segment	 is	 fixed.	Patient	name	 is	 always	 the	 fifth	 field	 in	 the	PID	segment.
Date	of	birth	is	seventh.	You	cannot	have	DOB	in	the	seventh	field	in	one	message	and	in
the	tenth	field	in	another	message.	The	position	of	a	field	is	fixed.

The	HL7	 specification	document	defines	 an	 attribute	 table	 for	 each	 segment.	 	This
attribute	 table	 contains	 the	 list	 of	 fields	 for	 each	 segment	 and	 other	 related	 information
like	length	of	field,	data	type,	etc.	Both	sending	and	receiving	systems	refer	to	the	attribute
table	 to	 figure	out	where	a	particular	 field	 is.	This	eliminates	 the	need	 to	 send	a	header
row	with	field	names	for	each	message.

Component	(^)
Let’s	put	 this	newfound	knowledge	about	attribute	 tables	 to	 the	 test.	 If	you	refer	 to

the	attribute	table	for	PID	segment	in	Chapter	3	of	the	HL7	specification	document,	you
will	notice	that	the	fifth	field	is	for	the	name	of	the	patient.	Now,	we	will	check	the	same
field	in	our	example	message.	The	best	way	to	get	to	a	field	is	by	counting	the	pipes.
PID|1||PAT416^^^HEALTH_ID||SEBELUS^KANSAS||194801150600|M|||123 SESAME ST^^TORONTO^ON^A1A 
2B2^CANADA||(416)888-8088||ENGLISH|M||PAT_AC_721914

The	value	 after	 the	 fifth	 pipe	 is	SEBELUS^KANSAS,	which	does	 look	 like	 a	 real
person’s	name.	You	can	now	claim	that	you	are	capable	of	reading	an	HL7	message!

However,	there	is	a	^	symbol	embedded	in	the	name	which	needs	a	little	explaining.
The	 ^	 symbol	 is	 called	 a	 caret.	 A	 caret	 is	 the	 component	 separator	 (delimiter)	 in	 HL7
messages.

Just	like	a	segment	is	made	up	of	fields	separated	by	pipes,	a	field	is	made	up	of	parts
called	components,	which	are	separated	by	carets.	If	a	field	has	two	or	more	components
then	 those	components	have	 to	be	 separated	by	carets	 in	 the	message.	For	example,	 the
name	field	can	have	a	first	name,	a	middle	name,	and	a	last	name.	So	a	caret	will	have	to
be	 placed	 between	 the	 first	 name	 and	 the	middle	 name	 as	 well	 as	 between	 the	middle
name	and	the	last	name.

Sub-component	(&)
Yes,	 some	 components	 are	made	 up	 of	 even	 smaller	 pieces.	 Sometimes,	 I	 wonder	 if

there	were	physicists	involved	in	creating	HL7.	You	know,	molecules	(such	as	water)	are
made	up	of	atoms	(oxygen	and	hydrogen).	The	atoms	are	made	up	of	sub-atomic	particles
(electrons,	protons	&	neutrons)	and	 the	sub-atomic	particles	are	made	up	of	quarks	 (up,
down,	strange,	charm	etc.).

Similarly,	there	are	components,	which	are	composite	in	nature	and	they	are	made	up
of	 smaller	 pieces	 called	 sub-components.	 Sub-components	 are	 separated	 by	 the	 &
(ampersand)	symbol.

Going	 back	 to	 the	 example	 of	 patient	 name,	 its	 first	 component,	 family	 name,	 is
actually	 defined	 as	 a	 composite	 component	 with	 five	 sub-components:	 surname,	 own
surname	 prefix,	 own	 surname,	 surname	 prefix	 from	 partner/spouse,	 and	 surname	 from
partner/spouse.

If	the	surname	of	the	patient	was	St.	Pierre	Jr.	with	the	first	name	of	Kansas,	then	the
name	 field	 would	 have	 been	 something	 like	 PIERRE&JR&ST^KANSAS,	 with
subcomponents	of	the	last	name	separated	by	&	(ampersand).

So	there	you	have	it,	the	building	blocks	of	an	HL7	message.

A	message	is	made	up	of	segments

A	segment	is	made	up	of	fields	separated	by	pipes	(|)

A	field	is	made	up	of	components	separated	by	a	caret	(^)

A	component	is	made	up	of	sub-components	separated	by	an	ampersand	(&)

7.	Working	with	a	Message
Now	 that	 we	 have	 some	 idea	what	 HL7	 is,	 it’s	 time	 to	 start	 working	with	 complete

messages.

What	 are	 some	 of	 the	 situations	 where	 you	 are	 going	 to	 be	 running	 into	 an	 HL7
message?

1.	 During	 system	 integration:	 If	 a	 new	 clinical	 system	 is	 purchased,	 it	 will	 need	 to
exchange	HL7	messages	with	existing	systems.

2.	During	 troubleshooting:	 If	 your	 system	 is	 rejecting	an	 incoming	message,	 you	will
need	to	look	at	the	error	description	and	the	HL7	message.

3.	While	creating	a	message	profile.	If	you	are	a	software	company	then	you	will	need	to
define	what	HL7	messages	coming	out	of	your	system	look	like.

There	could	be	other	situations	but	these	three	make	it	clear	that	working	with	HL7
messages	involves	reading,	writing	and	creating	messages.

To	 read	 a	 message,	 you	 will	 need	 the	 Interface	 Specification	 document	 (interface
spec).	It	tells	you	what	each	field	in	the	message	is	for.	If	an	interface	spec	is	not	available,
you	can	look	up	the	segment	attribute	table	in	the	HL7	spec	to	get	an	idea	about	the	field.
However,	the	source	of	truth	is	always	the	interface	spec.

To	write	 a	message,	 you	will	 definitely	 need	 an	 interface	 spec.	This	 is	 because	 an
HL7	 spec	only	gives	 you	 the	 abstract	 framework.	Organizations	 further	 tweak	 the	 rules
(for	 example,	 only	 allow	 numbers	 in	 an	 alphanumeric	 field)	 and	 these	 rules	 are
documented	in	the	interface	spec.	To	create	a	valid	message,	you	will	need	to	comply	with
all	the	rules.

Creating	a	message	also	involves	figuring	out	 the	 information	to	be	included	in	 the
message	and	how	it	will	be	mapped.	This	information	is	then	documented	in	the	interface
spec.	It	takes	a	while	to	get	all	this	work	done	and	you	will	need	to	know	your	way	around
the	HL7	spec	in	order	to	do	so.

But	before	we	get	down	 to	 reading,	writing	and	creating	messages,	 let’s	 learn	a	bit
more	 about	 the	 HL7	 spec	 and	 the	 interface	 spec	 so	 that	 we	 are	 able	 to	 navigate	 them
easily.

Anatomy	of	a	Message
I	tend	to	look	at	an	HL7	message	as	made	up	of	a	head	and	a	body.	The	head	is	the	first

two	or	three	segments	at	the	top	of	the	message	and	the	rest	is	the	body.	Head	segments
are	Control	segments	and	the	body	segments	are	Data	segments.

Control	 segments	 only	 carry	 meta-data	 information	 about	 a	 message.	 Remember
Edward	Snowden	and	the	NSA	spying	scandal?	At	one	point,	the	NSA	came	back	with	the

excuse	 that	 they	were	only	collecting	meta-data	of	phone	conversations.	 In	other	words,
they	 were	 not	 listening	 to	 actual	 conversation,	 only	 recording	 call	 related	 information.
Things	like	the	duration	of	the	call,	the	phone	number	dialed,	local	time	of	the	call	etc.

Similarly,	 in	 HL7,	 control	 segments	 carry	 only	 meta-data	 information	 about	 a
message.	Data	segments,	as	the	name	suggests,	are	the	real	carriers	of	the	data.

HL7	Specification	Document
There	 is	 no	 escaping	 it.	 If	 you	want	 to	 know	HL7,	 you	will	 have	 to	 know	your	way

around	 the	 eminently	dry	HL7	 specification	document	 (HL7	 spec).	That’s	where	 all	 the
information	is.

The	HL7	spec	 is	 the	owner’s	manual	 for	HL7	messaging.	 It	 is	a	bulky	manual	 that
has	fifteen	chapters	and	over	sixteen	hundred	pages	of	content.

Until	recently,	you	had	to	pay	a	considerable	amount	to	get	hold	of	a	copy.	However,
in	 September	 2012,	 the	 organization	 announced	 that	 HL7	 standards	 and	 all	 of	 its
intellectual	properties	would	be	made	publicly	available	to	reduce	barriers	to	adoption	and
to	broaden	its	usage.		You	can	download	the	spec	for	free	from	their	website.

Go	 to	 the	 HL7.org	 homepage	 and	 click	 on	 “Standards”	 in	 the	 menu.	 Within
standards,	click	on	“Section	1:	Primary	Standards”	and	on	the	following	page	(which	was
a	table	for	me),	click	on	“HL7	Version	2	Product	Suite”.	This	will	take	you	to	a	page	that
lists	all	the	versions	of	the	standard.	I	had	to	register	but	it	was	pretty	simple	(name,	email,
address).	 After	 that,	 I	 was	 able	 to	 download	 a	 compressed	 copy	 of	 the	 specification
document.	The	organization	still	requires	that	you	acquire	a	license	(for	free)	before	using
the	standard.

Once	you	unzip	the	downloaded	file,	it	expands	into	over	twenty	different	files.	This
can	 be	 a	 bit	 overwhelming,	 like	 driving	 in	 a	 new	 city	 where	 you	 don’t	 have	 a	mental
layout	 of	 the	 place.	 To	 avoid	 frustration	 while	 looking	 for	 specific	 information,	 it	 will
serve	you	well	to	have	a	good	sense	of	the	lay	of	the	land.

So,	lets	unclutter	this	collection	of	over	twenty	files.		There	are	fifteen	chapters,	four
appendices	and	some	other	stuff.	The	chapters	are	important.	You	can	typically	ignore	the
rest.	Even	with	the	chapters,	there	are	only	a	few	that	are	really	important.	Remember	the

80-20	rule?

Chapter	2	(CH02.pdf)	is	the	most	important	chapter	in	the	collection.	This	chapter	is
called	“Control”	and	that	is	where	you	will	find	information	on	all	the	important	concepts,
control	segments,	fields,	data	types	etc.

HL7	also	defines	a	 lot	of	data	 types,	which	are	 in	CH02A.pdf.	You	can	 ignore	 this
chapter	unless	you	need	details	of	a	particular	data	type.

Then	 there	 are	 Chapters	 3–15.	 Each	 chapter	 handles	 a	 different	 message	 type,	 its
trigger	events,	its	data	types	and	other	related	details.

Each	 chapter	 has	 more	 or	 less	 the	 same	 layout.	 First,	 trigger	 events	 and	 message
types	are	discussed.	Then	some	data	segments	are	introduced,	followed	by	examples	and
finally	special	scenarios.

Interface	Specification	Document
I	mentioned	earlier	that	the	HL7	spec	is	like	the	owner’s	manual.	This	statement	needs	a

correction.	 The	 real	 owners’	 manual	 is	 the	 Interface	 Specification	 Document	 (interface
spec).	HL7	 spec	 is	more	 like	 a	 rulebook	with	multiple	 options.	 The	 interface	 spec	 is	 a
customized	version	of	that	rulebook.

Interface	specs	vary	depending	on	the	type	of	interfaces	we	are	talking	about.	If	it	is
only	for	sending	and	receiving	messages,	then	the	spec	will	detail	what	the	message	will
look	like	going	out	and	what	it	should	look	like	coming	in,	before	the	system	will	process
it.

For	 integration	 engines	 (hubs),	 the	 spec	 looks	 different.	 They	 receive	 a	 message,
change	the	type/content	of	the	message	and	send	out	a	different	message.	So	in	addition	to
sending	 and	 receiving	messages,	 the	 interface	 spec	will	 also	 have	 to	 provide	 details	 on
transforming	the	message.

There	is	no	set	structure	for	an	interface	spec.	People	do	their	own	thing.	But	there
are	some	common	pieces	of	information	they	all	have.

The	 spec	 will	 define	 one	 or	 more	 trigger	 events.	 It	 could	 even	 define	 an	 entire
message	type	with	all	of	its	trigger	events.	Generally,	you	will	have	a	number	of	different
specs	for	different	trigger	events	and	message	types.

Within	the	spec,	for	each	trigger	event,	you	will	have	a	message	structure	that	defines
the	 segments	 and	 their	 order	 in	 the	 message.	 And	 for	 each	 segment,	 there	 will	 be	 an
attribute	table,	which	defines	the	length,	optionality,	data	type,	and	other	details	for	each
field	of	that	segment.	Message	structure	and	segment	details	give	you	pretty	much	all	the
information	you	will	need	to	read	and	write	messages.

Reading/Writing	a	Message
Here	is	the	example	message	from	the	previous	chapter.	Let’s	take	a	stab	at	reading	it.

MSH|^~\&|SENDER_APP|SENT_BY|RECEIVER_APP|RCVD_BY|201310201500||ADT^A04|MSG_ID001|P|2.5|||AL

EVN|A04|201310201500|||ID221^Dude@Terminal

PID|1||PAT416^^^HEALTH_ID||SEBELUS^KANSAS||194801150600|M|||123 SESAME ST^^TORONTO^ON^A1A 
2B2^CANADA||(416)888-8088||ENGLISH|M||PAT_AC_721914

NK1|1|SEBELUS^MARY|SPOUSE|||(416)888-9999|(647)	123	12	34|C|20131020

PV1|1|O|ROOM10^BED12^OUTPATIENT|ELECTIVE|||S21195^DRIKOFF^FRANCIS^^^DR^MD||C90023^PAYNE^TRACY^^^DR^MD|SUR||||1|||S21195^DRIKOFF^FRANCIS^^^DR^MD||37323|
SELF||||||||||||||||||||||||201310201500

PV2|||DAY	SURGERY

AL1|1|FA^PEANUT||PRODUCES	MILD	RASH

First	thing	you	look	for	in	a	message	is	its	message	type	and	trigger	event.	Message
type	is	the	ninth	field	in	the	MSH	segment	(MSH-9).	In	our	case,	its	value	is	ADT^A04
(bolded	in	 the	message).	Remember,	 this	 is	a	field	with	 two	components	 joined	together
by	a	component	delimiter	(^).	The	first	component	is	the	general	message	type,	which	is
ADT.	 This	 means	 the	 message	 has	 something	 to	 do	 with	 patient	 administration.	 The
second	 component	 is	 the	 event	 type	 code.	 This	 is	 the	 trigger	 event	 that	 generated	 the
message.	 In	 our	 example	 it	 is	 A04,	 which	 means	 a	 patient	 registration	 triggered	 this
message.

When	you	are	working	with	messages,	you	will	be	 regularly	checking	 their	 trigger
event	codes.	MSH-9	is	one	place	to	check	but	there	is	another	field	that	holds	the	trigger
event	code.	It	is	the	first	field	of	the	EVN	segment	(EVN-1).	I	personally	prefer	this	field
because	it	is	easier	to	locate	in	a	message.	Just	look	for	EVN	segment	and	right	after	it	you
have	the	trigger	event	code.	You	can	confirm	this	in	the	example	message.	The	code	is	the
same	in	both	the	fields	-	A04.

Once	you	know	the	trigger	event	code,	you	know	the	information	in	the	message.	For
example,	since	A04	is	the	trigger	event	code	for	patient	registration,	it	implies	the	message
contains	information	about	a	patient	registration.

Whenever	you	are	reading	an	HL7	message,	you	are	looking	for	specific	information.
No	matter	what	 information	you	are	 looking	 for,	you	will	need	 to	know	 the	 field	 in	 the
message	body	where	that	information	is.	For	that,	you	turn	to	the	interface	spec	and	look
for	the	field	that	holds	that	information.

Let’s	take	an	example.	Suppose	you	want	to	find	out	the	patient	who	was	registered
at	the	hospital	on	October	20,	2013	at	3:00	PM.	Your	technical	guys	have	narrowed	down
the	search	to	a	single	message,	the	example	message	above,	and	now	you	want	to	confirm
that	this	is	the	message	that	has	the	patient’s	name.

For	 that,	you	will	 first	need	 to	 locate	 the	field	for	date	and	 time	of	registration	and
confirm	 that	 it	 is	October	20,	 2013	3:00	PM.	After	 confirming	 it,	 you	will	 look	 for	 the
name	of	the	patient.

So	where	could	be	the	date	and	time	of	registration	in	the	message?	Date	and	time	–
that	sounds	like	meta-data.	Let’s	look	in	the	control	segments.

There	 are	 two	 control	 segments	 in	 our	 example	 message	 -	 MSH	 &	 EVN.	 If	 you
consult	their	attribute	tables	in	the	spec	(HL7	or	interface),	you	will	notice	that	neither	has
a	 field	 for	 date	 and	 time	 of	 registration.	Welcome	 to	 the	 world	 of	 HL7!	 Dealing	 with
ambiguity	is	a	prerequisite.

We	do	have	a	couple	of	other	date/time	fields.	MSH-7	(Date/Time	of	Message)	holds
date/time	 for	when	 the	message	was	generated	and	EVN-2	 (Recorded	Date/Time)	holds
the	 date/time	 for	when	 the	 trigger	 event	was	 fired.	Generally,	 as	 in	 our	 example,	 these
fields	have	the	same	value.	But	if	there	is	a	difference,	then	I’ll	go	with	EVN-2.	It	sounds
more	like	the	date	and	time	of	patient’s	registration.

