

kindle:embed:0001?mime=image/jpg

Table	of	Contents
Introduction

Who	This	Book	Is	For
What	This	Book	Covers
How	This	Book	Is	Structured
What	You	Need	to	Use	This	Book
Conventions
Errata
p2p.wrox.com

Part	I:	Understanding	the	BASICs
Lesson	1:	Introducing	VBA

What	is	VBA?
A	Brief	History	of	VBA
What	VBA	Can	Do	for	You
Liabilities	of	VBA
Try	It

Lesson	2:	Getting	Started	with	Macros
Composing	Your	First	Macro
Running	A	Macro
Try	It

Lesson	3:	Introducing	the	Visual	Basic	Editor
What	is	the	VBE?
Try	It

Lesson	4:	Working	in	the	VBE
Toolbars	in	the	VBE
Macros	and	Modules
Understanding	the	Code
Editing	a	Macro	with	Comments	and	Improvements	to	the	Code
Try	It

Part	II:	Diving	Deeper	into	VBA
Lesson	5:	Object-Oriented	Programming:	An	Overview

What	“Object-Oriented	Programming”	Means
The	Object	Model
Try	It

Lesson	6:	Variables,	Data	Types,	and	Constants
What	is	a	Variable?

Assigning	Values	to	Variables
Why	You	Need	Variables
Data	Types
Forcing	Variable	Declaration
Understanding	a	Variable's	Scope
Try	It

Lesson	7:	Understanding	Objects	and	Collections
Workbooks
Cells	and	Ranges
Try	It

Lesson	8:	Working	with	Ranges
Working	with	Contiguously	Populated	Ranges
Working	with	Noncontiguously	Populated	Ranges
Try	It

Lesson	9:	Making	Decisions	with	VBA
Understanding	Logical	Operators
Choosing	between	this	or	that
Getting	Users	to	Make	Decisions
Try	It

Part	III:	Beyond	the	Macro	Recorder:	Writing	Your	Own	Code
Lesson	10:	Repeating	Actions	with	Loops

What	is	a	Loop?
Nesting	Loops
Try	It

Lesson	11:	Programming	Formulas
Understanding	A1	and	R1C1	References
Programming	Your	Formula	Solutions	with	VBA
Try	It

Lesson	12:	Working	with	Arrays
What	is	an	Array?
The	Option	Base	Statement
Boundaries	in	Arrays
Declaring	Arrays	with	Fixed	Elements
Declaring	Dynamic	Arrays	with	Redim	and	Preserve
Try	It

Lesson	13:	Automating	Procedures	with	Worksheet	Events

What	Is	an	Event?
Worksheet	Events:	An	Overview
Examples	of	Common	Worksheet	Events
Try	It

Lesson	14:	Automating	Procedures	with	Workbook	Events
Workbook	Events:	An	Overview
Examples	of	Common	Workbook	Events
Try	It

Lesson	15:	Handling	Duplicate	Items	and	Records
Deleting	Rows	Containing	Duplicate	Entries
Working	with	Duplicate	Data
Try	It

Lesson	16:	Using	Embedded	Controls
Working	with	Form	Controls	and	ActiveX	Controls
Try	It

Lesson	17:	Programming	Charts
Adding	a	Chart	to	a	Chart	Sheet
Adding	an	Embedded	Chart	to	a	Worksheet
Moving	a	Chart
Looping	Through	All	Embedded	Charts
Try	It

Lesson	18:	Programming	PivotTables	and	PivotCharts
Creating	a	PivotTable	Report
Understanding	PivotCaches
Manipulating	PivotFields	in	VBA
Manipulating	PivotItems	with	VBA
Creating	a	PivotTables	Collection
Try	It

Lesson	19:	User-Defined	Functions
What	Is	a	User-Defined	Function?
UDF	Examples	That	Solve	Common	Tasks
Volatile	Functions
Try	It

Lesson	20:	Debugging	Your	Code
What	Is	Debugging?
What	Causes	Errors?

Weapons	of	Mass	Debugging
Trapping	Errors
Try	It

Part	IV:	Advanced	Programming	Techniques
Lesson	21:	Creating	UserForms

What	Is	a	UserForm?
Creating	a	UserForm
Designing	a	UserForm
Adding	Controls	to	a	UserForm
Showing	a	UserForm
Where	Does	the	UserForm's	Code	Go?
Closing	a	UserForm
Try	It

Lesson	22:	UserForm	Controls	and	Their	Functions
Understanding	the	Frequently	Used	UserForm	Controls
Try	It

Lesson	23:	Advanced	UserForms
The	UserForm	Toolbar
Modal	versus	Modeless
Disabling	the	UserForm's	Close	Button
Maximizing	Your	UserForm's	Size
Selecting	and	Displaying	Photographs	on	a	UserForm
Unloading	a	UserForm	Automatically
Pre-sorting	the	ListBox	and	ComboBox	Items
Populating	ListBoxes	and	ComboBoxes	with	Unique	Items
Displaying	a	Real-Time	Chart	in	a	UserForm
Try	It

Lesson	24:	Class	Modules
What	Is	a	Class?
What	Is	a	Class	Module?
Creating	Your	Own	Objects
An	Important	Benefit	of	Class	Modules
Creating	Collections
Class	Modules	for	Embedded	Objects
Try	It

Lesson	25:	Add-Ins

What	Is	an	Excel	Add-In?
Creating	an	Add-In
Converting	a	File	to	an	Add-In
Installing	an	Add-In
Creating	a	User	Interface	for	Your	Add-In
Closing	Add-Ins
Removing	an	Add-In	from	the	Add-Ins	List
Try	It

Lesson	26:	Managing	External	Data
Creating	QueryTables	from	Web	Queries
Creating	a	QueryTable	for	Access
Using	Text	Files	to	Store	External	Data
Try	It

Lesson	27:	Data	Access	with	ActiveX	Data	Objects
Introducing	ADO
An	Introduction	to	Structured	Query	Language	(SQL)
Try	It

Lesson	28:	Impressing	Your	Boss	(or	at	Least	Your	Friends)
Selecting	Cells	and	Ranges
Filtering	Dates
Setting	Page	Breaks	for	Specified	Areas
Using	a	Comment	to	Log	Changes	in	a	Cell
Using	the	Windows	API	with	VBA
Scheduling	Your	Workbook	for	Suicide
Try	It

Part	V:	Interacting	with	Other	Office	Applications
Lesson	29:	Overview	of	Office	Automation	from	Excel

Why	Automate	Another	Application?
Understanding	Office	Automation
Try	It

Lesson	30:	Working	with	Word	from	Excel
Activating	a	Word	Document
Creating	a	New	Word	Document
Copying	an	Excel	Range	to	a	Word	Document
Printing	a	Word	Document	from	Excel
Importing	a	Word	Document	to	Excel

Try	It
Lesson	31:	Working	with	Outlook	from	Excel

Opening	Outlook
Composing	an	E-mail	in	Outlook	from	Excel
Putting	It	All	Together
E-mailing	a	Single	Worksheet
Try	It

Lesson	32:	Working	with	Access	from	Excel
Adding	a	Record	to	an	Access	Table
Exporting	an	Access	Table	to	an	Excel	Spreadsheet
Creating	a	New	Table	in	Access
Try	It

Lesson	33:	Working	with	PowerPoint	from	Excel
Creating	a	New	PowerPoint	Presentation
Copying	a	Worksheet	Range	to	a	PowerPoint	Slide
Copying	Chart	Sheets	to	PowerPoint	Slides
Running	a	PowerPoint	Presentation	from	Excel
Try	It

Advertisement
End	User	License	Agreement

List	of	Illustrations
Figure	1.1

Figure	1.2

Figure	1.3

Figure	2.1

Figure	2.2

Figure	2.3

Figure	2.4

Figure	2.5

Figure	2.6

Figure	2.7

Figure	2.8

Figure	2.9

Figure	2.10

Figure	2.11

Figure	2.12

Figure	2.13

Figure	2.14

Figure	2.15

Figure	2.16

Figure	2.17

Figure	2.18

Figure	3.1

Figure	3.2

Figure	3.3

Figure	3.4

Figure	3.5

Figure	4.1

Figure	4.2

Figure	4.3

Figure	4.4

Figure	4.5

Figure	4.6

Figure	4.7

Figure	4.8

Figure	4.9

Figure	4.10

Figure	4.11

Figure	6.1

Figure	6.2

Figure	6.3

Figure	6.4

Figure	6.5

Figure	6.6

Figure	6.7

Figure	7.1

Figure	7.2

Figure	7.3

Figure	7.4

Figure	7.5

Figure	8.1

Figure	8.2

Figure	8.3

Figure	8.4

Figure	8.5

Figure	8.6

Figure	8.7

Figure	8.8

Figure	8.9

Figure	8.10

Figure	8.11

Figure	8.12

Figure	8.13

Figure	8.14

Figure	9.1

Figure	9.2

Figure	10.1

Figure	11.1

Figure	11.2

Figure	11.3

Figure	11.4

Figure	11.5

Figure	11.6

Figure	11.7

Figure	11.8

Figure	11.9

Figure	11.10

Figure	11.11

Figure	11.12

Figure	11.13

Figure	12.1

Figure	12.2

Figure	12.3

Figure	13.1

Figure	13.2

Figure	13.3

Figure	13.4

Figure	13.5

Figure	14.1

Figure	14.2

Figure	14.3

Figure	14.4

Figure	15.1

Figure	15.2

Figure	15.3

Figure	15.4

Figure	15.5

Figure	15.6

Figure	16.1

Figure	16.2

Figure	16.3

Figure	16.4

Figure	16.5

Figure	16.6

Figure	16.7

Figure	16.8

Figure	16.9

Figure	16.10

Figure	16.11

Figure	16.12

Figure	16.13

Figure	16.14

Figure	16.15

Figure	16.16

Figure	16.17

Figure	16.18

Figure	16.19

Figure	16.20

Figure	16.21

Figure	16.22

Figure	16.23

Figure	16.24

Figure	16.25

Figure	16.26

Figure	17.1

Figure	17.2

Figure	17.3

Figure	17.4

Figure	17.5

Figure	18.1

Figure	18.2

Figure	18.3

Figure	18.4

Figure	18.5

Figure	18.6

Figure	18.8

Figure	18.7

Figure	18.9

Figure	18.10

Figure	18.11

Figure	18.12

Figure	18.13

Figure	18.14

Figure	18.15

Figure	18.16

Figure	18.17

Figure	18.18

Figure	18.19

Figure	18.20

Figure	18.21

Figure	18.22

Figure	18.23

Figure	18.24

Figure	18.25

Figure	18.26

Figure	18.27

Figure	19.1

Figure	19.2

Figure	19.3

Figure	19.4

Figure	19.5

Figure	19.6

Figure	19.7

Figure	20.1

Figure	20.2

Figure	20.3

Figure	20.4

Figure	20.5

Figure	20.6

Figure	20.7

Figure	20.8

Figure	20.9

Figure	20.10

Figure	20.11

Figure	20.12

Figure	20.13

Figure	20.14

Figure	20.15

Figure	20.16

Figure	20.17

Figure	20.18

Figure	20.19

Figure	21.1

Figure	21.2

Figure	21.3

Figure	21.4

Figure	21.5

Figure	21.6

Figure	21.7

Figure	21.8

Figure	21.9

Figure	21.10

Figure	21.11

Figure	21.12

Figure	21.13

Figure	21.14

Figure	21.15

Figure	21.16

Figure	21.17

Figure	21.18

Figure	21.19

Figure	22.1

Figure	22.2

Figure	22.3

Figure	22.4

Figure	22.5

Figure	22.6

Figure	22.7

Figure	22.8

Figure	22.9

Figure	22.10

Figure	22.11

Figure	22.12

Figure	22.13

Figure	22.14

Figure	22.15

Figure	22.16

Figure	23.1

Figure	23.2

Figure	23.3

Figure	23.4

Figure	23.5

Figure	23.6

Figure	23.7

Figure	23.8

Figure	23.9

Figure	23.10

Figure	23.11

Figure	23.12

Figure	24.1

Figure	24.2

Figure	24.3

Figure	24.4

Figure	24.5

Figure	24.6

Figure	24.7

Figure	24.8

Figure	24.9

Figure	24.10

Figure	24.11

Figure	24.12

Figure	24.13

Figure	25.1

Figure	25.2

Figure	25.3

Figure	25.4

Figure	25.5

Figure	25.6

Figure	25.7

Figure	25.8

Figure	25.9

Figure	25.10

Figure	25.11

Figure	25.12

Figure	25.13

Figure	25.14

Figure	25.15

Figure	25.16

Figure	25.17

Figure	25.18

Figure	25.19

Figure	26.1

Figure	26.2

Figure	26.3

Figure	26.4

Figure	26.5

Figure	26.6

Figure	26.7

Figure	26.8

Figure	26.9

Figure	27.1

Figure	28.1

Figure	28.2

Figure	28.3

Figure	28.4

Figure	28.5

Figure	28.6

Figure	28.7

Figure	28.8

Figure	28.9

Figure	28.10

Figure	28.11

Figure	29.1

Figure	29.2

Figure	31.1

Figure	31.2

Figure	31.3

Figure	31.4

Figure	32.1

Figure	32.2

Figure	32.3

Figure	32.4

Figure	32.5

Figure	32.6

List	of	Tables
Table	6.1

Table	9.1

Table	9.2

Table	9.3

Table	10.1

Introduction
CONGRATULATIONS	ON	MAKING	TWO	EXCELLENT	CHOICES!	You	want	to
learn	programming	for	Microsoft	Excel	with	Visual	Basic	for	Applications	(VBA),	and
you've	purchased	this	book	to	teach	you.	Excel	is	the	most	powerful	and	widely	used
spreadsheet	application	in	the	world.	VBA	enables	you	to	become	much	more	productive
and	efficient,	while	getting	your	everyday	Excel	tasks	done	more	quickly	and	with	fewer
errors.	You'll	gain	a	programming	skill	that	is	in	high	demand,	which	will	improve	your
value	in	the	workplace	and	your	marketability	when	searching	for	employment.

This	book	covers	VBA	from	the	ground	up,	and	assumes	you	have	never	programmed
Excel	before.	If	you've	never	recorded	or	written	an	Excel	macro,	this	book	shows	you
how.	If	you've	worked	with	VBA	before,	this	book	has	examples	of	programming
techniques	you	might	not	have	seen.	The	instruction	and	examples	in	this	book	teach	VBA
concepts	that	range	in	levels	from	fundamental	to	advanced.	The	techniques	in	this	book
apply	just	as	well	to	the	Excel	business	power	user	as	to	the	keeper	of	the	family	budget.

VBA	is	the	programming	language	for	Microsoft's	popular	Office	suite	of	applications,
including	Excel,	Word,	Access,	PowerPoint,	and	Outlook.	A	full	section	of	this	book
explains	how	to	control	each	of	those	applications	from	Excel	with	VBA.	By	the	time	you
complete	this	book,	you	will	have	learned	how	to	record,	write,	and	run	your	own	macros.
You'll	learn	how	to	make	VBA	run	itself	by	programming	Excel	to	monitor	and	respond	to
users'	actions,	and	how	to	create	friendly,	customized	interfaces	that	the	users	of	your
workbooks	will	enjoy.

The	future	of	VBA	is	solid.	Microsoft	has	confirmed	time	and	again	that	VBA	will	be
supported	in	versions	of	Excel	into	the	foreseeable	future,	and	the	programming	skills	you
learn	in	this	book	will	serve	you	throughout	your	career.	You'll	be	able	to	apply	the
principles	you	learn	in	this	book	to	other	tasks	that	can	be	automated	in	Excel	and
Microsoft's	other	Office	applications.	VBA	is	an	enormous	programming	language,	and
when	combined	with	Excel,	using	it	is	an	ongoing,	rewarding	process	of	learning
something	new	every	day.	With	this	book	as	your	entry	into	the	world	of	VBA
programming,	you	are	well	on	your	way.

Who	This	Book	Is	For
This	book	is	for	Excel	users	who	have	never	programmed	Excel	before.	You	are	an	Excel
user	who	has	been	doing	a	frequent	task	manually,	and	you	are	ready	to	automate	the	task
with	VBA.	You	might	also	be	a	job	seeker,	and	you	want	to	improve	your	chances	of
being	hired	in	this	difficult	job	market	by	learning	a	valuable	skill.	Whether	your	Excel
tasks	are	large	or	small,	this	book	is	for	you.	You	find	out	how	to	use	VBA	to	automate
your	work	by	doing	anything	from	recording	a	simple	one-line	macro	to	writing	a
complex	program	with	a	customized,	user-friendly	interface	that	will	look	nothing	like
Excel.	This	book	has	something	for	everyone,	but	especially	for	the	person	who	wants	to
dive	right	into	VBA	from	square	one	and	learn	to	use	its	powerful	programming	tools.

What	This	Book	Covers
This	book	contains	33	lessons,	which	are	broken	into	five	parts:

Part	I,	Understanding	the	BASICs:	Part	I	includes	Lessons	1	to	4,	introducing	you
to	VBA	by	providing	a	historical	background	and	a	discussion	of	what	VBA	is	and
what	it	can	do	for	you.	This	part	familiarizes	you	with	the	Macro	Recorder	and	the
Visual	Basic	Editor,	where	VBA	code	is	maintained.

Part	II,	Diving	Deeper	Into	VBA:	Part	II	includes	Lessons	5	to	9,	which	discuss
VBA	topics	including	an	overview	of	object-oriented	programming,	variable
declaration,	objects	and	collections,	arrays,	and	options	for	decision-making.

Part	III,	Beyond	the	Macro	Recorder:	Writing	Your	Own	Code:	Part	III	includes
Lessons	10	to	20.	You	learn	how	to	write	your	own	macros	without	help	from	the
Macro	Recorder.	You	become	familiar	with	loops,	event	programming	at	the
workbook	and	worksheet	levels,	charts,	PivotTables,	user-defined	functions,	and
embedded	controls.	You	learn	to	program	formulas	and	how	to	debug	your	VBA	code.

Part	IV,	Advanced	Programming	Techniques:	Part	IV	includes	Lessons	21	to	28,
and	deals	with	the	more	advanced	topics	of	UserForms,	class	modules,	add-ins,
retrieving	external	data,	and	various	examples	of	programming	Excel	to	achieve
solutions	you	might	not	have	thought	possible.

Part	V,	Interacting	with	Other	Office	Applications:	Part	V	includes	Lessons	29	to
33,	dealing	with	how	to	control	Word,	Outlook,	Access,	and	PowerPoint	from	Excel.

How	This	Book	Is	Structured
My	main	principle	in	this	book	is	to	teach	you	what	you	need	to	know	in	VBA.	I	tried	to
write	this	book	as	if	you	and	I	were	sitting	down	in	front	of	your	computer,	and	I	was
explaining	Excel	and	VBA's	technical	concepts	in	an	informal	tutorial	session.	The	book
is	structured	such	that	each	lesson	teaches	you	the	theory	of	a	topic,	followed	by	one	or
more	coded	examples,	with	plenty	of	screenshots	and	notes	to	help	you	follow	along.	To
avoid	redundancy	of	instruction,	the	lessons	build	on	each	other,	so	the	later	chapters
assume	you've	read,	or	are	already	familiar	with,	the	material	discussed	in	earlier	lessons.	I
strongly	recommend	that	you	watch	the	videos,	which	you	can	find	at
www.wrox.com/go/excelvba24hour.	You	will	get	more	out	of	them	than	you	might
imagine	because	they	include	bonus	information	about	Excel,	such	as	tips	and	tricks	that
will	help	you	manage	your	workbooks	with	greater	ease	and	efficiency.

http://www.wrox.com/go/excelvba24hour

What	You	Need	to	Use	This	Book
What	you	need	is	this	book	and	a	fully	installed	version	of	Microsoft	Office.	If	you	only
have	Excel	installed,	that	will	suffice	for	lessons	up	to	and	including	Lesson	28.	Lessons
29	to	33	deal	with	controlling	other	Office	applications	from	Excel.	VBA	ships	with
Excel,	so	you	already	have	all	the	programming	tools	you	need	when	you	installed	VBA
with	Office.	The	version	of	your	Windows	operating	system	is	not	important.

In	many	examples,	different	versions	of	Excel	are	represented,	with	Excel's	latest	version
at	this	writing—version	2013—shown	most	frequently.	If	you	are	using	Excel	version
2003	or	before,	you	can	complete	almost	all	the	examples	in	this	book,	but	it	will	be	easier
for	you	to	follow	along	by	using	a	version	starting	with	2007—ideally	with	2010	or	2013.
Almost	everything	discussed	in	this	book	has	VBA	example	code	to	go	along	with	it,	with
comments	in	the	code	(lines	of	text	in	VBA	code	that	start	with	an	apostrophe)	that
explain	what	the	code	is	doing,	and	why.	Plenty	of	screenshots	help	you	see	beforehand
what	to	expect,	and	help	you	after	you've	tested	your	code	to	confirm	you	followed	the
steps	correctly.

You	need	one	other	thing,	which	only	you	can	control,	and	that	is	a	quiet	period	of	time
for	yourself	so	you	can	read	this	book	and	view	its	video	Try	It	lessons	uninterrupted.
Everyone	studies	and	retains	new	material	differently,	and	we	all	live	in	a	busy	world.	But
do	what	you	can	to	carve	out	some	“you	time”	as	you	make	your	way	through	the	book.
You'll	find	a	lot	of	useful	material	that	will	lead	you	to	think	of	other	situations	you
typically	encounter	in	Excel	that	can	be	solved	with	the	concepts	you'll	be	learning.

Conventions
To	help	you	get	the	most	from	the	text	and	keep	track	of	what's	happening,	we've	used	a
number	of	conventions	throughout	the	book.

WARNING	Boxes	like	this	one	hold	important,	not-to-be	forgotten	information	that
is	directly	relevant	to	the	surrounding	text.

NOTE	Notes,	tips,	hints,	tricks,	and	asides	to	the	current	discussion	are	offset	and
placed	in	italic	like	this.

As	for	styles	in	the	text:

We	highlight	new	terms	and	important	words	when	we	introduce	them.

We	show	filenames,	URLs,	and	code	within	the	text	like	so:
persistence.properties.

We	present	code	like	this:

We	use	a	monofont	type	with	no	highlighting	for	most	code	examples.

We	use	bold	to	emphasize	code	that's	particularly	important	in	the	

present	context.

Text	that	you	need	to	enter	as	you	work	through	the	Try	It	sections	is	written	as	bold
code,	as	shown	here:

Name	it	cmdExit	and	caption	it	as	Exit.

Source	Code
As	you	work	through	the	examples	in	this	book,	you	may	choose	either	to	type	in	all	the
code	manually	or	to	use	the	source	code	files	that	accompany	the	book.	All	of	the	source
code	used	in	this	book	is	available	for	download	at	www.wrox.com/go/excelvba24hour.
The	code	snippets	from	the	source	code	are	accompanied	by	a	download	icon	and	note
indicating	the	name	of	the	program	so	you	know	it's	available	for	download	and	can	easily
locate	it	in	the	download	file.	Once	at	the	site,	simply	locate	the	book's	title	(either	by
using	the	Search	box	or	by	using	one	of	the	title	lists)	and	click	the	Download	Code	link
on	the	book's	detail	page	to	obtain	all	the	source	code	for	the	book.

After	you	download	the	code,	just	unzip	the	file	using	WinZip	or	a	similar	tool.
Alternatively,	you	can	go	to	the	main	Wrox	code	download	page	at
http://www.wrox.com/dynamic/books/download.aspx	to	see	the	code	available	for	this
book	and	all	other	Wrox	books.

http://www.wrox.com/go/excelvba24hour
http://www.wrox.com/dynamic/books/download.aspx

Errata
We	make	every	effort	to	ensure	that	there	are	no	errors	in	the	text	or	in	the	code.	However,
no	one	is	perfect,	and	mistakes	do	occur.	If	you	find	an	error	in	one	of	our	books,	like	a
spelling	mistake	or	faulty	piece	of	code,	we	would	be	very	grateful	for	your	feedback.	By
sending	in	errata	you	may	save	another	reader	hours	of	frustration	and	at	the	same	time
you	will	be	helping	us	provide	even	higher	quality	information.

To	find	the	errata	page	for	this	book,	go	to	http://www.wrox.com	and	locate	the	title	using
the	Search	box	or	one	of	the	title	lists.	Then,	on	the	book	details	page,	click	the	Book
Errata	link.	On	this	page	you	can	view	all	errata	that	has	been	submitted	for	this	book	and
posted	by	Wrox	editors.	A	complete	book	list	including	links	to	each	book's	errata	is	also
available	at	www.wrox.com/misc-pages/booklist.shtml.

If	you	don't	spot	“your”	error	on	the	Book	Errata	page,	go	to
www.wrox.com/contact/techsupport.shtml	and	complete	the	form	there	to	send	us	the
error	you	have	found.	We'll	check	the	information	and,	if	appropriate,	post	a	message	to
the	book's	errata	page	and	fix	the	problem	in	subsequent	editions	of	the	book.

http://www.wrox.com
http://www.wrox.com/misc-pages/booklist.shtml
http://www.wrox.com/contact/techsupport.shtml

p2p.wrox.com

For	author	and	peer	discussion,	join	the	P2P	forums	at	p2p.wrox.com.	The	forums	are	a
web-based	system	for	you	to	post	messages	relating	to	Wrox	books	and	related
technologies	and	interact	with	other	readers	and	technology	users.	The	forums	offer	a
subscription	feature	to	e-mail	you	topics	of	interest	of	your	choosing	when	new	posts	are
made	to	the	forums.	Wrox	authors,	editors,	other	industry	experts,	and	your	fellow	readers
are	present	on	these	forums.

At	http://p2p.wrox.com	you	will	find	a	number	of	different	forums	that	will	help	you
not	only	as	you	read	this	book,	but	also	as	you	develop	your	own	applications.	To	join	the
forums,	just	follow	these	steps:

1.	 Go	to	p2p.wrox.com	and	click	the	Register	link.

2.	 Read	the	terms	of	use	and	click	Agree.

3.	 Complete	the	required	information	to	join	as	well	as	any	optional	information	you
wish	to	provide	and	click	Submit.

4.	 You	will	receive	an	e-mail	with	information	describing	how	to	verify	your	account	and
complete	the	joining	process.

NOTE	You	can	read	messages	in	the	forums	without	joining	P2P	but	in	order	to	post
your	own	messages,	you	must	join.

Once	you	join,	you	can	post	new	messages	and	respond	to	messages	other	users	post.	You
can	read	messages	at	any	time	on	the	web.	If	you	would	like	to	have	new	messages	from	a
particular	forum	e-mailed	to	you,	click	the	Subscribe	to	this	Forum	icon	by	the	forum
name	in	the	forum	listing.

For	more	information	about	how	to	use	the	Wrox	P2P,	be	sure	to	read	the	P2P	FAQs	for
answers	to	questions	about	how	the	forum	software	works	as	well	as	many	common
questions	specific	to	P2P	and	Wrox	books.	To	read	the	FAQs,	click	the	FAQ	link	on	any
P2P	page.

http://p2p.wrox.com
http://p2p.wrox.com
http://p2p.wrox.com
http://p2p.wrox.com

Part	I
Understanding	the	BASICs
Lesson	1:	Introducing	VBA

Lesson	2:	Getting	Started	with	Macros

Lesson	3:	Introducing	the	Visual	Basic	Editor

Lesson	4:	Working	in	the	VBE

Lesson	1
Introducing	VBA
Welcome	to	your	first	lesson	in	Excel	VBA	24-Hour	Trainer!	A	good	place	to	start	is	at	the
beginning,	where	you'll	find	it	useful	to	get	an	understanding	of	where	Visual	Basic	for
Applications	(VBA)	comes	from	and	what	VBA	is	today.	After	you	get	a	feel	for	how
VBA	fits	into	the	overall	Excel	universe,	you	find	out	how	to	use	VBA	to	manipulate
Excel	in	ways	you	might	never	have	thought	possible.

What	is	VBA?
VBA	is	a	programming	language	created	by	Microsoft	to	automate	operations	in
applications	that	support	it,	such	as	Excel.	VBA	is	an	enormously	powerful	tool	that
enables	you	to	control	Excel	in	countless	ways	that	you	cannot	do—or	would	not	want	to
do—manually.

In	fact,	VBA	is	also	the	language	that	manipulates	Microsoft	Office	applications	in
Access,	Word,	PowerPoint,	and	Outlook.	For	the	purposes	here,	VBA	is	the	tool	you	use
to	develop	macros	and	manipulate	objects	to	control	Excel	and	to	control	other	Office
applications	from	Excel.

You	do	not	need	to	purchase	anything	more	than	the	Office	suite	(or	the	individual
application)	to	also	own	VBA.	If	you	have	Excel	on	your	computer,	you	have	VBA	on
your	computer.

WHAT	IS	A	“MACRO,”	ANYWAY?
Back	in	the	day,	a	programming	language	was	often	called	a	“macro	language”	if	its
capabilities	included	the	automation	of	a	sequence	of	commands	in	spreadsheet	or
word-processing	applications.	With	Microsoft's	release	of	Office	5,	VBA	set	a	new
bar	for	how	robust	a	programming	language	can	be,	with	capabilities	extending	far
beyond	those	of	earlier	programming	languages,	such	as	the	ability	to	create	and
control	objects	within	Excel	or	to	have	access	to	disk	drives	and	networks.

So	VBA	is	a	programming	language,	and	it	is	also	a	macro	language.	Confusion	of
terminology	arises	when	referring	to	VBA	code	that	is	a	series	of	commands	written
and	executed	in	Excel.	Is	it	a	macro,	a	procedure,	or	a	program?	Microsoft	commonly
refers	to	its	VBA	procedures	as	macros,	so	that's	good	enough	for	me	to	call	them
macros	also.	Outside	of	a	few	exceptions	that	I	explain	when	the	time	comes,	I	refer
to	VBA	procedures	as	macros.

A	Brief	History	of	VBA
VBA	is	a	present-day	dialect	of	the	BASIC	(Beginner's	All-purpose	Symbolic	Instruction
Code)	programming	language	that	was	developed	in	the	1960s.	BASIC	became	widely
used	in	many	software	applications	throughout	the	next	two	decades	because	it	was	easy
to	learn	and	understand.

Over	the	years,	BASIC	has	evolved	and	improved	in	response	to	advancing	technology
and	increased	demands	by	its	users	for	greater	programming	flexibility.	In	1985,	Microsoft
released	a	much	richer	version	of	BASIC,	named	QuickBASIC,	which	boasted	the	most
up-to-date	features	found	in	programming	languages	of	the	day.	In	1992,	Microsoft
released	Visual	Basic	for	Windows,	designed	to	work	within	the	burgeoning	Windows
environment.

Meanwhile,	various	software	publishers	were	making	their	own	enhancements	to	BASIC
for	their	products'	programming	languages,	resulting	in	a	wide	and	confusing	range	of
functionality	and	commands	among	software	applications	that	were	using	BASIC.
Microsoft	recognized	the	need	for	developing	a	standardized	programming	language	for
its	software	products,	and	created	Visual	Basic	for	Applications.

VBA	was	first	released	by	Microsoft	with	Excel	5	in	the	Office	1995	suite.	Since	then,
VBA	has	become	the	programming	language	for	Microsoft's	other	popular	Office
applications,	as	well	as	for	external	software	customers	of	Microsoft	to	whom	VBA	has
been	licensed	for	use.

THERE'S	A	BIG	DIFFERENCE	BETWEEN	VB	AND
VBA!
With	all	the	acronyms	bandied	about	in	the	world	of	computing,	it's	easy	to	get	some
terms	confused.	VB	stands	for	Visual	Basic,	and	it	is	not	the	same	as	VBA.	Though
both	VB	and	VBA	are	programming	languages	derived	from	BASIC	and	created	by
Microsoft,	they	are	otherwise	very	different.

VB	is	a	language	that	enables	you	to	create	standalone	executable	applications	that	do
not	even	require	its	users	to	have	Office	or	Excel	loaded	onto	their	computers.	VBA
cannot	create	standalone	applications,	and	it	exists	within	a	host	application	such	as
Excel	and	the	workbook	containing	the	VBA	code.	For	a	VBA	macro	to	run,	its	host
application	workbook	must	be	open.	This	book	is	about	VBA	and	how	it	controls
Excel.

What	VBA	Can	Do	for	You
Everyone	reading	this	book	uses	Excel	for	their	own	needs,	such	as	financial	budgeting,
forecasting,	analyzing	scientific	data,	creating	invoices,	or	charting	the	progress	of	their
favorite	football	team.	One	thing	all	readers	have	in	common	is	the	need	to	automate	some
kind	of	frequently	encountered	task	that	is	either	too	time-consuming	or	too	cumbersome
to	continue	doing	manually.	That's	where	VBA	comes	in.

The	good	news	is	that	utilizing	VBA	does	not	mandate	that	you	first	become	a	world-class
professional	programmer.	Many	VBA	commands	are	at	your	disposal,	and	are	relatively
easy	to	implement	and	customize	for	your	everyday	purposes.

Anything	you	can	do	manually	you	can	do	with	VBA,	but	VBA	enables	you	to	do	it	faster
and	with	a	minimized	risk	of	human	error.	Many	things	that	Excel	does	not	allow	you	to
do	manually,	you	can	do	with	VBA.	The	following	sections	describe	a	handful	of
examples	of	what	VBA	can	do	for	you.

Automating	a	Recurring	Task
If	you	find	yourself	needing	to	produce	weekly	or	monthly	sales	and	expense	reports,	a
macro	can	create	them	in	no	time	flat,	in	a	style	and	format	you	(and	more	importantly,
your	boss)	will	be	thrilled	with.	And	if	the	source	data	changes	later	that	day	and	you	need
to	produce	the	updated	report	again,	no	problem—just	run	the	macro	again!

Automating	a	Repetitive	Task
When	faced	with	needing	to	perform	the	same	task	on	every	worksheet	in	your	workbook,
or	in	every	workbook	in	a	particular	file	folder,	you	can	create	a	macro	to	“loop”	through
each	object	and	do	the	deed.	You	find	out	how	to	repeat	actions	with	various	looping
methods	in	Lesson	10.	Figure	1.1	shows	an	example	of	worksheets	that	were	sorted	in
alphabetical	order	by	a	macro	that	looped	through	each	tab	name,	repositioning	each	sheet
in	the	process.

Figure	1.1

Running	a	Macro	Automatically	if	Another	Action	Takes	Place
In	some	situations,	you	want	a	macro	to	run	automatically	so	you	don't	have	to	worry
about	remembering	to	run	it	yourself.	For	example,	to	automatically	refresh	a	pivot	table
the	moment	its	source	data	changes,	you	can	monitor	those	changes	with	VBA,	ensuring
that	your	pivot	table	always	displays	real-time	results.	This	is	called	“event”
programming,	which	is	cool	stuff,	and	is	discussed	in	Lessons	13	and	14.

An	event	can	also	be	triggered	and	programmed	anytime	a	cell	or	range	of	cells	is
selected.	A	common	request	I've	received	from	Excel	users	is	to	highlight	the	active	cell,
or	the	row	and	column	belonging	to	the	active	cell,	automatically	when	a	cell	is	selected.
Figure	1.2	shows	three	options	to	easily	locate	your	active	cell	as	you	traverse	your
worksheet.

Figure	1.2

Creating	Your	Own	Worksheet	Functions
You	can	create	your	own	worksheet	functions,	known	as	user-defined	functions,	to	handle
custom	calculations	that	Excel's	built-in	functions	do	not	provide,	or	would	be	too
complicated	to	use	even	if	such	native	functions	were	available.	For	example,	later	in	the
book	you	see	how	to	add	up	numbers	in	cells	that	are	formatted	a	certain	color.	UDFs,	as
these	custom	functions	are	called,	are	covered	in	Lesson	19,	“User-Defined	Functions.”

Simplifying	the	Workbook's	Look	and	Feel	for	Other	Users
When	you	create	a	workbook	for	others	to	use,	there	will	inevitably	be	users	who	know
little	to	nothing	about	Excel,	but	who	will	still	need	to	work	in	that	file.	You	can	build	a
customized	interface	with	user-friendly	menus	and	informational	pop-up	boxes	to	guide
your	novice	users	throughout	their	activities	in	the	workbook.	You	might	be	surprised	at
how	un-Excel-looking	an	Excel	workbook	can	be,	with	VBA	providing	a	visually
comfortable	and	interactive	experience	for	users	unfamiliar	with	Excel,	enabling	them	to
get	their	work	done.	Figure	1.3	shows	an	example	of	accomplishing	this	with	UserForms,
which	are	discussed	in	Lessons	21,	22,	and	23.

Figure	1.3

Controlling	Other	Office	Applications	from	Excel
If	you	create	narrative	reports	in	Word	that	require	an	embedded	list	of	data	from	Excel,	or
if	you	need	to	import	a	table	from	Access	into	an	Excel	worksheet,	VBA	can	automate	the
process.	VBA	is	the	programming	language	for	Microsoft's	other	Office	applications,
enabling	you	to	write	macros	in	Excel	to	perform	tasks	in	those	other	applications,	with
the	users	being	none	the	wiser	that	they	ever	left	Excel	while	the	macro	was	running.

As	you	might	imagine,	the	list	of	advantages	to	using	VBA	could	fill	the	capacity	of	your
average	flash	drive.	The	point	is,	you	are	sure	to	have	tasks	in	your	everyday	dealings	with
Excel	that	can	be	accomplished	more	quickly	and	efficiently	with	VBA,	and	this	book
shows	you	how.

Liabilities	of	VBA
Although	VBA	is	a	tremendously	useful	and	versatile	tool,	it	is	not	a	100	percent	perfect
programming	language—but	then,	no	programming	language	anywhere	can	truthfully
claim	infallibility.	The	pros	of	VBA	far	outweigh	its	cons,	but	learning	and	using	VBA
does	come	with	a	few	objective	caveats	that	you	should	be	aware	of:

With	each	version	release	of	Excel,	Microsoft	may	add	new	VBA	commands	or	stop
supporting	existing	VBA	commands,	sometimes	without	advance	warning.	Surprises
do	happen,	as	was	especially	the	case	when	Office	2007	was	released	with	all	its	added
features.	Such	is	life	in	the	world	of	Excel	VBA.	You	will	probably	learn	of	coding
errors	from	people	who	have	upgraded	to	a	newer	version	and	are	using	the	workbook
you	created	in	an	earlier	version.

VBA	does	not	run	uniformly	in	all	computer	operating	environments.	Sometimes,	no
matter	how	extensively	you	test	your	code	and	how	flawlessly	the	macros	run	on	your
computer	as	you	develop	a	project,	there	will	be	users	of	your	workbook	who	will
eventually	report	an	error	in	your	code.	It	won't	be	your	fault	or	VBA's	fault,	it's	just
the	idiosyncrasies	of	how	programming	languages	such	as	VBA	mix	with	various
operating	systems,	Office	versions,	and	network	configurations.	Debugging	your	code
is	the	subject	of	Lesson	20.

Programming	languages,	including	VBA,	are	not	warmly	received	by	all	workplace	IT
departments.	Many	companies	have	set	internal	policies	that	forbid	employees	from
downloading	malicious	software	onto	workplace	computers.	This	is	an	understandable
concern,	but	the	corporate	safety	nets	are	sometimes	cast	far	and	wide	to	include	Excel
workbooks	with	VBA	code.	The	tug	of	war	in	companies	between	the	security
interests	of	IT	and	the	work	efficiency	needs	of	management	can	determine	whether
the	VBA	code	you	install	will	actually	be	allowed	for	use	in	some	company	venues.

Finally,	VBA	is	a	large	program.	It	has	thousands	of	keywords	and	the	language
library	is	only	getting	larger.	Actually,	I	see	this	as	a	good	thing,	because	the	more
VBA	you	learn,	the	more	productivity	and	control	you	will	have	with	Excel.	Just	as
with	any	language,	be	it	spoken	or	programming,	there	is	a	level	of	rolling-up-your-
shirtsleeves	commitment	that'll	be	needed	to	learn	VBA.	Even	the	longest	journey
starts	with	a	first	step,	and	this	book	gets	you	on	your	way.

NOTE	VBA	has	a	bright,	stable	future.	An	occasional	rumor	makes	the	rounds	on	the
Internet,	claiming	the	imminent	demise	of	VBA.	Do	not	believe	it.	VBA	is	here	to	stay,
and	Microsoft	has	publicly	said	so,	time	and	again.	The	facts	are,	in	2007,	Microsoft
closed	its	VBA	licensing	program	to	new	customers,	and	VBA	was	not	supported	in
the	2008	version	of	Office	for	the	Mac,	though	VBA	has	been	supported	by	Mac
versions	after	that.	Microsoft	has	consistently	made	very	clear	its	plan	for	supporting
VBA	in	future	versions	of	Excel	for	Windows.

Try	It
With	the	introductory	nature	of	this	first	lesson,	there's	nothing	specific	to	try	with	VBA.
What	you	can	do	is	to	get	a	jump	on	the	rest	of	the	lessons	in	this	book	by	making	a	list	of
some	of	your	most	frequent	everyday	manual	Excel	tasks,	especially	the	dreaded,	time-
consuming	ones	you	wish	would	go	away.	Tasks	such	as	those	will	become	good
candidates	for	you	to	apply	the	VBA	macros	and	automated	solutions	skills	that	the
following	lessons	will	teach	you.

REFERENCE	There	is	no	video	to	accompany	this	lesson.

Lesson	2
Getting	Started	with	Macros
In	Lesson	1,	you	read	that	VBA	is	the	programming	language	of	Microsoft	Excel	and	that
a	macro	is	a	sequence	of	VBA	commands	to	run	a	task	automatically	instead	of	manually.
In	this	lesson,	you	find	out	how	to	create	a	simple	macro,	what	its	code	looks	like,	and	a
few	options	for	how	you	can	run	the	macro.

Composing	Your	First	Macro
This	lesson	leads	you	through	the	process	of	composing	a	macro	to	sort	and	format	a
range	of	data.	But	even	before	the	first	line	of	programming	code	is	written,	you	need	to
set	up	shop	by	giving	yourself	easy	access	to	the	VBA-related	tools	you'll	be	using.	The
following	housekeeping	items	usually	need	to	be	done	only	once,	and	it's	worth	taking	the
time	to	do	them	now	if	you	haven't	already	done	so.

Accessing	the	VBA	Environment
At	the	time	of	this	writing,	Excel	is	at	a	unique	stage	in	its	ongoing	evolution	because	four
of	its	versions	are	being	used	with	significant	popularity	in	the	Microsoft	Office	suite	of
applications.	Version	2003	(also	known	as	version	11)	was	the	final	Excel	version	with	the
traditional	menu	bar	interface	of	File,	Edit,	View,	and	so	on.	Then	came	version	2007	(also
known	as	version	12),	blazing	the	trail	for	Office's	new	Ribbon	interface.	Three	years
later,	version	2010	(also	known	as	version	14)	was	the	next	release	from	Redmond.	Most
recently,	version	2013	(also	known	as	version	15)	has	taken	its	place	among	the
community	of	Excel	versions	that	are	being	used	around	the	world.

As	with	other	tasks	you	typically	do	in	Excel,	the	actions	you	take	to	create,	view,	edit,	or
run	VBA	code	usually	start	by	clicking	the	on-screen	icon	relating	to	that	task.	Exactly
what	those	VBA-related	icons	look	like,	and	what	you	need	to	do	to	make	them	easily
accessible	to	you,	depends	on	the	particular	version	of	Excel	you	are	working	with.

WHY	IS	THERE	NO	VERSION	13?
You	probably	noticed	that	the	version	numbers	went	from	12	in	2007	to	14	in	2010,
making	the	number	13	conspicuously	absent	as	a	version	number.	This	was	not	an
accident;	Microsoft	purposely	skipped	the	number	13.	You'll	often	notice	in	elevators
of	high-rise	office	buildings	and	hotels	that	the	floor	buttons	go	from	12	to	14,
without	a	floor	number	13.	Microsoft	recognizes	that	its	Office	applications	are	used
globally,	and	in	some	cultures,	13	is	thought	to	be	an	unlucky	number.	It	made	good
business	sense	to	avoid	issues	of	possible	reluctance	from	consumers	upgrading	to
“Office	13,”	or	blame	for	inevitable	version	bugs	by	people	who	believe	that	13	is	an
unlucky	number.

To	save	yourself	time	and	extra	mouse	clicks,	start	by	making	sure	that	the	VBA-related
icons	you'll	be	using	most	frequently	are	already	displayed	whenever	you	open	Excel.	The
following	steps	are	shown	for	each	of	today's	four	most	popular	versions.

Version	2003	continues	to	be	used	by	a	measurable	percentage	of	individuals	and
employers	worldwide.	For	versions	of	Excel	up	to	and	including	2003,	from	your
worksheet	menu,	click	View Toolbars Visual	Basic,	as	shown	in	Figure	2.1.	This
displays	the	Visual	Basic	toolbar,	as	shown	in	Figure	2.2,	which	you	can	dock	just	as	you
do	with	your	other	toolbars.

Figure	2.1

Figure	2.2

For	versions	of	Excel	after	2003	(that	is,	starting	with	Excel	2007),	the	Ribbon	user
interface	has	replaced	the	menu	interface,	resulting	in	a	different	look	to	the	VBA-related
icons	and	a	different	set	of	steps	required	to	see	them.

In	versions	2007,	2010,	and	2013,	these	VBA	icons	are	located	on	the	Developer	tab.	By
default,	the	Developer	tab	is	not	automatically	displayed	along	with	the	other	Ribbon	tabs.
You	need	to	complete	a	set	of	one-time	steps	to	show	the	Developer	tab	and	to	keep	it
visible	whenever	you	open	Excel.	Although	the	steps	to	do	this	are	easy,	they	are	different
for	each	version.

In	Excel	2007,	do	the	following:

1.	 Click	the	round	Office	button	near	the	top-left	corner	of	your	screen.

2.	 Click	the	Excel	Options	button	located	at	the	bottom	of	that	menu,	as	shown	in	Figure
2.3.

3.	 In	the	Excel	Options	dialog	box,	click	the	Popular	item	at	the	upper	left,	and	select	the

Show	Developer	tab	in	the	Ribbon	option,	as	shown	in	Figure	2.4.

Figure	2.3

Figure	2.4

In	Excel	versions	2010	and	2013,	showing	the	Developer	tab	is	a	bit	different.	A	new
Ribbon	tab	named	File	has	supplanted	the	Office	button.	Use	the	following	steps	to	make
the	Developer	tab	visible:

1.	 Click	the	File	tab	and	then	click	the	Options	button,	as	shown	in	Figure	2.5.	The
Options	dialog	box	opens.

2.	 Click	the	Customize	Ribbon	item	at	the	left,	which	displays	two	vertical	lists,	as
shown	in	Figure	2.6.	Notice	that	the	list	on	the	right	has	a	drop-down	menu	above	it
called	Customize	the	Ribbon.

3.	 Select	the	Main	Tabs	item	from	the	Customize	the	Ribbon	drop-down.

4.	 In	the	list	of	Main	Tabs,	select	Developer	and	click	OK.	You	will	see	the	Developer
tab	in	your	Ribbon,	as	shown	in	Figure	2.7.

Figure	2.5

Figure	2.6

Figure	2.7

Using	the	Macro	Recorder
The	easiest	way	to	create	a	macro	is	to	record	your	worksheet	actions	using	a	valuable	tool
called	the	Macro	Recorder.	All	you	need	to	do	is	turn	on	the	Macro	Recorder,	perform	the
actions	that	comprise	the	task	you	want	to	automate,	and	then	turn	off	the	Macro	Recorder
when	you	have	finished	your	task.	While	the	Macro	Recorder	is	turned	on,	every	action
you	do—selecting	a	cell,	entering	a	number,	formatting	a	range,	pretty	much	everything—
is	recorded	and	represented	as	VBA	code	in	a	new	macro.	As	you	see	later,	when	you	run
the	macro	created	by	the	Macro	Recorder,	your	task	is	completed	automatically,	just	as	if
you	had	done	it	manually.

The	Macro	Recorder	comes	in	handy	for	repetitive	(and	sometimes	mundane)	common
tasks	that	you'd	rather	not	have	to	keep	manually	doing	over	and	over.	For	example,	say
you	manage	a	table	of	data	every	day,	such	as	the	one	shown	in	Figure	2.8,	that	shows
how	many	items	your	company	sold	in	its	East,	West,	North,	and	South	regions.

Figure	2.8

The	everyday	task	at	hand	is	to	sort	the	table	primarily	by	Region,	then	by	Item,	then	by
Count.	Your	boss	wants	the	Item	and	Region	columns	to	switch	places,	so	that	Region

occupies	column	A	and	Item	occupies	column	B.	To	improve	readability,	the	numbers	in
the	Count	column	must	be	formatted	with	the	thousands	comma	separator,	and	the	headers
for	Region,	Item,	and	Count	must	be	bolded.	Figure	2.9	shows	the	finished	table,	the	way
your	boss	wants	it.

Figure	2.9

This	is	normally	a	six-step	process,	which	is	quite	boring,	but	it's	part	of	your	job
responsibilities.

To	complete	the	task	you	might	do	this:

1.	 Insert	a	new	column	at	column	A.

2.	 Select	the	Region	column,	cut	it,	and	paste	it	to	empty	column	A,	to	the	left	of	the	Item
column.

3.	 Delete	the	now-empty	column	from	where	the	Region	column	was	cut.

4.	 Select	range	A1:C13	and	sort	in	ascending	order	by	Region,	Item,	and	Count.

5.	 Select	range	C2:C13	and	format	the	numbers	with	the	thousands	comma	separator.

6.	 Select	range	A1:C1	and	format	those	cells	as	Bold.

Not	only	are	these	steps	monotonous,	but	also	a	risk	for	making	honest	mistakes	due	to
eventual	human	error.	The	good	news	is	that	if	you	perform	the	necessary	steps	perfectly
for	the	Macro	Recorder,	the	task	can	be	reduced	to	a	simple	mouse	click	or	keyboard
shortcut,	with	VBA	doing	the	grunt	work	for	you.

NOTE	Anytime	you	create	a	macro,	it's	wise	to	plan	ahead	about	why	you	are
creating	the	macro,	and	what	you	want	the	macro	to	do.	This	is	especially	important
with	complex	macros,	because	you	want	your	macros	to	operate	efficiently	and
accurately,	with	just	the	code	that's	necessary	to	get	the	job	done	properly.	By
avoiding	excessive	code,	your	macros	will	run	faster	and	be	easier	to	edit	or
troubleshoot.	For	example,	get	your	workbook	ready	beforehand	to	avoid
unnecessary	coded	actions.	Have	the	worksheet	that	you'll	be	working	on	active,	with
the	range	of	interest	already	visible.	Mistakes	are	recorded	too!	Practice	the	steps
first,	so	your	macro's	recorded	code	is	not	lengthier	than	it	needs	to	be.

Because	you	know	what	manual	steps	are	required	for	this	daily	task,	you	are	ready	to
create	your	macro.	The	first	thing	to	do	is	turn	on	the	Macro	Recorder.	In	Excel	versions
2003	or	before,	click	the	Record	Macro	button	on	the	Visual	Basic	toolbar,	as	shown	in
Figure	2.10.	For	later	Excel	versions,	click	the	Record	Macro	button	in	the	Code	section
of	the	Developer	tab	on	the	Ribbon,	as	shown	in	Figure	2.11.

Figure	2.10

Figure	2.11

What	you	see	next	looks	much	like	Figure	2.12.	A	small	Record	Macro	dialog	box
displays,	with	default	information	that	only	needs	your	approval	by	clicking	OK	to	start
recording	your	macro.	Resist	the	temptation	to	accept	the	defaults,	because	now's	the	time
to	get	into	a	few	good	habits.

Figure	2.12

The	Macro	Recorder	is	an	excellent	teaching	tool,	and	hardly	a	day	goes	by	when	I	do	not
use	it	in	some	way.	VBA	is	just	too	voluminous	a	programming	language	to	memorize	its
every	keyword	and	nuance.	Often	as	not,	I'll	record	a	macro	just	to	look	at	the	code	it
produces	to	learn	the	proper	syntax	of	a	task	dealing	with	some	larger	macro	I	am	working
on.	You	will	find	yourself	using	the	Macro	Recorder	in	the	same	way;	it's	a	terrific	source
for	learning	VBA	code,	as	Excel	developers	of	any	skill	level	will	attest.

For	this	example,	the	macro	you	are	creating	is	one	you	will	want	to	keep	and	use	often.	A
little	customization	is	strongly	recommended	to	help	you	down	the	road,	when	you'll	want
to	remember	what	the	macro	does,	why	you	created	it,	and	what	optional	keyboard
shortcut	you	assigned	to	run	it.

In	the	Record	Macro	dialog	box,	give	the	macro	a	meaningful	name.	Macro	names	cannot
contain	spaces,	and	they	cannot	begin	with	a	numeral.	Because	you	are	the	person	doing
the	sorting,	and	you	don't	want	to	make	the	macro	name	too	long,	naming	it	mySort	gives
the	macro	more	meaning	than	the	default	name	of	Macro1.

In	Figure	2.12,	notice	the	small	box	to	the	right	of	Ctrl+	in	the	Shortcut	Key	section.	You
can	place	any	letter	of	the	alphabet	in	that	field,	which,	when	pressed	with	the	Ctrl	key,
will	be	one	method	(and	a	convenient	one	at	that)	by	which	you	can	run	the	macro.

NOTE	A	shortcut	key	is	not	mandatory;	in	fact,	most	of	your	macros	will	not	have
one	or	need	one.	But	if	you	do	want	to	assign	a	shortcut	key,	get	into	the	good	habit	of
assigning	it	with	the	Ctrl+Shift	combination	rather	than	with	just	the	Ctrl	key.	Excel
has	assigned	all	26	letters	of	the	alphabet	to	serve	as	built-in	shortcuts	with	the	Ctrl
key	for	various	tasks,	and	you	will	do	well	to	avoid	overriding	that	native
functionality.	For	example,	Ctrl+C	is	the	key	combination	to	copy	text.	However,	if
you	assign	the	shortcut	key	Ctrl+C	to	your	macro,	you	will	override	the	default	for
that	key	combination,	and	will	not	be	able	to	use	Ctrl+C	to	copy	text	in	the	workbook
containing	the	macro.

To	take	advantage	of	the	Shortcut	Key	option,	click	in	the	Shortcut	Key	field,	press	the
Shift	key,	and	also	press	an	alphabet	key	such	as	the	letter	S.	You	will	have	created	the
keyboard	shortcut	Ctrl+Shift+S,	which	will	not	interfere	with	any	of	Excel's	significant
built-in	keyboard	shortcuts.

Most	macros	you	record	are	stored	in	the	workbook	you	are	working	with.	For	now,	you
can	keep	the	default	selection	of	This	Workbook	in	the	Store	Macro	In	field.

Finally,	in	the	Description	field,	enter	a	brief	but	meaningful	explanation	of	what	the
macro	does.	When	you	are	finished	making	these	minor	changes	to	the	Record	Macro
dialog	box,	it	looks	similar	to	Figure	2.13.	Go	ahead	and	click	OK,	which	turns	on	the
Macro	Recorder,	and	you	can	proceed	to	manually	perform	the	steps	you	want	to
automate.

Figure	2.13

In	versions	2003	and	earlier,	you	will	see	a	tiny	floating	toolbar	while	the	Macro	Recorder
is	on.	That	is	the	Stop	Recording	toolbar,	with	a	Stop	Recording	button	you	click	when
you	are	finished	recording	your	actions.	When	you	have	completed	the	steps	to	your	task,
turn	off	the	Macro	Recorder	in	version	2003	by	clicking	the	Stop	Recording	button,	as
shown	in	Figure	2.14.

Figure	2.14

If	you	are	working	in	a	later	version	of	Excel,	click	the	Stop	Recording	button	on	the
Developer	tab	in	the	Ribbon,	as	shown	in	Figure	2.15.	Clicking	the	Stop	Recording	button
ends	the	recording	session,	and	you	have	created	your	macro.

Figure	2.15

HEY,	MY	STOP	RECORDING	BUTTON
DISAPPEARED!
If	you	are	using	Excel	version	2003	or	earlier,	the	Stop	Recording	toolbar	might	seem
to	suddenly	disappear	from	time	to	time.	This	is	almost	always	due	to	unwittingly
closing	that	toolbar	by	clicking	the	X	close	button	on	its	title	bar	instead	of	the	Stop
Recording	button.	It	has	happened	to	the	best	of	us.	To	show	the	Stop	Recording
toolbar	again,	start	to	record	a	new	macro,	then	from	the	worksheet	menu	click	View
Toolbars Stop	Recording.	Click	the	Stop	Recording	button	to	end	the	macro,	and

the	next	time	you	record	a	macro,	the	Stop	Recording	toolbar	will	be	its	normal
visible	self.

If	you	are	working	in	version	2007	or	later,	no	worries.	The	Stop	Recording	button	on
the	Ribbon	does	not	disappear;	it	only	reverts	to	Record	Macro	when	clicked.

Running	A	Macro
You	have	many	ways	to	run	a	macro,	most	of	which	are	demonstrated	in	later	lessons.	As
you	will	see,	the	method(s)	you	choose	for	running	your	macros	may	depend	on	complex
reasons	such	as	the	workbook	design,	or	may	be	based	on	a	simpler	factor	such	as	what
feels	most	intuitive	and	convenient	for	you.	To	wrap	up	this	lesson,	following	are	a	couple
of	commonly	used	options	for	running	your	macros.

The	Macro	Dialog	Box
When	you	create	recorded	macros,	their	names	will	appear	listed	in	a	dialog	box	called,
appropriately	enough,	the	Macro	dialog	box.	To	show	the	Macro	dialog	box	in	version
2003	or	earlier,	click	the	Run	Macro	button	on	the	Visual	Basic	toolbar,	as	shown	in
Figure	2.16.	The	title	of	that	button,	Run	Macro,	is	something	of	a	misnomer	because	you
are	not	actually	running	a	macro	when	you've	clicked	the	button.	All	you're	doing	is
displaying	the	Macro	dialog	box,	from	which	you	can	run	a	macro	but	also	edit	and
examine	macros.

Figure	2.16

In	versions	later	than	2003,	the	button	to	click	is	more	logically	labeled	Macros,	as	shown
in	Figure	2.17.

NOTE	Regardless	of	the	Excel	version,	pressing	Alt+F8	displays	the	Macro	dialog
box—no	mouse	clicks	needed.

Figure	2.17

Figure	2.18	shows	the	Macro	dialog	box	with	the	one	and	only	mySort	macro	listed.	As
you	create	more	macros	in	this	workbook,	their	names	are	listed	in	the	Macro	dialog	box
in	alphabetical	order.	To	run	your	macro,	select	its	name	in	the	list	and	click	the	Run
button,	as	indicated	by	the	arrows.	You	could	also	run	the	macro	by	double-clicking	its

name	in	the	list.

Figure	2.18

Shortcut	Key
Recall	that	you	assigned	the	shortcut	key	Ctrl+Shift+S	to	this	macro	at	the	start	of	the
macro	recording	process.	Because	you	did	that,	you	do	not	need	to	bother	with	the	Macro
dialog	box	if	you	don't	want	to;	you	can	run	the	mySort	macro	simply	by	pressing
Ctrl+Shift+S.

Try	It
In	this	lesson,	you	practice	creating	a	recorded	macro.

Lesson	Requirements
To	get	the	sample	workbook	file,	you	can	download	Lesson	2	from	the	book's	website	at
www.wrox.com/go/excelvba24hour.

Hints
Name	your	macros	with	a	word	or	concise	phrase	that	is	easy	to	read	and	gives	an	idea
about	what	the	macro	does.	For	example,	a	macro	named	Print_Expense_Report	is	more
descriptive	than	Macro5.

Step-by-Step
Start	with	a	worksheet	on	which	some	cells	contain	numbers	that	were	manually	entered,
and	other	cells	contain	numbers	produced	by	formulas,	such	as	in	the	downloadable
budget	workbook	shown	in	the	video	for	this	lesson.	I	have	a	number	of	steps	in	this	“Try
It”	lesson	to	help	demonstrate	the	value	of	a	macro	that	can	automatically	perform	tedious,
recurring	manual	tasks	with	a	simple	keyboard	shortcut	or	click	of	a	button.

Create	a	macro	that	fills	the	manually	entered	numeric	cells	with	one	color,	and	the
formula-containing	numeric	cells	with	another	color:

1.	 Click	the	Record	Macro	button	to	turn	on	the	Macro	Recorder.

2.	 In	the	Record	Macro	dialog	box,	name	the	macro	My_Macro	and	assign	it	the	shortcut
Ctrl+Shift+W.

3.	 Click	OK	to	start	recording	your	My_Macro	macro.

4.	 Click	the	button	above	row	1	and	to	the	left	of	column	A	to	select	the	all	the	worksheet
cells.

5.	 Show	the	Format	Cells	dialog	box.	Right-click	any	selected	cell	and	select	Format
Cells	from	the	menu,	or	press	the	Alt+O+E	keyboard	shortcut.

6.	 In	the	Format	Cells	dialog	box,	click	the	Fill	tab.	Click	the	No	Color	button	and	click
OK	to	remove	the	fill	colors	from	all	cells.

7.	 With	all	the	worksheet	cells	still	selected,	press	the	F5	key	to	show	the	Go	To	dialog
box.	Click	the	Special	button.

8.	 In	the	Go	To	Special	dialog	box,	select	the	option	button	for	Constants,	leave	the
Numbers	check	box	selected,	and	deselect	the	check	boxes	for	Text,	Logicals,	and
Errors.	Click	OK.

9.	 Repeat	Step	5	to	show	the	Format	Cells	dialog	box.

10.	 In	the	Format	Cells	dialog	box,	click	the	Fill	tab,	select	a	color	from	the	palette,	and
click	OK.

http://www.wrox.com/go/excelvba24hour

11.	 Repeat	Step	4	to	select	all	the	worksheet	cells.

12.	 Repeat	Step	7	to	show	the	Go	To	Special	dialog	box.

13.	 In	the	Go	To	Special	dialog	box,	select	the	option	button	for	Formulas,	leave	the
Numbers	check	box	selected,	and	deselect	the	check	boxes	for	Text,	Logicals,	and
Errors.	Click	OK.

14.	 Repeat	Step	5	to	show	the	Format	Cells	dialog	box.

15.	 In	the	Format	Cells	dialog	box,	click	the	Fill	tab,	select	a	color	from	the	palette	that	is
different	from	the	color	you	selected	for	Constants	in	Step	10,	and	click	OK.

16.	 Select	any	cell	on	the	worksheet	to	deselect	all	the	selected	special	cells.

17.	 Turn	off	the	Macro	Recorder	by	clicking	the	Stop	Recording	button.

18.	 Before	running	your	new	macro	to	see	it	in	action,	repeat	Steps	4,	5,	and	6	to	remove
the	fill	color	from	all	cells.

19.	 Show	the	Macro	dialog	box	to	run	your	macro.	You	can	either	click	the	Developer	tab
on	the	Ribbon	and	then	click	the	Macros	icon	in	the	Code	panel,	or	you	can	press	the
Alt+F8	keyboard	shortcut.

20.	 To	run	your	My_Macro	macro	from	the	Macro	dialog	box,	select	its	name	in	the	list	box
and	click	the	Run	button,	or	double-click	its	name	in	the	list	box.

21.	 To	run	your	My_Macro	macro	using	your	keyboard,	press	the	Ctrl+Shift+W	shortcut
keys	you	assigned	in	Step	2.

REFERENCE	Please	select	the	video	for	Lesson	2	online	at
www.wrox.com/go/excelvba24hour.	You	will	also	be	able	to	download	the	code	and
resources	for	this	lesson	from	the	website.

http://www.wrox.com/go/excelvba24hour

Lesson	3
Introducing	the	Visual	Basic	Editor
Lesson	2	explains	how	to	create	a	macro,	and	you	saw	a	couple	of	easy	ways	to	run	the
macro	you	created.	Now	it's	time	to	view	your	macro	and	have	a	look	at	the	environment
called	the	Visual	Basic	Editor	(VBE),	within	which	all	macros	and	VBA	procedures	are
stored.	Seeing	where	macros	live	and	breathe	improves	your	understanding	of	the	VBA
programming	process,	especially	when	you	start	to	edit	existing	macros	or	create	new
macros	without	the	Macro	Recorder.

What	is	the	VBE?
It's	fair	to	say	that	for	many	users	of	Excel,	the	worksheets,	pivot	tables,	charts,	and
hundreds	of	formula	functions	are	all	the	tools	they	need	to	satisfactorily	handle	their
spreadsheet	activities.	For	them,	the	familiar	workbook	environment	is	the	only	side	of
Excel	they	see,	and	understandably	the	only	side	of	Excel	they	are	probably	aware	of.

But	Excel	has	a	separate,	less	visible	environment	working	behind	the	scenes—the	Visual
Basic	Editor—which	is	interconnected	with	the	workbook	environment	even	if	no
programming	code	exists	in	the	workbook.	Both	environments	are	constantly	but	quietly
working	together,	sharing	information	back	and	forth	about	the	entire	workbook.	The
Visual	Basic	Editor	is	a	user-friendly	development	environment	where	programmed
instructions	are	maintained	in	order	to	make	your	spreadsheet	applications	work.

How	to	Get	Into	the	VBE
With	Excel	open,	a	fast	and	easy	way	to	get	into	the	Visual	Basic	Editor	is	to	press
Alt+F11	on	your	keyboard.	You	can	do	this	from	any	worksheet.	It's	just	as	quick	with
your	mouse,	too;	you	click	the	Visual	Basic	Editor	icon	on	the	Visual	Basic	toolbar	in
versions	up	to	2003,	as	shown	in	Figure	3.1,	or	the	Visual	Basic	button	from	the
Developer	tab	on	the	Ribbon	in	later	versions,	as	shown	in	Figure	3.2.

NOTE	If	you	don't	see	the	Developer	tab	on	your	Ribbon,	see	the	steps	to	show	it	in
Lesson	2,	in	the	section	“Accessing	the	VBA	Environment.”

Figure	3.1

Figure	3.2

CAREFUL,	THAT	WAS	ALT+F11!
The	Ctrl	key	is	commonly	used	in	conjunction	with	other	keys	for	keyboard	shortcuts.
By	force	of	habit,	you	might	mistakenly	press	Ctrl+F11	instead	of	Alt+F11	when
attempting	to	go	to	the	VBE.	However,	pressing	Ctrl+F11	has	a	curious	result:	Instead
of	being	taken	to	the	VBE,	you	will	have	created	an	outdated	type	of	sheet	called	a
macro	sheet,	with	the	strange	tab	name	of	Macro1.	Prior	to	Excel	version	97,	macros
were	stored	on	macro	sheets,	which	you	can	still	create,	though	they	have	no	practical
use	with	today's	Excel,	and	they	no	longer	hold	any	programming	code.	It's	OK	to
just	delete	the	macro	sheet	if	you	create	one,	and	take	another	stab	at	the	Alt	key	with
F11	to	get	into	the	VBE.

Understanding	the	VBE
The	Visual	Basic	Editor	can	show	a	number	of	different	windows,	depending	on	what	you
want	to	see	or	do.	For	the	majority	of	work	you	do	with	the	help	of	this	book,	you	want	to
eventually	become	familiar	with	four	windows:	the	Project	Explorer	window,	the	Code
window,	the	Properties	window,	and	the	Immediate	window.	Figure	3.3	shows	what	the
VBE	looks	like	with	these	four	windows.

Figure	3.3

The	Project	Explorer	Window

The	Project	Explorer	is	a	vertical	pane	on	the	left	side	of	the	VBE.	It	behaves	similarly	to
Windows	Explorer,	with	folder	icons	that	expand	and	collapse	when	clicked.	If	you	do	not
see	the	Project	Explorer	window	in	your	VBE,	press	Ctrl+R,	or	from	the	VBE	menu	bar,
click	View Project	Explorer.	As	indicated	by	the	first	item	at	the	top	of	the	Project
Explorer	window	in	Figure	3.3,	the	name	of	the	workbook	I	am	using	(in	Excel	terms,	the
VBAProject)	is	MacroExamples.xlsm.

VBA	code	is	kept	in	objects	known	as	modules,	which	are	discussed	later	in	further	detail.
Figure	3.3	shows	one	module	called	Module1.	Double-clicking	a	module	name	in	the
Project	Explorer	displays	that	module's	VBA	code	contents	in	the	Code	window,	as	you
see	in	Figure	3.3.

The	Code	Window
The	Code	window	is	where	the	code	for	macros	and	VBA	procedures	are	located.	The
VBE	provides	separate	code	windows	for	each	module.	A	good	way	to	think	of	this	is,	for
every	object	(worksheet,	module,	and	so	on)	you	see	listed	in	the	Project	Explorer,	the
VBE	has	provided	a	Code	window.	Note	that	the	drop-down	in	the	upper	right-hand
corner	of	Figure	3.3	displays	the	name	of	the	macro	that	is	currently	showing	in	the	Code
window	(mySort).	As	you	create	multiple	macros,	you	can	use	this	drop-down	to	quickly
move	from	one	macro	to	another.

The	Properties	Window
The	Properties	window	is	located	in	the	left	vertical	pane	near	the	bottom	of	the	VBE.	If
you	do	not	see	the	Properties	window	in	your	VBE,	press	F4,	or	from	the	VBE	menu	bar
click	View Properties	Window.	This	window	displays	a	list	of	the	properties	and	their
assigned	values	of	whatever	object	is	selected	in	the	Project	Explorer	window.	For
example,	in	Figure	3.3,	Sheet1	has	been	selected	and	the	Properties	window	shows	you,
among	other	details,	that	the	Name	property	for	the	selected	object	is	Sheet1.

The	Immediate	Window
The	Immediate	window	is	located	at	the	bottom	of	the	VBE,	usually	below	the	Code
window,	as	shown	in	Figure	3.3.	If	you	do	not	see	the	Immediate	window	in	your	VBE,
press	Ctrl+G,	or	from	the	VBE	menu	bar	click	View Immediate	Window.	The	name
“Immediate”	has	nothing	to	do	with	urgency,	but	rather	with	the	notion	that	you	can	query
a	line	of	code	and	immediately	obtain	its	returned	result,	without	having	to	run	a	macro	to
see	what	that	code	line	does.	This	comes	in	handy	for	code	debugging	tactics	in	Lesson
20,	but	for	now	I	just	wanted	to	point	out	the	Immediate	window	to	familiarize	you	with
its	name	and	location.

Understanding	Modules
I	touched	on	modules	earlier,	but	they	are	worth	another	mention.	A	module	is	a	container
for	your	code.	A	single	module	may	hold	one	or	many	macros,	depending	on	the
workbook	and	your	preference	for	how	you	manage	your	code.	For	smaller	projects	with
maybe	two	or	three	macros,	just	one	module	is	sufficient.	If	you	develop	larger	projects
with	dozens	of	macros,	it's	a	good	idea	to	organize	them	among	several	modules	by	theme

or	purpose.

Several	types	of	modules	exist:

Standard	modules:	These	are	the	kind	you	have	seen	already,	which	hold	macros	you
create	from	scratch	on	your	own	or	from	the	Macro	Recorder.

UserForm	modules:	These	belong	to	a	custom	user	interface	object	called	a
UserForm,	which	is	covered	in	Lessons	21,	22,	and	23.

Class	modules:	These	contain	the	kind	of	VBA	code	that	enables	you	to	create	your
own	objects	programmatically.	Creating	your	own	classes	is	very	cool,	and	you	learn
about	that	in	Lesson	24.

Worksheet	modules:	These	hold	VBA	code	that	looks	and	acts	like	macros,	but	to
make	things	interesting	Microsoft	refers	to	that	code	as	a	procedure	instead	of	as	a
macro.	Worksheet-level	procedures	are	tied	to	various	actions	called	events,	such	as
selecting	a	range	or	entering	a	value	in	a	cell.

Workbook	module:	Not	to	be	outdone,	the	workbook	itself	has	its	own	module,
named	by	default	as	ThisWorkbook,	where	code	is	maintained	for	handling	workbook-
level	events.

The	point	is,	several	types	of	modules	exist,	but	the	concept	is	the	same—modules	hold
code	for	the	object(s)	they	serve.

Using	the	Object	Browser
One	useful	tool	the	VBE	offers	is	the	Object	Browser.	This	section	gives	some
background	on	the	Object	Browser	and	how	you	can	use	it	to	familiarize	yourself	with
locating	objects	and	their	associated	properties	and	methods.

The	ability	to	program	Excel	is	based	on	tapping	into	any	of	several	libraries	of	objects	in
the	Microsoft	Office	objects	model.	For	example,	there	is	an	Office	library,	a	VBA	library,
and	of	course,	an	Excel	library.	Some	libraries	have	hundreds	of	objects,	and	each	object
has	many	properties,	methods,	and,	in	some	cases,	associated	events.	The	interwoven
collection	of	object	libraries	and	their	keyword	kin	is	enormous.	Fortunately,	there	is	the
Object	Browser	to	guide	your	search	for	information	about	objects	and	their	properties	for
whatever	library	you	are	interested	in.

To	see	the	Object	Browser	in	the	VBE,	press	the	F2	key	or	click	View Object	Browser.
Figure	3.4	shows	the	Object	Browser—it	covers	the	area	normally	occupied	by	the	Code
window.

Figure	3.4

To	get	a	feel	for	the	Object	Browser,	click	the	drop-down	arrow	next	to	<All	Libraries>
and	select	Excel.	When	you	do	that,	in	the	Classes	pane	you	see	the	classes	belonging	to
Excel.	Click	the	Application	class	and	you	see	the	larger	Members	pane	display	the
properties	and	methods	relating	to	the	Application	object.	Click	the	ActiveWorkbook
member	and	look	at	the	bottom	of	the	Object	Browser.	You	see	that	ActiveWorkbook	is	a
property	that	itself	is	a	Workbook	object.

After	you	follow	the	preceding	steps,	the	Object	Browser	looks	like	Figure	3.5;	the	arrows
point	to	what	you	clicked.	If	you	click	the	green	Workbook	link	at	the	bottom,	the	Object
Browser	takes	you	to	the	Workbook	class	and	displays	the	properties	and	methods	for
Workbook.

Figure	3.5

With	a	class	or	member	item	selected,	you	can	click	the	yellow	question	mark	icon	at	the
top	of	the	Object	Browser	to	be	taken	to	the	Help	file	for	that	selected	item.

The	Object	Browser	has	a	Search	feature	in	the	drop-down	field	to	the	left	of	the
binoculars	icon.	If	you	type	a	term	you	are	interested	in	and	click	the	binoculars	icon,	the
associated	members	of	that	term	will	be	displayed	for	the	selected	library.

To	exit	the	Object	Browser,	click	the	lower	of	the	two	X	close	buttons	near	the	top-right
corner	of	the	VBE.

Exiting	the	VBE
To	exit	the	VBE	and	return	to	the	worksheets,	you	can	either	press	Alt+Q,	or	click	the
topmost	X	close	button	at	the	top-right	corner	of	the	VBE.

Try	It
Because	this	lesson	is	an	introduction	to	the	Visual	Basic	Editor	environment,	there	are	no
programming	techniques	to	try,	but	you	can	get	a	jump	on	your	familiarity	with	the	VBE
by	considering	these	items:

You	have	several	ways	to	get	into	the	VBE,	but	which	way	works	best	for	you?	As
you've	seen,	Alt+F11	works	on	all	Excel	versions,	but	if	you	are	more	of	a	mouse	user
than	a	keyboard	user,	you	have	several	options	depending	on	what's	easiest	for	you:

In	version	2003	you	can	click	Tools Macro Visual	Basic	Editor,	or	you	can	keep
the	Visual	Basic	toolbar	visible,	and	click	the	Visual	Basic	Editor	icon.	You	can
also	right-click	the	workbook	icon	near	the	upper-left	corner	of	the	Excel	window
(just	to	the	left	of	the	File	menu	item),	and	select	View	Code,	which	takes	you	to
that	workbook's	module	in	the	VBE.

In	versions	2007,	2010,	and	2013,	you	can	click	the	Visual	Basic	Editor	icon	on
the	Developer	tab.

In	any	version	of	Excel,	you	can	right-click	a	worksheet	tab	and	select	View	Code,
which	takes	you	to	that	worksheet's	module	in	the	VBE.

Take	another	look	at	the	Object	Browser	and	click	around	its	classes	and	members.
The	VBA	object	model	is	a	vast	library	of	information	that	no	one	would	attempt	to
memorize,	but	the	idea	here	is	to	get	a	feel	for	the	interwoven	relationships	among
objects'	classes,	properties,	and	methods.

In	the	Project	Explorer	window,	if	you	double-click	an	object	such	as	a	worksheet,
workbook,	or	module	name,	you	go	directly	to	that	object's	Code	window.	But	also
notice	the	pop-up	menu	when	you	right-click	an	object's	name	in	the	Project	Explorer.
Go	ahead	and	click	any	of	those	menu	items	to	get	the	gist	of	where	they	lead	you	and
what	purpose	they	serve.

Get	a	bit	of	practice	in	with	the	Immediate	window.	If	you	were	to	enter	some	value
into	cell	A1,	and	then	format	cell	A1	in	bold	font,	you	can	enter	these	expressions	in
the	Immediate	window	and	press	Enter	for	each	one:

?	Range(“A1”).Value	returns	whatever	value	you	entered	into	A1.

?	Range(“A1”).Font.Bold	returns	True	if	you	bolded	A1,	or	False	if	you	did	not.

?	Range(“A1”).ClearContents	returns	True	and	clears	the	contents	of	cell	A1.

REFERENCE	There	is	no	video	or	code	download	to	accompany	this	lesson.

Lesson	4
Working	in	the	VBE
In	Lesson	3,	you	took	a	bird's	eye	view	of	the	Visual	Basic	Editor,	and	you	became
familiar	with	the	names	and	locations	of	its	most	frequently	used	windows.	In	this	lesson,
you	navigate	through	those	VBE	windows	for	the	purpose	of	demonstrating	how	to	handle
the	kinds	of	maintenance	tasks	you	will	often	encounter	in	the	VBE.

Toolbars	in	the	VBE
The	first	thing	you	may	have	noticed	about	the	VBE	interface	is	that	there	is	no	Ribbon.
The	traditional	VBE	menu	bar	is	pretty	much	the	same	interface	for	all	versions	of	Excel
since	1997.

Because	you	will	be	spending	more	time	in	the	VBE,	you'll	want	convenient	access	to	the
toolbar	icons	relating	to	the	work	you'll	be	doing.	If	you	have	not	already	done	so,	press
Alt+F11	to	get	into	the	VBE,	and	show	the	Edit	and	Standard	toolbars	whose	icons	will
soon	come	in	handy.	From	the	menu	bar	at	the	top	of	the	VBE,	click	View Toolbars Edit
and	again	View Toolbars Standard,	as	depicted	in	Figure	4.1.

Figure	4.1

Macros	and	Modules
In	Lesson	2,	you	used	the	Macro	Recorder	to	create	a	macro	named	mySort.	You	learned
how	to	assign	a	shortcut	key	to	the	macro,	and	how	to	enter	a	brief	description	of	what	the
macro	does.	You	also	learned	about	a	couple	of	ways	to	run	the	macro,	by	using	either	the
shortcut	key	or	the	Macro	dialog	box.	One	thing	you	have	not	been	shown	yet	is	the	macro
itself,	or	even	how	to	find	it.

Locating	Your	Macros
When	the	Macro	Recorder	created	the	mySort	macro	in	Lesson	2,	it	also	created	a	module
in	which	to	store	the	macro.	If	this	module	happens	to	be	the	first	module	of	the
workbook,	as	was	the	case	for	mySort,	the	Macro	Recorder	names	the	new	module
Module1	by	default.	If	the	Macro	Recorder	creates	another	module	after	that	and	the
workbook	still	holds	a	module	named	Module1,	the	Macro	Recorder	assigns	the	default
name	of	Module2,	and	so	on.

In	the	Project	Explorer	window,	expand	the	bolded	VBAProject	title	(my	Project
workbook	name	is	MacroExamples.xlsm)	and	expand	the	yellow	Modules	folder	to	show
the	module	named	Module1.	To	see	the	VBA	code	in	that	module,	you	can	double-click
the	module	name,	or	you	can	right-click	the	module	name	and	choose	View	Code,	as
shown	in	Figure	4.2.

Figure	4.2

The	mySort	macro	appears	in	the	Code	window	for	Module1.	Based	on	the	steps	you	took
while	recording	the	mySort	macro	in	Lesson	2,	Figure	4.3	shows	the	exact	code	that	was
produced	by	the	Macro	Recorder	in	Excel	version	2003.

NOTE	If	you	record	(or	manually	compose,	as	you	see	in	later	lessons)	a	macro	in	a
version	of	Excel	after	2003,	and	you	run	that	macro	in	a	2003	version,	you	might
experience	an	error	in	that	code's	execution,	depending	on	what	the	code	is	trying	to
do.	VBA	code	plays	well	together	among	versions	after	2003,	but	those	later	versions
of	Excel	contain	newer	features,	such	as	Sparklines	and	an	updated	object	model	for
charts	and	pivot	tables,	that	a	2003	version	would	not	recognize.	VBA	code	produced
by	the	Macro	Recorder	in	version	2003	usually	works	just	fine	in	later	versions,	but
be	aware	that	backward	compatibility	has	its	limitations	when	running	code	in	a	2003
version	that	was	produced	in	a	later	version.

Figure	4.3

Understanding	the	Code
All	macros	start	with	a	Sub	statement	(Sub	is	short	for	Subroutine,	commonly	referred	to
as	a	macro)	that	includes	the	name	of	the	macro,	followed	by	a	pair	of	parentheses.	For	the
example	macro	you	see	in	Figures	4.3	and	4.4,	the	Sub	statement	is	simply	Sub	mySort().

Figure	4.4

Because	this	macro	was	recorded,	there	is	a	series	of	comment	lines	below	the	Sub
statement	that	the	Macro	Recorder	wants	you	to	know	about.	For	example,	you	see	the
macro	name,	the	description	of	the	macro	you	entered	into	the	Record	Macro	dialog	box,
and	the	notation	that	the	shortcut	Ctrl+Shift+S	has	been	assigned	to	this	macro.

Comment	lines	start	with	an	apostrophe,	are	green	in	color	to	help	you	identify	them,	and
are	not	executed	as	VBA	code,	as	opposed	to	the	other	lines	of	VBA	code	that	actually	do
something	when	the	macro	is	running.

NOTE	The	comments	you	see	in	a	recorded	macro	directly	reflect	the	information
entered	in	the	Record	Macro	dialog	box.	For	example,	if	you	assign	a	shortcut	key,	or
you	enter	text	in	the	Description	field	of	the	Record	Macro	dialog	box	as	shown	in
Lesson	2,	Figure	2.13,	that	information	will	be	seen	as	comments	in	your	recorded
macro's	code,	as	shown	in	Figure	4.3.

The	remaining	lines	in	the	macro	are	VBA	statements,	and	they	represent	every	action	that
was	taken	while	the	Macro	Recorder	was	on:

1.	 The	first	thing	you	did	was	select	column	A.

2.	 Next,	you	inserted	a	new	column	at	column	A.

3.	 Next,	you	selected	column	C,	cut	that	column,	and	pasted	it	to	column	A.

4.	 Next,	you	went	back	to	select	column	C	because	it	was	empty,	and	you	deleted	it.

5.	 Next,	you	selected	range	A1:C13	where	the	table	of	data	was.

6.	 Next,	you	sorted	the	selected	range.

7.	 Next,	you	selected	range	C2:C13,	which	contained	numbers	you	wanted	to	format.

8.	 Next,	you	formatted	the	selected	cells	with	the	thousands	comma	separator	and	no
decimal	places.

9.	 Next,	you	selected	range	A1:C1	where	the	column	labels	were.

10.	 Next,	you	formatted	the	selected	range	in	order	to	Bold	the	font	of	those	label	cells.

11.	 Finally,	you	turned	off	the	Macro	Recorder,	which	produced	the	End	Sub	line.	All
macros	end	with	the	End	Sub	statement.

That's	quite	a	few	“Nexts”	in	the	explanation	for	what	is	going	on!	Fortunately,	you	can
edit	a	macro	by	typing	your	own	descriptive	comments,	and	you	can	consolidate	a	lot	of
the	code	so	it	runs	faster	and	looks	cleaner.

Editing	a	Macro	with	Comments	and	Improvements	to
the	Code
As	good	as	the	Macro	Recorder	is	at	teaching	VBA	code,	it	is	woefully	lacking	in	the
efficiency	department	with	the	volume	of	code	it	produces.	To	be	fair,	the	Macro	Recorder
was	never	meant	to	be	a	lean,	mean	coding	machine.	Its	primary	function,	which	it
performs	flawlessly,	is	to	produce	VBA	code	that	represents	your	every	on-screen	action.

It	should	be	said	that	there	is	no	law	in	the	universe	dictating	that	you	must	modify	your
every	recorded	macro.	Sometimes,	for	simple	macros	that	do	the	job,	leaving	them	in	their
original	recorded	state	is	fine—if	they	work	the	way	you	want	them	to,	you've	won	that
round.

However,	for	the	majority	of	VBA	code	that	gets	produced	by	the	Macro	Recorder,	the
superfluous	and	inefficient	nature	of	its	excessive	code	will	be	impossible	to	ignore.
Besides,	when	you	send	your	VBA	workbook	masterpieces	to	other	users,	you'll	want
your	code	to	look	and	act	beyond	the	beginner	stage	of	recorded	code.

NOTE	You	will	find	that	editing	a	macro	in	the	Code	window	is	very	similar	to
editing	a	Word	document.	Of	course,	rules	exist	for	proper	syntax	of	VBA	code	lines,
but	the	principles	of	typing	text,	selecting	words	and	deleting	them	with	the	Delete
key,	pressing	Enter	to	go	to	the	next	line	down—all	these	word-processor	kinds	of
behaviors	with	which	you	are	familiar—will	help	make	the	macro	edit	process	an
intuitive	one.

A	rule	of	thumb	in	VBA	development	is,	don't	select	or	activate	objects	unless	you	need
to.	The	methods	of	Select	and	Activate	are	among	the	biggest	culprits	of	slow,
meandering	macro	execution.	For	example,	the	first	two	lines	of	code	in	the	recorded
macro	are:

Columns("A:A").Select

Selection.Insert	Shift:=xlToRight

Those	two	lines	can	and	should	be	consolidated	into	one	line,	bypassing	the	Selection
activity:

Columns("A").Insert	Shift:=xlToRight

Same	with	the	next	two	statements:

Columns("C:C").Select

Selection.Cut	Destination:=Columns("A:A")

which	can	be	expressed	more	succinctly	as:

Columns("C").Cut	Destination:=Columns("A")

You	can	see	where	I	am	going	with	this.	In	VBA,	you	can	act	directly	upon	most	objects,
most	of	the	time,	without	needing	to	select	them.	When	you	deleted	column	C,	you	never
needed	to	touch	it	in	order	for	VBA	to	do	the	work	for	you,	because	the	following

statement:

Columns("C:C").Select

Selection.Delete	Shift:=xlToLeft

can	become	this:

Columns("C").Delete	Shift:=xlToLeft

Figure	4.4	shows	how	the	original	13	lines	of	code	in	the	mySort	macro	have	been	reduced
to	a	much	more	readable	and	highly	efficient	six	lines.	Also	notice	how	comments	can	be
added	for	the	purpose	of	enhancing	the	organized	look	of	the	macro.	Your	comments	will
help	you,	and	anyone	reading	the	macro,	to	understand	what	the	code	lines	are	doing,	and
why	they	are	doing	it.

NOTE	You've	now	seen	plenty	of	comments	in	the	example	macros,	and	how	useful
comments	can	be	in	your	VBA	code.	To	enter	a	comment	line	of	text,	simply	type	the
apostrophe	character,	and	everything	you	type	after	that,	on	that	same	line,	will	be
regarded	as	a	comment	and	not	executed	as	VBA	code.	Usually,	comments	are	written
as	standalone	lines	of	text,	meaning	the	very	first	character	on	that	line	is	the
apostrophe.	However,	some	programmers	prefer	to	place	comments	on	the	same	line
as	actual	VBA	code.	For	example:

Range("A1").Clear	'Make	cell	A1	be	empty	for	the	next	user.

In	any	case,	comments	will	be	green	in	color	by	default,	and	will	not	be	executed	as
VBA	code.

Another	way	you	can	speed	up	your	macros	is	to	use	the	With	statement	when	you	are
performing	multiple	actions	to	the	same	object,	such	as	to	a	range	of	cells.	Suppose	as	part
of	your	macro	you	need	to	clear	a	range	of	cells	and	format	the	range	for	the	next	user.	If
you	use	the	Macro	Recorder	to	do	this,	here	is	the	code	you	might	get:

Range("A1:D8").Select

Selection.Clear

Selection.Locked	=	False

Selection.FormulaHidden	=	False

Selection.Font.Bold	=	True

Selection.Font.Italic	=	True

Notice	there	are	five	lines	of	code	that	all	start	with	the	Selection	object,	which	refers	to
the	selected	range	of	A1:D8.	If	this	code	were	to	run	as	the	Macro	Recorder	produced	it,
VBA	would	need	to	resolve	the	Selection	object	for	each	line	of	code.

You	can	do	two	key	edits	to	these	lines	of	code	by	avoiding	the	Select	method	altogether
and	referring	to	the	range	object	only	once	at	the	beginning	of	a	With	structure.	Between
the	With	and	End	With	statements,	every	line	of	code	that	starts	with	a	dot	is	evaluated	by
VBA	as	belonging	to	the	same	range	object,	meaning	the	range	reference	need	only	be
resolved	once.	Here	is	the	condensed	code	using	a	With	structure	for	greater	efficiency:

With	Range("A1:D8")

.Clear

.Locked	=	False

.FormulaHidden	=	False

.Font.Bold	=	True

.Font.Italic	=	True

End	With

Deleting	a	Macro
There	will	be	many	times	when	you	have	recorded	or	composed	a	macro	that	you	don't
need	any	more.	Instead	of	having	a	useless	macro	hanging	around	doing	no	good,	it's
better	to	delete	it.	To	delete	a	macro,	you	can	select	its	entire	code	in	the	Code	window	(be
sure	you	only	select	from	and	including	the	Sub	line	to	and	including	the	End	Sub	line)
and	press	the	Delete	key.

NOTE	You	can	delete	a	macro	from	outside	the	VBE.	While	on	any	worksheet,	if	you
press	Alt+F8	to	call	the	Macro	dialog	box,	you	can	select	the	macro	name	in	the	list
and	click	the	Delete	button.

Inserting	a	Module
With	larger	VBA	projects,	you'll	want	to	distribute	your	macros	among	two	or	more
modules.	With	large	projects,	you'll	be	organizing	your	macros	by	some	kind	of	theme	or
purpose.	For	example,	the	macros	in	your	company's	budget	workbook	that	deal	with
reports	might	be	placed	in	their	own	module.	Sometimes	you	will	have	no	choice	in	the
matter,	because	modules	do	have	a	limit	as	to	how	much	code	they	can	individually
support.	To	insert	a	new	module,	from	the	VBE	menu	bar,	select	Insert Module,	as	shown
in	Figure	4.5.

Figure	4.5

You'll	see	that	your	new	module	appears	in	the	Project	Explorer	window.	The	entry	cursor
will	be	blinking	in	the	new	Code	window,	all	primed	and	ready	for	you	to	enter	VBA	code
into	your	new	module,	as	depicted	in	Figure	4.6.

Figure	4.6

Renaming	a	Module
You've	noticed	that	the	Macro	Recorder	assigned	the	default	name	of	Module1	to	the

module	it	created,	and	just	now	with	Module2	you	see	how	Excel	continues	to	assign	a
sequential	default	name	to	subsequent	modules	you	insert.	Yep,	definitely	a	pattern	going
on	here	with	the	module	names,	but	it	doesn't	mean	those	names	need	to	stay	that	way.

You	can	change	a	module	name,	and	it	makes	a	lot	of	sense	to	do	so.	This	is	especially
true	when	you	have	a	complex	workbook	containing	many	macros	that	are	organized	in
several	modules,	and	you	want	the	module	names	to	describe	the	themes	of	the	macros
they	contain.

To	change	a	module	name,	select	it	by	clicking	its	original	name	in	the	Project	Explorer.
Notice	in	the	Properties	window	that	the	Name	property	of	the	selected	module	object	is,	as
you	would	expect,	Module2.	In	the	Properties	window,	use	your	mouse	to	select	the	entire
module	name	property,	such	as	you	see	in	Figure	4.7.

Figure	4.7

Now,	it's	a	simple	task	of	typing	over	the	selected	Module2	text	in	the	Properties	window
as	you	enter	whatever	new	name	you	want	to	give	to	that	module.	For	this	demonstration,
name	the	module	Test.	Just	type	the	word	Test	and	press	Enter.	The	successful	result	is
shown	in	Figure	4.8.

Figure	4.8

Deleting	a	Module
You	can	delete	an	entire	module,	and	it's	wise	to	keep	your	projects	uncluttered	of	unused
module	objects	if	they	have	served	their	purpose	and	will	no	longer	hold	any	macros.	To
delete	a	module,	right-click	the	module	name	in	the	Project	Explorer,	and	from	the	pop-up
menu,	click	Remove	[module	name],	as	shown	in	Figure	4.9.

Figure	4.9

You're	prompted	with	a	message	to	confirm	your	intentions,	along	with	a	question	as	to
whether	you	want	to	export	your	module	elsewhere.	In	very	remote	instances	you	will
need	to	export	a	module,	but	I	have	never	come	across	a	need	to	do	that.	Although	the
default	button	on	the	message	is	Yes,	you	will	usually	click	the	No	button,	as	shown	in
Figure	4.10,	to	confirm	the	deletion	of	that	module.

Figure	4.10

Locking	and	Protecting	the	VBE
The	beauty	of	macros	is	that	when	they	are	properly	constructed,	you	can	count	on	them	to
do	their	job.	The	last	thing	you	want	is	for	another	user	of	your	workbook	to	wander	into
the	Visual	Basic	Editor	and	make	any	kind	of	keystroke	in	a	Code	window.	Especially
when	other	people	are	using	your	workbook,	you	will	want	to	protect	your	code	from
uninvited	guests.

To	limit	access	to	the	VBE,	click	Tools VBAProject	Properties,	which	calls	the
VBAProject	-	Project	Properties	dialog	box.	Click	to	select	the	Protection	tab.	Place	a
checkmark	in	the	box	next	to	Lock	Project	for	Viewing.	Enter	a	password	you	will
remember,	and	confirm	it,	as	shown	in	Figure	4.11.

Figure	4.11

Click	OK	to	exit	the	dialog	box.	For	the	locked	protection	to	take	effect,	you	need	to	save
the	workbook	and	close	it.	Now,	each	time	the	workbook	is	reopened,	the	Visual	Basic
Editor	will	require	your	password	if	you	or	anyone	tries	to	gain	access	to	the	VBE.

WARNING	Excel	passwords	are	case	sensitive.	If	your	password	attempt	to	access	a
locked	VBE	is	rejected,	the	reason	might	be	due	to	an	incorrect	upper-	or	lowercase
entry.

Try	It
In	this	lesson,	you	practice	inserting	a	new	module	into	the	VBE,	and	pasting	a	macro	that
you	copy	from	a	website	into	the	new	module.

Lesson	Requirements
For	this	lesson,	you	need	access	to	the	Internet.

To	get	the	sample	workbook	file,	you	can	download	Lesson	4	from	the	book's	website	at
www.wrox.com/go/excelvba24hour.

Hints
In	Step	2,	and	in	the	video	that	accompanies	this	lesson,	I	use	my	website	as	the	source	for
the	macro	that	gets	copied.	There	are	many	excellent	websites	with	more	VBA	examples,
some	of	which	I	list	on	my	Links	page	at	www.atlaspm.com/excel/#Links.

Step-by-Step
Place	a	macro	from	an	external	source	into	a	new	Excel	module.	In	this	exercise,	a	website
is	being	used	as	the	external	source	of	the	macro	you	want	to	copy	and	put	into	your
workbook.

1.	 Open	Excel,	and	open	the	workbook	that	will	hold	the	macro	you'll	be	importing.

2.	 Open	your	web	browser	and	go	to	the	website	holding	the	macro	you	want	to	copy.	In
this	example,	my	website	at	www.atlaspm.com	is	the	source	for	the	macro	being	copied
for	import.	Enter	the	search	keyword(s)	in	the	Search	field	to	reveal	the	link(s)	that
show	a	macro	example	that	handles	the	task	you	want	to	solve.

3.	 Copy	the	macro	from	that	source	page	onto	your	clipboard.

4.	 Return	to	your	workbook.

5.	 Go	to	the	Visual	Basic	Editor	by	pressing	your	keyboard's	Alt+F11	keys,	or	by
clicking	the	Developer	tab	on	the	Ribbon	and	selecting	the	Visual	Basic	icon.

6.	 From	the	menu	bar	in	the	VBE,	click	Insert Module

7.	 In	your	new	module,	you	can	paste	the	macro	you	copied	in	Step	3	by	pressing	Ctrl+V
on	your	keyboard,	or	you	can	right-click	anywhere	in	your	new	module	and	select
Paste.

8.	 Return	to	your	worksheet	by	pressing	the	Alt+Q	keys	or	by	clicking	the	Close	button
in	the	top-right	corner	of	the	VBE.

9.	 To	run	your	macro	from	the	Macro	dialog	box,	press	the	Alt+F8	keys	or	click	the
Macros	icon	on	the	Developer	tab.

http://www.wrox.com/go/excelvba24hour
http://www.atlaspm.com/excel/#Links
http://www.atlaspm.com

REFERENCE	Please	select	the	video	for	Lesson	4	online	at
www.wrox.com/go/excelvba24hour.	You	will	also	be	able	to	download	the	code	and
resources	for	this	lesson	from	the	website.

http://www.wrox.com/go/excelvba24hour

Part	II
Diving	Deeper	into	VBA
Lesson	5:	Object-Oriented	Programming:	An	Overview

Lesson	6:	Variables,	Data	Types,	and	Constants

Lesson	7:	Understanding	Objects	and	Collections

Lesson	8:	Working	with	Ranges

Lesson	9:	Making	Decisions	with	VBA

Lesson	5
Object-Oriented	Programming:	An	Overview
In	Lesson	1,	you	saw	a	brief	historical	synopsis	of	VBA.	One	particular	facet	of	VBA's
evolution	that	is	worth	more	explanation	is	object-oriented	programming,	or	OOP.

Object-oriented	programming	came	about	in	the	1980s	as	a	new	concept	in	computer
programming.	Its	popularity	grew	over	time	and	with	good	reason—OOP's	original
precepts	are	at	the	core	of	today's	VBA	programming	language	for	Excel.

What	“Object-Oriented	Programming”	Means
Visual	Basic	for	Applications	is	an	object-oriented	programming	language.	The	basic
concept	of	object-oriented	programming	is	that	a	software	application	(Excel	in	this	case)
consists	of	various	individual	objects,	each	of	which	has	its	own	set	of	features	and	uses.
An	Excel	application	contains	cells,	worksheets,	charts,	pivot	tables,	drawing	shapes—the
list	of	Excel's	objects	is	seemingly	endless.	Each	object	has	its	own	set	of	features,	which
are	called	properties,	and	its	own	set	of	uses,	called	methods.

You	can	think	of	this	concept	just	as	you	would	the	objects	you	encounter	every	day,	such
as	your	computer,	your	car,	or	the	refrigerator	in	your	kitchen.	Each	of	those	objects	has
identifying	qualities,	such	as	height,	weight,	and	color.	They	each	have	their	own	distinct
uses,	such	as	your	computer	for	working	with	Excel,	your	car	to	transport	you	over	long
distances,	and	your	refrigerator	to	keep	your	perishable	foods	cold.

VBA	objects	also	have	their	identifiable	properties	and	methods	of	use.	A	worksheet	cell
is	an	object,	and	among	its	describable	features	(its	properties)	are	its	address,	its	height,
its	formatted	fill	color,	and	so	on.	A	workbook	is	also	a	VBA	object,	and	among	its	usable
features	(its	methods)	are	its	abilities	to	be	opened,	closed,	and	have	a	chart	or	pivot	table
added	to	it.

Therefore,	we	can	say	that	object-oriented	programming,	upon	which	VBA	is	based,	is	a
style	of	programming	language	that	cares	primarily	about	objects,	and	how	those	objects
can	be	manipulated	based	on	their	intrinsic	qualities.

The	Object	Model
The	Excel	object	model	is	the	heart	and	soul	of	how	VBA	is	used	in	Excel.	Although	VBA
is	the	programming	language	for	Excel,	it	is	also	the	programming	language	for	Office
applications	in	Word,	Access,	PowerPoint,	and	Outlook.	Even	though	all	these
applications	are	programmable	with	VBA,	they	have	their	own	programming	needs
because	they	are	different	software	applications,	and	hence	are	designed	to	serve	different
functions.	Excel	does	not	receive	e-mails	as	Outlook	does,	and	Word	does	not	produce
reports	from	its	own	database	tables	as	Access	does.

Every	VBA	action	you	take	in	your	Excel	workbook	sends	a	command	through	the	Excel
object	model.	The	object	model	is	a	large	list	of	objects	that	relate	to	Excel,	such	as
worksheets,	cells,	ranges,	and	charts.	The	VBA	code	in	your	macro	that	adds	a	worksheet
to	the	workbook	will	make	sense	to	Excel	because	it	is	communicating	with	the	objects
that	are	recognized	to	be	present	in	the	Excel	object	model.	For	example,	that	same	macro
to	add	a	worksheet	would	not	work	in	Outlook.	The	Outlook	object	model	does	not
include	worksheets,	because	Outlook	is	an	application	that	maintains	e-mails	and
appointment	calendars,	not	worksheets.

The	object	model	of	any	VBA	application	is	hierarchical	by	design.	In	the	Excel	object
model,	the	Application	object	is	at	the	top	of	the	model	because	it	is	the	entire	Excel
application.	Under	the	Application	object	is	a	whole	host	of	other	objects,	one	of	them
being	the	Workbook	object.	Under	Workbook	is	the	Worksheet	object,	among	many	others,
and	under	the	Worksheet	object	are	Range	and	Cell	objects,	and	so	on.

The	result	of	this	hierarchy	is	what	drives	the	proper	syntax	for	your	VBA	macros.	For
example,	if	you	want	to	enter	the	word	“Hello”	in	cell	A1	of	Sheet1	of	the	workbook	you
are	currently	working	in,	the	line	of	code	to	handle	that	could	be	the	following:

Application.ActiveWorkbook.Worksheets("Sheet1").Range("A1").Value	=	"Hello"

VBA	is	a	smart	language.	It	knows	you	are	working	in	Excel	if	you	are	specifying	a
Workbook	object.	It	also	knows	you	are	doing	something	in	a	workbook	if	you	are
specifying	a	Worksheet	object.	Therefore,	the	preceding	line	of	code	can	be	shortened	to
this:

Worksheets("Sheet1").Range("A1").Value	=	"Hello"

That	can	be	shortened	further	if	you	are	working	on	Sheet1	(that	is,	if	Sheet1	is	the	active
sheet)	when	the	code	line	is	executed.	If	the	parent	Worksheet	object	is	not	specified,
VBA's	default	assumption	is	that	you	want	the	active	worksheet	to	receive	the	word
“Hello”	in	cell	A1,	and	in	that	scenario	the	line	of	code	would	simply	be	this:

Range("A1").Value	=	"Hello"

A	bit	of	theory	on	the	subject	of	objects.	In	an	object-oriented	programming	environment,
VBA	regards	as	an	Excel	object	pretty	much	any	element	of	the	Excel	application	you	can
think	of,	whether	it	is	a	button,	or	a	row,	or	a	window—even	the	Excel	application	itself.

When	you	add	an	object	to	your	workbook	with	VBA—for	example,	if	you	run	a	macro
that	creates	a	chart—VBA	is	at	work	behind	the	scenes,	storing	information	about	that

Chart	object,	and	assigning	default	values	to	its	properties	that	were	not	specified	in	the
macro.	I	mention	this	as	a	piece	of	good	news,	because	with	VBA	filling	in	the	blanks	as	it
does,	it's	that	much	less	about	VBA	you	need	to	learn	to	start	writing	advanced	macros.
This	advantage	will	become	clearer	as	you	progress	into	more	complex	programming
techniques.

Properties
As	noted	earlier,	VBA	objects	have	inherent	qualities,	called	properties,	similar	to	any
objects	you	may	deal	with	in	the	real	world.	Properties	define	what	the	object	looks	like
and	how	it	acts.	If	you	own	a	red	bicycle,	you	can	change	its	Color	property	by	painting
the	bicycle	a	different	color.	For	a	Cell	object	on	a	worksheet,	you	can	change	its	Color
property	by	formatting	the	cell	with	a	different	fill	color.

In	VBA	code,	you	refer	to	the	property	of	an	object	by	first	referring	to	the	object,	then	the
property,	separated	by	a	dot.	Following	are	examples	of	a	few	of	the	many	properties
belonging	to	the	Cell,	Worksheet,	and	Workbook	objects.

This	line	of	code	would	format	the	active	cell's	Locked	property:

ActiveCell.Locked	=	True

The	Name	property	of	the	Worksheet	object	represents	the	worksheet's	tab	name.	For
example,	this	expression	in	the	Immediate	window	would	return	the	name	of	the	active
worksheet:

?	ActiveSheet.Name

This	expression	would	change	the	Name	property	of	the	active	worksheet	to	"Hello",	and
when	executed	would	result	in	“Hello”	being	the	active	worksheet's	new	tab	name:

ActiveSheet.Name	=	"Hello"

The	following	expression	will	change	the	Color	property	of	the	active	worksheet's	tab	to
yellow:

ActiveSheet.Tab.Color	=	vbYellow

Workbooks	have	a	Saved	property	that	indicates	if	the	workbook	has	been	saved	since	its
most	recent	change.	For	example,	if	you	save	your	workbook	and	then	enter	the	following
expression	in	the	Immediate	window,	VBA	will	return	True:

?	ThisWorkbook.Saved

If	you	were	to	make	some	change	to	the	workbook,	such	as	entering	a	number	in	a	cell,
and	immediately	re-evaluate	the	expression	?	ThisWorkbook.Saved,	False	would	be
returned	because	VBA	knows	that	the	workbook	has	not	been	saved	since	it	was	last
changed.

Methods
Methods	are	actions	that	can	be	performed	by	objects.	VBA	objects	have	inherent

behavioral	abilities.	Following	are	examples	of	Excel	objects	and	some	of	their	methods.

The	Range	object	of	A1:D10	can	have	its	cells'	contents	cleared	with	the	ClearContents
method:

Range("A1:D10").ClearContents

Workbooks	and	worksheets	can	be	activated	with	the	Activate	method:

Workbooks("Book1.xlsx").Activate

Worksheets("Sheet2").Activate

Here's	a	more	complicated	example,	to	call	your	attention	to	the	fact	that	objects	can
contain	objects,	not	just	properties.	Suppose	you	have	three	pivot	tables	on	Sheet1,	and
you	only	want	to	refresh	the	pivot	table	named	PivotTable2.	As	far	as	VBA	is	concerned,
what	you	really	want	to	refresh	is	the	PivotCache	object	of	the	PivotTable2	object	of	the
Sheet1	worksheet	object.	This	line	of	code	would	accomplish	that,	using	the	Refresh
method:

Worksheets("Sheet1").PivotTables("PivotTable2").PivotCache.Refresh

NOTE	This	multiple-object	syntax	might	look	daunting	at	first,	but	you	can	take	some
comfort	in	knowing	that	you've	been	writing	VBA	code	in	this	manner	since	Day	1.	All
objects	(except	the	Application	object,	which	is	Excel	itself)	have	a	Parent	property
—that	is,	another	object	to	which	they	belong.	In	many	cases,	you	don't	need	to
specify	the	Parent	object	because	it	is	inferred	by	default.	For	example,	if	you	are
referring	to	cell	A1	on	your	active	worksheet,	you	do	not	need	to	(though	you	could)
express	it	as	ActiveSheet.Range("A1")—you	only	need	to	express	it	as
Range("A1").	In	the	preceding	example,	however,	pivot	tables	are	embedded	objects
for	which	VBA	requires	you	to	specify	the	parent	worksheet	object.	If	all	this	talk	of
properties	and	methods	is	not	clear	yet,	don't	worry,	it	will	all	make	perfect	sense
when	you	see	the	theory	in	action.

Collections
Some	of	the	VBA	programming	you	learn	in	later	lessons	involves	the	concept	of
collections,	and	it	is	a	topic	I'm	touching	on	here.	In	object-oriented	programming,	a
Collection	is	an	object	that	contains	a	group	of	like	objects.	For	example,	there	is	a
Worksheets	collection	object	that	is	the	entire	group	of	Worksheet	objects	in	your
workbook.	Even	if	one	worksheet	contains	hundreds	of	formulas	and	another	worksheet	is
totally	empty,	both	those	worksheets	are	like	objects	because	they	are	both	worksheets,
and	therefore	they	both	are	a	part	of	the	Worksheets	collection.

As	you'll	see,	invoking	the	Collection	object	in	your	code	is	a	terrific	way	to	take	some
action	on	all	the	objects	in	that	collection,	without	needing	to	know	anything	specific
about	the	collected	objects.	For	example,	say	you	want	to	add	some	boilerplate	text	to
every	comment	on	your	worksheet.	Employing	a	For	.	.	.	Each	loop	(loops	are	covered
in	Lesson	10)	to	edit	every	comment	in	the	Comments	collection	would	make	the	task

simple	because	each	comment	would	belong	to	the	Comments	collection,	and	you'd	be
confident	knowing	you	hit	all	comments	without	needing	to	know	what	cells	they	are	in.

NOTE	A	good	rule	of	thumb	in	recognizing	a	Collections	object	is	to	notice	that	its
name	ends	with	the	letter	s,	as	a	pluralized	form	of	its	singular	object	item	name.
Examples	of	this	are	the	Names	collection	of	individual	Name	objects,	the	Charts
collection	of	individual	Chart	objects,	the	Workbooks	collection	of	individual
Workbook	objects,	and	so	on.

Try	It
This	lesson	provided	an	overview	of	object-oriented	programming.	There	are	no
programming	techniques	to	try	based	on	the	material	in	this	lesson,	but	here	are	some
important	concepts	to	keep	in	mind:

1.	 Excel	is	replete	with	objects,	such	as	workbooks,	worksheets,	and	cells,	and	each
object	has	its	own	set	of	properties	that	can	be	altered	to	suit	your	application	project's
design.

2.	 If	you	should	need	to	refer	to	an	object's	container,	such	as	when	you	refer	to	a
worksheet	in	another	workbook,	just	use	the	object's	Parent	property.	All	objects
(except	Application)	have	a	Parent	property	that	is	the	object	within	which	they	are
contained.	For	example,	if	your	active	workbook	object	is	Book2	but	you	want	to	refer
to	Sheet1	in	Book1,	you'd	precede	the	Sheet1	object	with	its	parent	Book1	object
name,	like	this:

Workbooks("Book1.xlsm").Worksheets("Sheet1").Range("A1").Value	=	"Hello"

3.	 The	Application	object	indeed	holds	the	highest	order	of	Excel's	objects,	but	as	you
will	see,	it	also	offers	many	useful	methods	and	properties.	The	Application	object
provides	the	ability	to	insert	worksheet	functions	(SUM,	AVERAGE,	VLOOKUP,	and
so	on),	as	well	as	commands	to	control	Excel's	display	options	for	worksheet	gridlines,
tabs,	and	window	sizes.

REFERENCE	There	is	no	video	or	code	download	to	accompany	this	lesson.

Lesson	6
Variables,	Data	Types,	and	Constants
Many	of	the	macros	you	develop	will	involve	the	need	for	referencing	an	item	you	are
working	on	without	specifying	that	item	by	its	name,	amount,	or	location.	This	concept
may	sound	strange	at	first,	but	you	will	quickly	discover	with	your	macros	that	in	many
situations	it	makes	sense,	and	indeed	is	necessary,	to	manipulate	or	analyze	data	in	one
part	of	your	macro,	and	hold	the	results	in	virtual	memory	for	later	use.

What	is	a	Variable?
VBA	stores	data	in	memory	using	a	variable.	A	variable	is	a	name	given	by	you,	to	which
you	assign	a	piece	of	data	that	is	stored	in	an	area	of	the	computer's	memory,	allowing	you
to	refer	to	that	data	when	you	need	to	later	in	the	macro.	VBA	handles	the	task	of	finding
an	appropriate	place	in	the	computer's	memory	to	store	your	variable	data,	and	dutifully
retrieves	the	data	when	you	ask	for	it	by	its	variable	name.

Variables	hold	values	of	different	data	types	(more	on	this	later)	that	are	specified	when
the	variable	is	declared.	When	you	declare	a	variable,	you	do	so	by	entering	a	declaration
statement	that	includes	four	keywords	in	a	particular	order:

1.	 The	Dim	statement	(VBA's	abbreviation	for	Dimension),	which	all	variable
declarations	start	with.

2.	 The	name	of	your	variable,	which	you	create,	such	as	myValue.

3.	 The	word	As.

4.	 The	type	of	data	being	stored.

One	common	data	type	is	called	Integer,	which,	as	you	see	in	Table	6.1,	refers	to	whole
numbers	within	a	certain	range.	Using	the	preceding	four	steps	as	a	sequential
construction	guide,	here	is	a	typical-looking	variable	declaration	statement:

Dim	myValue	As	Integer

NOTE	A	few	rules	in	VBA	for	variable	names:

Cannot	be	greater	than	255	characters	in	length.

Cannot	contain	a	space.

Cannot	contain	mathematical	operation	characters	+,	-,	/,	*,	=,	<,	>,	or	^.

Cannot	contain	punctuation	characters,	such	as	a	comma,	period,	question	mark,
or	exclamation.

Cannot	contain	characters	@,	#,	$,	%,	&,	(,),	{,	},	[,],	\,	:,	“,	‘,	’,	˜,	or	|.

Cannot	be	terms	reserved	in	VBA,	for	example	Dim,	Sub,	or	Function.

Must	be	unique	in	the	macro	or	procedure	that	uses	it.

May	contain,	but	cannot	start	with,	a	number	or	an	underscore	character.

Basically,	when	it	comes	to	naming	your	variables,	keep	it	simple.	Use	only	letters
(and	maybe	numbers	after	the	first	character)	for	a	name	that	is	concise	and	gives	a
clue	as	to	the	general	purpose	of	the	variable.

Table	6.1	Data	Types

DATA
TYPE

DESCRIPTION MEMORY

Boolean True	or	False;	1	or	0;	On	or	Off. 2	bytes

Byte An	integer	from	0	to	255. 1	byte
Currency A	positive	or	negative	number	with	up	to	15	digits

to	the	left	of	the	decimal	point	and	up	to	4	digits	to
the	right	of	it.

8	bytes

Date A	floating-point	number	with	the	date	to	the	left	of
the	decimal	point	and	the	time	to	the	right	of	it.

8	bytes

Decimal An	unsigned	integer	scaled	to	the	power	of	10.
The	power	of	10	scaling	factor	specifies	the
number	of	digits	to	the	right	of	the	decimal	point,
and	ranges	from	0	to	28.

12	bytes

Double A	floating-point	number	ranging	in	value	from	–
1.79769313486231E308	to	–4.94065645841247E-
324	for	negative	values	and	from
4.94065645841247E-324	to
1.79769313486232E308	for	positive	values.

8	bytes

Integer An	integer	ranging	from	–32,768	to	32,767. 2	bytes
Long An	integer	ranging	from	–2,147,483,648	to

2,147,483,647.
4	bytes

Object A	reference	to	an	object,	such	as	a	range	of	cells,	a
chart,	a	pivot	table,	a	workbook,	a	worksheet,	or
any	one	of	the	many	other	objects	that	are	a	part	of
the	Excel	application.

4	bytes

Single A	floating-point	number	ranging	in	value	from	–
3.402823E38	to	–1.401298E-45	for	negative
values	and	from	1.401298E-45	to	3.402823E38	for
positive	values.

4	bytes

String There	are	two	kinds	of	strings:	variable-length	and
fixed-length.	A	variable-length	string	can	contain
up	to	approximately	2	billion	characters.	A	fixed-
length	string	can	contain	1	to	approximately
64,000	characters.

For	a	variable-length
string,	10	bytes	plus
storage	for	the	string.	For	a
fixed-length	string,	the
storage	for	the	string.

Variant Data	type	for	all	variables	that	are	not	explicitly
declared	as	some	other	type,	which	can	contain
any	kind	of	data	except	fixed-length	string	data.

For	containing	numbers,
16	bytes.	For	containing
characters,	22	bytes	plus
storage	for	the	characters.

You'll	soon	see	the	enormous	benefit	that	this	kind	of	innocent-looking	statement	can	have

in	your	macro.	Although	a	few	wrinkles	exist	in	the	variable	declaration	process,	a
variable	declaration	statement	will	often	look	no	more	complicated	than	this.

Assigning	Values	to	Variables
After	the	variable	declaration	statement,	which	might	be	the	next	code	line	or	100	code
lines	later	in	your	macro,	depending	on	what	you	are	doing,	you	will	have	a	statement	that
assigns	some	value	or	attribute	to	the	myValue	variable.	Here's	an	example	of	assigning	the
number	in	cell	A1	to	the	myValue	variable:

myValue	=	Range("A1").Value

The	value	you	assign	might	be	an	actual	value	that	is	stored	in	a	cell,	as	in	the	preceding
example,	or	it	might	be	a	value	you	create	or	define	in	some	way,	again,	depending	on	the
task	at	hand.	This	notion	will	become	clearer	with	more	examples	you'll	be	seeing
throughout	the	book.

Why	You	Need	Variables
I	mentioned	earlier	that	in	some	situations,	employing	a	variable	will	be	a	sensible	option.
Suppose	you	have	a	number	in	cell	A1	that	you	are	referring	to	for	several	analytical
purposes	throughout	your	macro.	You	could	retrieve	that	number	by	referring	to	its	A1	cell
address	every	time,	but	that	would	force	Excel	to	look	for	the	same	cell	address	and	to
recommit	the	same	number	to	memory	every	time.

As	a	simplified	example,	here	is	a	macro	with	four	commands,	all	invoking	the	value	in
cell	A1:

Sub	WithoutVariable()

Range("C3").Value	=	Range("A1").Value

Range("D5").Value	=	Range("A1").Value	/	12

Range("E7").Value	=	Range("A1").Value	*	365

MsgBox	"The	original	value	is	"	&	Range("A1").Value

End	Sub

For	VBA	to	execute	this	macro,	it	must	go	through	the	same	behind-the-scenes	gyrations
four	separate	times	to	satisfy	each	of	the	four	commands	that	reference	range	A1.	And	if
your	workbook	design	changes,	where	you	move	the	number	of	interest	from	cell	A1	to
cell	K5,	you	need	to	go	into	the	code,	find	each	related	code	line,	and	change	the	cell
reference	from	A1	to	K5.

Fortunately,	there	is	a	better	way	to	handle	this	kind	of	situation—by	declaring	a	variable
to	refer	to	the	value	in	cell	A1	just	once,	like	this:

Sub	WithVariable()

Dim	myValue	As	Integer

myValue	=	Range("A1").Value

Range("C3").Value	=	myValue

Range("D5").Value	=	myValue	/	12

Range("E7").Value	=	myValue	*	365

MsgBox	"The	original	value	is	"	&	myValue

End	Sub

By	assigning	the	number	value	in	cell	A1	to	the	myValue	variable,	you've	increased	your
code's	efficiency	and	its	readability,	and	VBA	will	keep	the	number	value	in	memory
without	having	to	reevaluate	cell	A1.	Also,	if	your	cell	of	interest	changes	from	A1	to
some	other	cell,	say	cell	K5,	you	only	need	to	edit	the	cell	address	in	the	assignment	code
line	to	refer	to	cell	K5,	like	so:

myValue	=	Range("K5").Value

As	you've	probably	noticed	in	this	situational	example,	a	variable	declaration	is	advisable,
but	it	is	not	an	absolute	requirement	for	the	WithoutVariable	macro	to	function.
However,	as	you	will	see	in	the	upcoming	lessons,	variable	declaration	will	be	a	necessary
practice	for	handling	more	complex	tasks	that	involve	loops,	object	manipulation,	and
conditional	decision-making.	Don't	worry—after	you	see	a	few	examples	of	variables	in
action	and	start	practicing	with	them	on	your	own,	you'll	quickly	get	the	hang	of	when	and
how	to	declare	variables.

Data	Types
Simply	stated,	VBA's	role	in	life	is	to	manipulate	data	in	a	way	your	computer	can
understand	it.	A	computer	sees	information	only	as	a	series	of	binary	numbers	such	as	0s
and	1s—very	differently	than	how	humans	see	information	as	numerals,	symbols,	and
letters	of	the	alphabet.

Your	macros	will	inevitably	manipulate	data	of	varying	types,	such	as	text,	numbers,	or
Range	objects.	Part	of	VBA's	job	is	to	bridge	the	communication	gap	between	humans	and
computers,	by	providing	a	method	for	telling	the	computer	what	type	of	data	is	being
referred	to	in	code.	When	you	specify	a	data	type	in	VBA,	you	help	the	computer	to	know
how	it	should	regard	your	data	so	that	your	macros	will	produce	the	results	you'd	expect,
based	on	the	types	of	data	you	are	manipulating.

Understanding	the	Different	Data	Types
Data	types	are	the	different	kinds	of	ways	you	can	store	data	in	memory.	Table	6.1	shows
a	list	of	common	data	types	with	their	descriptions	and	memory	usage.

Declaring	a	Variable	for	Dates	and	Times
The	Date	data	type	is	worth	an	extra	look	because	it	is	the	data	type	with	which	variables
for	both	dates	and	times	can	be	declared.	You	can	assign	values	to	a	date	variable	by
enclosing	them	in	the	#	(number	sign)	character,	with	the	value	being	recognizable	to
Excel	as	either	a	date	or	time.	For	example:

myDate	=	#09	October	1958#

or

myDate	=	#October	9,	1958#

or

myTime	=	#9:10	PM#

or

myTime	=	#10/9/1958	9:10:00	PM#

NOTE	When	entering	dates,	get	into	the	good	habit	of	entering	the	year	as	a	full
four-digit	number.	The	year	2029	is	the	dividing	line	in	VBA	for	two-digit	years
belonging	to	either	the	twentieth	or	twenty-first	centuries.	All	two-digit	years	from	00
to	and	including	29	are	regarded	as	belonging	to	the	2000s,	and	30	to	99	are
regarded	as	belonging	to	the	1900s.	For	example,	the	expression	10/10/29	in	Excel	is
October	10,	2029,	but	10/10/30	is	regarded	by	Excel	as	October	10,	1930.

Declaring	a	Variable	with	the	Proper	Data	Type
As	you	become	more	familiar	with	VBA,	you'll	notice	that	different	developers	have	their

preferred	writing	styles	when	declaring	variables.	For	example,	you	can	declare	several
variables	on	one	line,	each	separated	by	a	comma,	like	this:

Dim	myValue1	as	Integer,	myValue2	as	Integer,	myValue3	as	Integer

There	is	nothing	wrong	with	that	construction,	but	be	careful	not	to	make	this	common
mistake:

Dim	myValue1,	myValue2,	myValue3	as	Integer

If	you	do	not	specify	a	data	type	after	a	variable	name,	such	as	in	the	latter	case	with
myValue1	and	myValue2,	VBA	assigns	the	default	Variant	data	type.	Only	the	Value3
variable	has	been	specified	the	Integer	data	type.	Variant	is	a	catch-all	data	type	that	is
the	most	memory-intensive,	and	the	least	helpful	in	understanding	the	purpose	of	its
associated	variables	if	anyone	else	should	read	your	code.

The	Variant	data	type	does	have	its	place,	for	instance	when	dealing	with	arrays	or
conversions	of	data	types,	but	you	should	take	care	to	specify	the	appropriate	data	types	of
all	your	variables.	In	so	doing,	your	macros	will	run	faster,	they'll	be	easier	to	read,	and
they'll	be	more	reliable.

Forcing	Variable	Declaration
Declaring	your	variables	can	only	be	a	good	thing.	It	takes	a	little	extra	thought	and	effort,
but	not	declaring	your	variables	can	cause	a	lot	more	trouble	when	reading	or	debugging
your	code.	Macros	run	faster	and	use	less	memory	when	all	variables	are	properly
declared.

You	can	tell	if	variable	declaration	is	being	enforced	by	seeing	if	the	statement	Option
Explicit	is	at	the	top	of	your	module.	If	you	do	see	the	Option	Explicit	statement,
write	a	quick	macro	that	tries	to	call	an	undeclared	variable,	such	as	you	see	depicted	in
Figure	6.1.	When	you	attempt	to	run	the	macro,	you	receive	a	compile	error	as	shown	in
Figure	6.1,	informing	you	a	variable	is	not	defined.	In	this	scenario,	the	error	occurred
because	the	myName	variable	was	not	declared	with	a	statement	such	as	Dim	myName	as
String.

Figure	6.1

If	you	do	not	see	the	Option	Explicit	statement	at	the	top	of	your	modules,	go	into	the
VBE	and	from	the	menu	bar,	select	Tools Options,	as	shown	in	Figure	6.2.

Figure	6.2

You	see	the	Options	dialog	box.	On	the	Editor	tab,	select	the	option	Require	Variable
Declaration,	as	shown	in	Figure	6.3,	and	click	OK.

Figure	6.3

Figure	6.4	shows	the	Option	Explicit	statement	at	the	top	of	the	module.	The	statement
appears	in	every	new	module	you	insert	thereafter.

Figure	6.4

Understanding	a	Variable's	Scope
Variables	and	constants	(explained	in	the	next	section)	do	not	live	forever	in	memory.
They	have	a	set	lifetime	and	visibility	within	macros	and	modules.	A	variable's	lifetime
begins	when	it	is	declared,	and	ends	when	the	macro	that	declared	the	variable	completes
its	execution.

Local	Macro	Level	Only
The	visibility	of	a	variable	or	constant	also	depends	on	how	it	is	declared.	If	declared
within	a	macro,	a	variable	can	only	be	used	by	that	macro.	For	example,	when	Macro1	is
run,	the	intSum	variable	would	be	calculated	to	a	result	of	41	(by	adding	10	to	the	intAdd
variable	of	31),	and	that	is	what	the	message	box	would	show:

Sub	Macro1()

Dim	intAdd	As	Integer,	intSum	As	Integer

intAdd	=	31

intSum	=	intAdd	+	10

MsgBox	intSum

End	Sub

If	you	attempted	to	run	another	macro	with	same-looking	but	undeclared	variables,	you
would	receive	a	message	box	with	the	Compile	error	prompt,	as	shown	in	Figure	6.5	for
Macro2.	Just	because	a	variable	is	declared	in	a	macro	elsewhere	does	not	mean	that	VBA
will	recognize	that	same-looking	variable	in	another	macro.

Figure	6.5

Module	Level
It	is	possible	for	a	variable	to	be	usable	in	the	same	module	by	more	than	one	macro,	by
having	the	declaration	statement	at	the	top	of	the	module	instead	of	inside	a	particular
macro.	In	Figure	6.6,	both	Macro1	and	Macro2	can	utilize	the	intSum	and	intAdd	variables.

Figure	6.6

Application	Level
Finally,	you	can	declare	the	variables	as	Public,	which	will	make	them	visible	to	all
macros	in	all	modules.	You	only	need	to	place	the	statements	at	the	top	of	one	standard
module,	like	so:

Public	intAdd	As	Integer

Public	intSum	As	Integer

Constants
A	variable's	value	may	often	change	during	a	macro's	execution,	but	some	macros	are
better	served	with	a	reference	to	a	particular	value	that	will	not	change.	A	constant	is	a
value	in	your	macro	that	does	not	change	while	the	macro	is	running.	Essentially,
constants	are	variables	that	do	not	change.

When	you	declare	a	constant,	you	do	so	by	entering	a	declaration	statement	that	starts	with
the	Const	statement,	followed	by	the	constant's	name	you	specify,	then	the	data	type,	and
finally	the	value,	all	on	one	line.	Here	is	an	example:

Const	myMonths	as	Integer	=	12

It's	a	good	practice	to	use	constants	for	the	same	reasons	you	would	use	a	variable.	Instead
of	hard-coding	the	same	value	in	your	macro	over	and	over,	you	define	the	constant	just
once	and	use	the	reference	as	you	need	to.	For	example,	your	macro	may	be	analyzing	the
company's	sales	amounts,	and	needing	to	factor	in	the	sales	tax	at	various	points	in	the
macro.	This	constant	statement	at	the	start	of	the	macro	would	allow	you	to	reference	the

8.25%	sales	tax:

Const	SalesTax	as	Double	=	.0825

NOTE	After	you	declare	a	constant	in	the	macro,	you	cannot	assign	a	different	value
to	it	later	in	the	macro.	If	you	need	the	value	to	change	during	the	macro,	what	you
really	need	is	a	variable	instead	of	a	constant.

Choosing	the	Scope	and	Lifetime	of	Your	Constants
The	scope	and	lifetime	of	constants	are	much	the	same	as	for	variables:

For	the	constant	to	be	available	only	to	a	particular	macro,	declare	the	constant	within
that	macro.

For	the	constant	to	be	available	only	to	the	macros	that	are	housed	in	the	same	module,
declare	the	constant	at	the	top	of	that	module,	above	and	outside	all	macros.

For	the	constant	to	be	available	to	all	macros	in	all	modules,	prefix	the	constant
declaration	with	the	Public	statement,	and	set	it	at	the	top	of	a	standard	module,	above
and	outside	all	macros.	For	example:

Public	Const	SalesTax	as	Double	=	.0825

Try	It
In	this	lesson	you	practice	creating	a	macro	that	includes	a	declared	variable.

Lesson	Requirements
To	get	the	sample	workbook	file,	you	can	download	Lesson	6	from	the	book's	website	at
www.wrox.com/go/excelvba24hour.

Step-by-Step
For	this	lesson	you	create	a	macro,	without	using	the	Macro	Recorder,	in	which	you
declare	a	variable	for	the	String	data	type,	and	you	manipulate	the	string	text	with	a	few
lines	of	practice	code.

1.	 Create	a	macro	that	includes	the	following	actions:

a.	 Declare	a	String	type	variable.

b.	 Assign	text	to	the	String	variable.

c.	 Populate	a	range	of	cells	with	the	String	variable's	text.

2.	 Open	Excel	and	add	a	new	workbook.

3.	 In	your	active	worksheet,	enter	the	text	Hello	in	cell	A1.

4.	 Press	Alt+F11	to	get	into	the	Visual	Basic	Editor.

5.	 From	the	VBE	menu,	click	Insert Module.

6.	 In	the	new	module,	type	in	the	name	of	your	macro	as	Sub	Test6.

7.	 Press	the	Enter	key,	which	will	cause	Excel	to	place	a	set	of	parentheses	after	the
Test6	macro	name,	and	also	will	create	the	End	Sub	statement.	Your	macro	so	far	will
look	like	this:

Sub	Test6()

End	Sub

8.	 In	the	empty	line	between	Sub	Test6()	and	End	Sub,	type	Dim	myString	As	String
and	press	Enter.

9.	 Now	is	the	time	to	define	the	myString	variable	by	telling	VBA	that	it	will	be	equal	to
the	value	in	cell	A1,	which	is	the	word	Hello	you	entered	in	Step	3.	To	do	that,	type
the	following	line	of	code	into	your	macro	and	press	Enter:

myString	=	Range("A1").Value

10.	 With	your	String	variable	defined,	try	entering	its	defined	text	into	a	few	cells,
starting	with	cell	B3.	If	you	combine	the	variable	with	a	space	and	the	word	“World,”
you	can	programmatically	enter	the	text	“Hello	World”	into	B3.	To	do	that,	type	this
line	of	code	into	your	macro	and	press	Enter:

Range("B3").Value	=	myString	&	"	World!"

http://www.wrox.com/go/excelvba24hour

11.	 Just	for	fun,	repeat	the	variable's	text	three	times	in	succession,	which	would	be
HelloHelloHello,	and	tell	VBA	to	enter	that	into	cell	B4.	For	the	next	line	in	your
macro,	type	Range(“B4”).Value	=	myString	&	myString	&	myString	and	press
Enter.

12.	 As	a	third	and	final	entry,	show	the	text	Hello	and	Goodbye	in	cell	B5	by	typing	this
last	line	of	code	into	your	macro:

Range("B5").Value	=	myString	&	"	and	Goodbye".	

At	this	point,	your	macro	is	completed,	and	it	will	look	like	this:

Sub	Test6()

Dim	myString	As	String

myString	=	Range("A1").Value

Range("B3").Value	=	myString	&	"	World!"

Range("B4").Value	=	myString	&	myString	&	myString

Range("B5").Value	=	myString	&	"	and	Goodbye"

End	Sub

13.	 Press	Alt+Q	to	return	to	your	worksheet.

14.	 Watch	your	new	macro	in	action.	Press	Alt+F8	to	display	the	Macro	dialog	box.

15.	 Select	the	Test6	macro	name	in	the	large	window,	as	shown	in	Figure	6.7,	and	click
the	Run	button.

Figure	6.7

REFERENCE	Please	select	the	video	for	Lesson	6	at	www.wrox.com/go/-
excelvba24hour.	You	will	also	be	able	to	download	the	code	and	resources	for	this
lesson	from	the	website.

http://www.wrox.com/go/-excelvba24hour

Lesson	7
Understanding	Objects	and	Collections
Lesson	5	introduced	the	topic	of	collections,	which	are	objects	that	contain	a	group	of	like
objects.	This	lesson	adds	some	detail	to	the	topic	and	goes	over	some	programming
techniques	to	deal	with	the	most	common	types	of	object	collections	you	will	encounter:
workbooks,	worksheets,	cells,	and	ranges.

Workbooks
An	Excel	file	is	a	Workbook	object.	You	might	wonder	how	workbooks	have	a	collection,
seeing	as	you	can	only	work	in	one	workbook	at	a	time,	and	even	then	you	are	usually
manipulating	objects	at	a	lower	level,	such	as	worksheets	or	cells.

NOTE	Do	not	confuse	the	Application	object	with	the	Workbook	object.	In	VBA,	the
Application	object	is	at	the	very	top	of	the	food	chain;	there	is	nothing	higher	than
Application	in	the	Excel	object	model.	Application	represents	the	entire	Excel
program,	whereas	Workbook	represents	an	individual	Excel	file.

The	Workbooks	collection	contains	the	references	to	every	Workbook	object	that	is	open	in
the	same	instance	of	Excel.	You	need	to	call	upon	the	Workbooks	collection	when	you
want	to	do	some	task	in	every	open	workbook,	or	when	you	want	to	activate	a	particular
workbook	whose	name	is	not	known.

Here	is	an	example.	In	VBA,	the	following	command	adds	a	new	workbook:

Workbooks.Add

When	this	code	line	is	executed,	the	active	workbook	becomes	the	new	workbook	you
added,	same	as	the	effect	of	manually	adding	a	new	workbook	from	your	existing	one,
when	the	workbook	you	added	becomes	the	active	workbook.

What	if	your	project	calls	for	you	to	add	two	workbooks	to	the	existing	one,	and	you	want
to	end	the	macro	with	the	first	added	workbook	being	the	active	one,	instead	of	the	last
added	workbook	being	the	active	one?	In	your	Workbooks	collection,	how	do	you	specify
which	Workbook	object	you	want	to	do	something	with	when	you	don't	know	the	names	of
any	open	workbooks?

VBA	offers	several	methods	to	solve	this	problem,	one	being	an	ability	to	assign	a	variable
to	each	workbook	you	add,	and	then	to	activate	the	workbook	whose	variable	you	care
about.	For	example,	the	following	macro	adds	two	workbooks	and	ends	with	the	first
added	workbook	being	the	active	one:

Sub	AddWorkbooks()

Dim	WorkbookAdd1	As	Workbook

Dim	WorkbookAdd2	As	Workbook

Set	WorkbookAdd1	=	Workbooks.Add

Set	WorkbookAdd2	=	Workbooks.Add

WorkbookAdd1.Activate

End	Sub

Workbook	objects	have	a	number	of	methods,	such	as	Open,	Save,	and	Close.	Lesson	10
delves	into	the	practice	of	repeating	actions	with	loops,	but	here's	a	sneak	peek	at	a	loop
that	saves	and	closes	every	workbook	that	is	currently	open	in	your	instance	of	Excel,
except	for	the	workbook	you	are	working	in.	Notice	what	you	don't	see,	which	is	a
concern	about	how	many	workbooks	are	open,	or	what	their	names	are.	You	only	need	to
tell	VBA	to	look	for	Workbook	objects	in	the	Workbooks	collection:

Sub	CloseAllOtherWorkbooks()

Dim	wkb	As	Workbook

For	Each	wkb	In	Workbooks

If	wkb.Name	<>	ThisWorkbook.Name	Then

wkb.Close	SaveChanges:=True

End	If

Next	wkb

End	Sub

The	Worksheets	collection	enables	you	to	refer	to	the	Worksheet	objects'	names	or	index
numbers,	which	is	the	numerical	position	of	worksheets	as	you	see	their	tabs	in	order	from
left	to	right.	Referring	to	names	tends	to	be	a	safer	practice,	but	as	you	saw	with
workbooks,	and	as	you	will	learn	with	looping	techniques,	a	variable	can	be	assigned	to
each	Worksheet	object	to	access	all	worksheets	without	caring	where	they	are	in	the
workbook	or	what	their	tab	names	are.

Say	you	want	to	add	a	new	worksheet,	and	give	it	the	name	Test1.	No	problem	there,	but
now	you	are	asked	to	add	the	new	worksheet	such	that	its	placement	will	be	the	last
(rightmost)	worksheet	in	the	workbook.	You	have	no	idea	how	many	sheets	exist	already.
You	don't	know	the	name	of	the	last	worksheet	in	order	to	reference	its	location	but	even	if
you	did	know	that	today,	there	could	easily	be	a	differently	named	worksheet	in	that	index
position	tomorrow.

The	following	one-line	macro	adds	a	new	worksheet,	names	it	as	you	specify,	and	places	it
at	the	far	right	end	of	the	worksheets,	which	is	the	highest	worksheet	index	number	based
on	the	count	of	existing	worksheets:

Sub	WorksheetTest1()

Worksheets.Add(After:=Worksheets(Worksheets.Count)).Name	=	"Test1"

End	Sub

You	can	place	a	worksheet	relative	to	another	worksheet's	name,	this	time	adding	a
worksheet,	and	placing	it	before	Sheet2:

Sub	WorksheetTest2()

Worksheets.Add(Before:=Worksheets("Sheet2")).Name	=	"Test2"

End	Sub

NOTE	The	preceding	examples	work	without	any	problem	as	long	as	the	workbook
does	not	already	contain	a	worksheet	with	the	name	Test1	or	Test2.	Excel	does	not
allow	worksheets	to	be	given	duplicate	names	in	the	same	workbook,	and	attempting
to	do	so	will	result	in	an	error.	You	learn	about	handling	VBA	errors	in	Lesson	20.

You	may	want	to	relocate	an	existing	worksheet	from	its	current	position	to	a	particular
index	position	for	the	convenience	of	your	workbook's	users.	Suppose	that	during	the
course	of	your	macro,	you	want	the	active	worksheet	to	occupy	the	number	two	worksheet
index	position—that	is,	to	be	the	worksheet	that	is	located	second	from	the	left	as	you	see
the	worksheet	tabs.	To	accomplish	this,	you	can	place	the	active	worksheet	after	the	first
index	worksheet,	as	shown	in	the	following	example:

ActiveSheet.Move	After:=Sheets(1)

NOTE	A	word	of	caution	about	the	Worksheets	collection:	There	is	a	difference
between	the	Sheets	collection	and	the	Worksheets	collection.	You	probably	know
about	chart	sheets,	and	if	your	workbook	has	one,	you	need	to	be	mindful	to	cycle
through	the	Worksheets	collection	only	if	you	are	interested	in	manipulating
worksheets.	If	you	cycle	through	the	Sheets	collection,	all	sheets,	including	a	chart
sheet	(or	outmoded	dialog	sheets	or	macro	sheets)	are	included	in	the	procedure.	If
you	only	want	to	act	on	worksheets,	specify	the	Worksheets	collection.

Cells	and	Ranges
The	Range	object	is	probably	the	most	utilized	object	in	VBA.	A	range	can	be	a	single	cell
or	a	range	of	cells	that	spans	any	size	area.	A	Range	object,	then,	is	a	cell	or	block	of	cells
that	is	contained	on	a	Worksheet	object.	Though	a	Range	object	can	be	a	union	of	several
noncontiguous	blocks	of	cells,	it	is	always	the	case	that	a	VBA	Range	object	is	contained
on	a	single	parent	worksheet.	That	parent	worksheet	can	be	the	active	worksheet	or	some
other	worksheet,	but	there	is	no	such	thing	as	a	Range	object	that	includes	cells	on
different	worksheets.

A	single	cell	is	a	range	as	far	as	VBA	is	concerned,	and	ActiveCell	is	the	object	name	in
VBA	of	the	single	active	cell	on	the	active	worksheet.	There	is	no	such	object	as
ActiveRange,	but	many	ways	exist	to	identify	particular	ranges,	one	of	the	most	common
being	the	Selection	object.