The	 value	 in	EVN-2	 is	 201310201500.	To	 interpret	 this,	we	 again	 check	 the	EVN
attribute	 table	 and	 look	 for	 the	 data	 format	 of	 EVN-2.	 The	 format	 is
YYYYMMDDHHMM,	where	Y	is	the	year,	M	is	the	month,	and	so	on.	After	parsing	the
content	we	get	the	year	as	2013,	the	month	as	10	(October),	the	day	as	20	and	the	time	as
1500	or	3PM.	This	is	the	message	we	are	looking	for.

Ok,	we	have	our	message.	Now,	on	to	the	second	part	–	finding	the	patient’s	name.
Patient’s	name	is	without	doubt	clinical	data.	It	has	to	be	in	a	data	segment.	There	are	five
data	segments	in	the	message	and	that	is	where	we	will	search	for	the	patient’s	name.	The
data	segments	are:

PID	–	Patient	Identification	Segment

NK1	–	Next	of	Kin	Segment

PV1	–	Patient	Visit	Segment

PV2	–	Patient	Visit	–	Additional	Info.	Segment	&

AL1	–	Allergy	Information	Segment

	

It	 is	 not	 hard	 to	 guess	 just	 by	 looking	 at	 the	 names	 of	 the	 segments	 that	 patient’s
name	 field	probably	 is	 in	 the	PID	segment.	Of	 course,	 there	 could	be	a	 situation	where
things	 are	 not	 as	 obvious	 (like	 the	 date/time	 field	 earlier).	 In	 that	 case	we	will	 have	 to
search	the	interface	spec	for	that	field.	It	does	get	boring	sometimes.

To	 confirm	 our	 hunch	 we	 check	 the	 attribute	 table	 of	 the	 PID	 segment	 and	 sure
enough	 the	 5th	 field	 (PID-5)	 is	 the	 name	 of	 the	 patient.	 In	 the	message,	we	 count	 five
pipes	and	 the	value	after	 the	 fifth	pipe,	SEBELUS^KANSAS,	 is	 the	patient’s	name.	We
have	 successfully	 read	 the	message	and	 found	 that	Kansas	Sebelus	was	 the	patient	who
was	registered	at	the	hospital	on	October	20,	2013	at	3:00	PM.

Writing	a	message	is	just	the	reverse	of	reading	it.	In	the	case	of	writing,	you	refer	to
the	 interface	 spec	 and	 build	 the	 message	 by	 populating	 fields	 with	 appropriate	 values.
Patient	name	goes	in	PID-5,	date	of	birth	goes	in	PID-7	and	so	on.

Creating	a	Message
Now	it’s	time	to	create	a	message	or	to	be	precise,	a	message	profile,	where	you	define

its	exact	structure.	This	is	involved	work	and	usually	a	business	or	interface	analyst	will
be	doing	it	full	time.

To	create	 a	message,	 you	again	 start	with	 the	 trigger	 event.	 If	 you	are	 creating	 the
profile	for	patient	registration,	you	start	with	A04.

A04,	like	every	other	trigger	event,	has	its	abstract	message	structure	defined	in	the
HL7	spec.	The	first	task	is	to	create	a	bare	bones	message	structure	by	eliminating	all	the
optional	 segments.	 A	 message	 structure	 made	 up	 of	 only	 the	 required	 segments,	 like
below.

MSH

EVN

PID

PV1

	

This,	then,	is	the	simplest	message	structure	of	an	A04	message.

Next,	 depending	 on	 additional	 information	 that	 has	 to	 be	 sent,	 you	 include	 other
optional	 segments	 from	 the	 abstract	message	 structure,	 at	 appropriate	 places	within	 the
bare	bones	message	structure.

The	example	message	has	three	optional	segments	-	information	on	family	members
(NK1),	 additional	 information	 about	 the	 visit	 (PV2)	 and	 allergy	 information	 (AL1).
Inclusion	of	these	segments	at	their	appropriate	locations	changes	the	message	structure.

MSH

EVN

PID

[{NK1}]

PV1

[PV2]

[{AL1}]

	

This	 then	 is	 the	message	structure	of	 the	example	A04	message.	After	 the	message
structure	is	defined,	you	customize	the	attribute	table	for	each	segment	and	the	job	is	done.
Another	message	has	been	defined.	Others	can	read	this	information	in	the	interface	spec
and	they	will	know	what	an	A04	message	coming	out	of	your	system	will	look	like.

Segment	Attribute	Table

We	have	talked	a	lot	about	the	segment	attribute	table,	so	let’s	take	a	moment	to	learn
more	 about	 it.	A	 segment	 attribute	 table	 contains	 the	 list	 of	 fields	 in	 a	 segment.	 It	 also
includes	other	details	such	as	which	fields	are	optional,	which	can	repeat,	etc.	All	segment
attribute	tables	in	the	interface	spec	are	derived	from	the	abstract	tables	in	the	HL7	spec.

To	customize	a	segment	attribute	table,	the	basic	rule	is	that	you	can	only	constrain.
You	can	add	more	conditions	and	rules	but	you	cannot	remove	existing	rules	defined	by
HL7.

What	 conditions	 can	 you	 add?	 Look	 at	 the	 columns	 in	 the	 segment	 attribute	 table
below.	 Let’s	 use	 LEN	 (length)	 as	 an	 example.	 The	 table	 defines	 250	 characters	 as	 the
length	 of	 the	 patient	 name	 field	 (5th	 field).	 You	 can	 reduce	 the	 field	 length	 to	 50
characters.	No	 problem.	What	 you	 cannot	 do	 is	 increase	 field	 length	 to	 300	 characters.
That	will	violate	the	rule	of	250	character	limit	set	by	HL7.

And,	 as	 you	 can	 see,	 the	 column	 headings	 of	 the	 segment	 attribute	 table	 are	 not
exactly	intuitive.		So	here	is	a	description	of	what	they	stand	for.

SEQ:	Sequence	Number.	This	 is	 just	 the	position	of	 the	field	in	 the	segment.	Set	ID	is
the	first	field	in	the	PID	segment,	Date	of	Birth	is	the	seventh	field,	Sex	is	the	eighth	and
so	on.

	

LEN:	Maximum	Length	of	the	Field.	Nothing	to	explain	here.

	

DT:	Data	Type.	HL7	likes	to	control	how	the	data	is	represented	in	the	message	and	it
does	so	through	data	types.	This	column	defines	the	data	type	of	the	field.

	

OPT:	Optionality.	This	column	tells	you	whether	you	are	required	to	have	a	value	in	the
field	or	if	it	is	optional.	A	field	can	be	Required	(R),	Optional	(O)	or	Conditional	(C).	If	it
is	conditional,	it	means	the	optionality	is	based	on	another	field.	For	example,	Blood	Type
is	a	conditional	field.	It	is	optional	normally	but	if	the	patient	is	admitted	for	surgery	then
it	becomes	a	required	field.

Another	letter	(B)	can	also	be	seen	in	this	column.	It	is	for	backward	compatibility.
These	fields	are	present	only	to	support	older	versions	of	HL7.	Unless	you	are	supporting
that	version,	you	should	leave	those	fields	empty.

	

RP	#:	Repetition	(number).	This	column	tells	you	if	 the	field	can	repeat.	If	 the	field	is
blank	or	has	an	“N”	then	no	repetition	of	the	field	is	allowed.	If	the	field	has	a	“Y”	then	it
can	repeat	one	or	more	times.	If	it	has	a	number,	such	as	Y(3),	then	that	field	can	repeat
up	to	3	times.	Field	repetition	values	are	separated	by	a	~	(tilde)	in	the	message.

	

TBL	#:	Table	Number.	For	some	 fields,	HL7	only	allows	a	specific	set	of	values.	For
example,	in	the	Administrative	Sex	field,	only	the	first	letter	of	patient’s	gender	(M,	F,	U)	is
allowed.	You	 cannot	 put	“Male”	 in	 this	 field.	 These	 valid	 values	 are	 defined	 in	 a	 table

with	a	unique	table	number.	If	a	field	takes	its	values	from	a	table	then	that	table	number
is	listed	in	this	column,	as	is	the	case	with	the	sex	field.

	

ITEM	#:	 ID	Number.	This	 is	a	number	 that	uniquely	 identifies	every	 field	 in	 the	HL7
specification	document.	Field	“Date/Time	of	Birth”	is	at	the	seventh	field	position	in	the
PID	segment	and	its	ID	is	00110.	The	same	field	is	at	the	sixteenth	position	in	the	segment
NK1	 but	 the	 ID	 is	 the	 same,	 00110.	 Keep	 in	 mind	 the	 subtle	 difference	 in	 field	 names
though.	“Name”	and	“Patient	Name”	are	different	fields	and	they	have	different	ID’s.

	

ELEMENT	NAME:	Name	of	the	Field.	This	is	just	a	descriptive	name	of	the	field.

8.	Control	Segments
From	the	last	chapter,	if	you	remember	the	discussion	about	the	anatomy	of	a	message,

control	 segments	are	 the	segments	 in	 the	head	of	a	message.	They	only	carry	meta-data
information	about	a	message.

There	are	about	a	dozen	control	segments	defined	by	HL7.	They	are	all	explained	in
chapter	 2	 of	 the	HL7	 spec.	 Fortunately,	we	 only	 need	 to	 know	 about	 a	 few	 of	 them	 to
account	 for	 the	 vast	 majority	 of	 cases.	 For	 example,	 there	 are	 control	 segments	 for
breaking	 a	 very	 large	 message	 into	 smaller	 pieces	 and	 control	 segments	 for	 batching
together	a	large	number	of	messages.	These	control	segments	are	not	used	that	frequently
and	for	a	general	understanding,	you	can	skip	them.

There	 are	 five	 control	 segments	 that	 you	 really	 should	 know	 about	 –	MSH,	EVN,
NTE,	MSA	&	ERR.	We	will	 start	with	MSH,	 the	ubiquitous	control	segment	 that	every
message	begins	with.	 It	 is	 the	most	 important	control	segment.	 If	you	decide	 five	 is	 too
many	for	your	precious	time	and	you	are	only	going	to	read	about	one,	then	let	this	be	the
one.

Message	Header	Segment	(MSH)
The	message	header	segment	(MSH)	is	the	most	important	control	segment.	Every	HL7

message	starts	with	this	segment.	When	an	HL7	message	is	received	by	a	system,	it	is	the
MSH	 that	 tells	 the	 receiving	 system	where	 this	message	 came	 from,	 the	 information	 it
contains	and	how	it	is	supposed	to	be	acknowledged.

This	is	a	segment	you	want	to	know	well.

To	 get	 a	 better	 understanding	 of	 the	 contents	 of	 this	 segment,	 let’s	 use	 the	MSH
segment	from	our	example	A04	message	and	explore	its	contents.

MSH|^~\&|SENDER_APP|SENT_BY|RECEIVER_APP|RCVD_BY|201310201500||ADT^A04|
MSG_ID001|P|2.5|||AL

If	you	break	the	segment	down	into	its	separate	fields,	it	gets	easier	to	figure	out	the
content.	Remember	|	is	used	to	separate	fields.

MSH-1:		|		(Field	Separator)

MSH-2:		^~\&		(Encoding	Characters)
MSH-3:		SENDER_APP		(Sending	Application)

MSH-4:		SENT_BY		(Sending	Facility)

MSH-5:		RECEIVER_APP		(Receiving	Application)

MSH-6:		RCVD_BY		(Receiving	Facility)

MSH-7:		201310201500		(Date/Time	of	Message)

MSH-8:

MSH-9:		ADT^A04		(Message	Type)

MSH-10:		MSG_ID001		(Message	Control	ID)

MSH-11:		P		(Processing	ID)

MSH-12:		2.5		(Version	ID)

MSH-13:

MSH-14:

MSH-15:		AL		(Accept	Acknowledgement	Type)

Note	 that	 some	 of	 the	 fields	 are	 empty	 (e.g.	 MSH-8).	 This	 is	 perfectly	 fine.
Remember,	 not	 every	 field	 in	 a	 segment	 is	 required	 to	have	 a	value.	 If	 you	 refer	 to	 the
segment	attribute	table	of	MSH,	you	can	confirm	that	all	missing	fields	are	optional.

Now,	here	is	a	little	insider	information.	There	are	only	a	few	fields	in	each	segment
that	are	really	important	and	regularly	used.	That	is	why	you	see	the	usual	pipe	pattern	(||||)
in	HL7	messages.	The	consecutive	pipes	are	nothing	but	empty	fields.

So	keeping	with	our	tradition,	and	saving	you	precious	time,	we	are	going	to	discuss
only	the	most	important	fields	in	a	segment.

In	 the	 MSH	 segment,	 owing	 to	 the	 fact	 that	 it	 contains	 most	 of	 the	 meta-data
information,	there	are	many	important	fields.	It	is	the	heaviest	control	segment.	Some	of
these	important	fields	are	required	and	others	are	optional,	but	they	almost	always	have	a
value.

If	you	refer	to	the	segment	attribute	table	of	the	MSH	segment,	HL7	requires	that	the
following	fields	always	have	a	value.
MSH-1:				Field	Separator

MSH-2:				Encoding	Characters

MSH-7:				Date/Time	Of	Message

MSH-9:				Message	Type

MSH-10:		Message	Control	ID

MSH-11:			Processing	ID

MSH-12:			Version	ID

It	 is	easy	to	find	out	which	fields	are	required	in	a	segment.	Just	go	to	the	segment
attribute	table	and	look	for	the	letter	R	in	the	optionality	(OPT)	column.

Besides	these	required	fields,	there	are	some	other	fields	(below)	in	MSH,	which	are
optional	but	regularly	used.	They	are	important	and	I	think	you	should	know	about	them.
MSH-3:				Sending	Application

MSH-4:				Sending	Facility

MSH-5:				Receiving	Application

MSH-6:				Receiving	Facility

MSH-15:		Accept	Acknowledgement	Type

MSH-16:		Application	Acknowledgement	Type

Keep	 in	mind	 though	 that	 this	 is	 only	my	 personal	 opinion.	Others	 can	 argue	 that
there	are	other	optional	fields	that	are	important	and	some	here	are	not.	I’m	not	denying	it.

But	from	my	experience,	I	believe	these	are	the	important	fields	in	the	MSH	segment.

Now	let’s	get	familiar	with	these	fields	because	the	name	of	the	field	doesn’t	tell	you
even	one	tenth	of	the	story.

MSH-1:		Field	Separator

Usually,	 the	 first	 field	 in	 a	 segment	 is	 the	 field	 that	 follows	 the	 segment	 ID.	 So
technically	 “encoding	 characters”	 should	 be	 the	 first	 field	 of	 MSH	 segment.	 But	 with
MSH,	there	is	an	anomaly.	The	first	field	(MSH-1)	always	defines	the	symbol	that	will	be
the	 field	 separator	 (delimiter)	 for	 the	 entire	 message.	 If	 you	 remember	 the	 discussion
about	pipe	delimiters	in	Chapter	6,	|	is	the	field	separator	in	HL7	messages	and	therefore,
the	first	field	of	MSH.	But	it	doesn’t	have	to	be.	You	can	choose	to	have	a	comma	(,)	or
any	other	symbol	as	the	separator.	If	you	choose	to	use	a	comma,	the	segment	will	 look
something	like	this.
MSH,^~\&,SENDER_APP,SENT_BY,RECEIVER_APP,RCVD_BY,201310201500,,ADT^A04,
MSG_ID001,P,2.5,,,AL

This	would	be	a	perfectly	legitimate	HL7	segment.	However,	|	has	become	such	a	de
facto	standard	that	no	one	really	uses	anything	but	|	as	the	field	delimiter.	But	it’s	good	to
know	that	we	have	the	power	to	change	it.

MSH-2:		Encoding	Characters

Encoding	 Characters	 are	 the	 four	 symbols	 ^	 ~	 \	 &	 that	 HL7	 reserves	 for	 message
construction.

These	 characters	 have	 special	meaning,	which	 allows	 applications	 reading	 an	HL7
message	to	distinguish	between	components	and	subcomponents	of	a	field,	read	repeating
fields,	and	translate	symbols.

The	 encoding	 characters,	 in	 order,	 are	 -	 Component	 Separator	 (^),	 Repetition
Separator	 (~),	Escape	Character	 (\)	 and	Sub	Component	 Separator	 (&).	The	 position	 of
each	 character	 is	 fixed	 in	 the	 field.	 First	 the	 component	 separator	 then	 the	 repetition
separator	and	so	on.

By	 having	 these	 symbols	 in	 MSH-2,	 we	 are	 basically	 saying	 that	 in	 this	 HL7
message,	 ^	 will	 be	 used	 to	 separate	 components,	 ~	 will	 be	 used	 to	 separate	 multiple
occurrences	of	a	field,	\	will	be	used	for	special	characters	and	&	will	be	used	to	separate
sub	components.

But	 shouldn’t	 this	 be	 hardcoded	 in	 systems	 that	 read	 HL7	 messages,	 instead	 of
including	it	in	every	message?

Good	point.	The	 reason	encoding	characters	are	 included	 in	every	HL7	message	 is
because	these	characters	are	customizable	too,	just	like	the	field	separator	|.