If	you	were	to	select	any	range	of	cells,	and	execute	this	line	of	code,	all	cells	in	that
selected	range	would	immediately	contain	the	word	“Hello”:

Selection.Value	=	"Hello"

You	may	be	interested	to	know	that	named	ranges	are	fair	game	for	VBA	to	refer	to	and
manipulate,	just	like	any	other	range.	In	fact	there	is	a	Names	collection	object	for	named
ranges.

As	an	example,	say	you	have	previously	named	a	range	myRange.	This	line	of	code	in	a
VBA	macro	would	place	the	word	“Hello”	in	all	cells	in	your	named	range:

Range("myRange").Value	=	"Hello"

As	you	have	seen,	you	do	not	need	to	select	your	range	in	order	to	work	with	it.	For	most
operations	on	cells	or	ranges,	you	can	refer	to	the	range	and	its	parent	worksheet.	You	can
execute	the	following	line	of	code	from	any	worksheet	in	your	workbook,	as	an	example
of	establishing	a	bold	format	for	a	range	of	cells	on	Sheet1:

Worksheets("Sheet1").Range("A1:D25").Font.Bold	=	True

At	times	you	will	want	to	refer	to	all	the	cells	on	a	worksheet	instead	of	limiting	your
operation	to	a	particular	range.	For	example,	suppose	as	part	of	your	macro	you	want	to
clear	the	contents	of	every	cell	on	the	worksheet.	Starting	with	version	2007,	clearing	the
contents	of	the	entire	grid	of	worksheet	cells	can	be	expressed	as
Range("A1:XFD1048576").ClearContents.	However,	if	the	workbook	is	being	used	in	a
version	of	Excel	prior	to	2007,	that	same	operation	could	be	expressed	as
Range("A1:IV65536").ClearContents.	Fortunately,	you	can	avoid	errors	and	confusion
by	using	the	Cells	object	as	shown	in	the	following	example,	which	refers	to	all
worksheet	cells	in	whichever	version	of	Excel	is	being	used	at	the	moment:

Cells.ClearContents

You	can	do	some	useful	operations	using	the	Cells	object	when	you	want	to	involve	the
entire	worksheet.	Suppose	you	have	set	up	Sheet1	as	a	template	with	formatted	ranges,
labels,	values,	and	formulas,	and	you	want	Sheet2	to	be	established	the	same	way.	The

following	line	of	code	copies	the	Sheet1	cells	and	pastes	them	to	Sheet2:

Worksheets("Sheet1").Cells.Copy	Worksheets("Sheet2").Cells

SpecialCells
An	interesting	brand	of	range	objects	is	Excel's	group	of	SpecialCells,	which	I	touched
upon	in	the	Try	It	section	and	video	for	Lesson	2.	Press	the	F5	key	to	show	the	Go	To
dialog	box.	Click	the	Special	button,	and	you	see	more	than	a	dozen	types	of
SpecialCells.

SpecialCells	is	the	name	of	the	method	in	VBA	that	returns	a	range	object	of	a	specific
cell	type.	For	example,	cells	on	your	worksheet	that	contain	comments	are	regarded	by
VBA	as	SpecialCells.	So	are	cells	containing	data	validation,	or	cells	that	contain
formulas,	or	cells	that	contain	constants,	such	as	text	or	data	you	have	manually	entered.
With	the	combinations	of	SpecialCells,	the	possibilities	are	enormous	for	identifying
various	kinds	of	ranges	based	on	all	sorts	of	criteria.

Say	in	range	A1:A10	you	have	some	cells	that	contain	formulas,	some	cells	that	contain
numbers	you	have	manually	entered,	and	some	cells	that	contain	nothing.	If	you	want	to
select	all	individual	cells	in	range	A1:A10	that	contain	formulas,	and	not	include	in	your
selection	any	of	the	other	cells	in	that	range,	this	macro	would	do	that:

Sub	FindFormulas()

Range("A1:A10").SpecialCells(xlCellTypeFormulas).Select

End	Sub

Try	It
In	this	lesson	you	practice	with	the	useful	IntelliSense	tool	to	help	you	become	familiar
with	VBA	syntax.	Using	IntelliSense	can	help	improve	your	efficiency	and	accuracy,	with
its	drop-down	list	of	properties	and	methods	when	writing	code.

Lesson	Requirements
None

Step-by-Step
VBA's	IntelliSense	feature	is	an	incredibly	useful	tool	that	helps	you	write	your	macros
faster	and	smarter.	I	use	it	all	the	time	to	help	me	write	code	in	the	proper	VBA	syntax.	As
mentioned,	VBA	has	hundreds	of	objects	and	each	object	can	have	dozens	of	methods	and
properties.	IntelliSense	can	display	a	list	of	an	object's	methods	and	properties	while	you
are	typing	your	code,	and	it	can	quickly	call	the	Help	feature	for	a	topic	you	select.

1.	 Open	Excel	and	press	Alt+F11	to	go	to	the	Visual	Basic	Editor.

2.	 If	you	have	not	already	done	so,	from	the	VBE	menu	bar,	click	Tools Options	as
shown	in	Figure	7.1.

3.	 In	the	Options	dialog	box	on	the	Editor	tab,	make	sure	there	is	a	check	mark	in	the	box
next	to	Auto	List	Members	as	shown	in	Figure	7.2,	and	click	OK.

4.	 Press	Ctrl+G	to	be	taken	into	the	Immediate	window.

5.	 Type	in	the	question	mark	character,	then	press	the	spacebar,	type	the	word
Application,	and	press	the	dot	key	on	your	keyboard.	A	list	of	the	Application
object's	members,	properties,	and	methods	is	displayed,	as	shown	in	Figure	7.3.

6.	 Now,	practice	using	IntelliSense.	Press	the	N	key	and	you	are	taken	to	the	first	item	in
the	Application	object's	list	of	members	that	begins	with	the	letter	N.	In	this	case,
that	member	happens	to	be	the	Name	property,	which	will	be	highlighted	by	selection
as	shown	in	Figure	7.4.

7.	 With	the	Name	property	item	selected,	either	double-click	it	or	press	the	Alt	key	to
accept	and	enter	the	Name	property	for	the	Application	object,	and	then	press	the
Enter	key.	The	Immediate	window	returns	the	result	Microsoft	Excel	as	shown	in
Figure	7.5.

8.	 Continue	to	explore	on	your	own.	Press	the	Enter	key	in	the	Immediate	window	to
start	a	new	line,	enter	the	question	mark	character	and	press	the	spacebar,	and	scroll
through	the	member	list	of	other	objects	such	as	ActiveWorkbook	or	Range.	Keep	in
mind	that	many	objects	are	parents	of	other	objects,	so	you	can	go	two	or	more
members	deep	to	gather	some	information.	For	example,	the	ActiveWorkbook	object
has	a	Worksheets	collection,	and	the	Worksheets	collection	has	a	Count	property.
Therefore,	if	you	type	the	line	?	activeworkbook.Worksheets.Count	into	the
Immediate	window,	VBA	returns	the	number	of	worksheets	the	active	workbook
contains.

Figure	7.1

Figure	7.2

Figure	7.3

Figure	7.4

Figure	7.5

REFERENCE	Please	select	the	videos	for	Lesson	7	online	at
www.wrox.com/go/excelvba24hour.	You	will	also	be	able	to	download	the	code	and
resources	for	this	lesson	from	the	website.

http://www.wrox.com/go/excelvba24hour

Lesson	8
Working	with	Ranges
The	Range	object	is	probably	the	most	frequently	used	object	in	VBA.	Almost	anything
you	do	in	a	worksheet	where	VBA	is	concerned	involves	either	a	cell	(or	range	of	cells),
or	a	reference	of	some	kind	to	a	range	location	that	helps	to	direct	whatever	action	your
macro	is	undertaking.	When	you	programmatically	create	a	chart,	modify	a	pivot	table's
source	data,	or	insert	picture	files	or	comments,	you	are	working	with	ranges.

Because	ranges	are	so	commonly	referred	to	in	code,	this	lesson	introduces	you	to	various
syntaxes	you	will	soon	become	familiar	with,	and	in	fact	depend	on,	to	refer	to	or
manipulate	Range	objects.	My	approach	with	this	lesson	is	to	demonstrate	basic	code	lines
with	pictures	to	show	how	ranges	can	be	identified	or	selected.

As	you'll	hear	over	and	over	in	VBA	programming	circles,	you	need	not,	and	normally
will	not,	actually	select	a	range	in	order	to	work	with	it.	You	can	refer	to	and	manipulate
(such	as	by	editing	or	formatting)	ranges	of	cells	on	other	worksheets	or	other	workbooks
without	leaving	your	active	worksheet.	The	pictures	in	this	lesson	show	the	selection	of
ranges	for	visual	confirmation	of	the	code	at	work,	but	after	this	lesson,	you	will	rarely	see
code	that	selects	or	activates	an	object.

Working	with	Contiguously	Populated	Ranges
The	simplest	ranges	to	deal	with	are	those	that	have	all	cells	filled	with	data	or	formulas,
and	no	empty	cells	within	that	range.	Figure	8.1	shows	a	typical-looking	list	of	data	for
which	you	can	easily	identify	its	last	row,	its	last	column,	and	its	address.	Based	on	Figure
8.1,	the	variables	in	the	following	macro	yield	6	for	the	LastRow	variable,	and	3	(column
C,	the	third	column	in	the	spreadsheet	grid)	for	the	LastColumn	variable:

Sub	Find_LastRow_LastColumn()

Dim	LastRow	As	Long,	LastColumn	As	Long

LastRow	=	Cells(Rows.Count,	1).End(xlUp).Row

LastColumn	=	Cells(2,	Columns.Count).End(xlToLeft).Column

MsgBox	_

"The	last	row	is:	"	&	LastRow	&	vbCrLf	&	_

"The	last	column	is:	"	&	LastColumn

End	Sub

Figure	8.1

Using	the	Cells	Property
You	have	seen	with	the	previous	example	and	in	other	VBA	expressions	that	the	Cells
property	can	select	or	refer	to	a	range.	The	Cells	range	syntax	is	Cells(RowIndex,
ColumnIndex).	Therefore,	the	expression	Cells(2,	5)	refers	to	cell	E2	because	that	is	the
same	as	row	2	of	column	5.	For	the	Cells	property,	the	row	component	must	be	a
numeral,	but	the	column	can	be	a	letter	that	must	be	in	quotes,	for	example	Cells(2,
"E").	Therefore,	in	practice,	either	of	these	expressions	bold	cell	E2:

Cells(2,	5).Font.Bold	=	True

Cells(2,	"E").Font.Bold	=	True

You	can	incorporate	two	Cells	properties	within	the	Range	statement	to	refer	to	a	range
larger	than	just	one	cell.	Using	the	example	variables	for	LastRow	and	LastColumn,	the
following	line	of	code	tells	you	the	range	address	of	the	list	shown	in	Figure	8.1:

MsgBox	Range(cells(1,	1),	Cells(LastRow,	LastColumn)).Address

As	a	final	example,	you	can	use	Cells	to	select	a	particular	range	of	cells,	such	as	D3:F5
in	Figure	8.2:

Range(cells(3,	4),	cells(5,	6)).select

Figure	8.2

Using	CurrentRegion
The	CurrentRegion	property	refers	to	a	localized	range	of	contiguous	data	that	may	exist
among	other	ranges	on	that	worksheet	containing	a	mix	of	filled	and	empty	cells.	Suppose
you	have	disjointed	data	on	your	worksheet,	as	depicted	in	Figure	8.3.	With	the	active	cell
in	the	local	(CurrentRegion)	area	of	the	range	of	data	you	want	to	work	with,	the
following	line	of	code	will	select	that	active	cell's	CurrentRegion,	as	shown	in	Figure	8.4.

ActiveCell.CurrentRegion.Select

Figure	8.3

Figure	8.4

Working	with	Noncontiguously	Populated	Ranges
You	will	often	need	to	locate	or	refer	to	ranges	that	are	broken	up	by	empty	cells,	usually
referred	to	as	noncontiguous	ranges.	VBA	offers	some	clever	options	for	taming	the
noncontiguous	range	beast.

Using	Range	with	Several	Cells
As	shown	in	Figure	8.5,	you	can	select	various	cells	in	a	union	with	this	example	code
line:

Range("B2,	D5,	F1:F4").Select	

Figure	8.5

Notice	the	construction	has	cell	addresses,	or	ranges,	separated	by	a	comma	and	a	space,
enclosed	in	quotes.

Using	OFFSET
The	OFFSET	property	refers	to	a	range	by	adding	or	subtracting	(offsetting)	row	and
column	numbers	from	a	relative	reference	to	refer	to	a	new	range.	In	Figure	8.6,	the	active
cell	is	B4.

Figure	8.6

If	you	want	to	select	a	range	that	is	relative	to	the	active	cell	by	extending	the	range
upward	2	rows	and	outward	4	columns,	you	can	use	the	following	code	line.	The	result	is
shown	in	Figure	8.7.

Range(activecell,	activecell.Offset(-2,	4)).Select

Figure	8.7

Using	RESIZE
The	RESIZE	property	changes	the	size	of	a	range,	based	on	a	cell	of	interest	as	the
reference	point.	In	this	example,	range	B3	is	resized	by	4	rows	and	5	columns,	thereby
selecting	range	B3:F6.	(See	Figure	8.8.)	The	code	line	that	is	used	in	this	example	is

Range("B3").Resize(4,	5).Select	

Figure	8.8

Identifying	a	Data	Range
In	some	cases	you	will	only	want	to	identify	a	range	of	cells	that	contain	data	or	formulas,
but	not	formatting.	In	Figure	8.9,	cell	H3	is	a	lonely	soul,	apart	from	the	data	range	but
formatted	with	red	fill	color	for	demonstration	purposes.

Figure	8.9

This	example	shows	how	to	select	a	data	range	on	the	current	sheet,	starting	at	cell	A1,
and	display	the	address	of	the	range	to	the	user.	The	data	range	does	not	include	cells	that
are	formatted	that	do	not	contain	data.	To	get	the	data	range,	this	example	finds	the	last

row	and	the	last	column	that	contain	actual	data	by	using	the	Find	method	of	the	Range
object:

Sub	SelectDataRange()

Dim	LastRow	As	Long,	LastColumn	As	Long

LastRow	=	Cells.Find(What:="*",	SearchDirection:=xlPrevious,	_

SearchOrder:=xlByRows).Row

LastColumn	=	Cells.Find(What:="*",	SearchDirection:=xlPrevious,	_

SearchOrder:=xlByColumns).Column

Range("A1").Resize(LastRow,	LastColumn).Select

MsgBox	"The	data	range	address	is	"	&	Selection.Address(0,	0)	&	".",	_

vbInformation,	"Data-containing	range	address:"

End	Sub

Identifying	the	UsedRange
The	UsedRange	property	represents	cells	on	a	worksheet	that	are	currently	being	used	or
have	been	used.	This	includes	formatted	cells	that	do	not	contain	data,	such	as	what's
shown	in	Figure	8.10.

Figure	8.10

This	example	shows	how	to	select	the	UsedRange	on	the	current	worksheet	by	using	the
UsedRange	property	of	the	Worksheet	object	and	the	Select	method	of	the	Range	object.
The	selected	address	of	the	worksheet's	UsedRange	is	displayed	in	a	message	box:

Sub	SelectUsedRange()

ActiveSheet.UsedRange.Select

MsgBox	"The	used	range	address	is	"	&	_

ActiveSheet.UsedRange.Address(0,	0)	&	".",	64,	"Used	range	address:"

End	Sub

Finding	the	Dynamic	Last	Rows	and	Columns
This	section	includes	a	collection	of	several	dynamic	row	and	column	locations	wrapped
into	one	macro	example.	You	may	need	to	not	only	find	the	last	row	of	data,	but	limit	your
search	to	a	particular	set	of	columns.	The	same	goes	for	the	last	used	column,	based	on
one	row,	all	rows,	or	a	specific	range	of	rows.	Figure	8.11	shows	the	versatility	of	the
following	macro	for	handling	all	these	scenarios:

Sub	DataRangeLastRowsColumns()

'Declare	variables	for	last	rows	and	columns

Dim	LastRow	As	Long,	LastColumn	As	Long

Dim	LastRowSingleColumn	As	Long,	LastRowSomeColumns	As	Long

Dim	LastColumnSingleRow	As	Long,	LastColumnSomeRows	As	Long

'Last	row	of	data	considering	all	columns.

LastRow	=	Cells.Find(What:="*",	After:=Range("A1"),	_

SearchOrder:=xlByRows,	SearchDirection:=xlPrevious).Row

'Last	row	of	data	considering	just	column	D.

LastRowSingleColumn	=	Cells(Rows.Count,	4).End(xlUp).Row

'Last	row	of	data	considering	just	columns	B,	C,	and	D.

LastRowSomeColumns	=	Range("B:D").Find(What:="*",	After:=Range("B1"),	_

SearchOrder:=xlByRows,	SearchDirection:=xlPrevious).Row

'Last	column	of	data	considering	all	rows.

LastColumn	=	Cells.Find(What:="*",	After:=Range("A1"),	_

SearchOrder:=xlByColumns,	SearchDirection:=xlPrevious).Column

'Last	column	of	data	considering	just	row	3.

LastColumnSingleRow	=	Cells(3,	Cells.Columns.Count).End(xlToLeft).Column

'Last	column	of	data	considering	just	rows	1,	2,	and	3.

LastColumnSomeRows	=	Rows("1:3").Find(What:="*",	_

After:=Cells(1,	Cells.Columns.Count),	_

SearchOrder:=xlByColumns,	SearchDirection:=xlPrevious).Column

'Advise	the	user	of	last	row	and	column	information.

MsgBox	_

"Last	row	of	data	anywhere:	"	&	LastRow	&	vbCrLf	&	_

"Last	row	of	data	in	column	D:	"	&	LastRowSingleColumn	&	vbCrLf	&	_

"Last	row	of	data	among	columns	B,	C,	and	D:	"	&	_

LastRowSomeColumns	&	vbCrLf	&	vbCrLf	&	_

"Last	column	of	data	anywhere:	"	&	LastColumn	&	vbCrLf	&	_

"Last	column	of	data	in	row	3:	"	&	LastColumnSingleRow	&	vbCrLf	&	_

"Last	column	of	data	among	rows	1,	2,	and	3:	"	&	LastColumnSomeRows,	,	_

"Last	row	and	last	column	information:"

End	Sub

Figure	8.11

Identifying	Where	the	Range	Starts	and	Ends	When	No	Start	or
End	Point	Is	Known
It	probably	seems	that	cell	A1	is	where	data	starts	on	a	worksheet.	Row	1	is	popular	for
header	labels	in	a	list,	and	column	A	is	the	leftmost	column	on	the	spreadsheet	grid,
prominently	visible.	But	sometimes	data	finds	itself	on	a	worksheet	in	areas	you	would	not

expect,	and	the	next	day,	that	same	worksheet	can	hold	data	somewhere	totally	different.
You	need	a	catch-all	macro	to	find	the	range	of	data,	from	wherever	it	starts	to	wherever	it
ends.

This	example	shows	how	to	select	a	data	range	on	the	current	sheet	when	you	do	not	know
the	starting	or	ending	location	and	display	the	range	address	in	a	message	box.	The	data
range	does	not	include	cells	that	are	formatted.	This	example	finds	the	first	and	last	row
and	column	that	contain	actual	data	by	using	the	Find	method	of	the	Range	object.	The
result	is	shown	in	Figure	8.12.

Sub	UnknownRange()

Dim	FirstRow	As	Long,	FirstCol	As	Long,	LastRow	As	Long,	LastCol	As	Long

Dim	myUsedRange	As	Range

FirstRow	=	_

Cells.Find(What:="*",	SearchDirection:=xlNext,	SearchOrder:=xlByRows).Row

FirstCol	=	_

Cells.Find(What:="*",	SearchDirection:=xlNext,	

SearchOrder:=xlByColumns).Column

LastRow	=	_

Cells.Find(What:="*",	SearchDirection:=xlPrevious,	

SearchOrder:=xlByRows).Row

LastCol	=	_

Cells.Find(What:="*",	SearchDirection:=xlPrevious,	

SearchOrder:=xlByColumns).Column

Set	myUsedRange	=	Range(Cells(FirstRow,	FirstCol),	Cells(LastRow,	LastCol))

myUsedRange.Select

MsgBox	_

"The	data	range	on	this	worksheet	is	"	&	_

myUsedRange.Address(0,	0)	&	".",	vbInformation,	"Range	address:"

End	Sub

Figure	8.12

Try	It
In	this	lesson,	you	see	how	to	create	a	macro	that	identifies	the	location	of	a	chart	on	a
worksheet.	The	purpose	of	the	exercise	is	to	demonstrate	how	to	identify	an	object's
location	without	selecting	or	activating	any	ranges	or	objects.	The	value	of	the	exercise	is
to	know	with	confidence	where	else	on	a	worksheet	(that	is,	below	or	to	the	right	of	an
object)	you	can	insert	a	new	object,	edit	a	cell,	or	take	some	action	on	the	worksheet
without	coming	into	contact	with	the	existing	object	of	interest.

Lesson	Requirements
To	get	the	sample	workbook	file,	you	can	download	Lesson	8	from	the	book's	website	at
www.wrox.com/go/excelvba24hour.

Hints
Using	the	Index	property	of	the	embedded	chart	helps	avoid	needing	to	know	the	Chart
object's	name.

The	Cells	property	is	especially	useful	in	this	example,	when	variables	are	declared	to
identify	row	and	column	locations.

Step-by-Step
1.	 Open	an	Excel	workbook	in	which	you	have	a	Chart	object	on	a	worksheet.	If	you

don't	have	such	a	workbook,	in	a	new	worksheet,	construct	a	simple	table	and	insert	a
chart	similar	to	Figure	8.13.

2.	 Compose	a	macro	to	tell	you	the	location	of	the	chart	on	your	worksheet.	You	will
want	to	identify	the	top	and	bottom	rows,	and	the	left	and	right	columns	that	the	Chart
object	covers.

3.	 From	the	Developer	tab	on	the	Ribbon,	click	the	Visual	Basic	icon,	or	press	Alt+F11
on	your	keyboard	to	go	to	the	Visual	Basic	Editor.

4.	 From	the	VBE	menu	bar,	click	Insert Module.

5.	 In	your	new	module,	type	the	name	of	the	macro.	In	this	example,	the	macro	is	named
Sub	ChartLocation().

6.	 Declare	variables	for	the	top	and	bottom	rows,	and	left	and	right	columns	that	the	chart
touches:

Dim	TopRow	As	Long,	BottomRow	As	Long

Dim	LeftColumn	As	Long,	RightColumn	As	Long

7.	 Open	a	With	structure	for	the	ChartObject.	Because	there	is	only	one	chart	on	the
worksheet,	its	Index	property	is	1	and	you	can	refer	to	it	in	code	with	this	statement:

With	ActiveSheet.ChartObjects(1)

8.	 Declare	your	row	and	column	variables	like	so:

http://www.wrox.com/go/excelvba24hour

TopRow	=	.TopLeftCell.Row

BottomRow	=	.BottomRightCell.Row

LeftColumn	=	.TopLeftCell.Column

RightColumn	=	.BottomRightCell.Column

9.	 Close	the	With	structure:

End	With

10.	 Utilizing	the	variables	to	show	an	example	of	changing	a	cell	outside	the	range
occupied	by	the	chart,	this	line	of	code	enters	the	word	Hello	into	a	cell	two	rows
below	and	two	columns	to	the	right	of	the	bottom-right	corner	of	the	chart:

Cells(BottomRow	+	2,	RightColumn	+	2).Value	=	"Hello"

11.	 For	demonstration	purposes,	an	optional	enhancement	to	this	macro	is	the	following
message	box	code	that	confirms	the	chart's	location	when	the	macro	is	run,	as	shown
in	Figure	8.14:

MsgBox	"Top	row:	"	&	TopRow	&	vbCrLf	&	_

"Bottom	row:	"	&	BottomRow	&	vbCrLf	&	_

"Left	column:	"	&	LeftColumn	&	vbCrLf	&	_

"RightColumn:	"	&	RightColumn,	,	"ChartLocation"

12.	 End	the	macro	with	the	End	Sub	line.

13.	 Go	ahead	and	test	your	macro.	Press	Alt+Q	to	exit	the	VBE,	and	from	your	worksheet
press	Alt+F8	to	show	the	Macro	dialog	box.	Select	the	macro	name	and	click	the	Run
button.	The	ChartLocation	macro	looks	like	this	in	its	entirety:

Sub	ChartLocation()

Dim	TopRow	As	Long,	BottomRow	As	Long

Dim	LeftColumn	As	Long,	RightColumn	As	Long

With	ActiveSheet.ChartObjects(1)

TopRow	=	.TopLeftCell.Row

BottomRow	=	.BottomRightCell.Row

LeftColumn	=	.TopLeftCell.Column

RightColumn	=	.BottomRightCell.Column

End	With

Cells(BottomRow	+	2,	RightColumn	+	2).Value	=	"Hello"

MsgBox	"Top	row:	"	&	TopRow	&	vbCrLf	&	_

"Bottom	row:	"	&	BottomRow	&	vbCrLf	&	_

"Left	column:	"	&	LeftColumn	&	vbCrLf	&	_

"RightColumn:	"	&	RightColumn,	,	"ChartLocation"

End	Sub

Figure	8.13

Figure	8.14

REFERENCE	Please	select	the	video	for	Lesson	8	at
www.wrox.com/go/excelvba24hour.	You	will	also	be	able	to	download	the	code	and
resources	for	this	lesson	from	the	website.

http://www.wrox.com/go/excelvba24hour

Lesson	9
Making	Decisions	with	VBA
So	far,	all	the	macros	you've	created	share	a	common	trait	of	being	executed	line	by	line,
starting	with	the	very	first	line	of	code	below	the	Sub	name,	and	ending	at	the	End	Sub
line.	You	might	think	that	this	is	the	very	purpose	of	a	VBA	macro,	for	all	its	code	lines	to
be	run	in	sequence	from	start	to	finish.	After	all,	isn't	that	why	VBA	code	is	in	a	macro	in
the	first	place?

It	turns	out	that	VBA	can	do	a	lot	more	with	your	macros	than	just	serve	the	purpose	of
executing	every	line	of	code	in	them.	You	will	encounter	many	instances	when	you'll	need
to	guide	the	user	into	making	a	decision	about	whether	to	do	one	thing	or	another.	There
are	also	times	when	you	will	want	VBA	to	just	go	ahead	and	make	a	decision	about
something,	without	any	input	from	the	user.

Depending	on	the	decisions	that	get	made	during	the	course	of	a	macro,	you'll	want	VBA
to	execute	only	the	code	relating	to	the	selected	choice,	while	bypassing	the	alternative
code	relating	to	which	choice	was	not	selected.	This	lesson	shows	you	how	to	ask	the	user
for	information	when	the	situation	calls	for	it,	and	also	how	to	simply	let	VBA	do	the
decision-making	on	the	fly,	in	circumstances	when	the	user	does	not	even	need	to	be
involved	in	the	decision	process.

Understanding	Logical	Operators
Logical	operators	are	terms	in	VBA	that	you	can	use	for	evaluating	or	comparing	a
combination	of	individual	expressions	in	order	to	make	a	decision	in	your	macro,	and	for
VBA	to	carry	out	the	code	relating	to	that	decision.	The	three	most	commonly	used	logical
operators	are	AND,	OR,	and	NOT,	and	all	three	have	the	same	logical	effect	in	VBA	as	they
do	in	Excel's	worksheet	functions.

To	understand	how	and	why	to	use	these	logical	operators	in	your	macro,	it's	important	to
take	a	look	at	the	conditions	under	which	each	one	will	yield	a	positive	(True)	result	or	a
negative	(False)	result.	A	truth	table	is	a	good	way	to	illustrate	each	logical	operator's	True
or	False	outcome,	depending	on	the	combinations	of	all	possible	results	from	the	VBA
expressions	being	compared.	After	you	understand	the	theory	of	logical	operators,	you
will	see	how	to	put	them	to	practical	use	when	your	macros	call	for	decisions	to	be	made.

AND
The	AND	logical	operator	performs	a	conjunction	by	comparing	two	expressions.	The	result
of	the	AND	operation	is	True	only	if	both	conditions	are	True.	If	either	or	both	conditions
are	False,	the	And	operation	evaluates	to	False.

For	example,	say	you	enter	the	number	500	in	cell	A1,	and	you	enter	the	number	850	in
cell	B1.	The	following	statement	with	the	AND	operator	evaluates	to	True	because	both
conditions	are	true	at	the	same	time:

Range("A1").Value	>	300	AND	Range("B1").Value	>	700

Keeping	the	same	numbers	in	cells	A1:B1,	the	following	statement	would	evaluate	to
False	because,	even	though	the	first	condition	is	True,	the	second	condition	is	False:

Range("A1").Value	>	300	AND	Range("B1").Value	>	900

This	next	statement	would	also	evaluate	to	False,	because	even	though	the	second
condition	is	True,	the	first	condition	is	False:

Range("A1").Value	>	620	AND	Range("B1").Value	>	700

The	final	possibility	is	if	both	conditions	are	False,	with	this	statement	for	example,	which
would	evaluate	to	False:

Range("A1").Value	<	200	AND	Range("B1").Value	<	700

Table	9.1	summarizes	each	possible	result	of	the	AND	logical	operator	more	succinctly.

Table	9.1	Truth	Table	for	the	AND	Logical	Operator

EXPRESSION	1 EXPRESSION	2 LOGICAL	RESULT
True True True
True False False
False True False
False False False

OR
The	OR	operator	performs	a	logical	disjunction,	whereby	if	either	condition	is	True,	or	if
both	conditions	are	True,	the	result	is	True.	If	both	conditions	are	False,	the	OR	operation
results	in	False.	For	example,	using	the	same	cell	values	as	the	previous	AND	example,	with
500	in	cell	A1	and	850	in	cell	B1,	you	can	see	how	differently	the	four	statements	will
evaluate,	using	OR	instead	of	AND	as	the	logical	operator.

The	first	statement	evaluates	to	True,	not	necessarily	because	both	conditions	are	True,	but
because	at	least	one	condition	is	True:

Range("A1").Value	>	300	OR	Range("B1").Value	>	700

The	following	statement	would	evaluate	to	True	on	the	strength	of	the	first	condition	being
True,	even	though	the	second	condition	is	False:

Range("A1").Value	>	300	OR	Range("B1").Value	>	900

This	next	statement	would	also	evaluate	to	True	because,	despite	the	first	condition	being
False,	the	second	condition	is	True:

Range("A1").Value	>	620	OR	Range("B1").Value	>	700

The	final	possibility	is	if	both	conditions	are	False,	meaning	that	in	this	case,	because
neither	condition	is	True,	the	statement	would	evaluate	to	False:

Range("A1").Value	<	200	OR	Range("B1").Value	<	700

Table	9.2	summarizes	each	possible	result	of	the	OR	logical	operator.

Table	9.2	Truth	Table	for	the	OR	Logical	Operator

EXPRESSION	1 EXPRESSION	2 LOGICAL	RESULT
True True True
True False True
False True True
False False False

NOTE	Careful!	Comparing	logical	expressions	does	not	mean	you	can	compare	the
impossible.	Consider	the	following	example:

Dim	intNumber	As	Integer

intNumber	=	0

MsgBox	intNumber	<=	5	Or	10	/	intNumber	>	5

Because	it	is	impossible	to	divide	a	number	by	zero,	this	code	produces	an	error	even
though	the	first	condition	evaluated	to	True.

NOT
The	NOT	operator	performs	logical	negation.	Similar	to	the	negative	sign	in	front	of	a
worksheet	formula,	the	NOT	operator	inverts	an	expression's	True	or	False	evaluation.	For
example,	the	following	line	of	code	toggles	as	on	or	off	the	display	of	gridlines	on	the
active	worksheet:

ActiveWindow.DisplayGridlines	=	Not	ActiveWindow.DisplayGridlines

The	logic	behind	this	use	of	the	NOT	operator	is	to	make	the	status	of	an	object's	property
be	opposite	of	whatever	its	current	status	is.	In	this	case,	the	DisplayGridlines	property
of	the	ActiveWindow	object	can	only	be	True	(show	the	gridlines)	or	False	(do	not	show
the	gridlines).	Therefore,	using	the	NOT	operator	in	this	way,	you	get	the	effect	of	toggling
between	showing	and	not	showing	the	active	worksheet's	gridlines	at	each	re-execution	of
this	line	of	code.

Table	9.3	summarizes	each	possible	result	of	the	NOT	logical	operator.

Table	9.3	Truth	Table	for	the	NOT	Logical	Operator

EXPRESSION LOGICAL	RESULT
True False
False True

Choosing	between	this	or	that
This	lesson	began	by	mentioning	that	some	code	in	your	macros	will	need	to	be	purposely
bypassed.	Most	computer	programming	languages,	VBA	included,	provide	for	the
flexibility	of	structuring	your	code	so	that	every	command	does	not	need	to	be	run	in
every	case.	Many	times,	you	will	write	macros	wherein	you	will	want	the	program	to	run
certain	commands	if	the	user	clicks	Yes	and	alternative	commands	if	the	user	clicks	No.
All	of	the	commands	are	a	part	of	the	macro	code,	but	only	one	set	of	them	will	execute.

If…Then
Among	VBA's	arsenal	of	decision-making	commands,	the	If…Then	statement	is	probably
the	simplest	and	most	commonly	utilized	approach	to	structure	your	conditional	scenarios.
Consider	this	line	of	code:

If	Weekday(VBA.Date)	=	6	Then	MsgBox	"Have	a	nice	weekend!",	,	"Today	is	

Friday!"

If	you	have	worked	with	Excel's	WEEKDAY	worksheet	function,	you	may	recall	to	Excel,
weekday	number	1	is	Sunday,	weekday	number	2	is	Monday,	and	so	on.	VBA	would	look
at	this	line	of	code	and	display	the	message	box	only	if	the	line	of	code	is	being	executed
on	a	Friday	because	Friday	is	weekday	number	6.	If	the	weekday	is	any	day	other	than
Friday,	VBA	bypasses	this	line	of	code.

NOTE	In	your	prior	VBA	travels,	you	might	have	only	seen	an	If	statement	with	an
accompanying	End	If	statement	below	it,	and	you	might	be	wondering	why	and	how
the	previous	example	can	be	successfully	executed	without	having	or	needing	an	End
If	statement.	The	previous	example	could	have	been	written	in	“block”	style	like	this:

If	Weekday(VBA.Date)	=	6	Then

MsgBox	"Have	a	nice	weekend!",	,	"Today	is	Friday!"

End	If

When	evaluating	for	a	single	condition,	and	the	conditional	code	is	one	task	as	shown
in	this	example,	you	can	write	the	entire	If…Then	statement	in	a	single	line	of	code.
Some	programmers	prefer	a	single	If	line	for	their	one-condition	evaluations,	and
other	programmers	prefer	the	block	style.	It	comes	down	to	a	personal	preference	and
whatever	feels	more	intuitive	to	you.

If…Then…Else
More	often	than	not,	your	evaluations	will	involve	two	or	more	conditions	instead	of	just
one.	When	you	have	two	conditions	and	each	has	its	own	set	of	tasks	to	carry	out,	you
need	to	separate	the	two	conditions	with	the	Else	statement	in	a	block	If	structure.

Expanding	on	the	previous	example,	say	you	want	to	display	a	message	box	if	today	is
Friday,	but	a	different	message	box	if	today	is	not	Friday.	Here	is	the	format	you	would
use	in	your	macro:

If	Weekday(VBA.Date)	=	6	Then

MsgBox	"Have	a	nice	weekend!",	,	"Today	is	Friday!"

Else

MsgBox	"Alas,	today	is	not	Friday.",	,	"Not	Friday	yet!"

End	If

Notice	that	the	Else	statement	stands	alone	on	its	own	dedicated	line,	separating	the	two
conditions'	respective	commands.	Only	one	condition	can	possibly	evaluate	to	True	in	this
example,	because	today	is	either	Friday	or	it	is	some	day	other	than	Friday.	This	block	of
code	is	designed	to	always	be	executed	such	that	only	one	of	the	message	box	commands
would	appear,	but	never	both	during	the	same	run.

NOTE	Here's	a	design	tip	to	speed	up	your	programs.	In	a	block	If	structure	with
multiple	conditions,	VBA	looks	at	each	condition	in	turn,	and	basically	stops	at	and
executes	the	conditional	code	for	the	first	condition	that	is	found	to	evaluate	to	True.
With	two	or	three	conditions,	it	might	not	be	a	big	deal	in	which	order	you	set	your
conditions	in	the	If	structure.	But	sometimes	you	will	be	programming	for	multiple
conditions,	and	the	point	is,	you	will	want	VBA	to	execute	its	process	as	efficiently	as
possible.	A	good	habit	to	get	into	is	to	design	your	If	structures	by	setting	the	first
condition	to	be	the	one	that's	most	likely	to	be	the	case.	That	way,	most	of	the	time,
the	first	condition	will	be	the	True	condition	and	VBA	will	not	waste	time	evaluating
the	alternative	unlikelier	scenarios.	With	this	in	mind,	the	previous	example	is	a	good
opportunity	to	show	how	to	make	your	code	run	faster.	You	can	see	that	the	first
condition	dealt	with	the	current	weekday	being	Friday.	If	you	think	about	it,	there	is
only	one	chance	in	seven	that	will	be	the	case.	Mostly,	the	macro	will	be	run	on	one	of
the	other	days	of	the	week.	A	better	way	to	write	the	If	code	is	to	consider	which
condition	will	be	True	more	often	than	the	other	condition(s).	Six	out	of	seven	days
will	not	be	a	Friday,	so	that	condition	should	be	placed	first,	as	shown	in	this
example:

If	Weekday(VBA.Date)	<>	6	Then

MsgBox	"Alas,	today	is	not	Friday.",	,	"Not	Friday	yet!"

Else

MsgBox	"Have	a	nice	weekend!",	,	"Today	is	Friday!"

End	If

If…Then…ElseIf
VBA	provides	an	extended	way	to	utilize	the	If…Then…Else	conditional	structure	when
more	than	two	conditions	must	be	evaluated.	Say	you	want	to	display	a	custom	message
for	every	day	of	the	traditional	five-day	work	week.	You	need	a	way	to	express	your
conditions	in	a	single	If	structure	with	five	possible	courses	of	action,	depending	on
which	day	of	the	week	the	macro	is	run.

One	way	you	can	accomplish	this	is	with	an	If…Then…ElseIf	structure	as	shown	in	the
following	example.	Recall	from	the	discussion	about	logical	operators	at	the	beginning	of
this	lesson	that	you	can	evaluate	two	or	more	conditions	in	one	line	of	code.	Notice	that
the	first	five	conditions	coincide	with	the	five	workdays	from	Monday	to	Friday.	The	final

condition	uses	the	OR	operator	to	identify	a	weekend	day	of	either	Saturday	or	Sunday:

Sub	WeekdayTest()

'Monday

If	Weekday(VBA.Date)	=	2	Then

MsgBox	"Ugghhh	-	-	Back	to	work.",	,	"Today	is	Monday"

'Tuesday

ElseIf	Weekday(VBA.Date)	=	3	Then

MsgBox	"At	least	it's	not	Monday	anymore!",	,	"Today	is	Tuesday"

'Wednesday

ElseIf	Weekday(VBA.Date)	=	4	Then

MsgBox	"Hey,	we're	halfway	through	the	work	week!",	,	"Today	is	Wednesday"

'Thursday

ElseIf	Weekday(VBA.Date)	=	5	Then

MsgBox	"Looking	forward	to	the	weekend.",	,	"Today	is	Thursday"

'Friday

ElseIf	Weekday(VBA.Date)	=	6	Then

MsgBox	"Have	a	nice	weekend!",	,	"Today	is	Friday!"

'Saturday	or	Sunday

ElseIf	Weekday(VBA.Date)	=	7	Or	Weekday(VBA.Date)	=	1	Then

MsgBox	"Hey,	it's	currently	the	weekend!",	,	"Today	is	a	weekend	day!"

End	If

End	Sub

IIF
Yes,	you	read	that	correctly,	that's	an	IF	with	an	extra	I,	spelled	IIF.	Though	it	is	similar	in
syntax	to	the	familiar	IF	worksheet	function,	IIF	is	a	lesser	known	and	lesser	utilized
conditional	function	in	VBA.

Why	did	Microsoft	develop	the	IIF	function?	For	the	same	reason	elite	swimming
champions	have	swum	the	English	Channel—because	they	could.	You'll	see	IIF	being
used	about	as	many	times	as	the	English	Channel	has	been	swum,	which	is	not	many,	but	I
am	including	it	here	so	you	can	say	you	know	about	it	if	the	subject	should	come	up	at	the
water	cooler.

The	syntax	for	the	IIF	construction	is	IIF(Expression,	TruePart,	FalsePart).

Recall	from	earlier	in	this	lesson	that	my	example	for	If…Then…Else	was	this	five-line
construction:

If	Weekday(VBA.Date)	=	6	Then

MsgBox	"Have	a	nice	weekend!",	,	"Today	is	Friday!"

Else

MsgBox	"Alas,	today	is	not	Friday.",	,	"Not	Friday	yet!"

End	If

The	IIF	function	can	handle	all	that	in	one	line,	like	this:

MsgBox	IIf(Weekday(VBA.Date)	=	6,	"Today	is	Friday!",	"Not	Friday	yet!")

Getting	used	to	IIF's	syntax	and	appearance	is	an	acquired	taste	that	most	VBA
programmers	don't	pursue.	Beyond	that,	however,	is	the	risky	and	inefficient	nature	of	IIF
whereby	both	the	TruePart	and	FalsePart	statements	are	evaluated,	even	if	the	TruePart

evaluates	to	True.	Also,	if	your	FalsePart	statement	should	evaluate	to	an	error,	such	as
dividing	a	number	by	zero	or	referring	to	a	named	range	that	does	not	exist,	the	entire	IIF
statement	will	result	in	an	error,	even	if	the	TruePart	statement	is	True.

Select	Case
As	you	are	fully	aware,	the	world	is	a	complicated	place	and	your	macros	will	sometimes
need	to	take	into	consideration	not	just	one,	two,	or	five	courses	of	action,	but	possibly
ten,	hundreds,	or	even	thousands	depending	on	the	situation.	There	are	also	times	when
several	possible	different	conditions	will	require	the	same	course	of	action.	For	these
complex	evaluations,	the	Select	Case	statement	is	a	perfect	solution.

You	will	want	to	become	familiar	with	Select	Case.	It	is	simple	to	use,	and	it	is	easier	to
follow	in	your	code	than	an	extensive	If	structure.	Similar	to	the	If	and	ElseIf
keywords,	you	use	the	Case	keyword	in	a	Select	Case	structure	to	test	for	the	True
evaluation	of	a	particular	condition	or	set	of	conditions.	You	can	have	as	many	Case
statements	as	you	want,	and	only	the	code	associated	with	the	first	Case	that	evaluates	to
True	will	be	executed.

The	best	way	to	understand	Select	Case	is	to	see	it	in	action	with	a	few	examples.	The
following	macro	named	WeekdayTestSelectCase	is	actually	the	previous	WeekdayTest
macro,	which	accomplishes	the	same	result,	but	uses	Select	Case	structure	instead	of	If…
Then…ElseIf:

Sub	WeekdayTestSelectCase()

Select	Case	Weekday(VBA.Date)

Case	2	'Monday

MsgBox	"Ugghhh	-	-	Back	to	work.",	,	"Today	is	Monday"

Case	3	'Tuesday

MsgBox	"At	least	it's	not	Monday	anymore!",	,	"Today	is	Tuesday"

Case	4	'Wednesday

MsgBox	"Hey,	we're	halfway	through	the	work	week!",	,	"Today	is	Wednesday"

Case	5	'Thursday

MsgBox	"Looking	forward	to	the	weekend.",	,	"Today	is	Thursday"

Case	6	'Friday

MsgBox	"Have	a	nice	weekend!",	,	"Today	is	Friday!"

Case	1,	7	'Saturday	or	Sunday

MsgBox	"Hey,	it's	currently	the	weekend!",	,	"Today	is	a	weekend	day!"

End	Select

End	Sub

You'll	notice	less	redundancy	of	each	condition	(each	Case),	because	the	primary	item	of
interest,	Weekday(VBA.Date),	needs	to	be	named	only	once	in	the	Select	Case	statement,
instead	of	in	every	ElseIf	statement.	Also,	each	Case	is	very	clear,	and	the	entire	macro	is
just	easier	to	read.

A	useful	tactic	with	Select	Case	is	the	ability	to	group	several	different	conditions	into	a
single	Case	if	it	satisfies	a	particular	test.	For	example,	if	your	company	operates	its
budget	on	a	calendar-year	basis,	that	means	the	months	of	January,	February,	and	March
belong	to	Quarter	1;	April,	May,	and	June	belong	to	Quarter	2,	and	so	on.

With	the	Select	Case	structure,	you	can	group	different	conditions	into	the	same	Case	to

arrive	at	a	common	result.	It	is	not	just	that	January	has	a	one-to-one	association	with
Quarter	1,	because	the	months	of	February	and	March	also	comprise	Quarter	1.	If	you
want	to	produce	a	message	box	that	displays	the	current	quarter,	this	macro	shows	how	to
group	the	months	into	cases:

Sub	CurrentQuarter()

Select	Case	Month(VBA.Date)

Case	1	To	3:	MsgBox	"Quarter	1"

Case	4	To	6:	MsgBox	"Quarter	2"

Case	7	To	9:	MsgBox	"Quarter	3"

Case	10	To	12:	MsgBox	"Quarter	4"

End	Select

End	Sub

As	you	can	see,	you	don't	need	12	separate	statements	to	handle	each	conditional	month;
you	can	simply	state	the	range	of	months	using	the	To	statement	in	each	Case.	I	put	a	new
wrinkle	in	that	macro	to	point	out	a	VBA	feature,	that	being	the	colon	character	(:),	which
can	be	used	to	separate	multiple	statements	on	the	same	Case	line	that	would	otherwise
each	require	their	own	line.	I	don't	usually	use	the	colon	character	this	way,	but	sometimes
it	comes	in	handy	by	helping	the	readability	of	small	macros	like	this.

Here's	a	final	example	while	we're	on	this	topic,	to	show	how	useful	the	Select	Case
structure	is	when	the	cases	can	include	thousands	of	items	that	can	all	satisfy	a	Case
criteria.	Suppose	the	management	of	a	football	squad	wants	to	enter	the	paid	attendance	of
today's	game	into	cell	A1,	and	run	a	macro	to	assess	the	fans'	paid	attendance.	You	can	see
how	valuable	Select	Case	can	be,	if,	say	85,000	people	attended	the	game,	with	that
situation	being	handled	with	mathematical	operators	in	your	Case	statements:

Sub	SelectCaseExample()

Dim	PaidAttendance	As	Long

PaidAttendance	=	Range("A1").Value

Select	Case	PaidAttendance

Case	Is	<	1000:	MsgBox	"Small-sized	crowd!"

Case	Is	<	5000:	MsgBox	"Medium-sized	crowd!"

Case	Is	>=	5000:	MsgBox	"WOW!	Excellent!	Huge	crowd!"

End	Select

End	Sub

Getting	Users	to	Make	Decisions
Thus	far	you	have	seen	examples	of	VBA's	decision-making	abilities	that	have	not
required	any	input	from	the	user.	The	time	will	come	when	you'll	either	want	or	need
information	from	the	user	in	order	for	decisions	to	be	made	that	only	the	user	can	provide.
Message	boxes	and	input	boxes	are	excellent	tools	to	interact	with	your	users	in	such
situations.

Message	Boxes
Up	to	this	point	in	the	book,	you	have	seen	many	examples	of	code	that	include	a	message
box.	In	all	those	examples,	the	message	box	was	a	simple	pop-up	box	that	displayed	an
informational	text	message,	with	an	OK	button	for	you	to	acknowledge	the	information.

Message	boxes	are	flexible	tools	that	allow	you	to	customize	the	buttons	while	asking
questions	directly	to	the	users	that	will	force	them	to	select	one	option	or	the	other.	Instead
of	OK,	you	can	display	a	Yes	button	and	a	No	button	on	your	message	box,	and	write	the
code	that	will	be	followed	if	the	user	clicks	Yes	or	the	user	clicks	No.	An	example	of	such
a	message	box	is	shown	in	Figure	9.1.

Figure	9.1

Say	you	have	a	macro	to	perform	a	task	that	your	users	should	confirm	they	really	want	to
do	as	a	final	OK.	Some	macros	are	quite	large	and	virtually	irreversible,	or	the	task	at
hand	will	alter	the	workbook	in	a	significant	way.	In	the	following	simplified	example,	the
active	worksheet	will	be	copied	and	placed	before	Sheet1,	but	only	if	the	user	first	clicks
the	Yes	button	to	confirm	his	intention	for	this	to	happen.	If	the	user	clicks	No,	a	friendly
message	box	advises	the	user	that	the	macro	will	not	run	because	No	was	clicked:

Sub	ConfirmExample()

Select	Case	MsgBox(_

"Do	you	really	want	to	copy	this	worksheet?",	_

vbYesNo	+	vbQuestion,	_

"Please	confirm…")

Case	vbNo

MsgBox	_

"No	problem,	this	worksheet	will	not	be	copied.",	_

vbInformation,	_

"You	clicked	No."

Exit	Sub

Case	vbYes

MsgBox	_

"Great	-	-	click	OK	to	run	the	macro.",	_

vbInformation,	_

"Thanks	for	confirming."

ActiveSheet.Copy	Before:=Sheets("Sheet1")

End	Select

End	Sub

As	you	look	at	the	MsgBox	line,	note	that	the	message	box	arguments	are	contained	within
parentheses.	A	message	box	has	two	mandatory	arguments:	the	prompt,	which	is	the	text
you	place	in	the	body	of	the	message	box,	and	the	button	configuration.	Other
combinations	of	buttons	include	OKCancel,	YesNoCancel,	and	AbortRetryIgnore.	The
title	of	the	message	box	is	optional,	but	I	always	enter	it	to	offer	a	more	customized
experience	for	the	user.

NOTE	In	the	Try	It	section	at	the	end	of	Lesson	7,	you	worked	with	VBA's
IntelliSense	feature.	I	recommend	you	activate	IntelliSense	if	you	have	not	already
done	so,	because	when	composing	message	boxes,	you'll	be	reminded	of	the	available
arguments	and	their	proper	syntax	while	you	are	writing	your	code.

Input	Boxes
When	you	need	a	piece	of	specific	information	from	the	user,	such	as	a	text	string	or	a
number,	an	InputBox	was	made	for	the	job.	An	input	box	looks	like	a	distant	cousin	of	a
message	box,	with	the	prompted	text	that	tells	the	user	what	to	do,	OK	and	Cancel	buttons
(which	cannot	be	reconfigured	as	a	message	box's	buttons	can),	and	an	optional	title
argument.

An	InputBox	requires	a	prompt	argument,	and	it	provides	a	field	wherein	the	user	would
enter	the	kind	of	information	as	needed	for	the	macro	to	continue.	The	entry	would	return
a	String	type	variable.	If	no	entry	is	made,	that	is,	the	text	field	is	left	empty,	the
InputBox	would	return	a	null	string,	which	is	usually	regarded	by	VBA	the	same	as	if	the
user	clicked	the	Cancel	button.

The	following	example	uses	an	input	box	to	ask	the	user	to	enter	a	number	to	represent
how	many	rows	will	be	inserted	below	the	active	cell's	row.	Figure	9.2	shows	what	the
input	box	looks	like	for	this	macro.

Figure	9.2

Sub	InsertRows()

'Declare	the	string	variable	for	the	InputBox	entry.

Dim	CountInsertRows	As	String

'Define	the	String	variable	as	the	InputBox	entry.

CountInsertRows	=	InputBox(_

"Enter	the	number	of	rows	to	be	inserted:",	_

"Insert	how	many	rows	below	the	active	cell?")

'Verify	that	a	number	was	entered.

'The	Val	function	returns	the	numbers	contained	in	a	string	as	a	numeric	

value.

If	CountInsertRows	=	""	Or	Val(CountInsertRows)	<	1	Then	Exit	Sub

'Insert	as	many	rows	as	the	number	that	was	entered.

'The	Resize	property	returns	a	Range	object	based	on	the	number	of	rows

'and	columns	in	the	new	range.	The	number	that	was	entered	in	the	InputBox

'represents	how	many	rows	shall	be	inserted.	The	count	of	columns,	which	is

'the	other	optional	argument	for	Resize,	need	not	be	specified	because	it	

is

'only	rows	being	inserted.

Rows(ActiveCell.Row	+	1).Resize(Val(CountInsertRows)).Insert

End	Sub

Try	It
For	this	lesson,	the	active	worksheet	is	currently	protected	with	a	password,	and	you	ask
the	workbook's	users	if	they	want	to	unprotect	the	worksheet.	If	they	answer	No,	the
macro	terminates.	If	they	answer	Yes,	the	macro	proceeds	to	ask	them	for	the	password.	If
the	attempted	password	is	incorrect,	the	user	is	informed	of	that,	the	worksheet	remains
protected,	and	the	macro	terminates.	If	the	attempted	password	is	correct,	the	user	is	then
allowed	to	unprotect	the	worksheet.

Lesson	Requirements
To	get	the	sample	workbook	file	you	can	download	Lesson	9	from	the	book's	website	at
www.wrox.com/go/excelvba24hour.

Hints
It's	a	wise	practice	to	ask	the	user	to	confirm	her	intention	to	proceed	with	the	macro.
There	are	plenty	of	instances	when	a	user	mistakenly	clicks	a	button	or	triggers	a	macro
that	she	had	no	intention	of	running.

In	Step	5,	vbQuestion	adds	a	user-friendly	touch	of	a	question	mark	icon	in
your	message	boxes	that	ask	the	user	a	question.

Step	9	shows	this	example	of	the	single	line	If	statement:

If	myPassword	=	""	Then	Exit	Sub

Some	VBA	programmers	(me	included)	find	that	syntax	more	efficient	than	the	following
three-line	syntax.	Try	both	styles	yourself	and	see	what	works	best	for	you.

If	myPassword	=	""	Then

Exit	Sub

End	If

Step-by-Step
1.	 Start	by	opening	a	new	workbook	and	password	protecting	Sheet1	with	the	password

hello	(without	quotes,	all	lowercase	just	as	you	see	it	here).

2.	 With	your	Sheet1	worksheet	protected,	press	Alt+F11	to	go	to	the	Visual	Basic	Editor.

3.	 From	the	menu	bar	at	the	top	of	the	VBE,	click	Insert Module.

4.	 In	the	module	you	just	created,	type	Sub	PasswordTest	and	press	Enter.	VBA
automatically	places	a	pair	of	empty	parentheses	at	the	end	of	the	Sub	line,	followed
by	an	empty	line,	and	the	End	Sub	line	below	that.	Your	macro	should	look	like	this	so
far:

Sub	PasswordTest()

End	Sub

5.	 Begin	a	Select	Case	structure	with	a	Yes	No	Question	message	box	to	ask	the	users
to	confirm	their	intention	to	unprotect	the	worksheet:

http://www.wrox.com/go/excelvba24hour

Select	Case	MsgBox(_

"Do	you	want	to	unprotect	the	worksheet?",	_

vbYesNo	+	vbQuestion,	_

"Please	confirm	your	intentions.")

6.	 Handle	the	case	for	a	No	answer	by	informing	the	user	that	the	macro	will	not
continue,	and	then	exit	the	macro	with	the	Exit	Sub	statement:

Case	vbNo

MsgBox	"No	problem—this	macro	will	end.",	vbInformation,	"You	clicked	

No."

Exit	Sub

7.	 Handle	the	case	for	a	Yes	answer:

Case	vbYes

8.	 Provide	an	InputBox	for	the	user	to	enter	the	password.	Declare	a	String	type
variable,	and	define	it	as	the	text	that	will	be	entered	into	the	InputBox:

Dim	myPassword	As	String

myPassword	=	_

InputBox("Please	enter	the	case-sensitive	password:",	_

"A	password	is	required	to	unprotect	this	worksheet.")

9.	 Here	is	an	opportunity	to	add	a	single-line	If	statement	to	end	the	macro	if	the	user
clicks	Cancel,	or	clicks	OK	without	entering	anything	into	the	InputBox.	The	pair	of
double	quotes	with	nothing	between	them	is	interpreted	by	VBA	as	a	zero-length
string:

If	myPassword	=	""	Then	Exit	Sub

10.	 Begin	an	If…Then	structure	to	determine	if	the	InputBox	entry	matches	the	password
hello	that	was	used	to	protect	the	worksheet:

If	myPassword	<>	"hello"	Then

11.	 If	the	InputBox	entry	is	anything	other	than	hello,	enter	the	code	you	would	want	to
be	executed	when	an	incorrect	password	is	entered,	which	you	can	do	with	a	friendly
message	box:

MsgBox	_

"Sorry,	"	&	myPassword	&	"	is	not	the	correct	Password.",	_

vbCritical,	_

"Incorrect."

12.	 Enter	your	Else	statement	and	supply	the	code	to	be	executed	only	if	the	correct
password	is	entered:

Else

MsgBox	_

"Thank	you.	Please	click	OK	to	unprotect	the	worksheet.",	_

vbInformation,	_

"You	entered	the	correct	password!!"

ActiveSheet.Unprotect	"hello"

13.	 End	the	If	structure	that	determined	if	the	InputBox	entry	matched	the	password
hello:

End	If

14.	 End	the	Select	Case	structure	for	the	users	to	confirm	their	intention	of	unprotecting
the	worksheet:

End	Select

15.	 Here	is	what	the	complete	macro	would	look	like:

Sub	PasswordTest()

'Ask	the	user	if	they	want	to	unprotect	the	worksheet.

Select	Case	MsgBox(_

"Do	you	want	to	unprotect	the	worksheet?",	_

vbYesNo	+	vbQuestion,	_

"Please	confirm	your	intentions.")

'Handle	the	case	for	a	No	answer	by	informing	the	user

'that	the	macro	will	not	continue,

'and	then	exit	the	subroutine	with	the	Exit	Sub	statement.

Case	vbNo

MsgBox	"No	problem—this	macro	will	end.",	vbInformation,	"You	clicked	

No."

Exit	Sub

'Handle	the	case	for	a	Yes	answer	by	providing	an	InputBox

'for	the	user	to	enter	the	password.

Case	vbYes

'Declare	a	String	type	variable.

Dim	myPassword	As	String

'Define	the	String	variable	as	the	text	that	will	be	entered	into	the	

InputBox.

myPassword	=	_

InputBox("Please	enter	the	case-sensitive	password:",	_

"A	password	is	required	to	unprotect	this	worksheet.")

'A	one-line	If	statement	to	end	the	macro	if	the	user	clicks	Cancel,

'or	clicks	OK	without	entering	anything	into	the	InputBox.

If	myPassword	=	""	Then	Exit	Sub

'If	structure	to	determine	if	the	InputBox	entry	matches	the	password	

"hello"

'that	was	used	to	protect	the	worksheet.

If	myPassword	<>	"hello"	Then

'The	code	line	to	be	executed	if	an	incorrect	password	is	entered.

MsgBox	_

"Sorry,	"	&	myPassword	&	"	is	not	the	correct	Password.",	_

vbCritical,	_

"Incorrect."

Else

'The	code	to	execute	only	if	the	correct	password	is	entered.

MsgBox	_

"Thank	you.	Please	click	OK	to	unprotect	the	worksheet.",	_

vbInformation,	_

"You	entered	the	correct	password!!"

ActiveSheet.Unprotect	"hello"

'End	the	If	structure	that	determined	if	the	InputBox	entry

'matched	the	password	"hello".

End	If

'End	the	Select	Case	structure	for	the	users	to	confirm	their	intention

'of	unprotecting	the	worksheet.

End	Select

End	Sub

REFERENCE	Please	select	the	video	for	Lesson	9	online	at
www.wrox.com/go/excelvba24hour.	You	will	also	be	able	to	download	the	code	and
resources	for	this	lesson	from	the	website.

http://www.wrox.com/go/excelvba24hour

Part	III
Beyond	the	Macro	Recorder:	Writing	Your	Own	Code
Lesson	10:	Repeating	Actions	with	Loops

Lesson	11:	Programming	Formulas

Lesson	12:	Working	with	Arrays

Lesson	13:	Automating	Procedures	with	Worksheet	Events

Lesson	14:	Automating	Procedures	with	Workbook	Events

Lesson	15:	Handling	Duplicate	Items	and	Records

Lesson	16:	Using	Embedded	Controls

Lesson	17:	Programming	Charts

Lesson	18:	Programming	PivotTables	and	PivotCharts

Lesson	19:	User-Defi	ned	Functions

Lesson	20:	Debugging	Your	Code

Lesson	10
Repeating	Actions	with	Loops
Suppose	you	need	to	perform	the	same	action,	or	the	same	sequence	of	several	actions,
many	times	in	your	macro.	For	example,	you	may	need	to	unhide	all	worksheets	that	are
hidden,	or	you	need	to	add	12	worksheets	to	your	workbook	and	name	them	for	each
month	of	the	year.

The	fact	is,	you'll	encounter	many	circumstances	for	which	a	repetition	of	similar
commands	is	a	necessary	part	of	the	job.	In	most	cases	it	will	be	impractical,	and
sometimes	downright	impossible,	to	write	an	individual	command	for	each	performance
of	the	action.	The	need	for	handling	a	repetitive	set	of	commands	efficiently	is	exactly
what	loops	are	made	for.

What	is	a	Loop?
A	loop	is	a	method	of	performing	a	task	more	than	once.	You	may	need	to	copy	each
worksheet	in	your	workbook	and	save	it	as	the	only	worksheet	in	its	own	separate
workbook.	Or,	you	may	have	a	list	of	thousands	of	records	and	you	want	to	insert	an
empty	row	where	the	value	of	a	cell	in	column	A	is	different	than	the	value	of	the	cell
below	it.	Maybe	your	worksheet	has	dozens	of	cells	that	contain	comments,	and	you	want
to	add	the	same	preceding	text	to	every	comment's	existing	text	without	having	to	edit
every	comment	one	at	a	time.

Instead	of	doing	these	kinds	of	tasks	manually,	or	recording	an	impractical	(and
sometimes	impossible)	macro	to	handle	the	repetition,	you	can	use	loops	to	get	the	job
done	with	less	code	while	keeping	more	flexible	control	over	the	number	of	necessary
repetitions.	In	VBA,	a	loop	is	a	structure	that	executes	one	or	more	commands,	and	then
cycles	through	the	process	again	within	the	structure,	for	as	many	times	as	you	specify.
Each	cycle	of	executing	the	loop	structure's	command(s)	is	called	an	iteration.

NOTE	Loops	are	great,	but	you're	not	obligated	to	use	one	just	because	you	need	to
repeat	an	action	two	or	three	times.	You'll	come	across	situations	that	you	know	will
always	require	the	same	commands	to	be	repeated	the	same	way,	for	the	same	number
of	times.	If	you	feel	like	coding	each	action	separately,	and	you	can	live	with	the
longer	code,	go	ahead	and	hard-code	the	separate	commands	if	that's	what	works	for
you.	Beyond	three	potential	iterations,	however,	you	really	should	go	the	loop	route.
It'll	save	you	a	lot	of	work,	and	the	code	will	be	easier	to	maintain.

The	number	of	a	loop's	iterations	depends	on	the	nature	of	the	task	at	hand.	All	loops	fall
into	one	of	two	categories.	A	fixed-iteration	loop	executes	a	specified	number	of	times	that
you	hard-code	directly	as	a	numeric	expression.	An	indefinite	loop	executes	a	flexible
number	of	times	that	is	usually	defined	by	a	logical	expression.

For	example,	a	fixed	iteration	loop	dealing	with	a	year's	worth	of	data	might	need	to	cycle
through	12	iterations,	one	for	each	month.	An	indefinite	loop	might	need	to	cycle	through
every	worksheet	in	your	workbook,	taking	into	consideration	that	because	worksheets	can
be	added	or	deleted	at	any	time,	the	exact	count	of	worksheets	can	never	be	known	in
advance.

Types	of	Loops
VBA	provides	several	different	looping	structures,	and	at	least	one	of	them	will	be	suited
for	any	looping	requirement	you'll	encounter.	Table	10.1	shows	an	overview	of	the	types
of	loops	in	VBA.

Table	10.1	Types	of	Loops	in	VBA

LOOP
STRUCTURE

CATEGORY EXPLANATION

For…Next Fixed Repeats	an	action	for	a	specified	number	of	times.
For	Each…

Next

Fixed Repeats	an	action	upon	an	object	in	a	Collection.	For
example,	you	can	perform	a	task	for	each	worksheet	in
the	workbook.

Do	While Indefinite Executes	an	action	if	the	condition	is	True,	and	repeats
the	action	until	the	condition	is	False.

Do	Until Indefinite Executes	an	action	if	the	condition	is	False,	and	repeats
the	action	until	the	condition	is	True.

Do…Loop

While

Indefinite Executes	an	action	once,	and	repeats	the	action	while	the
condition	is	True,	until	it	is	False.

Do…Loop

Until

Indefinite Executes	an	action	once,	and	repeats	the	action	while	the
condition	is	False,	until	it	is	True.

While…Wend Indefinite Same	as	the	Do	While	loop	structure,	still	supported	by
VBA	but	obsolete.

For…Next
The	For…Next	loop	structure	is	a	simple	and	effective	way	to	repeat	an	action	for	a
specified	number	of	times.	For	example,	if	you	want	to	add	five	new	worksheets	to	your
workbook,	you	could	declare	an	Integer	type	variable	and	repeat	the	action	five	times,
like	this:

Sub	AddFiveWorksheets()

'Declare	your	Integer	or	Long	variable.

Dim	intCounter	As	Integer

'Open	the	For	loop	structure.

For	intCounter	=	1	To	5

'Enter	the	command(s)that	will	be	repeated.

Worksheets.Add

'Loop	to	the	next	iteration.

Next	intCounter

End	Sub

NOTE	Although	it	is	technically	correct	that	the	Next	statement	can	stand	alone,	do
yourself	a	favor	by	getting	into	the	good	habit	of	including	the	variable	in	the	Next
statement.	For	example,	writing	your	code	as	Next	intCounter	instead	of	just	as
Next	makes	it	easier	for	you	to	read	and	for	other	people	to	understand.

When	VBA	executes	a	For…Next	loop,	by	default	it	increments	by	1	the	value	of	the
declared	Integer	or	Long	type	variable.	Because	the	objective	was	to	add	five	worksheets,
the	easiest	way	to	keep	a	running	count	of	the	process	is	to	iterate	five	times,	just	as	if	you
were	counting	the	occurrence	of	each	action	from	1	to	5.

You	can	take	advantage	of	the	fixed	nature	of	a	For…Next	loop	by	asking	for	the	number
of	worksheets	that	are	to	be	added.	In	the	following	example,	an	InputBox	engages	the
user	by	asking	for	a	number	that	represents	how	many	worksheets	will	be	added:

Sub	ForNextExample2()

'Declare	your	Integer	or	Long	variables.

Dim	MoreSheets	As	Integer,	intCounter	As	Integer

'Define	the	MoreSheets	variable	with	an	InputBox.

MoreSheets	=	InputBox(_

"How	many	worksheets	do	you	want	to	add?",	_

"Enter	a	number")

'Open	the	For	loop	structure.

For	intCounter	=	1	To	MoreSheets

'Enter	the	command(s)that	will	be	repeated.

Worksheets.Add

'Loop	to	the	next	iteration.

Next	intCounter

End	Sub

You	don't	always	need	to	start	counting	from	the	number	1	in	a	For…Next	loop;	you	can
pretty	much	count	from	any	number	to	any	number.	Suppose	you	want	to	hide	rows	6,	7,
and	8.	A	For…Next	loop	to	accomplish	that	task	could	look	like	this:

Sub	ForNextExample3()

'Declare	your	Integer	or	Long	variable.

Dim	intCounter	As	Integer

'Open	the	For	loop	structure.

For	intCounter	=	6	To	8

'Enter	the	command(s)that	will	be	repeated.

Rows(intCounter).Hidden	=	True

'Loop	to	the	next	iteration.

Next	intCounter

End	Sub

For	Each…Next
The	For	Each…Next	loop	executes	an	action	for	a	fixed	number	of	times	just	as	the	For…
Next	construct	does,	but	unlike	For…Next,	For	Each…Next	does	not	keep	a	count	along	the
way	of	how	many	iterations	it	performs.	The	count	of	iterations	is	not	important	with	For
Each…Next	because	the	objective	is	to	execute	an	action	for	however	many	objects	exist	in
a	specified	VBA	collection.	Maybe	there	will	be	hundreds	of	iterations	to	occur;	maybe
there	will	be	none.

Suppose	that	as	part	of	your	workbook	project's	design,	a	particularly	lengthy	macro	will
run	faster	and	less	confusingly	for	the	user	if	all	other	Excel	workbooks	are	closed.
Naturally,	you	can	never	know	in	advance	whether	the	user	will	have	10	other	workbooks
open	in	addition	to	yours,	or	whether	your	workbook	is	the	only	open	workbook.	A	For
Each…Next	loop	would	be	the	perfect	way	to	save	and	close	all	other	workbooks	that	might
be	open,	such	as	with	this	example:

Sub	CloseWorkbooks()

'Declare	your	object	variable.

Dim	wb	As	Workbook

'Open	the	For	loop	structure.

For	Each	wb	In	Workbooks

'Enter	the	command(s)that	will	be	repeated.

If	wb.Name	<>	ThisWorkbook.Name	Then

wb.Save

wb.Close

End	If

'Loop	to	the	next	iteration.

Next	wb

End	Sub

Notice	that	an	object	variable	is	declared	for	Workbook,	and	the	Workbooks	collection	is
being	evaluated	with	an	If	structure	for	the	presence	of	any	and	all	workbooks	that	are
named	differently	than	your	workbook.	The	code	will	complete	its	mission	with	the	same
result	of	your	workbook	being	the	only	one	that's	open,	regardless	of	whether	it	was	the
only	one	open	from	the	start,	or	whether	50	other	workbooks	had	also	been	open	at	the
time.

One	of	Excel's	oddities	is	that	you	can	hide	any	number	of	worksheets	at	the	same	time,
but	if	you	have	multiple	worksheets	that	are	hidden,	you	can	unhide	only	one	worksheet	at
a	time.	With	this	macro	as	another	example	of	a	For	Each…Next	loop,	you	can	quickly
unhide	all	worksheets	at	once:

Sub	UnhideSheets()

'Declare	your	object	variable.

Dim	ws	As	Worksheet

'Open	a	For	Each…Next	loop.

For	Each	ws	In	Worksheets

'Command(s)	to	be	executed.

ws.Visible	=	xlSheetVisible

'Loop	to	the	next	iteration.