HL7	gives	 you	 the	 option	 of	 selecting	 your	 own	 encoding	 characters.	 If	 you	 don’t
like	^	and	would	rather	have	#	as	the	component	separator	in	your	messages	then	all	you
have	to	do	is	replace	^	with	#	in	MSH-2.	As	a	result,	your	encoding	characters	would	be

#~\&.	The	#	symbol	will	now	be	the	component	separator.

But	this	whole	discussion	is	pointless!	Over	the	years,	these	symbols	have	become	a
de	facto	standard.	I’ll	bet,	many	folks	who	have	been	working	with	HL7	for	years,	don’t
know	 that	you	can	change	 these	 symbols.	 I	have	never	come	across	a	message	where	a
different	set	of	symbols	were	used.

Before	 we	 move	 to	 the	 next	 field,	 you	 need	 to	 know	 more	 about	 the	 other	 two
encoding	characters	–	the	Repetition	Separator	(~)	and	the	Escape	Character	(\).

Repetition	Separator	(~):	This	is	the	symbol	that	separates	multiple	values	in	a	field.
Remember	the	section	on	segment	attribute	table	in	chapter	7?	Some	fields	are	repeatable
and	they	can	have	multiple	values.	~	is	the	symbol	that	is	used	to	separate	those	values	in
a	field.

In	 the	MSH	segment,	 field	MSH-18	and	field	MSH-21	are	 repeatable.	This	means,
whenever	 those	 fields	 have	 two	 or	more	 values,	 the	 values	 will	 be	 separated	 by	 the	 ~
symbol.	 If	 a	 system	reading	 the	message	comes	across	 the	~	symbol,	 it	will	know	right
away	that	what	follows	is	the	next	value	of	the	field.

Escape	Character	 (\):	 HL7	 reserves	 encoding	 characters	 for	 message	 construction
and	they	have	a	special	meaning	in	the	message.	What	happens	if	you	need	to	use	one	of
those	special	characters	as	part	of	the	data?	The	application	reading	the	message	is	going
to	be	all	confused!!

In	 real	 world	 applications,	 the	most	 troublesome	 of	 these	 special	 characters	 is	 the
ampersand	symbol	(&).	It	is	used	for	“and”	(as	in	Ben	&	Jerry’s)	and	is	also	a	commonly
used	symbol	in	programming	languages	like	HTML	(which	could	be	embedded	in	an	HL7
message).	So,	sooner	or	later,	you	are	bound	to	come	across	the	&	symbol	in	the	body	of
an	HL7	message.

What	happens	if	these	characters	are	part	of	the	data?	Let’s	consider	an	example.

Ben	&	Jerry’s	Diagnostic	Center	sends	the	result	of	a	test	as	an	HL7	message	to	the
ordering	hospital.	The	hospital	system	receives	the	message	and	starts	reading	it	to	parse
the	 data	 (pull	 out	 field	 values)	 and	 save	 it	 to	 a	 database.	When	 the	 system	 gets	 to	 the
Sending	Facility	field	(MSH-4),	it	will	read	“Ben”	and	then	run	into	the	&	symbol.	At	that
point,	the	system	is	being	told	that	the	name	of	the	facility	has	a	sub-component.	Facility
names	 don’t	 have	 sub-components	 (if	 you	 check	 the	 segment	 attribute	 table),	 so	 in	 all
likelihood	the	system	doesn’t	have	a	corresponding	field	in	the	database	to	save	the	value
“Jerry’s	Diagnostic	Center”.

This	 is	a	recipe	for	application	failure.	Let’s	assume	this	 is	a	futuristic,	can-handle-
anything	kind	of	system,	but	even	then	the	system	is	only	saving	“Ben”	as	the	name	of	the
sending	facility,	which	is	incorrect.	The	doctor	reading	the	lab	report	will	see	that	“Ben”
sent	the	test	result.	I	don’t	know	how	much	faith	she	will	have	in	the	report.

So	what	do	we	do?	We	can’t	ask	Ben	&	Jerry’s	Diagnostic	Center	to	change	its	name.

This	 is	 where	 the	 escape	 character	 comes	 to	 the	 rescue.	 If	 characters,	 which	 have
special	meaning	in	HL7,	need	to	be	transmitted	as	part	of	the	data,	then	all	one	needs	to	do
is	replace	the	character	with	its	corresponding	escape	sequence.	The	system	reading	it	will

read	the	escape	sequence	and	replace	it	with	that	special	character	before	saving	it.

An	escape	sequence	is	nothing	more	than	one	or	more	characters	surrounded	by	the
escape	character	(\).	Every	special	character	in	HL7	has	a	corresponding	escape	sequence.
There	are	many	escape	sequences	for	formatting	and	highlighting	text,	and	you	can	even
create	custom	escape	sequences.

Here	are	the	escape	sequences	for	the	symbols	we	have	already	discussed:

Guess	how	Ben	&	 Jerry’s	Diagnostic	Center	will	 be	 encoded	 in	 an	HL7	message.	
You	will	replace	the	encoding	character	&	with	its	corresponding	escape	sequence	so	that
you	will	have	“Ben	\T\	Jerry’s	Diagnostic	Center”	encoded	in	the	message.	The	receiving
system	will	recognize	\T\	as	an	escape	sequence	and	replace	it	with	the	&	symbol	when
the	data	is	saved	locally.

MSH-3:		Sending	Application	&	MSH-4:	Sending	Facility

Fields	 three	and	four	are	optional,	but	 they	are	almost	always	populated	in	real	world
implementations.	They	contain	 the	name	of	 the	application	and	 the	 facility	 that	 sent	 the
message	 (the	 sending	 system).	 Often	 these	 fields	 are	 used	 as	 filter	 to	 process	 or	 route
messages	based	on	the	sending	application	and	facility.

For	an	example,	 if	Ben	&	Jerry’s	Diagnostic	Center	 is	 running	a	Meditech	 system,
then	the	sending	application	will	be		“Meditech”	in	MSH-3	and	the	sending	facility,	“Ben
&	Jerry’s	Diagnostic	Center”	(or	an	abbreviation	B&J	DIAG)	will	be	in	the	MSH-4	field.

MSH-5:		Receiving	Application	&	MSH-6:	Receiving	Facility

Fields	five	and	six	are	similar	to	fields	three	and	four	except	that	they	contain	the	name
of	 the	application	and	 the	facility	 that	 the	message	 is	being	sent	 to	(the	receiver).	These
fields	too	are	used	in	real	world	implementations	as	a	filter	to	route	or	process	messages
based	on	the	intended	recipient.

MSH-7:		Date/Time	of	Message

This	is	a	required	field.	It	captures	the	date	and	time	when	the	sending	system	created
the	message.	 In	 a	North	American	 context,	 the	 field	 is	 usually	 populated	 in	 the	 format
YYYYMMDDHHMM	(where	Y	=	year,	M	=	month	and	so	on).	Some	sites	go	to	a	higher
degree	of	precision	and	include	seconds	or	even	milliseconds	in	the	field.	HL7	allows	up
to	26	characters,	so	we	have	a	lot	of	room	here!

MSH-9:		Message	Type

Message	Type	 is	 a	 very	 important	 field	 and	 a	valid	value	 in	 this	 field	 is	 required	 for
every	message.	This	 is	 the	field	that	 tells	 the	receiving	system	the	type	of	message	it	 is.
Knowing	the	type	of	message	is	essential	for	a	system	to	be	able	to	read	the	message.

Without	this	information,	the	receiving	system	will	be	like	the	early	archeologists	in
Egypt.	They	had	no	idea	what	the	birds	and	the	eyes	in	hieroglyphs	meant.	It	wasn’t	until
the	Rosetta	 stone	was	 discovered	 by	Napoleon’s	 troops	 and	Champollion	 figured	 out	 a
way	to	read	it,	that	hieroglyphs	started	to	make	sense.	This	is	what	message	type	does	to
the	receiving	system.

The	message	 type	 field	has	 three	 components	–	Message	Type	 (MSH-9.1),	Trigger
Event	(MSH-9.2)	and	Message	Structure	ID	(MSH-9.3).	In	our	example,	this	field	has	the
value	ADT^A04.	Notice	something?	Only	the	first	two	components	are	there.	This	is	fine
because	the	third	component	 is	an	optional	component	and	usually	we	leave	it	empty.	If
you	want	to	know	the	Message	Structure	ID	of	a	message,	you	can	look	it	up	in	HL7	specs
where	the	abstract	message	structure	is	defined.	It’s	in	the	heading.

We	have	already	discussed	message	types	(MSH-9.1)	and	trigger	events	(MSH-9.2).
If	you	need	to	refresh,	they	are	in	Chapter	5.

MSH-10:		Message	Control	ID

The	purpose	of	 this	field	 is	 to	uniquely	identify	each	and	every	message.	Usually,	 the
value	 in	 this	 field	 is	 a	 unique	 number	 generated	 by	 the	 sending	 system.	 For	 each
subsequent	 message,	 the	 sending	 system	 increments	 this	 number	 by	 one	 to	 generate
another	unique	number.	Some	systems	also	attach	a	date	stamp	at	the	end	of	the	number	to
eliminate	any	chances	of	duplication.

Why	do	we	need	to	uniquely	identify	each	message?

When	 the	 receiving	 system	 gets	 the	 message,	 it	 has	 to	 send	 an	 acknowledgement
back	 to	 the	 sending	 system.	Acknowledgement	 tells	 the	 sending	 system	 if	 the	message
was	received	ok	and	if	it	can	move	on	or	whether	there	are	defects	in	the	message	and	it
needs	to	resend	it.	The	receiving	system	uses	the	Message	Control	ID	to	tell	the	sending
system	which	message	 it	 is	 talking	about.	And	that	 is	why	we	need	 to	uniquely	 identify
each	and	every	message.

Troubleshooting	is	another	reason	why	we	need	a	unique	ID	for	every	message.	At
the	time	of	debugging	and	testing,	MSH-10	is	an	invaluable	piece	of	information.	It	helps
track	down	an	individual	message	in	a	haystack	of	messages.

MSH-11:		Processing	ID

This	 is	 a	 required	 field,	 which	 contains	 a	 single	 character.	 It	 signals	 whether	 the
message	is	real	(production	in	techie	speak)	or	just	for	testing.	If	the	value	is	P,	it	signals
that	 it	 is	 a	 production	 or	 real	 message.	 If	 the	 value	 is	 T	 (Test/	 Training)	 or	 D
(Development)	then	it	is	a	test	message.

MSH-12:		Version	ID

This	is	another	required	field	that	is	of	interest	only	to	developers	and	interface	analysts.
This	 field	 contains	 the	 version	 number	 of	 HL7	 that	 the	 message	 conforms	 to.	 In	 our
example	this	value	is	2.5,	which	means	the	message	conforms	to	HL7	version	2.5.

MSH-15:	 Accept	 Acknowledgement	 Type	 &	 MSH-16:	 Application
Acknowledgement	Type

Remember	the	discussion	on	message	acknowledgement	in	chapter	5?	Even	if	you	do,
here’s	a	quick	recap.

There	 are	 two	 types	 of	 acknowledgement	messages	 –	 original	&	 enhanced.	 In	 the
original	 mode	 only	 one	 acknowledgement	 message	 is	 sent.	 It	 is	 sent	 by	 the	 receiving
application,	hence	its	name,	application	acknowledgement.

In	 the	 enhanced	 mode,	 two	 acknowledgement	 messages	 are	 sent.	 One	 is	 the
application	 acknowledgement	 and	 the	 other	 one	 is	 accept	 acknowledgement.	 Accept
acknowledgement	is	sent	when	the	receiving	system	has	successfully	saved	the	message	at
its	end.

In	other	words,	in	enhanced	mode,	when	the	receiving	system	accepts	the	delivered
message,	 it	 sends	 out	 an	 accept	 acknowledgement.	 It	 then	 sends	 the	 message	 to	 the
application,	 which	 does	 its	 own	 verification	 and	 sends	 out	 an	 application
acknowledgement.

Fields	MSH-15	and	MSH-16	act	like	switches	for	these	two	acknowledgement	types.
If	the	value	is	AL	in	MSH-15	then	the	receiving	system	is	supposed	to	“ALways”	send	an
accept	 acknowledgement.	 If	 the	 value	 is	 NE	 then	 it	 should	 “NEver”	 send	 an	 accept
acknowledgement.	The	same	codes	are	used	in	the	MSH-16	field,	only	this	time	it	pertains
to	the	application	acknowledgement	message.

For	most	 practical	 purposes,	 these	 fields	 are	 useless.	This	 is	 because	we	don’t	 use
enhanced	mode	of	acknowledgement	much.	Usually	people	just	leave	these	fields	empty,
which	means	original	mode.	If	you	want	to	use	the	enhanced	mode,	then	you	will	have	to
have	 AL	 in	 both	 the	 fields.	 If	 you	 just	 want	 to	 know	 that	 the	 message	 was	 received
successfully,	then	you	will	have	AL	in	MSH-15	as	in	our	example	message.

Event	Type	Segment	(EVN)
Event	 Type	 is	 a	 required	 control	 segment	 in	 many	 message	 types,	 such	 as	 patient

administration	(ADT)	and	financial	management	(BAR).	It	is	a	short	segment	with	seven
fields,	 only	 one	 of	 which	 is	 required.	 It	 has	 “good	 to	 know”	 kind	 of	 information	 but
nothing	critical.	But	 the	 segment	 is	 so	common	 in	HL7	messages	 that	 I	 felt	you	 should
know	about	it.

The	only	useful	 information	 this	 segment	has,	 in	my	opinion,	 is	 the	 time	when	 the
event	happened,	EVN-2.

Here	is	the	EVN	segment	from	the	example	message.
EVN|A04|201310201500|||ID221^Dude@Terminal

	

EVN-1:		A04		(Event	Type	Code)

EVN-2:		201310201500		(Recorded	Date/Time)

EVN-3:

EVN-4:

EVN-5:		ID221^Dude@Terminal		(Operator	ID)

EVN-6:

EVN-7:

This	example	is	very	typical	of	EVN	segments	in	the	real	world.	You	have	the	trigger
event	code	(A04)	in	the	first	field	even	though	it	is	not	required	and	is	a	repeat	from	MSH-
9.2.	 	And	then	 there	 is	 the	Recorded	Date/Time,	 the	only	required	field	 in	 this	segment.
Among	the	optional	fields,	EVN-1	and	EVN-5	are	generally	populated.

EVN-1:	Event	Type	Code

As	the	name	suggests,	this	field	holds	the	trigger	event	code.	It	is	a	duplicate	of	MSH-
9.2	and	retained	for	use	by	systems	using	older	versions	of	HL7.

You	will	 always	 find	 this	 field	populated.	This	 is	 because	EVN-1	used	 to	hold	 the
trigger	event	code	before	a	newer	version	of	HL7	came	along	and	moved	the	trigger	event
code	 to	MSH-9.2.	People	kept	populating	 the	value	 in	EVN-1	 to	maintain	compatibility
with	 older	 versions.	 	 Who	 wanted	 to	 come	 back	 and	 recode	 the	 interfaces!	 A	 little
duplication	didn’t	sound	like	a	big	price	to	pay	and	now	it’s	baked	in.

EVN-2:	Recorded	Date/Time

This	 is	 the	 only	 required	 field	 in	 this	 segment.	 It	 holds	 the	 date	 and	 time
(YYYYMMDDHHMMSS)	of	the	trigger	event.	To	use	our	example	message,	the	value	in
EVN-2	 is	 the	moment	 when,	 after	 filling	 out	 the	 form,	 the	 person	 at	 the	 desk	 hits	 the
submit	button	to	register	the	patient.

EVN-5:	Operator	ID

This	is	an	optional	field	that	holds	the	identifying	information	of	the	person	at	the	desk.
It	identifies	the	“dude”	at	the	terminal.	He	is	the	one	who	hit	the	submit	button	to	register
the	patient.	The	field	contains	his	employee	ID	and	name.

Now	you	know	where	to	look	if	you	want	to	find	out	who	did	the	registration.

Notes	&	Comments	Segment	(NTE)

NTE	is	a	general	purpose	segment.	As	 the	name	suggests,	 this	 is	a	segment	 for	notes
and	comments.	You	will	find	this	segment	peppered	all	over	the	place	in	order	and	report
messages.

If	 you	 look	 at	 the	 abstract	message	 structure	 of	 a	 general	 order	 (ORM^O01)	 or	 a
result	 (ORU^R01)	 message,	 you	 will	 find	 NTE	 at	 multiple	 places.	 And	 it	 is	 always
enclosed	between	square	and	curly	brackets;	it’s	always	optional	and	repeatable.

The	reason	this	segment	is	in	multiple	places	is	because	an	NTE	is	always	associated
with	 the	 segment	 it	 came	 after.	 If	 an	 NTE	 is	 after	 a	 PID	 segment,	 it	 holds	 notes	 &
comments	 about	 the	 patient.	 If	 it	 is	 after	 OBX	 segment	 (result)	 then	 it	 holds	 notes	 &
comments	about	the	result.

The	segment	itself	is	very	short.	It	only	has	four	fields,	which	are	all	optional.

NTE-1:	Set	ID	-	NTE

This	 field	 assigns	 a	 number	 to	 an	 NTE	 segment.	 	 NTE	 commonly	 repeats	 to
accommodate	long	comments	and	this	field	helps	 to	 identify	 individual	segments	 in	 that
comment.