Next	ws

End	Sub

Exiting	a	For…Loop
Suppose	your	macro	requires	that	you	determine	whether	a	particular	workbook	named
Test.xlsx	happens	to	be	open,	and	if	so,	you	must	close	it.	You	might	compose	a	macro
with	a	loop	that	looks	like	this:

Sub	CloseOneWorkbook()

'Declare	your	object	variable.

Dim	wb	As	Workbook

'Open	a	For	Each	loop.

For	Each	wb	In	Workbooks

'Command(s)	to	be	executed.

If	wb.Name	=	"Test.xlsx"	Then

wb.Save

wb.Close

End	If

'Loop	to	the	next	iteration.

Next	wb

End	Sub

Strictly	speaking,	the	macro	works.	But	think	for	a	moment—what	if	a	few	dozen
workbooks	are	open?	In	this	case,	you'd	want	the	loop	to	do	its	job	only	up	to	the	point	of
encountering	the	Test.xlsx	workbook.

In	the	preceding	CloseOneWorkbook	example,	even	if	the	Test.xlsx	workbook	is	found	to
be	open	and	then	closed,	the	loop	still	continues	its	appointed	rounds	after	that	by
unnecessarily	evaluating	each	open	workbook.	This	would	be	a	waste	of	time	and	system
resources.	Instead,	you	should	insert	the	Exit	For	statement	to	stop	the	looping	process	in
a	For…Next	or	For	Each…Next	loop	when	a	condition	has	been	met	and	dealt	with,	and
cannot	be	met	thereafter.

Here	is	an	example	of	how	that	macro	should	look,	with	the	Exit	For	statement	placed
immediately	before	the	End	If	statement:

Sub	CloseOneWorkbookFaster()

'Declare	your	object	variable.

Dim	wb	As	Workbook

For	Each	wb	In	Workbooks

'Command(s)	to	be	executed.

If	wb.Name	=	"Test.xlsx"	Then

wb.Save

wb.Close

'Exit	For	statement	to	avoid	needless	iterations	if	the	condition	is	met.

Exit	For

End	If

'Loop	to	the	next	iteration.

Next	wb

End	Sub

Looping	in	Reverse	with	Step
A	common	request	that	Excel	users	have	is	to	insert	an	empty	row	when	the	value	of	a	cell
in	some	particular	column	does	not	equal	the	value	of	the	cell	below	it.	In	Figure	10.1,	the
table	of	data	is	sorted	by	Region	in	column	A,	and	the	request	is	to	visually	separate	the
regions	with	an	empty	row	at	each	change	in	Region	name.

Figure	10.1

When	inserting	a	series	of	rows	like	this,	it's	best	to	start	looping	from	the	bottom	of	the
table,	and	work	your	way	up	to	the	top.	That	means	your	numeric	row	reference	in	the
loop	will	be	decreasing	and	not	increasing,	because	your	starting	point	is	row	18	(the	last
row	of	data)	and	your	ending	point	is	row	2	(the	first	row	of	data).

Recall	that	when	VBA	executes	a	For	Next	loop,	by	default	it	increments	by	1	the	value
of	your	declared	Integer	or	Long	type	variable.	With	For…Next	loops,	you	can	specify	an
alternative	increment	or	decrement	value	by	using	the	optional	Step	keyword.	You	can
step	forward	or	backward	by	as	large	a	numeric	value	as	you	like.

In	this	example,	each	cell	in	column	A	is	being	evaluated	one	by	one,	from	row	18	to	row
2,	so	the	loop	will	step	by	a	numeric	factor	of	negative	1.	Here	is	a	macro	that	makes	the
“Before”	image	look	like	the	“After”	image	in	Figure	10.1:

Sub	InsertRows()

'Declare	your	Integer	or	Long	variable.

Dim	xRow	As	Long

'Open	a	For	Each	loop.

For	xRow	=	18	To	3	Step	-1

'Command(s)	to	be	executed.

If	Range("A"	&	xRow).Value	<>	Range("A"	&	xRow	-	1)	Then

Rows(xRow).Resize(1).Insert

End	If

'Loop	to	the	next	iteration.

Next	xRow

End	Sub

Do	While
The	Do	statement	is	an	extremely	powerful	tool	with	which	to	gain	more	flexibility	in	your
looping	structures.	In	a	Do	While	loop,	you	test	for	a	condition	that	must	be	True	before
the	loop	will	execute.	When	the	condition	is	True,	the	command(s)	within	the	loop	are
executed.

As	a	simple	example,	the	DoWhileExample	macro	produces	five	message	boxes	because
the	Do	While	loop	tests	for	the	condition	that	an	Integer	variable	(named	iCounter)	has
not	exceeded	the	number	5.	Notice	that	the	iCounter	variable	starts	at	1	outside	the	loop
and	is	increased	by	1	inside	the	loop:

Sub	DoWhileExample()

Dim	iCounter	As	Integer

iCounter	=	1

Do	While	iCounter	<=	5

MsgBox	"Hello	world!",	,	iCounter

iCounter	=	iCounter	+	1

Loop

End	Sub

Let's	apply	this	concept	to	a	more	practical	activity;	suppose	you	want	to	open	all	Excel
workbooks	that	are	in	a	particular	file	path.	The	macro	named	OpenAllFiles	does	that
using	a	Do	Loop	structure.	The	Dir	function	returns	the	first	filename	that	matches	the
combination	of	the	specified	pathname	and	an	Excel	workbook	extension	containing	.xls.
Calling	the	Dir	function	again	opens	additional	filenames	until	a	filename	is	encountered
that	does	not	match	the	combination:

Sub	OpenAllFiles()

Dim	myFile	As	String,	myPath	As	String

myPath	=	"C:\Your	File	Path\"

myFile	=	Dir(myPath	&	"*.xls*")

Do	While	myFile	<>	""

Workbooks.Open	myPath	&	myFile

myFile	=	Dir()

Loop

End	Sub

Do	Until
When	VBA	runs	a	Do	Until	loop,	it	tests	the	logical	condition	you	supply	and	executes
the	commands	within	the	loop	as	long	as	the	condition	evaluates	to	False.	When	VBA
reaches	the	Loop	statement,	it	re-evaluates	the	condition	and	executes	the	looping
commands	only	if	the	condition	is	still	False.

This	example	demonstrates	Do	Until	by	selecting	the	next	worksheet	based	on	the	index
number	from	whatever	current	worksheet	you	are	on.	The	wrinkle	that	is	taken	into
consideration	by	the	loop	is	that	the	next	highest	index	number	worksheet	might	be
hidden,	and	because	you	cannot	select	a	hidden	worksheet,	the	loop	selects	the	next
highest	index	number	of	a	worksheet	that	is	also	visible:

Sub	SelectSheet()

'Declare	an	Integer	type	variable	to	handle	the	Index	number	property

'of	whichever	worksheet(s)	are	being	evaluated	in	the	current	iteration.

Dim	intWS	As	Integer

'Because	you	want	to	activate	the	next	visible	worksheet,

'as	a	starting	point	you	need	to	know	the	next	highest	Index	position

'from	whatever	worksheet	is	active	at	the	time.

intWS	=	ActiveSheet.Index	+	1

'If	you	are	on	the	last	worksheet,	you'll	have	reached	the	end	of	the	line,

'so	define	the	intWS	as	the	first	Index	worksheet.

If	intWS>Worksheets.Count	Then	intWS	=	1

'Open	a	Do	Until	loop	that	determines	the	next	Index	number,

'only	considering	visible	worksheets.

Do	Until	Worksheets(intWS).Visible	=	True

'Add	a	1	to	the	intWS	variable	as	you	iterate	to	the	next	highest	Index	

number.

intWS	=	intWS	+	1

'If	it	turns	out	that	the	intWS	Index	variable	reaches	a	number

'that	is	greater	than	the	count	of	worksheets	in	the	workbook,

'the	intWS	number	is	set	back	to	1,	which	is	the	first	Index	position

If	intWS	>	Worksheets.Count	Then	intWS	=	1

'Loop	to	start	evaluation	again,	until	the	proper	Index	number	is	found.

Loop

'Select	the	worksheet	whose	Index	property	matches	the	index	number

'that	has	met	all	the	criteria.

Worksheets(intWS).Select

End	Sub

For	another	example,	suppose	you	want	to	update	your	AutoCorrect	list	easily	and
quickly.	Say	you	have	a	two-column	table	on	your	worksheet	that	occupies	columns	A	and
B.	In	column	A,	you	have	listed	frequently	misspelled	words,	and	in	column	B	are	the
corrected	words	that	you	want	Excel	to	automatically	display	if	you	misspell	any	of	those
words.	For	example,	in	cell	A1	you	have	entered	teh	and	in	cell	B1	you	have	entered	the
correction	of	the.	The	following	macro	uses	a	Do	Until	loop	to	handle	each	entry	in
column	A	and	continues	to	do	so	until	the	first	empty	cell	is	encountered,	indicating	the
end	of	the	list:

Sub	AddCorrection()

'Declare	a	Long	type	variable	to	help	looping	through	rows

'of	the	two-column	list.

Dim	i	As	Long

'Declare	two	String	type	variables:

'one	for	thr	original	entry,	and	the	other	for	the	text	string	replacement.

Dim	myMistake	As	String,	myCorrection	As	String

'Establish	the	number	1	for	the	Long	Variable,	representing	row	1

'which	is	the	first	row	in	the	example	list.

i	=	1

'Open	a	Do	Until	loop,	telling	VBA	to	stop	looping	when	an	empty	cell

'is	encountered	in	column	A,	indicating	the	end	of	the	list.

Do	Until	IsEmpty(Cells(i,	1))

'Define	the	myMistake	variable	as	the	text	contents	of	the	cell	in	column	A

myMistake	=	Cells(i,	1).Value

'Define	the	myCorrection	variable	as	the	text	contents	of	the	cell	in	

column	B.

myCorrection	=	Cells(i,	2).Value

'VBA	tells	the	Excel	Application's	AutoCorrect	property	to	update	itself	

with

'the	two	strings	from	columns	A	and	B.

Application.AutoCorrect.AddReplacement	What:=myMistake,	

Replacement:=myCorrection

'Add	a	1	to	the	i	variable	in	preparation	for	evaluating	the	next	row	in	

the	list.

i	=	i	+	1

'The	Loop	statement	starts	the	process	again	for	the	next	row	in	the	list.

Loop

End	Sub

NOTE	This	example	utilizes	the	Cells	range	method,	which	to	some	VBA	newcomers
can	take	a	little	getting	used	to.	If	you	need	a	reminder	for	the	use	of	Cells,	an
explanation	is	in	Lesson	8,	in	the	section	“Using	the	Cells	Property.”	You'll	be	seeing
an	increased	use	of	the	Cells	method	in	this	book	because	it	is	such	an	easier	and
more	efficient	method	of	referring	to	dynamic	ranges	in	VBA.

Do…Loop	While
To	have	VBA	test	the	conditional	statement	after	executing	the	commands	within	the	loop,
you	simply	place	the	conditional	statement	after	the	Loop	keyword.	The	Do…Loop	While
syntax	is

Do

Command	statements	to	be	executed	within	the	loop.

Loop	While	condition

When	VBA	executes	the	command(s)	in	a	Do…Loop	While	structure,	it	does	so	first,	and
then	at	the	Loop	While	line,	it	tests	the	logical	condition.	If	the	condition	is	True	at	that
point,	the	loop	iterates	again,	and	so	on,	until	the	condition	evaluates	to	False.

A	common	request	is	to	locate	all	cells	in	a	worksheet	that	contain	a	particular	value,
similar	to	clicking	the	Find	Next	button	on	the	Find	dialog	box,	and	then	do	something	to
that	cell	or	to	the	cells	around	it.	Suppose	you	have	a	worksheet	filled	with	data	and	you
want	to	find	all	cells	that	contain	the	word	“Hello.”	These	cells	can	be	in	any	row	or
column.

For	each	of	those	cells	where	“Hello”	is	found,	you	want	to	place	the	word	“Goodbye”	in
the	cell	of	the	column	to	the	immediate	right.	The	following	macro	does	just	that	using	a
Do…Loop	While	construction	that	finds	every	cell	containing	“Hello”	and	identifies	its
address,	so	the	loop	can	perform	only	as	many	iterations	as	there	are	cells	containing
“Hello”:

Sub	FindHello()

Dim	HelloCell	As	Range,	BeginningAddress	As	String

Set	HelloCell	=	ActiveSheet.UsedRange.Find("Hello",	LookIn:=xlValues)

If	Not	HelloCell	Is	Nothing	Then

BeginningAddress	=	HelloCell.Address

Do

HelloCell.Offset(0,	1).Value	=	"Goodbye"

Set	HelloCell	=	ActiveSheet.UsedRange.FindNext(HelloCell)

Loop	While	Not	HelloCell	Is	Nothing	And	HelloCell.Address<>BeginningAddress

End	If

End	Sub

Do…Loop	Until
Similar	in	approach	to	the	Do…Loop	While	construct,	the	Do…Loop	Until	loop	tests	its
condition	after	executing	the	loop's	statements.	The	Until	keyword	tells	VBA	that	the
statements	within	the	loop	will	be	executed	again	for	as	long	as	the	logical	condition
evaluates	to	False.	After	VBA	tests	the	condition	as	True,	the	loop's	iterations	stop,	and	the
macro	resumes	with	the	line	of	code	following	the	Loop	keyword.

This	macro	shows	an	example	of	a	Do…Loop	Until	structure,	which	creates	365	new
worksheets,	all	named	with	dates	starting	from	the	day	you	run	the	macro:

Sub	YearSheets()

Dim	i	As	Integer

i	=	0

Do

Sheets.Add(After:=Sheets(Sheets.Count)).Name	=	Format(VBA.Date	+	i,	"MM-DD-

YYYY")

i	=	i	+	1

Loop	Until	i	=	365

End	Sub

While…Wend
While…Wend	loops	have	become	obsolete	and	are	rarely	used	because	they	are	not	as	robust
as	Do	and	For	loops.	VBA	still	supports	While…Wend	loops	for	backward	compatibility
with	prior	versions	of	Excel,	and	I	am	not	aware	of	any	plans	by	Microsoft	to	stop
supporting	While…Wend.

So,	though	I	recommend	you	not	bother	learning	how	to	build	a	While…Wend	loop,	the	fact
is,	they	are	rather	uncomplicated	constructs	and	you	should	have	some	familiarity	with
how	they	look	if	you	should	see	them	in	code	written	by	others.	Here	is	an	example	of
While…Wend	that	uses	an	InputBox	that	asks	for	a	password,	and	keeps	asking	until	the
correct	password	is	entered,	or	the	message	box	is	canceled:

Sub	InputPassword()

While	InputBox("Please	enter	password:",	"Password	required")	<	>	

"MyPassword"

If	MsgBox(_

"Sorry,	that	is	not	correct.",	_

vbOKCancel,	_

"Wrong	password")	_

=	vbCancel	Then	End

Wend

MsgBox	"Yes!!	You	entered	the	correct	password!",	vbOKOnly,	"Thank	you!"

End	Sub

Nesting	Loops
Your	macros	will	eventually	require	that	you	enclose	one	loop	structure	inside	another
loop	structure,	referred	to	as	nesting	loops.	For	example,	you	may	need	to	loop	through	a
set	of	rows	in	a	data	table,	and	each	completed	set	of	looped-through	rows	will	represent	a
single	iteration	for	a	larger	loop	construct	for	the	columns	in	the	table.

When	you	nest	loops,	you	need	to	be	aware	of	a	few	important	points:

When	you	nest	For…Next	loops,	each	loop	must	have	its	own	uniquely	named	counter
variable.

When	you	nest	For	Each…Next	loops,	each	loop	must	have	its	own	uniquely	named
object	(or	element)	variable.

If	you	use	an	Exit	For	or	Exit	Do	statement,	only	the	loop	that	is	currently	executing
will	terminate.	If	that	loop	is	nested	within	a	larger	loop,	the	larger	loop	still	continues
to	execute	its	iterations.

I	mentioned	it	earlier	in	this	lesson,	but	it	especially	holds	true	with	nested	loops:	I
strongly	recommend	you	include	the	variable	name	in	your	Next	statements.

Here	is	an	example	of	a	macro	with	a	Do	loop	nested	inside	a	For	Each…Next	loop.	The
following	macro	produces	a	list	of	six	unique	random	numbers	between	1	and	54,	similar
to	a	lottery	drawing:

Sub	PickSixLottery()

'Declare	the	Range	variables	for	the	entire	six-cell	range,

'and	for	each	individual	cell	in	the	six-cell	range.

Dim	RandomRange	As	Range,	RandomCell	As	Range

'Identify	the	six-cell	range	where	the	randomly	selected	numbers	will	be	

listed.

Set	RandomRange	=	Range("A1:A6")

'Before	populating	the	six-cell	list	range,	make	sure	all	its	cells	are	

empty.

RandomRange.Clear

'Open	a	For…Each	loop	to	cycle	through	each	cell	in	range	A1:A6.

For	Each	RandomCell	In	RandomRange

'Open	a	Do…Loop	that	enters	a	unique	random	number	between	1	and	54

Do

RandomCell.Value	=	Int(54	*	Rnd	+	1)

Loop	Until	WorksheetFunction.CountIf(RandomRange,	RandomCell.Value)	=	1

'Iterate	to	the	next	cell	until	all	six	cells	have	been	populated.

Next	RandomCell

End	Sub

Try	It
For	this	lesson,	you	write	a	macro	that	uses	a	For…Next	loop	with	an	Integer	type
variable	that	adds	12	worksheets	to	your	workbook,	names	each	worksheet	by	calendar
month	(“January,”	“February,”	and	so	on),	and	places	the	worksheets'	tabs	in	order	of
calendar	month	from	left	to	right.

Lesson	Requirements
To	get	the	sample	workbook	file	you	can	download	Lesson	10	from	the	book's	website	at
www.wrox.com/go/excelvba24hour.

Hints
In	Step	6,	the	DateSerial	function	requires	three	arguments,	in	the	sequence	of	the	year,
the	month,	and	the	day.	When	the	task	at	hand	is	to	list	the	12	calendar	months,	any	year
number	will	do.	The	day	should	be	a	basic	number	every	month	has,	making	the	number	1
a	good	choice.

This	macro	adds	new	worksheets	with	month	names.	Running	the	macro	again	without
deleting	the	same	worksheets	it	created	would	cause	the	macro	to	error	because	a
workbook	cannot	contain	duplicate	worksheet	names.	Lesson	20	shows	how	to	handle
errors.

Step-by-Step
1.	 Open	a	new	workbook	and	press	Alt+F11	to	go	to	the	Visual	Basic	Editor.

2.	 From	the	menu	bar	at	the	top	of	the	VBE,	select	Insert Module.

3.	 In	the	module	you	just	created,	type	Sub	LoopTwelveMonths	and	press	Enter.	VBA
automatically	places	a	pair	of	empty	parentheses	at	the	end	of	the	Sub	line,	followed
by	an	empty	line,	and	the	End	Sub	line	below	that.	Your	macro	looks	like	this	so	far:

Sub	LoopTwelveMonths	()

End	Sub

4.	 Declare	an	Integer	type	variable	that	iterates	12	times,	one	for	each	month	of	the
year:

Dim	intMonth	As	Integer

5.	 Open	a	For…Next	loop	that	starts	from	1	and	ends	at	12:

For	intMonth	=	1	To	12

6.	 With	a	one-line	command,	you	can	add	each	of	the	12	worksheets	in	turn,	while
placing	their	tabs	one	after	another	from	left	to	right,	and	naming	each	tab	by	calendar
month.	The	DateSerial	function	is	a	good	way	to	cycle	through	month	names	because
it	requires	integer	values	for	the	arguments	of	Year,	Month,	and	Day,	just	like	the	DATE
worksheet	function.	You	can	use	any	year,	and	any	day	that	is	not	a	number	greater
than	28.	For	the	Month	argument,	the	intMonth	variable	is	a	perfect	fit	because	it	was

http://www.wrox.com/go/excelvba24hour

declared	as	an	Integer	type:

Sheets.Add(After:=Sheets(Sheets.Count)).Name	=	_

Format(DateSerial(2011,	intMonth,	1),	"MMMM")

7.	 Enter	the	Next	statement	for	the	intMonth	variable	that	produces	and	names	the	next
month's	worksheet	up	to	and	including	December:

Next	intMonth

8.	 When	completed,	the	macro	looks	like	this,	with	comments	that	have	been	added	to
explain	each	step:

Sub	LoopTwelveMonths()

'Declare	an	Integer	type	variable	to	iterate	twelve	times,

'one	for	each	month	of	the	year.

Dim	intMonth	As	Integer

'Open	a	For…Next	loop	that	starts	from	one	and	ends	at	twelve.

For	intMonth	=	1	To	12

'With	a	one-line	command,	you	can	add	each	of	the	twelve	worksheets	in	

turn,

'while	placing	their	tabs	one	after	another	from	left	to	right.

Sheets.Add(After:=Sheets(Sheets.Count)).Name	=	_

Format(DateSerial(2011,	intMonth,	1),	"MMMM")

'The	Next	statement	for	the	intMonth	variable

'produces	and	names	the	next	month	worksheet.

Next	intMonth

End	Sub

REFERENCE	Please	select	the	video	for	Lesson	10	online	at
www.wrox.com/go/excelvba24hour.	You	will	also	be	able	to	download	the	code	and
resources	for	this	lesson	from	the	website.

http://www.wrox.com/go/excelvba24hour

Lesson	11
Programming	Formulas
Spreadsheets	are	a	popular	choice	for	managing	information	because	mathematical
calculations	and	data	analysis	are,	and	always	will	be,	a	requirement	of	education,
business,	and	personal	record-keeping.	If	there	were	no	need	to	compile	numeric	data	with
formulas,	there'd	be	no	need	for	spreadsheets	as	we	know	them—an	unfathomable	thought
in	our	information-ravenous,	digital	world.

As	you've	seen,	VBA	enables	you	to	programmatically	manipulate	Excel's	objects,
methods,	and	properties.	You	can	interact	with	users	to	make	decisions	and	establish
conditions.	Just	as	importantly,	you	need	to	understand	how	to	program	formulas,	starting
with	how	Excel	regards	locations	of	cells	and	ranges	by	their	row	and	column	references.

Understanding	A1	and	R1C1	References
Most	people	who	use	Excel—most	being	around	99.9	percent—view	Excel	worksheets
with	rows	headed	from	the	top	as	numbers	1,	2,	3	and	continuing	downward,	and	columns
headed	from	the	left	as	letters	A,	B,	C	and	continuing	to	the	right.	The	top-left	cell	address
on	the	Excel	grid	is	commonly	seen	as	cell	A1.	The	cell	immediately	below	A1	is	A2,	the
cell	to	the	right	of	A2	is	B2,	and	so	on.

Behind	the	scenes,	Excel	does	not	refer	to	its	rows	and	columns	in	A1	style;	that	is,	not	in
the	sequence	of	column	letter	and	row	number.	Rather,	Excel	regards	rows	and	columns	as
numbers,	in	R1C1	style,	expressing	a	cell	address	in	the	sequence	of	its	intersecting	row
number	and	column	number.

NOTE	If	you	are	wondering	if	understanding	R1C1	style	is	really	important	enough
to	stay	with	this	lesson,	the	answer	is	yes,	it	really	is	important	enough.	As	concepts
go,	understanding	R1C1	style	gives	you	the	most	bang	for	your	buck	in	terms	of	the
long-term	benefit	you	get	from	spending	the	few	minutes	to	read	this	lesson.	Your	VBA
programming	skills	will	advance	much	faster	and	easier	once	you	get	a	handle	on
R1C1	references.

In	R1C1	style,	“R”	stands	for	row	and	“C”	stands	for	column.	For	example,	cell	D7	is
identified	by	Excel	as	the	address	at	the	intersection	of	row	7	and	column	4	(because
column	D	is	the	fourth	column	from	the	left	on	the	worksheet	grid),	which	Excel	interprets
as	R7C4.	Cell	M92	is	interpreted	as	R92C13,	and	so	on.	As	you	might	guess,	the	R1C1
address	of	cell	A1	is	R1C1.

Getting	Started	with	a	Few	One-Liners
As	you	will	see	on	the	following	pages,	R1C1	cell	references	do	not	always	look	as	clean
as	just	a	number	for	a	row	and	a	number	for	a	column.	The	R1C1	style	uses	a	starting
reference	point,	and	without	one	specified,	assumes	cell	A1	as	the	default	reference.	For
example,	suppose	your	active	cell	is	H22.	To	refer	to	a	cell	3	rows	up	and	5	columns	to	the
right,	which	is	cell	M19,	then	with	cell	H22	as	the	reference	point	(that	is,	as	far	as	cell
H22	is	concerned),	cell	M19	would	be	referred	to	as	=R[-3]C[5].

NOTE	You	can	plug	the	following	four	examples	of	single	code	lines	into	a	macro,	or
you	can	quickly	execute	them	in	the	Immediate	window.	You	may	recall	from	Lesson	3
that	you	can	access	the	Immediate	window	easily	by	pressing	Alt+F11	to	go	to	the
Visual	Basic	Editor,	then	pressing	Ctrl+G	to	enter	the	Immediate	window.	Just	copy
and	paste	any	of	these	single	code	lines	into	the	Immediate	window	and	press	Enter.
To	see	the	results,	press	Alt+Q	to	return	to	the	worksheet.

To	enter	a	formula	programmatically	in	cell	H22	that	shows	the	value	in	cell	M19,	your
line	of	code	would	be	this,	using	a	relative	reference	to	cell	M19:

Range("H22").FormulaR1C1	=	"=R[-3]C[5]"

As	another	example,	if	you	want	the	formula	in	cell	H22	to	return	the	value	in	cell	H26,
which	is	4	rows	greater	than	row	number	22	and	in	the	same	column	H,	that	code	line
would	be	as	follows:

Range("H22").FormulaR1C1	=	"=R[4]C"

If	you	want	the	formula	in	cell	H22	to	return	the	value	in	cell	A22,	which	is	on	the	same
row	but	7	columns	less	than	column	number	8	(Excel	and	VBA	regard	column	H	as
column	8),	that	code	line	would	be:

Range("H22").FormulaR1C1	=	"=RC[-7]"

Finally,	if	you	want	to	enter	a	formula	in	cell	H22,	or	any	cell	for	that	matter,	to	return	the
value	in	cell	F3,	such	that	the	formula's	row	and	column	references	are	absolute	(making
the	formula	look	like	=F3),	this	line	of	code	would	do	that:

Range("H22").FormulaR1C1	=	"=R3C6"

NOTE	You	have	probably	noticed	that	Excel	and	VBA	rarely	regard	cell	addresses	by
column	letter	and	row	number.	It	can	be	a	challenge	at	first	to	stray	from	the	familiar
thought	process	of	referencing	cell	addresses	in	A1	style,	considering	the	alpha
column	headers	and	worksheet	formulas	that	are	almost	always	how	worksheets	are
viewed.	Recall	from	Lesson	8	that	the	Cells	property	refers	to	addresses	in	R1C1
style,	by	their	row	number	and	column	number.	For	example,	the	statement	Cells(5,
2).Select	would	select	cell	B5	of	the	active	worksheet,	which	is	a	syntax	you	have
already	seen.	The	more	you	work	with	VBA,	the	more	you	will	see	how	useful	the
R1C1	style	is,	and	how	limiting	the	A1	style	will	be.

Comparing	the	Interface	of	A1	and	R1C1	Styles
It's	been	said	that	a	picture	is	worth	a	thousand	words.	Take	a	look	at	the	next	several
figures	to	see	worksheets	from	an	R1C1	point	of	view.	The	comparison	figures	help	you	to
see	formulas	and	worksheets	the	way	Excel	and	VBA	sees	them.

NOTE	There's	a	pro-R1C1	tone	to	this	chapter,	but	I'm	not	suggesting	you	change
your	worksheet	viewing	habits	to	the	R1C1	view	if	you've	been	working	in	A1	view.	In
fact,	I	always	work	in	A1	view,	just	as	most	Excel	users	do.	The	goal	in	this	chapter	is
to	explain	what	R1C1	is	and	how	it	works.

Figure	11.1	shows	a	side-by-side	comparison	of	A1	and	R1C1	styles	for	the	same
spreadsheet.	Notice	the	active	cell	address	in	the	name	box,	the	column	headers,	and	the
formula	as	displayed	in	the	formula	bar	vary	between	the	two	styles.

Figure	11.1

Toggling	between	A1	and	R1C1	Style	Views
Occasionally	on	Excel	forums,	or	in	e-mails	I	receive	from	people	who	follow	my	work,
the	question	comes	up	about	how	and	why	their	worksheets	inexplicably	show	column
headers	as	numbers.	The	reason	is	that	someone	unwittingly	changed	the	view	in	that
workbook	from	A1	to	R1C1	style,	and	forgot	how	to	undo	the	mysterious	deed.

NOTE	Your	workbook	doesn't	need	to	be	in	R1C1	style	to	use	.FormulaR1C1	in	your
code.	This	is	just	an	exercise	to	show	how	to	get	in	and	out	of	R1C1	style,	and	what
that	style	looks	like.

Here's	how	to	toggle	between	the	two	views.	Start	by	clicking	the	File	tab	so	that	you	go
to	the	backstage	view.	Click	the	Options	item	on	the	vertical	menu,	as	shown	in	Figure
11.2	when	using	Excel	version	2013.

Figure	11.2

In	the	Excel	Options	dialog	box,	click	the	Formulas	item	in	the	menu	pane	at	the	left.
Select	the	check	box	for	R1C1	Reference	Style	in	the	Working	with	Formulas	section,	and
click	OK,	as	shown	in	Figure	11.3.

Figure	11.3

If	you	are	using	Excel	2003,	click	the	Tools	item	on	the	menu	bar,	and	select	Options,	as
shown	in	Figure	11.4.	In	the	Options	dialog	box,	click	the	General	tab,	select	R1C1
Reference	Style	in	the	Settings	section,	and	click	OK,	as	shown	in	Figure	11.5.

Figure	11.4

Figure	11.5

Here's	another	comparison	of	the	two	styles	side	by	side.	Figure	11.6	shows	an	example	of
an	absolute	reference	formula	in	cell	B10	(or	if	you	prefer,	in	cell	R10C2).	To	return	to	A1

style,	simply	repeat	the	preceding	steps	and	deselect	the	option	for	R1C1	Reference	Style.

Figure	11.6

Programming	Your	Formula	Solutions	with	VBA
The	following	examples	can	give	you	some	insight	for	designing	formulas	in	macros	to
solve	common	situations.	With	VBA	you	can	include	variable	names	and	named	ranges	in
your	formulas,	providing	creative	ways	to	get	your	work	done.

NOTE	If	and	when	you	use	the	Macro	Recorder	to	produce	formulas	to	plug	into
your	macros,	you'll	notice	that	formulas	are	recorded	in	R1C1	style,	in	whichever
style	you	are	in.

Using	a	Mixed	Reference	to	Fill	Empty	Cells	with	the	Value	from
Above
Figure	11.7	shows	a	before-and-after	look	at	how	you	can	use	a	mixed	reference	formula
(as	shown	in	the	following	snippet)	to	fill	empty	cells	with	the	preceding	constant	value.
Using	the	SpecialCells	property,	the	same	formula	is	entered	into	every	blank	cell	in
column	A	that	is	associated	with	the	list:

Sub	FillBlankCellsFromAbove()

Application.ScreenUpdating	=	False

With	Columns(1)

.SpecialCells(xlCellTypeBlanks).Formula	=	"=R[-1]C"

'Convert	formulas	into	static	values.

.Value	=	.Value

End	With

Application.ScreenUpdating	=	True

End	Sub

Figure	11.7

NOTE	With	Columns(1)	refers	to	column	A.	If	you	were	working	with	column	H,	you
would	have	written	the	code	as	With	Columns(8).

Using	a	Named	Range	with	Relative,	Mixed,	and	Absolute
References
This	example	shows	how	to	deal	with	several	issues	you	might	encounter.	In	11.8,	a
payroll	worksheet	needs	a	conditional	formula	in	range	D5:D12	to	calculate	the	weekly
salaries	for	each	employee.	Eligibility	for	overtime	pay	is	based	on	the	criteria	of	40
maximum	regular	hours	in	cell	B1.	The	overtime	multiplication	factor	in	cell	B2	is	the
named	range	OvertimeFactor,	which	is	multiplied	for	each	hour	past	the	40-hour	ceiling.

Figure	11.8

The	formula	in	cell	D5	and	copied	to	cell	D12	is	=IF(B5<=B1,B5*C5,SUM((B5-B1)
*OvertimeFactor,B1)*C5),	which	you	can	see	in	the	formula	bar	in	Figure	11.9.	In	the
following	macro,	notice	the	syntax	for	relative,	mixed,	and	absolute	references,	along	with
the	inclusion	of	a	named	range,	the	If	statement,	and	a	nested	SUM	function:

Sub	CalculateSalary()

Range("D5:D12").FormulaR1C1	=	_

"=IF(RC[-2]<=R1C2,RC[-2]*RC[-1],SUM((RC[-2]-

R1C2)*OvertimeFactor,R1C2)*RC[-1])"

End	Sub

Figure	11.9

Programming	an	Array	Formula
As	you	know,	when	you	compose	an	array	formula	manually,	you	must	commit	it	to	a
worksheet	cell	by	pressing	the	Ctrl+Shift+Enter	keys,	not	just	the	Enter	key.	Similarly,
when	you	want	to	install	an	array	formula	programmatically,	you	must	use	the
FormulaArray	method,	not	just	the	Formula	or	Formula	R1C1	methods.	The	FormulaArray
method	is	VBA's	way	of	differentiating	between	an	array	and	a	non-array	formula.

In	Figure	11.10,	array	formulas	are	entered	into	destination	cells	B19,	B20,	and	B21	with
the	following	macro	that	averages	scores	for	each	of	three	lanes	at	a	bowling	alley.	For	a
bit	of	variety	to	show	an	alternative	cell	reference	syntax,	I	looped	through	each	of	the
three	destination	cells	(where	the	array	formulas	will	go)	using	the	Range	statement	that
shows	column	letter	B	followed	by	the	row	numbers	represented	by	a	Long	type	variable
named	lngRow:

Sub	AverageBowlingScores()

Dim	lngRow	As	Long

For	lngRow	=	19	To	21

Range("B"	&	lngRow).FormulaArray	=	_

"=AVERAGE(IF(R4C1:R16C1=RC[-1],R4C3:R16C6))"

Next	lngRow

End	Sub

Figure	11.10

WARNING	When	you	have	a	lot	of	formulas	on	a	worksheet	for	which	you	want	to
convert	all	cell	and	range	references	from	relative	to	absolute,	this	macro	can	do	the
job:

Sub	ConvertRelativeToAbsolute()

Dim	cell	As	Range,	strFormulaOld	As	String,	strFormulaNew	As	String

For	Each	cell	In	Cells.SpecialCells(xlCellTypeFormulas)

strFormulaOld	=	cell.Formula

strFormulaNew	=	_

Application.ConvertFormula	_

(Formula:=strFormulaOld,	fromReferenceStyle:=xlA1,	_

toReferenceStyle:=xlA1,	toAbsolute:=xlAbsolute)

cell.Formula	=	strFormulaNew

Next	cell

End	Sub

And	here's	how	you	can	convert	absolute	reference	formulas	to	relative	references	on
a	worksheet:

Sub	ConvertAbsoluteToRelative()

Dim	cell	As	Range,	strFormulaOld	As	String,	strFormulaNew	As	String

For	Each	cell	In	Cells.SpecialCells(xlCellTypeFormulas)

strFormulaOld	=	cell.Formula

strFormulaNew	=	_

Application.ConvertFormula	_

(Formula:=strFormulaOld,	fromReferenceStyle:=xlA1,	_

toReferenceStyle:=xlA1,	toAbsolute:=xlAbsolute)

cell.Formula	=	WorksheetFunction.Substitute(strFormulaNew,	"$",	"")

Next	cell

End	Sub

NOTE	Here's	a	quick	way	to	count	your	workbook's	formulas,	and	show	the	total
count	in	a	message	box	subtotaled	by	worksheet	name.	The	statements	On	Error
Resume	Next,	Err.Number,	and	Err.Clear	help	to	bypass	potential	stoppages	of	the
macro,	known	as	runtime	errors,	if	(in	this	example)	a	worksheet	does	not	contain	any
formulas.	In	Lesson	20,	you	become	familiar	with	these	and	other	error-related	terms,
along	with	techniques	for	handling	errors	in	your	code.

Sub	CountFormulas()

Dim	SheetFormulaCount	As	Long,	TotalFormulaCount	As	Long

Dim	myList	As	String,	WS	As	Worksheet

SheetFormulaCount	=	0:	TotalFormulaCount	=	0:	myList	=	""

For	Each	WS	In	Worksheets

'optional	if	your	sheets	are	protected

'WS.Unprotect	("YourPassword")

On	Error	Resume	Next

SheetFormulaCount	=	WS.Cells.SpecialCells(xlCellTypeFormulas).Count

If	Err.Number	<>	0	Then

Err.Clear

SheetFormulaCount	=	0

End	If

TotalFormulaCount	=	TotalFormulaCount	+	SheetFormulaCount

myList	=	myList	&	"Formula	count	in	''"	&	WS.Name	&	"'':	"	&	_

Format(SheetFormulaCount,	"#,##0")	&	vbCrLf

'optional	reprotect	your	sheets

'WS.Protect	("YourPassword")

Next	WS

MsgBox	myList	&	vbCrLf	&	"Total	formulas	in	"	&	_

ThisWorkbook.Name	&	":	"	&	_

Format(TotalFormulaCount,	"#,##0"),	,	"Workbook	formula	count"

End	Sub

Summing	Lists	of	Different	Sizes	along	a	Single	Row
In	Figure	11.11,	a	table	has	several	columns,	each	containing	a	varying	count	of	numeric
entries	needing	to	be	summed.	When	you	want	to	show	the	sums	of	each	column	along	a
single	row,	you	first	need	to	identify	the	last	used	row	among	all	the	columns,	and	install
your	sum	formulas	in	the	next	row	below	that.	The	idea	is	to	place	the	sums	for	each
column	in	the	first	available	row	that	has	no	data	in	any	column.

Figure	11.11

In	Figure	11.11,	the	last	used	row	is	13	because	column	C	contains	entries	that	extend	to
cell	C13.	Tomorrow,	you	might	get	a	similar	table,	maybe	with	more	columns,	where	the
last	used	row	will	be	128	in	column	K.	This	is	where	VBA	really	shines	when	you
program	formulas	in	R1C1	style	when	dealing	with	dynamic	ranges.	No	matter	how	many
columns	the	table	has,	or	which	column	has	the	most	entries,	the	following	macro	named
SumAlongOneRow	sums	each	column's	numbers	along	the	first	unused	row.	The	result	is
shown	in	Figure	11.12.

Sub	SumAlongOneRow()

'Declare	and	define	a	Long	type	variable	for	the	next	available	row

'where	all	the	SUM	formulas	will	go.

Dim	NextRow	As	Long

NextRow	=	_

Cells.Find(What:="*",	After:=Range("A1"),	_

SearchOrder:=xlByRows,	SearchDirection:=xlPrevious).Row	+	1

'Declare	and	define	a	Long	type	variable	to	identify	the	last	column

'in	the	used	range.

Dim	LastColumn	As	Long

LastColumn	=	_

Cells.Find(What:="*",	After:=Range("A1"),	_

SearchOrder:=xlByColumns,	SearchDirection:=xlPrevious).Column

'The	used	range	starts	in	column	A	which	is	Column	1	in	VBA.

'The	sales	numbers	in	the	table	start	on	row	4.

'Therefore,	sum	the	numbers	with	a	formula	that	starts	at

'row	4	and	ends	at	the	last	used	row,	which	is	one	row	above

'(numerically	1	less	than)	the	last	used	row.

Range(Cells(NextRow,	1),	Cells(NextRow,	LastColumn)).FormulaR1C1	_

=	"=SUM(R4C:R"	&	NextRow	-	1	&	"C)"

End	Sub

Figure	11.12

NOTE	You	probably	know	that	the	RAND	worksheet	function	enters	a	random
number	in	a	cell.	RAND	is	among	a	group	of	functions	called	volatile	functions.
Volatile	functions	recalculate	whenever	another	cell	in	the	workbook	is	changed,	or
some	event	takes	place	such	as	opening	the	workbook.	You	might	want	to	enter	a
random	number	and	keep	it	static—that	is,	for	the	random	number	to	not	change
unless	you	want	to	change	it	again,	if	ever.	You	can	enter	a	static	random	number
using	the	following	line	of	code,	executable	in	the	Immediate	window	or	as	part	of	a
macro.	This	is	an	example	of	how	to	enter	a	static	random	number	between	1	and	100
in	cell	A1.	Notice	that	a	value,	not	actually	a	formula,	is	being	entered:

Range("A1").Value	=	Format(Rnd()	*	99	+	1,	"000")

Try	It
For	this	lesson,	you	install	formulas	to	sum	the	numbers	in	each	column	of	a	sales	report
table.	Each	column	has	a	varying	count	of	entries,	and	you	want	the	sum	formulas	to	be
placed	in	the	first	empty	cell	below	each	column's	last	numeric	entry.

Lesson	Requirements
To	get	the	sample	workbook,	you	can	download	Lesson	11	from	the	book's	website	at
www.wrox.com/go/excelvba24hour.

Step-by-Step
1.	 In	your	Excel	workbook,	press	Alt+F11	to	go	to	the	Visual	Basic	Editor.

2.	 From	the	VBE	menu	bar,	click	Insert	 	Module.

3.	 In	the	new	module,	type	the	name	of	your	macro:	SumEachColumnNextRow.	Press	Enter,
and	VBA	automatically	places	a	pair	of	parentheses	after	the	macro	name,	followed	by
an	empty	line,	followed	by	the	End	Sub	statement.	Your	code	looks	as	follows:

Sub	SumEachColumnNextRow	()

End	Sub

4.	 Declare	a	Long	type	variable	to	identify	the	last	column	in	the	used	range,	a	Long	type
variable	for	the	last	row	of	numbers	present	in	each	column	(below	which	each
column's	SUM	formula	will	go),	and	a	Long	type	variable	for	the	column	numbers	that
will	be	looped	through:

Dim	LastColumn	As	Long,	lngColumn	As	Long,	LastRow	As	Long

5.	 Use	the	LastColumn	variable	inside	a	loop	at	each	iteration:

LastColumn	=	Cells.Find(What:="*",	After:=Range("A1"),	_

SearchOrder:=xlByColumns,	SearchDirection:=xlPrevious).Column

6.	 Loop	through	each	column	in	the	used	range.	The	used	range	starts	in	column	A,
which	VBA	sees	as	column	number	1.	Loop	through	each	column	and	install	the
formula	in	the	first	unused	row.	While	you're	at	it,	bold	those	sum	formula	cells	to
make	them	easier	to	see:

For	lngColumn	=	1	To	LastColumn

LastRow	=	Cells(Rows.Count,	lngColumn).End(xlUp).Row

With	Cells(LastRow	+	1,	lngColumn)

.FormulaR1C1	=	"=SUM(R4C:R"	&	LastRow	&	"C)"

.Font.Bold	=	True

End	With

Next	lngColumn

7.	 Press	Alt+Q	to	return	to	the	worksheet	and	test	your	macro.	After	you	run	the	macro,
the	result	looks	like	Figure	11.13.	Here's	the	macro	named	SumEachColumnNextRow	in
its	entirety:

http://www.wrox.com/go/excelvba24hour

Sub	SumEachColumnNextRow()

'Declare	a	Long	type	variable	to	identify	the	last	column

'in	the	used	range.

'Declare	a	Long	type	variable	for	the	last	row	of	numbers	present

'in	each	column,	below	which	each	column's	SUM	formula	will	go.

'Declare	a	Long	type	variable	for	the	column	numbers	that

'will	be	looped	through.

Dim	LastColumn	As	Long,	lngColumn	As	Long,	LastRow	As	Long

'You	will	use	this	variable	in	a	loop	at	each	iteration.

LastColumn	=	_

Cells.Find(What:="*",	After:=Range("A1"),	_

SearchOrder:=xlByColumns,	SearchDirection:=xlPrevious).Column

'Loop	through	each	column	in	the	used	range.

'The	used	range	starts	in	column	A	which	is	Column	1	in	VBA.

'Loop	through	each	column	and	install	the	formula	in	the	first

'unused	row.	While	we	are	at	it,	bold	those	sum	formula	cells

'to	make	them	easier	to	see.

For	lngColumn	=	1	To	LastColumn

LastRow	=	Cells(Rows.Count,	lngColumn).End(xlUp).Row

With	Cells(LastRow	+	1,	lngColumn)

.FormulaR1C1	=	"=SUM(R4C:R"	&	LastRow	&	"C)"

.Font.Bold	=	True

End	With

Next	lngColumn

End	Sub

Figure	11.13

REFERENCE	Please	select	the	videos	for	Lesson	11	online	at
www.wrox.com/go/excelvba24hour.	You	will	also	be	able	to	download	the	code	and
resources	for	this	lesson	from	the	website.

http://www.wrox.com/go/excelvba24hour

Lesson	12
Working	with	Arrays
This	lesson	introduces	you	to	arrays	in	VBA.	As	you	will	see,	arrays	are	a	very	useful	way
to	programmatically	group	and	store	many	items	of	related	data.	After	you've	collected
your	array	of	data	items,	you	can	access	any	of	the	items	individually,	or	access	the	group
as	a	whole.	Arrays	can	help	you	accomplish	various	tasks	in	a	logical	and	efficient
manner,	which	is	important	to	remember	when	you	find	yourself	faced	with	some	tasks	for
which	arrays	are	the	only	alternative.

What	is	an	Array?
An	array	is	like	a	variable	on	steroids.	In	addition	to	being	a	variable,	an	array	also	serves
as	a	holding	container	for	a	group	of	individual	values,	called	elements,	that	are	of	the
same	data	type.	You	can	populate	the	array	yourself	by	specifying	the	known	elements	in
your	macro,	or	you	can	let	VBA	populate	the	array	during	the	course	of	the	macro	if	you
don't	know	how	many	elements	the	array	will	end	up	containing.

The	concept	of	arrays	can	be	challenging	to	grasp	at	first,	so	a	real-world	analogy	might
help.	Suppose	you	are	a	fan	of	classic	movies,	and	you	keep	a	library	at	home	of	perhaps
100	movies.	Among	those	100	movies	are	5	that	are	your	favorite	classics.	You	can
declare	a	variable	named	myFavoriteMovies,	and	create	a	String	array	with	this	macro:

Sub	FavoriteMovies()

Dim	myFavoriteMovies(1	to	5)	as	String

myFavoriteMovies	(1)	=	"Gone	With	The	Wind"

myFavoriteMovies	(2)	=	"Casablanca"

myFavoriteMovies	(3)	=	"Citizen	Kane"

myFavoriteMovies	(4)	=	"Sunset	Boulevard"

myFavoriteMovies	(5)	=	"Modern	Times"

MsgBox	myFavoriteMovies(3)

End	Sub

Elements	in	an	array	are	variables,	and	you	can	refer	to	a	specific	element	by	its	index
number	inside	the	array.	Because	the	array	name	is	myFavoriteMovies,	and	the	message
box	is	referring	to	the	third	element	in	that	array,	when	you	run	this	macro,	the	message
box	displays	Citizen	Kane.

You	have	created	an	array	that	is	a	collection	of	your	favorite	classic	movies.	You	can	loop
through	each	element	in	that	collection—that	is,	each	movie	title—by	referring	to	its	index
number	inside	the	myFavoriteMovies	array.	The	following	macro	shows	how	to	display
each	movie	title	element	in	a	message	box:

Sub	FavoriteMoviesLoop()

Dim	myFavoriteMovies(1	To	5)	As	String

Dim	intCounter	As	Integer

myFavoriteMovies(1)	=	"Gone	With	The	Wind"

myFavoriteMovies(2)	=	"Casablanca"

myFavoriteMovies(3)	=	"Citizen	Kane"

myFavoriteMovies(4)	=	"Sunset	Boulevard"

myFavoriteMovies(5)	=	"Modern	Times"

For	intCounter	=	1	To	5

MsgBox	myFavoriteMovies(intCounter),	,	"Favorite	#"	&	intCounter

Next	intCounter

End	Sub

If	you	would	like	to	populate	a	range	of	cells	with	the	elements	of	your	array,	the
following	macro	demonstrates	how	to	do	that,	listing	the	movie	titles	in	range	A1:A5:

Sub	FavoriteMoviesRange()

Dim	myFavoriteMovies(1	To	5)	As	String

Dim	intCounter	As	Integer

myFavoriteMovies(1)	=	"Gone	With	The	Wind"

myFavoriteMovies(2)	=	"Casablanca"

myFavoriteMovies(3)	=	"Citizen	Kane"

myFavoriteMovies(4)	=	"Sunset	Boulevard"

myFavoriteMovies(5)	=	"Modern	Times"

For	intCounter	=	1	To	5

Cells(intCounter,	1).Value	=	myFavoriteMovies(intCounter)

Next	intCounter

End	Sub

VBA	regards	the	array	itself	as	one	variable,	but	inside	the	array	is	a	group	of	two	or	more
elements	that	you	can	work	with	separately.	You	can,	and	often	will,	refer	to	each	element
by	its	index	number,	which	is	its	position	in	the	array.	This	way,	you	can	pick	a	particular
element	in	the	array	to	work	with	based	on	its	index	number,	or	you	can	loop	through	all
the	index	numbers	one	after	the	other,	in	case	your	project	calls	for	every	element	to	be
worked	on.

What	Arrays	Can	Do	for	You
Arrays	are	often	used	for	representing	data	in	lists	or	tables,	where	each	item	in	the	list	is
of	the	same	data	type.	Some	examples	might	be	a	list	of	your	friends'	names,	all	of	which
would	be	String	data	types,	or	a	table	of	your	city's	average	daily	temperatures	by	month,
all	of	which	might	be	Double	data	types.	Arrays	offer	you	the	versatility	of	storing	and
manipulating	data	items	through	one	array	variable,	which	is	much	more	efficient	than
assigning	variables	to	every	element	in	the	array.

Say	you	want	to	count	how	many	Excel	workbook	filenames	reside	in	a	particular	folder.
You	don't	know	how	many	total	files	are	in	that	folder,	or	how	many	of	those	total	files	are
Excel	files.	With	an	array	doing	the	job,	you	don't	need	any	worksheet	cells	to	store	the
filenames.	Instead,	you	can	programmatically	compile	into	memory	the	count	of	Excel
files,	and	the	individual	filenames	too,	all	of	which	you	can	retrieve	later	in	your	macro	if
need	be.

The	previous	arrays	of	movie	titles	are	an	example	of	one-dimensional	arrays.	In	the
macro	named	FavoriteMoviesRange,	the	five	movies	were	listed	in	range	A1:A5.	VBA
regards	this	as	a	one-dimensional	array	because	the	array	elements	stand	by	themselves	in
a	table	that	is	five	rows	deep	and	one	column	wide.

Many	arrays	you	deal	with	will	have	more	than	one	dimension.	Figure	12.1	expands	on
this	list	of	classic	movies	by	adding	a	second	column	that	lists	the	year	each	movie	was
released.	This	table	is	composed	of	five	rows	and	two	columns.	You	can	create	a	two-
dimensional	String	array	by	associating	the	movie	title	elements	with	their	respective
year	of	release	elements.

Figure	12.1

The	first	item	of	business	is	to	declare	a	String	type	variable	for	the	array.	The	size	of	the
array	is	specified	with	the	variable,	to	include	the	span	of	rows	and	columns	that	make	up
the	array.	For	example,	with	five	rows	and	two	columns,	a	variable	named	Classics	is
declared	with	the	statement	Dim	Classics(1	To	5,	1	To	2)	As	String.	The	following
macro	loops	through	rows	1	to	5	in	column	A	and	rows	1	to	5	in	column	B.	Each	value	in
the	array	is	stored	in	memory	with	two	Integer	type	variables	for	collecting	row	and
column	data.	Based	on	Figure	12.1,	the	message	box	returns	1941	because	Classics(3,
2)	returns	the	string	value	of	the	element	that	occupies	the	location	of	the	array's	third	row
and	second	column:

Sub	TwoDimensionalArray()

Dim	Classics(1	To	5,	1	To	2)	As	String

Dim	intRow	As	Integer,	intColumn	As	Integer

For	intRow	=	1	To	5

For	intColumn	=	1	To	2

Classics(intRow,	intColumn)	=	Cells(intRow,	intColumn).Value

Next	intColumn

Next	intRow

MsgBox	Classics(3,	2)

End	Sub

Declaring	Arrays
You	declare	an	array	the	same	way	you	typically	declare	variables.	The	variable
declaration	starts	with	the	Dim	statement,	followed	by	the	array	name	and	the	data	type.
The	array	name	ends	with	a	pair	of	parentheses	to	indicate	that	it's	an	array	with	the	count
of	elements,	if	known,	placed	inside	the	parentheses.

For	example,	the	following	statement	declares	an	array	named	myDays,	which	is	populated
with	all	seven	days	of	the	week.	Notice	the	data	type	is	String,	because	weekday	names
are	text	values,	such	as	“Sunday,”	Monday,”	and	so	on:

Dim	myDays(6)	As	String

You	can	also	declare	arrays	using	the	Public,	Private,	and	Static	keywords,	just	as	you
can	with	other	variables,	with	the	same	results	in	terms	of	scope	and	visibility.

To	declare	an	array	as	Public,	place	a	statement	at	the	top	of	your	module.	With	the
Public	declaration	at	the	top	of	your	module,	you	can	share	an	array	across	procedures.
For	example,	if	you	run	either	of	the	following	two	macros,	the	array	elements	of	Hello
and	Goodbye	will	be	displayed	in	a	message	box:

Public	MyArray(1)	As	String

Sub	PublicArrayExample()

'Fill	the	array	MyArray	with	values.

MyArray(0)	=	"Hello"

MyArray(1)	=	"Goodbye"

'Run	the	TestPublicArrayExample	macro	to	display	MyArray.

Run	"TestPublicArrayExample"

End	Sub

Sub	TestPublicArrayExample()

'Display	the	values	contained	in	the	array	MyArray.

Dim	i	As	Integer

For	i	=	0	To	UBound(MyArray,	1)

MsgBox	MyArray(i)

Next	i

End	Sub

NOTE	You	may	have	noticed	the	UBound	statement	in	the	preceding	macro.	You	read
more	about	upper	and	lower	boundaries	in	the	upcoming	section	named	“Boundaries
in	Arrays.”

A	Static	array	is	an	array	that	is	sized	in	the	declaration	statement.	For	example,	the
following	declaration	statement	declares	an	Integer	array	that	has	11	rows	and	11
columns:

Dim	MyArray(10,	10)	as	Integer

The	Option	Base	Statement
When	learning	arrays,	it's	common	for	some	head-scratching	and	confusion	to	accompany
the	concept	of	zero-based	numbering.	In	the	declaration	statement	Dim	myDays(6)	As
String,	you	might	wonder	why	the	array	shows	the	number	6	in	parentheses,	when	there
are	seven	days	in	a	week.

In	zero-based	numbering,	the	first	element	of	any	array	is	represented	by	the	default
number	of	0.	The	second	element	is	represented	by	the	number	1,	and	so	on.	That	is	why
an	array	of	seven	weekday	elements	is	represented	by	the	number	6	in	the	statement	Dim
myDays(6)	As	String.

VBA	does	provide	a	way	for	specifying	that	the	first	element	of	the	array	be	number	1,
which	is	more	intuitive	for	most	people.	You	can	do	this	by	placing	the	statement	Option
Base	1	at	the	top	of	the	module.

NOTE	Most	advanced-level	VBA	programmers	exclusively	use	the	default	zero-based
numbering	style.	I	recommend	that	you	resist	the	temptation	to	go	the	Option	Base	1
route	in	your	learning	progression.	Sooner	or	later,	you	will	inherit	array	code	that
will	be	zero-based,	and	you'll	be	glad	you	became	accustomed	to	that	popular	style
from	the	get-go.

Here's	a	visual	look	at	zero-based	numbering	in	action.	Figure	12.2	shows	five	text
elements	that	you	might	manually	place	into	an	array	macro.

Figure	12.2

Note	the	element	index	numbers	starting	with	the	default	of	0.	In	the	following	macro,	the
array	named	FamilyArray	is	populated	in	the	order	of	the	pictured	elements.	Further,	a
variable	named	FamilyMember	is	assigned	the	element	2	item,	which	is	actually	the	third
item	in	the	list	of	names	because	the	list	starts	at	number	0.	Therefore,	when	the	MsgBox
FamilyMember	command	is	executed,	Tom	is	displayed	in	the	message	box	because	Tom
occupies	the	element	2	position	in	the	array	named	FamilyArray:

Sub	ArrayTest()

Dim	FamilyArray()	As	Variant

Dim	FamilyMember	As	String

FamilyArray	=	Array("Bill",	"Bob",	"Tom",	"Mike",	"Jim")

FamilyMember	=	FamilyArray(2)

MsgBox	FamilyMember

End	Sub

To	test	this	concept	a	bit	further,	enter	the	statement	Option	Base	1	at	the	very	top	of	the
module.	When	you	run	the	ArrayTest	macro	again,	you	see	that	FamilyArray(2)	returns
Bob,	because	the	array	elements	were	counted	starting	at	base	number	1.

NOTE	It's	a	fair	question	to	ask	why	VBA	uses	zero-based	numbering	in	the	first
place.	Most	other	programming	languages	use	zero-based	numbering	for	their	arrays
because	of	the	way	arrays	are	stored	in	memory.	The	topic	is	rather	complicated,	but
in	simple	English,	the	subscript	(the	numbers	in	the	parentheses	following	the	array's
variable	name)	refers	to	an	offset	position	in	memory	from	the	array's	starting
position.	Therefore,	the	first	element	has	a	starting	position	of	1,	but	the	array's
subscript	is	translated	into	the	offset	memory	address	of	0.	The	second	element	is
offset	at	1,	and	so	on.

Boundaries	in	Arrays
Arrays	have	two	boundaries:	a	lower	boundary,	which	is	the	position	of	the	first	data
element,	and	an	upper	boundary	representing	the	count	of	elements	in	the	array.	VBA
keeps	track	of	both	boundaries'	values	automatically,	with	the	LBound	and	UBound
functions.

NOTE	When	you	declare	an	array,	you	can	specify	only	the	upper	index	boundary.	In
the	example,	you	have	Dim	myDays(6)	As	String	but	it	could	have	been	written	as
Dim	myDays(0	to	6)	As	String.	The	0	to	does	not	need	to	be	present	because	the
lower	index	boundary	is	always	assumed	to	be	0	(or	1	if	Option	Base	1	has	been
stated	at	the	top	of	the	module).	Under	the	default	setting	of	Option	Base	0,	the
number	you	include	in	the	declaration	(which	was	6	in	this	example)	is	the	upper
index	number	of	the	array,	not	the	actual	number	of	elements.

Here	is	an	example	to	demonstrate	the	LBound	and	UBound	functions	in	practice.	In	this
example,	you	fill	an	array	with	a	number	of	cell	addresses,	and	the	macro	enters	the	word
Hello	in	that	array	of	cell	ranges:

Sub	ArraySheets()

'Declare	your	variables

Dim	sheetName	As	Variant,	i	As	Integer,	TargetCell	as	Variant

'Populate	the	array	yourself	with	the	known	cell	addresses.

TargetCell	=	Array("A1",	"B5",	"B7",	"C1",	"C12",	"D13",	"A12")

'Loop	from	the	lower	boundary	(the	first	array	element)

'to	the	upper	boundary	(last	element)	of	your	sheetName	array.

For	i	=	LBound(TargetCell)	To	UBound(TargetCell)

Range(TargetCell(i)).Value	=	"Hello"

'Continue	looping	through	the	array	elements	to	completion.

Next	i

'End	the	macro.

End	Sub

Declaring	Arrays	with	Fixed	Elements
Early	in	this	lesson	you	saw	this	array	declaration:

Dim	myDays(6)	As	String

The	ultimate	objective	of	that	declaration	was	to	build	an	array	containing	the	seven	days
of	the	week	and	to	transfer	that	list	into	range	A1:A7,	as	shown	in	Figure	12.3.

Figure	12.3

The	macro	to	do	that	could	look	like	the	following	one	named	ArrayWeekdays.
Characteristics	of	a	fixed	array	include	a	set	of	elements	that	remain	constant,	such	as	days
of	the	week,	where	there	will	always	be	seven	and	their	names	will	never	change.	The
WEEKDAY	function	returns	an	integer	from	1	to	7	that	represents	a	day	of	the	week.	For
example,	1	represents	Sunday,	2	represents	Monday,	and	so	on.	If	you	enter	the	function
=WEEKDAY(5)	in	a	cell,	and	custom	format	the	cell	as	DDDD,	the	cell	displays	Thursday.

The	comments	in	the	code	explain	what	is	happening,	and	why:

Sub	ArrayWeekdays()

'Declare	the	array	variable	for	seven	elements	(from	0	to	6).

Dim	myDays(6)	As	String

'Declare	an	Integer	type	variable	to	handle	the	seven	indexed	elements.

Dim	intDay	As	Integer

'Start	to	loop	through	each	array	element	starting	at	the	default	0	lower	

boundary.

For	intDay	=	0	To	6

'For	each	array	element,	define	the	myDays	String	variable

'with	its	corresponding	day	of	the	week.

'There	is	no	such	thing	as	"Weekday	0",	because	Excel's	Weekday	function

'is	numbered	from	1	to	7,so	the	"+	1"	notation	adds	1	to	the	intDays	

Integer

'variable	which	started	at	the	lower	bound	of	0.

myDays(intDay)	=	Format(Weekday(intDay	+	1),	"DDDD")

'Cells	in	range	A1:A7	are	populated	in	turn	with	the	weekday.

Range("A"	&	intDay	+	1).Value	=	myDays(intDay)

'The	loop	is	continued	through	to	conclusion.

Next	intDay

'End	of	the	macro.

End	Sub

Declaring	Dynamic	Arrays	with	Redim	and	Preserve
Unlike	an	array	with	a	known	fixed	set	of	elements,	some	arrays	are	built
programmatically	during	the	macro.	These	arrays	are	called	dynamic.	Earlier	you	read
about	populating	an	array	with	the	count	of	Excel	workbook	files	that	exist	in	a	folder.	In
that	case	you'd	have	a	dynamic	array	because	the	file	count	is	subject	to	change;	you
would	not	know	ahead	of	time	what	the	array's	size	will	be.	With	a	dynamic	array,	you	can
create	an	array	that	is	as	large	or	as	small	as	you	need	to	make	it.

To	attack	that	problem	of	an	unknown	count	of	elements,	you	can	change	the	size	of	an
array	on	the	fly	with	a	pair	of	keywords	called	ReDim	and	Preserve.	The	ReDim	statement
is	short	for	redimension,	a	fancy	term	for	resizing	the	array.	When	ReDim	is	used	by	itself
to	place	an	element	in	the	array,	it	releases	whatever	data	was	in	the	array	at	the	time,	and
simply	adds	the	element	to	a	new	empty	array.

The	Preserve	statement	is	necessary	to	keep	(preserve)	the	data	that	was	in	the	array,	and
have	the	incoming	element	be	added	to	the	existing	data.	In	VBA	terms,	ReDim	Preserve
raises	the	array's	upper	boundary,	while	keeping	the	array	elements	you've	accumulated.

The	following	macro	named	SelectedWorksheets	demonstrates	ReDim	Preserve	in
action.	The	purpose	of	the	array	in	this	example	is	to	collect	the	names	of	all	worksheets
that	are	concurrently	selected,	such	as	when	you	press	the	Ctrl	key	and	select	a	few
worksheet	tabs.

The	comments	in	the	code	explain	what	each	line	of	code	is	doing,	so	you	can	get	a	feel
for	how	to	populate	a	dynamic	array	and	display	its	elements	(the	worksheet	names)	in	a
message	box:

Sub	SelectedWorksheets()

'Declare	the	array	variable	for	an	unknown	count	of	elements.

Dim	WhatSelected()	As	Variant

'Declare	a	variable	for	the	Worksheet	data	type.

Dim	wks	As	Worksheet

'Declare	an	Integer	variable	to	handle	the	unknown	count	of	selected	

worksheets.

Dim	intSheet	As	Integer

'Start	to	loop	through	each	selected	worksheet.

For	Each	wks	In	ActiveWindow.SelectedSheets

'An	index	array	element	is	assigned	to	each	selected	worksheet.

intSheet	=	intSheet	+	1

'This	macro	is	building	an	array	as	each	selected	worksheet	is	encountered.

'The	Redim	statement	adds	the	newest	selected	worksheet	to	the	growing	

array.

'The	Preserve	statement	keeps	(preserves)	the	existing	array	data,

'allowing	the	array	to	be	resized	with	the	addition	of	the	next	element.

ReDim	Preserve	WhatSelected(intSheet)

'The	corresponding	worksheet's	tab	name	is	identified	with	each	selected	

sheet,

'and	placed	in	the	"WhatSelected"	array	for	later	retrieval.

WhatSelected(intSheet)	=	wks.Name

'The	loop	is	continued	to	completion.

Next	wks

'Looping	through	each	element	in	the	"WhatSelected"	array	that	was	just	

built,

'a	message	box	displays	the	name	of	each	corresponding	selected	worksheet.

For	intSheet	=	1	To	UBound(WhatSelected)

MsgBox	WhatSelected(intSheet)

Next	intSheet

'End	of	the	macro.

End	Sub

Try	It
In	this	lesson	you	verify	whether	a	certain	string	element	is	part	of	an	array.	You	test	if	a
certain	string	element	is	in	an	array.	At	the	end	of	the	macro,	you	show	a	message	box	to
confirm	that	the	string	element	either	was	or	was	not	found	to	exist	in	the	array.

Like	the	example	earlier	in	this	lesson,	say	you	have	this	list	of	names:

Bill

Bob

Tom

Mike

Jim

Now,	say	you	want	to	test	whether	a	certain	string	element	is	in	that	array,	which	in	this
example	you	enter	into	a	worksheet	cell.	Enter	a	good-looking	name	like	Tom	into	cell	A1
of	Sheet1.	Put	the	list	of	names	in	an	array,	and	test	to	see	whether	“Tom”	is	among	the
elements	in	that	list.

Lesson	Requirements
To	get	the	sample	workbook	you	can	download	Lesson	12	from	the	book's	website	at
www.wrox.com/go/excelvba24hour.

Step-by-Step
1.	 Open	Excel	and	add	a	new	workbook.

2.	 Press	Alt+F11	to	get	into	the	Visual	Basic	Editor.

3.	 From	the	VBE	menu,	select	Insert Module.

4.	 In	the	new	module,	type	the	name	of	your	macro:

Sub	TestArray

5.	 Press	the	Enter	key,	which	causes	Excel	to	place	a	set	of	parentheses	after	the
TestArray	macro	name	and	also	creates	the	End	Sub	statement.	Your	macro	so	far
looks	like	this:

Sub	TestArray()

End	Sub

6.	 For	the	first	line	of	code,	establish	that	Sheet2	is	VeryHidden,	as	an	example	to
demonstrate	the	result	of	an	element	being	found,	or	not	found,	in	an	array.	If	the
element	is	found,	Sheet2	will	be	unhidden:

Worksheets("Sheet2").Visible	=	xlSheetVeryHidden

7.	 For	the	second	line	of	code,	declare	a	variable	for	the	array	of	names	you'll	be
creating,	and	name	the	variable	myArray.	For	the	next	line	of	code,	assign	the	variable

http://www.wrox.com/go/excelvba24hour

name	to	the	array.	In	this	case,	you	know	what	the	list	of	names	contains	so	you	can
build	the	array	yourself	by	simply	entering	the	individual	names	inside	the
parentheses.	The	two	lines	of	code	look	like	this:

Dim	myArray	As	Variant

myArray	=	Array("Bill",	"Bob",	"Tom",	"Mike",	"Jim")

8.	 The	next	two	lines	of	code	show	the	String	type	variable	to	represent	the	string
element	you	are	attempting	to	verify,	and	then	code	to	assign	the	string	to	that	variable.
The	String	variable,	named	strVerify,	refers	to	a	name	you	would	enter	into	cell	A1
of	Sheet1	to	test	the	macro.	For	example:

Dim	strVerify	as	String

strVerify	=	Worksheets("Sheet1").Range("A1").Value

9.	 You	need	to	declare	two	more	variables.	One	of	these	variables	is	an	Integer	type
variable,	which	helps	you	loop	through	each	of	the	five	elements	in	the	array.	The
other	variable	is	a	Boolean	data	type,	which	helps	to	characterize	as	True	or	False	that
the	string	in	cell	A1	of	Sheet1	is	among	the	elements	in	the	array:

Dim	i	as	Integer,	blnVerify	as	Boolean

10.	 Enter	Tom	in	cell	A1	of	Sheet1.

11.	 Now,	to	see	whether	“Tom”	exists	in	the	array,	loop	through	each	element	and
compare	it	to	the	String	variable.	If	there	is	a	match,	exit	the	loop	and	alert	the	user
by	unhiding	Sheet2.	If	the	string	variable	is	not	found,	let	the	user	know	that	as	well,
and	keep	Sheet2	hidden:

For	i	=	LBound(myArray)	To	UBound(myArray)

If	strVerify	=	myArray(i)	Then

blnVerify	=	True

MsgBox	"Yes!	"	&	myArray(i)	&	"	is	in	the	array!",	,	"Verified"

Worksheets("Sheet2").Visible	=	xlSheetVisible

Exit	For

End	If

Next	i

If	blnVerify	=	False	Then	_

MsgBox	strVerify	&	"	is	not	in	the	array.",	,	"No	such	animal."

12.	 Putting	it	all	together,	the	macro	looks	like	this:

Sub	TestArray	()

'Establish	that	Sheet2	is	VeryHidden.

Worksheets("Sheet2").Visible	=	xlSheetVeryHidden

'Declare	and	assign	a	Variant	type	variable	for	the	array.

Dim	myArray	As	Variant

myArray	=	Array("Bill",	"Bob",	"Tom",	"Mike",	"Jim")

'Declare	and	assign	a	String	type	variable	for	the	element	being	

evaluated.

Dim	strVerify	as	String

strVerify	=	Worksheets("Sheet1").Range("A1").Value

'Declare	the	Integer	and	Boolean	data	type	variables.

Dim	i	as	Integer,	blnVerify	as	Boolean

'Loop	through	each	element	starting	with	the	first	one	(LBound)

'and	continue	as	necessary	through	to	the	last	element	(UBound).

'If	"Tom"	is	found,	exit	the	loop	and	alert	the	user.

'If	"Tom"	is	not	found,	alert	the	user	of	that	as	well.