Numbering	starts	at	1	and	increases	by	increments	of	one	until	that	comment	is	done.
The	next	 time	another	NTE	 is	used,	 the	numbering	 starts	 again	 from	1.	So	 if	 there	 is	 a
comment	 about	 the	 patient,	 it	 will	 have	 a	 bunch	 of	NTEs	 numbered	 1	 to	 n.	 If	 there	 is
another	group	of	NTEs	for	result,	they	too	will	be	numbered	1	to	n.

I	 have	 come	 across	 messages	 with	 beautifully	 formatted	 comments	 and	 dotted
borders.	They	really	grab	your	attention	in	a	sea	of	random	characters.	Who	says	techies
aren’t	artistic!

Let’s	consider	an	example.	Suppose	the	following	comments	were	to	be	included	in
an	order	message	for	a	blood	test:

Patient	comment	(after	PID)

The	patient	was	very	particular	about	his	breakfast.	He	consumed	an	orange	before	the
blood	was	drawn.

Order	comment	(after	OBR)

If	the	test	results	will	be	affected	because	of	consumption	of	a	citrus	fruit,	please	give	us
a	call.	We	will	cancel	this	order	and	create	another	one.

A	creative	sender	with	a	flair	for	design	could	send	the	comments	something	like	this:
PID|…….

NTE|1||––––––––––––––––––––––|

NTE|2||	The	patient	was	very	particular	about	his	breakfast|

NTE|3||	He	consumed	an	orange	before	the	blood	was	drawn|

NTE|4||––––––––––––––––––––––|

.

.

OBR|…..

NTE|1||––––––––––––––––––––––|

NTE|2|	If	the	test	results	will	be	affected	because	of	consumption|

NTE|3|	of	a	citrus	fruit,	please	give	us	a	call|

NTE|4||We	will	cancel	this	order	and	create	another	one|

NTE|5||––––––––––––––––––––––|

Notice	how	the	NTE	segments	are	numbered	1,2,3,4…	for	each	comment.	That	 is	 the
Set	ID	to	identify	individual	NTE’s	in	a	group.

NTE-3:	Comment

This	is	the	field	that	holds	the	actual	notes	&	comments	in	free-form	text.	You	can	even
format	the	text	(highlight	etc.)	by	including	appropriate	escape	sequences.

Acknowledgement	Control	Segments
A	general	acknowledgement	message	is	made	entirely	of	control	segments.	Of	course,

MSH	is	the	first	segment	in	the	message.	It	is	always	the	first	segment,	no	matter	what	the
message	type.	After	 that	you	have	MSA,	the	acknowledgement	segment	and	if	 there	are
errors,	 you	 will	 have	 ERR	 segments.	 That’s	 it.	 These	 are	 the	 only	 segments	 in	 an
acknowledgement	message.

HL7	does	allow	customized	acknowledgement	messages	but	in	real	life,	we	only	use
the	general	acknowledgement	message	with	its	simple	message	structure.

For	a	successful	message,	a	positive	acknowledgement	(ACK	in	short	form)	is	sent,
which	is	even	simpler	and	has	only	two	types	of	segments	-	MSH	&	MSA.	For	example,
MSH|^~\&|RECEIVER_APP|RCVD_BY|SENDER_APP|SENT_BY|201310201501||ADT^A04|
R_MSG_ID279|P|2.5|||AL

MSA|AA|	MSG_ID001|Got	your	message

For	an	unsuccessful	message,	a	negative	acknowledgement	 (NAK	in	short	 form)	 is
sent,	which	can	have	 three	 types	of	 segments	 (MSH,	MSA	&	ERR).	The	ERR	segment
can	repeat	if	there	is	more	than	one	error	to	report.

In	the	example	below	we	have	two	errors	to	report,	hence	two	ERR	segments.
MSH|^~\&|RECEIVER_APP|RCVD_BY|SENDER_APP|SENT_BY|201310201501||ADT^A04|
R_MSG_ID279|P|2.5|||AL

MSA|AE|	MSG_ID001|Can’t	read	this	message.

ERR||PID^5|101^Required	field	missing|E

ERR||PID^7|102^Data	type	error|E

Now,	 let’s	 look	 more	 closely	 at	 these	 control	 segments	 (MSA	 &	 ERR)	 in	 an
acknowledgement	message.

Message	Acknowledgement	Segment	(MSA)
MSA	 is	 a	 required	 segment	 in	 every	 acknowledgement	message.	This	 is	 the	 segment

that	holds	the	acknowledgement	code,	which	tells	you	if	the	receiver	was	able	to	process
the	message	or	not.

The	segment	has	six	fields,	out	of	which	only	the	first	two	are	required.	In	practice,
the	third	field,	which	is	optional,	is	also	populated.	The	last	three	are	always	empty.

MSA-1:	Acknowledgement	Code

When	people	look	at	acknowledgement	messages,	this	is	the	first	field	their	eyes	go	to.
The	first	field	of	the	MSA	segment	holds	the	all-important	acknowledgement	code.

The	acknowledgement	code	is	made	up	of	two	uppercase	letters.	If	the	value	is	AA
that	means	all	is	good.	For	error	messages,	we	have	two	codes	–	AE	and	AR.

AE	means	there	 is	a	problem	with	 the	message.	It	could	be	 its	content,	structure	or
something	else	but	most	probably	the	source	of	the	problem	is	the	sender.	If	it	is	AR,	then
that	means	there	is	some	other	system	level	problem,	such	as	disk	space	issues	or	a	power
failure.	 In	 this	 case,	 the	 source	of	 the	problem	could	be	 the	 receiver	and	most	probably
you	will	need	to	resend	the	message.

MSA-2:	Message	Control	ID

This	is	the	second	required	field	in	the	MSA	segment.	It	contains	the	Message	Control
ID	(MSH-10)	of	the	original	message.	If	you	remember,	the	message	control	ID	uniquely
identifies	a	message	and	by	including	it	here,	the	acknowledgement	message	is	indicating
that	this	acknowledgement	is	for	the	message	with	control	ID	in	MSA-2.

Let’s	 clarify	 this	with	 the	 help	 of	 an	 example	 below.	The	 original	message	 has	 its
control	 ID	 in	 MSH-10	 (MSG_ID001)	 and	 the	 same	 control	 ID	 is	 in	 MSA-2	 of	 the
acknowledgement	 message.	 Keep	 in	 mind	 though,	 that	 the	 acknowledgement	 message
also	has	its	message	control	ID	in	MSH-10	(R_MSG_ID279),	which	is	different	from	the
message	control	ID	of	the	original	message.

(Original	Message)
MSH|^~\&|SENDER_APP|SENT_BY|RECEIVER_APP|RCVD_BY|201310201500||ADT^A04|
MSG_ID001|P|2.5|||AL

	

(Acknowledgement	Message)
MSH|^~\&|RECEIVER_APP|RCVD_BY|SENDER_APP|SENT_BY|201310201501||ADT^A04|

R_MSG_ID279|P|2.5|||AL

MSA|AA|	MSG_ID001|Got	your	message

Without	this	ID,	there	is	no	way	for	the	sending	system	to	know	which	message	the
receiver	is	acknowledging.

MSA-3:	Text	Message

This	 is	 an	 optional	 field	 that	 can	 be	 used	 to	 send	 additional	 information	 like	 error
details.	Newer	versions	of	HL7	don’t	recommend	using	this	field.	We	have	a	brand	new
segment	(ERR)	to	provide	detailed	information	about	errors.

Error	Segment	(ERR)
The	ERR	segment	is	included	in	an	acknowledgement	message	when	there	is	an	error	to

report.	This	segment	is	used	to	provide	more	details	about	the	error	condition.

For	each	error	condition,	a	separate	ERR	segment	is	created.	In	the	example,	we	have
two	ERR	segments,	which	implies	there	were	two	issues	in	the	message.
ERR||PID^5|101^Required	field	missing|E

ERR||PID^7|102^Data	type	error|E

There	are	twelve	fields	in	this	segment.	Two	are	required	and	the	rest	are	optional.

ERR-2:	Error	Location

This	is	an	optional	field	but	it	almost	always	has	a	value.	It	identifies	the	segment	and
field	where	the	error	happened.

In	 our	 example,	 for	 the	 two	ERR	 segments,	 the	 values	 are	PID-5	 and	PID-7.	This
means	there	was	a	problem	with	the	“Patient	Name”	(PID-5)	field	and	the	“Patient	Date	of
Birth”	 (PID-7)	 field.	 It	 looks	 like	we	are	missing	 the	patient	name	and	 the	date	of	birth
was	sent	in	the	wrong	format.

ERR-3:	HL7	Error	Code

This	 is	 a	 required	 field	 that	 contains	 a	 three-digit	 error	 code.	HL7	 defines	 a	 table	 of
general	error	conditions	(in	HL7	spec)	with	a	code	number	for	each	condition.	The	value
in	 our	 example	 is	 from	 that	 table.	 For	 example,	 if	 a	 required	 field	 is	 missing	 in	 the
message,	then	the	value	in	ERR-3	is	101.

ERR-4:	Severity

This	is	another	required	field,	which	contains	a	single	character,	for	the	“error	severity”
code.	 There	 are	 only	 three	 values	 for	 this	 field,	 I	 (Information),	 W	 (Warning)	 and	 E
(Error).	Usually,	if	we	are	sending	error	information,	it	is	because	there	was	an	error.	No

one	bothers	with	information	and	warning	messages.	The	value	here	is	almost	always	E.

9.	Data	Segments
Now	we	 come	 to	 the	meat	 and	 potatoes	 of	HL7	messaging.	Data	 segments	 form	 the

body	of	an	HL7	message.	They	carry	patient	and	clinical	data,	the	thing	that	matters	the
most.	Rest	of	the	message	is	just	the	box,	styrofoam	packaging	and	the	shipping	label.

The	main	purpose	of	a	data	segment	 is	 to	group	 together	similar	data	 in	one	place.
For	example,	all	 the	 information	about	a	patient	 is	grouped	together	 in	a	segment	called
PID	 (Patient	 Identification	 segment).	 Actually,	 there	 are	 so	 many	 data	 fields	 about	 the
patient	that	there	is	one	more	segment,	PD1,	for	additional	patient	data.

Similarly,	 all	 patient	 visit	 information	 is	 in	 PV1,	 allergy	 info	 is	 in	AL1,	 insurance
information	is	in	IN1	and	so	on.	Each	segment	is	described	in	detail	in	the	HL7	spec.

There	 is	 another	 kind	 of	 data	 segment	 that	 you	will	 occasionally	 come	 across	 in	 a
message.	 These	 are	 locally	 defined	 segments	 or	what	we	 call	 Z	 segments.	 HL7	 allows
users	 to	define	 their	own	segment	 if	 they	want	 to	send	additional	 information	for	which
there	is	no	field	defined	by	HL7.	 	Unfortunately,	 this	is	a	much	abused	privilege.	I	have
come	across	messages	where	you	have	the	bare	minimum	mandatory	segments,	followed
by	rows	of	Z	segments	with	the	actual	data.

In	this	chapter,	we	will	look	at	some	of	the	most	commonly	used	data	segments.

There	are	close	to	150	data	segments	defined	in	the	HL7	spec.	Not	even	the	experts
are	expected	 to	know	about	all	of	 them.	It	 is	always	a	good	idea	 to	keep	the	HL7	specs
handy	so	whenever	the	need	arises,	you	can	quickly	look	up	a	particular	segment	and	its
details.

For	 a	 general	 understanding,	 you	 only	 need	 to	 know	 about	 a	 few	 of	 these	 data
segments.	The	80-20	rule	applies	to	data	segments	too.	Only	about	twenty	percent	of	data
segments	are	actually	used	in	eighty	percent	of	messages.	So	for	a	busy	professional	like
you,	it	makes	sense	to	invest	the	limited	time	you	have,	in	that	twenty	percent.

There	are	three	message	types	that	account	for	most	of	that	twenty	percent.
•	ADT	(Patient	Administration	–	Chapter	3)

•	ORM	(Order	Entry	–	Chapter	4)

•	ORU	(Observation	Reporting	–	Chapter	7)

	If	you	get	a	good	handle	on	these,	I’m	sure	you	can	handle	any	exotic	message	that
gets	 thrown	at	you.	The	HL7	spec	 is	your	 friend	and	don’t	 forget	 to	ask	 the	vendor	 for
their	 interface	 spec.	Between	 these	 two	documents,	 you	 can	 figure	out	 almost	 any	HL7
message.

ADT	(Patient	Administration)
Patient	Administration	messages	are	at	the	heart	of	HL7	messaging.		I	am	not	sure	how

they	came	to	be	known	as	ADT	messages,	probably	 it	 is	a	reference	to	 three	commonly
occurring	trigger	events	–	Admit,	Discharge	&	Transfer.

This	message	 type	 is	 all	 about	 the	 patient.	 Its	 primary	use	 is	 to	make	 sure	 various
systems	in	a	healthcare	organization	are	in	sync	with	patient	info,	such	as	the	patient	status
in	the	hospital,	contact	info,	medication,	allergies,	etc.

In	a	typical	healthcare	organization,	there	is	usually	an	EMR	or	a	registration	system
that	 manages	 patient	 records	 and	 updates	 other	 ancillary	 clinical	 systems	 through	HL7
ADT	messages.	It	is	through	these	messages	that	a	patient’s	status	and	information	is	kept
synchronized	across	the	organization	and	beyond.

From	 the	moment	 a	person	 starts	 interacting	with	 the	hospital,	HL7	messages	 start
getting	 generated	 in	 response	 to	 real	 world	 events	 (trigger	 events).	 	 This	 is	 how	 other
systems	always	have	the	latest	information	about	a	patient.

Let’s	consider	an	example.	A	person	walks	into	the	outpatient	unit	of	a	hospital.	The
first	thing	that	happens	is	patient	registration	at	the	front	desk.	This	real	world	event	is	a
trigger	event,	Event	A04	(Register	a	Patient).	When	it	happens,	the	system	automatically
generates	 an	ADT^A04	message	 to	 let	 other	 systems	know	 that	 a	new	patient	 has	been
registered	with	the	hospital.

Let’s	say	all	is	not	looking	well	for	the	patient	and	the	doctor	decides	to	keep	him	in
the	hospital	for	observation.	This	means	the	person	is	getting	admitted	to	the	hospital.	This
is	 another	 trigger	 event,	 Event	 A01	 (Admit/Visit	 Notification).	 This	 event	 will	 cause
another	HL7	message,	ADT^A01,	to	be	generated.	If	the	patient	is	getting	admitted	to	the
hospital,	it	means	he	will	need	a	bed,	a	nurse	will	be	assigned	for	care	and	medication	will
have	 to	 be	 ordered.	 All	 the	 ancillary	 systems,	 nursing,	 bed	 management,	 pharmacy,
finance,	 food	services	etc.	will	 receive	 the	ADT^A01	message,	so	 that	 they	know	about
this	new	patient	and	any	necessary	follow-up	action	can	be	taken	by	them.

The	next	day,	 the	patient	 is	doing	much	better	and	 the	doctor	 says	he	 is	 free	 to	go
home.	He	is	given	his	medication,	someone	arrives	to	take	him	home	and	he	is	discharged
by	 the	 administration	 system.	 This	 is	 another	 trigger	 event,	 Event	 A03	 (Discharge/End
Visit).	This	trigger	event	generates	an	HL7	message,	ADT^A03,	so	that	other	systems	can
update	 their	 records	 and	 close	 the	 patient	 account.	 We	 don’t	 want	 a	 situation	 where
someone	 is	 ordering	 controlled	 drugs	 from	 pharmacy	 on	 behalf	 of	 a	 patient	 who	 has
already	been	discharged!

This	 was	 a	 simple	 example.	 In	 real	 life,	 between	 registration	 and	 discharge,	 a
patient’s	record	can	undergo	a	lot	of	changes.	The	doctor	could	change,	the	patient	could
get	transferred	to	another	unit/bed	or	the	patient’s	contact	could	change.	All	these	changes
have	corresponding	trigger	events	that	generate	HL7	messages.	In	fact,	there	are	over	sixty
different	ADT	trigger	events,	everything	from	cancel	visit	to	delete	record.	But	there	is	no
reason	to	be	alarmed,	most	of	these	trigger	events	are	barely	used.	The	80-20	cornucopia
keeps	on	giving.	There	are	only	a	handful	of	ADT	trigger	events	that	are	commonly	used.

After	Registration	(A04),	Admit	(A01)	and	Discharge	(A03),	the	next	important	ADT
trigger	event	is	A08	(Update	Patient	Information).	This	event	is	triggered	whenever	there
is	a	change	in	the	patient	record.	An	“A	O	Eight”	(that’s	how	insiders	pronounce	A08)	is	a
very	heavily	used	ADT	message.

Then	 there	 are	 other	 ADT	 trigger	 events	 worth	 knowing	 -	 transfer	 patient	 (A02),
cancel	 admit	 (A11),	 cancel	 discharge	 (A13)	 and	 pre-admit	 (A05)	 are	 some	 of	 the

examples.

One	 very	 important	ADT	 trigger	 event	 is	 a	merge	 event.	 This	 occurs	 in	 situations
where,	 by	mistake,	 two	 patient	 records	 have	 been	 created	 for	 the	 same	 person	 and	 the
records	 have	 to	 be	 merged	 into	 one.	 Merge	 is	 a	 complex	 topic	 so	 we	 will	 address	 it
separately	in	the	next	chapter.

Although	each	ADT	trigger	event	generates	a	slightly	different	message,	if	you	look
at	 their	 message	 structure,	 you	will	 notice	 that	most	 ADT	messages	 follow	 a	 common
pattern.

After	 the	control	 segments	 (MSH,	EVN	etc.)	 in	 the	head	of	 the	message,	 the	body
starts	 with	 patient	 identification	 and	 related	 information	 (PID,	 PD1,	 NK1).	 This	 is
followed	 by	 information	 about	 patient	 visit	 (PV1,	 PV2)	 and	 then	 you	 have	 all	 kind	 of
other	segments	for	allergy,	diagnosis,	procedure,	insurance	etc.

Of	all	the	segments	in	ADT	messages,	PID	(Patient	Identification)	and	PV1	(Patient
Visit)	 are	 the	 two	most	 important	 data	 segments.	 	 These	 segments	 have	 a	 lot	 of	 fields
between	them	but	then	again,	the	80-20	rule	is	there	to	help.	Only	a	small	subset	of	fields
in	these	segments	is	commonly	used.

PID	–	Patient	Identification	Segment
The	PID	segment,	as	the	name	implies,	carries	information	about	the	patient.	It	is	one	of

the	most	frequently	used	segments	and	usually	appears	right	after	the	control	segments.

If	you	have	a	raw	HL7	message	and	you	want	to	find	out	the	details	of	the	patient,
you	 look	 in	 the	 PID	 segment.	 This	 is	where	 the	 patient’s	 name,	 age,	 address	 and	 other
demographic	 information	 is.	 There	 is	 another	 segment,	 PD1	 (Patient	 Additional
Demographic	segment),	for	additional	patient	information	but	that	segment	is	rarely	used,
if	ever.

Let’s	parse	the	PID	segment	from	our	example	message	and	look	at	its	fields.
PID|1||PAT416^^^HEALTH_ID||SEBELUS^KANSAS||194801150600|M|||123 SESAME 
ST^^TORONTO^ON^A1A 2B2^CANADA||(416)888-8088||ENGLISH|M||PAT_AC_721914

	

PID-1:		1	(Sequence	Number)

PID-2:

PID-3:		PAT416^^^HEALTH_ID		(Patient	Identifier	List)

PID-4:

PID-5:		SEBELUS^KANSAS		(Patient	Name)

PID-6:

PID-7:		194801150600		(Date/Time	of	Birth)

PID-8:		M		(Administrative	Sex)

PID-9:

PID-10:

PID-11:		123 SESAME ST^^TORONTO^ON^A1A 2B2^CANADA		(Address)

PID-12:

PID-13:		(416)888-8088		(Phone	Number	–	Home)

PID-14:

PID-15:		ENGLISH		(Primary	Language)

PID-16:		M		(Marital	Status)

PID-17:

PID-18:		PAT_AC_721914		(Patient	Account	Number)

PID	segment	has	thirty	nine	fields	but	only	two	are	mandatory,	PID-3	(Patient	ID)	&
PID-5	(Patient	Name).	All	the	other	fields	are	optional.	In	the	example	segment	we	chose
not	to	send	any	information	after	field	eighteen.	That’s	why	the	segment	ends	at	PID-18
and	implies	that	the	remaining	fields	are	empty.

PID-2	/	PID-3	/	PID-4:	Patient	Identifier	Fields

Patient	identifier	is	a	very	important	field	for	healthcare	applications.	Usually,	the	field
holds	 the	MRN	 (medical	 record	 number),	which	 is	 assigned	 to	 a	 patient	 at	 the	 time	 of
registration.	But	 there	 are	 other	 identifiers,	 such	 as	 billing	 account	 number,	 health	 card
number	or	SSN	that	can	be	used	to	uniquely	identify	a	patient.

There	are	three	fields	for	patient	identifier	in	the	PID	segment	but	only	one,	PID-3,	is
commonly	 used.	Both	PID-2	 and	PID-4	 are	 deprecated,	meaning	 they	 continue	 to	 exist
only	 to	 support	 older	 versions	 of	HL7.	 So	 you	will	 see	 a	 value	 in	 PID-2	 or	 4	 only	 for
applications	that	were	implemented	in	the	past.

PID-3	is	an	important	field.	It	is	mandatory,	so	you	can’t	leave	this	one	empty.	It	is
also	 a	 repeating	 field,	 meaning	 you	 can	 send	 multiple	 patient	 identifiers	 in	 PID-3.	 Of
course,	the	identifiers	will	have	to	be	separated	by	the	repetition	delimiter	(~).	An	example
would	look	something	like	this:	PAT416^^^HEALTH_ID~999-99-9999^^^SSN.

Another	thing	to	know	about	this	field	is	that	it	is	a	compound	field.	There	can	be	up
to	 ten	 components	 in	 this	 field	 but	 we	 don’t	 have	 to	 worry	 about	 that.	 Usually	 only
component	1	(ID	number)	and	4	(Assigning	Authority)	are	valued.	That’s	why	the	value	in
the	 example	 looks	 like	 PAT416^^^HEALTH_ID.	 Component	 1	 (ID)	 is	 PAT416	 and
component	4	(assigning	authority)	is	HEALTH_ID.	This	is	the	health	card	number	of	the
patient.

PID-5:	Patient	Name

This	 is	 another	 mandatory	 field	 and	 a	 compound	 field	 that	 has	 way	 too	 many
components.	 HL7	 went	 overboard	 here.	 In	 addition	 to	 the	 usual	 first,	 middle	 and	 last
names,	they	have	defined	components	for	prefix,	suffix,	degree,	surname	from	partner…
it’s	a	long	list.

In	practice,	we	only	populate	the	first	three	components,	last	name,	first	name	and	the
middle	name.	In	our	example,	we	have	only	populated	the	first	two,	last	and	first	name.	It

is	not	uncommon	to	add	MD	or	whatever	other	degree	a	doctor	has,	to	her	name.		Degree
is	 the	 sixth	 component	 so	 there	 will	 be	 a	 lot	 of	 carets	 in	 the	 field,	 something	 like
PAYNE^TRACY	^^^^MD.

PID-7	/	PID-8:	Patient	Date	&	Time	of	Birth	and	Sex

Although	 these	 fields	 are	 optional,	 they	 almost	 always	 have	 a	 value.	 PID-7	 (Date	&
Time	 of	 Birth)	 is	 in	 the	 TS	 (timestamp)	 format	 so	 the	 field	 value	 is	 sent	 as
YYYYMMDDHHMM.	If	time	is	not	available,	only	the	date	of	birth	(YYYYMMDD)	is
sent.

PID-8	represents	the	sex	of	the	person.	This	field	can	only	have	one	character.	M	is
for	male,	F	for	female	and	U	is	for	unknown.	If	sites	want	to	define	their	own	codes,	they
are	free	to	do	so	but	they	will	have	to	make	sure	that	both	the	sending	and	the	receiving
systems	are	referring	to	the	same	set	of	codes.	Otherwise,	there	will	be	a	message	failure
and	a	big	headache	for	implementers.

PID-11	/	PID-13	/	PID-14:	Patient	Address	&	Phone	Number

These	fields	hold	the	contact	information	of	the	patient	and	are	usually	populated.	All
three	are	repeating	fields	so	there	can	be	multiple	addresses	and	phone	numbers.

In	 the	 example	 above,	we	also	have	values	 in	 the	PID-15	 (Primary	Language)	 and
PID-16	 (Marital	 Status)	 fields.	 These	 fields	 are	 used	 to	 send	 additional	 demographic
information	about	the	patient.	It	all	depends	on	the	information	collected	by	the	healthcare
facility	and	varies	from	one	organization	to	the	next.

PID-18:	Patient	Account	Number

Although	 this	 field	 is	 defined	 as	 optional,	 in	 my	 experience,	 this	 field	 is	 always
populated.	This	is	the	financial/billing	account	number	to	which	all	expenses	and	charges
for	patient	care	are	assigned.	 	Even	in	 jurisdictions	where	you	have	universal	healthcare
(like	 in	 Canada),	 the	 patient	 account	 number	 is	 populated	 and	 used	 for	 reporting	 and
tracking	expenses.

PV1	–	Patient	Visit	Segment
This	is	another	very	important	and	extensively	used	data	segment.	It	carries	information

about	a	patient’s	visit	 to	a	healthcare	facility	(which	clinicians	refer	 to	as	an	encounter).
Fields	in	this	segment	include	type	of	patient	(inpatient/outpatient),	admitting	doctor,	date
of	admission,	location	of	bed	etc.	In	all,	there	are	fifty	two	fields	in	this	segment.

PV1	 follows	PID	 in	 the	body	of	 the	message	 and	 is	 usually	 a	mandatory	 segment.
Let’s	parse	PV1	from	the	example	message	and	look	at	some	of	the	important	fields.

PV1|1|O|ROOM10^BED12^OUTPATIENT|ELECTIVE|||S21195^DRIKOFF^FRANCIS^^^DR
^MD||C90023^PAYNE^TRACY^^^DR^MD|SUR||||1|||S21195^DRIKOFF^FRANCIS^^^DR
^MD||37323|SELF||||||||||||||||||||||||201310201500

	

PV1-1:		1		(Sequence	Number)

PV1-2:		O		(Patient	Class)

PV1-3:		ROOM10^BED12^OUTPATIENT		(Assigned	Patient	Location)

PV1-4:		ELECTIVE		(Admission	Type)

PV1-5:

PV1-6:

PV1-7:		S21195^DRIKOFF^FRANCIS^^^DR^MD		(Attending	Doctor)

PV1-8:

PV1-9:		C90023^PAYNE^TRACY^^^DR^MD		(Consulting	Doctor)

PV1-10:		SUR		(Hospital	Service)

PV1-11:

PV1-12:

PV1-13:

PV1-14:		1		(Admit	Source)

PV1-15:

PV1-16:

PV1-17:		S21195^DRIKOFF^FRANCIS^^^DR^MD		(Admitting	Doctor)

PV1-18:

PV1-19:		37323		(Visit	Number)

PV1-20:		SELF		(Financial	Class)

PV1-21:

…	.

PV1-44:		201310201500		(Admit	Date/Time)

PV1-45:

PV1-46:

…	.

There	is	only	one	required	field	in	this	segment,	PV1-2.	But	a	number	of	other	fields
are	usually	populated.	Fields	populated	in	the	example	above	are	a	good	approximation	of
real	 life	 messages.	 	 There	 could	 also	 be	 one-off	 cases,	 where	 a	 rarely	 used	 field	 is
populated.

Once,	I	came	across	a	message	where	PV1-16	was	valued	and	I	didn’t	know	what	it
was	 for.	This	 field	 is	 for	 flagging	VIP	 patients.	 It	 is	 there	 for	 health	 records	 of	 famous
people	and	situations	where	the	clinical	staff	might	have	more	than	a	professional	level	of
interest	in	the	patient’s	medical	history.

Remember	 when	 George	 Clooney	 had	 a	 motorcycle	 accident	 in	 New	 York	 and
showed	up	at	a	local	hospital.	A	lot	of	staff,	especially	women,	were	concerned	about	this
patient	in	emergency,	and	were	checking	his	records	to	make	sure	everything	was	all	right.
God	knows	why	the	media	started	screaming	about	breach	of	privacy.

PV1-2:	Patient	Class

This	is	the	only	required	field	in	the	PV1	segment.	It	contains	a	single	letter,	the	code
for	the	type	of	patient.

HL7	doesn’t	define	a	standard	list	of	codes	for	the	type	of	patient,	although,	there	is	a
suggested	list.	A	facility	can	use	this	suggested	list	or	create	its	own	custom	list	and	share
it	with	systems	receiving	the	message.

Some	commonly	used	codes	are	-	I	(Inpatient)	for	patients	staying	at	the	hospital,	O
(Outpatient)	 for	patients	who	are	 just	visiting	for	a	consultation,	dialysis	or	checkup	but
are	not	going	to	spend	the	night	at	the	hospital	and	E	(Emergency)	for	patients	who	came
through	the	emergency	department.

PV1-3	/	PV1-6	/	PV1-11:	Patient	Location

These	fields	contain	a	patient’s	location	in	the	hospital.	For	outpatients,	the	field	stays
empty	 but	 for	 those	 who	 are	 inpatients,	 PV1-3	 contains	 their	 current	 location	 in	 the
hospital.	 If	 the	patient	was	moved	from	another	 location,	 that	prior	 location	 is	 in	PV1-6
and	if	the	patient	is	in	a	temporary	bed,	then	that	goes	in	PV1-11.	Not	all	fields	are	always
populated.	Usually	only	PV1-3	is	valued	(current	location).

These	 location	 fields	 are	 large	 and	 complicated.	 Each	 one	 is	 made	 up	 of	 eleven
components	 and	 some	 of	 the	 components	 themselves	 are	 made	 up	 of	 subcomponents.
However,	 the	 80-20	 rule	 is	 here	 to	 save	us.	Usually,	 only	 the	 first	 four	 components	 are
valued.	The	first	component	is	for	the	nursing	station/unit,	the	second	component	is	for	the
bed,	the	third	component	is	for	the	room	and	the	fourth	one	is	for	the	facility/site.	Together
they	are	enough	to	pinpoint	a	patient’s	location	in	a	hospital.

Patient	 location	is	an	important	field	and	used	by	many	different	clinical	systems.	I
remember	it	being	used	in	an	Infection	Control	system	to	track	the	movement	of	patients
who	had	antibiotic	resistant	infections	(MRSA).

PV1-7	/	PV1-8	/	PV1-9	/	PV1-17	/	PV1-52:	Doctors	&	Other	Healthcare	Providers

These	 fields	 contain	 the	 identifying	 information	 of	 doctors	 and	 other	 healthcare
providers	who	are	caring	for	or	were	involved	in	the	care	of	the	patient.	PV1-7	is	for	the
attending	doctor,	PV1-8	is	for	the	referring	doctor,	PV1-9	is	for	doctor(s)	consulted	on	the
case,	PV1-17	is	for	the	doctor	who	admitted	the	patient	(inpatient)	and	PV1-52	is	for	other
healthcare	providers	 like	nurses	and	physiotherapist	who	are	 involved	 in	 the	care	of	 the
patient.

These	 fields	 too	 are	 complicated	 compound	 fields	 but	 only	 a	 few	 components	 are
used.	 The	 first	 component	 is	 the	 “ID	 Number”	 and	 it	 is	 used	 to	 uniquely	 identify	 the
doctor.	In	Toronto,	every	doctor	has	a	unique	CPSO	(College	of	Physicians	and	Surgeons
of	Ontario)	 number,	which	 is	 often	 used	 as	 the	 ID	 number.	But	 you	 can	 use	 a	 local	 or
internal	ID.	As	long	as	the	number	uniquely	identifies	a	doctor,	it	is	good	to	go.

Second	to	seventh	components	of	the	field	are	for	the	doctor’s	name.	I	would	always
populate	the	sixth	and	the	seventh	component	with	DR	and	MD	respectively.	After	all,	it
takes	years	of	toil	to	acquire	those	letters,	so	the	least	I	could	do	was	make	sure	it	was	part
of	the	doctor’s	name.

The	 ninth	 component	 of	 the	 field	 is	 for	 the	 organization	 that	 assigned	 the	 “ID
number”	 (first	 component)	 to	 the	doctor.	So	 if	 the	CPSO	number	were	being	used	 then
“CPSO”	would	go	in	this	field.

PV1-19:	Visit	Number

Every	 patient	 visit	 to	 a	 healthcare	 facility	 is	 assigned	 a	 unique	 number	 called	 a	 visit
number.	This	field	holds	that	number.	Before	we	answer	why	we	need	to	assign	a	unique
ID	to	every	patient	visit,	you	need	to	know	how	healthcare	records	are	organized.

Healthcare	 records	 are	 organized	 in	 a	 hierarchy.	 At	 the	 top	 is	 the	 patient	 record,
which	 is	 identified	by	 the	PID-3	 (Patient	 Identifier)	 field.	For	each	patient	 record,	 there
could	be	one	or	more	accounts,	which	are	identified	by	an	account	number.	These	account
numbers	are	found	in	the	PID-18	(Patient	Account	Number)	field.	An	account	number	is
used	 for	billing	purposes	 to	which	all	patient	expenses	are	charged.	Each	account	could
have	one	or	more	patient	visit	(PV1-19)	fields	associated	with	it.	So	for	a	recurring	visit
like	dialysis	or	physiotherapy,	you	can	have	a	dedicated	account	to	which	all	related	visits
are	billed.		And	for	one-off	visits,	such	as	an	emergency,	you	have	a	separate	account,	both
under	the	same	patient	record.

Now	 to	 the	 question	why	we	 need	 to	 assign	 a	 unique	 ID	 to	 every	 patient	 visit.	A
patient	 visit	 can	 lead	 to	 an	 order	 for	 a	 lab	 test,	 medication	 or	 some	 other	 service.	 By
having	a	unique	ID	for	every	visit,	it	is	easier	to	track	orders	by	the	visit	number.	A	visit
number	also	makes	it	easier	to	merge	patient	records.

This	is	an	important	field	and	it	is	almost	always	populated.

PV1-44	/	PV1-45:	Admit	&	Discharge	Date/Time

These	fields	are	used	to	capture	the	date	and	time	of	patient	admittance	and	discharge.
They	are	obviously	used	 for	 inpatient	visits	but	 are	 sometimes	also	used	 for	 emergency
patients	and	outpatients.

Order	Message	-	Order	Entry
It	is	time	to	turn	our	attention	to	another	important	group	of	HL7	messages	called	order

messages.	Their	details	are	in	Chapter	4	of	the	HL7	spec.