For	i	=	LBound(myArray)	To	UBound(myArray)

If	strVerify	=	myArray(i)	Then

blnVerify	=	True

MsgBox	"Yes!	"	&	myArray(i)	&	"	is	in	the	array!",	,	"Verified"

Worksheets("Sheet2").Visible	=	xlSheetVisible

Exit	For

End	If

Next	i

If	blnVerify	=	False	Then	_

MsgBox	strVerify	&	"	is	not	in	the	array.",	,	"No	such	animal."

'End	the	macro.

End	Sub

REFERENCE	Please	select	the	videos	for	Lesson	12	online	at
www.wrox.com/go/excelvba24hour.	You	will	also	be	able	to	download	the	code	and
resources	for	this	lesson	from	the	website.

http://www.wrox.com/go/excelvba24hour

Lesson	13
Automating	Procedures	with	Worksheet	Events
For	the	most	part,	you	have	run	the	macros	you	have	seen	in	this	book	by	pressing	a	set	of
shortcut	keys,	or	by	going	to	the	Macro	dialog	box,	selecting	the	macro	name,	and
clicking	the	Run	button.	You	can	take	several	other	actions	to	run	a	macro,	as	you	learn	in
future	lessons.	The	common	theme	of	all	these	actions	is	that	you	have	to	manually	do
something,	whatever	it	may	be,	to	run	a	macro.

The	question	becomes,	can	a	VBA	procedure	simply	know	on	its	own	when	to	run	itself,
and	then	just	go	ahead	and	do	so	automatically,	without	you	needing	to	“do	something”	to
make	it	run?	The	answer	is	yes,	and	it	leads	to	the	subject	of	event	programming,	which
can	greatly	enhance	the	customization	and	control	of	your	workbooks.

NOTE	So	far,	this	book	has	used	the	term	“macro”	to	refer	to	VBA	subroutines.
When	referring	to	event	code,	the	term	“procedure”	is	used	to	differentiate	it	from
macro	code.

What	Is	an	Event?
In	the	Excel	object	model,	an	event	is	something	that	happens	to	an	object	and	is
recognized	by	the	computer	so	an	appropriate	action	can	be	taken.	Recall	that	the	Excel
application	is	made	up	of	objects,	such	as	workbooks,	worksheets,	cells,	charts,	pivot
tables,	and	so	on.	Even	the	entire	Excel	application	is	an	object.

Virtually	everything	you	do	in	Excel	is	in	some	way	invoking	an	event	upon	an	object.	A
few	examples	of	events	are	as	follows:

Double-clicking	a	cell

Adding	a	worksheet

Changing	a	cell	value

Clicking	a	hyperlink

Right-clicking	a	cell

Calculating	a	formula

With	VBA's	event	programming	capabilities,	you	can	tap	into	Excel's	recognition	of	when
an	event	occurs	and	what	kind	of	event	it	is.	This	enables	you	to	write	VBA	code	that	will
execute	based	on	whichever	event(s)	occur	that	you	want	to	monitor.	This	book	primarily
concentrates	on	events	at	two	levels:

Worksheet-level	events,	which	are	introduced	in	this	lesson.

Workbook-level	events,	which	are	introduced	in	the	next	lesson.

Worksheet	Events:	An	Overview
Worksheet-level	events	occur	for	a	particular	worksheet.	As	you	might	imagine,	events
occur	when	something	happens	to	a	worksheet,	such	as	entry	of	new	data	into	a	cell,	or	a
formula	being	calculated,	or	the	worksheet	being	activated	or	deactivated.	Event	code	that
is	associated	with	any	particular	worksheet	has	no	direct	effect	on	events	that	take	place
on	other	worksheets	in	that	or	any	other	workbook.

Where	Does	the	Worksheet	Event	Code	Go?
You've	become	familiar	with	the	concept	of	modules	as	being	containers	for	the	macros
that	you	or	the	Macro	Recorder	create.	You'll	be	pleased	to	know	that	each	worksheet
already	comes	with	its	own	built-in	module,	so	you	never	need	to	create	a	module	for	any
worksheet-	or	workbook-level	procedure	code.

Worksheet	event	code	always	goes	into	the	module	of	the	worksheet	for	which	you	are
monitoring	the	event(s).	Regardless	of	the	Excel	version	you	are	using,	the	quickest	and
easiest	way	to	go	straight	to	a	worksheet's	module	is	to	right-click	its	sheet	tab	and	select
View	Code,	as	shown	in	Figure	13.1.

Figure	13.1

Immediately	after	you	select	View	Code,	you	are	taken	directly	into	the	Visual	Basic
Editor,	as	shown	in	Figure	13.2.	Your	mouse	cursor	will	be	blinking	in	the	worksheet
module's	Code	window,	ready	for	you	to	start	entering	your	event	procedure	code.

Figure	13.2

Immediately	above	the	Code	window	are	two	fields	with	drop-down	arrows.	The	field	on
the	left	is	the	Object	field,	and	when	you	click	its	drop-down	arrow,	you	select	the
Worksheet	object	item,	as	shown	in	Figure	13.3.

Figure	13.3

The	field	above	the	worksheet	module's	Code	window,	and	to	the	right	of	the	Object	field,
is	the	Procedure	field.	Click	the	Procedure	field's	drop-down	arrow	for	a	list	of	the
worksheet-level	events	available	to	you,	as	shown	in	Figure	13.4.

Figure	13.4

NOTE	When	you	select	an	event	from	the	Procedure	field's	drop-down	list,	VBA
performs	the	valuable	service	of	entering	the	procedure	statement,	with	all	its
argument	parameters	and	an	associated	End	Sub	statement,	right	there	in	the
worksheet	module	for	you.

Enabling	and	Disabling	Events
The	Excel	Application	object	has	an	EnableEvents	property	that	is	enabled	by	default.	In
some	cases	you	will	need	to	temporarily	disable	events	in	your	event	procedure	code,	and
then	re-enable	them	before	the	end	of	the	procedure.	This	may	sound	strange	at	first,	but
the	reason	is	that	some	events	can	trigger	themselves,	and	an	infinite	loop	can	occur	if	that
happens.

For	example,	if	you	are	monitoring	data	entry	in	a	cell	and	you	only	want	a	number	to	be
entered,	but	a	non-numeric	entry	is	attempted,	you	would	use	the	Worksheet_Change	event
to	undo	that	wrong	entry	by	clearing	the	cell's	contents.	However,	VBA	regards	a	cell's
contents	being	cleared	as	a	change	having	occurred	to	that	cell,	which	would	trigger
another	round	of	the	same	Worksheet_Change	event	procedure	that	was	already	running.
To	avoid	this,	you	sandwich	the	relevant	code	in	between	statements	that	disable	and
enable	events,	as	shown	in	the	following	syntax	example:

Application.EnableEvents	=	False

'your	relevant	code

Application.EnableEvents	=	True

NOTE	Check	out	the	Try	It	section	at	the	end	of	this	lesson;	it	includes	two	specific
examples	of	disabling	and	enabling	events!

NOTE	In	the	preceding	syntax	example,	the	EnableEvents	property	of	the
Application	object	was	temporarily	set	to	False	with	the	statement

Application.EnableEvents	=	False

and	then	set	back	to	True	at	the	end	of	the	macro	with	the	statement

Application.EnableEvents	=	True

Keep	in	mind	that	the	Application	object	covers	all	of	Excel.	For	example,	while	a
macro	is	running	with	the	EnableEvents	property	of	the	Application	object	set	to
False,	EnableEvents	is	disabled	for	all	open	workbooks	in	that	instance	of	Excel,	not
just	for	the	workbook	where	the	VBA	code	is	being	executed.	Whatever	properties	of
the	Application	object	you	temporarily	change,	remember	to	reset	those	properties
to	their	original	settings	before	you	exit	your	macro	or	procedure.

Examples	of	Common	Worksheet	Events
At	the	worksheet	level,	Excel	version	2003	has	9	events,	and	5	more	than	that	(associated
with	pivot	tables)	for	a	total	of	14	in	versions	2007	and	2010.	Version	2013	has	3	more
events	still,	for	a	total	of	17.

The	additional	event	procedures	in	newer	versions	might	be	useful	for	you	to	learn	down
the	road,	but	they	involve	a	wider	and	more	specialized	instruction	of	VBA	development
than	the	intended	introductory	scope	of	VBA	in	this	book.	The	most	commonly	used
worksheet	events	are	the	following	nine	that	are	common	to	all	versions	of	Excel	from
2000	to	2013:

Worksheet_Change

Worksheet_SelectionChange

Worksheet_BeforeDoubleClick

Worksheet_BeforeRightClick

Worksheet_FollowHyperlink

Worksheet_Activate

Worksheet_Deactivate

Worksheet_Calculate

Worksheet_PivotTableUpdate

Worksheet_Change	Event
The	Worksheet_Change	event	occurs	when	cells	on	the	worksheet	are	changed	by	the	user
or	by	an	external	link,	such	as	a	new	value	being	entered	into	a	cell,	or	the	cell's	value
being	deleted.	The	following	example	places	the	current	date	in	column	C	next	to	a
changed	cell	in	column	B:

Private	Sub	Worksheet_Change(ByVal	Target	As	Range)

If	Target.Column	<>	2	Then	Exit	Sub

Target.Offset(0,	1).Value	=	Format(VBA.Date,	"MM/DD/YYYY")

End	Sub

NOTE	The	Worksheet_Change	event	is	not	triggered	by	a	calculation	change,	such
as	a	formula	returning	a	different	value.	Use	the	Worksheet_Calculate	event	to
capture	the	changes	to	values	in	cells	that	contain	formulas.

Worksheet_SelectionChange	Event
The	Worksheet_SelectionChange	event	occurs	when	a	cell	is	selected.	The	following
code	highlights	the	active	cell	with	a	yellow	color	every	time	a	different	cell	is	selected:

Private	Sub	Worksheet_SelectionChange(ByVal	Target	As	Range)

Cells.Interior.ColorIndex	=	0

Target.Interior.Color	=	vbYellow

End	Sub

NOTE	A	word	to	the	wise!	This	kind	of	code	is	fun	and	has	its	uses,	but	with	each
change	in	cell	selection,	the	Undo	stack	will	be	eliminated,	negating	the	Undo
feature.

Worksheet_BeforeDoubleClick	Event
The	Worksheet_BeforeDoubleClick	event	is	triggered	by	double-clicking	a	worksheet
cell.	The	Cancel	argument	is	optional	and	halts	the	ability	to	go	into	Edit	mode	for	that
cell	from	a	double-click.

In	this	example,	if	you	double-click	a	cell	in	range	A1:C8,	and	the	cell	already	contains	a
number	or	is	empty,	the	numeric	value	of	that	cell	increases	by	1.	All	other	cells	in	the
worksheet	are	unaffected:

Private	Sub	Worksheet_BeforeDoubleClick(ByVal	Target	As	Range,	_

Cancel	As	Boolean)

If	Intersect(Target,	Range("A1:C8"))	Is	Nothing	Then	Exit	Sub

If	IsNumeric(Target.Value)	=	True	Then

Cancel	=	True

Target.Value	=	Target.Value	+	1

End	If

End	Sub

NOTE	This	event	does	not	occur	if	you	double-click	the	active	cell's	edge,	or	its	fill
handle.

Worksheet_Before	RightClick	Event
The	Worksheet_BeforeRightClick	event	occurs	when	you	right-click	a	worksheet	cell.
The	optional	Cancel	argument	halts	the	right-click	pop-up	menu	from	appearing.	In	the
following	example,	when	you	right-click	a	cell	in	column	E,	the	current	date	and	time	are
entered	into	that	cell	and	column	E's	width	is	autofitted:

Private	Sub	Worksheet_BeforeRightClick(ByVal	Target	As	Range,	_

Cancel	As	Boolean)

If	Target.Column	<>	5	Then	Exit	Sub

Cancel	=	True

Target.Value	=	Format(VBA.Now,	"MMM	DD,	YYYY,	hh:mm	AM/PM")

Columns(Target.Column).AutoFit

End	Sub

Worksheet_FollowHyperlink	Event
The	Worksheet_FollowHyperlink	event	occurs	when	you	click	any	hyperlink	on	the
worksheet.	You	learn	more	about	command	buttons	in	later	lessons,	but	as	a	sneak
preview,	Figure	13.5	shows	a	command	button	embedded	onto	a	worksheet.	The	button	is

captioned	with	a	website	address	but	the	caption	itself	is	plain	text,	not	actually	a
hyperlink.	With	the	following	code,	when	you	click	the	command	button,	you	are	taken	to
that	caption's	website:

Private	Sub	CommandButton1_Click()

CommandButton1.Parent.Parent.FollowHyperlink	CommandButton1.Caption

End	Sub

Figure	13.5

NOTE	The	Worksheet_FollowHyperlink	event	is	available	as	a	worksheet-level
event,	but	in	reality,	it	is	more	of	a	function	of	the	entire	workbook.	Notice	the	first
three	items	in	the	statement:	CommandButton1.Parent.Parent.	The	parent	of	the
CommandButton	is	the	worksheet	upon	which	it	resides,	and	the	parent	of	that
worksheet	is	the	workbook	itself.

A	CommandButton	as	it	is	referenced	in	this	section	is	an	ActiveX	object	created	from
the	control	toolbox.	Another	type	of	button	is	a	Form	Button,	created	from	the	Form
toolbar.	ActiveX	objects	are	more	complex	than	Form	objects,	whereas	Form	objects
are	simpler	to	use	and	are	directly	integrated	with	Excel.	ActiveX	and	Form	objects
are	covered	in	Lesson	16.

Worksheet_Activate	Event
The	Worksheet_Activate	event	occurs	when	you	go	to	a	particular	worksheet,	typically
by	clicking	the	worksheet's	tab,	although	any	of	the	other	methods	of	arriving	at	a
worksheet	will	trigger	the	Worksheet_Activate	event.	Suppose	you	have	a	worksheet
with	one	or	more	pivot	tables	on	it,	and	every	time	you	go	to	that	worksheet,	you	want	to
know	that	the	pivot	tables	are	all	refreshed	and	up	to	date.	The	following	event	code
accomplishes	that	task:

Private	Sub	Worksheet_Activate()

Dim	intCounter	As	Integer

For	intCounter	=	1	To	ActiveSheet.PivotTables.Count

ActiveSheet.PivotTables(intCounter).PivotCache.Refresh

Next	intCounter

End	Sub

Worksheet_Deactivate	Event
The	Worksheet_Deactivate	event	occurs	when	you	activate	a	different	worksheet	than

the	one	you	were	on.	Suppose	there	is	a	particular	cell	in	a	worksheet	that	you	strongly
prefer	to	have	some	value	entered	into	it	before	the	users	exit	that	worksheet.	The
following	Worksheet_Deactivate	event	code	checks	to	see	if	cell	A1	contains	a	value.	If
it	does	not,	a	message	box	alerts	the	users	as	a	reminder	of	that	fact	when	they	deactivate
the	worksheet:

Private	Sub	Worksheet_Deactivate()

If	Len(Me.Range("A1").Value)	=	0	Then	_

MsgBox	"FYI	and	reminder:	you	did	not	enter	a	value	in	cell	A1"	_

&	vbCrLf	&	_

"in	the	worksheet	named	"	&	Me.Name	&	".",	_

vbExclamation,	_

"Cell	A1	should	have	some	value	in	it!"

End	Sub

Worksheet_Calculate	Event
The	Worksheet_Calculate	event	occurs	when	the	worksheet	is	recalculated.	Suppose	you
have	a	budget	model	and	you	want	to	monitor	the	bottom-line	number	for	profit	and	loss,
which	is	derived	by	a	formula	in	cell	Z135.	You	could	conditionally	format	the	cell	when
its	returned	value	is	outside	an	acceptable	range,	but	chances	are	no	one	will	see	the
formatting	due	to	the	location	of	the	cell.

To	give	the	budget	model's	bottom-line	Profit/Loss	number	a	boost	in	awareness,	utilize
the	Worksheet_Calculate	event	to	make	a	message	box	pop	up	as	a	warning	when	the
number	in	cell	Z135	becomes	lower	than	$1,000.	Also,	to	make	it	fun,	have	a
congratulatory	message	appear	if	the	profit	number	is	greater	than	or	equal	to	$5,000:

Private	Sub	Worksheet_Calculate()

If	Range("Z135").Value	<	1000	Then

MsgBox	"Profits	are	too	low!!",	vbExclamation,	"Warning!!"

ElseIf	Range("Z135").Value	>=	5000	Then

MsgBox	"Profits	are	TERRIFIC!!",	vbExclamation,	"Wow,	good	news!!"

End	If

End	Sub

Worksheet_PivotTableUpdate	Event
The	Worksheet_PivotTableUpdate	event	occurs	after	a	pivot	table	is	updated	on	a
worksheet,	such	as	after	a	refresh.	The	following	procedure	is	a	simple	example	of	the
syntax	for	this	event:

Private	Sub	Worksheet_PivotTableUpdate(ByVal	Target	As	PivotTable)

MsgBox	"The	pivot	table	on	this	worksheet	was	just	updated.",	

vbInformation,	"FYI"

End	Sub

Try	It
In	this	lesson,	you	write	a	Worksheet_Change	event	that	enables	you	to	sum	numbers	as
they	are	entered	into	the	same	cell.	Your	Worksheet_Change	event	enables	any	cell	in
column	A,	except	for	cell	A1,	to	accept	a	number	you	enter,	add	it	to	whatever	number
was	already	in	that	cell,	and	display	the	resulting	sum.	For	example,	if	cell	A9	currently
holds	the	number	2	and	you	enter	the	number	3	in	that	cell,	the	resulting	value	of	cell	A9
will	be	5.

Lesson	Requirements
To	get	the	sample	workbook	you	can	download	Lesson	13	from	the	book's	website	at
www.wrox.com/go/excelvba24hour.

Step-by-Step
1.	 Open	a	new	workbook,	right-click	the	Sheet1	tab,	and	select	View	Code.

2.	 Your	cursor	will	be	blinking	in	the	Sheet1	worksheet	module.	Directly	above	that,
click	the	down	arrow	belonging	to	the	Object	list,	and	select	Worksheet.	This	produces
the	following	default	lines	of	code	in	your	worksheet	module:

Private	Sub	Worksheet_SelectionChange(ByVal	Target	As	Range)

End	Sub

3.	 It	is	really	the	Change	event	you	are	interested	in	composing,	so	take	one	of	two
actions:	either	manually	edit	the	Private	Sub	Worksheet_SelectionChange(ByVal
TargetAs	Range)	statement	by	deleting	the	word	Selection,	or	click	the	down	arrow
above	the	module	for	the	Procedures	list,	select	the	Change	item,	and	delete	the	default
Private	Sub	Worksheet_SelectionChange(ByVal	Target	As	Range)	statement	and
its	accompanying	End	Sub	statement.	At	this	point,	the	only	procedure	code	you	see	in
your	worksheet	module	is	this:

Private	Sub	Worksheet_Change(ByVal	Target	As	Range)

End	Sub

4.	 The	event	code	monitors	column	A	but	you	want	the	ability	to	enter	some	kind	of
header	label	into	cell	A1.	Begin	the	procedure	by	writing	a	line	of	code	to	exclude	cell
A1	from	the	Change	event:

If	Target.Address	=	"A1"	Then	Exit	Sub

5.	 Your	next	consideration	is	to	limit	the	Change	event	to	column	A,	to	avoid	imposing
the	Change	event	onto	the	entire	worksheet.	Also,	you	want	the	Change	event	to	be	in
effect	for	only	one	cell	at	a	time	in	column	A.	One	statement	can	handle	both
considerations:

If	Target.Column	<>	1	Or	Target.Cells.Count	>	1	Then	Exit	Sub

http://www.wrox.com/go/excelvba24hour

NOTE	Note	that	column	A	is	the	first	(leftmost)	column	on	the	worksheet	grid	and
is	easily	referred	to	in	VBA	as	Columns(1).	If	you	had	been	working	with	column
H,	which	is	the	eighth	column	from	the	left	on	the	worksheet	grid,	you	would	have
written	this	step's	line	of	code	as

If	Target.Column	<>	8	Or	Target.Cells.Count	>	1	Then	Exit	Sub

6.	 Pressing	the	Delete	key	triggers	the	Change	event.	You	might	want	to	delete	a	cell's
contents	and	start	entering	a	new	set	of	numbers	in	an	empty	cell,	so	allow	yourself	the
luxury	of	exiting	the	Change	event	if	the	Delete	key	is	pressed:

If	IsEmpty(Target)	Then	Exit	Sub

7.	 Even	though	a	number	is	supposed	to	be	entered	into	column	A,	never	assume	that	it
will	always	happen	that	way,	because	people	make	mistakes.	Provide	for	the	attempt	at
a	non-numeric	entry	and	disallow	it:

If	IsNumeric(Target.Value)	=	False	Then

8.	 Disable	events	because	you	are	about	to	undo	the	non-numeric	value;	the	Undo
command	also	triggers	the	Change	event:

Application.EnableEvents	=	False

9.	 Execute	the	Undo	action	so	the	non-numeric	entry	is	deleted:

Application.Undo

10.	 Enable	events	again:

Application.EnableEvents	=	True

11.	 Remind	the	user	with	a	message	box	that	only	numbers	are	allowed,	and	exit	the
Change	event	procedure	with	the	Exit	Sub	statement:

MsgBox	"You	entered	a	non-numeric	value.",	_

vbExclamation,	_

"Please:	numbers	only	in	column	A!"

Exit	Sub

End	If

12.	 Now	that	all	the	reasonable	safeguards	have	been	met,	declare	two	Double	type
variables:	one	named	OldVal	for	the	numeric	value	that	was	in	the	cell	before	it	was
changed,	and	the	other	named	NewVal	for	the	numeric	value	that	was	just	entered	that
triggered	this	Change	event:

Dim	OldVal	As	Double,	NewVal	As	Double

13.	 Define	the	NewVal	variable	first	because	it	is	the	number	that	was	just	entered	into	the
cell:

NewVal	=	Target.Value

14.	 Undo	the	entry	to	display	the	old	(preceding)	value.	Again,	this	requires	that	you
disable	events	so	you	do	not	re-trigger	the	Change	event	while	you	are	already	in	a
Change	event:

Application.EnableEvents	=	False

15.	 Execute	Undo	so	the	previous	value	is	re-established:

Application.Undo

16.	 Define	the	OldVal	variable,	which	is	possible	to	do	now	that	the	previous	value	has
been	restored:

OldVal	=	Target.Value

17.	 Programmatically	enter	into	the	cell	the	sum	of	the	previous	value,	plus	the	new	last-
entered	value,	by	referring	to	those	two	variables	in	an	arithmetic	equation	just	as	you
would	if	they	were	numbers:

Target.Value	=	OldVal	+	NewVal

18.	 Enable	events	now	that	all	the	changes	to	the	cell	have	been	made:

Application.EnableEvents	=	True

19.	 When	completed,	the	entire	procedure	looks	like	this,	with	comments	that	have	been
added	to	explain	each	step:

Private	Sub	Worksheet_Change(ByVal	Target	As	Range)

'Allow	for	a	header	label	to	be	placed	in	cell	A1.

If	Target.Address	=	"A1"	Then	Exit	Sub

'Only	apply	this	effect	to	column	A	(column	1	in	VBA-Speak).

'At	the	same	time,	only	allow	one	cell	at	a	time	to	be	changed.

If	Target.Column	<>	1	Or	Target.Cells.Count	>	1	Then	Exit	Sub

'Pressing	the	Delete	key	triggers	the	Change	event.

'You	might	want	to	delete	the	cell's	contents	and	start	with

'an	empty	cell,	so	exit	the	Change	event	if	the	Delete	key	is	pressed.

If	IsEmpty(Target)	Then	Exit	Sub

'Even	though	a	number	is	*supposed*	to	be	entered	into	column	A,

'never	assume	that	will	always	happen	because	users	do	make	mistakes.

'Provide	for	the	attempt	at	a	non-numeric	entry	and	disallow	it.

If	IsNumeric(Target.Value)	=	False	Then

'Disable	events	because	you	are	about	to	undo	the	non-numeric	value,

'and	Undo	also	triggers	the	Change	event.

Application.EnableEvents	=	False

'Execute	the	Undo	so	the	non-numeric	entry	is	deleted.

Application.Undo

'Enable	events	again.

Application.EnableEvents	=	True

'Remind	the	user	with	a	Message	Box	that	only	numbers	are	allowed,

'and	exit	the	Change	event	procedure	with	the	Exit	Sub	statement.

MsgBox	"You	entered	a	non-numeric	value.",	_

vbExclamation,	_

"Please:	numbers	only	in	column	A!"

Exit	Sub

End	If

'Now	that	all	the	reasonable	safeguards	have	been	met,

'Declare	two	Double	type	variables:

'one	named	OldVal	for	the	numeric	value	that	was	in	the	cell

'before	it	got	changed,

'and	the	other	variable	named	NewVal	for	the	numeric	value

'that	was	just	entered	that	triggered	this	Change	event.

Dim	OldVal	As	Double,	NewVal	As	Double

'Define	the	NewVal	variable	first,	as	it	is	the	number	that

'was	just	entered	into	the	cell.

NewVal	=	Target.Value

'Undo	the	entry	in	order	to	display	the	old	(preceding)	value.

'Again,	this	requires	that	you	disable	events	in	order	to	not

're-trigger	the	Change	event	while	you	are	already	in	a	Change	event.

Application.EnableEvents	=	False

'Execute	Undo	so	the	previous	value	is	re-established.

Application.Undo

'Define	the	OldVal	variable	which	is	possible	to	do	now	that

'the	previous	value	has	been	restored.

OldVal	=	Target.Value

'Programmatically	enter	into	the	cell	the	sum	of	the	old	previous	value,

'plus	the	new	last-entered	value,	by	referring	to	those	two	variables

'in	an	arithmetic	equation	just	as	you	would	if	they	were	numbers.

Target.Value	=	OldVal	+	NewVal

'Enable	events	now	that	all	the	changes	to	the	cell	have	been	made.

Application.EnableEvents	=	True

End	Sub

20.	 Press	Alt+Q	to	return	to	the	worksheet.	Test	the	code	by	entering	a	series	of	numbers
in	any	single	cell	in	column	A	other	than	cell	A1.

REFERENCE	Please	select	the	video	for	Lesson	13	at
www.wrox.com/go/excelvba24hour.	You	will	also	be	able	to	download	the	code	and
resources	for	this	lesson	from	the	website.

http://www.wrox.com/go/excelvba24hour

Lesson	14
Automating	Procedures	with	Workbook	Events
In	Lesson	13,	you	learned	about	worksheet-level	events	and	how	they	are	triggered	by
actions	relating	to	individual	worksheets.	Workbooks	themselves	can	also	recognize	and
respond	to	a	number	of	events	that	take	place	at	the	workbook	level.	This	lesson	describes
how	you	can	further	customize	your	workbooks	with	VBA	procedures	for	the	most
commonly	used	workbook	events.

Workbook	Events:	An	Overview
Workbook	events	occur	within	a	particular	workbook.	Many	workbook	events	occur
because	something	happened	to	an	object	in	the	workbook,	such	as	a	worksheet—any
worksheet—that	was	activated,	or	a	cell—any	cell—that	was	changed.	Other	workbook
events	occur	because	the	workbook	was	imposed	upon	to	do	something,	such	as	to	open	or
close,	or	to	be	saved	or	printed.

NOTE	Unless	the	VBA	code	itself	purposely	refers	to	other	workbooks,	event
procedures	at	the	workbook	level	affect	only	the	workbook	within	which	the	code
resides.

Where	Does	the	Workbook	Event	Code	Go?
You	saw	in	Lesson	13	that	each	individual	worksheet	has	its	own	module.	Workbooks	are
similar	to	worksheets	in	this	respect	because	a	workbook	is	also	an	Excel	object,	and	it	has
its	own	module	already	present	and	accounted	for	when	the	workbook	is	created.

NOTE	Workbook-level	event	code	always	goes	into	the	workbook	module.	You	never
need	to	create	a	workbook	module	or	a	worksheet	module;	Excel	creates	those
modules	automatically	with	every	new	workbook.	If	a	workbook-level	event	procedure
is	not	in	the	workbook	module	(same	as	if	a	worksheet-level	event	procedure	is	not	in
a	worksheet	module),	VBA	will	not	be	able	to	execute	the	event	code.

To	arrive	at	the	Code	window	for	your	workbook's	module,	with	whatever	version	of
Excel	you	are	using,	you	can	press	Alt+F11	to	get	into	the	Visual	Basic	Editor.	If	you	are
using	a	version	of	Excel	prior	to	2007,	such	as	version	2003,	you	can	also	access	the
workbook	module	quickly	by	right-clicking	the	Excel	workbook	icon	near	the	top-left
corner	of	the	workbook	window	and	selecting	View	Code.	This	option	is	shown	in	Figure
14.1.

Figure	14.1

In	the	VBE,	if	you	do	not	see	the	Project	Explorer	window,	go	ahead	and	make	it	visible
by	pressing	Ctrl+R.	In	the	Project	Explorer,	find	your	workbook	name;	it	is	in	bold	font,
with	the	text	VBAProject	(YourWorkbookName.xlsm).	Directly	below	that	will	be	a
yellow	folder	named	Microsoft	Excel	Objects.	When	you	expand	that	folder,	the	last	item
at	the	bottom	of	the	list	is	your	workbook	object,	identified	by	its	default	name	of
ThisWorkbook.

NOTE	You	saw	in	Lesson	4	how	to	change	the	name	of	a	module.	You	can	change	the
name	of	the	workbook	module,	but	do	yourself	a	favor	and	leave	the	workbook
module's	default	name	alone.	The	ThisWorkbook	module	name	is	consistent	with
99.99	percent	of	VBA	workbook	projects	you'll	likely	encounter.	There's	almost	never
a	benefit	to	be	gained	by	changing	the	workbook	module's	name.

As	shown	in	Figure	14.2,	to	get	into	the	Code	window	of	the	workbook	module,	either
double-click	the	ThisWorkbook	object,	or	right-click	it	and	select	View	Code.	As	soon	as
you	do	that,	your	mouse	cursor	will	be	blinking	in	the	workbook	module's	Code	window,
ready	for	you	to	start	entering	your	workbook-level	event	procedure	code.

Figure	14.2

Entering	Workbook	Event	Code
Similar	to	the	worksheet	module	Code	window	you	saw	in	Lesson	13,	two	fields	with
drop-down	arrows	are	located	above	the	workbook	module's	Code	window.	The	field	on
the	left	is	the	Object	field,	and	when	you	click	its	drop-down	arrow,	you	select	the
Workbook	object	item,	as	shown	in	Figure	14.3.

Figure	14.3

The	field	above	the	workbook	module's	Code	window,	and	to	the	right	of	the	Object	field,
is	the	Procedure	field.	Click	the	Procedure	field's	drop-down	arrow	for	a	list	of	the
workbook-level	events	available	to	you,	as	shown	in	Figure	14.4.

Figure	14.4

NOTE	For	convenience,	just	as	with	selecting	worksheet-level	event	names,	VBA
places	the	complete	workbook-level	event	statement,	with	all	its	arguments	and	the
accompanying	End	Sub	statement,	when	you	select	a	workbook-level	event	name	from
the	Procedure	field.

Examples	of	Common	Workbook	Events
At	the	workbook	level,	Excel	version	2003	has	28	events,	and	8	more	than	that	(mostly
associated	with	pivot	tables)	for	a	total	of	36	in	versions	2007	and	2010.	Microsoft	added
4	more	events	to	version	2013	for	a	total	of	40.	The	most	commonly	used	workbook-level
events	across	all	versions	of	Excel	are	listed	here,	with	examples	of	each	on	the	following
pages:

Workbook_Open

Workbook_BeforeClose

Workbook_Activate

Workbook_Deactivate

Workbook_SheetChange

Workbook_SheetSelectionChange

Workbook_SheetBeforeDoubleClick

Workbook_SheetBeforeRightClick

Workbook_SheetPivotTableUpdate

Workbook_NewSheet

Workbook_BeforePrint

Workbook_SheetActivate

Workbook_SheetDeactivate

Workbook_BeforeSave

Workbook_Open	Event
The	Workbook_Open	event	is	triggered	when	the	workbook	opens,	and	is	among	the	most
popular	and	useful	of	all	workbook-level	events.	The	Workbook_Open	event	is	perfect	for
such	tasks	as	informing	users	about	important	features	of	your	workbook,	or	generating	a
running	list	of	users	who	have	accessed	the	workbook,	or	establishing	a	particular	format
setting	that	would	be	reset	to	its	original	state	with	the	Workbook_BeforeClose	event.

In	the	Try	It	section	of	Lesson	13,	you	saw	an	example	of	how	to	enter	a	number	in	a	cell
and	have	that	number	be	added	to	whatever	number	was	previously	in	that	cell.	The	users
of	this	workbook	might	appreciate	knowing	about,	or	being	reminded	of,	that	capability
when	they	open	the	workbook.	You	can	use	the	Workbook_Open	event,	such	as	with	the
following	procedure,	for	example,	to	show	a	message	box	that	informs	the	users	of	that
workbook's	special	capability:

Private	Sub	Workbook_Open()

MsgBox	_

"FYI,	when	you	enter	a	number	in	a	cell	in	column	A"	&	vbCrLf	&	_

"of	Sheet3,	it	will	automatically	be	added	to	the"	&	vbCrLf	&	_

"number	previously	in	that	cell,	and	display	the	sum.",	_

vbInformation,	_

"Welcome!	Here's	a	tip	for	this	workbook:"

End	Sub

Workbook_BeforeClose	Event
The	Workbook_BeforeClose	event	is	triggered	just	before	the	workbook	closes.	This	event
is	often	used	in	conjunction	with	the	Workbook_Open	event,	to	set	a	workbook	back	to	its
original	state	if	the	Workbook_Open	event	temporarily	changed	the	user's	Excel	settings.

The	following	example	is	one	way	to	apply	the	Workbook_BeforeClose	event's	usefulness.
You	can	tell	Excel	to	save	your	workbook	automatically	when	you	close	it,	to	avoid
Excel's	prompt	that	asks	you	if	you	want	to	save	your	changes	(and	losing	your	work	if
you	mistakenly	were	to	click	No!):

Private	Sub	Workbook_BeforeClose(Cancel	As	Boolean)

ThisWorkbook.Save

End	Sub

Workbook_Activate	Event
The	Workbook_Activate	event	is	triggered	when	the	workbook	is	activated,	such	as	when
the	workbook	is	opened,	or	when	you	switch	between	that	workbook	and	other	open
workbooks.	In	this	example,	the	following	procedure	maximizes	the	Excel	window	when
you	activate	the	workbook:

Private	Sub	Workbook_Activate()

ActiveWindow.WindowState	=	xlMaximized

End	Sub

Workbook_Deactivate	Event
The	Workbook_Deactivate	event	is	triggered	when	the	workbook	loses	focus,	such	as
when	a	different	Excel	workbook	is	activated	or	when	the	workbook	is	closed.	The
following	example	prompts	a	message	box	to	alert	you	when	the	workbook	is	deactivated:

Private	Sub	Workbook_Deactivate()

MsgBox	"You	are	leaving	"	&	Me.Name	&	"!!",	_

vbInformation,	_

"Just	saying…"

End	Sub

Workbook_SheetChange	Event
The	Workbook_SheetChange	event	is	triggered	when	any	cell's	contents	are	changed	on
any	worksheet	in	the	workbook.	If	you	would	like	to	keep	a	log	of	the	date,	time,	sheet
name,	and	address	of	any	cell	that	gets	changed,	this	procedure	accomplishes	that	by
listing	information	on	a	worksheet	named	Log:

Private	Sub	Workbook_SheetChange(ByVal	Sh	As	Object,	ByVal	Target	As	Range)

'The	log	sheet	will	hold	the	record	of	each	sheet	change,

'so	halt	the	event	if	a	cell	is	changed	on	the	Log	sheet.

If	Sh.Name	=	"Log"	Then	Exit	Sub

'Declare	a	Long	variable	for	the	next	available	row	on	the	Log	sheet.

Dim	NextRow	As	Long

'Assign	the	row	number	to	the	next	empty	row	below	that	last	row	of	data

'in	column	A.

NextRow	=	Worksheets("Log").Cells(Rows.Count,	1).End(xlUp).Row	+	1

'In	column	A,	enter	the	date	of	the	changed	cell.

Worksheets("Log").Cells(NextRow,	1).Value	=	VBA.Date

'In	column	B,	enter	the	time	of	the	changed	cell.

Worksheets("Log").Cells(NextRow,	2).Value	=	VBA.Time

'In	column	C,	enter	the	name	of	the	worksheet	holding	the	changed	cell.

Worksheets("Log").Cells(NextRow,	3).Value	=	Sh.Name

'In	column	D,	enter	the	address	of	the	changed	cell.

Worksheets("Log").Cells(NextRow,	4).Value	=	Target.Address

'Autofit	the	columns	on	the	Log	sheet,	to	make	the	information	readable.

Worksheets("Log").Columns.AutoFit

End	Sub

Workbook_SheetSelectionChange	Event
The	Workbook_SheetSelectionChange	event	is	triggered	when	a	different	cell	is	selected
on	any	worksheet	in	the	workbook.	In	Lesson	13,	you	saw	an	example	of	the
Worksheet_SelectionChange	event	whereby	the	active	cell	was	continuously	highlighted.
If	you	are	navigating	through	large	ranges	of	data	on	your	worksheets,	such	as	budgets	or
financial	reports,	you	might	find	it	useful	to	visually	identify	more	than	just	the	active	cell.
The	following	procedure	highlights	the	entire	row	and	column	at	each	new	cell	selection:

Private	Sub	Workbook_SheetSelectionChange(ByVal	Sh	As	Object,	_

ByVal	Target	As	Range)

Dim	myRow	As	Long,	myColumn	As	Long

myRow	=	Target.Row

myColumn	=	Target.Column

Sh.Cells.Interior.ColorIndex	=	0

Sh.Rows(myRow).Interior.Color	=	vbGreen

Sh.Columns(myColumn).Interior.Color	=	vbGreen

End	Sub

Workbook_SheetBeforeDoubleClick	Event
The	Workbook_SheetBeforeDoubleClick	event	is	triggered	when	a	cell	on	any	worksheet
is	about	to	be	double-clicked.	The	double-click	effect	(usually	getting	into	Edit	mode)	can
be	canceled	with	the	Cancel	parameter.

Suppose	you	have	a	workbook	wherein	column	A	of	every	worksheet	is	reserved	for	the
purpose	of	placing	check	marks	in	cells.	You	do	not	want	to	deal	with	embedding	possibly
hundreds	of	real	check	box	objects,	so	a	check	mark–looking	character	in	a	cell	would
suffice.

You	can	utilize	the	Workbook_DoubleClick	event	that	would	apply	only	to	column	A	for
any	worksheet.	The	following	procedure	toggles	the	effect	of	placing	a	check	mark	in
column	A.	If	the	cell	is	empty,	a	check	mark	is	entered,	and	if	a	check	mark	is	present
when	the	cell	is	double-clicked	again,	the	check	mark	is	removed.	As	you	can	see	in	the
code,	the	“check	mark”	is	really	a	lowercase	letter	“a”	formatted	in	Marlett	font:

Private	Sub	Workbook_SheetBeforeDoubleClick(ByVal	Sh	As	Object,	_

ByVal	Target	As	Range,	Cancel	As	Boolean)

If	Target.Column	<>	1	Then	Exit	Sub

Cancel	=	True

Target.Font.Name	=	"Marlett"

Target.HorizontalAlignment	=	xlCenter

If	IsEmpty(Target)	=	True	Then

Target.Value	=	"a"

Else

Target.Clear

End	If

End	Sub

Workbook_SheetBeforeRightClick	Event
The	Workbook_SheetBeforeRightClick	event	is	triggered	when	a	cell	on	any	worksheet
is	about	to	be	right-clicked.	You	can	cancel	the	right-click	effect	of	the	pop-up	menu	with
the	Cancel	parameter.

Suppose	you	want	to	add	a	utility	to	your	workbook	that	would	enable	you	to	quickly	and
easily	insert	a	row	above	any	cell	you	right-click.	A	message	box	could	ask	if	you	want	to
insert	a	row,	and	if	you	answer	yes,	a	row	would	be	inserted.	The	following	procedure	is
an	example	of	how	you	can	handle	that:

Private	Sub	Workbook_SheetBeforeRightClick(ByVal	Sh	As	Object,	_

ByVal	Target	As	Range,	Cancel	As	Boolean)

If	MsgBox("Do	you	want	to	insert	a	row	here?",	_

vbQuestion	+	vbYesNo,	_

"Please	confirm…")	=	vbYes	Then

Cancel	=	True

ActiveCell.EntireRow.Insert

End	If

End	Sub

Workbook_SheetPivotTableUpdate	Event
The	SheetPivotTableUpdate	event	monitors	all	worksheets	in	the	workbook	that	hold
pivot	tables.	In	the	following	event	code,	when	a	pivot	table	is	updated,	the	name	of	its
worksheet	appears	in	a	message	box.

Private	Sub	Workbook_SheetPivotTableUpdate(ByVal	Sh	As	Object,	_

ByVal	Target	As	PivotTable)

MsgBox	"The	pivot	table	on	sheet	"	&	Sh.Name	&	"	was	updated.",	,	"FYI"

End	Sub

Workbook_NewSheet	Event
The	Workbook_NewSheet	event	is	triggered	when	a	new	sheet	is	added	to	the	workbook.
To	see	this	event	in	action,	suppose	you	do	not	want	to	formally	protect	the	workbook,	but
you	want	to	disallow	the	addition	of	any	new	worksheets.	This	event	procedure	promptly
deletes	a	new	sheet	as	soon	as	it	is	added,	with	a	message	box	informing	the	user	that
adding	new	sheets	is	not	permitted:

Private	Sub	Workbook_NewSheet(ByVal	Sh	As	Object)

Dim	asn	As	String

asn	=	ActiveSheet.Name

Application.EnableEvents	=	False

Application.DisplayAlerts	=	False

Sheets(ActiveSheet.Name).Delete

MsgBox	"Sorry,	new	sheets	are	not	allowed	to	be	added.",	vbCritical,	"	FYI"

Application.DisplayAlerts	=	True

Application.EnableEvents	=	True

End	Sub

Workbook_BeforePrint	Event
The	Workbook_BeforePrint	event	is	triggered	before	a	user	attempts	to	print	any	portion
of	the	workbook.	You	can	cancel	the	print	job	by	setting	the	Cancel	parameter	to	True.	If
you	want	to	ensure	that	anything	printed	from	that	workbook	will	have	the	workbook's	full
name	in	the	footer	of	every	printed	page,	the	following	procedure	accomplishes	that:

Private	Sub	Workbook_BeforePrint(Cancel	As	Boolean)

Dim	sht	As	Worksheet

For	Each	sht	In	ThisWorkbook.Sheets

sht.PageSetup.CenterFooter	=	ThisWorkbook.FullName

Next	sht

End	Sub

Workbook_SheetActivate	Event
The	Workbook_SheetActivate	event	is	triggered	when	a	sheet	is	activated	in	the
workbook.	Suppose	you	want	to	always	return	to	cell	A1	whenever	you	activate	any
worksheet,	regardless	of	what	cell	you	had	selected	the	last	time	you	were	in	that
worksheet.	The	following	procedure	using	the	Application.GoTo	statement	does	just	that:

Private	Sub	Workbook_SheetActivate(ByVal	Sh	As	Object)

If	TypeName(Sh)	=	"Worksheet"	Then	Application.Goto	Range("A1"),	True

End	Sub

NOTE	This	example	illustrates	the	distinction	between	a	Sheet	object	and	a
Worksheet	object—they	are	not	necessarily	the	same	things.	Excel	has	several	types
of	Sheet	objects:	worksheets,	chart	sheets,	outdated	dialog	sheets,	and	the	obsolete
macro	sheets.	In	this	example,	a	chart	sheet	would	create	confusion	for	VBA	because
chart	sheets	do	not	contain	cells.	Only	worksheets	contain	cells,	which	is	why	the
TypeName	of	Worksheet	is	the	only	Sheet	object	at	which	this	procedure's	code	is
directed.

Workbook_SheetDeactivate	Event
The	Workbook_SheetDeactivate	event	is	triggered	when	a	sheet	loses	focus,	such	as
when	a	different	sheet	in	the	workbook	is	activated.	If	you	have	a	workbook	with	tables	of
data	on	every	worksheet,	and	you	want	the	tables	to	be	sorted	automatically	by	column	A
whenever	you	leave	the	worksheet,	this	procedure	does	that:

Private	Sub	Workbook_SheetDeActivate(ByVal	Sh	As	Object)

If	TypeName(Sh)	=	"Worksheet"	Then

Sh.Range("A1").CurrentRegion.Sort	Key1:=Sh.Range("A2"),	_

Order1:=xlAscending,	Header:=xlYes

End	If

End	Sub

Workbook_BeforeSave	Event
The	Workbook_BeforeSave	event	is	triggered	just	before	the	workbook	is	saved.	You	can
set	the	Cancel	parameter	to	True	to	stop	the	workbook	from	being	saved.

Suppose	you	want	to	limit	the	time	period	for	a	workbook	to	be	saved.	The	following
procedure	allows	the	workbook	to	be	saved	only	between	9:00	AM	and	5:00	PM:

Private	Sub	Workbook_BeforeSave(ByVal	SaveAsUI	As	Boolean,	Cancel	As	

Boolean)

If	VBA.Time	<	TimeValue("09:00")	_

Or	VBA.Time	>	TimeValue("17:00")	Then	Cancel	=	True

End	Sub

Try	It
In	this	lesson	you	write	a	Workbook_BeforePrint	workbook-level	event	that	instructs
Excel	not	to	print	a	particular	range	of	confidential	data	that	resides	on	a	particular
worksheet.

Lesson	Requirements
To	get	the	sample	database	files	you	can	download	Lesson	14	from	the	book's	website	at
www.wrox.com/go/excelvba24hour.

Step-by-Step
1.	 Open	a	new	workbook	and	activate	Sheet3.	To	prepare	the	worksheet	for	this

demonstration,	populate	range	A1:E20	with	some	sample	data	by	selecting	the	range,
typing	the	word	Hello,	and	pressing	Ctrl+Enter.

2.	 On	your	keyboard,	press	Alt+F11	to	go	to	the	Visual	Basic	Editor,	and	then	press
Ctrl+R	to	ensure	that	the	Project	Explorer	window	is	visible.

3.	 Find	the	name	of	your	workbook	in	the	Project	Explorer,	and	expand	the	folder	named
Microsoft	Excel	Objects.

4.	 The	last	item	at	the	bottom	of	the	list	of	Microsoft	Excel	Objects	is	the	workbook
object,	and	it	is	called	ThisWorkbook.	You'll	want	to	access	the	Code	window	for	the
ThisWorkbook	module,	and	to	do	that,	you	can	either	double-click	the	ThisWorkbook
object	name	or	right-click	it	and	select	View	Code.

5.	 The	cursor	will	be	blinking	in	the	Code	window	of	your	workbook	module.	Directly
above	that,	click	the	down	arrow	belonging	to	the	Object	list,	and	select	Workbook,
which	produces	the	following	default	lines	of	code	in	your	workbook	module:

Private	Sub	Workbook_Open()

End	Sub

6.	 In	this	example	you	write	a	BeforePrint	procedure,	so	click	the	other	down	arrow
above	the	Code	window	for	the	Procedure	field,	and	select	BeforePrint.	VBA
produces	these	lines	of	code,	which	is	just	what	you	want:

Private	Sub	Workbook_BeforePrint(Cancel	As	Boolean)

End	Sub

7.	 Though	not	imperative,	unless	you	are	planning	to	employ	the	Workbook_Open	event,
there's	no	reason	to	keep	the	default	Private	Sub	Workbook_Open()	and	End	Sub
statements,	so	go	ahead	and	delete	them	if	you	like.

8.	 In	this	example,	you	have	confidential	data	on	Sheet3	only,	so	instruct	Excel	that	it's
okay	to	print	anything	on	any	worksheet	other	than	Sheet3:

If	ActiveSheet.Name	<>	"Sheet3"	Then	Exit	Sub

9.	 Invoke	the	Cancel	argument	to	halt	the	print	process	when	an	attempt	is	made	to	print
Sheet3:

http://www.wrox.com/go/excelvba24hour

Cancel	=	True

10.	 Disable	events	because	you	actually	will	be	printing	something,	but	you	don't	want	to
re-trigger	the	BeforePrint	event	while	you	are	already	in	it:

Application.EnableEvents	=	False

11.	 Your	confidential	data	resides	in	range	B5:D12.	Temporarily	format	that	range	with
three	semicolons	to	make	those	cells	unable	to	display	their	contents:

Range("B5:D12").NumberFormat	=	";;;"

12.	 Print	the	worksheet:

ActiveSheet.PrintOut

NOTE	When	you	test	the	Workbook_BeforePrint	procedure,	you	can	use	the
PrintPreview	method	instead	of	the	PrintOut	method,	which	can	save	you	costs
in	paper	and	printer	toner.

13.	 Restore	the	General	format	to	the	confidential	range	so	the	cells	will	be	able	to	show
their	contents	after	the	print	job:

Range("B5:D12").NumberFormat	=	"General"

14.	 Enable	events	again,	now	that	the	print	job	has	been	executed:

Application.EnableEvents	=	True

15.	 When	completed,	the	entire	procedure	looks	like	this,	with	comments	that	have	been
added	to	explain	each	step:

Private	Sub	Workbook_BeforePrint(Cancel	As	Boolean)

'You	have	confidential	data	on	Sheet3	only,

'so	any	other	sheet	is	OK	to	print	anything.

If	ActiveSheet.Name	<>	"Sheet3"	Then	Exit	Sub

'Invoke	the	Cancel	argument	to	halt	the	print	process.

Cancel	=	True

'Disable	events	because	you	actually	will	print	something

'but	you	don't	want	the	BeforePrint	event	to	kick	in.

Application.EnableEvents	=	False

'Your	confidential	data	resides	in	range	B5:D12.

'Temporarily	format	that	range	with	three	semicolons

'to	make	those	cells	unable	to	display	their	contents.

Range("B5:D12").NumberFormat	=	";;;"

'Print	the	worksheet.

ActiveSheet.PrintOut	'demo	with	PrintPreview

'Restore	the	General	format	to	the	confidential	range

'so	the	cells	will	be	able	to	show	their	contents

'after	the	print	job.

Range("B5:D12").NumberFormat	=	"General"

'Enable	events	again,	now	that	the	print	job	has	been	executed.

Application.EnableEvents	=	True

End	Sub

16.	 Press	Alt+Q	to	return	to	the	worksheet.	Test	the	code	by	printing	Sheet3,	noting	that
the	printout	shows	an	empty	range	of	cells,	representing	the	range	of	confidential	data
that	did	not	get	printed.

REFERENCE	Please	select	the	video	for	Lesson	14	online	at
www.wrox.com/go/excelvba24hour.	You	will	also	be	able	to	download	the	code	and
resources	for	this	lesson	from	the	website.

http://www.wrox.com/go/excelvba24hour

Lesson	15
Handling	Duplicate	Items	and	Records
When	you	work	with	data	in	tables	or	lists,	it	is	common	for	some	items	to	appear	more
than	once.	Two	situations	usually	arise	when	duplicate	items	exist,	depending	on	the
nature	of	the	work	at	hand:

The	repeated	items	are	unwanted	and	need	to	be	deleted.	For	example,	if	you	are
compiling	a	list	of	e-mail	addresses,	or	you	are	gathering	a	list	of	people's	names	for
invitation	to	an	event,	you	would	only	want	a	list	of	unique	items.

Items	are	expected	to	be	repeated	in	the	list	and	need	to	be	maintained	for	analysis	or
record-keeping.	For	example,	a	list	of	monthly	payments	made	to	a	vendor	would
show	that	vendor's	name	with	each	transaction.

Deleting	Rows	Containing	Duplicate	Entries
Suppose	a	table	of	data	contains	duplicate	items	in	one	or	more	columns.	To	delete	rows
containing	duplicate	items,	the	first	step	is	to	determine	if	the	table	contains	duplicates	in
just	one	column,	or	if	several	(maybe	all)	columns	contain	duplicate	data.

Deleting	Rows	with	Duplicates	in	a	Single	Column
Suppose	you	have	a	list	of	items	that	are	repeated	in	column	A.	The	macro	named
DeleteDupesColumnA	uses	AdvancedFilter	to	expose	the	first	instance	of	every	item	in
column	A.	The	exposed	rows	are	marked	with	a	value	(the	numeral	1	in	this	example,	but
it	could	be	any	value)	in	a	helper	column.	All	rows	with	empty	cells	in	the	helper	column
are	deleted.

NOTE	For	my	money,	AdvancedFilter	is	the	second-most	powerful	tool	in	Excel,
behind	pivot	tables.	One	of	AdvancedFilter's	capabilities	is	to	filter	for	unique	items
in	a	large	list	at	lightning	speed.

The	macro	executes	in	the	blink	of	an	eye,	even	for	a	list	with	tens	of	thousands	of	rows.
There	are	comments	at	each	step	to	explain	the	deletion	process	using	AdvancedFilter:

Sub	DeleteDupesColumnA()

'Long	variable	for	last	used	column.

Dim	LastColumn	As	Long

With	Application

.ScreenUpdating	=	False

'Determine	last	column	number	of	table,	and	add	a	1	to	it

'to	establish	a	helper	column	that	is	the	column	after

'the	last	column	in	the	data	table.

LastColumn	=	_

Cells.Find(What:="*",	After:=Range("A1"),	SearchOrder:=xlByColumns,	_

SearchDirection:=xlPrevious).Column	+	1

'AdvancedFilter	exposes	unique	entries	and	enters	a	1	in	the	helper

'column	on	the	same	row	of	items	that	first	appear	in	the	list.

With	Range("A1:A"	&	Cells(Rows.Count,	1).End(xlUp).Row)

.AdvancedFilter	Action:=xlFilterInPlace,	Unique:=True

.SpecialCells(xlCellTypeVisible).Offset(0,	LastColumn	-	1).Value	=	1

'Error	bypass	that	is	explained	in	Lesson	20.

'This	is	to	avoid	the	macro	stopping	if	no	duplicate	values	existed.

On	Error	Resume	Next

'Show	all	rows	by	exiting	AdvancedFilter.

ActiveSheet.ShowAllData

'Delete	rows	where	empty	cells	exist	in	the	helper	column,

'indicating	that	the	value	in	column	A	is	a	duplicate.

Columns(LastColumn).SpecialCells(xlCellTypeBlanks).EntireRow.Delete

Err.Clear

End	With

'Clear	the	helper	column.

Columns(LastColumn).Clear

.ScreenUpdating	=	True

End	With

End	Sub

Your	lists	will	not	always	have	its	duplicate	entries	in	column	A.	The	next	list	you	receive
might	have	its	duplicate	entries	in	a	different	column,	say	column	D.	The
DeleteDupesColumnD	macro	is	a	modification	of	the	previous	macro,	with	comments
showing	where	and	how	to	change	the	relevant	column	references:

Sub	DeleteDupesColumnD()

'Ask	the	user	to	confirm	their	intention	of	deleting

'the	duplicate	items	in	column	D.

Dim	myConfirmation	As	Integer

myConfirmation	=	_

MsgBox("Do	you	want	to	delete	the	duplicates"	&	vbCrLf	&	_

"in	column	D?"	&	vbCrLf	&	vbCrLf	&	_

"Once	the	duplicates	are	deleted,"	&	vbCrLf	&	_

"the	macro	cannot	undo	that	action.",	_

vbQuestion	+	vbYesNo,	_

"Please	confirm:")

'If	the	answer	is	no,	exit	the	macro.

If	myConfirmation	=	vbNo	Then

MsgBox	"That's	fine,	nothing	will	be	deleted.",	_

vbInformation,	_

"You	clicked	No."

Exit	Sub

Else

'If	the	answer	is	yes,	continue	with	the	deletion.

MsgBox	"Please	click	OK	to	delete	the	duplicates.",	_

vbInformation,	_

"Thanks	for	confirming!"

End	If

With	Application

.ScreenUpdating	=	False

Dim	LastColumn	As	Long

LastColumn	=	_

Cells.Find(What:="*",	After:=Range("A1"),	SearchOrder:=xlByColumns,	_

SearchDirection:=xlPrevious).Column	+	1

'In	the	next	line	you	specify	column	D.

'If	this	were	for	column	L	instead	of	column	D,	the	code	would	read

'With	Range("L1:L"	&	Cells(Rows.Count,	12).End(xlUp).Row)

With	Range("D1:D"	&	Cells(Rows.Count,	4).End(xlUp).Row)

.AdvancedFilter	Action:=xlFilterInPlace,	Unique:=True

'In	the	next	line,	notice	the	number	4	in	the	Cells	property,

'which	is	column	D.	If	this	were	for	column	L	instead	of	column	D,

'number	4	would	be	12,	example	.Offset(0,	LastColumn	-	12).Value	=	1

.SpecialCells(xlCellTypeVisible).Offset(0,	LastColumn	-	4).Value	=	1

On	Error	Resume	Next

ActiveSheet.ShowAllData

Columns(LastColumn).SpecialCells(xlCellTypeBlanks).EntireRow.Delete

Err.Clear

End	With

Columns(LastColumn).Clear

.ScreenUpdating	=	True

End	With

End	Sub

NOTE	Notice	in	these	macros	that	no	cell	or	row	is	selected,	which	would	have
slowed	things	down,	and	a	filter	is	utilized	for	the	entire	range	instead	of	a	loop	for
each	row.	When	deleting	rows,	use	a	filter	when	you	can	because	it	is	much	faster
than	looping	through	cells	one	by	one.

Please	keep	in	mind	that	there	is	not	an	undo	option	after	a	macro	runs.	It's	a	wise
practice	to	let	the	users	of	your	projects	know	the	consequence	of	running	a	macro
that	deletes	data.	For	example,	the	DeleteDupesColumnD	macro	begins	with	a
message	box	to	inform	the	user	that	the	macro's	actions	cannot	be	undone,	and	to
confirm	their	intention	to	delete	the	duplicate	items.

Deleting	Rows	with	Duplicates	in	More	Than	One	Column
When	you	have	a	list	of	data,	sometimes	it	is	not	enough	to	simply	delete	rows	with
duplicated	information	based	only	on	the	items	in	one	column.	Multicolumn	lists	can	have
duplicated	records	when	every	item	in	every	column	of	a	row's	data	matches	that	of
another	row's	entire	data.	In	those	cases,	you	need	to	compare	a	concatenated	string	of
each	record's	(row's)	data,	and	compare	that	to	the	concatenated	strings	of	all	the	other
rows.

Take	a	close	look	at	Figure	15.1.	In	the	original	list,	every	item	in	rows	5	and	7	match,	as
do	all	the	items	in	rows	3	and	10.	This	is	a	short	list	for	demonstration	purposes.	If	your
list	were	thousands	of	rows	long,	you	would	need	a	quick	way	to	delete	duplicate	records.
The	macro	named	DeleteDuplicateRecords	is	one	way	to	do	the	job,	with	comments	at
each	step.

Figure	15.1

NOTE	There	is	an	error	bypass	method	in	some	of	these	macros	that	might	be
unfamiliar	to	you.	Lesson	20	covers	the	topic	of	error	handling.

Sub	DeleteDuplicateRecords()

'Turn	off	ScreenUpdating	to	speed	up	the	macro.

Application.ScreenUpdating	=	False

'Declare	a	range	variable	for	the	helper	column	being	used.

Dim	FilterRange	As	Range

'Define	the	range	variable's	dynamic	range.

Set	FilterRange	=	Range("E1:E"	&	Cells(Rows.Count,	1).End(xlUp).Row)

'For	efficiency,	open	a	With	structure	for	the	FilterRange	variable.

With	FilterRange

'Enter	the	formula

'=SUMPRODUCT((A1:$A1=$A1)*(B1:$B1=$B1)*(C1:$C1=$C1)*(D1:$D1=$D1))>1

'in	all	cells	in	column	E	(the	helper	column)	that	returns	either	TRUE

'if	the	record	is	a	duplicate	of	a	previous	one,	or	FALSE	if	the	record

'is	unique	among	the	records	in	all	previous	rows	in	the	list.

.FormulaR1C1	=	_

"=SUMPRODUCT((R1C1:RC1=RC1)*(R1C2:RC2=RC2)*(R1C3:RC3=RC3)*

(R1C4:RC4=RC4))>1"

'Turn	the	formulas	into	static	values	because	they	will	be	filtered,

'and	maybe	deleted	if	any	return	TRUE.

.Value	=	.Value

'AutoFilter	the	helper	column	for	TRUE.

.AutoFilter	Field:=1,	Criteria1:="TRUE"

'Error	bypass	in	case	no	TRUEs	exist	in	the	helper	column.

On	Error	Resume	Next

'This	next	line	resizes	the	FilterRange	variable	to	exclude	the	first	row.

'Then,	it	deletes	all	visible	filtered	rows.

.Offset(1).Resize(.Rows.Count	-	

1).SpecialCells(xlCellTypeVisible).EntireRow.Delete

'Clear	the	Error	object	in	case	a	run	time	error	would	have	occurred,

'that	is,	if	no	TRUEs	existed	in	the	helper	column	to	be	deleted.

Err.Clear

'Close	the	With	structure	for	the	FilterRange	variable	object.

End	With

'Exit	(stop	using)	AutoFilter.

ActiveSheet.AutoFilterMode	=	False

'Clear	all	helper	values	(there	would	only	be	FALSEs	at	this	moment).

'Note	that	Columns(5)	means	column	E	which	is	the	fifth	column	from	the	

left

'on	an	Excel	spreadsheet.

Columns(5).Clear

'Clear	the	range	object	variable	to	restore	system	memory.

Set	FilterRange	=	Nothing

'Turn	ScreenUpdating	back	on.

Application.ScreenUpdating	=	True

End	Sub

Deleting	Some	Duplicates	and	Keeping	Others
This	section	shows	a	“this	way	or	that	way”	pair	of	macros	that	use	an	array	to	hold	a	set
of	items	to	determine	which	rows	you	want	to	keep	or	delete.	In	Figure	15.2,	an	original
list	has	clothing	items	in	column	A	that	are	accompanied	by	various	colors	of	those	items
in	column	B.

Figure	15.2

Both	macros	hold	the	same	array	items	of	Red,	White,	and	Blue.	The	macro	named
KeepOnlyArrayColors	keeps	all	rows	where	Red,	White,	or	Blue	are	found	in	column	B,
while	deleting	all	the	other	rows.	The	macro	named	DeleteArrayColors	does	the
opposite:	It	deletes	all	rows	where	Red,	White,	or	Blue	are	found	in	column	B,	but	keeps
all	the	other	rows.

Sub	KeepOnlyArrayColors()

Application.ScreenUpdating	=	False

Dim	LastRow	as	Long,	rng	As	Range

LastRow	=	Cells(Rows.Count,	1).End(xlUp).Row

Set	rng	=	Range("B2:B"	&	LastRow)

Dim	ColorList	As	Variant,	ColorItem	As	Variant

ColorList	=	Array("Red",	"White",	"Blue")

For	Each	ColorItem	In	ColorList

rng.Replace	What:=ColorItem,	Replacement:=ColorItem	&	"|",	LookAt:=xlWhole

Next	ColorItem

rng.AutoFilter	Field:=1,	Criteria1:="<>*|"

On	Error	Resume	Next

rng.SpecialCells(xlCellTypeVisible).EntireRow.Delete

Err.Clear

rng.Replace	What:="|",	Replacement:="",	LookAt:=xlPart

Set	rng	=	Nothing

ActiveSheet.AutoFilterMode	=	False

Application.ScreenUpdating	=	True

End	Sub

Sub	DeleteArrayColors()

Application.ScreenUpdating	=	False

Dim	LastRow	as	Long,	rng	As	Range

LastRow	=	Cells(Rows.Count,	1).End(xlUp).Row

Set	rng	=	Range("B2:B"	&	LastRow)

Dim	ColorList	As	Variant,	ColorItem	As	Variant

ColorList	=	Array("Red",	"White",	"Blue")

For	Each	ColorItem	In	ColorList

rng.Replace	What:=ColorItem,	Replacement:="",	LookAt:=xlWhole

Next	ColorItem

On	Error	Resume	Next

rng.SpecialCells(xlCellTypeBlanks).EntireRow.Delete

Err.Clear

Set	rng	=	Nothing

Application.ScreenUpdating	=	True

End	Sub

Working	with	Duplicate	Data
As	I	wrote	at	the	beginning	of	this	lesson,	the	nature	of	some	projects	is	to	expect
duplicated	data	and	to	work	with	it	in	some	way.	The	following	examples	show	how	VBA
can	make	duplicated	data	work	to	your	advantage.

Compiling	a	Unique	List	from	Multiple	Columns
From	a	single-column	list	containing	repeated	items,	you	can	extract	a	list	of	unique	items
using	AdvancedFilter.	For	example,	the	following	line	of	code	copies	a	unique	list	of
items	from	column	A	into	column	B:

Range("A1").CurrentRegion.AdvancedFilter	Action:=xlFilterCopy,	_

CopyToRange:=Range("B1"),	Unique:=True

The	question	becomes,	what	if	you	want	to	extract	a	unique	list	from	a	table	that	has	many
columns	of	repeatedly	listed	items?	In	Figure	15.3,	a	fictional	quarterly	survey	ranks	the
top-10	vacation	destinations.	Many	of	those	destinations	are	repeated	among	the	four
quarterly	columns.	The	macro	named	UniqueList	lists	all	unique	vacation	destinations
from	the	table	in	column	G:

Sub	UniqueList()

'Turn	off	ScreenUpdating

Application.ScreenUpdating	=	False

'Declare	and	define	variables

Dim	cell	As	Range,	TableRange	As	Range

Dim	xRow	As	Long,	varCell	As	Variant

Set	TableRange	=	Range("B4:E13")

xRow	=	2

'Clear	column	G	(column	#7)	where	the	unique	list	will	go.

Columns(7).Clear

'Enter	the	header	label	in	cell	G1	and	bold	cell	G1.

With	Range("G1")

.Value	=	"Unique	list:"

.Font.Bold	=	True

End	With

'Loop	through	each	cell	in	the	table	range,

'and	add	that	cell's	value	to	the	list	if	it

'does	not	exist	in	the	list	yet.

For	Each	cell	In	TableRange

varCell	=	Application.Match(cell.Value,	Columns(7),	0)

If	IsError(varCell)	Then

Err.Clear

Cells(xRow,	7).Value	=	cell.Value

xRow	=	xRow	+	1

End	If

Next	cell

'Clear	the	TableRange	object	variable	from	system	memory.

Set	TableRange	=	Nothing

'Optional,	sort	the	list	in	alphabetical	order.

Range("G1").CurrentRegion.Sort	Key1:=Range("G2"),	_

Order1:=xlAscending,	Header:=xlYes

'Autofit	column	G.

Columns(7).AutoFit

'Turn	ScreenUpdating	back	on.

Application.ScreenUpdating	=	True

End	Sub

Figure	15.3

Updating	a	Comment	to	List	Unique	Items
This	section	shows	how	you	can	automatically	update	a	comment	to	show	unique	items	in
sorted	order	from	a	list	containing	repeated	items.	When	a	new	unique	item	is	added	to	the
list,	the	comment	is	immediately	updated	in	real	time.

In	Figure	15.4,	a	company	keeps	an	ongoing	list	of	its	clients	and	dates	of	transactions.
When	a	new	client	is	added	to	the	list,	such	as	what	is	happening	in	cell	A20,	the	comment
in	cell	A1	is	updated	to	show	that	new	client	name	in	a	sorted	list.

Figure	15.4

NOTE	This	example	uses	a	Worksheet_Change	event	procedure.	The	code	goes	into
the	module	of	your	worksheet.	Lesson	13	covers	event	coding,	including	how	and
where	to	place	this	code.

Private	Sub	Worksheet_Change(ByVal	Target	As	Range)

'Limit	the	event	to	monitor	only	changes	in	column	A.

If	Target.Column	<>	1	Then	Exit	Sub

'Prepare	Excel's	application	settings.

With	Application

.ScreenUpdating	=	False

.DisplayAlerts	=	False

.EnableEvents	=	False

'Declare	variables.

Dim	HelperColumn	As	Long,	cell	As	Range,	strCommentText	As	String

'Define	the	helper	column	which	is	the	last	used	column	+	2,

'to	use	for	listing	the	unique	client	names	and	sorting	them.

HelperColumn	=	_

Cells.Find(What:="*",	After:=Range("A1"),	_

SearchOrder:=xlByColumns,	_

SearchDirection:=xlPrevious).Column	+	2

'List	the	unique	client	names	in	the	helper	column.

Range("A1:A"	&	Cells(Rows.Count,	1).End(xlUp).Row).AdvancedFilter	_

Action:=xlFilterCopy,	CopyToRange:=Cells(1,	HelperColumn),	Unique:=True

'Sort	the	unique	client	list	in	ascending	order.

Cells(1,	HelperColumn).Sort	_

Key1:=Cells(2,	HelperColumn),	_

Order1:=xlAscending,	_

Header:=xlYes

'Build	the	comment's	text	string,	comprised	by	each	unique	client	name

'in	a	vertical	list.	To	do	that,	separate	each	name	with	the	ascii	10

'carriage	return	character.

strCommentText	=	""

For	Each	cell	In	Cells(1,	HelperColumn).CurrentRegion

'Bypass	the	header	cell	in	row	1.

If	cell.Row	<>	1	Then	_

strCommentText	=	strCommentText	&	Chr(10)	&	cell.Value

Next	cell

strCommentText	=	"Unique	client	names:"	&	Chr(10)	&	strCommentText

'You	are	maintaining	your	comment	in	cell	A1	that	lists	the	unique

'client	names	whenever	a	new	one	is	added	to	column	A	in	the	table.

With	Range("A1")

If	Not	.Comment	Is	Nothing	Then	.Comment.Delete

.AddComment

With	.Comment

.Visible	=	False

.Text	Text:=strCommentText

.Shape.TextFrame.AutoSize	=	True

End	With

End	With

'Clear	the	helper	column's	unique	list	which	now	is	represented

'in	the	comment.

Columns(HelperColumn).Clear

'Reset	Excel's	application	settings.

.EnableEvents	=	True

.DisplayAlerts	=	True

.ScreenUpdating	=	True

End	With

End	Sub

Selecting	a	Range	of	Duplicate	Items
This	section	shows	is	a	convenient	way	to	select	a	range	of	cells	with	duplicate	items	in	a
column.	In	this	example,	Figure	15.5	shows	a	list	that	is	sorted	by	column	A.	When	you
double-click	any	cell	in	the	table,	rows	are	selected	that	have	the	same	item	in	column	A
as	the	cell	in	column	A	of	the	row	you	double-clicked.