We	call	 them	order	messages	because	messages	 in	 this	group	are	used	 to	order	 for
supplies	 and	 services.	 It	 is	 only	 because	 of	 these	 messages	 that	 a	 system	 is	 able	 to
electronically	 request	medication	 from	pharmacy,	 order	 a	 lab	 test,	 or	 request	 a	 patient’s
meal	through	the	TV.

The	 HL7	 spec	 defines	 an	 all-purpose	 order	 message	 type	 called	 a	 General	 Order
message	ORM^O01.	This	message	 type	can	be	used	 to	place	different	 types	of	orders	 -
medication,	lab	test,	supply	etc.

ORM^O01	has	two	very	important	segments	-	a	Common	Order	Segment	(ORC)	and
an	Order	Detail	Segment.	ORC	is	straightforward	and	we	cover	it	in	detail	further	below.

The	Order	Detail	segment	changes	with	the	type	of	order	being	placed.	Usually,	it	is
an	 OBR	 (Observation	 Request	 segment),	 but	 for	 diet	 orders,	 it	 changes	 to	 ODS,	 for
pharmacy,	to	RXO	and	for	supply	orders	it	 is	RQD.	This	is	necessary	to	account	for	the
unique	information	needed	by	different	order	types.

Things	changed	after	version	2.3.	Specialized	order	messages	with	a	fixed	message
structure	 were	 created.	 These	 were	 OMG^O19	 for	 clinical	 orders,	 OML^O21	 for	 lab
orders,	OMD^O03	for	diet	orders,	RDE^O11	for	pharmacy	orders,	and	so	on.

It	was	 recommended	 that	 these	 specialized	order	messages	 be	 used	going	 forward,
but	ORM^O01	is	such	a	widely	used	and	entrenched	message	type	that	it	continues	to	be
the	dominant	and	most	important	order	message.	If	you	learn	about	only	ORM^O01	and
OBR	segment,	it	will	take	probably	care	of	80%	of	cases.	For	others,	you	can	always	turn
back	to	the	HL7	spec.

Before	we	 take	a	closer	 look	at	 segments	ORC	and	OBR,	 let’s	get	 some	 important
concepts	out	of	the	way.

Placer	/	Filler

Whenever	 an	 order	 is	 being	 placed	 for	 supplies	 and	 services,	 there	 are	 at	 least	 two
systems	involved	in	the	transaction.	The	system	that	places	the	order	and	the	system	that
fills	 the	 order	 (or	 provides	 the	 service).	 In	HL7	 parlance,	 a	 “Placer”	 is	 the	 system	 that
places	 the	 order	 and	 a	 “Filler”	 is	 the	 system	 that	 fulfills	 the	 order	 or	 provides	 the
services/supplies.

Suppose	a	physician	enters	an	order	for	a	blood	test	in	the	HIS	(hospital	information
system),	which	converts	 that	order	 into	an	HL7	message	and	sends	it	 to	 the	lab	system.	
Here	the	HIS	is	the	“placer”	and	the	lab	system,	which	fills	the	order,	is	the	“filler”.

It	is	not	necessary	for	the	placer	and	the	filler	to	be	separate	systems;	they	can	be	the
same	system.	For	example,	when	an	order	is	placed	internally	within	a	department.

Every	time	an	order	 is	created,	 the	placer	assigns	 it	a	unique	number	(Placer	Order
Number)	before	sending	it	to	the	filler.	When	the	filler	receives	the	order,	it	also	assigns	a
unique	number	to	the	order	(Filler	Order	Number)	before	any	further	processing	is	done.
These	 numbers	 are	 very	 important	 and	 you	 will	 often	 need	 them	 for	 tracking	 and
debugging	order	messages.

Order	Control

Not	every	order	goes	through	the	same	process.	An	order	could	be	modified,	cancelled,
or	put	on	hold.	To	account	for	all	these	different	situations,	ORC	has	an	order	control	field

(ORC-1)	to	communicate	the	current	status	of	the	order	to	the	filler.

When	 the	 placer	 first	 creates	 an	 order,	 the	 status	 of	 the	 order	 is	 set	 to	 NW	 (New
Order).	Subsequently,	 if	 that	order	needs	 to	be	cancelled,	 the	placer	sends	another	order
message	with	the	same	placer	number	as	that	of	original	order	but	the	status	is	set	to	OC
(Order	Cancelled).

When	the	filler	reads	this	second	message,	it	will	go	ahead	and	cancel	the	order	in	its
system.	After	 cancellation,	 an	acknowledgement	with	 the	order	 status	CR	 (Cancelled	as
Requested)	is	sent	back.

There	are	a	lot	of	codes	for	order	statuses	and	they	are	all	there	in	Chapter	4	of	the
HL7	 spec.	 Just	 to	 give	 you	 a	 taste,	 if	 the	 filler	 is	 not	 able	 to	 cancel	 the	 order,	 because
maybe	 the	 test	has	already	been	performed,	 it	will	 send	back	an	acknowledgement	with
code	UC	(Unable	to	Cancel).

Segment	Rules

The	 way	 ORC	 and	 Order	 Detail	 segments	 (OBR,	 ODS,	 RXO	 etc.)	 show	 up	 in	 a
message	 can	 be	 confusing	 at	 times.	 But	 there	 are	 rules	 and	 if	 you	 know	 them,
understanding	 the	 occurrence	 of	 these	 segments	 in	 a	 message	 becomes	 pretty
straightforward.

For	the	sake	of	simplicity,	we	will	use	OBR	for	order	detail	segment.

Both	ORC	and	OBR	contain	details	of	 an	order	 and	 there	 are	many	 fields	 that	 are
common	between	 these	 two	 segments.	A	 rule	of	 thumb	with	 these	overlapping	 fields	 is
that	the	value	in	ORC	always	overrides	the	value	in	OBR.

The	 best	way	 to	 distinguish	 between	 these	 segments	 is	 to	 see	ORC	 as	 the	 control
segment	 and	OBR	 as	 the	 data	 segment.	Yes,	 they	 are	 both	 data	 segments	 but	 from	 the
perspective	of	an	order,	ORC	contains	only	the	meta-data	of	an	order,	such	as	the	status	of
the	order,	placer	 ID	and	 filler	 ID.	OBR,	on	 the	other	hand,	contains	actual	order	details
like	what	is	being	ordered	and	the	details	of	the	specimen	(blood,	urine	etc.).

For	a	new	order,	you	need	an	ORC/OBR	pair	to	define	the	complete	order.	An	ORC
will	spell	out	all	the	meta-data	information	and	the	OBR	will	contain	the	actual	details	of
the	order.	However,	for	cancellation	of	an	existing	order,	there	is	no	need	for	an	OBR.	Just
an	ORC	with	the	cancel	(CA)	status	is	enough.

There	is	another	thing	to	keep	in	mind	about	order	messages.	A	single	HL7	message
can	have	more	than	one	order.	It	will	just	have	more	than	one	occurrence	of	an	ORC/OBR
pair	 or	 multiple	 ORC	 segments	 (for	 the	 case	 where	 more	 than	 one	 order	 is	 being
cancelled).

Let’s	take	a	look	at	these	segments	now.

ORC	–	Common	Order	Segment
As	 mentioned	 earlier,	 an	 ORC	 segment	 is	 like	 the	 control	 segment	 of	 an	 order.	 It

contains	meta-data	 information	 about	 the	 order	 and	 is	 required	 in	 every	 order	message.
There	 are	 thirty	 fields	 in	 this	 segment	 but	 as	 you	must	 have	 guessed,	 not	 everything	 is
used.

ORC-1:	Order	Control

This	is	the	only	required	field	in	the	ORC	segment	and	it	is	the	most	important	field.	It
contains	a	two	character	“control	code”	to	determine	the	status	of	the	order.	There	are	too
many	 order	 control	 codes	 so	 I	 am	 just	 going	 to	 list	 the	 three	 categories	 that	 they	 are
grouped	under.

•	Request	from	Placer	(New	Order	-	NW,	Cancel	Order	-	CA	etc.)

•	Acknowledgement	from	Filler	(Order	Accepted	-	OK,	Cancelled	as	Requested	-	CR
etc.)

•	Notification	from	filler	(Order	Cancelled	-	OC,	Unable	to	Cancel	-	UC	etc.)

ORC-2	&	ORC-3:	Placer	Order	Number	/	Filler	Order	Number

ORC-2	(Placer	Order	Number)	is	the	unique	order	number	assigned	by	the	placer	of	the
order.	 This	 field	 is	 duplicated	 in	 the	 OBR	 segment	 (OBR-2).	 Either	 the	 ORC-2	 or	 the
OBR-2	should	always	be	valued.	Both	of	them	cannot	be	empty.	However,	it	is	all	right	if
both	fields	are	populated,	as	long	as	they	have	the	same	value.

Similarly	ORC-3	(Filler	Order	Number)	is	the	unique	order	number	assigned	by	the
filler	system.	This	field	also	has	a	duplicate	in	the	OBR	segment	(OBR-3)	and	if	it	is	not
valued	in	the	ORC,	then	it	should	be	populated	in	the	OBR.

ORC-7:	Quantity/Timing

This	field	is	not	used	anymore.	Two	new	segments,	TQ1	and	TQ2	have	taken	over	the
role	 of	 defining	 the	 amount	 of	 medication,	 the	 frequency,	 the	 interval,	 the	 duration	 of
administration	and	other	details	of	an	order.

These	 details	 become	 important	 for	 orders	 that	 involve	 activities	 like	 dispensing
medication,	making	observations	or	collecting	specimens.

The	field	is	duplicated	in	the	OBR	segment	(OBR-27).

ORC-12:	Ordering	Provider

This	 field	 contains	 the	 identifying	 information	 of	 the	 doctor/healthcare	 provider	who
placed	 the	 order.	 It	 is	 duplicated	 in	 the	OBR	 segment	 (OBR-16)	 and	 should	 always	 be
valued.	 If	 it	 is	 not	 present	 in	 the	 ORC,	 then	 it	 should	 definitely	 be	 there	 in	 the	 OBR
segment.

ORC-21,	22,	23:	Ordering	Facility’s	Contact	Information

These	fields	are	optional.	They	contain	the	name,	address	and	the	phone	number	of	the
organization	 that	 placed	 the	 order.	 In	 other	 words,	 it	 contains	 the	 placer’s	 contact
information.	These	fields	become	relevant	if	the	order	is	going	to	an	external	organization
for	processing,	for	example	a	private	lab.

OBR	–	Order	Detail	Segment
There	are	many	different	flavors	of	order	detail	segment	but	the	most	common	flavor	is

the	OBR	segment,	which	we	will	discuss	here.	It	is	used	extensively	in	lab,	radiology	and
other	general	order	messages.

An	OBR	can	be	seen	as	a	bridge	segment	between	order	and	 result	messages.	 It	 is
like	the	requisition	form	that	goes	with	an	order	and	comes	back	signed	and	filled	with	the
result.

Some	 important	 fields	 in	 the	 OBR	 segment,	 from	 the	 placer	 point	 of	 view,	 are
discussed	below.

OBR-2	&	OBR-3:	Placer	Order	Number	/	Filler	Order	Number

As	discussed	earlier,	OBR-2	(Placer	Order	Number)	is	a	duplicate	of	the	ORC-2	field.	It
holds	the	unique	placer	order	number.

Similarly,	 OBR-3	 (Filler	 Order	 Number)	 is	 the	 unique	 filler	 order	 number.	 It	 is	 a
duplicate	of	the	ORC-3	field.

OBR-4:	Universal	Service	Identifier

This	 is	 the	 most	 important	 field	 in	 an	 order	 message.	 It	 is	 a	 required	 field	 and	 is
mandatory	 because	 it	 holds	 the	 order	 code	 for	whatever	 is	 being	 ordered.	Without	 this
code,	filler	won’t	know	what	the	order	is	for.

OBR-7	&	OBR-8:	Observation	Date/Time	&	Observation	End	Date/Time

These	 fields	 are	 relevant	 only	 in	 situations	where	 a	 sample	 is	 being	 collected	 for	 an
order	(blood	for	a	blood	 test)	or	an	observation	 is	being	 taken	(body	temperature,	blood
pressure,	 etc.).	 If	 the	 observation	 is	 taken	 over	 a	 period	 of	 time,	 then	 both	OBR-7	 and
OBR-8	are	populated.	For	 cases	 that	 are	 a	 single	point	 in	 time,	 such	 as	getting	 a	blood
sample,	then	only	OBR-7	is	populated.

OBR-16:	Ordering	Provider

This	 field	 contains	 the	 identifying	 information	 of	 the	 doctor/healthcare	 provider	who

placed	 the	order.	 It	 is	a	duplicate	of	ORC-12.	The	ordering	provider	 information	should
always	be	present	 in	 an	order	message.	 If	 it	 is	 not	present	 in	 the	ORC	segment,	 then	 it
should	definitely	be	valued	in	the	OBR	segment	(OBR-16).

OBR	segment	has	many	other	important	and	commonly	used	fields,	such	as	OBR-22
(Result	Status	Change	Date/Time)	and	OBR-25	(Result	Status)	but	they	are	populated	by
the	 filler	 system	 and	 sent	 back	 with	 the	 result	 message.	We	 discuss	 them	 in	 the	 result
message.

Result	Message	–	Observation	Reporting
Result	messages	 complete	 the	 communication	 loop	 between	 the	 placer	 and	 the	 filler

applications.	Earlier,	we	saw	order	messages	being	used	by	placers	to	electronically	order
for	supplies	and	services.	Many	of	these	orders	generate	observations	and	results	that	the
filler	sends	back	to	the	placer.	HL7	messages	that	carry	these	results	are	known	as	result
messages.

Unlike	 orders,	 there	 is	 just	 one	 type	 of	 result	 message,	 ORU^R01	 (Unsolicited
Observation	Message).	 This	 message	 type	 is	 used	 extensively	 for	 sending	 all	 kinds	 of
results	 -	 lab	 results,	 patient	 observations,	 clinical	 reports	 and	 many	 others.	 There	 is
another	 type	of	result	message,	OUL^R21,	for	automating	lab	systems,	but	I	have	never
seen	it	used.	We	don’t	need	to	waste	time	on	it.

The	result	message	is	covered	in	detail	in	Chapter	7	of	the	HL7	spec.	It	uses	many	of
the	 same	 segments	 used	 by	 other	message	 types	 	 (PID,	 PV1,	ORC	 and	OBR)	 but	 also
defines	a	very	important	segment,	the	OBX	(Observation/Result	Segment).	OBX	segment
is	for	the	data	in	a	result.

To	get	a	good	handle	on	the	result	message,	you	will	need	to	know	how	results	are
organized	in	an	HL7	message.

There	 are	 two	 ways	 in	 which	 a	 result/observation	 is	 reported	 through	 HL7.	 Text
oriented	reports	(Narratives)	and	structured	reports.	Text	oriented	reports	are	formatted	for
human	 readability,	 so	 they	 are	 like	 a	 paper	 report	 with	 sentences	 and	 paragraphs.
Structured	reports,	on	the	other	hand,	are	meant	for	processing	by	the	software.	Here,	the
content	of	the	report	is	distributed	within	the	fields	of	the	segments.

Both	structured	and	text	oriented	reports	are	sent	as	ORU^R01	messages	and	follow
the	same	message	structure.	The	difference	lies	in	the	way	OBX	segments	are	populated.
We	will	look	at	this	difference	when	we	discuss	OBX	segment.

Information	 in	 a	 result	 message	 is	 organized	 in	 a	 hierarchy.	 At	 the	 top	 of	 the
hierarchy	is	the	patient,	which	is	represented	by	the	PID	segment.	Each	patient	(PID)	can
have	one	or	more	result	(OBR)	in	the	message.

The	OBR	 segment	 acts	 like	 the	 report	 header.	 It	 contains	 attributes	 common	 to	 all
results	 in	 a	 set	 of	 tests.	 For	 those	who	 don’t	 know,	 lab	 tests	&	 diagnostics	 are	 usually
ordered	as	a	set	(or	a	battery	or	a	panel)	of	many	separate	tests.	When	a	doctor	orders	for
the	“vitals”	of	a	patient,	what	she	is	asking	for	is	the	blood	pressure,	pulse	and	temperature
of	 the	 patient.	 An	 order	 for	 an	 “electrolytes	 panel”	means	 a	 blood	 test	 to	measure	 the

levels	 of	 sodium,	 potassium,	 chloride	 and	 carbon	 dioxide	 in	 the	 blood.	 All	 these	 are
individual	tests	with	their	own	results.

Individual	test	results	are	written	in	the	OBX	segment.	One	OBX	segment	holds	the
result	 for	 one	 test.	 So,	 a	 report	 for	 an	 “electrolytes	 panel”	will	 have	 one	 header	 (OBR)
followed	 by	 four	 OBX	 segments	 with	 the	 result	 for	 sodium,	 potassium,	 chloride	 and
carbon	dioxide	levels	in	the	blood.

To	recap,	at	the	top	of	the	hierarchy	is	the	PID	segment	representing	the	patient.	Each
PID	can	have	one	or	more	OBR	segments,	which	is	the	header	for	a	result	set.	Each	OBR
can	have	one	or	more	OBX	segments	 to	 capture	 the	 result	 of	 individual	 tests	within	 an
order.