Figure	15.5

NOTE	Although	this	example	shows	the	Select	method,	you	can	change	the	code	to
a	different	method,	such	as	to	copy	or	format	the	range.

One	of	the	conveniences	of	selecting	the	relevant	range,	as	shown	in	Figure	15.5,	is	to
quickly	view	the	selection's	calculated	information	on	the	status	bar.	This	is	a	worksheet-
level	event	procedure,	so	the	following	code	goes	into	the	module	of	your	worksheet:

Private	Sub	Worksheet_BeforeDoubleClick(ByVal	Target	As	Range,	Cancel	As	

Boolean)

'Program	only	for	rows	in	the	list,	excluding	row	1.

If	Target.Row	=	1	Then	Exit	Sub

If	Intersect(Target,	Range("A1").CurrentRegion)	Is	Nothing	Then	Exit	Sub

Cancel	=	True

'Declare	variables

Dim	myVal	As	String,	LastColumn	As	Long

Dim	Add1	As	Long,	Add2	As	Long

Dim	xRow	As	Long,	LastRow	As	Long

'Define	variables

myVal	=	Cells(Target.Row,	1).Value

LastRow	=	Cells(Rows.Count,	1).End(xlUp).Row

LastColumn	=	_

Cells.Find(What:="*",	After:=Range("A1"),	SearchOrder:=xlByColumns,	_

SearchDirection:=xlPrevious).Column

Add1	=	Columns(1).Find(What:=myVal,	LookIn:=xlValues,	LookAt:=xlWhole).Row

xRow	=	Add1

'Identify	the	range	of	rows	having	the	same	values	in	column	A.

Do

If	Cells(xRow	+	1,	1).Value	<>	myVal	Then

Add2	=	xRow	+	1

Exit	Do

Else

xRow	=	xRow	+	1

End	If

Loop	Until	xRow	=	LastRow

Add2	=	xRow

'Select	(or	copy	or	format)	records	having	the	same	values	in	column	A.

Range(Cells(Add1,	1),	Cells(Add2,	LastColumn)).Select

End	Sub

Inserting	an	Empty	Row	at	Each	Change	in	Items
A	common	request	is	how	to	insert	an	empty	row	at	each	change	of	data	in	a	column.	In
Figure	15.6,	a	table	is	preferred	to	be	sorted	by	the	Client	Name	column	with	an	empty
row	at	each	change	in	Client	Name.	The	macro	named	Sort_Separate_ClientName	does
that,	with	comments	along	the	way	to	explain	the	process:

Sub	Sort_Separate_ClientName()

'Turn	off	ScreenUpdating.

Application.ScreenUpdating	=	False

'Sort	the	table	by	ClientName	in	ascending	order.

Range("A3").CurrentRegion.Sort	_

Key1:=Range("A4"),	Order1:=xlAscending,	Header:=xlYes

'Declare	a	Long	type	variable	for	the	last	row	in	column	A.

Dim	LastRow	As	Long

'Determine	the	last	row	of	data.

LastRow	=	Cells(Rows.Count,	1).End(xlUp).Row

'Declare	a	Long	type	variable	for	evaluating	each	row.

Dim	xRow	As	Long

'Loop	through	each	ClientName	item	in	column	A	of	the	table.

'When	the	item	being	evaluated	is	not	the	same	as	the	item

'in	the	row	above	it,	that	means	the	client	name	is	different.

'Insert	an	empty	row	at	that	change.

'Notice,	work	from	the	bottom	row	upwards	because	you	are

'inserting	rows.

For	xRow	=	LastRow	To	5	Step	-1

If	Cells(xRow,	1).Value	<>	Cells(xRow	-	1,	1).Value	Then	_

Rows(xRow).Resize(1).Insert

Next	xRow

'Turn	ScreenUpdating	on	again.

Application.ScreenUpdating	=	True

End	Sub

Figure	15.6

Try	It
For	this	lesson,	a	table	of	data	includes	names	of	stores	in	column	A	that	are	repeated
elsewhere	in	the	column.	A	macro	is	requested	to	copy	the	individual	rows	of	data	for	each
unique	store	name,	and	paste	those	rows	into	their	own	workbook.

The	workbooks	are	named	by	the	name	of	the	store,	appended	with	the	date	and	time	the
macro	was	run.	The	workbooks	are	saved	in	the	same	folder	path	as	the	workbook	holding
the	original	data.

Lesson	Requirements
To	get	the	sample	workbook,	you	can	download	Lesson	15	from	the	book's	website	at
www.wrox.com/go/excelvba24hour.

Hints
The	following	hints	might	help	you	as	you	complete	this	Try	It:

Your	list	of	data	need	not	be	too	lengthy;	a	couple	dozen	rows	of	data	would	suffice.

In	the	downloadable	workbook	for	this	lesson,	column	A	contains	a	list	of	store	names,
which	is	why	you	see	the	references	to	“Store”	in	the	Step-by-Step	code.

Repeat	each	item	at	least	once	(as	mentioned	in	Step	1),	but	feel	free	to	repeat	each
item	as	many	times	in	column	A	as	you	want.

For	convenience,	the	destination	path	where	the	new	workbooks	will	be	saved	is	the
same	as	the	path	of	the	workbook	holding	the	original	data.

When	you	use	a	helper	column	or	row,	be	sure	to	leave	at	least	one	empty	column	or
row	between	it	and	the	data	table	you	are	working	with.	Without	the	empty	column	or
row,	VBA	might	assume	your	helper	data	is	a	part	of	the	original	table.

When	your	macros	involve	creating	or	working	in	other	workbooks	while	you	refer	to
a	worksheet	in	your	workbook	holding	the	macro,	be	sure	to	qualify	your	worksheet's
parent	name	with	the	ThisWorkbook	object.

When	your	macros	create	potentially	dozens	or	hundreds	of	new	workbooks,	close	the
workbooks	after	you	name	them	as	shown	in	Step	24.	It's	rare	for	a	user	to	want	that
many	workbooks	open	at	the	same	time	after	the	macro	has	completed.

Step-by-Step
1.	 Start	by	opening	a	new	workbook	and	copy	or	enter	a	table	of	data	that	includes	a	few

columns.	Put	column	labels	in	row	1,	and	repeat	each	of	the	entries	in	column	A	at
least	once.

2.	 Save	your	workbook	as	a	macro-enabled	type	with	the	extension	.xlsm.

3.	 Press	Alt+F11	to	go	to	the	Visual	Basic	Editor.

4.	 From	the	VBE	menu	bar,	click	Insert Module.

http://www.wrox.com/go/excelvba24hour

5.	 In	the	module	you	just	created,	type	Sub	UniqueStoresToWorkbooks	and	press	Enter.
VBA	automatically	places	a	pair	of	empty	parentheses	at	the	end	of	the	Sub	line,
followed	by	an	empty	line,	and	the	End	Sub	line	below	that.	Your	macro	should	look
like	this	so	far:

Sub	UniqueStoresToWorkbooks()

End	Sub

6.	 Turn	off	ScreenUpdating	to	speed	up	the	macro	when	you	run	it,	and	to	keep	your
screen	from	flickering,	which	happens	during	macros	that	manipulate	row,	column,
and	workbook	objects	as	this	macro	does:

Application.ScreenUpdating	=	False

7.	 Declare	variables:

'Identify	and	count	each	row	of	a	unique	list	of	items	in	column	A.

Dim	UniqueRow	As	Long,	lngUniqueCount	As	Long

'String	variables	for	each	unique	item	name	and	its	workbook	name.

Dim	strUniqueStore	As	String,	strUniqueStoreWBname	As	String

'Number	of	the	data	table's	last	row;	next	available	column	one	column	

removed

'from	the	rightmost	column	of	the	data	table;	range	occupied	by	the	data	

table.

Dim	LastRow	As	Long,	NextColumn	As	Long,	FilterRange	As	Range

'Path	to	receive	the	new	workbooks;	name	of	sheet	where	the	data	table	

resides.

Dim	strDestinationFolderPath	As	String,	asn	As	String

8.	 Define	the	destination	path	that	will	receive	the	new	workbooks,	which	is	the	same
path	of	the	active	workbook	holding	this	macro:

strDestinationFolderPath	=	ThisWorkbook.Path	&	"\"

9.	 Define	the	sheet	name	holding	the	original	list:

asn	=	ActiveSheet.Name

10.	 Identify	the	last	row	in	the	list,	using	column	A:

LastRow	=	Cells(Rows.Count,	1).End(xlUp).Row

11.	 Identify	the	column	that	is	two	columns	removed	from	the	right-most	column	in	the
list.	This	column	will	hold	the	unique	store	names,	with	one	empty	column	separating
it	from	the	list:

NextColumn	=	Cells.Find(What:="*",	After:=Range("A1"),	_

SearchOrder:=xlByColumns,	SearchDirection:=xlPrevious).Column	+	2

12.	 Define	the	range	(which	is	column	A	of	the	list)	that	will	be	filtered	for	each	unique
store	name:

Set	FilterRange	=	_

ThisWorkbook.Worksheets(asn).Range("A1:A"	&	LastRow)

13.	 List	all	unique	store	names	using	AdvancedFilter:

FilterRange.AdvancedFilter	_

Action:=xlFilterCopy,	CopyToRange:=Cells(1,	NextColumn),	Unique:=True

14.	 Count	the	unique	store	names,	not	including	the	header	cell.	This	is	a	service	to	the
users	to	let	them	know	in	a	message	box	at	the	end	of	the	macro	how	many	unique
items	were	found,	hence	how	many	new	workbooks	were	created:

lngUniqueCount	=	WorksheetFunction.CountA(Columns(NextColumn))	-	1

15.	 Open	a	For…Next	loop	to	loop	through	all	unique	store	names	to	be	filtered	for
exposing	their	respective	data:

For	UniqueRow	=	2	To	Cells(Rows.Count,	NextColumn).End(xlUp).Row

16.	 Create	the	workbook	to	hold	the	next	unique	store	name.	The	1	in	this	syntax	refers	to
a	standard	Excel	worksheet:

Workbooks.Add	1

17.	 Assign	the	name	of	the	next	unique	store	to	the	strUniqueStore	variable.	Turn	off
AutoFilter	first	to	expose	all	rows	on	the	worksheet:

With	ThisWorkbook.Worksheets(asn)

.AutoFilterMode	=	False

strUniqueStore	=	.Cells(UniqueRow,	NextColumn).Value

End	With

18.	 Define	the	full	workbook	name	of	the	next	unique	store	name,	including	the	extension.
The	workbook	name's	date	and	time	suffix	helps	to	reference	the	creation	date	at	a
glance	when	the	workbooks	are	viewed	in	Windows	File	Explorer,	and	to	avoid
overriding	existing	workbook	names:

strUniqueStoreWBname	=	strUniqueStore	&	"_"	&	_

Format(VBA.Now,	"YYYYMMDD_HHMMSS")	&	".xlsx"

19.	 AutoFilter	the	list	for	the	next	unique	store	name:

FilterRange.AutoFilter	Field:=1,	Criteria1:=strUniqueStore

20.	 Copy	the	visible	(filtered)	rows	for	this	unique	store	name,	and	paste	them	to	the
workbook	you	created	for	it	in	Step	16:

FilterRange.SpecialCells(xlCellTypeVisible).EntireRow.Copy	Range("A1")

21.	 Keep	in	mind	that	the	active	workbook	at	this	moment	is	the	new	workbook	you
created	for	it.	The	unique	list	of	store	names	is	still	visible	and	not	wanted,	so	clear
that	column:

Columns(NextColumn).Clear

22.	 Autofit	the	columns	in	this	new	workbook	for	readability	as	a	service	to	the	user:

Cells.Columns.AutoFit

23.	 Save	the	new	workbook:

ActiveWorkbook.SaveAs	_

Filename:=strDestinationFolderPath	&	_

strUniqueStoreWBname,	FileFormat:=51

NOTE	In	Step	18,	the	workbooks	are	saved	with	the	.xlsx	extension,	which	is
why	the	statement	FileFormat:=51	is	required	when	naming	the	files.	If	you	save
a	workbook	with	the	.xlsm	extension,	the	statement	FileFormat:=52	would	be
required.

24.	 Close	the	new	workbook:

ActiveWorkbook.Close

25.	 Continue	the	loop	for	all	the	unique	store	names:

Next	UniqueRow

26.	 Reactivate	this	workbook	and	the	worksheet	holding	the	original	data	table:

ThisWorkbook.Activate

Worksheets(asn).Activate

27.	 Turn	off	AutoFilter:

ActiveSheet.AutoFilterMode	=	False

28.	 Clear	the	unique	list	that	you	created	in	Step	13:

Columns(NextColumn).Clear

29.	 Release	the	FilterRange	object	variable	from	system	memory:

Set	FilterRange	=	Nothing

30.	 Turn	ScreenUpdating	back	on:

Application.ScreenUpdating	=	True

31.	 With	a	message	box,	confirm	for	the	user	that	the	task	is	completed:

MsgBox	_

"There	were	"	&	lngUniqueCount	&	"	different	Stores."	&	vbCrLf	&	_

"Their	respective	data	has	been	consolidated	into"	&	vbCrLf	&	_

"individual	workbooks,	all	saved	in	the	path"	&	vbCrLf	&	_

strDestinationFolderPath	&	".",	vbInformation,	"Done!"

End	Sub

32.	 With	your	macro	completed,	press	Alt+Q	to	return	to	the	worksheet.	To	test	the	macro,
press	Alt+F8	to	show	the	Macro	dialog	box.	Select	the	macro	named
UniqueStoresToWorkbooks	and	click	Run.	Here	is	what	the	macro	looks	like	in	its

entirety:

Sub	UniqueStoresToWorkbooks()

'Turn	off	screen	updating.

Application.ScreenUpdating	=	False

'Declare	and	define	variables.

'Identify	and	count	each	row	of	a	unique	list	of	items	in	column	A.

Dim	UniqueRow	As	Long,	lngUniqueCount	As	Long

'String	variables	for	each	unique	item	name	and	its	workbook	name.

Dim	strUniqueStore	As	String,	strUniqueStoreWBname	As	String

'Number	of	the	data	table's	last	row;	next	available	column	one	column	

removed

'from	the	rightmost	column	of	the	data	table;	range	occupied	by	the	data	

table.

Dim	LastRow	As	Long,	NextColumn	As	Long,	FilterRange	As	Range

'Path	to	receive	the	new	workbooks;	name	of	sheet	where	the	data	table	

resides.

Dim	strDestinationFolderPath	As	String,	asn	As	String

'Define	variables.

'The	destination	path	that	will	receive	these	new	workbooks

'is	the	same	path	as	the	active	workbook.

strDestinationFolderPath	=	ThisWorkbook.Path	&	"\"

'Start	from	the	sheet	name	holding	the	original	list.

asn	=	ActiveSheet.Name

'Identify	the	last	cell	row	of	the	data	table.

LastRow	=	Cells(Rows.Count,	1).End(xlUp).Row

'Identify	the	column	that	is	2	columns	removed	from

'the	right-most	column	in	the	list.

NextColumn	=	Cells.Find(What:="*",	After:=Range("A1"),	_

SearchOrder:=xlByColumns,	_

SearchDirection:=xlPrevious).Column	+	2

'The	range	(which	is	column	A	of	the	list)	that	will	be

'filtered	for	each	unique	store	name.

Set	FilterRange	=	_

ThisWorkbook.Worksheets(asn).Range("A1:A"	&	LastRow)

'List	all	unique	Store	Names	using	AdvancedFilter.

FilterRange.AdvancedFilter	Action:=xlFilterCopy,	_

CopyToRange:=Cells(1,	NextColumn),	Unique:=True

'Count	the	unique	Stores,	not	including	the	header	cell.

'This	is	a	service	to	the	user	to	let	them	know	in	a	message	box

'at	the	end	of	the	macro	how	many	unique	items	were	found,

'meaning	how	many	new	workbooks	were	created.

lngUniqueCount	=	WorksheetFunction.CountA(Columns(NextColumn))	-	1

'Open	a	For…Next	loop,	to	loop	through	all

'unique	store	names,	filter	for	them,	and	paste	their	data	to	a

'new	workbook,	saved	with	creation	date	and	time.

For	UniqueRow	=	2	To	Cells(Rows.Count,	NextColumn).End(xlUp).Row

'Create	the	workbook	to	hold	the	next	unique	store	name.

Workbooks.Add	1

'Assign	the	name	of	the	next	unique	store	to

'the	strUniqueStore	variable.

'AutoFilter	is	turned	off	first	to	expose	all	rows	on	the	sheet.

With	ThisWorkbook.Worksheets(asn)

.AutoFilterMode	=	False

strUniqueStore	=	.Cells(UniqueRow,	NextColumn).Value

End	With

'Define	the	full	workbook	name	of	the	next

'unique	store	name,	including	extension.

'The	workbook	name's	date	and	time	suffix	helps	to

'reference	the	creation	date	at	a	glance	when	the

'workbooks	are	viewed	in	Windows	File	Explorer,

'and	to	avoid	overriding	existing	workbook	names.

strUniqueStoreWBname	=	strUniqueStore	&	"_"	&	_

Format(VBA.Now,	"YYYYMMDD_HHMMSS")	&	".xlsx"

'Filter	the	list	for	that	next	unique	store	name.

FilterRange.AutoFilter	Field:=1,	Criteria1:=strUniqueStore

'Copy	the	visible	(filtered)	rows	for	this	unique

'store	name,	and	paste	them	to	their	new	workbook.

FilterRange.SpecialCells(xlCellTypeVisible).EntireRow.Copy	Range("A1")

'Keep	in	mind	that	the	active	workbook	at	this	moment

'is	the	new	workbook	you	created	for	it.	The	unique	list	of

'store	names	is	still	visible	and	not	needed,	so	clear	that	column.

Columns(NextColumn).Clear

'Autofit	the	columns	in	this	new	workbook	for	readability.

Cells.Columns.AutoFit

'Save	and	close	the	new	workbook.

ActiveWorkbook.SaveAs	_

Filename:=strDestinationFolderPath	&	_

strUniqueStoreWBname,	FileFormat:=51

'Close	the	new	workbook.

ActiveWorkbook.Close

	'Continue	the	loop	through	all	the	unique	store	names.

Next	UniqueRow

'Re-activate	this	workbook	and	the	source	worksheet.

ThisWorkbook.Activate

Worksheets(asn).Activate

'Turn	off	autofilter.

ActiveSheet.AutoFilterMode	=	False

'Clear	the	unique	list.

Columns(NextColumn).Clear

'Release	the	object	variable	from	system	memory.

Set	FilterRange	=	Nothing

'Turn	screen	updating	back	on.

Application.ScreenUpdating	=	True

'Confirm	for	the	user	that	the	parsing	is	completed.

MsgBox	_

"There	were	"	&	lngUniqueCount	&	"	different	Stores."	_

&	vbCrLf	&	_

"Their	respective	data	has	been	consolidated	into"	&	_

vbCrLf	&	_

"individual	workbooks,	all	saved	in	the	path"	&	vbCrLf	&	_

strDestinationFolderPath	&	".",	vbInformation,	"Done!"

End	Sub

REFERENCE	Please	select	the	video	for	Lesson	15	at
www.wrox.com/go/excelvba24hour.	You	will	also	be	able	to	download	the	code	and
resources	for	this	lesson	from	the	website.

http://www.wrox.com/go/excelvba24hour

Lesson	16
Using	Embedded	Controls
You've	seen	many	ways	to	run	macros,	including	using	keyboard	shortcuts,	the	Macro
dialog	box,	and	the	Visual	Basic	Editor.	This	lesson	shows	you	how	to	execute	VBA	code
by	clicking	a	button	or	other	object	that	you	can	place	onto	your	worksheet	to	make	your
macros	easier	to	run.

Working	with	Form	Controls	and	ActiveX	Controls
A	control	is	an	object	such	as	a	Button,	Label,	TextBox,	OptionButton,	or	CheckBox	that
you	can	place	onto	a	UserForm	(covered	in	Lessons	21,	22,	and	23)	or	embed	onto	a
worksheet.	VBA	supports	these	and	more	controls,	which	provide	an	intuitive	way	for	you
to	run	your	macros	quickly	and	with	minimal	effort.

Excel	supports	two	generations	of	controls.	Form	controls	are	the	original	controls	that
came	with	Excel,	starting	with	version	5.	Form	controls	are	still	fully	supported	in	all	later
versions	of	Excel,	including	Excel	2013.	Form	controls	are	more	stable,	simpler	to	use,
and	more	integrated	with	Excel.	For	example,	you	can	place	a	Form	control	onto	a	chart
sheet,	but	you	cannot	do	that	with	an	ActiveX	control.

Generally,	ActiveX	controls	from	the	Control	Toolbox	are	more	flexible	with	their
extensive	properties	and	events.	You	can	customize	their	appearance,	behavior,	fonts,	and
other	characteristics.	You	can	also	control	how	different	events	are	responded	to	when	an
ActiveX	control	is	associated	with	those	events.

Form	controls	have	macros	that	are	assigned	to	them.	ActiveX	controls	run	procedures
that	are	based	on	whatever	event(s)	they	have	been	programmed	to	monitor.	ActiveX
controls	don't	look	all	that	scintillating,	but	Form	controls	have	an	even	more	elementary
appearance	that	will	never	win	them	first	prize	in	a	beauty	contest.	However,	both	kinds	of
controls	serve	their	purposes	well	as	Microsoft	intended,	and	they	are	here	to	stay	with
Excel	for	the	foreseeable	future.

CHOOSING	BETWEEN	FORM	CONTROLS	AND
ACTIVEX	CONTROLS
The	primary	differences	between	the	two	kinds	of	controls	are	in	formatting	and
events.	You	use	Form	controls	when	you	need	simple	interaction	with	VBA,	such	as
running	a	macro	by	clicking	a	button.	They	are	also	a	good	choice	when	you	don't
need	VBA	at	all,	but	you	want	an	option	button	or	check	box	on	your	sheet	that	will
be	linked	to	a	cell.	If	you	need	to	color	your	control,	or	format	its	font	type,	or	trigger
a	procedure	based	on	mouse	movement	or	keyboard	activity,	ActiveX	controls	are	the
better	choice.

Be	aware	that	ActiveX	controls	have	a	well-deserved	reputation	for	being	buggy	and
not	behaving	as	reliably	as	do	Form	controls.	Form	controls	will	give	you	minimal
problems,	if	any,	but	they	are	limited	in	what	they	can	do.	As	you	experiment	and
work	with	each	type,	you'll	decide	which	kind	of	control	works	best	for	your
purposes.

The	Forms	Toolbar
The	easiest	way	to	access	Form	controls	is	through	the	Forms	toolbar.	How	you	get	to	the
Forms	toolbar	depends	on	your	version	of	Excel.	For	versions	prior	to	Excel	2007,	from
the	worksheet	menu,	click	View Toolbars Forms,	as	shown	in	Figure	16.1.

Figure	16.1

The	Forms	toolbar	is	like	any	other	toolbar	that	you	can	dock	at	the	top	or	sides	of	the
window,	or	have	floating	on	the	window	above	the	worksheet.	Figure	16.2	shows	the
Forms	toolbar	and	its	control	icons.

Figure	16.2

If	you	are	using	Excel	version	2007,	2010,	or	2013,	you	get	to	the	Forms	and	ActiveX
controls	by	clicking	the	Insert	icon	on	the	Developer	tab	of	the	Ribbon,	as	shown	in	Figure
16.3.

Figure	16.3

NOTE	The	Developer	tab	is	a	very	useful	item	to	place	on	your	Ribbon.	See	the
“Accessing	the	VBA	Environment”	section	in	Lesson	2	for	the	steps	to	display	the
Developer	tab.

Buttons
The	most	commonly	used	Form	control	is	the	Button.	When	you	use	a	Button,	you	have	a
macro	in	mind	that	you	have	either	already	written	or	will	write,	which	will	be	attached	to
the	Button.	The	following	steps	are	a	common	sequence	of	actions	when	using	a	Form
Button:

1.	 Create	the	macro	that	will	be	attached	to	the	Button.	Suppose	you	are	negotiating
rents,	and	you	need	to	frequently	clear	the	range	C4:F4	on	a	company	budget	sheet.

The	macro	you'd	write	is

Sub	ClearData()

Range("C4:F4").Clear

End	Sub

2.	 To	make	it	easy	to	run	that	macro,	you	can	assign	it	to	a	Form	Button.	On	the	Forms
toolbar,	click	the	Button	icon.	Press	down	your	mouse's	left	button,	then	draw	the
Button	into	cell	B4.	As	soon	as	you	do,	the	Assign	Macro	dialog	box	appears,	as
shown	in	Figure	16.4.	Select	the	macro	to	be	assigned	to	the	Button,	and	click	OK.

3.	 With	your	new	Button	selected,	click	it	and	delete	the	entire	default	caption.	Type	the
caption	Clear	Cells,	as	shown	in	Figure	16.5.

4.	 Select	any	worksheet	cell	to	deselect	the	Button.	Go	ahead	and	click	the	Button	to
verify	that	it	clears	the	cells	in	range	C4:F4	as	expected.

Figure	16.4

Figure	16.5

Using	Application.Caller	with	Form	Controls
One	of	the	cool	things	about	Form	controls	is	that	you	can	apply	a	single	macro	to	all	of
them	and	gain	information	about	which	control	was	clicked.	When	you	know	which
Button	was	clicked,	you	can	take	a	specific	action	relating	to	that	Button.

Expanding	on	the	previous	example,	suppose	you	want	to	place	a	Button	on	each	row	of
data,	so	that	when	you	click	a	Button,	the	cells	are	cleared	in	columns	C:F	of	the	row
where	the	Button	resides.	It's	obvious	that	the	original	macro	applies	only	to	the	first
Button	in	the	Rent	row,	so	here	are	the	steps	to	have	one	macro	serve	many	controls:

1.	 Modify	the	ClearData	macro	as	follows.	For	the	Button	that	was	clicked,	the	cell
holding	that	Button's	top-left	corner	is	identified.	The	macro	can	now	be	a
customization	tool	for	each	individual	Button	to	which	it	is	attached:

Sub	ClearData()

Dim	myRow	As	Long

myRow	=	_

ActiveSheet.Buttons(Application.Caller).TopLeftCell.Row

Range(Cells(myRow,	3),	Cells(myRow,	6)).Clear

End	Sub

2.	 Recall	that	the	original	macro	name	is	still	attached	to	that	Button.	Return	to	your
worksheet	and	right-click	the	Button.	Select	Copy	because	you	are	copying	the	Button
and	the	macro	to	which	it	is	attached.

3.	 Select	cell	B5	and	press	Ctrl+V.	Repeat	that	step	for	cells	B6,	B7,	B8,	and	B9.	Your
worksheet	will	resemble	Figure	16.6.

4.	 Test	the	macro	by	clicking	the	Button	on	the	Office	Supplies	row.	When	you	click	that
Button,	the	macro	clears	the	cells	in	row	7,	columns	C:F,	as	shown	in	Figure	16.7.

NOTE	Attaching	a	macro	to	an	embedded	object	is	not	limited	to	Form	controls.	You
can	attach	a	macro	to	pretty	much	any	Drawing	shape	or	picture	that	you	want	to
embed	onto	your	worksheet.

Figure	16.6

Figure	16.7

The	Control	Toolbox
Similar	to	the	Forms	toolbar,	the	Control	Toolbox	can	be	accessed	in	versions	prior	to
Excel	2007	from	the	worksheet	menu	bar.	Click	View Toolbars Control	Toolbox,	as
shown	in	Figure	16.8.

Figure	16.8

The	Control	Toolbox	itself	is	shown	in	Figure	16.9.	If	you	are	using	version	2007,	2010,
or	2013,	you	can	find	the	Forms	and	ActiveX	controls	by	clicking	the	Insert	icon	on	the
Developer	tab	of	the	Ribbon,	shown	in	Figure	16.9.

Figure	16.9

More	than	100	additional	ActiveX	controls	beyond	what	you	see	on	the	Control	Toolbox
are	available.	You	might	notice	an	icon	named	More	Controls	at	the	far	right	of	the
Control	Toolbox	toolbar,	and	in	the	lower-right	corner	of	the	Insert	icon's	drop-down
display	in	Excel	2007,	2010,	and	2013.	When	expanded,	that	icon	(see	Figure	16.10),
reveals	the	additional	ActiveX	controls	available	for	you	to	embed,	as	indicated	in	Figure
16.11.

Figure	16.10

Figure	16.11

NOTE	The	odds	are	you'll	never	need	most	of	those	controls,	but	it	gives	you	a	sense
of	the	expansive	functionality	that	is	available	to	you	with	ActiveX	objects.

CommandButtons
The	ActiveX	CommandButton	is	the	counterpart	to	the	Form	control	button.	As	with
virtually	every	ActiveX	object,	the	CommandButton	has	numerous	properties	through
which	you	can	customize	its	appearance.	Unlike	Form	controls,	an	ActiveX	object	such	as
a	CommandButton	responds	to	event	code.	There	is	no	such	thing	as	a	macro	being
attached	to	a	CommandButton.

From	the	Control	Toolbox,	draw	a	CommandButton	onto	your	worksheet.	Excel	defaults
to	Design	Mode,	allowing	you	to	work	with	the	ActiveX	object	you	just	created.	Right-
click	the	CommandButton	and	select	Properties,	as	shown	in	Figure	16.12.	You	can	see
the	Design	Mode	icon	is	active.

Figure	16.12

You	will	see	the	Properties	window	for	the	CommandButton,	where	you	can	modify	a
number	of	properties.	Change	the	Caption	property	of	the	CommandButton	to	CheckBox
Checker,	as	shown	in	Figure	16.13.

Figure	16.13

Draw	a	Label	control	and	four	CheckBoxes	from	the	Control	Toolbox	below	the
CommandButton.	In	Figure	16.14,	I	changed	the	Label's	caption	to	Check	Your	Favorite
Activities.	I	changed	each	CheckBox's	caption	to	a	different	leisure	activity.

Figure	16.14

Either	double-click	the	CommandButton,	or	right-click	it	and	select	View	Code.	Either
way,	you	go	to	the	worksheet	module	and	the	default	Click	event	is	started	for	you	with
the	following	entry:

Private	Sub	CommandButton1_Click()

End	Sub

NOTE	VBA	code	for	embedded	ActiveX	objects	is	almost	always	in	the	module	of	the
worksheet	upon	which	the	objects	are	embedded.

For	this	demonstration,	when	the	CommandButton	is	clicked,	it	evaluates	every	embedded
object	on	the	worksheet.	When	the	code	comes	across	an	ActiveX	CheckBox,	it
determines	whether	the	CheckBox	is	checked.	At	the	end	of	the	procedure,	a	message	box
appears,	confirming	how	many	(if	any)	CheckBoxes	were	checked,	and	their	captions.	The
entire	code	looks	as	follows:

Private	Sub	CommandButton1_Click()

'Evaluate	which	checkboxes	are	checked.

'Declare	an	Integer	type	variable	to	help

'count	through	the	CheckBoxes,'and	an	Object

'type	variable	to	identify	the	kind	of	ActiveX	control

'(checkboxes	in	this	example)	that	are	selected.

Dim	intCounter	As	Integer,	xObj	As	OLEObject

'Declare	a	String	variable	to	list	the	captions

'of	selected	checkboxes.

Dim	strObj	As	String

'Start	the	Integer	and	String	variables.

intCounter	=	0

strObj	=	""

For	Each	xObj	In	ActiveSheet.OLEObjects

If	TypeName(xObj.Object)	=	"CheckBox"	Then

If	xObj.Object.Value	=	True	Then

intCounter	=	intCounter	+	1

strObj	=	strObj	&	xObj.Object.Caption	&	Chr(10)

End	If

End	If

Next	xObj

'Advise	the	user	of	your	findings.

If	intCounter	=	0	Then

MsgBox	"No	CheckBoxes	were	selected.",	,	"Try	to	get	out	more	often!"

Else

MsgBox	"You	selected	"	&	intCounter	&	"	CheckBox(es):"	&	vbCrLf	&	vbCrLf	&	

_

strobj,	,	"Here	is	what	you	checked:"

End	If

End	Sub

Leave	the	VBE	and	return	to	the	worksheet	by	pressing	Alt+Q.	Click	the	Design	Mode
button	to	exit	Design	Mode.	Figure	16.15	shows	where	the	Design	Mode	icon	is	on	the
Developer	tab.

Figure	16.15

With	Design	Mode	now	off,	you	can	test	the	Click	event	code	for	the	ActiveX
CommandButton.	Figure	16.16	shows	an	example	of	the	confirming	message	box	when
you	click	the	CommandButton.

Figure	16.16

Try	It
For	this	lesson,	you	place	a	Form	Button	on	a	worksheet	that	contains	a	hypothetical	table
of	monthly	income	activity	for	a	department	store's	clothing	items.	You	attach	a	macro	to
the	Button	that,	when	clicked,	toggles	columns	or	rows	as	being	hidden	or	visible,
depending	on	how	you	want	to	see	the	data.	Upon	each	click	of	the	Button,	the	cycle	of
views	will	be	to	see	the	entire	table's	detail,	see	totals	only	by	clothing	item,	or	see	totals
only	by	month.	This	lesson	also	includes	tips	on	fast	data	entry	by	using	the	fill	handle	and
shortcut	keys.

Lesson	Requirements
To	get	the	sample	workbook	you	can	download	Lesson	16	from	the	book's	website	at
www.wrox.com/go/excelvba24hour.

Step-by-Step
1.	 Open	Excel	and	open	a	new	workbook.

2.	 On	your	active	worksheet,	list	the	months	of	the	year	in	range	A6:A17.	You	can	do
this	quickly	by	entering	January	in	cell	A6,	then	selecting	A6,	and	pointing	your
mouse	over	the	fill	handle,	which	is	the	small	black	square	in	the	lower-right	corner	of
the	selected	cell.	You	know	your	mouse	is	hovering	over	the	fill	handle	when	the
cursor	changes	to	a	crosshairs,	as	indicated	in	Figure	16.17.	Press	your	left	mouse
button	onto	the	fill	handle,	and	drag	your	mouse	down	to	cell	A17	as	indicated	in
Figure	16.18.	Release	the	mouse	button,	and	the	12	months	of	the	year	fill	into	range
A6:A17	as	shown	in	Figure	16.19.

3.	 Enter	some	clothing	items	into	range	B5:F5.

4.	 Enter	sample	numbers	in	range	B6:F17.	There	is	nothing	special	about	the	numbers;
they	are	just	for	demonstration	purposes.	To	enter	the	numbers	quickly,	as	shown	in
Figure	16.20,	do	the	following:

Select	range	B6:F17.

Type	the	formula	=INT(RAND()*1000).

Press	Ctrl+Enter.

Press	Ctrl+C	to	copy	the	range.

Right-click	somewhere	in	the	range	B6:F17,	and	select	Paste	Special Values
OK.

Press	the	Esc	key	to	exit	Copy	mode.

5.	 In	cell	G5	enter	Total	and	in	cell	A18	enter	Total.

6.	 Select	the	column	A	header,	which	selects	all	of	column	A.	Right-click	any	cell	in
column	A,	select	Column	Width,	enter	20,	and	click	OK.

7.	 Quickly	enter	Sum	functions	for	all	rows	and	columns.	Select	range	B6:G18,	as	shown
in	Figure	16.21,	and	either	double-click	the	Sum	function	icon	or	press	Alt+=.

http://www.wrox.com/go/excelvba24hour

8.	 With	range	B6:G18	currently	selected,	right-click	anywhere	in	the	selection,	select
Format	Cells,	and	click	the	Number	tab	in	the	Format	Cells	dialog	box.	In	the	category
pane	select	Currency,	set	Decimal	Places	to	0,	and	click	OK	as	indicated	in	Figure
16.22.	Your	final	result	should	resemble	Figure	16.23,	with	different	numbers	because
they	were	produced	with	the	RAND	function,	but	all	good	enough	for	this	lesson.

9.	 The	task	at	hand	is	to	create	a	macro	that	will	be	attached	to	a	Form	Button.	Each	time
you	click	the	Button,	the	macro	toggles	to	the	next	of	three	different	views	of	the	table:
seeing	the	entire	table's	detail,	seeing	totals	only	by	clothing	item,	or	seeing	totals	only
by	month.	To	get	started,	press	Alt+F11	to	go	to	the	Visual	Basic	Editor.

10.	 From	the	VBE	menu	bar,	click	Insert Module.

11.	 In	your	new	module,	type	Sub	ToggleViews	and	press	Enter.	VBA	produces	the
following	two	lines	of	code,	with	an	empty	row	between	them:

Sub	ToggleViews()

End	Sub

12.	 Because	the	macro	hides	and	unhides	rows	and	columns,	turn	off	ScreenUpdating	to
keep	the	screen	from	flickering:

Application.ScreenUpdating	=	False

13.	 Open	a	With	structure	that	uses	Application.Caller	to	identify	the	Form	Button	that
was	clicked:

With	ActiveSheet.Buttons(Application.Caller)

14.	 Toggle	between	views	based	on	the	Button's	captions	to	determine	which	view	is	next
in	the	cycle:

If	.Caption	=	"SHOW	ALL"	Then

With	Range("A5:G18")

.EntireColumn.Hidden	=	False

.EntireRow.Hidden	=	False

End	With

.Caption	=	"MONTH	TOTALS"

ElseIf	.Caption	=	"MONTH	TOTALS"	Then

Range("B:F").EntireColumn.Hidden	=	True

.Caption	=	"ITEM	TOTALS"

ElseIf	.Caption	=	"ITEM	TOTALS"	Then

Range("B:F").EntireColumn.Hidden	=	False

Rows("6:17").Hidden	=	True

.Caption	=	"SHOW	ALL"

End	If		'for	evaluating	the	button	caption.

15.	 Close	the	With	structure	for	Application.Caller:

End	With

16.	 Turn	ScreenUpdating	on	again:

Application.ScreenUpdating	=	True

17.	 Your	entire	macro	looks	like	this:

Sub	ToggleViews()

'Turn	off	ScreenUpdating.

Application.ScreenUpdating	=	False

'Open	a	With	structure	that	uses	Application.Caller

'to	identify	the	Form	Button	that	was	clicked.

With	ActiveSheet.Buttons(Application.Caller)

'Toggle	between	views	based	on	the	Button's	captions

'to	determine	which	view	is	next	in	the	cycle.

If	.Caption	=	"SHOW	ALL"	Then

With	Range("A5:G18")

.EntireColumn.Hidden	=	False

.EntireRow.Hidden	=	False

End	With

.Caption	=	"MONTH	TOTALS"

ElseIf	.Caption	=	"MONTH	TOTALS"	Then

Range("B:F").EntireColumn.Hidden	=	True

.Caption	=	"ITEM	TOTALS"

ElseIf	.Caption	=	"ITEM	TOTALS"	Then

Range("B:F").EntireColumn.Hidden	=	False

Rows("6:17").Hidden	=	True

.Caption	=	"SHOW	ALL"

End	If		'for	evaluating	the	Button	caption.

'Close	the	With	structure	for	Application.Caller.

End	With

'Turn	ScreenUpdating	on	again.

Application.ScreenUpdating	=	True

End	Sub

18.	 Press	Alt+Q	to	return	to	the	worksheet.

19.	 Draw	a	Form	Button	on	your	worksheet	at	the	top	of	column	A.	When	you	release	the
mouse	button	you	see	the	Assign	Macro	dialog	box.	Select	the	macro	named
ToggleViews	and	click	OK,	as	shown	in	Figure	16.24.

20.	 Make	sure	the	Button	is	totally	within	column	A,	as	indicated	in	Figure	16.25.	Right-
click	the	Button	and	select	Edit	Text.

21.	 Change	the	Button's	caption	to	SHOW	ALL,	as	shown	in	Figure	16.26.

22.	 Select	any	cell	to	deselect	the	Button.	Click	the	Button	once	and	nothing	changes	on
the	sheet	because	all	the	columns	and	rows	are	already	visible.	You	see	that	the
Button's	caption	changed	to	MONTH	TOTALS.	If	you	click	the	Button	again,	you	see
the	month	names	listed	in	column	A,	and	their	totals	listed	in	column	G.	The	Button's
caption	reads	ITEM	TOTALS.	Click	the	Button	again	to	see	the	clothing	items	named
in	row	5,	and	their	totals	listed	in	row	18.	The	Button's	caption	reads	SHOW	ALL,	and
if	you	click	the	Button	again,	all	rows	and	columns	are	shown.

23.	 You	can	continue	cycling	through	the	table's	views	by	clicking	the	Form	Button	for
each	view	that	you	coded	into	the	ToggleViews	macro.

Figure	16.17

Figure	16.18

Figure	16.19

Figure	16.20

Figure	16.21

Figure	16.22

Figure	16.23

Figure	16.24

Figure	16.25

Figure	16.26

REFERENCE	Please	select	the	video	for	Lesson	16	at
www.wrox.com/go/excelvba24hour.	You	will	also	be	to	download	the	code	and
resources	for	this	lesson	from	the	website.

http://www.wrox.com/go/excelvba24hour

Lesson	17
Programming	Charts
When	I	started	to	program	Excel	in	the	early	1990s,	I	remember	being	impressed	with	the
charting	tools	that	came	with	Excel.	They	were	very	good	back	then,	and	today's	chart
features	in	Excel	are	downright	awesome,	rivaling—and	usually	surpassing—the	charting
packages	of	any	software	application.

Because	you	are	reading	this	book,	chances	are	pretty	good	that	you've	manually	created
your	share	of	charts	in	Excel	using	the	Chart	Wizard	or	by	selecting	a	chart	type	from	the
dozens	of	choices	on	the	Ribbon.	You	might	also	have	played	with	the	Macro	Recorder	to
do	some	automation	of	chart	creation.	This	lesson	takes	you	past	the	Macro	Recorder's
capabilities	to	show	how	to	create	and	manipulate	embedded	charts	and	chart	sheets.

The	topic	of	charting	is	one	that	can,	and	does,	fill	entire	books.	The	myriad	chart	types
and	features	that	Excel	makes	available	to	you	goes	well	beyond	the	scope	of	this	lesson.
What	this	lesson	does	is	show	you	the	syntaxes	for	several	methods	that	work	for
embedded	charts	and	chart	sheets,	with	a	few	different	features	and	chart	types	represented
in	the	programming	code.	From	the	VBA	examples	in	this	lesson,	you	can	expand	your
chart	programming	skills	by	substituting	the	chart	types	and	features	shown	for	others	that
may	be	more	suited	to	the	kinds	of	charts	you	want	to	develop.

NOTE	In	the	examples,	you	might	notice	that	the	charts	being	created	are	declared
as	a	Chart	type	object	variable,	which	makes	it	easier	to	refer	to	the	charts	when	you
want	to	manipulate	them	in	code.	In	any	case,	Excel	has	two	separate	object	models
for	charts.	For	a	chart	on	its	own	chart	sheet,	it	is	a	Chart	object.	For	a	chart
embedded	on	a	worksheet,	it	is	a	ChartObject	object.	Chart	sheets	are	members	of
the	workbook's	Charts	collection,	and	each	ChartObject	on	a	worksheet	is	a	member
of	the	worksheet's	ChartObjects	collection.

Adding	a	Chart	to	a	Chart	Sheet
As	you	know,	a	chart	sheet	is	a	special	kind	of	sheet	in	your	workbook	that	contains	only	a
chart.	If	the	chart	is	destined	to	be	large	and	complicated,	users	often	prefer	such	a	chart
be	on	its	own	sheet	so	they	can	view	its	detail	more	easily.

Figure	17.1	shows	a	table	of	sales	by	month	for	a	company	that	is	the	source	data	for	this
chart	example.	The	table	is	on	Sheet1,	and	although	you	can	correctly	refer	to	the	source
range	in	your	code	as	A1:B13,	I	prefer	using	the	CurrentRegion	property	to	reduce	the
chances	of	entering	the	wrong	range	reference	in	my	code.

The	following	macro	creates	a	column	chart	for	a	new	chart	sheet	based	on	the	data	in
Figure	17.1.	If	the	Location	property	of	your	Chart	object	has	not	been	specified,	as	it	has
not	been	in	this	macro,	your	chart	is	created	in	its	own	chart	sheet.	The	result	of	this	new
chart	sheet	is	shown	in	Figure	17.2.

Sub	CreateChartSheet()

'Declare	your	chart	type	object	variable.

Dim	myChart1	As	Chart

'Set	your	variable	to	add	a	chart.

Set	myChart1	=	Charts.Add

'Define	the	new	chart's	source	data.

myChart1.SetSourceData	_

Source:=Worksheets("Sheet1").Range("A1").CurrentRegion,	_

PlotBy:=xlColumns

'Define	the	type	of	chart.

myChart1.ChartType	=	xlColumnClustered

'Delete	the	legend	because	it	is	redundant	with	the	chart	title.

ActiveChart.Legend.Delete

End	Sub

Figure	17.1

Figure	17.2

NOTE	To	change	your	default	type	of	chart,	right-click	any	chart	in	your	workbook
and	select	Change	Chart	Type.	In	the	Change	Chart	Type	dialog	box,	select	a	chart
type,	click	the	Set	as	Default	Chart	button,	and	click	OK.	In	version	2013,	right-click
a	chart	type	and	select	Set	as	Default	Chart.

Simply	executing	the	code	line	Charts.Add	in	the	Immediate	window	creates	a	new	chart
sheet.	If	the	active	cell	were	within	a	table	of	data,	your	default	type	chart	would	occupy
the	new	chart	sheet,	representing	the	table,	or	more	precisely,	the	data	within	the
CurrentRegion	property	of	the	selected	cell.	If	you	did	not	have	any	data	selected	at	the
time,	a	new	chart	sheet	would	still	be	created,	with	a	blank	Chart	object	looking	like	an
empty	canvas	waiting	to	be	supplied	with	source	data.

DID	YOU	KNOW…
If	the	active	cell	is	within	a	table	of	data,	or	you	have	a	range	of	data	selected,	and
you	press	the	F11	key,	a	new	chart	sheet	is	added	to	hold	a	chart	that	represents	the
selected	data.	Some	people	find	this	to	be	an	annoyance	because	they	have	no	interest
in	charts,	and	may	not	be	aware	they	touched	the	F11	key	when	a	chart	sheet	has
appeared	out	of	nowhere.

If	you	want	to	negate	the	effect	of	pressing	the	F11	key,	you	can	place	the	following
OnKey	procedures	into	the	ThisWorkbook	module.	Some	Excel	users	who	frequently
use	the	F2	key	to	get	into	Edit	mode	sometimes	press	the	F1	Help	key	by	mistake	and
nullify	the	F1	key	in	this	fashion	as	well:

Private	Sub	Workbook_Open()

Application.OnKey	"{F11}",	""

End	Sub

Private	Sub	Workbook_Activate()

Application.OnKey	"{F11}",	""

End	Sub

Private	Sub	Workbook_Deactivate()

Application.OnKey	"{F11}"

End	Sub

Private	Sub	Workbook_BeforeClose(Cancel	As	Boolean)

Application.OnKey	"{F11}"

End	Sub	

Adding	an	Embedded	Chart	to	a	Worksheet
When	you	embed	a	chart	in	a	worksheet,	there	is	more	to	consider	than	when	you	create	a
chart	for	its	own	chart	sheet.	When	you	embed	a	chart,	you	need	to	specify	which
worksheet	you	want	the	chart	to	be	on	(handled	by	the	Location	property),	and	where	on
the	worksheet	you	want	the	chart	to	be	placed.	The	following	macro	is	an	example	of	how
to	place	a	column	chart	into	range	D3:J20	of	the	active	worksheet,	close	to	the	source
range,	as	shown	in	Figure	17.3:

Sub	CreateChartSameSheet()

'Declare	an	Object	variable	for	the	chart

'and	for	the	embedded	ChartObject.

Dim	myChart1	As	Chart,	cht1	As	ChartObject

'Declare	a	Range	variable	to	specify	what	range

'the	chart	will	occupy,	and	on	what	worksheet.

Dim	rngChart1	As	Range,	DestinationSheet	As	String

'The	chart	will	be	placed	on	the	active	worksheet.

DestinationSheet	=	ActiveSheet.Name

'Add	a	new	chart

Set	myChart1	=	Charts.Add

'Specify	the	chart's	location	as	the	active	worksheet.

Set	myChart1	=	_

myChart1.Location	_

(Where:=xlLocationAsObject,	Name:=DestinationSheet)

'Define	the	new	chart's	source	data

myChart1.SetSourceData	_

Source:=Range("A1").CurrentRegion,	PlotBy:=xlColumns

'Define	the	type	of	chart,	in	this	case,	a	Column	chart.

myChart1.ChartType	=	xlColumnClustered

'Activate	the	chart	to	identify	its	ChartObject.

'The	(1)	assumes	this	is	the	first	(index	#1)	chart	object

'on	the	worksheet.

ActiveSheet.ChartObjects(1).Activate

Set	cht1	=	ActiveChart.Parent

'Specify	the	range	you	want	the	chart	to	occupy.

Set	rngChart1	=	Range("D3:J20")

cht1.Left	=	rngChart1.Left

cht1.Width	=	rngChart1.Width

cht1.Top	=	rngChart1.Top

cht1.Height	=	rngChart1.Height

'Deselect	the	chart	by	selecting	a	cell.

Range("A1").Select

End	Sub

Figure	17.3

WARNING	Here's	a	cool	tip:	Starting	with	version	2010,	you	can	select	any	cell	in	a
table	of	data,	then	press	Alt+F1	to	embed	a	chart	of	that	data	onto	your	worksheet.
From	there,	you	can	drag	the	chart	to	your	preferred	location	on	the	worksheet.

NOTE	One	of	the	best	practice	items	in	VBA	programming	that	I	mention	throughout
the	book,	and	you	will	see	posted	in	newsgroups	ad	nauseam,	is	to	avoid	selecting	or
activating	objects	in	your	VBA	code.	Most	of	the	time	that	is	good	advice.	However,
sometimes	you	need	to	select	objects	to	refer	reliably	to	them	or	to	manipulate	them,
and	the	preceding	macro	demonstrated	two	examples.	The	ChartObject	was
activated	to	derive	the	actual	name	of	the	chart.	Also,	the	macro	ended	with	cell	A1
being	selected.	You	could	select	any	cell	or	any	object,	but	a	cell—any	cell—is	the
safest	object	to	select	after	creating	a	new	embedded	chart.	Any	code	that	is	executed
after	adding	a	new	chart	might	not	execute	correctly	if	the	ChartObject	is	still
selected.	The	most	reliable	way	to	deselect	a	chart	at	the	end	of	your	macro	is	to
select	a	cell.

Moving	a	Chart
You	can	change	the	location	of	any	chart,	which	you	might	be	familiar	with	if	you've
right-clicked	a	chart's	area	and	noticed	the	Move	Chart	menu	item.	The	following
scenarios	show	how	to	do	this	with	VBA.

To	move	a	chart	from	a	chart	sheet	to	a	worksheet,	select	the	chart	sheet	programmatically
and	specify	the	worksheet	where	you	want	the	chart	to	be	relocated.	It's	usually	a	good
idea	to	tell	VBA	where	on	the	worksheet	you	want	the	chart	to	go;	otherwise,	the	chart	is
plopped	down	on	the	sheet	wherever	VBA	decides.	That	is	why	the	code	in	the	With
structure	specifies	that	cell	C3	be	the	top-left	corner	of	the	relocated	chart:

Sub	ChartSheetToWorksheet()

'Chart1	is	the	name	of	the	chart	sheet.

Sheets("Chart1").Select

'Move	the	chart	to	Sheet1.

ActiveChart.Location	Where:=xlLocationAsObject,	Name:="Sheet1"

'Cell	C3	is	the	top	left	corner	location	of	the	chart.

With	Worksheets("Sheet1")

ActiveChart.Parent.Left	=	.Range("C3").Left

ActiveChart.Parent.Top	=	.Range("C3").Top

End	With

'Deselect	the	chart.

Range("A1").Select

End	Sub

To	move	a	chart	from	a	worksheet	to	a	chart	sheet,	you	need	to	determine	the	name	or
index	number	of	your	chart.	If	you	have	only	one	chart	on	your	worksheet,	you	know	that
chart's	index	property	is	1,	but	specifying	the	chart	by	its	name	is	a	safe	way	to	go.	The
code	is	much	simpler	because	a	chart	sheet	can	contain	only	one	chart,	so	you	don't	need
to	specify	a	location	on	the	chart	sheet	itself:

Sub	EmbeddedChartToChartSheet()

ActiveSheet.ChartObjects("Chart	1").Activate

ActiveChart.Location	Where:=xlLocationAsNewSheet,	Name:="Chart1"

End	Sub

NOTE	You	can	determine	the	name	of	any	embedded	chart	quickly	by	selecting	it	to
see	its	name	in	the	Name	box.

To	move	an	embedded	chart	from	one	worksheet	to	another,	it's	the	same	concept	of
specifying	which	chart	to	move,	and	which	worksheet	to	move	it	to:

Sub	EmbeddedChartToAnotherWorksheet()

'Chart	5	is	the	name	of	the	chart	to	move	to	Sheet2.

ActiveSheet.ChartObjects("Chart	5").Activate

ActiveChart.Location	Where:=xlLocationAsObject,	Name:="Sheet2"

'Cell	B6	is	the	top	left	corner	location	of	the	chart.

With	Worksheets("Sheet2")

ActiveChart.Parent.Left	=	.Range("B6").Left

ActiveChart.Parent.Top	=	.Range("B6").Top

End	With

'Deselect	the	chart.

Range("A1").Select

End	Sub

You	can	quickly	move	all	chart	sheets	to	their	own	workbook.	For	example,	check	out	the
following	example	that	creates	a	new	workbook	and	relocates	the	chart	sheets	before
Sheet1	in	that	new	workbook:

Sub	ChartSheetsToWorkbook()

'Declare	variable	for	your	active	workbook	name.

Dim	myName	As	String

'Define	the	name	of	your	workbook.

myName	=	ActiveWorkbook.Name

'Add	a	new	Excel	workbook.

Workbooks.Add	1

'Copy	the	chart	sheets	from	your	source	workbook

'to	the	new	workbook.

Workbooks(myName).Charts.Move	before:=Sheets(1)

End	Sub

Looping	Through	All	Embedded	Charts
Suppose	you	want	to	do	something	to	every	embedded	chart	in	your	workbook.	For
example,	if	some	charts	were	originally	created	with	different	background	colors,	you
might	want	to	standardize	the	look	of	all	charts	to	have	the	same	color	scheme.	The
following	macro	shows	how	to	loop	through	every	chart	on	every	worksheet	to	format	the
chart	area	with	a	standard	color	of	cyan:

Sub	LoopAllEmbeddedCharts()

'Turn	off	ScreenUpdating.

Application.ScreenUpdating	=	False

'Declare	variables	for	worksheet	and	chart	objects.

Dim	wks	As	Worksheet,	ChObj	As	ChartObject

'Open	loop	for	every	worksheet.

For	Each	wks	In	Worksheets

'Determine	if	the	worksheet	has	at	least	one	chart.

If	wks.ChartObjects.Count	>	0	Then

'If	the	worksheet	has	a	chart,	activate	the	worksheet.

wks.Activate

'Loop	through	each	chart	object.

For	Each	ChObj	In	ActiveSheet.ChartObjects

'Activate	the	chart.

ChObj.Activate

'Color	the	chart	area	cyan.

ActiveChart.ChartArea.Interior.ColorIndex	=	8

'Deselect	the	active	chart	before	proceeding	to	the

'next	chart	or	the	next	worksheet.

Range("A1").Select

'Continue	and	close	the	loop	for	every	chart	on	that	sheet.

Next	ChObj

'Close	the	If	structure	if	the	worksheet	had	no	chart.

End	If

'Continue	and	close	the	loop	for	every	worksheet.

Next	wks

'Turn	on	ScreenUpdating.

Application.ScreenUpdating	=	True

End	Sub

If	you	have	chart	sheets	to	be	looped	through,	the	code	must	be	different	to	take	into
account	the	type	of	sheet	to	look	for,	because	a	chart	sheet	is	a	different	type	of	sheet	than
a	worksheet.	This	macro	accomplishes	the	same	task	of	coloring	the	chart	area,	but	for
charts	on	chart	sheets:

Sub	LoopAllChartSheets()

'Turn	off	ScreenUpdating.

Application.ScreenUpdating	=	False

'Declare	an	object	variable	for	the	Sheets	collection.

Dim	objSheet	As	Object

'Loop	through	all	sheets,	only	looking	for	a	chart	sheet.

For	Each	objSheet	In	ActiveWorkbook.Sheets

If	TypeOf	objSheet	Is	Excel.Chart	Then

'Activate	the	chart	sheet.

objSheet.Activate

'Color	the	chart	area	cyan.

ActiveChart.ChartArea.Interior.ColorIndex	=	8

'Close	the	If	structure	and	move	on	to	the	next	sheet.

End	If

Next	objSheet

'Turn	on	ScreenUpdating.

Application.ScreenUpdating	=	True

End	Sub

Deleting	Charts
To	delete	all	charts	on	a	worksheet,	you	can	execute	this	code	line	in	the	Immediate
window,	or	as	part	of	a	macro:

If	activesheet.ChartObjects.Count	>	0	Then	ActiveSheet.ChartObjects.Delete

To	delete	chart	sheets,	loop	through	each	sheet	starting	with	the	last	sheet,	determine
whether	the	sheet	is	a	chart	sheet,	and	if	so,	delete	it.

NOTE	This	loop	starts	from	the	last	sheet	and	moves	backward	using	the	Step	-1
statement.	It's	a	wise	practice	to	loop	backward	when	deleting	sheets,	rows,	or
columns.	Behind	the	scenes,	VBA	relies	on	the	counts	of	objects	in	collections,	and
where	the	objects	are	located	relative	to	the	others.	Deleting	objects	starting	at	the
end	and	working	your	way	to	the	beginning	keeps	VBA's	management	of	those	objects
in	order.

Sub	DeleteChartSheets()

'Turn	off	ScreenUpdating.	Also	turn	off	the	Alerts	feature,

'so	when	you	delete	a	sheet	VBA	does	not	warn	you.

With	Application

.ScreenUpdating	=	False

.DisplayAlerts	=	False

'Declare	an	Integer	variable	for	the	count	of	all	Sheets.

Dim	intSheet	As	Integer

'Loop	through	all	sheets,	only	looking	for	a	chart	sheet.

For	intSheet	=	Sheets.Count	To	1	Step	-1

If	TypeName(Sheets(intSheet))	=	"Chart"	Then	Sheets(intSheet).Delete

Next	intSheet

'Turn	on	ScreenUpdating	and	DisplayAlerts.

.DisplayAlerts	=	True

.ScreenUpdating	=	True

End	With

End	Sub

Renaming	a	Chart
As	you	have	surely	noticed	when	creating	objects	such	as	charts,	pivot	tables,	or	drawing
objects,	Excel	has	a	refined	knack	for	giving	those	objects	the	blandest	default	names
imaginable.	Suppose	you	have	three	embedded	charts	on	your	worksheet.	The	following
macro	changes	the	names	of	those	charts	to	something	more	meaningful:

Sub	RenameCharts()

With	ActiveSheet

.ChartObjects(1).Name	=	"Monthly	Income"

.ChartObjects(2).Name	=	"Monthly	Expense"

.ChartObjects(3).Name	=	"Net	Profit"

End	With

End	Sub

Try	It
In	this	lesson	you	create	an	embedded	pie	chart,	position	it	near	the	source	data,	and	give
each	legend	key	a	unique	color.	The	pie	has	four	slices;	each	has	a	unique	color	and
displays	its	respective	data	label.

Lesson	Requirements
To	get	the	sample	database	files	you	can	download	Lesson	17	from	the	book's	website	at
www.wrox.com/go/excelvba24hour.

Step-by-Step
1.	 Insert	a	new	worksheet	and	construct	the	simple	table,	as	shown	in	Figure	17.4.

2.	 From	your	worksheet,	press	Alt+F11	to	go	to	the	Visual	Basic	Editor.

3.	 From	the	VBE	menu	bar,	click	Insert Module.

4.	 In	your	new	module,	enter	the	name	of	this	macro,	which	I	am	calling	TryItPieChart.
Type	Sub	TryItPieChart,	press	Enter,	and	VBA	produces	the	following	code:

Sub	TryItPieChart()

End	Sub

5.	 Declare	the	ChartObject	variable:

Dim	chtQuarters	As	ChartObject

6.	 Set	the	variable	to	the	chart	being	added.	Position	the	chart	near	the	source	data:

Set	chtQuarters	=	_

ActiveSheet.ChartObjects.Add	_

(Left:=240,	Width:=340,	Top:=5,	Height:=240)

NOTE	The	data	components	inside	the	parentheses	tell	VBA	where	to	position
your	new	chart	on	the	worksheet.

The	Left	parameter	defines	the	position	in	points	of	the	left	edge	of	the
ChartObject	relative	to	the	left	edge	of	the	worksheet.

The	Top	parameter	defines	the	position	in	points	of	the	top	of	the	ChartObject
relative	to	the	top	of	the	worksheet.

The	Width	parameter	defines	the	ChartObject's	width,	in	points.

The	Height	parameter	defines	the	ChartObject's	height,	in	points.

A	point	is	a	small	unit	of	measurement	(an	inch	is	approximately	72	points).

7.	 Define	the	range	for	this	pie	chart:

chtQuarters.Chart.SetSourceData	Source:=Range("A3:B7")

8.	 Define	the	type	of	chart,	which	is	a	pie:

http://www.wrox.com/go/excelvba24hour

chtQuarters.Chart.ChartType	=	xlPie

9.	 Activate	the	new	chart	to	work	with	it:

ActiveSheet.ChartObjects(1).Activate

10.	 Color	the	legend	entries	to	identify	each	pie	piece:

With	ActiveChart.Legend

.LegendEntries(1).LegendKey.Interior.Color	=	vbYellow

.LegendEntries(2).LegendKey.Interior.Color	=	vbCyan

.LegendEntries(3).LegendKey.Interior.Color	=	vbRed

.LegendEntries(4).LegendKey.Interior.Color	=	vbGreen

End	With

11.	 Add	data	labels	to	see	the	numbers	in	the	pie	slices:

ActiveChart.SeriesCollection(1).ApplyDataLabels

12.	 Edit	the	chart	title's	text:

ActiveChart.ChartTitle.Text	=	"Quarterly	Sales"

13.	 Format	the	legend:

ActiveChart.Legend.Select

With	Selection.Font

.Name	=	"Arial"

.FontStyle	=	"Bold"

.Size	=	14

End	With

14.	 Deselect	the	chart	by	selecting	a	cell:

Range("A1").Select

15.	 Press	Alt+Q	to	return	to	the	worksheet,	and	test	your	macro,	which	in	its	entirety	looks
like	the	following	code.	The	result	looks	like	Figure	17.5,	with	a	pie	chart	positioned
near	the	source	data.

Sub	TryItPieChart()

'Declare	the	ChartObject	variable.

Dim	chtQuarters	As	ChartObject

'Set	the	variable	to	the	chart	being	added.

'Position	the	chart	near	the	source	data.

Set	chtQuarters	=	_

ActiveSheet.ChartObjects.Add	_

(Left:=240,	Width:=340,	Top:=5,	Height:=240)

'Define	the	range	for	this	pie	chart.

chtQuarters.Chart.SetSourceData	Source:=Range("A3:B7")

'Define	the	type	of	chart,	which	is	a	pie.

chtQuarters.Chart.ChartType	=	xlPie

'Activate	the	new	chart	to	work	with	it.

ActiveSheet.ChartObjects(1).Activate

'Color	the	legend	entries	to	identify	each	pie	piece.

With	ActiveChart.Legend

.LegendEntries(1).LegendKey.Interior.Color	=	vbYellow

.LegendEntries(2).LegendKey.Interior.Color	=	vbCyan

.LegendEntries(3).LegendKey.Interior.Color	=	vbRed

.LegendEntries(4).LegendKey.Interior.Color	=	vbGreen

End	With

'Add	data	labels	to	see	the	numbers	in	the	pie	slices.

ActiveChart.SeriesCollection(1).ApplyDataLabels

'Edit	the	chart's	title	text.

ActiveChart.ChartTitle.Text	=	"Quarterly	Sales"

'Format	the	legend.

ActiveChart.Legend.Select

With	Selection.Font

.Name	=	"Arial"

.FontStyle	=	"Bold"

.Size	=	14

End	With

'Deselect	the	chart	by	selecting	a	cell.

Range("A1").Select

End	Sub

Figure	17.4

Figure	17.5

REFERENCE	Please	select	the	video	for	Lesson	17	online	at
www.wrox.com/go/excelvba24hour.	You	will	also	be	able	to	download	the	code	and
resources	for	this	lesson	from	the	website.

http://www.wrox.com/go/excelvba24hour

Lesson	18
Programming	PivotTables	and	PivotCharts
PivotTables	are	Excel's	most	powerful	feature.	They	are	an	amazing	tool	that	can
summarize	more	than	a	million	rows	of	data	into	concise,	meaningful	reports	in	a	matter
of	seconds.	You	can	format	the	reports	in	many	ways,	and	include	an	interactive	chart	to
complement	the	reports	at	no	extra	cost	of	time.

If	you	are	not	familiar	with	PivotTables,	you	are	not	alone.	Surveys	of	Excel	users
worldwide	have	consistently	indicated	that	far	less	than	half	of	those	surveyed	said	they
use	PivotTables,	including	people	who	use	Excel	throughout	their	entire	workday.	Because
PivotTables	are	worth	becoming	familiar	with,	this	lesson	starts	with	an	overview	of
PivotTables	and	PivotCharts,	followed	by	examples	of	how	to	create	and	manipulate	them
programmatically	with	VBA.

Creating	a	PivotTable	Report
Suppose	you	manage	the	clothing	sales	department	for	a	national	department	store.	You
receive	tens	of	thousands	of	sales	records	from	your	stores	all	over	the	country,	with	lists
that	look	similar	to	Figure	18.1.	With	lists	this	large,	it's	impossible	to	gain	any
meaningful	insight	into	trends	or	marketing	opportunities	unless	you	can	organize	the	data
in	a	summarized	fashion.

Figure	18.1

If	you	select	a	single	cell	anywhere	in	the	list,	such	as	cell	E7,	which	is	selected	in	Figure
18.2,	you	can	create	a	PivotTable	by	selecting	the	Insert	tab	and	clicking	the	PivotTable
icon.	The	Create	PivotTable	dialog	box	appears	with	the	Table/Range	field	already	filled
in,	as	shown	in	Figure	18.3.	I	chose	to	keep	the	PivotTable	on	the	same	worksheet	as	the
source	data,	and	for	the	PivotTable's	top-left	corner	to	occupy	cell	H4.

NOTE	When	placing	a	PivotTable	on	the	same	worksheet	alongside	the	source	table,
it's	best	to	have	at	least	one	empty	column	between	the	source	table	and	your
PivotTable.	It's	also	a	good	idea	to	leave	a	few	empty	rows	above	the	PivotTable	to
make	room	for	the	Filters	area	(what	was	called	the	Page	area	in	Excel	version
2003).

Figure	18.2

Figure	18.3

Using	Excel	version	2013,	when	you	click	OK	you	see	an	image	similar	to	Figure	18.4,
with	the	representation	of	where	the	PivotTable	will	be,	and	the	Field	List	at	the	right.

Figure	18.4

To	create	a	PivotTable,	complete	the	following	steps:

1.	 Drag	the	Item	field	name	from	the	Choose	Fields	to	Add	to	Report	pane	down	to	the
Filters	pane.

2.	 Drag	the	Region	field	name	from	the	Choose	Fields	to	Add	to	Report	pane	down	to	the
Rows	pane.

3.	 Drag	the	Store	ID	field	name	from	the	Choose	Fields	to	Add	to	Report	pane	down	to
the	Rows	pane,	below	the	Region	field	name.

4.	 Drag	the	When	field	name	from	the	Choose	Fields	to	Add	to	Report	pane	down	to	the
Columns	pane.

5.	 Drag	the	Revenue	field	name	from	the	Choose	Fields	to	Add	to	Report	pane	down	to
the	Values	pane.

Your	worksheet	should	look	similar	to	Figure	18.5,	with	a	PivotTable	that	shows	the
summary	of	Revenue	by	Quarter	for	each	Region,	with	each	Region	showing	the	detail	of
its	stores'	activities.	The	source	list	could	have	been	more	than	a	million	rows	deep,	and
the	process	would	still	have	taken	Excel	only	a	couple	of	moments	to	produce	the
PivotTable	report.

Figure	18.5

Hiding	the	PivotTable	Field	List
For	now,	you	are	done	with	the	PivotTable	Field	List,	so	to	clear	it	off	your	screen,	you
can	click	the	X	close	button	on	its	title	bar,	click	its	Ribbon	icon	on	the	PivotTable	Tools
Option	tab,	or	you	can	right-click	anywhere	on	the	PivotTable	area	and	select	Hide	Field
List,	as	shown	in	Figure	18.6.	When	you	want	to	see	the	Field	List	again,	click	the	Field
List	Ribbon	icon,	or	right-click	anywhere	on	the	PivotTable	again	and	select	Show	Field
List.

Figure	18.6

Above	the	PivotTable's	report	area,	you	see	a	small	filter-looking	icon	in	cell	I2	(see
Figure	18.8),	in	what	is	called	the	Filters	area.	The	Item	field	name	was	dragged	to	that
area	in	Step	1	of	the	process	that	created	this	PivotTable.	If	you	click	the	filter	icon,	you'll
see	a	unique	list	of	clothing	items,	of	which	you	can	select	one	or	several	to	have	the
PivotTable	show	only	the	data	relating	to	the	item(s)	you	select.	In	Figure	18.7,	I	selected
the	Hats	item,	and	in	Figure	18.8,	you	can	see	how	the	PivotTable	adjusts	itself	to	show
only	the	columns	and	rows	where	data	is	present	for	the	sale	of	hats.

Figure	18.7

Figure	18.8

Formatting	Numbers	in	the	Values	Area
You	can	see	that	the	numbers	in	the	PivotTable's	Values	area	are	unformatted.	As	an
example	of	formatting	them	as	Currency,	right-click	any	cell	in	the	Values	area	and	select
Value	Field	Settings,	as	indicated	in	Figure	18.9.	In	the	Value	Field	Settings	dialog	box,
click	the	Number	Format	button,	as	shown	in	Figure	18.10.

Figure	18.9

Figure	18.10

The	familiar	Format	Cells	dialog	box	appears.	In	Figure	18.11,	I	selected	Currency	with
the	dollar	sign	symbol	and	no	decimal	places.	After	you	click	OK	in	the	Format	Cells
dialog	box,	you	then	need	to	click	OK	in	the	Value	Field	Settings	dialog	box,	as	shown	in
Figure	18.12.