The	hierarchy	doesn’t	end	here.	You	can	have	an	SPM	(Specimen)	segment	under	the
OBX	which	itself	can	have	OBXs	under	it.	It	does	get	complicated,	but	for	an	overview
the	PID-OBR-OBX	hierarchy	is	good	enough.	This	gives	you	the	foothold	to	learn	further.

Let’s	revisit	the	OBR	segment	now	from	the	filler	point	of	view.

OBR	–	Observation	Request	Segment
In	a	result	message,	an	OBR	segment	serves	as	the	report	header	for	a	test.	A	message

can	have	multiple	OBR	segments,	which	just	means	that	 the	message	contains	result	 for
multiple	order	sets.

The	OBR	segment	also	acts	like	the	turnaround	document	between	the	placer	and	the
filler	 systems.	The	OBR	 in	 the	order	message	contains	 fields	populated	by	 the	ordering
system	(placer).		The	filler	system	uses	the	same	OBR	in	the	result	message	and	populates
additional	filler	fields	and	sends	it	back	to	the	placer	system.

A	 great	 example	 is	 the	OBR-2/OBR-3	 pair.	 The	OBR-2	 field	 holds	 the	 Placer	 ID,
which	is	populated	by	the	placer.	The	OBR-3	field	is	left	empty	when	this	order	message
is	sent.	When	the	filler	responds	either	with	an	acknowledgement	or	the	result,	it	populates
the	OBR-3	field	with	the	Filler	ID.	Keep	in	mind	that	the	result	message	also	retains	the
OBR-2	value	originally	populated	by	the	placer.

Some	other	fields	commonly	populated	by	the	filler	in	an	OBR	segment	include:

OBR-22:	Date/Time	of	Result	Report	or	Status	Change

This	field	contains	 the	date/time	when	the	result	became	available	or	 the	status	of	 the
result	changed.	In	other	words,	it	represents	the	report	date.	Its	counterpart,	order	date	is
populated	by	the	placer	in	the	OBR-6	field.	Together,	OBR-6	and	OBR-22	can	be	used	to
calculate	the	turnaround	time	for	an	order.

OBR-24:	Diagnostic	Service	ID

This	 is	 another	 commonly	 populated	 field	 in	 the	 result	 message.	 It	 represents	 the
department	that	performed	the	test.	The	field	contains	a	two	or	three	letter	code	for	various

services.	You	will	see	values	like	MB	(microbiology)	or	RAD	(Radiology)	in	this	field.

OBR-25:	Result	Status

This	field	holds	the	status	of	the	result	and	is	a	required	field	in	the	OBR	segment	of	the
result	message.	 It	 is	 an	 important	 field	 and	 if	 you	 are	 going	 to	 be	working	with	 result
messages,	this	is	one	field	you	will	be	looking	up	frequently.

An	 important	 thing	 to	 keep	 in	 mind	 is	 that	 this	 field	 represents	 the	 status	 of	 a
particular	order	set	and	not	all	the	orders	in	a	message.	There	could	be	result	for	multiple
order	sets	in	a	result	message	and	because	of	that	there	will	be	multiple	OBR	segments	in
the	message.	Each	OBR-25	represents	only	the	overall	result	status	for	its	own	order	set.

OBX	–	Observation	Result	Segment
If	the	OBR	segment	is	like	the	header	of	an	ordered	result	then	the	OBX	segment	is

the	body	of	the	result	and	holds	the	actual	result	data.	Since	one	OBX	segment	can	hold
information	only	for	a	single	observation,	each	OBR	segment	is	generally	associated	with
multiple	OBX	segments.

OBX-1:	Set	ID

Unlike	other	segments	that	have	Set	ID,	it	is	a	useful	field	in	the	OBX	segment.	It	is	the
sequence	 number,	which	 goes	 up	 by	 one	 for	 each	 successive	OBX	under	 an	OBR.	 For
OBXs	associated	with	another	OBR,	the	numbering	restarts	at	one.	This	makes	it	easy	to
read	a	raw	HL7	message.

OBX-2:	Value	Type

This	field	defines	the	data	type	of	the	result	field	(OBX-5).	If	the	result	is	in	the	form	of
a	 narrative	 report,	 then	 the	 value	 in	 this	 field	 is	 always	 TX	 (code	 for	 text	 data).	 For
structured	reports,	the	value	is	usually	CE	(coded	Entry)	but	it	is	possible	that	you	may	run
into	a	different	value.

OBX-3:	Observation	Identifier

If	you	remember,	order	sets	and	individual	orders	are	represented	by	codes	in	an	HL7
message.	Usually	LOINC	codes	are	used	to	represent	these	orders.

The	code	for	the	overall	order	set	is	in	the	OBR-4	field	but	for	individual	orders	that
make	up	the	order	set,	their	codes	are	in	the	OBX-3	field.	Each	OBX-3	holds	the	code	for
one	individual	order.

OBX-5:	Observation	Value

This	is	the	field	that	holds	the	result	of	the	test.	There	is	no	limit	on	the	length	of	this
field.	 For	 narrative	 reports,	 this	 is	 where	 the	 sentences	 of	 the	 report	 go.	 Sentences	 are
broken	up	into	multiple	OBX’s	so	that	it	looks	like	a	nicely	formatted	paragraph.

OBX-6:	Units

This	field	identifies	the	unit	of	measurement	for	values	in	the	OBX-5	field.	If	something
is	being	reported	as	“1	ml”	 then	“1”	will	be	 in	 the	OBX-5	field	and	“ml”	will	be	 in	 the
OBX-6	field.

OBX-11:	Observation	Result	Status

This	is	a	required	field	that	is	very	important.	It	contains	the	code	for	the	status	of	the
result.	This	field	is	used	extensively	in	managing	records	such	as	updating	an	old	record,
correcting	a	wrong	result	or	marking	a	result	as	final.

In	 real	 life,	you	don’t	 just	get	one	message	with	 the	 result	of	 the	ordered	 test.	 It	 is
more	typical	to	first	receive	a	preliminary	result.	Then,	maybe	there	is	a	correction	to	that
test	and	a	corrected	result	 is	sent.	The	 lab	may	decide	 to	 run	 the	 tests	again	and	 issue	a
final	 result.	All	 these	 results	 are	 sent	one	after	 the	other.	So,	 it	 is	quite	possible	 that	 an
order	will	spawn	two	or	three	result	messages.

A	value	of	“P”	in	this	field	means	the	result	is	“Preliminary”.	“C”	means	the	result	is
a	“correction”	of	a	previously	reported	result	and	“F”	means	this	is	the	final	value	of	the
result.

10.	Other	Important	Topics
We	haven’t	touched	on	some	important	HL7	topics	yet.	But	that	is	intentional.	They	are

important	 to	understanding	HL7,	but	 in	my	opinion,	 throwing	a	newcomer	off	 the	deep
end	 is	 not	 the	 right	 way	 to	 teach	 someone	 to	 swim.	 Learning	 doesn’t	 have	 to	 be	 a
frightening	experience.

So	here	at	the	deep	end,	let’s	first	look	at	data	types.	Data	types	are	an	integral	part	of
HL7.	There	is	a	whole	chapter	(2A)	dedicated	to	them	in	the	HL7	spec.	

HL7	Data	Type
In	HL7	you	have	your	usual	data	types	such	as	text	and	numeric	but	then	you	also	have

data	types	for	name,	address,	visiting	hours,	frequency	of	medication	and	other	values	that
are	not	normally	considered	a	data	type.

If	you	are	thinking	that	the	data	type	for	name	should	be	just	text,	then	you	do	have	a
point.	However,	in	HL7,	data	types	take	on	a	bigger	role.	They	are	used	to	gain	a	very	fine
control	over	 the	structure	of	a	field	-	how	it	 is	defined,	and	 to	 impose	restrictions	on	 its
content.	For	regular	data	 types,	you	only	have	restriction	on	the	 type	of	value	(Boolean,
text	or	numeric).	With	HL7,	the	restrictions	go	way	beyond	just	the	type	of	value.		There
are	 restrictions	 on	 the	 length,	 on	 how	 the	 content	 is	 organized,	when	 a	 value	 has	 to	 be
present	etc.

Remember	the	building	blocks	of	a	message?	A	message	is	a	collection	of	segments,
which	is	a	collection	of	fields,	which	is	a	collection	of	components	and	so	on.	Data	types
come	 into	 play	 at	 the	 field	 level.	Whether	 a	 field	 has	 components	 and	 sub-components
depends	entirely	on	the	data	type	of	that	field.	If	a	data	type	has	five	components	and	two
of	 those	 components	 are	 further	made	up	of	 subcomponents,	 then	 the	 field	 inherits	 that
property.	 It	 can	 be	 said	 that	 the	 field	 has	 five	 components	 and	 two	 of	 those	 have
subcomponents.

If	you	look	at	 the	attribute	table	of	any	segment,	 the	third	column	with	the	heading
DT	is	the	data	type	column.	It	contains	the	data	type	code	for	fields	in	that	segment.	The
codes	are	usually	two	or	three	characters	in	length	and	are	always	in	uppercase.

Chapter	 2A	 of	 the	 specification	 document	 defines	 all	 the	 data	 types	 in	 HL7.	 For
details	of	a	particular	data	type,	you	will	need	to	look	in	Chapter	2A,	where	they	are	listed
in	the	alphabetical	order.

I	consider	it	highly	unlikely	but	if	you	do	spend	time	browsing	Chapter	2A,	you	will
notice	that	some	data	types	are	very	simple.	They	have	just	one	component.	These	are	the
familiar	 data	 types	 -	 ST	 (String),	NM	 (Numeric),	 TX	 (Text)	 etc.	Others	 data	 types	 use
these	basic	types	to	form	more	complex	types	and	then	you	have	the	scary	ones	which	are
made	up	of	 both	 simple	 and	 complex	data	 types.	They	 are	 the	 poster	 children	 for	what
scares	people	away	from	HL7.

I	like	to	organize	data	types	into	basic,	intermediate	and	complex	categories.	Basic	is
the	simplest	data	type	with	just	one	component.	Then	you	have	the	intermediate	types	with

multiple	components	of	basic	type	and	finally,	there	is	the	complex	data	type,	which	is	a
mix	of	both	basic	and	intermediate	types.

Let’s	look	at	an	example	of	each.

NM	–	Numeric	Data	Type

This	 is	 an	 example	 of	 a	 basic	 data	 type.	A	 field	with	 this	 data	 type	 can	 only	 have
numeric	values	with	a	maximum	length	of	sixteen	characters.	It	also	allows	a	leading	sign
(+/-)	and	a	decimal	point	within	the	value.	(Examples:	21	and	+33.90).

NR	–	Numeric	Range	Data	Type

This	 is	 an	 intermediate	 level	 data	 type.	 It	 has	 two	 components,	 both	 of	which	 are
basic	NM	data	 types.	A	 field	with	 this	 type	 defines	 a	 range	 of	 value	 by	 specifying	 the
lowest	possible	and	the	highest	possible	value	in	the	range.

As	you	 can	 see	 in	 the	 table,	 the	 first	 component	 is	 always	 the	 low	value	 and	both
components	are	optional.	For	example	 if	a	field	 looks	 like	70^110	then	the	value	ranges
from	a	low	of	70	to	a	high	of	110.

PTA	–	Policy	type	and	amount

This	 is	 an	 example	 of	 a	 complex	 data	 type.	 There	 are	multiple	 components	where
some	have	their	own	components	(MOP).	A	couple	of	components	also	have	restrictions
on	the	value.	Look	at	column	TBL#.	The	first	two	components	can	only	have	the	values
listed	in	those	tables.

But	I	am	not	giving	you	a	true	picture	of	complex	data	types	with	this	example.	Many
of	 them,	 like	XCN	 and	XAD,	 are	 truly	monstrous	 and	 contain	 tens	 of	 components	 and
sub-components.

Using	Data	Types

So	far	we	have	only	dealt	with	the	theory	behind	data	types.	In	practice,	we	don’t	deal
with	all	this	complexity.	Let’s	take	one	complex	data	type	and	see	how	it	is	really	used	in	a
real	world	application.

Imagine	you	are	mapping	the	PID	segment	for	a	message.	So	now	you	have	to	get	all
the	patient	 related	 information	mapped	out.	When	you	come	to	 the	PID-5	field,	you	see
that	it’s	the	patient	name	field	and	the	data	type	is	XPN.	This	means	the	patient’s	name	has
to	be	written	according	to	XPN	data	type	requirements.	You	cannot	just	drop	the	name	as
one	long	string.	The	receiving	system	will	reject	the	message.

So	how	do	you	map	 the	patient’s	 name?	 	This	 information	will	 be	 in	 the	 interface
spec	and	interface	specs	are	based	on	HL7	specs.	So	more	often	than	not,	data	types	are
defined	exactly	accordingly	to	HL7	spec.	Assuming	that	is	the	case,	lets	head	to	Chapter
2A	and	scroll	down	to	where	the	component	table	for	the	XPN	data	type	is	defined.

What	we	 have	 here	 is	 a	 data	 type	with	 fourteen	 components.	A	 look	 at	 the	 fourth
column	 (OPT),	which	defines	whether	a	component	 is	 required	or	optional,	 tells	us	 that
everything	 is	optional.	 (O	 is	optional	and	B	 is	backward	compatibility/previous	version,
ignore	B).	This	is	what	makes	life	easy.

If	the	name	of	the	patient	is	“Tommy	Boy”	then	all	you	will	need	to	populate	are	the
first	two	components	as	Boy^Tommy.	You	can	ignore	the	rest.

Why	 is	 that?	Because	XPN	data	 type	 requires	 the	 first	component	 to	be	 the	 family
name.	Then	you	have	a	component	separator	^	followed	by	the	given	name	in	the	second
component.	That’s	why	Tommy	Boy’s	name	is	written	as	Boy^Tommy.

By	leaving	out	the	rest	of	the	components	in	the	name	field,	we	are	indicating	that	the
remaining	components	are	empty.

Let’s	add	a	little	twist	to	the	name.	Say,	Tommy	Boy’s	full	name	is	“Tommy	Boy	Jr.”.
Now	there	is	a	suffix	in	the	name	and	if	you	refer	to	the	table	above,	suffix	should	go	in
the	fourth	component.	In	this	case,	the	name	will	be	written	as	Boy^Tommy^^Jr.	There	are
two	carets	side	by	side	(^^)	 in	 this	name.	This	 is	 to	 indicate	 that	 the	 third	component	 is
empty	and	“Jr.”	is	the	value	in	the	fourth	component.

Do	you	 see	 now	why	 I	 said	 you	don’t	 have	 to	 deal	with	 all	 the	 complexity?	Most
names	are	simple	and	that	means	only	the	first	three	or	four	components	are	populated	and
we	 ignore	 the	 rest.	 The	 same	 is	 true	 for	 other	 data	 types.	 If	 you	 do	 come	 across	 an

unfamiliar	 component	 populated	 in	 a	 field,	 a	 quick	 visit	 to	 Chapter	 2A	 will	 solve	 the
problem.

Also,	 the	80-20	 rule	works	very	well	with	HL7	data	 types.	Only	a	handful	of	data
types	 are	 commonly	 used.	 We	 can	 safely	 ignore	 the	 vast	 majority.	 Here	 are	 a	 few
commonly	used	examples.

Coded	Element	(CE)

This	 is	 a	 very	 common	data	 type	 in	HL7,	 but	 to	 the	uninitiated,	 it	means	nothing.	A
field	with	this	data	type	can	only	have	a	coded	value.	An	example	would	be	LOINC	code
for	lab	result.

When	lab	tests	are	reported	electronically,	they	don’t	use	long	descriptive	sentences
to	report	their	findings.	Instead,	alphanumeric	codes	are	used	to	represent	the	type	of	test.
It	 is	 these	codes	along	with	 the	 result	values	 that	are	sent	across	 in	an	HL7	message.	A
field	 with	 a	 CE	 data	 type	 means	 it	 can	 only	 contain	 valid	 codes	 defined	 by	 a	 coding
system	(like	LOINC).	You	can	also	define	your	own	local	codes	and	use	that	in	a	CE	field.

There	are	a	couple	of	variations	to	this	data	type.	CNE	(Coded	with	No	Exception)
data	type	means	the	field	can	only	have	those	codes	that	are	defined	by	the	coding	system.
CWE	(Coded	With	Exception),	on	 the	other	hand,	allows	codes	 to	be	defined	 locally	 in
order	to	extend	the	coding	system.

Coded	Value	(ID	–	for	HL7	tables;	IS	–	for	user	tables)

Whenever	you	come	across	a	field	with	an	ID	or	IS	data	type,	it	means	there	is	a	table
linked	to	this	field.	You	can	find	the	table	number	in	the	attribute	table	for	that	data	type.	It
is	a	four	digit	number	under	the	TBL#	column.	In	HL7,	every	table	is	assigned	a	unique
four	digit	table	number.

The	reason	we	have	tables	is	because	there	are	many	fields	where	it	is	necessary	to
define	a	standard	set	of	values.	For	example,	consider	the	case	of	the	“sex”	field.	We	can
say	 that	 valid	 values	 in	 this	 field	 are	male,	 female	 and	 unknown.	But	 if	 the	 text	 is	 not
standardized,	it	will	lead	to	all	kinds	of	variations.	Guy	and	gal,	for	example.

For	 some	 of	 the	 fields,	 HL7	 sets	 the	 values	 and	 defines	 the	 table.	 An	 example	 is
Table	0003,	which	contains	a	list	of	all	valid	event	codes.	The	EVN-1	field	can	only	take
values	from	this	table.