Figure	18.11

Figure	18.12

The	cells	in	the	Values	area	are	now	formatted	as	Currency.	Recall	that	earlier,	the	Item
named	Hats	was	selected	in	the	Filters	area.	Go	ahead	and	click	the	filter	icon	in	cell	I2,
select	the	All	item,	and	click	OK,	as	indicated	in	Figure	18.13.	The	PivotTable	report	is
now	fully	displayed	with	all	the	Values	area	cells	formatted	as	Currency,	including	the
cells	that	had	been	hidden	while	the	Hats	item	was	filtered.

Figure	18.13

Pivoting	Your	Data
One	of	the	most	attractive	features	of	a	PivotTable	is	its	ability	to	display	the	same	data	in
whatever	row-and-column	arrangement	of	your	field	names	that	you	prefer.	Just	as	the
essence	of	a	pivot	is	to	allow	for	the	rotation	or	maneuver	from	a	central	point,	you	can
rearrange	your	source	data	by	varying	the	location	of	your	field	names	in	the	row	and
column	areas	of	your	PivotTable.

For	example,	because	you	have	summarized	the	clothing	stores	by	Revenue	for	each
Region	by	Quarter,	you	now	want	to	look	at	the	Quantity	of	each	Item	that	was	sold	by
Region.	Reopen	the	PivotTable	Field	List	and	pivot	your	data	by	dragging	the	Item	field
name	out	of	the	Filters	pane	and	into	the	Row	Labels	pane.	Relocate	the	Region	field	into
the	Columns	pane.	Finally,	in	the	Choose	Fields	To	Add	To	Report	pane,	deselect	Revenue
and	select	Quantity.	Your	new	PivotTable	report	looks	like	Figure	18.14.

Figure	18.14

Creating	a	PivotChart
Creating	a	PivotChart	is	very	easy,	using	either	of	two	methods.	With	one	method	you
create	the	chart	right	from	the	start,	when	you	first	indicate	to	Excel	that	you	want	to
create	a	new	PivotTable.	With	the	other	method	you	create	a	PivotChart	after	you	have
already	created	a	PivotTable.

In	Excel	version	2010—shown	in	Figure	18.15—you	can	click	the	arrow	on	the	lower	half
of	the	PivotTable	icon	on	the	Ribbon's	Insert	tab,	where	an	option	is	there	for	you	to	select
PivotChart.	If	you	want	a	PivotChart	with	your	new	PivotTable,	just	select	the	PivotChart
option,	and	a	PivotChart	is	created	as	you	build	your	PivotTable	in	the	PivotTable	Field
List.

Figure	18.15

To	create	a	PivotChart	as	you	create	a	new	PivotTable	in	version	2013,	from	the	Insert	tab
on	the	Ribbon,	click	the	down	arrow	on	the	PivotChart	icon	in	the	Charts	section.	Select

PivotChart	&	PivotTable,	as	shown	in	Figure	18.16.

Figure	18.16

If	you	create	a	PivotTable	and	later	decide	you'd	like	a	PivotChart	to	go	along	with	it,	you
can	start	by	selecting	any	cell	in	the	PivotTable.	In	Excel	version	2010,	click	the	Options
tab	in	the	PivotTable	Tools	section	of	the	Ribbon,	and	click	the	PivotChart	icon,	as	shown
in	Figure	18.17.	In	version	2013,	click	the	Analyze	tab	in	the	PivotTable	Tools	section	of
the	Ribbon,	and	click	the	PivotChart	icon,	as	shown	in	Figure	18.18.

Figure	18.17

Figure	18.18

The	Insert	Chart	dialog	box	opens,	and	you	select	your	preferred	chart	type.	Figure	18.19
shows	the	result	after	I	selected	the	Clustered	Column	chart	type	and	clicked	OK.	The
result	is	a	PivotChart	tied	to	the	PivotTable	as	shown	in	Figure	18.20.

Figure	18.19

Figure	18.20

As	you	can	see,	when	it	comes	to	PivotCharts,	Excel	does	almost	all	the	grunt	work	for
you.	All	you	need	to	do	is	tell	Excel	that	you	want	a	PivotChart	and	what	type	of	chart	you
want,	and	your	chart	is	produced	with	its	accompanying	PivotTable.

NOTE	There	is	a	lot	more	you	can	do	with	PivotCharts	and	PivotTables;	like	many
other	topics,	it's	one	that	can	fill	an	entire	book.	My	objective	so	far	in	the	lesson	is	to
cover	the	basics	of	creating	and	working	with	PivotTables	as	a	foundation	for	the
VBA	examples	in	the	next	sections.

PivotCharts	are	great—they	are	equipped	with	Field	buttons	so	you	can	choose	which
items	in	which	fields	you	want	to	see.	Whatever	field	setting	you	select	on	a	PivotChart
makes	the	same	change	to	its	PivotTable.	The	following	macro	toggles	between	showing
and	hiding	the	Field	buttons	on	your	PivotChart:

Sub	ShowHidePivotChartFieldButtons()

ActiveSheet.ChartObjects(1).Activate

With	ActiveChart

.HasPivotFields	=	Not	.HasPivotFields

End	With

Range("A1").Select

End	Sub

Understanding	PivotCaches
A	PivotCache	is	an	object	that	you	do	not	see,	because	it	is	working	behind	the	scenes
when	a	new	PivotTable	is	created	directly	from	the	source	data.	The	PivotCache	is	a
container	that	holds	a	static	copy	of	the	source	data	in	memory.

PivotTables	do	not	summarize	data	directly	from	the	source	data,	but	rather	from	the
PivotCache	that	memorized	a	snapshot	of	the	data.	That	is	why,	in	the	native	Excel
environment	not	enhanced	with	VBA,	if	you	change	a	piece	of	existing	data	in	the	source
data	range,	the	PivotTable	report	does	not	reflect	that	change	until	you	refresh	the
PivotTable.

Figure	18.21	shows	the	Refresh	menu	item	when	you	right-click	a	cell	that	is	part	of	a
PivotTable.	The	Refresh	button	actually	refreshes	the	PivotCache.

Figure	18.21

The	PivotCache,	though	not	seen,	maintains	the	source	data	beforehand	in	a	static	go-to
container.	Keeping	the	data	in	PivotCache	memory	makes	pivoting	and	recalculations	a
snap,	but	the	downside	is	extra	workbook	size	and	less	memory	for	other	tasks.

When	you	create	a	PivotTable	manually,	Excel	does	not	bother	you	with	the	PivotCache
details.	If	you	were	to	create	a	PivotTable	in	VBA,	you'd	need	to	address	the	PivotCache
issue	in	code.	Suppose	you	are	creating	a	new	PivotTable	based	on	the	original	source	data
that	has	been	shown	in	this	lesson.	Your	first	step	would	be	to	program	VBA	to	tell	Excel
four	pieces	of	information:

1.	 You	want	to	add	a	PivotCache	to	the	workbook.

2.	 The	location	of	the	source	data.

3.	 Based	on	items	1	and	2,	create	the	PivotTable.

4.	 Specify	where	the	PivotTable	will	be	placed.

Assuming	that	the	worksheet	holding	the	source	data	is	the	active	sheet,	and	that	you	want
the	PivotTable	to	be	located	next	to	the	source	data,	the	following	macro	would	handle	all
those	instructions:

Sub	CreatePivot()

ThisWorkbook.PivotCaches.Add	_

(SourceType:=xlDatabase,	_

SourceData:=Range("A1").CurrentRegion).CreatePivotTable	_

TableDestination:="R4C"	&	Range("A1").CurrentRegion.Columns.Count	+	2

End	Sub

NOTE	The	notation	"R4C"	&	Range("A1").CurrentRegion.Columns.Count	+	2	is
translated	as	the	worksheet	cell	that	is	on	row	4	of	the	column	that	is	two	columns	to
the	right	of	the	last	column	in	the	source	range.	Recall	from	earlier	in	the	lesson	that	I
recommend	placing	the	top-left	corner	of	the	PivotTable	on	row	4,	and	with	an	empty
column	separating	the	source	data	and	the	new	PivotTable.

The	result	you	get	is	a	PivotTable,	but	you'd	never	know	by	its	appearance	at	the	moment
—a	curious	range	of	four	cells	look	as	if	they	were	formatted	for	thin	borders.	In	this
example,	the	four	cells	are	in	range	H4:I5,	as	shown	in	Figure	18.22.

Figure	18.22

The	macro	is	just	getting	started,	but	I	wanted	to	show	you	in	slow	motion	what	is	taking
place	under	the	radar	when	a	new	PivotTable	is	created.	Actually,	with	the	preceding
macro	executed,	you	could	select	one	of	those	four	cells	and	the	PivotTable	Field	List
would	appear,	inviting	you	to	drag	fields	to	your	desired	location,	as	shown	in	Figure
18.23.	In	Figure	18.24,	the	Item	field	was	moved	to	the	Rows	area	and	the	When	field	was
moved	to	the	Columns	area.

Figure	18.23

Figure	18.24

When	a	numerical	field	is	moved	into	the	Values	area,	the	PivotTable	becomes	more
recognizable.	For	example,	Figure	18.25	shows	the	result	of	moving	the	Revenue	field
into	the	Values	area.

Figure	18.25

NOTE	If	you	want	your	PivotTable's	PivotCache	to	refresh	automatically	when	a	cell
in	your	source	list	changes,	the	following	Worksheet_Change	event	handles	that.	Note
that	the	code	uses	the	PivotTable's	Index	property	for	the	first	or	only	PivotTable	on
the	worksheet	to	be	refreshed:

Private	Sub	Worksheet_Change(ByVal	Target	As	Range)

If	Intersect(Target,	Range("A1").CurrentRegion)	Is	Nothing	_

Or	Target.Cells.Count	>	1	Then	Exit	Sub

ActiveSheet.PivotTables(1).PivotCache.Refresh

End	Sub

Manipulating	PivotFields	in	VBA
PivotFields	are	the	row	and	column	areas	that	you	place	your	field	names	into,	depending
on	how	you	want	the	PivotTable	to	display	your	data.	The	following	pieces	of	VBA	code
perform	the	placement	of	PivotFields	as	they	were	for	the	PivotTable	that	you	created
manually	earlier	in	the	lesson.	Two	fields	(Region	and	Store	ID)	are	placed	as	row	labels,
and	one	field	(When)	is	placed	as	a	column	label.	The	Revenue	field	is	placed	in	the
Values	area,	and	the	Filters	area	is	populated	by	the	Items	field:

With	ActiveSheet.PivotTables(1)

'First	(outer)	row	field.

With	.PivotFields("Region")

.Orientation	=	xlRowField

.Position	=	1

End	With

'Second	(inner)	row	field.

With	.PivotFields("Store	ID")

.Orientation	=	xlRowField

.Position	=	2

End	With

'Column	field.

With	.PivotFields("When")

.Orientation	=	xlColumnField

.Position	=	1

End	With

'Filters	area.

With	.PivotFields("Item")

.Orientation	=	xlPageField

.Position	=	1

End	With

'Revenue	in	the	Values	field.

.AddDataField	ActiveSheet.PivotTables(1).PivotFields("Revenue"),	_

"Sum	of	Amount",	xlSum

End	With

NOTE	Be	sure	to	name	your	PivotFields	correctly!	They	must	be	spelled	the	same
way	in	your	code	as	they	are	in	the	header	cells	of	your	source	list.	If	you	misspell	the
field	names	in	your	code,	VBA	lets	you	know	with	a	runtime	error	because	the	field
names	you're	instructing	VBA	to	manipulate	do	not	exist.

Manipulating	PivotItems	with	VBA
PivotItems	are	programmable	in	PivotTables,	and	as	an	example,	you	can	arrange	to	see
just	one	particular	PivotItem	in	a	field.	In	a	PivotTable	that	you	created	earlier	in	the
lesson,	you	added	a	Region	field.	Suppose	you	want	to	see	activity	only	for	the	North
PivotItem	and	hide	the	South,	East,	and	West	PivotItems.	The	following	macro
accomplishes	that:

Sub	ShowSingleItem()

Dim	objPivotField	As	PivotField

Dim	objPivotItem	As	PivotItem

Set	objPivotField	=	_

ActiveSheet.PivotTables(1).PivotFields(Index:="Region")

For	Each	objPivotItem	In	objPivotField.PivotItems

If	objPivotItem.Name	=	"North"	Then

objPivotItem.Visible	=	True

Else

objPivotItem.Visible	=	False

End	If

Next	objPivotItem

End	Sub

The	following	macro	shows	all	the	PivotItems:

Sub	ShowAllItems()

Dim	objPivotField	As	PivotField

Dim	objPivotItem	As	PivotItem

Set	objPivotField	=	_

ActiveSheet.PivotTables(1).PivotFields(Index:="Region")

For	Each	objPivotItem	In	objPivotField.PivotItems

objPivotItem.Visible	=	True

Next	objPivotItem

End	Sub

Creating	a	PivotTables	Collection
PivotTables	are	objects	for	which	there	is	a	Collection	object,	just	as	there	is	for
worksheets	and	workbooks.	As	you	might	guess,	the	name	of	the	Collection	object	for
PivotTables	is	PivotTables,	and	you	can	loop	through	every	PivotTable	on	a	worksheet	or
throughout	the	workbook	if	you	need	to.

For	example,	if	you	have	more	than	one	PivotTable	on	a	worksheet	and	they	are	tied	to	the
same	source	list	that	starts	in	cell	A1,	this	Worksheet_Change	event	refreshes	all
PivotTables	on	that	worksheet	automatically	when	the	source	data	is	changed:

Private	Sub	Worksheet_Change(ByVal	Target	As	Range)

If	Intersect(Target,	Range("A1").CurrentRegion)	Is	Nothing	_

Or	Target.Cells.Count	>	1	Then	Exit	Sub

Dim	PT	As	PivotTable

For	Each	PT	In	ActiveSheet.PivotTables

PT.RefreshTable

Next	PT

End	Sub

Suppose	you	have	several	PivotTables	on	many	different	worksheets	and	you	want	to	be
confident	that	every	PivotTable	displays	the	current	data	from	its	respective	source	lists.
The	following	Workbook_Open	procedure	refreshes	every	PivotTable	in	the	workbook
when	the	workbook	opens:

Private	Sub	Workbook_Open()

Dim	wks	As	Worksheet,	PT	As	PivotTable

For	Each	wks	In	Worksheets

For	Each	PT	In	wks.PivotTables

PT.RefreshTable

Next	PT

Next	wks

End	Sub

NOTE	You	can	avoid	looping	through	all	your	PivotTables	by	using	VBA's
RefreshAll	method	to	refresh	all	PivotTables	at	once.	The	single	line	of	code	would
be	ActiveWorkbook.RefreshAll.	Just	be	aware	that	the	RefreshAll	method	also
refreshes	all	external	data	ranges,	such	as	web	queries,	for	the	specified	workbook.

You	might	need	to	delete	all	the	PivotTables	on	a	worksheet.	When	you	delete	a
PivotTable,	what	you	are	really	doing	is	clearing	the	cells	that	are	occupied	by	the
PivotTable.	The	following	macro	deletes	all	the	PivotTables	on	the	active	worksheet:

Sub	DeleteAllPivotTablest()

Dim	objPT	As	PivotTable,	iCount	As	Integer

For	iCount	=	ActiveSheet.PivotTables.Count	To	1	Step	-1

Set	objPT	=	ActiveSheet.PivotTables(iCount)

objPT.PivotSelect	""

Selection.Clear

Next	iCount

End	Sub

Try	It
In	this	lesson,	you	write	a	macro	that	adds	a	PivotChart	to	accompany	an	existing
PivotTable.	Your	new	PivotChart	will	be	located	below	the	PivotTable	on	that	same
worksheet.

Lesson	Requirements
Your	worksheet	contains	a	list	of	source	data,	and	you	already	have	a	PivotTable	on	your
worksheet,	as	shown	in	Figure	18.26.	To	get	the	sample	workbook,	you	can	download
Lesson	18	from	the	book's	website	at	www.wrox.com/go/excelvba24hour.

Figure	18.26

Step-by-Step
1.	 Activate	the	worksheet	that	contains	the	source	data	list	and	PivotTable.

2.	 Press	Alt+F11	to	go	to	the	Visual	Basic	Editor.

3.	 From	the	menu	bar,	click	Insert Module.

4.	 In	the	new	module,	type	Sub	CreatePivotChart	and	press	Enter.	VBA	produces	the
following	lines	of	code	for	you:

Sub	CreatePivotChart()

http://www.wrox.com/go/excelvba24hour

End	Sub

5.	 Turn	off	ScreenUpdating	to	help	your	macro	run	faster	by	not	refreshing	the	screen	as
objects	in	the	code	are	created	and	manipulated:

Application.ScreenUpdating	=	False

6.	 Declare	an	Object	variable	for	the	existing	PivotTable:

Dim	objPT	As	PivotTable

7.	 Set	the	Object	variable	for	the	first	(index	#1)	PivotTable:

Set	objPT	=	ActiveSheet.PivotTables(1)

8.	 Select	the	PivotTable:

objPT.PivotSelect	""

9.	 Add	the	chart:

Charts.Add

10.	 Place	the	chart	onto	the	PivotTable's	worksheet:

ActiveChart.Location	Where:=xlLocationAsObject,	_

Name:=objPT.Parent.Name

11.	 Position	the	PivotChart	so	its	top-left	corner	occupies	cell	H23,	a	few	rows	below	the
PivotTable:

ActiveChart.Parent.Left	=	Range("H23").Left

ActiveChart.Parent.Top	=	Range("H23").Top

12.	 Deselect	the	PivotChart:

Range("A1").Select

13.	 Turn	on	ScreenUpdating:

Application.ScreenUpdating	=	True

14.	 When	you	complete	the	macro,	it	looks	as	follows:

Sub	CreatePivotChart()

'Turn	off	ScreenUpdating.

Application.ScreenUpdating	=	False

'Declare	an	Object	variable	for	the	existing	PivotTable.

Dim	objPT	As	PivotTable

'Set	the	Object	variable	for	the	first	(index	#1)	PivotTable.

Set	objPT	=	ActiveSheet.PivotTables(1)

'Select	the	PivotTable.

objPT.PivotSelect	""

'Add	the	chart.

Charts.Add

'Place	it	on	the	PivotTable's	worksheet.

ActiveChart.Location	Where:=xlLocationAsObject,	_

Name:=objPT.Parent.Name

'Position	the	PivotChart	so	its	top	left	corner

'occupies	cell	H23,	a	few	rows	below	the	PivotTable.

ActiveChart.Parent.Left	=	Range("H23").Left

ActiveChart.Parent.Top	=	Range("H23").Top

'Deselect	the	PivotChart.

Range("A1").Select

'Turn	on	ScreenUpdating.

Application.ScreenUpdating	=	True

End	Sub

15.	 Press	Alt+Q	to	return	to	your	worksheet	and	test	your	macro.	Figure	18.27	shows	what
the	worksheet	should	look	like	with	the	PivotChart	added,	right	where	it	was	specified
in	VBA.

Figure	18.27

REFERENCE	Please	select	the	video	for	Lesson	18	at
www.wrox.com/go/excelvba24hour.	You	will	also	be	able	to	download	the	code	and
resources	for	this	lesson	from	the	website.

http://www.wrox.com/go/excelvba24hour

Lesson	19
User-Defined	Functions
Most	Excel	users	who	are	not	absolute	beginners	use	worksheet	functions	in	their
formulas.	The	most	common	worksheet	function	is	the	SUM	function,	and	hundreds	more
exist.

Basically,	a	function	performs	a	calculation	or	evaluation	and	then	returns	a	value.
Functions	used	in	your	VBA	expressions	act	the	same	way;	they	do	what	they	are
programmed	to	do	and	then	return	a	result.

With	VBA,	you	can	write	(“define”)	your	own	custom	function	(a	user-defined	function	or
UDF)	that	looks,	acts,	and	feels	like	a	built-in	function,	but	with	a	lot	more	power	and
versatility.	After	you	get	the	hang	of	UDFs,	you'll	wonder	how	you	ever	got	along	without
them.

What	Is	a	User-Defined	Function?
You	are	already	familiar	with	many	of	Excel's	built-in	worksheet	functions	such	as	SUM,
AVERAGE,	and	VLOOKUP,	but	sometimes	you	need	to	perform	calculations	or	get	information
that	none	of	Excel's	built-in	functions	can	accomplish.	A	user-defined	function	(UDF)	is	a
function	in	VBA	that	you	create	with	arguments	you	specify.	You	use	it	as	a	worksheet
function	or	as	part	of	a	macro	procedure	when	a	task	is	otherwise	impossible	or	too
cumbersome	to	achieve	with	Excel's	built-in	formulas	and	functions.

For	example,	you	may	need	a	formula	to	sum	a	range	of	numbers	depending	on	a	cell's
interior	color;	to	extract	only	numbers	or	letters	from	an	alphanumeric	string;	to	place	an
unchanging	random	number	in	a	cell;	or	to	test	whether	a	particular	worksheet	exists	or
another	workbook	is	open.	UDFs	are	an	excellent	option	for	handling	tasks	when	regular
worksheet	functions	cannot	or	should	not	be	used.

Characteristics	of	User-Defined	Functions
When	used	as	a	worksheet	function,	the	purpose	of	a	UDF	is	to	return	a	number,	string,
array,	or	boolean	(true	or	false)	value	to	the	cell	it	occupies.	UDFs	cannot	change	the
Excel	environment	in	any	way,	meaning	they	cannot	place	a	value	in	another	cell,	change
the	interior	color	of	any	cell	including	the	cell	they	are	in,	rename	a	worksheet,	or	do
anything	other	than	return	a	value	to	their	own	cell.

That	said,	it's	important	to	note	that	a	UDF	can	be	called	by	a	macro.	This	allows	the
calling	procedure	(the	macro)	to	take	advantage	of	the	UDF	while	still	retaining	the	ability
to	change	the	Excel	environment.	This	makes	your	UDF	a	versatile	tool	when	integrated
with	macros.

UDFs	cannot	be	composed	by	the	Macro	Recorder.	Although	in	some	cases	you	can
record	a	macro	and	turn	it	into	a	UDF	by	editing	the	code,	most	of	the	time	you	create	a
UDF	by	writing	the	code	yourself	directly	into	a	standard	module.

NOTE	UDFs	are	always	located	in	a	standard	module,	though	they	can	neither
appear	in,	nor	be	run	from,	the	Macro	dialog	box.	UDFs	do	not	work	if	placed	in	any
other	type	of	module,	such	as	a	worksheet,	workbook,	UserForm,	or	class	module.

NOTE	Whichever	way	the	UDF	is	called,	be	aware	that	it	always	compiles	slower
than	built-in	functions.	Honestly,	you	would	barely	notice	the	difference	yourself,	but
Excel	notices	and	spends	an	extra	moment	to	think	things	over	when	compiling	code
of	any	kind,	including	user-defined	functions.	Avoid	reinventing	the	wheel	by	using
worksheet	functions	wherever	practical	and	using	UDFs	only	for	things	worksheet
functions	cannot	or	should	not	do.

Anatomy	of	a	UDF
When	designing	a	UDF,	it	helps	to	consider	three	questions:

What	is	the	function's	purpose;	that	is,	what	do	you	want	it	to	accomplish?

What	arguments,	if	any,	does	the	function	need?

What	will	the	function	return	as	a	formula	or	provide	to	its	caller	in	a	macro?

A	UDF	always	begins	with	the	Function	statement	and	ends	with	the	End	Function
statement.	Unless	you	want	your	function	to	be	visible	only	to	other	code	in	the	same
module,	it's	best	to	declare	the	function	as	Public,	or	omit	the	Public/Private	qualifier
altogether,	which	defaults	the	function's	scope	to	Public.	When	you	declare	a	UDF	as
Public,	it	appears	in	the	list	of	functions	in	the	Insert	Function	dialog	box.

Here	is	an	example	of	the	general	syntax	of	a	UDF:

Function	name([argument	list])	as	type

'VBA	statements	that	make	up	the	Function

[name	=	returned	expression]

End	Function

NOTE	Function	names	must	begin	with	a	letter,	and	cannot	contain	spaces	or	illegal
naming	characters	such	as	the	slash,	colon,	comma,	bracket,	or	any	arithmetic
operator	symbols.	It's	always	a	good	practice	to	give	your	UDF	a	simple,	meaningful
name,	just	as	you	would	for	a	macro.

After	the	function's	name	is	the	argument	list,	which	is	enclosed	by	parentheses.	If	you
have	two	or	more	arguments,	each	is	separated	by	a	comma	and	a	space.	Not	every	UDF
requires	arguments,	but	the	parentheses	are	still	required	immediately	after	the	function
name.	Following	the	argument	list	is	the	optional	(but	strongly	recommended)
specification	of	the	data	type,	depending	on	the	function's	purpose.

Here's	an	example	of	a	UDF	that	does	not	require	any	arguments.	It	returns	the	complete
path	of	the	Microsoft	Excel	application	on	your	computer:

Function	xlPath()	As	String

xlPath	=	Application.Path

End	Function

On	my	computer,	using	Microsoft	Office	2013	and	entering	the	formula	=xlPath()	into	a
worksheet	cell,	this	UDF	returns	the	path	C:\ProgramFiles\Microsoft	Office
15\root\office15.

UDF	Examples	That	Solve	Common	Tasks
User-defined	functions	can	simplify	your	work	by	enabling	you	to	use	shorter	and	more
readable	formulas.	After	you	create	the	UDF,	all	the	user	needs	to	know	is	the	function
name	and	its	arguments.	User-defined	functions	are	very	useful	for	handling	everyday
tasks	that	you	might	have	thought—or	are	known	to	be	impossible	to	solve	with	a	native
worksheet	formula.	Following	are	a	few	examples	of	UDFs	that	can	solve	such	tasks.

Summing	Numbers	in	Colored	Cells
A	question	that	frequently	arises	is	how	to	add	up	the	numbers	that	are	only	in	colored
cells	of	a	certain	range.	If	the	cells	were	colored	by	conditional	formatting,	the	solution
could	be	to	sum	that	range	of	cells	based	on	the	condition,	such	as	by	using	the	SUMIF
function.	However,	evaluating	the	property	of	a	cell—in	this	case	its	actual	interior	color
—is	more	of	a	challenge	because	no	built-in	worksheet	function	is	able	to	do	that.

As	an	example,	Figure	19.1	shows	a	list	of	numbers	in	range	A2:A15,	where	some	cells
are	colored	gray	and	some	are	not.	The	task	is	to	sum	the	numbers	in	gray-colored	cells.

Figure	19.1

Outside	the	range,	cell	C1	serves	the	dual	purpose	of	receiving	the	UDF,	and	also
displaying	the	color	you	need	to	sum	by.	With	this	approach,	the	UDF	only	needs	one
argument	to	specify	the	range	to	sum:

Function	SumColor(RangeToSum	As	Range)	As	Long

'Declare	the	necessary	variables.

Dim	ColorID	As	Integer,	ColorCell	As	Range,	mySum	As	Long

'Identify	the	ColorID	variable	so	you	know	what	color	to	look	for.

ColorID	=	Range(Application.Caller.Address).Interior.ColorIndex

'Loop	through	each	cell	in	the	range.

For	Each	ColorCell	In	RangeToSum

'If	the	cell's	color	matches	the	color	you	are	looking	for,

'keep	a	running	subtotal	by	adding	the	cell's	number	value

'to	the	mySum	variable.

If	ColorCell.Interior.ColorIndex	=	ColorID	Then	mySum	=	mySum	+	

ColorCell.Value

Next	ColorCell

'The	cells	have	all	been	evaluated,	so	you	can	define	the	SumColor	function

'by	setting	it	equal	to	the	mySum	variable.

SumColor	=	mySum

End	Function

The	entry	in	cell	C1	is	=SumColor(A2:A15).	The	UDF	loops	through	each	cell	in	range
A2:A15,	and	along	the	way	keeps	a	running	total	with	the	mySum	variable	when	a	gray	cell
is	encountered.	At	the	end	of	the	UDF	code,	the	function's	name	of	SumColor	is	set	to
equal	the	mySum	variable,	and	that	enables	the	UDF	to	return	16	as	the	sum	of	gray-colored
cells.	Notice	that	because	you	were	expecting	the	result	to	be	a	whole	number,	the	Long
variable	type	was	specified	for	the	function's	name.

NOTE	This	example	also	demonstrates	another	useful	way	to	employ	the
Application.Caller	statement	that's	introduced	in	Lesson	16.	Here,	the	object
calling	the	function	is	cell	C1,	which	was	colored	gray	before	the	UDF	was	entered.

Extracting	Numbers	or	Letters	from	an	Alphanumeric	String
Another	common	question	is	how	to	extract	numbers	or	letters	from	a	string	that	contains
a	mixture	of	alphanumeric	characters.	If	the	numbers	or	letters	are	all	in	predictable	places
or	consistently	grouped	in	some	way,	built-in	formulas	might	do	the	job.	But	it	gets	dicey
if	the	string	has	an	unpredictable	mishmash	of	characters	similar	to	what	is	in	column	A	in
Figure	19.2.

Figure	19.2

Following	are	two	similar	UDFs:	one	that	extracts	just	the	numbers	from	an	alphanumeric
string	and	one	that	extracts	just	the	letters.	Figure	19.2	shows	how	the	formulas	should	be
entered.

NOTE	Remember	that	you	can	copy	and	paste	a	UDF	just	as	you	can	a	built-in
formula	or	function.	You	can	also	use	the	fill	handle	to	copy	the	UDF	down	or	across.

Function	ExtractNumbers(strText	As	String)

'Declare	the	necessary	variables.

Dim	i	As	Integer,	strDbl	As	String

'Loop	through	each	character	in	the	cell.

For	i	=	1	To	Len(strText)

'If	the	character	is	a	digit,	append	it	to	the	strDbl	variable.

If	IsNumeric(Mid(strText,	i,	1))	Then

strDbl	=	strDbl	&	Mid(strText,	i,	1)

End	If

Next	i

'Each	character	in	the	cell	has	been	evaluated,	so	you	can	define	the

'ExtractNumbers	function	by	setting	it	equal	to	the	strDbl	variable.

'The	purpose	of	the	CDbl	function	is	to	coerce	the	strDbl	expression

'into	a	numeric	Double	data	type.

ExtractNumbers	=	CDbl(strDbl)

End	Function

Function	ExtractLetters(strText	As	String)

'Declare	the	necessary	variables.

Dim	x	As	Integer,	strTemp	As	String

'Loop	through	each	character	in	the	cell.

For	x	=	1	To	Len(strText)

'If	the	character	is	not	numeric,	it	must	be	a	letter,

'so	append	it	to	the	strTemp	variable.

If	Not	IsNumeric(Mid(strText,	x,	1))	Then

strTemp	=	strTemp	&	Mid(strText,	x,	1)

End	If

Next	x

'Each	character	in	the	cell	has	been	evaluated,	so	you	can	define	the

'ExtractLetters	function	by	setting	it	equal	to	the	strTemp	variable.

ExtractLetters	=	strTemp

End	Function

Extracting	the	Address	from	a	Hyperlink
Here	is	an	example	of	how	to	return	the	actual	underlying	address	of	a	hyperlink.	In
Figure	19.3,	hyperlinks	are	in	column	A	but	the	display	text	in	those	cells	describes	the
link's	destination.	This	UDF	returns	the	actual	hyperlink	address;	the	"mailto"	portion	of
the	code	deals	with	the	possibility	of	a	link	being	an	e-mail	address:

Function	Link(HyperlinkCell	As	Range)

Link	=	Replace(HyperlinkCell.Hyperlinks(1).Address,	"mailto:",	"")

End	Function

Figure	19.3

USER-DEFINED	FUNCTIONS	AND	ERRORS
You	might	wonder	what	happens	if	an	error	occurs	with	a	UDF.	For	example,	what	if
the	SumColor	function	is	entered	into	a	cell	with	an	illogical	range	argument	address
such	as	=SUMCOLOR(A2:WXYZ)?	Or,	what	if	a	UDF	attempts	to	divide	a	number	by
zero?

When	a	UDF	attempts	to	do	what	it	cannot	do,	the	cell	displays	a	#VALUE!	error.
Whereas	a	failed	macro	results	in	a	runtime	error	with	an	imposing	message	box	to
announce	the	error	and	a	debug	option	to	identify	the	offending	code	line,	such	is	not
the	case	with	a	failed	UDF.	Even	though	it	is	a	VBA	item,	a	failed	UDF	only	returns
the	#VALUE!	error.	With	larger	UDFs,	finding	the	cause	of	the	error	can	be	a	real
chore.	Therefore,	it's	a	good	idea	to	test	each	code	line	in	the	Immediate	window	as
you	write	your	larger	UDFs.

Volatile	Functions
Sometimes,	you	want	a	UDF	to	return	a	value	and	then	do	nothing	else	until	you
purposely	cause	it	to	recalculate.	An	example	is	if	you	want	to	produce	a	random	number
in	a	cell	but	keep	that	number	constant	until	you	decide	to	change	it	again,	if	ever.	The
worksheet	function	RAND()	returns	a	random	number,	but	it	recalculates	whenever	the
worksheet	recalculates	or	any	cell	in	that	worksheet	is	edited.	This	UDF	returns	an
unchanging	(static)	random	number	between	1	and	100:

Function	StaticRandom()	As	Double

StaticRandom	=	Int(Rnd()	*	100)

End	Function

The	function	entry	for	the	cell	is	=StaticRandom().

NOTE	Notice	that	the	StaticRandom	UDF	does	not	require	an	argument.	Even	so,
the	empty	parentheses	must	immediately	follow	the	function's	name	in	the	first	code
line.	Also,	when	you	enter	a	non-argument	UDF	in	a	cell,	the	parentheses	must	be
included,	as	you	see	in	this	example.

Now	with	the	StaticRand	UDF	in	its	current	state,	its	returned	random	number	does	not
change	unless	you	purposely	call	the	UDF,	such	as	if	you	select	the	cell,	press	the	F2	key,
and	press	Enter,	or	if	you	press	Ctrl+Alt+F9	to	force	a	calculation	on	all	cells.

If	you	prefer	to	have	the	UDF	act	as	the	built-in	RAND	function	would,	that	is,	to
recalculate	whenever	another	worksheet	formula	is	recalculated	or	a	cell	is	edited,	you	can
insert	the	statement	Application.Volatile	like	so:

Function	StaticRandom()	As	Double

Application.Volatile

StaticRandom	=	Int(Rnd()	*	100)

End	Function

NOTE	Be	aware	that	if	the	UDF	is	used	in	a	lot	of	cells,	Application.Volatile
adds	to	the	workbook's	overall	calculation	effort,	possibly	resulting	in	longer
recalculation	times.

Returning	the	Name	of	the	Active	Worksheet	and	Workbook
A	very	common	request	is	for	a	formula	to	return	the	name	of	the	active	worksheet	or
workbook.	This	is	a	case	where	a	UDF	is	still	a	worthy	alternative	even	though	formulas
can	handle	this	request,	and	the	Application.Volatile	statement	would	be	included.

For	the	worksheet	name,	this	formula	is	an	option	but	it's	not	easy	to	memorize	or	to	enter
correctly:

=MID(CELL("filename",A1),FIND("]",CELL("filename",A1))+1,32)

Although	the	formula	automatically	updates	itself	when	a	sheet	tab	name	changes,	the

workbook	must	be	named	(saved	at	least	once)	or	the	formula	returns	a	#VALUE!	error.

The	following	code	shows	a	UDF	with	the	Application.Volatile	statement	that	covers
all	the	bases.	It	updates	itself	when	the	worksheet	tab	changes,	and	the	workbook	does	not
need	to	be	named	or	saved	for	the	UDF	to	work.	Another	advantage	is	that	the	formula
=SheetName()	is	easy	to	remember	and	to	enter:

Function	SheetName()	As	String

Application.Volatile

SheetName	=	ActiveSheet.Name

End	Function

For	the	formula	that	returns	the	active	workbook's	name,	the	following	is	a	lengthier	and
more	difficult	one	to	enter	properly:

=MID(CELL("filename",A1),FIND("[",CELL("filename",A1))+1,FIND("]",	

CELL("filename",A1))-FIND("[",CELL("filename",A1))-1)

The	workbook	needs	to	be	saved	at	least	once	for	this	formula	to	work.

The	NameWB()	function	is	much	easier	to	remember	and	enter,	and	it'll	also	do	the	job
whether	or	not	the	workbook	has	been	saved:

=NameWB()

Its	UDF	is	the	following:

Function	NameWB()	As	String

Application.Volatile

NameWB	=	ActiveWorkbook.Name

End	Function

UDFs	with	Conditional	Formatting
One	of	the	less-utilized	but	powerful	applications	of	a	UDF	is	to	combine	it	with
conditional	formatting.	Let's	say	you	want	to	identify	cells	that	contain	a	comment	in	a
workbook	where	the	option	to	show	comment	indicators	is	turned	off.	It's	true	that	cells
containing	comments	fall	into	the	category	of	SpecialCells	and	you	can	select	them
through	the	Go	To	Special	dialog	box;	you	can	maybe	format	the	selected	comment-
containing	cells	from	there.	However,	you'd	need	to	repeat	those	steps	anytime	a	cell
obtains	or	deletes	a	comment,	and	there's	no	telling	if	or	when	that	might	happen.

A	better	way	to	go	is	with	a	UDF	as	the	formula	rule	with	conditional	formatting,	to
format	the	comment-containing	cells	in	real	time	as	comments	are	added	or	deleted.	For
example,	place	this	UDF	into	a	standard	module:

Public	Function	TestComment(rng	As	Range)	As	Boolean

TestComment	=	Not	rng.Comment	Is	Nothing

End	Function

Back	on	your	worksheet,	select	the	range	of	interest—in	this	example	starting	from	cell
A1.	In	the	New	Formatting	Rule	dialog	box	for	Excel	versions	starting	with	2007,	or	the
Conditional	Formatting	dialog	box	for	versions	prior	to	2007,	enter	this	formula:

=TestComment(A1)

Choose	your	formatting	style,	click	OK,	and	all	comment-containing	cells	in	that	range	are
formatted.

Calling	Your	UDF	from	a	Macro
As	mentioned	earlier,	functions	that	you	create	need	not	only	serve	as	worksheet	formulas.
A	function	can	also	be	called	by	a	macro,	which	does	not	limit	the	macro's	ability	to	do
whatever	needs	to	be	done.	In	the	following	code,	the	OpenTest	function	is	set	apart	from
the	OpenOrClosed	macro,	which	gives	you	the	best	of	both	worlds	for	testing	whether	a
particular	workbook	is	open	or	closed.

To	test	by	formula	if	a	workbook	named	YourWorkbookName.xlsm	is	open	or	closed,	you
can	enter	the	following	in	a	worksheet	cell,	which	returns	TRUE	(the	workbook	is	open)	or
FALSE	(the	workbook	is	closed):

=OpenTest("YourWorkbookName.xlsm")

To	test	by	macro,	you	can	expand	the	functionality	by	asking	with	a	Yes/No	message	box
if	you'd	like	to	open	that	workbook	if	it	is	not	already	open,	and	open	it	if	Yes	is	selected,
or	keep	the	workbook	closed	if	No	is	selected.	Here's	the	code:

Function	OpenTest(wb)	As	Boolean

'Declare	a	Workbook	variable.

Dim	wkb	As	Workbook

'Employ	the	On	Error	Resume	Next	statement	to	check	for,	and	bypass,

'a	run	time	error	in	case	the	workbook	is	not	open.

On	Error	Resume	Next

Set	wkb	=	Workbooks(wb)

'If	there	is	no	error,	the	workbook	is	open.

If	Err	=	0	Then

Err.Clear

OpenTest	=	True

Else

'An	error	was	raised,	meaning	the	workbook	is	not	open.

OpenTest	=	False

End	If

End	Function

Sub	OpenOrClosed()

'Declare	a	String	type	variable	that	will	be	the	workbook	name.

Dim	strFileName	As	String

strFileName	=	"YourWorkbookName.xlsm"

'Call	the	OpenTest	UDF	to	evaluate	whether	or	not	the	workbook	is	open.

If	OpenTest(strFileName)	=	True	Then

'For	demo	purposes,	this	message	box	informs	you	if	the	workbook	is	open.

MsgBox	strFileName	&	"	is	open.",	vbInformation,	"FYI…"

Else

'The	OpenTest	UDF	determines	that	the	workbook	is	closed.

'A	message	box	asks	if	you	want	to	open	that	workbook.

Dim	OpenQuestion	As	Integer

OpenQuestion	=	_

MsgBox(strFileName	&	"	is	not	open,	do	you	want	to	open	it?",	_

vbYesNo,	_

"Your	choice")

'Example	code	if	you	answer	No,	meaning	you	want	to	keep	the	workbook	

closed.

If	OpenQuestion	=	vbNo	Then

MsgBox	"No	problem,	it'll	stay	closed.",	,	"You	clicked	No."

Else

'Example	code	if	you	answer	Yes,	meaning	you	want	to	open	the	workbook.

'You	need	to	tell	the	macro	what	the	full	path	is	for	this	workbook,

'so	another	String	type	variable	is	declared	for	the	path.

Dim	strFileFullName	As	String

strFileFullName	=	"C:\Your\File\Path\"	&	strFileName

'Open	the	workbook.

Workbooks.Open	Filename:=strFileFullName

End	If

End	If

End	Sub

Adding	a	Description	to	the	Insert	Function	Dialog	Box
Chances	are,	the	more	VBA	you	learn,	the	more	popular	you'll	be	at	your	workplace	as	the
Excel	go-to	person.	Soon	if	not	already,	you'll	be	building	workbooks	for	other	people	to
use,	and	it's	a	nice	touch	to	add	a	helpful	description	to	your	UDFs	for	the	benefit	of	those
other	users.	The	Insert	Function	dialog	box	is	a	good	place	to	help	people	understand	how
to	enter	your	UDFs,	especially	because	this	dialog	box	is	how	some	users	enter	functions,
and	each	UDF	has	its	own	unique	entry	requirements.

Figure	19.4	shows	a	typical	Insert	Function	dialog	box,	where	your	publicly	declared	or
non-declared	UDFs	appear	in	the	Select	a	Function	pane	when	the	User	Defined	category
is	selected.	I've	selected	the	ExtractNumbers	function,	but	no	help	is	available	for
someone	who	has	never	seen	this	UDF	and	would	not	know	how	to	properly	enter	the
function.

Figure	19.4

In	two	easy	steps,	here's	how	you	can	provide	a	helpful	tip	for	entering	a	UDF	from	the
Insert	Function	dialog	box:

1.	 Press	Alt+F8	to	call	the	Macro	dialog	box.	In	the	Macro	Name	field,	enter	the	function
name;	for	example,	ExtractNumbers,	as	shown	in	Figure	19.5.	Click	the	Options
button.

2.	 In	the	Description	field	of	the	Macro	Options	dialog	box,	enter	a	brief	description	of
how	to	enter	this	UDF.	As	partially	shown	in	Figure	19.6,	I	entered	Example	UDF
entry:	=ExtractNumbers(A2),	where	cell	A2	contains	the	original

alphanumeric	string.	as	the	description	and	confirmed	it	by	clicking	OK	and	exiting
the	Macro	dialog	box.

Figure	19.5

Figure	19.6

And	that's	all	there	is	to	it.	Now	if	you	go	back	to	the	Insert	Function	dialog	box	and	select
the	ExtractNumbers	UDF,	a	description	appears,	as	shown	in	Figure	19.7,	providing	the
users	with	a	useful	tip	for	how	to	enter	the	UDF.

Figure	19.7

Try	It
In	this	lesson	you	practice	creating	a	user-defined	function	that	tests	whether	a	particular
cell	contains	a	comment.	If	so,	the	UDF	returns	the	text	of	that	comment;	if	not,	the	UDF
returns	"No	comment".

Lesson	Requirements
To	get	the	sample	workbook,	you	can	download	Lesson	19	from	the	book's	website	at
www.wrox.com/go/excelvba24hour.

Step-by-Step
1.	 From	your	keyboard	press	Alt+F11	to	get	into	the	VBE,	and	from	the	menu	bar	click

Insert Module.

2.	 Enter	the	function	name,	declare	an	argument	variable	for	a	Range	type	because	a	cell
will	be	evaluated,	and	declare	the	Function	type	as	String	because	the	UDF	returns
text	of	some	kind.	For	example:

Function	GetComment(rng	As	Range)	As	String

3.	 Declare	a	String	type	variable	to	handle	either	the	comment	text	or	the	"No	comment"
statement:

Dim	strText	As	String

4.	 Using	an	If	structure,	evaluate	the	target	cell	for	the	existence	of	a	comment.	If	there
is	no	comment,	define	the	strText	variable	as	"No	comment":

If	rng.Comment	Is	Nothing	Then

strText	=	"No	comment"

5.	 Complete	the	If	structure	for	the	condition	of	the	target	cell	containing	a	comment:

Else

strText	=	rng.Comment.Text

End	If

6.	 Set	the	name	of	the	function	equal	to	the	strText	string	expression:

GetComment	=	strText

7.	 Close	the	function	with	the	End	Function	statement.	The	entire	UDF	looks	like	this:

Function	GetComment(rng	As	Range)	As	String

Dim	strText	As	String

If	rng.Comment	Is	Nothing	Then

strText	=	"No	comment"

Else

strText	=	rng.Comment.Text

End	If

GetComment	=	strText

End	Function

http://www.wrox.com/go/excelvba24hour

8.	 Press	Alt+Q	to	return	to	the	worksheet.	Test	your	UDF	to	evaluate	the	existence	of	a
comment	in	cell	A1	and	return	the	conditional	string	with	this	formula	in	a	worksheet
cell:

=GetComment(A1)

REFERENCE	Please	select	the	video	for	Lesson	19	online	at
www.wrox.com/go/excelvba24hour.	You	will	also	be	able	to	download	the	code	and
resources	for	this	lesson	from	the	website.

http://www.wrox.com/go/excelvba24hour

Lesson	20
Debugging	Your	Code
Despite	what	you've	always	heard,	there	are	actually	three	sure	things	in	life:	death,	taxes,
and	errors	in	computer	programs.	There's	no	avoiding	it—errors	happen	and	they	need	to
be	fixed,	whether	the	length	of	your	VBA	programming	experience	is	10	days	or	10	years.

You	need	to	learn	the	tools	and	techniques	for	debugging	your	code,	so	that	when	things
go	wrong	you're	familiar	with	the	resources	that	are	at	your	disposal	for	finding	and	fixing
errors.	Excel	has	many	good	built-in	debugging	tools.	In	addition,	this	lesson	covers	other
techniques	for	avoiding	errors	in	the	first	place,	and,	believe	it	or	not,	getting	errors	to
work	for	you	instead	of	against	you.

What	Is	Debugging?
A	bug	is	an	error	in	your	code	that	can	produce	erroneous	results,	or,	depending	on	the
nature	of	the	bug,	stop	the	code	from	executing	altogether.	In	programming,	the	term
debugging	refers	to	correcting	an	error	in	code,	or	the	process	of	testing	a	procedure	for
the	possible	existence	of	bugs	that	would	need	to	be	fixed	if	found.

YOU	CAN	DO	EVERYTHING	RIGHT	AND	STILL
HAVE	A	BUG
The	next	section	covers	three	causes	of	errors	in	VBA	programming.	Actually,	there
is	a	fourth	cause,	over	which	you	have	absolutely	no	control,	and	that	is	a	bug	in	a
software	application	itself.	This	is	not	in	any	way	a	specific	reference	to	a	particular
software	company	or	to	Microsoft.	It's	a	software-industry	reality	that	new	products
are	sometimes	released	with	bugs,	including	known	bugs	that	are	deemed	to	be
benign	but	turn	out	to	be	a	problem	when	used	with	Excel.

In	your	future	development	projects,	you'll	encounter	many	external	data	storage	and
management	applications	that	mostly	play	well	with	Excel,	but	sometimes	might	not
when	by	all	rights	they	should.	It's	never	in	any	reputable	software	company's	best
interests	to	impose	nuisance	bugs	on	its	users.	The	point	is,	if	you	find	that	you	have
all	your	bases	covered	and	are	still	scratching	your	head	about	an	error	that	has	no
rhyme	or	reason,	you	might	have	stumbled	onto	a	bug	that	other	users	of	that	product,
and	especially	the	software	manufacturer,	would	want	to	know	about.

The	process	of	debugging	is	a	combination	of	art	and	science.	The	science	is	covered	by
some	terrific	debugging	tools	that	come	with	Excel	VBA.	The	art	is	owing	to	the	skills
and	experience	you	gain	when	you	build	VBA	projects	with	a	mindset	for	anticipating
potential	minefields	based	on	the	intended	use—and	users—of	your	projects.

What	Causes	Errors?
The	world	of	computer	programming	enjoys	no	exemption	from	Murphy's	Law,	which
states	that	if	something	can	go	wrong,	it	will	go	wrong.	Three	primary	types	of	errors	can
infect	your	VBA	programming	code.	To	avoid	errors,	your	first	line	of	defense	is
anticipating	problems	as	you	write	your	code,	especially	considering	how	the	project	will
be	used	in	real	practice.	Eventually,	however,	one	of	three	types	of	errors	will	impose	their
nuisance	selves.

One	type	is	the	syntax	error,	such	as	misspelling	a	VBA	keyword	or	not	declaring	a
variable	while	requiring	variable	declaration	(as	was	outlined	in	Lesson	6).	This	causes	a
compile	error	as	shown	in	Figure	20.1,	because	the	LastRow	variable	was	not	declared	in
that	example.	If	an	error	can	be	classified	as	friendly,	it'd	be	a	compile	error	because	it	is
VBA's	way	of	telling	you	what's	wrong,	and	sometimes	showing	you	exactly	where	the
problem	is.

Figure	20.1

Another	syntax	error	that	can	result	in	a	compilation	failure	is	the	absence	of	an	End	If,
End	With,	or	loop	continuation	keyword	such	as	Next	or	Loop.	For	example,	the	macro
shown	in	Figure	20.2	produces	a	compile	error	because	it	is	missing	an	End	With
statement.

Figure	20.2

A	second	type	of	error	is	the	runtime	error,	because	they	occur	while	the	macro	is	running.
These	errors	usually	stop	the	procedure	dead	in	its	tracks	with	a	runtime	error	message
such	as	the	one	in	Figure	20.3.	Notice	the	reason	for	the	error:	In	the	Project	Explorer
window,	you	can	see	that	the	workbook	has	only	three	worksheets,	named	Sheet1,
Sheet2,	and	Sheet3.

Figure	20.3

The	runtime	error	is	VBA's	way	of	protesting	that	it	is	being	told	to	do	something	it
cannot	do,	as	in	this	case	because	a	worksheet	named	Sheet4	does	not	exist.	If	the	Visual
Basic	Editor	is	unprotected,	and	you	click	the	Debug	button	on	a	runtime	error	message,
VBA	takes	you	to	the	related	module	and	highlights	the	offending	line	of	code,	as	shown
in	Figure	20.4.

Figure	20.4

The	third	type	of	error	is	the	logical	error.	These	errors	are	the	most	nefarious	because
they	come	with	no	message	warnings	that	something	is	wrong.	An	example	of	a	logical
error	is	an	incorrectly	coded	mathematical	calculation	that	yields	incorrect	results.
Suppose	your	project	is	a	large	VBA	effort	with	macros	that	calculate	financial	data	that
end	users	and	investment	clients	are	depending	on	for	their	personal	investment	strategies.
Your	macros	run	without	getting	interrupted	by	compile	or	runtime	errors,	but	the	results
are	still	flawed.	People	tend	not	to	fix	what	they	think	isn't	broken,	so	unless	you	(or	an
angry	client)	discovers	the	math	bug,	it	can	go	undetected	for	a	long	time,	and	it	may
never	be	detected.

NOTE	When	programming	mathematical	and	logical	operations,	it's	always	a	good
idea	to	test	your	code	by	comparing	the	output	of	your	VBA	results	with	the	output
from	an	independent	source.

Weapons	of	Mass	Debugging
Now	that	you	know	what	kinds	of	bugs	are	lurking	in	the	shadows	and	how	they	can	bite
your	code,	you	can	fight	back	with	several	excellent	debugging	tools	that	are	in	the	Visual
Basic	Editor.	Your	best	defense	starts	with	information	about	the	weapons	in	your
debugging	arsenal	and	how	they	are	used.

The	Debug	Toolbar
The	Debug	toolbar	is	a	handy	item	to	display	and	keep	docked	onto	your	VBE	menu	bar.
To	show	the	Debug	toolbar,	from	the	VBE	menu	click	View	 	Toolbars	 	Debug	as
shown	in	Figure	20.5.

Figure	20.5

The	Debug	toolbar	typically	contains	13	icons,	some	of	which	you	are	already	familiar
with.	Figure	20.6	shows	the	toolbar	and	the	names	of	the	icons,	and	the	following	sections
describe	their	uses.

Figure	20.6

NOTE	There	are	four	VBE	toolbars—Debug,	Edit,	Standard,	and	UserForm—each
of	which	can	remain	visible	in	your	VBE	by	dragging	and	docking	them	above	or
below	the	menu	bar.

Design	Mode
The	Design	Mode	button	turns	Design	Mode	on	and	off	in	the	active	workbook.	Design
Mode	is	the	time	during	which	no	code	from	the	project	is	currently	running.	You	can
leave	Design	Mode	by	clicking	the	Design	Mode	icon	again,	or	by	running	a	macro	or
using	the	Immediate	window.	When	you	have	an	ActiveX	object	on	your	worksheet,	such
as	a	CommandButton,	Design	Mode	enables	you	to	view	the	object's	properties	or	to
double-click	the	object	to	quickly	access	its	module	in	the	VBE.

Run
Clicking	the	Run	button	has	one	of	two	effects.	If	your	cursor	happens	to	be	blinking	in
the	Code	window	within	a	macro,	clicking	the	Run	button	or	pressing	the	F5	key	runs	the
macro.	Otherwise,	clicking	the	Run	button	calls	the	Macro	dialog	box,	just	as	if	you	were
on	a	worksheet	and	you	pressed	Alt+F8.

Break
Clicking	the	Break	button	is	the	same	as	pressing	Ctrl+Break,	which	halts	macro
execution.	Break	mode	is	a	special	mode	of	operation	in	the	Visual	Basic	Editor	that
enables	you	to	run	one	line	of	code	at	a	time	without	having	to	run	the	entire	macro.
Examining	one	line	of	code	at	a	time	is	a	way	to	pinpoint	the	exact	whereabouts	of	the
error.	You	can	edit	code	in	Break	mode.

Reset
Clicking	the	Reset	button	clears	the	call	stack	and	clears	the	module-level	variables.	This
ends	Break	mode,	ends	all	program	execution,	and	closes	the	Debug	window	if	it	is	open.

Stepping	through	Code
On	the	Debug	toolbar,	three	icons—Step	Into,	Step	Over,	and	Step	Out—are	related	to	a
process	known	as	stepping	through	code.	Sometimes	you	want	to	examine	each	statement
in	your	macro	if	you	suspect	a	bug	is	somewhere	in	your	code	but	you're	not	sure	where.
Even	large	macros	can	run	quickly,	so	it's	difficult,	and	often	impossible,	to	isolate	the
specific	command	that	is	not	executing	the	way	you	would	have	planned.	Stepping
through	your	VBA	statements	enables	you	to	execute	one	or	more	lines	of	code	at	your
own	pace	to	see	for	yourself	what	every	VBA	statement	is	really	doing.

Suppose	you	oversee	a	region	of	10	hardware	stores,	and	you	receive	a	table	of	each
store's	quarterly	sales	activity.	Your	table	is	in	a	raw	form,	downloaded	into	Excel	from
your	company's	database,	resembling	Figure	20.7.

Figure	20.7

You	have	a	macro	such	as	the	one	pictured	in	Figure	20.8	that	formats	the	table	and	sorts
the	Net	Income	column	in	descending	order	so	you	can	quickly	list	the	most	profitable
stores.	When	you	run	the	macro,	you	do	not	get	a	compile	or	runtime	error.	However,	the
code	did	not	sort	the	Net	Income	in	descending	order	after	the	macro	completed	its	full
execution,	as	shown	in	Figure	20.9.

Figure	20.8

Figure	20.9

Using	the	Step	Into	Command

To	examine	line	by	line	where	the	problem	lies,	click	your	mouse	anywhere	inside	the
macro	and	then	click	the	Step	Into	button.	The	macro's	Sub	line	is	highlighted	in	yellow,
indicating	to	you	that	it's	that	particular	macro	you	are	about	to	step	into.

NOTE	When	you	“step	into”	a	macro,	you	are	traversing	step-by-step	(code	line	by
code	line),	in	a	single-step	process	to	execute	each	line	in	turn.

Click	the	Step	Into	button	again	and	the	first	line	of	code—which	in	this	example	is
Range("A1").Value	=	"XYZ	Widgets,	Inc."—is	highlighted	in	yellow,	as	shown	in
Figure	20.10.	If	you	click	the	Step	Into	button	again,	the	code	line	Range("A1").Value	=
"XYZ	Widgets,	Inc."	is	executed,	and	the	next	line	of	code—Range("A2").Value	=

"Quarterly	Report"—is	highlighted	in	yellow,	ready	to	be	executed	with	your	next	Step
Into	command.

Figure	20.10

Each	time	you	click	the	Step	Into	button,	the	line	of	code	that	is	highlighted	is	executed,
and	the	next	line	is	highlighted,	and	so	on	until	you	reach	the	end	of	the	macro.	Because
you	suspect	a	bug	somewhere	in	the	code,	you'd	be	looking	at	your	worksheet	after	each
Step	Into	command	to	make	sure	that	what	the	code	is	supposed	to	be	doing	is	what	it

truly	is	doing.

In	this	example,	all	the	cell	values	and	formatting	were	correctly	executed	when	you
stepped	into	each	one,	until	the	very	last	section	of	code	that	executes	the	Sort	method.
You	find	when	stepping	into	that	section	that	the	range	of	cells	being	sorted	is	not	correct.
Your	table	occupies	range	B4:E14	but	the	VBA	code	is	sorting	only	up	to	row	13.	Your
suspicions	were	correct	about	the	final	result	on	the	worksheet	looking	peculiar,	so	you
make	a	quick	adjustment	to	the	sort	range	address	after	you've	verified	that	each	of	the
other	lines	of	code	were	properly	written	and	being	properly	executed.

Using	the	Step	Over	Command
The	Step	Over	command	is	similar	to	the	Step	Into	command,	with	the	difference	between
the	two	commands	occurring	at	the	point	of	a	call	to	another	macro.	You	may	have	noticed
in	the	macro	the	code	line	Call	myChartMaker,	where	in	this	hypothetical	example	the
myChartMaker	macro	creates	a	chart	sheet	from	the	table	data.	Figure	20.11	shows	that
Call	statement	highlighted	during	the	Step	Into	process.

Figure	20.11

In	this	situation,	if	you	click	the	Step	Over	button,	the	Call	myChartMaker	command	is

executed	but	you	are	not	taken	through	it	line	by	line	as	if	it	were	stepped	into.	You	would
prefer	to	do	this	when	you	know	for	sure	that	the	myChartMaker	macro	works	without	any
problems	and	cannot	be	the	cause	of	whatever	bug	you	are	trying	to	fix	in	the	current
macro.	The	Step	Over	command	executes	the	myChartMaker	macro,	and	the	next	line	of
code	in	your	macro	is	highlighted	for	the	next	Step	Into	command.

NOTE	Did	you	notice	a	tiny	arrow	in	the	margin	to	the	left	of	the	macro	being
stepped	into?	When	a	line	of	code	is	highlighted	during	a	stepping	process,	a	yellow
arrow	in	the	Code	window's	left	margin	helps	to	indicate	your	place	in	the	process.
With	your	mouse,	you	can	select	and	drag	the	arrow	upward	or	downward,	dropping
it	at	whichever	line	of	code	you	want	to	execute	next.

Using	the	Step	Out	Command
The	Step	Out	command	executes	the	remaining	lines	of	code	between	and	including	the
current	highlighted	execution	point	and	the	End	Sub	line.	You	might	think	by	the	name
Step	Out	that	it	refers	to	simply	exiting	the	Step	Into	command,	but	that	is	not	exactly	the
case.	Though	it	does	result	in	exiting	the	step-through	process,	it	does	so	by	executing	the
rest	of	the	macro	to	get	to	the	end.	If	you	want	to	exit	any	of	the	step-through	process,
click	the	Reset	button.

Toggle	Breakpoint
One	of	VBA's	convenient	features	is	the	ability	to	set	a	breakpoint,	where	you	can	specify
a	line	of	code	that	is	the	point	up	to	which	the	macro	will	run	at	full	speed.	When	the
macro's	execution	reaches	the	breakpoint	code	line,	VBA	switches	to	Break	mode	and
halts	the	execution	process.

NOTE	Stepping	through	your	macro	is	a	good	way	to	examine	each	line	of	code,	but
when	your	macros	are	hundreds	of	lines	long,	a	line-by-line	examination	process	is
tedious	and	time-consuming.	There	will	be	many	statements	in	your	code	that	won't
need	to	be	examined,	and	there's	no	reason	to	inch	your	way	to	the	section	of	your
macro	where	the	error	probably	resides.	This	is	where	breakpoints	come	in	handy.

To	set	a	breakpoint	in	your	code,	click	your	mouse	into	the	line	of	code	where	you	want
the	breakpoint	to	start.	Click	the	Toggle	Breakpoint	button	or	press	the	F9	key,	and	the
breakpoint	is	set	at	that	line.	VBA	clearly	identifies	a	breakpoint	with	a	large	brown	dot	in
the	Code	window's	left	margin,	and	the	code	line	itself	is	shaded	brown.

For	example,	if	you	suspect	a	bug	in	a	macro	but	you	know	that	the	majority	of	the	macro
runs	without	any	problems,	you	can	set	a	breakpoint	starting	at	a	section	in	the	program
where	you	want	to	examine	the	code	more	closely.	In	Figure	20.12,	I	clicked	my	mouse
into	the	code	line	With	ActiveSheet.Sort	and	clicked	the	Toggle	Breakpoint	button.	If
the	macro	were	to	be	run	now,	it	would	execute	all	lines	of	code	up	to,	but	not	including,
that	breakpoint	line.	Now,	you	can	step	through	the	subsequent	lines	of	code	to	verify	that
each	line	is	doing	what	you'd	expect.

Figure	20.12

NOTE	You	can	set	a	breakpoint	only	on	an	executable	line.	Commented	lines	in	your
code,	or	empty	lines,	cannot	be	set	as	breakpoints.

True	to	its	name,	you	can	click	the	Toggle	Breakpoint	button	again	to	clear	the	current
breakpoint	with	any	portion	of	that	line	selected,	or	you	can	click	the	large	dot	in	the	Code
window's	margin.	If	you	have	already	set	a	breakpoint	and	you	click	the	Toggle
Breakpoint	button	or	press	F9,	you	set	another	breakpoint	if	you	have	any	other	line	of
code	selected.	You	can	set	more	than	one	breakpoint,	so	to	quickly	clear	all	breakpoints	at
once,	press	Ctrl+Shift+F9.

Locals	Window
The	Locals	window	can	help	you	in	situations	in	which	you	get	a	runtime	error	and	the
offending	line	of	code	involves	a	variable.	The	Locals	window	displays	the	variables	and
their	values	for	the	macro(s)	you	are	currently	running.

Figure	20.13	shows	a	very	simple	macro	that	attempted	to	activate	a	worksheet	based	on
the	object	variable	mySheet.	Because	that	variable	was	never	set	with	an	identifying

worksheet,	a	runtime	error	occurred	because	VBA	could	not	determine	which	sheet	the
mySheet	variable	was	referring	to.	While	in	Break	mode	in	this	example,	the	Locals
window	shows	that	mySheet	is	set	to	Nothing,	telling	you	that	you	forgot	to	include	a	Set
statement	for	mySheet.

Figure	20.13

Immediate	Window
The	Immediate	window	enables	you	to	type	in	or	paste	a	line	of	VBA	code,	which
executes	when	you	press	the	Enter	key.	To	see	the	Immediate	window,	you	can	click	its
icon	on	the	Debug	toolbar,	select	View	 	Immediate	Window,	or	press	Ctrl+G.

If	it	hasn't	happened	already,	you'll	soon	find	yourself	using	the	Immediate	window	for
reasons	having	nothing	to	do	with	errors.	The	Immediate	window	is	a	great	way	to	execute
commands	quickly	without	needing	to	create	a	formal	macro	to	get	the	task	done,	such	as
in	the	following	examples.

To	eliminate	leading	apostrophes	in	cell	values,	which	can	occur	when	manually	entered
or	imported	from	external	source	data,	you	can	type	Activesheet.UsedRange.Value	=
Activesheet.UsedRange.Value	and	press	Enter.	To	delete	hyperlinks	but	keep	the
underlying	cell	value,	you	can	type	ActiveSheet.Hyperlinks.Delete	and	press	Enter.

When	querying	some	fact	or	condition,	precede	your	statement	with	a	leading	question
mark.	If	you	want	to	know	the	version	of	Excel	you	are	using,	type	?
Application.Version	and	press	the	Enter	key.	As	shown	in	Figure	20.14,	when	I	entered
that	statement	into	the	Immediate	window,	the	value	15.0	was	returned,	which	is	Excel's
version	2013.

Figure	20.14

The	point	to	be	made	about	the	Immediate	window	is	that	it	is	a	proactive	tool.	If	you	are

wondering	whether	a	line	of	code	will	fail,	or	whether	it	will	produce	the	result	you	have
envisioned,	you	can	test	that	code	line	in	the	Immediate	window	and	see	the	results	before
taking	your	chances	and	putting	it	into	your	code.

Watch	Window
The	Watch	window	enables	you	to	watch	a	variable	or	an	expression	change	as	your	code
executes.	You'd	normally	do	this	with	values	that	are	associated	with	runtime	errors,	so
you	can	see	at	what	point	the	VBA	expressions	produced	a	value	that	might	have	caused
the	error.

Select	the	expression	you	want	to	watch,	right-click	that	selection,	and	choose	Add	Watch
from	the	pop-up	menu.	Figure	20.15	shows	the	process	for	adding	the	variable	strValue
to	the	Watch	list.	The	Add	Watch	dialog	box	displays,	as	shown	in	Figure	20.16,	for	you	to
confirm	your	settings	and	click	OK.

Figure	20.15

Figure	20.16

When	you	step	into	code	after	setting	a	watch	expression,	you	see	the	expression's	value
change	during	execution.	Figure	20.17	shows	the	strValue	variable's	value	change	with
each	iteration	of	the	For	Next	loop.	Notice	that	the	value	at	one	point	in	the	loop	is	a
number,	yet	the	strValue	variable	was	declared	as	a	String	type.	It's	that	kind	of
attention	that	the	Watch	window	brings	to	your	awareness	of	what	your	variables	are
actually	returning,	if	you	suspect	a	particular	expression	to	be	the	cause	of	an	error.

Figure	20.17

Quick	Watch
The	Quick	Watch	window	enables	you	to	get	a	look	at	the	current	value	of	an	expression
or	variable	for	which	you	have	not	defined	a	watch	expression.	While	you	are	in	Break
mode,	select	your	expression	in	the	module	and	click	the	Quick	Watch	button,	or	press
Shift+F9.	For	example,	in	Figure	20.18,	the	intCounter	variable	was	selected	during	a

step-through	process,	and	the	Watch	window	displays	3	in	the	Value	field,	indicating	that
the	For	Next	loop	is	currently	in	its	third	iteration.

Figure	20.18

Call	Stack
The	Call	Stack	dialog	box	shows	the	list	of	currently	active	procedure	calls	in	Break
mode.	Unless	you	write	macros	that	involve	a	maze	of	calls	to	other	macros,	that
themselves	call	other	procedures,	you	won't	need	the	Call	Stack	dialog	box.	A	word	to	the
wise:	Keep	your	macros	simple	and	limit	their	procedure	calls	to	a	reasonable	level,	and
you	won't	have	to	worry	about	relying	on	a	dialog	box	to	tell	you	which	macro	is	in	error
in	Break	mode.

Trapping	Errors
When	you	encounter	a	runtime	error	and	you've	figured	out	the	cause,	it	might	be	that	you
need	to	keep	the	error-prone	code	in	place	because	it	is	such	an	important	component	of
the	larger	macro.	Actually,	you	will	come	across	this	situation	a	lot,	so	you'll	need	to	know
how	to	handle	errors	programmatically	behind	the	scenes,	in	a	way	that	the	users	of	your
projects	will	not	be	bothered	by	runtime	errors.

Error	Handler
One	of	the	more	common	tasks	in	development	projects	is	to	add	a	worksheet	to	the
workbook.	Your	project	might	involve	building	a	report	onto	a	new	worksheet,	or	copying
various	sections	of	a	master	worksheet	and	pasting	those	individual	sections	to	their	own
new	worksheets	that	you	create.	Say	you	provide	an	InputBox	for	users	to	enter	the	name
of	a	worksheet	they	want	to	add.	What	happens	if	a	user	already	has	a	worksheet	by	that
name	in	the	workbook?	Two	worksheets	cannot	have	the	same	name	in	the	same
workbook,	but	the	macro	still	needs	to	complete	its	appointed	task.

One	approach	is	using	an	On	Error	GoTo	statement	that	traps	the	error	and	points	to	a
certain	section	in	your	macro	that	should	be	executed	next	to	handle	the	error.	Suppose
your	macro	calls	for	a	new	worksheet	to	be	added	and	named	by	the	user	as	Sheet3.	If	a
worksheet	already	exists	in	the	workbook	named	Sheet3,	a	1004	type	runtime	error
message	would	occur	as	shown	in	Figure	20.19.

Figure	20.19

With	the	following	syntax,	you	can	use	an	error	handler	to	avoid	getting	a	runtime	error
message	if	an	attempt	is	made	to	give	a	new	worksheet	the	same	name	another	worksheet
already	has.	In	this	example	macro,	the	user	is	provided	an	InputBox	to	name	the	new
sheet,	and	informed	if	the	sheet	is	added,	or	if	it	is	not	added	because	duplicate	names	are
not	allowed:

Sub	AddSheetTest()

Dim	mySheetName	As	String

mySheetName	=	_

InputBox("Enter	the	worksheet	name:",	_

"Add	and	name	a	new	worksheet")

If	mySheetName	=	""	Then	Exit	Sub

On	Error	GoTo	ErrorHandler

Worksheets.Add.Name	=	mySheetName

MsgBox	_

"Worksheet	"	&	mySheetName	&	"	was	added.",	,	"Thank	you."

Exit	Sub

ErrorHandler:

MsgBox	_

"A	worksheet	named	"	&	mySheetName	&	"	already	exists.",	_

vbCritical,	_

"Duplicate	sheet	names	are	not	allowed."

End	Sub

Bypassing	Errors
My	preference	for	most	situations	where	runtime	errors	can	occur	is	to	avoid	the	error
handler	route	because	the	GoTo	statement	makes	the	macro	more	difficult	to	follow.	Using
an	error-bypass	approach	with	the	On	Error	Resume	Next	statement,	you	can	test	for	the
condition	of	the	Error	object	and	use	an	If	structure	to	deal	with	either	possibility.