For	others,	HL7	defines	a	suggested	list	of	values	in	a	table.	It	is	left	to	the	sites	to
decide	 if	 they	want	 to	 use	 those	 values,	modify	 them	or	 create	 their	 own	values.	Table
0001	(Administrative	Sex)	is	a	good	example.

And	 finally,	 there	 are	 fields	 like	 “Pre-Admit	 Test	 Indicator”	 (PV1-12)	 where	 the
values	can	only	be	defined	locally.	HL7	only	assigns	the	table	number	(0087).

Merge	Messages

Merge	messages	are	a	subset	of	ADT	that	deal	specifically	with	merging	patient	records
in	 a	 database.	These	messages	 are	 for	 record	housekeeping	but	 that	 should	not	 lull	 you
into	thinking	that	they	are	not	important.	Far	from	it.	They	are	used	often	and	chances	are
high	 that	 you	will	 encounter	 them	 someday.	Any	HL7	 expert	worth	 his/her	 salt	 should
understand	merge.	 In	 fact,	 that	 is	 how	we	 used	 to	 test	 the	 level	 of	 expertise	 of	 a	 new
colleague.

There	 are	 three	 kinds	 of	 operations	 where	 merge	 messages	 are	 used:	 merging	 the
content	 of	 two	 records	 into	 one,	moving	 a	 child	 record	 from	 one	 place	 to	 another	 and
changing	the	ID	of	a	record.

Before	we	go	any	further,	 let’s	recap	how	health	records	are	organized.	At	the	very
top	is	the	person	record.	A	person	could	be	a	patient,	a	relative,	a	doctor,	etc.	If	the	person
is	a	patient,	 then	the	patient	record	sits	under	the	person	record.	Each	patient	record	can
have	one	 or	more	 account	 records	 to	 track	 resources	 used	 (for	 example,	 an	 account	 for
recurring	dialysis	visits	and	a	separate	one	for	an	emergency	visit).	Each	account	can	have
one	or	more	patient	visit	records	linked	to	it.	Visually	this	is	what	the	hierarchy	will	look
like.

There	 are	 situations	where	 this	neat	 hierarchy	of	 records	gets	 tangled	up.	Consider
the	case	of	Mr.	Rocky	Racoon.	He	pays	a	visit	to	the	hospital	with	a	dislocated	shoulder.
The	 registration	 clerk	 looks	 up	 the	 hospital	 system	 to	 see	 if	 he	 has	 a	 record.	None	 are
found,	 so	 a	 new	 patient	 record	 is	 created	 for	 Rocky.	 This	 is	 where	 the	 problem	 starts.
Rocky	has	been	to	that	hospital	before	and	has	an	existing	patient	record.	The	registration
clerk	searched	for	his	name	 incorrectly	even	 though	Rocky	 told	him	specifically	 that	he
spells	his	last	name	with	a	single	c	-	Racoon	and	not	Raccoon.	Of	course,	the	system	did
not	find	his	name,	and	now,	there	are	two	patient	records	for	Rocky.	If	only	we	could	take
the	human	factor	out!

This	is	a	case	of	multiple	records	for	the	same	person	and	it	is	resolved	by	merging
the	new	record	with	Rocky’s	earlier	patient	record.	Basically,	it	means	moving	the	account
and	visit	records	from	under	the	new	patient	record	to	the	old	patient	record	and	deleting
the	new	record.

A	different	situation	could	be	that	there	is	another	guy	Rocky	Raccoon	and	he	does
spell	his	name	with	a	double	c.	In	that	case,	our	Rocky’s	account	and	visit	information	is
attached	 to	 the	wrong	 patient	 record.	 This	 is	 resolved	 by	moving	 the	 account	 and	 visit
records	to	the	correct	patient	record.	This	is	a	move	operation.

Finally,	 there	 is	 the	 situation	 of	 an	 incorrect	 identifier	 assigned	 to	 a	 record.	 This
doesn’t	 happen	 anymore	 because	 identifiers	 are	 assigned	 automatically	 by	 the	 systems.
But	back	in	the	days	when	identifiers	were	manually	created,	this	was	a	real	issue.	Say,	a

hospital	 required	 all	 patient	 numbers	 to	 be	 seven	 characters	 in	 length	 and	 start	with	 an
alphabet.	A	new	employee,	not	knowing	any	better,	creates	a	record	where	patient	number
is	only	five	characters	in	length	and	doesn’t	start	with	an	alphabet.	This	will	be	a	change
operation.

Now	 that	we	understand	what	 is	 involved	 in	a	merge	operation,	 let’s	 see	how	HL7
messages	facilitate	this.	Altogether,	eighteen	different	trigger	events	are	defined	for	merge,
move	and	change	operations,	half	of	 those	are	 just	 legacy	 triggers.	HL7	 is	a	 lot	 like	 the
DNA,	there	are	many	base	pairs	 that	do	nothing	but	probably	were	useful	at	some	point
during	evolution.

Trigger	events	A18,	A30,	A34,	A35,	A36,	A39,	A46	and	A48	are	there	to	maintain
backward	 compatibility.	Of	 the	 rest,	 three	 trigger	 events	 are	 for	merge	 operation	 (A40,
A41	 &	 A42),	 three	 for	 move	 (A43,	 A44	 &	 A45)	 and	 the	 remaining	 four	 for	 change
operation	 (A47,	 A49,	 A50	 &	 A51).	 Merge	 operations	 are	 the	 most	 important	 and
frequently	used,	so	we	will	take	a	closer	look	at	them.

There	are	 three	different	merge	messages	 -	 event	A40	 is	 for	merging	at	 the	patient
record	level,	A41	is	for	merging	at	 the	account	level	and	A42	is	for	merging	at	 the	visit
level.

All	 three	have	 similar	message	 structures	 and	 the	most	 important	 segment	 in	 these
messages	 is	 the	 merge	 segment	 (MRG).	 	 It	 has	 three	 important	 fields:	 MRG-1	 (prior
patient	ID),	MRG-3	(prior	account	number)	and	MRG-5	(prior	visit	number).	These	fields
identify	records	that	have	to	be	merged.

This	is	how	the	merge	process	works.

Every	merge	message	has	 a	PID	and	an	MRG	segment	 (and	a	PV1	 segment	 if	 the
merge	 is	 at	 the	 visit	 level).	 Their	 content	 includes	 the	 identifiers	 of	 the	 records	 to	 be
merged.

The	 record,	 which	 will	 continue	 to	 exist,	 is	 called	 the	 surviving	 record	 and	 its
identifier	is	 in	the	PID	segment.	The	record	that	will	be	merged	is	the	non-surviving	(or
prior)	record	and	its	identifier	is	in	the	MRG	segment.

For	a	merge	at	the	patient	record	level,	the	surviving	patient	ID	is	in	the	PID-3	field
and	the	non-surviving	ID	is	in	the	MRG-1	field.	Other	MRG	fields	stay	empty.	This	tells
the	receiving	application	to	keep	the	patient	ID	in	PID-3	and	move	records	under	MRG-1
to	 PID-3.	 How	 records	 are	 moved	 is	 decided	 by	 the	 receiving	 application.	 This	 is	 a
database	operation	and	HL7	leaves	it	at	the	discretion	of	the	implementers.

Similarly,	 if	 two	 patient	 accounts	 are	 being	 merged	 then	 the	 surviving	 account
number	 goes	 in	 PID-18	 and	 the	 non-surviving	 account	 number	 goes	 in	 MRG-3.	 	 For
merges	at	the	visit	level,	the	surviving	visit	number	goes	in	PV1-19	and	the	non-surviving
visit	number	goes	in	MRG-5.

Query	Messages
Although	not	 as	widely	 used,	HL7	query	messages	 play	 an	 important	 role	 in	 clinical

system	communication.	They	could	be	used	by	an	ancillary	system	to	confirm	the	identity

of	a	doctor	with	the	provider	registry	or	a	reporting	application	could	use	them	to	request
for	a	list	of	patients	visiting	emergency	between	midnight	and	8:00	AM.

The	standard	only	defines	 the	broad	framework	for	 implementing	query	using	HL7
messages.	Details,	like	the	information	to	be	shared	and	the	parameters	to	be	supplied,	are
left	to	the	implementers	to	decide.

Queries	are	implemented	as	a	request/response	message	pair.	The	requesting	system
sends	an	HL7	message	 to	 the	source	system	with	search	parameters.	The	source	system
uses	these	parameters	 to	 look	for	 the	 information	in	 its	database	and	sends	back	another
HL7	message	with	the	information	(or	an	error	message	if	nothing	was	found).

Query	messages	have	been	changing	and	evolving	over	the	years,	and	currently	the
standard	defines	three	ways	that	a	requestor	can	ask	for	information	and	three	ways	that	a
source	can	provide	the	information	back	to	the	requestor.

First,	 lets	 look	 at	ways	 to	 ask	 for	 the	 information	 (defining	 a	 query).	A	 requesting
system	can	create	a	query	as	a	query	by	parameter	(QBP),	a	query	by	example	(QBE)	or	a
complex	expression	query	(QSC).

All	three	options	use	a	segment	called	parameter	definition	segment	(QPD),	to	supply
the	 details	 of	 the	 query.	 For	 those	 familiar	 with	 databases,	 the	 process	 is	 similar	 to
invoking	a	stored	procedure	by	supplying	the	procedure	name	and	parameters.	For	those
unfamiliar,	 a	 stored	 procedure	 is	 a	 pre-defined	 query	with	 a	 name.	 They	 are	 useful	 for
frequently	used	queries	where	instead	of	defining	the	query	again	and	again,	you	define	it
once,	give	it	a	short	name,	and	whenever	you	need	to	run	it,	you	just	call	the	short	name
with	parameters.

Here	 is	 an	 example.	 Suppose	 all	 patient	 demographic	 records	 are	 stored	 in	 a	 table
called	pt_dem.	If	you	want	a	list	of	patients	by	their	marital	status,	then	you	define	a	query
-	“get	all	 last	name	and	 first	name	 from	pt_dem	 table	where	marital	 status	 is	=	x”.	The
marital	status	field	(x)	is	the	parameter	that	is	supplied	with	the	query.	This	query	can	be
saved	 as	 a	 stored	 procedure.	 You	 can	 give	 it	 a	 name,	 for	 example
patient_list_by_marital_status,	and	whenever	you	want	a	list	of	patients	by	marital	status,
you	run	this	query.

Now,	 do	 you	 want	 a	 list	 of	 patients	 who	 are	 single?	 No	 problem.	 Call
patient_list_by_marital_status	where	x=single.	Simple!

Query	by	Parameter	(QBP)

This	 is	 the	simplest	method.	The	message	supplies	 the	query	name	and	parameters	 in
the	QPD	segment.	The	system	invokes	the	query	and	plugs	in	the	parameter,	for	example,
QPD|Z05^patient_list_by_marital_status	||single

Query	by	Example	(QBE)

This	method	is	similar	to	QBP	with	the	difference	that	the	parameters	are	not	sent	in	a
QPD	segment.	They	are	sent	in	their	respective	segment	fields.	So	instead	of	sending	the

value	“single”	in	a	QPD	segment,	a	PID	segment	will	be	added	to	the	message	and	PID-
16,	which	 is	 the	marital	status	field,	will	be	populated	with	 the	value	S	(for	single).	For
example,
QPD|Z05^patient_list_by_marital_status||

PID||||||||||||||||S

The	advantage	of	 this	method	 is	 that	 systems	don’t	 have	 to	 communicate	what	 the
parameter	is.	In	the	first	method,	the	receiving	system	has	to	be	told	beforehand	that	QPD-
3	 is	 the	 field	 for	marital	 status.	Otherwise,	 it	won’t	 know	what	 the	value	 is	 for	 and	 the
situation	gets	worse	if	there	are	multiple	parameters.

In	the	case	of	QBE,	there	is	no	need	for	any	of	this.	PID-16	is	the	marital	status	field
defined	by	HL7.	This	is	universally	known	and	the	receiving	system	uses	this	knowledge
to	intelligently	extract	the	parameter	from	the	message.

Complex	Expression	Query	(QSC)

This	 is	 the	 most	 complex	 of	 the	 three	 methods.	 In	 this	 case,	 the	 requesting	 system
defines	the	exact	search	criteria	of	the	query	as	an	expression	similar	to	database	language
SQL.	The	field,	QPD-3,	holds	the	expression,	but	the	data	type	of	QPD-3	in	this	case	is
QSC	(Query	Selection	Criteria).

The	QSC	data	 type	has	four	components:	 field	name,	operator,	value	and	relational
conjunction.	These	four	components	are	used	 to	 form	the	search	expression	 that	goes	 in
the	QPD-3	field.	For	our	query,	the	field	is	PID-16	(marital	status),	the	operator	is	equal
(EQ)	 and	 the	 value	 is	 “single”.	 There	 are	 no	 relational	 conjunctions	 (AND,	 OR,	 etc.)
therefore	the	query	segment	will	look	something	like	this:
QPD|Z05^patient_list_by_marital_status||@PID.16^EQ^Single|

Each	method	 has	 its	 advantages	 and	 disadvantages.	 If	 you	want	 something	 simple
and	straightforward	to	implement,	you	go	with	a	QBP.	On	the	other	hand,	a	QSC	is	best
suited	 for	 situations	 that	 require	 a	 lot	 of	 flexibility	 and	 the	 ability	 to	 define	 complex
queries	and	extract	very	specific	information.

Now,	let’s	look	at	three	ways	to	send	the	information	back	to	the	requesting	system.
The	options	are	–	Tabular,	Display	and	Segment	Pattern	formats.

Tabular	format	is	a	simple	and	easy	to	process	option.	Data	is	returned	as	a	table	in
the	message.	Column	headers	go	in	the	RDF	(Table	Row	Definition)	segment	and	rows	go
in	repeating	RDT	(Table	Row	Data)	segments.	This	makes	it	very	easy	for	the	receiving
system	to	parse	the	segments	and	reconstruct	the	table.

Display	format	is	similar	to	Tabular	but	is	also	pre-formatted	for	human	readability.	It
can	be	easily	displayed	on	a	screen	or	printed	out.	The	result	comes	across	as	 repeating
DSP	 (Display	Data)	 segments	 in	 the	 response	message.	The	DSP-3	 field	 holds	 the	 pre-
formatted	data,	which	can	be	sent	directly	to	a	printer	or	a	computer	screen	for	display.

Segment	 Pattern	 format	 is	 different.	 It	 sends	 the	 result	 through	 standard	 HL7
segments.	So	if	a	query	is	for	patient	records,	those	records	are	returned	as	PID	segments
in	 the	 response	message.	 If	 there	 are	multiple	 records,	 then	multiple	 PID	 segments	 are

returned.

The	Segment	Pattern	format	is	great	for	complex	and	large	results.	For	example,	a	lab
result	where	entire	segment	groups	(OBR,	OBX	etc.)	are	returned	in	 the	result	message.
But	 cases	where	only	a	 few	 fields	 are	needed,	 this	 format	will	 add	unnecessary	parsing
and	processing	overhead.

We	are	not	going	to	discuss	the	segments	involved	in	query	messages.	There	is	a	lot
to	 learn,	 especially	 if	 you	 are	 working	 with	 queries.	 The	 discussion	 here	 is	 only	 a
precursor	for	further	reading	on	this	topic	in	Chapter	5	of	the	HL7	spec.	In	the	spec	you
will	 also	 discover	 that	 there	 are	 many	 other	 message	 types	 like	 financial	 transaction,
scheduling	etc.	that	we	didn’t	discuss	in	this	book.

This	book	is	only	an	attempt	to	pry	open	the	HL7	doors	for	you.	And	the	topics	we
have	discussed	so	far,	more	than	do	the	job.	So	this	is	good	place	to	call	it	a	day	for	this
introductory	book.	I	hope	it	was	a	good	read	and	you	enjoyed	it.

I	don’t	know	what	motivated	you	to	read	this	book.	If	it	was	just	to	get	familiar	with
the	 subject,	 then	 you	 are	 done.	 You	 can	 check	 it	 off	 your	 “to	 do”	 list	 and	 enjoy	 that
satisfying	 feeling.	 On	 the	 other	 hand,	 if	 this	 is	 your	 first	 step	 towards	 mastering	 the
subject,	 then	you	are	 all	 set	 to	 step	 into	 the	brave	new	world	of	HL7	and	make	 it	 your
own.

Welcome	to	the	world	of	HL7!	☺

	
HL7Book.com

Please	visit	the	companion	website	to	provide	your	feedback	and	suggestions.

Did	you	spot	a	typo?	Or	an	error?	Please	drop	me	a	line	through	the	feedback	page.
I’ll	appreciate	it.

http://www.hl7book.com

Table	of	Contents
Preface

Part	I

1.	Introduction

2.	What	is	HL7?

3.	Integration	Concepts

4.	Evolution	of	HL7

Part	II

5.	Basic	Concepts

6.	Message	Building	Blocks

7.	Working	with	a	Message

8.	Control	Segments

9.	Data	Segments

10.	Other	Important	Topics

	Preface
	Part I
	1. Introduction
	2. What is HL7?
	3. Integration Concepts
	4. Evolution of HL7
	Part II
	5. Basic Concepts
	6. Message Building Blocks
	7. Working with a Message
	8. Control Segments
	9. Data Segments
	10. Other Important Topics