When	it	comes	to	naming	a	sheet,	you	need	to	monitor	several	considerations:

Does	the	sheet	name	already	exist	in	the	workbook?	Duplicate	sheet	names	are	not
allowed.

Is	the	proposed	sheet	name	more	than	the	maximum	allowable	31	characters	in	length?

Are	any	illegal	sheet-naming	characters	included	in	the	proposed	name?	Sheet	tab
names	cannot	contain	the	characters	/,	\,	[,],	*,	?,	or	:.	If	you	try	to	type	any	of	those
characters	into	your	sheet	tab,	Excel	disallows	the	entry.

The	following	macro	takes	these	possibilities	into	consideration.	If	all	conditions	are	met,
a	new	sheet	is	added.	If	any	condition	is	not	met,	a	new	worksheet	is	not	created,	and	a
message	box	informs	you	of	the	reason	why:

Sub	TestSheetCreate()

'Declare	String	type	variables	for	naming	and	testing	the	sheet.

Dim	mySheetName	As	String,	mySheetNameTest	As	String

'Use	an	InputBox	to	ask	the	user	to	propose	a	new	sheet	name.

mySheetName	=	_

InputBox("Enter	the	worksheet	name:",	_

"Add	and	name	a	new	worksheet")

'Exit	if	nothing	was	entered	or	the	Cancel	button	was	clicked.

If	mySheetName	=	""	Then	Exit	Sub

'Error	bypass	if	the	proposed	sheet	name	already	exists

'in	the	workbook.

On	Error	Resume	Next

mySheetNameTest	=	Worksheets(mySheetName).Name

If	Err.Number	=	0	Then

MsgBox	_

"The	sheet	named	"	&	mySheetName	&	"	already	exists.",	_

vbInformation,	_

"A	new	sheet	was	not	added."

Exit	Sub

End	If

'If	the	length	of	the	proposed	sheet	name	exceeds	31	characters,

'disallow	the	attempt.

If	Len(mySheetName)	>	31	Then

MsgBox	_

"Worksheet	tab	names	cannot	exceed	31	characters."	&	vbCrLf	&	_

"You	entered	"	&	mySheetName	&	",	which	has	"	&	vbCrLf	&	_

Len(mySheetName)	&	"	characters.",	vbInformation,	_

"Please	use	no	more	than	31	characters."

Exit	Sub

End	If

'Sheet	tab	names	cannot	contain

'the	characters	/,	\,	[,],	*,	?,	or	:.

'Verify	that	none	of	these	characters

'are	present	in	the	cell's	entry.

Dim	IllegalCharacter(1	To	7)	As	String,	i	As	Integer

IllegalCharacter(1)	=	"/"

IllegalCharacter(2)	=	"\"

IllegalCharacter(3)	=	"["

IllegalCharacter(4)	=	"]"

IllegalCharacter(5)	=	"*"

IllegalCharacter(6)	=	"?"

IllegalCharacter(7)	=	":"

'Loop	through	each	character	in	the	proposed	sheet	name.

For	i	=	1	To	7

If	InStr(mySheetName,	(IllegalCharacter(i)))	>	0	Then

MsgBox	_

"You	included	a	character	that	Excel	does	not	allow"	&	vbCrLf	&	_

"when	naming	a	sheet.	Please	re-enter	a	sheet	name"	&	vbCrLf	&	_

"without	the	''"	&	IllegalCharacter(i)	&	"''	character.",	_

vbCritical,	_

"Sheet	not	added."

Exit	Sub

End	If

Next	i

'History	is	a	reserved	word,	so	a	sheet	cannot	be	named	History.

If	UCase(mySheetName)	=	"HISTORY"	Then

MsgBox	"A	sheet	cannot	be	named	"	&	mySheetName	&	vbCrLf	&	_

"because	it	is	a	reserved	word	in	Excel.",	vbInformation,	_

"History	is	a	reserved	word."

Exit	Sub

End	If

'Inform	the	user	that	a	new	sheet	has	been	added.

Worksheets.Add.Name	=	mySheetName

MsgBox	"A	new	sheet	named	"	&	mySheetName	&	"	has	been	added!",	_

vbInformation,	_

"Thank	you!"

End	Sub

Try	It
In	this	lesson,	you	create	a	macro	that	avoids	a	runtime	error	while	using	the	Find	method
to	locate	a	value	on	your	worksheet.	If	the	value	is	found,	its	cell	address	is	displayed	in	a
message	box.

If	you	were	to	record	a	macro	to	find	the	word	Hello	on	a	worksheet,	the	recorded	code
would	look	like	this:

Cells.Find(What:="Hello",	After:=ActiveCell,	LookIn:=xlFormulas,	_

LookAt:=xlPart,	SearchOrder:=xlByRows,	SearchDirection:=xlNext,_

MatchCase:=False,	SearchFormat:=False).Activate

If	the	word	Hello	is	not	found	on	the	worksheet,	a	runtime	error	would	result	because	the
recorded	code	is	instructing	VBA	to	activate	a	cell	that	contains	a	value	that	does	not	exist.
The	purpose	of	this	lesson	is	to	avoid	a	runtime	error	if	the	value	being	looked	for	does
not	exist	on	the	worksheet.

Lesson	Requirements
To	get	the	sample	workbook,	you	can	download	Lesson	20	from	the	book's	website	at
www.wrox.com/go/excelvba24hour.

Hints
It	is	not	practical	to	loop	through	potentially	millions	of	cells,	so	you	use	the	Find	method
with	an	error	bypass	structure.

Step-by-Step
1.	 Open	a	workbook	and	activate	a	worksheet	that	contains	a	relatively	large	amount	of

data.	This	is	an	exercise	in	finding	a	value	if	it	exists	on	the	worksheet,	so	the	more
complex	the	worksheet,	the	better.

2.	 From	your	worksheet	press	Alt+F11	to	get	into	the	Visual	Basic	Editor.

3.	 From	the	menu	bar,	click	Insert Module.

4.	 In	your	new	module,	type	the	name	of	your	macro	as	Sub	FindTest	and	press	Enter.
VBA	displays	your	entry	and	new	macro	as	follows:

Sub	FindTest()

End	Sub

5.	 For	your	first	line	of	code,	declare	a	Variant	type	variable	for	the	value	you	want	to
locate.	In	this	example,	simply	call	it	varFind:

Dim	varFind	as	Variant

6.	 Declare	a	String	type	variable	for	the	value	to	be	located:

Dim	FindWhat	As	String

7.	 Define	the	FindWhat	variable	as	an	InputBox	entry:

http://www.wrox.com/go/excelvba24hour

FindWhat	=	_

InputBox("What	do	you	want	to	find?",	"Find	what?")

8.	 If	the	Cancel	button	is	clicked,	or	nothing	is	entered	in	the	InputBox,	exit	the	macro:

If	FindWhat	=	""	Then	Exit	Sub

9.	 Set	the	varFind	variable	to	the	Find	method:

Set	varFind	=	_

Cells.Find(What:=FindWhat,	LookIn:=xlFormulas,	lookat:=xlWhole)

10.	 If	varFind	is	Nothing,	inform	the	user	that	the	value	being	looked	for	was	not	found.
Also,	exit	the	macro:

If	varFind	Is	Nothing	Then

MsgBox	_

FindWhat&	"	was	not	found.",	_

vbInformation,	_

"No	such	animal."

Exit	Sub

Else

11.	 A	message	box	informs	the	user	that	the	value	was	found,	and	in	what	cell:

MsgBox	FindWhat&	"	was	found	in	cell	"	&	varFind.Address,	,	"Found"

12.	 Enter	the	End	If	statement:

End	If

13.	 Press	Alt+Q	to	return	to	the	worksheet	and	test	your	macro.	The	entire	macro	when	it
is	completed	looks	like	this:

Sub	FindTest()

'Declare	a	variant	type	variable	for	the	value	to	locate.

Dim	varFind	As	Variant

Dim	FindWhat	As	String

'Define	the	FindWhat	variable	as	an	InputBox	entry.

FindWhat	=	_

InputBox("What	do	you	want	to	find?",	"Find	what?")

'If	the	Cancel	button	is	clicked,	or	nothing	is	entered

'in	the	InputBox,	exit	the	macro.

If	FindWhat	=	""	Then	Exit	Sub

'Set	the	varFind	variable	to	the	Find	method.

Set	varFind	=	_

Cells.Find(What:=FindWhat,	LookIn:=xlFormulas,	lookat:=xlWhole)

'If	varFind	=	Nothing,	inform	the	user	that	the	value	being

'looked	for	was	not	found.	Also,	exit	the	macro.

If	varFind	Is	Nothing	Then

MsgBox	_

FindWhat&	"	was	not	found.",	_

vbInformation,	_

"No	such	animal."

Exit	Sub

Else

'A	message	box	informs	the	user	that	the	value	was	found,

'and	in	what	cell.

MsgBox	FindWhat&	"	was	found	in	cell	"	&	varFind.Address,	,	"Found"

End	If

End	Sub

REFERENCE	Please	select	the	video	for	Lesson	20	online	at
www.wrox.com/go/excelvba24hour.	You	will	also	be	able	to	download	the	code	and
resources	for	this	lesson	from	the	website.

http://www.wrox.com/go/excelvba24hour

Part	IV
Advanced	Programming	Techniques
Lesson	21:	Creating	UserForms

Lesson	22:	UserForm	Controls	and	Their	Functions

Lesson	23:	Advanced	UserForms

Lesson	24:	Class	Modules

Lesson	25:	Add-Ins

Lesson	26:	Managing	External	Data

Lesson	27:	Data	Access	with	ActiveX	Data	Objects

Lesson	28:	Impressing	Your	Boss	(or	at	Least	Your	Friends)

Lesson	21
Creating	UserForms
In	previous	lessons,	you	have	seen	examples	of	how	your	workbook	can	interact	with	its
users	to	make	decisions	by	employing	such	methods	as	InputBoxes	and	Message	Boxes.
Although	these	interactive	tools	are	very	useful	for	the	situations	they	are	meant	to	serve,
they	have	limited	usefulness	in	more	complex	applications.

Some	of	your	projects	will	require	a	more	versatile	approach	to	asking	for	and	gathering
many	kinds	of	information	from	users,	all	within	a	dedicated	interface	that's	convenient
and	easy	to	use.	Perhaps	you	have	seen	attempts	to	accomplish	this	on	a	neatly	arranged
worksheet	where	certain	cells	are	color-shaded	or	unprotected	for	data	input,	maybe	with
drop-down	lists	and	embedded	check	boxes	or	option	buttons.	A	UserForm	in	VBA	is	a
more	efficient	method	for	collecting	and	recording	such	information.

What	Is	a	UserForm?
A	UserForm	is	essentially	a	custom-built	dialog	box,	but	that	description	does	not	do
justice	to	the	immense	complexity	and	diversity	with	which	UserForms	can	be	built	and
be	made	to	function.	A	UserForm	is	created	in	the	Visual	Basic	Editor,	with	controls	and
associated	VBA	code,	usually	meant	for	the	end	user	to	be	advised	of	some	information	or
to	enter	data,	generate	reports,	or	perform	some	action.

NOTE	Think	of	UserForms	as	electronic	versions	of	the	different	forms	you	fill	out
on	your	computer,	such	as	when	you	make	an	online	purchase,	or	with	paper	and	pen
in	a	business	office.	Some	information	on	most	forms	is	required	and	some
information	is	optional.	A	UserForm	is	a	dynamic	object,	with	VBA	code	working
behind	the	scenes	to	guide	your	users	toward	telling	your	workbook	what	it	needs	to
know.

Creating	a	UserForm
The	first	step	in	creating	a	new	UserForm	is	to	insert	one	into	the	Visual	Basic	Editor.	To
do	that,	press	Alt+F11	to	get	into	the	VBE,	and	select	your	workbook	name	in	the	Project
Explorer	as	shown	in	Figure	21.1.

Figure	21.1

NOTE	Be	careful	to	select	the	workbook	you	have	in	mind	before	adding	a	UserForm
to	it!	In	Figure	21.1,	a	couple	other	workbooks	are	open	to	help	make	the	point	that
the	workbook	of	interest	(Lesson21.xlsm	in	this	example)	is	the	workbook	selected	in
the	Project	Explorer.

With	the	workbook	name	selected,	from	the	menu	bar	click	Insert UserForm	as	shown	in
Figure	21.2.

Figure	21.2

A	new	UserForm	opens	in	its	design	window	as	shown	in	Figure	21.3.

Figure	21.3

Designing	a	UserForm
UserForms	have	a	variety	of	properties.	You	can	show	the	Properties	window	for	the
UserForm	itself,	or	for	any	of	its	controls,	by	selecting	the	object	and	clicking	its
Properties	icon,	or	clicking	View Properties	Window	as	shown	in	Figure	21.4.

Figure	21.4

Below	the	Project	Explorer	is	where	you'll	see	the	Properties	window,	partially	visible	in
Figure	21.5.

Figure	21.5

For	the	workbook's	first	UserForm,	VBA	assigns	a	default	value	of	UserForm1	to	its	Name
and	Caption	properties,	as	you	can	see	in	Figure	21.5.	If	you	were	to	create	a	second
UserForm,	its	default	Name	and	Caption	properties	would	be	UserForm2,	and	so	on.	To
help	distinguish	between	the	Name	and	Caption	properties,	Figure	21.6	shows	where	the
Name	property	has	been	changed	to	frmEmployees,	and	the	Caption	property,	which	is
displayed	in	the	UserForm's	title	bar,	has	been	changed	to	Employee	Information.

NOTE	When	naming	UserForms,	or	any	object	for	that	matter,	it's	best	to	assign	a
name	that	is	relevant	to	the	theme	of	the	object.	When	I	name	a	UserForm,	I	use	the
prefix	frm	(for	UserForm)	followed	by	a	simple,	intuitive	term	(such	as	Employees	in
this	example)	that	represents	the	basic	idea	of	the	UserForm	object.

Figure	21.6

Adding	Controls	to	a	UserForm
A	control	is	an	object	such	as	a	Label,	TextBox,	OptionButton,	or	CheckBox	in	a
UserForm	or	embedded	onto	a	worksheet	that	allows	users	to	view	or	manipulate
information.	VBA	supports	these	and	more	controls,	which	are	accessible	to	you	from	the
VBE	Toolbox.	To	show	the	Toolbox	so	you	can	easily	grab	whatever	controls	you	want
from	it,	you	can	click	the	Toolbox	icon,	or	click	View Toolbox	as	shown	in	Figure	21.7.

Figure	21.7

The	control(s)	you	place	onto	your	UserForm	depend	on	its	purpose.	If	you	want	to	design
a	simple	form	to	gather	employee	information	for	your	company,	you'd	at	least	want	to
know	the	employees'	names	and	their	titles.	It	would	be	useful	to	display	a	TextBox	to
enter	the	employee	name,	and	then	a	list	of	the	company's	position	titles	so	the	user	can
effortlessly	select	one.	Figure	21.8	shows	the	Toolbox	with	the	mouse	hovering	over	the
Label	control	icon.

Figure	21.8

You	place	a	control	onto	your	UserForm	by	drawing	the	control	onto	your	UserForm's
design	area.	All	you	need	to	do	is	click	whatever	Toolbox	control	icon	you're	interested	in
adding	to	the	UserForm,	and	draw	it	as	you	would	draw	a	Shape	object	onto	a	worksheet.
Figure	21.9	shows	a	Label	control	that	was	just	drawn,	showing	its	default	caption	of
Label1.

Figure	21.9

Notice	in	Figure	21.9	that	the	Label's	Caption	property	is	selected	in	the	Properties
window,	so	a	more	meaningful	caption	can	be	added	to	the	Label.	Because	the	Label	will
be	directly	above	the	TextBox,	and	the	purpose	of	the	TextBox	is	to	enter	an	employee
name,	the	Label's	caption	is	changed	to	Employee	name	as	shown	in	Figure	21.10.	Notice
further	in	Figure	21.10	that	the	TextBox	icon	is	about	to	be	selected	in	the	Toolbox,	as	you
get	ready	to	draw	a	TextBox	control	onto	the	UserForm	below	the	Label.

Figure	21.10

After	you	click	the	Toolbox's	TextBox	icon,	you	add	a	TextBox	control	by	drawing	it	onto
the	UserForm's	design	area,	just	as	you	did	when	you	added	the	Label	control.	Figure
21.11	shows	the	drawn	TextBox,	positioned	below	the	Label,	and	having	a	reasonably
sufficient	width	to	accept	and	display	a	person's	name.	Meanwhile,	as	you	can	see	in
Figure	21.11,	the	Frame	icon	is	about	to	be	selected	in	preparation	for	placing	a	Frame
control	onto	your	UserForm.

Figure	21.11

Figure	21.12	shows	your	just-drawn	Frame	control	with	its	default	caption	of	Frame1.
Frames	are	a	good	way	to	group	other	controls	visually	by	containment,	usually	with	an
underlying	theme.	In	the	case	of	this	UserForm	example,	the	company's	position	titles	will
be	contained	in	such	a	way	that	the	user	can	select	only	one.

Figure	21.12

The	caption	of	a	Frame	control	is	an	efficient	way	to	describe	the	purpose	of	the	Frame,
just	as	the	Label's	caption	of	Employee	Name	describes	the	purpose	of	the	TextBox.	In
Figure	21.12,	the	Caption	property	of	your	new	Frame	is	selected	so	you	can	change	the
meaningless	default	caption	of	Frame1	to	a	more	useful	description.

In	Figure	21.13,	the	Frame's	default	caption	of	Frame1	has	been	changed	to	Position
Title.	Now	that	the	Frame's	caption	is	taken	care	of,	Figure	21.13	also	shows	that	the
OptionButton	icon	in	the	Toolbox	is	about	to	be	selected.	Because	an	employee	would
hold	only	one	particular	job	position	title	at	a	time,	you	can	arrange	a	series	of
OptionButtons	inside	the	Frame	to	represent	the	company's	various	position	titles,	where
only	one	can	be	selected.

Figure	21.13

In	this	basic	UserForm	example,	Figure	21.14	shows	four	position	titles	from	which	to
choose,	each	as	a	caption	among	the	four	OptionButton	controls	that	were	placed	inside
the	Frame.	The	OptionButtons	were	added	and	captioned	one	at	a	time.	Planning	ahead,
Figure	21.14	also	shows	the	CommandButton	icon	in	the	Toolbox,	which	is	about	to	be
selected	so	you	can	add	a	couple	of	buttons	as	the	last	step	in	building	the	UserForm's
front-end	design.

Figure	21.14

In	Figure	21.15,	two	CommandButtons	have	been	added,	which	completes	the	UserForm's
interface	design.	One	of	the	CommandButtons	is	captioned	OK,	which	is	a	common	and
intuitive	caption	for	users	to	click	their	confirmation	of	data	entries.	The	other
CommandButton	is	a	Cancel	button	to	allow	users	to	quit	the	UserForm	altogether,	if	they
so	choose.

NOTE	A	standard	of	proper	UserForm	design	is	to	always	allow	your	users	an
escape	route	out	of	the	UserForm.	This	is	commonly	done	with	a	Cancel	or	Exit
button	that	users	can	click	when	they	want	to	leave	the	form.

Figure	21.15

Showing	a	UserForm
To	show	a	UserForm,	you	execute	the	VBA	Show	command	in	a	statement	with	the	syntax
UserFormName	Show.	For	example,	if	you	had	performed	the	same	steps	as	you've	seen	in
this	lesson	to	create	the	frmEmployees	UserForm,	you	may	have	a	simple	macro	like	this
to	call	the	UserForm:

Sub	EmployeeForm()

frmEmployees.Show

End	Sub

If	you'd	like	to	see	how	the	UserForm	looks	when	it	is	called	in	the	actual	worksheet
environment,	without	having	to	write	a	formal	macro	for	yourself,	you	can	type
frmEmployees.Show	into	the	Immediate	window	and	press	Enter.	Figure	21.16	shows	how
you	and	your	users	see	the	example	UserForm.

Figure	21.16

Where	Does	the	UserForm's	Code	Go?
This	lesson	introduced	UserForms	and	led	you	through	the	steps	to	create	a	basic	form	that
contains	various	controls.	In	Lessons	22	and	23	you	see	examples	of	how	those	and	other
UserForm	controls	are	programmable	with	event-driven	VBA	code.

A	UserForm	is	a	class	of	VBA	objects	that	has	its	own	module.	Similar	to	the	notion	that
each	worksheet	has	its	own	module,	each	UserForm	you	add	to	your	workbook	is
automatically	created	with	its	own	module.	Accessing	a	UserForm's	module	is	easy:	In	the
VBE,	you	can	double-click	the	UserForm	itself	in	the	design	pane;	or	in	the	Project
Explorer,	you	can	right-click	the	UserForm	name	and	select	View	Code,	as	shown	in
Figure	21.17.

Figure	21.17

Closing	a	UserForm
You	have	two	ways	to	close	a	UserForm.	One	way	is	with	the	Unload	method	and	the
other	way	is	with	the	Hide	method.	Though	both	methods	make	the	UserForm	look	as	if	it
has	gone	away,	they	each	carry	out	different	instructions.	This	can	be	a	point	of	confusion
for	beginning	programmers,	so	it's	important	to	understand	the	distinction	between	Unload
and	Hide.

Unloading	a	UserForm
When	you	unload	a	UserForm,	the	form	closes	and	its	entries	are	cleared	from	memory.	In
most	cases,	that	is	what	you	want—for	the	data	that	was	entered	to	be	recorded	in	some
way,	or	passed	to	Public	variables,	and	then	closed.	The	statement	that	unloads	a
UserForm	is	simply	Unload	Me,	and	it	is	commonly	associated	with	a	CommandButton	for
that	purpose,	such	as	the	Cancel	button	that	was	placed	on	this	lesson's	example
UserForm.

Suppose	you	want	to	unload	the	UserForm	when	the	Cancel	button	is	clicked.	A	quick	and
easy	way	to	do	that	is	to	double-click	the	CommandButton	in	the	UserForm's	design,	as
shown	in	Figure	21.18.

Figure	21.18

When	you	double-click	the	CommandButton,	you	see	these	lines	of	code	in	the
UserForm's	module:

Private	Sub	CommandButton2_Click()

End	Sub

To	complete	the	Click	procedure,	type	Unload	Me.	When	the	Cancel	button	is	clicked,	the
UserForm	unloads—that	is,	it	closes	and	releases	from	memory	the	data	that	was	entered
—with	this	Click	event	for	that	button:

Private	Sub	CommandButton2_Click()

Unload	Me

End	Sub

Hiding	a	UserForm
The	Hide	method	makes	the	UserForm	invisible,	but	the	data	that	was	in	the	UserForm	is
still	there,	remaining	in	memory	and	able	to	be	viewed	when	the	form	is	shown	again.	In
some	situations	you	will	want	this	to	be	the	case,	such	as	if	you	are	interacting	with	two	or
more	UserForms	and	you	want	the	user	to	focus	on	only	one	form	at	a	time.	The	statement
to	hide	a	UserForm	is	Me.Hide.

NOTE	To	summarize	the	difference	between	Unload	and	Hide,	the	method	you	choose
depends	on	why	you	don't	want	the	UserForm	to	be	seen.	Most	of	the	time,	you'll	want
the	form	cleared	from	memory,	but	sometimes,	information	that	was	entered	into	the
form	needs	to	be	referred	to	the	next	time	you	show	the	form	while	the	workbook	has
remained	open.	Closing	the	workbook	automatically	unloads	a	UserForm	only	if	it
was	hidden.

Try	It
In	this	lesson,	you	design	a	simple	UserForm	with	a	Label	control,	a	TextBox	control,	a
CheckBox	control,	and	two	CommandButton	controls.

Lesson	Requirements
To	get	the	sample	workbook,	you	can	download	Lesson	21	from	the	book's	website	at
www.wrox.com/go/excelvba24hour.

Step-by-Step
1.	 Press	Alt+F11	to	go	to	the	Visual	Basic	Editor.

2.	 Select	the	workbook	name	in	the	Project	Explorer	window,	and	from	the	menu	bar	at
the	top	of	the	VBE	click	Insert UserForm.

3.	 Select	the	UserForm	in	its	design	window,	and	press	the	F4	key	(or	click	View
Properties	Window)	to	show	the	Properties	window.

4.	 Change	the	Name	property	to	frmClients	and	change	the	Caption	property	to	Clients.

5.	 Size	the	UserForm	by	setting	its	Height	property	to	240	and	its	Width	property	to	190.

6.	 From	the	menu	bar	at	the	top	of	the	VBE,	click	View Toolbox.

7.	 From	the	Toolbox,	click	the	Label	control	icon	and	draw	a	Label	across	the	top	of	the
UserForm.	With	the	Label	control	selected,	change	its	Caption	property	to	Company
Name.

8.	 From	the	Toolbox,	click	the	TextBox	control	icon	and	draw	a	TextBox	directly	below
the	Label.

9.	 From	the	Toolbox,	click	the	Label	control	icon	again,	and	draw	a	Label	a	little	bit
below	the	TextBox.	With	that	Label	control	selected,	change	its	Caption	property	to
Client's	business	—	check	all	that	apply:.

10.	 Directly	below	the	Label	from	Step	9,	from	the	Toolbox,	click	the	CheckBox	control
icon	and	draw	a	CheckBox	that	is	wide	enough	for	you	to	have	its	Caption	property	be
Agriculture.

11.	 Repeat	Step	10	four	more	times,	meaning	you'll	draw	a	total	of	five	CheckBoxes	that
are	stacked	one	above	the	other	in	a	vertical	fashion.	Change	the	Caption	labels	on	the
four	other	CheckBoxes	to	Manufacturing,	Medical,	Retail,	and	Technology.

12.	 From	the	Toolbox,	click	the	CommandButton	icon	control	and	draw	a
CommandButton	in	the	lower-left	corner	of	your	UserForm.	Change	its	Caption
property	to	OK.

13.	 Draw	a	second	CommandButton	in	the	lower-right	corner	of	your	UserForm.	Change
its	Caption	property	to	Cancel.

14.	 Take	a	look	at	your	completed	UserForm	as	it	would	appear	when	called.	While	you
are	still	in	the	VBE,	press	Ctrl+G	to	get	into	the	Immediate	window.	Type

http://www.wrox.com/go/excelvba24hour

frmClients.Show	and	press	Enter.	Your	UserForm	should	look	like	the	one	shown	in
Figure	21.19.There	is	no	code	behind	the	CommandButtons,	so	to	close	this
UserForm,	click	the	X	Close	button	at	the	top-right	corner.

Figure	21.19

REFERENCE	Please	select	the	video	for	Lesson	21	online	at
www.wrox.com/go/excelvba24hour.	You	will	also	be	able	to	download	the	code	and
resources	for	this	lesson	from	the	website.

http://www.wrox.com/go/excelvba24hour

Lesson	22
UserForm	Controls	and	Their	Functions
UserForms	enable	you	to	interact	with	your	users	in	ways	that	you	can't	when	using
standard	Message	Boxes,	InputBoxes,	or	controls	embedded	onto	your	worksheet.	With
UserForms,	you	can	control	the	input	of	information	by	validating	the	kind	of	data	that
gets	entered,	the	order	in	which	it	is	entered,	and,	if	your	workbook	requires	it,	the	exact
location	where	the	information	should	be	stored	and	how	it	should	be	recalled.	This	lesson
leads	you	through	the	design	of	various	UserForms,	with	examples	of	how	to	program	an
assortment	of	controls	that	you'll	utilize	most	frequently.

Understanding	the	Frequently	Used	UserForm
Controls
As	demonstrated	in	Lesson	21,	when	you	add	a	UserForm	to	your	workbook,	the	first
thing	you	see	is	the	empty	UserForm	in	its	design	window,	not	unlike	a	blank	canvas	upon
which	you'll	strategically	place	your	controls.	The	controls	you	utilize	depend	upon	the
task	at	hand,	and	you'll	come	across	countless	sets	of	circumstances	for	which	a	UserForm
is	the	right	tool	for	the	job.

Still,	you'll	find	that	a	core	group	of	frequently	used	controls	can	handle	most	of	your
UserForm	requirements.	The	fun	part	is	tapping	into	the	events	each	control	supports	to
create	a	customizable	UserForm	that's	user-friendly	and,	most	importantly,	gets	the	job
done.

NOTE	As	you	see	in	Lesson	23,	you	are	not	limited	to	the	relatively	few	controls
shown	by	default	on	the	Toolbox.	Dozens	more	Toolbox	controls	are	available	to	you,
many	of	which	you'll	probably	never	use,	but	some	you	eventually	will.

CommandButtons
The	CommandButton	is	a	basic	staple	of	just	about	any	UserForm.	The	combination	of	a
Caption	property	and	Click	event	make	CommandButtons	an	efficient	way	to	convey	an
objective	and	then	carry	it	out	with	a	mouse	click.	And	if	for	no	other	reason,	a	Cancel	or
Exit	button	is	about	as	basic	a	need	as	any	form	will	have.

Suppose	you	want	to	provide	your	users	with	a	quick	way	to	print	a	worksheet	in	either
portrait	or	landscape	orientation.	You	can	make	it	easy	for	your	users	to	click	a	button	to
indicate	their	decision,	and	then	just	go	ahead	and	execute	the	print	job.	Figure	22.1	shows
an	example	of	how	you	can	do	this,	followed	by	the	code	behind	each	of	the
CommandButtons.

Figure	22.1

Private	Sub	cmdPortrait_Click()

With	ActiveSheet

.PageSetup.Orientation	=	xlPortrait

.PrintPreview

End	With

End	Sub

Private	Sub	cmdLandscape_Click()

With	ActiveSheet

.PageSetup.Orientation	=	Landscape

.PrintPreview

End	With

End	Sub

Private	Sub	cmdCancel_Click()

Unload	Me

End	Sub

NOTE	As	you	can	see	in	the	preceding	code,	each	of	the	CommandButtons	has	been
named	using	the	prefix	cmd	followed	by	a	notation	that	gives	a	clue	as	to	the	purpose
of	the	button	(see	cmdPortrait_Click(),	cmdLandscape_Click(),	and
cmdCancel_Click()).	There	is	nothing	sacred	about	the	cmd	prefix	for
CommandButtons,	or	about	the	lbl	prefix	when	naming	Labels,	or	about	any	naming
prefix	for	that	matter.	Still,	it's	wise	to	name	your	controls	in	some	intuitive	and
consistent	way	so	you	and	others	recognize	the	control	and	its	purpose	when
reviewing	your	VBA	code.

Labels
You've	seen	Label	controls,	such	as	the	examples	in	Lesson	21,	where	the	Label's	Caption
property	is	set	to	always	display	the	same	text.	Sometimes,	a	Label	can	serve	to	display
dynamic	information	that	is	not	a	static	piece	of	text,	and	in	that	case,	you'd	leave	the
Caption	property	empty.

UserForms	have	an	Initialize	event	that	is	triggered	when	you	call	the	UserForm,	which
can	help	you	take	action	on	your	UserForm	or	workbook.	Suppose	you	want	to	enhance
the	customized	look	of	your	form	with	a	welcome	greeting	that	changes	to	reflect	the	time
of	day.	For	example,	if	the	UserForm	were	to	be	opened	in	the	morning,	the	message
would	include	the	text	Good	morning,	and	so	on	for	the	afternoon	and	evening.	The
following	code	achieves	the	effect	shown	in	Figure	22.2:

Private	Sub	UserForm_Initialize()

Dim	TymeOfDay	As	String

If	Time	<	0.5	Then

TymeOfDay	=	"Good	Morning	!	"

ElseIf	Time	>=	0.5	And	Time	<	0.75	Then

TymeOfDay	=	"Good	Afternoon	!	"

Else

TymeOfDay	=	"Good	Evening	!	"

End	If

Label1.Caption	=	TymeOfDay	&	"Welcome	to	the	company	workbook."

End	Sub

Figure	22.2

TIMES	IN	VBA
Even	after	studying	the	preceding	code,	you	might	wonder	why	a	number	less	than	.5
translates	to	morning,	why	a	number	greater	than	or	equal	to	.5	and	less	than	.75
translates	to	afternoon,	and	why	a	number	greater	than	or	equal	to	.75	translates	to
evening.	The	reason	is	that	VBA	regards	a	time	of	day	as	a	completed	percentage	of
the	calendar	day.	For	example,	12:00	noon	is	the	halfway	mark	of	a	calendar	day,	and
one-half	of	something	can	be	mathematically	represented	by	the	expression	.5.	The
Time	function	in	VBA	interprets	a	number	less	than	.5	as	morning	because	by
definition,	half	the	day	would	not	yet	have	completed.	Afternoon	is	between	.5	(12:00
noon)	and	up	to	just	before	6:00	PM,	which	the	Time	function	interprets	as	.75,	being
at	the	three-fourths	mark	of	the	24-hour	calendar	day.	A	Time	number	greater	than	or
equal	to	.75	is	evening	because	it	is	at	or	past	6:00	PM	and	before	the	Time	number	of
0,	which	is	12:00	midnight	of	the	next	day.

You	can	also	populate	a	Label's	caption	from	another	control's	event	procedure.	Suppose
your	UserForm	provides	a	CommandButton	that	when	clicked,	toggles	column	C	as	being
visible	or	hidden,	such	as	with	this	line	of	code	in	the	CommandButton's	Click	event:

Columns(3).Hidden	=	Not	Columns(3).Hidden

NOTE	Columns(3)	is	another	way	of	expressing	Columns("C:C").	The	3	refers	to	C
being	the	third	letter	in	the	alphabet,	which	corresponds	to	the	third	column	from	the
left	in	the	worksheet	grid.	If	it	were	column	D,	the	syntax	notation	would	be
Columns(4)	and	so	on.	There	is	no	schematic	advantage	to	using	one	style	of
expression	over	the	other,	but	I	included	the	numeric	expression	here	so	you	can	be
aware	of	it,	and	use	it	in	your	macros	if	it	feels	more	intuitive	for	you	to	do	so.

It's	a	good	practice	when	constructing	UserForms	to	give	the	users	an	indication	that
confirms	what	they've	just	done.	In	this	example,	a	Label	control	can	be	near	the
CommandButton	that	confirms	the	visible	or	hidden	status	of	column	C,	with	the
following	code:

Private	Sub	CommandButton1_Click()

Columns(3).Hidden	=	Not	Columns(3).Hidden

Label1.Caption	=	"Column	C	is	"	&	_

IIf(Columns(3).Hidden	=	True,	"hidden",	"visible")

End	Sub

TextBoxes
A	TextBox	is	most	commonly	used	to	display	information	that	is	entered	by	a	user,	or	is
associated	with	a	cell	through	the	TextBox's	ControlSource	property,	or	is	entered
programmatically,	such	as	to	display	a	calculation	result	or	a	piece	of	data	from	a
worksheet	table.	You	have	probably	seen	TextBoxes	when	you've	entered	information	on
electronic	forms,	such	as	when	you've	entered	your	name,	address,	and	credit	card	number

when	making	a	purchase	online.

Figure	22.3	shows	a	UserForm	with	three	TextBox	controls.	In	this	example,	I've	entered
my	first	and	last	name,	and	a	password	that	is	represented	in	the	figure	as	a	series	of
asterisks.	UserForms	are	a	good	way	to	greet	your	user	and	ask	for	a	password	with	a
TextBox,	and	with	the	TextBox's	PasswordChar	property,	you	can	set	any	character	(in	this
case	an	asterisk)	to	appear	instead	of	the	password,	so	no	one	else	sees	the	password	as	it
is	being	typed.

NOTE	Formatting	of	TextBoxes	is	limited	to	the	entire	TextBox	entry.	For	example,	if
you	want	any	portion	of	the	TextBox's	contents	to	be	bold,	the	entire	contents	must	be
bold.

Figure	22.3

Sometimes	you	will	want	a	TextBox	to	accept	only	numeric	entries,	such	as	a	dollar
figure,	a	calendar	year,	or	a	person's	age	in	years.	The	following	code	monitors	each
keystroke	entry	into	TextBox1,	and	disallows	any	character	that	is	not	a	number.	As	a
courtesy	to	the	user,	a	message	appears	to	immediately	inform	the	user	that	an	improper
character	was	attempted	and	disallowed:

Private	Sub	TextBox1_KeyPress(ByVal	KeyAscii	As	MSForms.ReturnInteger)

Select	Case	KeyAscii

Case	48	To	57

Case	Else

KeyAscii	=	0

MsgBox	"You	typed	a	non-numeric	character",	_

vbExclamation,	_

"Numbers	only,	please!"

End	Select

End	Sub

NOTE	In	the	preceding	code	example,	you	might	not	be	familiar	with	the	term
“ASCII”	(pronounced	“askee”),	which	is	an	acronym	for	American	Standard	Code
for	Information	Interchange.	Computers	can	only	understand	numbers,	so	a
numerical	representation	is	needed	for	alphanumeric	characters	and	other	symbols
such	as	#	and	@.	In	the	preceding	code,	numbers	0–9	are	recognized	by	virtue	of
their	ASCII	representation	of	48–57.	If	you'd	like	to	see	a	list	of	all	255	ASCII	and
Extended	ASCII	characters,	you	can	produce	it	yourself	on	an	Excel	worksheet	by
entering	the	formula	=CHAR(ROW())	in	cell	A1,	and	copying	it	down	to	cell	A255.
Each	cell	holds	a	character	(some	characters	will	not	be	visible)	whose	ASCII
number	corresponds	to	the	cell's	row	number.

TextBoxes	can	display	calculated	results,	and	when	using	numbers	for	mathematical
operations,	you	need	to	use	the	Val	function,	which	returns	the	numbers	contained	in	a
TextBox	string	as	a	numeric	value.	Suppose	your	UserForm	contains	seven	TextBoxes
into	which	you	enter	the	sales	dollars	for	each	day	of	the	week.	As	shown	in	Figure	22.4,
an	eighth	TextBox	can	display	the	sum	of	those	seven	numbers	when	a	CommandButton
is	clicked,	with	the	following	code:

Private	Sub	CommandButton1_Click()

Dim	intTextBox	As	Integer,	dblSum	As	Double

dblSum	=	0

For	intTextBox	=	1	To	7

dblSum	=	dblSum	+	Val(Controls("TextBox"	&	intTextBox).Value)

Next	intTextBox

TextBox8.Value	=	Format(dblSum,	"#,###")

End	Sub

Figure	22.4

ListBoxes
A	ListBox	displays	a	list	of	items	and	lets	you	select	one	or	more.	ListBoxes	are	fairly
versatile	in	their	display	of	information	and	their	options	for	allowing	you	to	select	one,
many,	or	all	listed	items.

Suppose	you	want	to	list	all	12	months	of	the	year,	so	any	particular	month	can	be	selected
to	perhaps	run	a	report	for	income	and	expenses	during	that	month.	You	might	also	want
the	flexibility	to	run	a	single	report	that	includes	activity	for	any	combinations	of	months.
The	ListBox	control	is	an	excellent	choice	because	you	can	set	its	MultiSelect	property
to	allow	just	one	item,	or	multiple	items,	to	be	selected.	Figure	22.5	shows	an	example	of
how	you	can	control	the	way	the	items	appear	with	the	ListStyle	property,	and	selection
options	for	your	ListBox	(allow	only	one	or	more	than	one	item	to	be	selected)	with	the
MultiSelect	property.

Figure	22.5

You	can	use	two	common	methods	to	populate	a	ListBox	with	items.	In	the	preceding
example,	the	12	months	of	the	year	could	be	listed	on	a	worksheet,	say	on	Sheet2	in	range
A1:A12.	To	have	the	ListBox	display	the	list	of	months,	you	can	enter	Sheet2!A1:A12	as
the	RowSource	property	for	that	ListBox.

In	many	cases,	however,	you'll	want	to	populate	your	ListBox	without	having	to	store	the
items	on	a	worksheet.	The	UserForm's	Initialize	event	is	perfect	for	populating	your
ListBox	with	a	dynamic	or	static	list	of	items.	Suppose	you	want	to	list	the	names	of
various	countries.	The	following	code	does	that	using	the	AddItem	method	in	the
UserForm's	Initialize	event,	which	you	can	easily	append	when	you	want	to	add	or
omit	a	country	name:

Private	Sub	UserForm_Initialize()

With	ListBox1

.RowSource	=	""

.AddItem	"England"

.AddItem	"Spain"

.AddItem	"France"

.AddItem	"Japan"

.AddItem	"Australia"

.AddItem	"United	States"

End	With

End	Sub

NOTE	When	you	populate	a	ListBox	programmatically	(or,	as	you	see	later,	a
ComboBox),	be	sure	to	clear	the	control's	RowSource	property	or	you	will	get	a
runtime	error	when	you	call	(initialize)	the	UserForm.	This	was	done	in	the	preceding
code	by	setting	RowSource	equal	to	an	empty	string.

The	following	code	lists	all	the	visible	worksheets	in	your	workbook,	and	excludes	the
worksheets	that	are	hidden:

Private	Sub	UserForm_Initialize()

With	ListBox1

.Clear

Dim	wks	As	Worksheet

For	Each	wks	In	Worksheets

If	wks.Visible	=	xlSheetVisible	Then	.AddItem	wks.Name

Next	wks

End	With

End	Sub

ListBoxes	support	many	events,	and	using	the	Click	event,	for	example,	this	code
activates	the	worksheet	whose	name	you	click,	with	the	ListBox's	MultiSelect	property
set	to	0-fmMultiSelectSingle:

Private	Sub	ListBox1_Click()

Worksheets(ListBox1.Value).Activate

End	Sub

ComboBoxes
A	ComboBox	combines	the	features	of	a	ListBox	and	a	TextBox,	in	that	you	can	select	an
item	from	its	drop-down	list,	or	you	can	type	an	item	into	the	ComboBox	that	is	not
included	in	its	list.	Most	of	the	time,	you'll	use	the	ComboBox	the	same	way	you'd	use
data	validation,	where	a	drop-down	arrow	is	visible	for	revealing	the	list	of	items	that	are
available	for	selection.

NOTE	If	you	want	to	limit	the	ComboBox	to	only	accept	items	from	the	drop-down
list,	set	its	Style	property	to	2	-	fmStyleDropDownList.

ComboBoxes	allow	only	one	item	to	be	selected;	you	cannot	select	multiple	items	in	a
ComboBox	the	way	you	can	with	a	ListBox.	However,	ComboBoxes	are	populated	much
the	same	way	as	ListBoxes,	with	a	RowSource	property	and	an	AddItem	method.

Suppose	you	want	to	guide	the	users	of	your	workbook	to	select	a	year	that	is	within	three
years—past	or	future—of	the	current	year.	The	following	code	could	accomplish	that,
with	Figure	22.6	showing	the	ComboBox's	list	after	the	drop-down	arrow	was	clicked,
assuming	the	current	year	is	2015:

Private	Sub	UserForm_Initialize()

With	ComboBox1

.Clear

Dim	iYear	As	Integer,	jYear	As	Integer

jYear	=	Format(Date,	"YYYY")

For	iYear	=	1	To	7

ComboBox1.AddItem	jYear	-	3

jYear	=	jYear	+	1

Next	iYear

End	With

End	Sub

Figure	22.6

As	with	a	ListBox,	if	the	items	needed	to	populate	the	ComboBox	are	listed	on	a
worksheet,	it	does	not	mean	you	must	refer	to	them	with	the	RowSource	property.	You	can
leave	the	RowSource	property	empty,	and	populate	the	ComboBox	(same	concept	applies
to	a	ListBox)	with	the	following	code	example,	assuming	the	values	are	listed	in	range
A1:A8	with	no	blank	cells	in	that	range:

Private	Sub	UserForm_Initialize()

ComboBox1.List	=	Range("A1:A8").Value

End	Sub

NOTE	If	you	want	the	first	item	in	the	drop-down	list	to	be	automatically	visible	in
your	ComboBox,	you	can	add	the	following	line	before	the	End	Sub	line,	assuming	the
ComboBox	is	named	ComboBox1:

ComboBox1.ListIndex	=	0

Sometimes	you	need	to	populate	the	ComboBox	(or	ListBox)	with	items	listed	in	a	range
that	also	contains	blank	cells.	Figure	22.7	shows	how	horrible	that	makes	the	drop-down
list	look	if	you	attempted	to	populate	the	ComboBox	with	the	line	of	code
ComboBox1.List	=	Range("A1:A8").Value.

Figure	22.7

Much	nicer	looking	is	Figure	22.8,	which	does	not	show	empty	spaces	in	its	drop-down
list	even	though	empty	cells	exist	among	the	list	of	names.	The	code	to	do	that	is	shown
here,	which	uses	the	LEN	function	to	disregard	cells	that	have	no	value	in	them:

Private	Sub	UserForm_Initialize()

Dim	LastRow	As	Long,	cboCell	As	Range

LastRow	=	Cells(Rows.Count,	1).End(xlUp).Row

For	Each	cboCell	In	Range("A1:A"	&	LastRow)

If	Len(cboCell)	>	0	Then	ComboBox1.AddItem	cboCell.Value

Next	cboCell

End	Sub

Figure	22.8

CheckBoxes
A	CheckBox	on	your	UserForm	can	serve	one	of	two	purposes:	to	provide	users	with	an
option	that	is	of	the	Yes/No	variety,	without	a	superfluous	message	box	to	present	the
option,	or	to	provide	a	pair	of	OptionButtons	(covered	in	the	next	section).	Simply,	a
single	CheckBox	is	inferred	to	mean	Yes	or	OK	if	it	is	checked,	and	No	if	it	is	not
checked.

As	you	develop	more	complex	UserForms,	you	will	want	to	provide	your	users	with
convenient	options	for	viewing—or	not	viewing—interface	objects	that	might	be	useful	to
them	in	some	cases,	and	irrelevant	in	others.	For	example,	Figure	22.9	shows	the	same
UserForm	in	two	situations,	where	the	user	can	check	or	uncheck	the	CheckBox	captioned
Show	List	of	Months.	If	the	CheckBox	is	unchecked,	neither	the	ListBox	nor	the	Label
above	it	will	be	visible,	but	if	the	CheckBox	is	checked,	those	controls	do	appear.	The
code	associated	with	the	CheckBox	follows:

Private	Sub	CheckBox1_Click()

With	CheckBox1

If	.Value	=	True	Then

Label1.Visible	=	True

ListBox1.Visible	=	True

Else

Label1.Visible	=	False

ListBox1.Visible	=	False

End	If

End	With

End	Sub

Figure	22.9

NOTE	Users	appreciate	having	a	say	as	to	what	they	see	on	a	form,	which	helps	give
them	some	control	over	the	form's	navigation	process.	However,	as	the	workbook's
developer,	your	primary	objective	is	to	design	a	smart	form.	In	this	example,	if	the
selection	of	a	month	name	is	a	mandatory	action	in	the	UserForm's	overall	process,
you	would	not	consider	building	in	the	option	of	hiding	a	ListBox	of	month	names.
You'll	often	see	a	single	CheckBox	on	a	UserForm	when	a	simple	preference	is	to	be
indicated,	such	as	including	a	header	on	all	printed	pages,	or	performing	the	same
action	on	all	worksheets.

Another	popular	use	of	CheckBoxes	is	to	provide	the	user	with	several	options	at	the	same
time.	Figure	22.10	shows	a	UserForm	that	asks	for	users	to	indicate	which	regions	a
company	report	should	include.	When	the	OK	button	is	clicked,	you	can	assign	variables
to	each	CheckBox	that	was	checked,	and	incorporate	those	variables	later	in	a	VBA
decision	process	that	recognizes	only	the	checked	regions.	One	way	to	accomplish	that	is
to	loop	through	each	CheckBox	and	identify	the	selected	CheckBox(es),	as	shown	in	the
following	code:

Private	Sub	cmdOK_Click()

'Declare	an	Integer	type	variable	for	the	five	CheckBoxes.

Dim	intCheckBox	As	Integer

'Declare	a	String	type	variable	for	the	list	of	selected	Checkboxes.

Dim	strCheckBoxNames	As	String

'Open	a	For	next	loop	to	examine	each	of	the	5	CheckBoxes.

For	intCheckBox	=	1	To	5

'If	the	CheckBox	is	selected,	meaning	its	value	is	True,

'build	the	strCheckBoxNames	string	with	the	caption	of	the

'selected	CheckBox,	followed	by	a	Chr(10)	new	line	character

'for	readability	in	the	confirming	MsgBox.

If	Controls("CheckBox"	&	intCheckBox).Value	=	True	Then

strCheckBoxNames	=	strCheckBoxNames	&	_

Controls("CheckBox"	&	intCheckBox).Caption	&	Chr(10)

End	If

'Continue	the	loop	until	all	5	CheckBoxes	have	been	examined.

Next	intCheckBox

'Display	a	Message	Box	to	advise	the	users	what	they	selected.

MsgBox	strCheckBoxNames,	,	"Regions	that	were	checked:"

End	Sub

Figure	22.10

OptionButtons
An	OptionButton	is	used	when	you	want	the	user	to	select	one	choice	from	a	group	of
optional	choices.	You	would	use	a	group	of	OptionButtons	to	show	the	single	item	that
was	selected	among	the	group's	set	of	choices.	For	example,	on	a	college	application	form,
in	the	gender	section,	an	applicant	could	select	only	Male	or	Female.

In	Figure	22.11,	a	menu	for	running	a	financial	report	might	ask	the	user	to	select	the
month	of	activity	upon	which	the	report	should	be	based.	A	group	of	12	OptionButtons
limits	the	user	to	only	one	selection.	Each	OptionButton's	Caption	property	was	filled	in
with	the	name	of	a	month.

Figure	22.11

Figure	22.11	shows	that	the	month	of	August	was	selected,	and	in	real	practice,	you'd
identify	that	selection	in	your	code	with	a	variable	that	refers	to	the	selected	month	name,
and	produces	the	report	for	that	month.	One	way	to	do	that	is	to	loop	through	each	of	the
OptionButtons	and	stop	when	you	encounter	the	selected	OptionButton	whose	value
would	be	True.

To	help	make	the	point,	there	is	a	button	on	the	form	with	the	caption	ID	Selected	Option,
and	when	you	click	the	button,	a	message	box	appears,	telling	you	the	name	of	the
selected	OptionButton	and	its	caption.	The	following	code	examines	the	status	of	the
OptionButtons	and	then	produces	the	message	box:

Private	Sub	CommandButton1_Click()

Dim	intOption	As	Integer,	optName	As	String,	optCaption	As	String

For	intOption	=	1	To	12

If	Controls("OptionButton"	&	intOption)	=	True	Then

optName	=	Controls("OptionButton"	&	intOption).Name

optCaption	=	Controls("OptionButton"	&	intOption).Caption

MsgBox	_

"Name:	"	&	optName	&	vbCrLf	&	_

"Caption:	"	&	optCaption,	,	_

"Info	about	the	OptionButton	you	selected:"

Exit	For

End	If

Next	intOption

End	Sub

OptionButtons	have	a	useful	property	called	GroupName	that	you	should	be	aware	of.	In
Figure	22.11,	a	simple	UserForm	lists	12	OptionButtons,	all	with	the	same	objective	of
eliciting	a	selection	for	a	particular	month.	But	what	if	your	UserForm	has	other	sections
for	user	options	that	require	OptionButtons,	such	as	to	select	a	day	of	the	week,	or	a	print

orientation	preference	of	Landscape	or	Portrait?	You'll	find	many	reasons	to	apply
OptionButtons	to	your	UserForms,	and	you	need	each	set	of	options	to	be	a	mutually
exclusive	group.

You	have	two	ways	to	create	a	group	of	mutually	exclusive	OptionButton	controls.	You
can	place	the	group	inside	a	Frame	(a	control	that	is	covered	in	the	next	section),	or	you
can	use	the	GroupName	property	of	the	related	OptionButtons	to	group	them	together.	In
Figure	22.12,	the	OptionButtons	have	been	selected	in	the	UserForm's	design	window,	and
the	GroupName	property	has	been	defined	with	the	name	Months.

NOTE	Whether	organized	by	GroupName	or	a	Frame	control,	clicking	an
OptionButton	sets	its	value	to	True	and	automatically	sets	the	other	OptionButtons	in
the	group	(or	in	the	Frame)	to	False.

Figure	22.12

Frames
Frame	controls	group	related	controls	together	to	provide	an	organized	look	and	feel	when
the	UserForm	calls	for	many	controls.	Figure	22.13	illustrates	an	example	of	employing	a

Frame.

Figure	22.13

When	you	place	controls	within	a	Frame	control,	manipulating	the	Frame's	properties	can
affect	all	the	controls	inside	the	Frame.	For	example,	assuming	the	Frame	control	shown
in	Figure	22.13	is	named	Frame1,	this	line	of	code	would	hide	that	frame	along	with	all	the
controls	inside	it:

Frame1.Visible=	False

Sometimes	you	want	your	Frame	to	be	visible,	but	you	want	all	the	controls	inside	the
Frame	to	be	temporarily	disabled.	You	can	disable	the	Frame	and	render	its	controls
unusable	with	the	following	line	of	code:

Frame1.Enabled	=	False

If	you	test	that,	you	see	a	curious	result,	which	is	the	controls	inside	the	Frame	are	not
“grayed	out”	but	are	essentially	disabled	because	they	are	rendered	useless	by	virtue	of	the
Frame	being	disabled.	The	controls	themselves	appear	to	be	enabled,	which	can	fool	your
users	into	wondering	what's	wrong	with	perfectly	normal-looking	controls	that	do	not
respond	to	any	keystrokes	or	mouse	clicks.

If	you	want	to	disable	the	actual	controls	inside	the	Frame	and	make	them	look	disabled,

you	must	loop	through	each	of	the	controls	inside	the	Frame	with	the	following	example
code.	Note	that	this	code	does	not	disable	Frame1,	only	the	controls	inside	it:

Dim	FrmControl	As	Control

For	Each	FrmControl	In	Frame1.Controls

FrmControl.Enabled	=	False

Next	FrmControl

Naturally,	to	enable	a	control	that's	been	disabled,	change	the	False	statement	to	True,
which	you	can	handle	in	a	separate	procedure,	or	in	one	single	procedure	with	a	line	of
code	that	toggles	the	Enabled	property	using	the	Not	statement.	The	following	example
shows	how	to	do	this:

Private	Sub	CommandButton4_Click()

Dim	FrmControl	As	Control

For	Each	FrmControl	In	Frame1.Controls

FrmControl.Enabled	=	Not	FrmControl.Enabled

Next	FrmControl

End	Sub

MultiPages
A	MultiPage	control	is	like	having	a	set	of	tabbed	folders	that	each	contain	information
and	controls	that	would	be	too	voluminous	to	fit	comfortably	within	the	UserForm's
interface.	Figure	22.14	shows	an	example	of	how	a	MultiPage	control	can	come	in	handy
when	a	lot	of	information	is	being	sought	from	the	workbook's	users	about	their	viewing
preferences.

Figure	22.14

The	MultiPage	control	has	a	collection	of	Page	objects	that	are	each	dedicated	to	a	theme.
You	can	right-click	a	tab	to	add	a	new	page,	delete	the	page	you	right-clicked,	rename	the

page's	caption,	or	move	the	page.	MultiPage	controls	are	a	terrific	way	to	maximize	the
space	on	your	UserForm	with	a	smart,	organized	look	and	feel.

Try	It
In	this	lesson,	you	design	a	UserForm	with	several	controls,	including	a	ListBox	that	is
populated	dynamically	with	the	ability	to	select	multiple	items.

Lesson	Requirements
To	get	the	sample	workbook,	you	can	download	Lesson	22	from	the	book's	website	at
www.wrox.com/go/excelvba24hour.

Step-by-Step
1.	 Open	a	new	workbook	and	activate	Sheet1.

2.	 In	column	A,	enter	the	items	in	the	cells	as	you	see	them	displayed	in	Figure	22.15.

3.	 Press	Alt+F11	to	get	into	the	Visual	Basic	Editor.

4.	 Select	your	workbook	name	in	the	Project	Explorer,	and	from	the	menu	bar	click
Insert	 	UserForm	and	accept	its	default	name	of	UserForm1.

5.	 Change	the	UserForm's	Caption	property	to	Shopping	List.

6.	 Select	the	UserForm	in	its	design	window,	and	if	the	Toolbox	is	not	visible,	click	View
	Toolbox.

7.	 Draw	a	ListBox	on	the	UserForm	and	accept	its	default	name	of	ListBox1.	Set	its
MultiSelect	property	to	1	-	fmMultiSelectMulti.

8.	 Draw	a	CommandButton	on	the	UserForm	below	the	ListBox	and	accept	its	default
name	of	CommandButton1.	Change	its	Caption	property	to	Transfer	selected	items
to	Sheet2	column	E.

9.	 Draw	another	CommandButton	on	the	UserForm	below	the	first	CommandButton,	and
change	its	Caption	property	to	Exit.	That	completes	the	design	of	the	UserForm,
which	should	resemble	Figure	22.16	when	it	is	called.

10.	 Double-click	the	UserForm	to	go	to	its	module.	Type	the	code	under	the	UserForm's
Initialize	event	that	populates	the	ListBox	with	items	in	column	A	of	Sheet1,
ignoring	the	empty	cells:

Private	Sub	UserForm_Initialize()

Dim	LastRow	As	Long,	ShoppingListCell	As	Range

With	Worksheets("Sheet1")

LastRow	=	.Cells(Rows.Count,	1).End(xlUp).Row

For	Each	ShoppingListCell	In	.Range("A1:A"	&	LastRow)

If	Len(ShoppingListCell)	>	0	Then	ListBox1.AddItem	ShoppingList

Cell.Value

Next	ShoppingListCell

End	With

End	Sub

11.	 While	in	the	UserForm's	module,	type	the	code	for	CommandButton2	that	is	the	Exit
button:

http://www.wrox.com/go/excelvba24hour

Private	Sub	CommandButton2_Click()

Unload	Me

End	Sub

12.	 Immediately	above	the	Code	window	are	two	drop-down	lists.	Click	the	drop-down
arrow	at	the	left	belonging	to	the	Object	field,	and	select	CommandButton1	to	place
these	two	statements	in	the	UserForm's	module:

Private	Sub	CommandButton1_Click()

End	Sub

13.	 For	the	first	line	of	code	in	the	CommandButton1	Click	event,	open	a	With	structure	for
Sheet2,	which	is	the	destination	sheet	for	selected	items:

With	Worksheets("Sheet2")

14.	 Declare	variables	for	the	ListBox's	items	and	NextRow:

Dim	intItem	As	Integer,	NextRow	As	Long

15.	 Clear	column	E	of	Sheet2	to	start	your	shopping	list	with	a	clean	slate:

.Columns(5).Clear

16.	 Put	a	header	in	cell	E1	of	Sheet2,	to	start	the	list:

.Range("E1").Value	=	"Shopping	List"

17.	 Define	the	NextRow	variable	as	2,	because	column	E	was	just	cleared	and	the	Shopping
List	header	is	in	cell	E1	with	nothing	below	it:

NextRow	=	2

18.	 Loop	through	all	items	in	ListBox1	and	if	any	are	selected,	list	them	in	turn	in	column
E	of	Sheet2:

For	intItem	=	0	To	ListBox1.ListCount	-	1

If	ListBox1.Selected(intItem)	=	True	Then

.Range("E"	&	NextRow).Value	=	ListBox1.List(intItem)

19.	 Add	1	to	the	NextRow	variable	to	prepare	for	the	next	selected	item:

NextRow	=	NextRow	+	1

End	If

20.	 Continue	the	loop	until	all	ListBox	items	have	been	examined:

Next	intItem

21.	 Close	the	With	structure	for	Sheet2:

End	With

22.	 Your	final	CommandButton1	code	looks	like	this:

Private	Sub	CommandButton1_Click()

'Open	a	With	structure	for	Sheet2

With	Worksheets("Sheet2")

'Declare	variables	for	ListBox	items	and	NextRow

Dim	intItem	As	Integer,	NextRow	As	Long

'Clear	column	E	of	Sheet2

.Columns(5).Clear

'Put	a	header	in	cell	E1

.Range("E1").Value	=	"Shopping	List"

'Define	the	NextRow	variable	as	2

'because	column	E	was	just	cleared	and	the	Shopping	List

'header	is	in	cell	E1	with	nothing	below	it.

NextRow	=	2

'Loop	through	all	items	in	ListBox	1	and	if	any	are	selected,

'list	them	in	turn	in	column	E	of	Sheet2.

For	intItem	=	0	To	ListBox1.ListCount	-	1

If	ListBox1.Selected(intItem)	=	True	Then

.Range("E"	&	NextRow).Value	=	ListBox1.List(intItem)

'Add	1	to	the	NextRow	variable	to	prepare	for	the	next	selected	item.

NextRow	=	NextRow	+	1

End	If

'Continue	the	loop	until	all	ListBox	items	have	been	examined.

Next	intItem

'Close	the	With	structure	for	Sheet2.

End	With

End	Sub

Figure	22.15

Figure	22.16

REFERENCE	Please	select	the	video	for	Lesson	22	online	at
www.wrox.com/go/excelvba24hour.	You	will	also	be	able	to	download	the	code	and
resources	for	this	lesson	from	the	website.

http://www.wrox.com/go/excelvba24hour

Lesson	23
Advanced	UserForms
Lesson	21	introduces	UserForms	and	shows	you	how	to	add	controls	to	your	form.	Lesson
22	provides	several	examples	of	UserForms	with	frequently	used	controls	to	help	you
gather	and	store	information.	This	lesson	takes	an	expanded	look	at	how	you	can	get	more
out	of	UserForms	by	tapping	into	their	capacity	for	supporting	some	interesting	and	useful
operations.

The	UserForm	Toolbar
The	Visual	Basic	Editor	has	a	handy	toolbar	for	working	with	UserForms,	aptly	named	the
UserForm	toolbar,	shown	in	Figure	23.1.	To	display	it	in	the	VBE,	from	the	menu	bar
click	View Toolbars UserForm.

Figure	23.1

The	UserForm	toolbar	has	eight	buttons:

Bring	to	Front:	Brings	the	selected	control	to	the	front	of	the	other	controls.

Send	to	Back:	Sends	the	selected	control	to	the	back	of	the	other	controls.

Group:	Groups	the	selected	controls.

Ungroup:	Ungroups	the	selected	grouped	controls.

Alignments:	The	small	drop-down	arrow	to	the	right	of	the	Alignments	icon	provides
options	for	aligning	the	selected	controls	by	their	Rights,	Lefts,	Centers,	Tops,
Middles,	Bottoms,	and	To	Grid.

Centering:	Centers	the	selected	controls	horizontally	or	vertically	on	the	UserForm.

Same	Size:	Sizes	the	selected	controls	to	be	of	the	same	Height,	Width,	or	Both.

Zoom:	Displays	the	UserForm	as	a	zoomed	percentage	of	its	normal	size.

NOTE	If	you're	working	in	a	UserForm	module	and	you	forget	the	names	of	controls
and	you've	selected	the	Require	Variable	Declaration	option	(on	the	Editor	tab	when
you	click	Tools Options	in	the	VBE),	type	Me	followed	by	a	dot.	You	see	a	list	of	all
the	methods	and	properties	for	the	UserForm,	including	the	list	of	control	names
belonging	to	the	UserForm.

Modal	versus	Modeless
Beginning	with	Excel	version	2000,	UserForms	became	equipped	with	a	new	property
called	ShowModal.	When	a	UserForm's	ShowModal	property	is	set	to	True—that	is,	when	it
is	shown	as	Modal—it	means	that	while	the	UserForm	is	visible,	you	cannot	select	a
worksheet	cell,	another	worksheet	tab,	or	any	of	the	Ribbon	or	menu	icons	until	you	close
the	UserForm.	Most	of	the	time,	this	is	what	you	want—for	the	UserForm	to	command	all
focus	and	attention	while	it	is	visible.

At	times	the	users	of	your	project	will	benefit	from	the	ability	to	select	cells	and	generally
to	navigate	worksheets	while	a	UserForm	is	visible.	When	that's	what	you	need,	call	the
UserForm	by	specifying	the	ShowModal	property	as	False.	For	example:

Sub	ShowUserForm1()

UserForm1.Show	vbModeless

End	Sub

You	can	also	write	the	preceding	code	line	as	UserForm1.Show	0.	The	default	setting	for
the	ShowModal	property	is	vbModal	(or	the	numeral	1),	which	you	don't	need	to	specify
when	calling	a	UserForm	if	you	want	it	to	be	modal.	The	code	line	UserForm1.Show
vbModal,	UserForm1.Show	1,	or	(which	you	have	typically	been	using	all	along)
UserForm1.Show	shows	the	UserForm	as	modal.

NOTE	Here's	a	neat	trick	that	might	interest	you.	When	you	call	a	UserForm	as
modeless,	the	UserForm	is	the	active	object	and	an	extra	mouse	click	is	required	to
actually	activate	the	worksheet.	If	you	want	the	worksheet	itself	to	be	the	active	object
without	manual	intervention,	add	the	line	AppActivate	("Microsoft	Excel")	below
the	Show	line;	here	is	a	full	macro	example:

Sub	ShowUserForm2()

UserForm2.Show	vbModeless

AppActivate	("Microsoft	Excel")

End	Sub

Disabling	the	UserForm's	Close	Button
Some	of	your	UserForms	might	require	input	before	the	user	can	proceed	further.	To
enforce	user	input,	you	can	disable	the	Close	button,	usually	located	at	the	far	right	of	the
UserForm's	title	bar.	This	is	not	an	everyday	happenstance	but	when	your	project	requires
input	at	a	critical	point	in	a	process,	you	need	a	way	to	keep	the	UserForm	active	until	the
required	information	is	input.

UserForms	have	a	QueryClose	event	that	can	help	you	control	such	situations.	In	Figure
23.2,	a	message	box	appears	if	the	“X”	Close	button	is	clicked	in	an	attempt	to	close	the
UserForm	without	selecting	a	name	from	the	drop-down	list.	The	code	associated	with
that	follows	Figure	23.2.

Figure	23.2

Private	Sub	UserForm_QueryClose(Cancel	As	Integer,	CloseMode	As	Integer)

'Prevents	use	of	the	Close	button	if	a	name	has	not	been	selected.

If	CloseMode	=	vbFormControlMenu	And	Len(ComboBox1.Value)	=	0	Then

Cancel	=	True

MsgBox	"You	must	select	a	name	to	continue.",	,	"Name	is	required"

'Set	Focus	to	the	ComboBox	for	the	user.

ComboBox1.SetFocus

End	If

End	Sub

Keep	in	mind	that	you	want	to	monitor	the	input	requirement	through	the	other	controls	on
the	UserForm	as	well.	The	following	example	is	associated	with	the	Continue	button:

Private	Sub	cmdContinue_Click()

If	Len(ComboBox1.Value)	=	0	Then

MsgBox	"You	must	select	a	name	to	continue.",	,	"Name	is	required"

'Set	Focus	to	the	ComboBox	for	the	user.

ComboBox1.SetFocus

Exit	Sub

Else

Unload	Me

End	If

End	Sub

Maximizing	Your	UserForm's	Size
If	you	want	to	fill	the	screen	with	just	your	UserForm	and	nothing	else,	the	following	code
in	the	Initialize	event	can	help	you	do	that.	Be	aware	that	some	adjustment	to	the	code
might	be	needed	with	the	Zoom	property,	in	case	the	UserForm	is	so	small	to	begin	with
that	its	fully	expanded	size	exceeds	the	window's	Zoom	capacity.

Private	Sub	UserForm_Initialize()

With	Application

.WindowState	=	xlMaximized

Zoom	=	Int(.Width	/	Me.Width	*	100)

Width	=	.Width

Height	=	.Height

End	With

End	Sub

NOTE	You	don't	need	to	settle	for	the	UserForm	loading	in	the	center	of	your	screen.
You	can	specify	the	location,	such	as	with	the	following	example	that	shows	the
UserForm	in	the	top-left	corner	of	the	screen:

Private	Sub	UserForm_Initialize()

Me.StartUpPosition	=	0

Me.Top	=	Application.Top

Me.Left	=	Application.Left

End	Sub

Selecting	and	Displaying	Photographs	on	a	UserForm
An	Image	control	helps	you	display	a	graphic	object,	such	as	a	picture,	on	a	UserForm.
You	have	three	ways	to	place	a	picture	onto	an	Image	control—two	are	manual	methods
and	one	is	a	VBA	method.

Suppose	you	have	a	picture	file	on	your	computer,	such	as	your	company's	logo,	that	you
want	to	show	for	a	customized	look	on	your	UserForm.	You	can	use	VBA's	LoadPicture
method	to	load	the	picture	file	onto	the	Image	control	when	you	call	the	UserForm,	with
the	following	example:

Private	Sub	UserForm_Initialize()

Image1.Picture	=	LoadPicture("C:\CompanyPictures\CompanyLogo.jpg")

End	Sub

This	method	works	great,	so	long	as	the	picture	file	exists	in	that	folder	path	for	every
computer	on	which	the	UserForm	will	ever	be	opened,	which	is	not	likely.	As	you	develop
UserForms	for	others'	use	outside	a	shared	network	environment,	you	want	to	load	a
picture	onto	an	Image	control	manually,	and	forego	the	VBA	route.

You	can	load	an	Image	control	manually	in	two	ways.	In	the	UserForm's	design	window,
place	the	Image	control	where	you	want	it	on	the	UserForm.	Activate	the	Image	control's
Properties	window	and	locate	the	Picture	property.	Placing	your	cursor	inside	the
Picture	property	exposes	a	small	ellipsis	button,	as	shown	in	Figure	23.3.	Click	that
button	to	show	the	Load	Picture	dialog	box.	From	the	Load	Picture	dialog	box,	navigate	to
the	picture	file	you	want	to	load,	select	it,	and	click	Open.

Figure	23.3

The	other	manual	alternative	is	even	simpler.	After	you've	added	your	Image	control,
select	your	picture	object	and	press	Ctrl+C	to	place	it	on	the	clipboard.	Select	the	Image
control	on	the	UserForm,	select	its	Picture	property	in	the	Properties	window,	click

inside	the	Picture	property,	and	press	Ctrl+V	to	paste	the	picture	into	the	Image	control.

Unloading	a	UserForm	Automatically
Have	you	ever	wanted	to	show	a	UserForm	for	a	limited	period	of	time,	and	then	unload	it
without	user	intervention?	UserForms	need	not	serve	the	sole	purpose	of	user	input.
Sometimes	they	can	be	opportunistically	employed	as	a	mechanism	for	a	specialized
greeting,	or,	if	tastefully	designed,	an	informative	splash	screen.

Personally,	I	do	not	appreciate	most	of	the	splash	screens	I	see	when	opening	various
software	applications;	many	look	like	cheap	advertisements	that	waste	the	user's	time.
However,	a	nice	opening	welcome	message	to	customize	the	look	and	feel	of	your
workbook	can	be	a	good	thing	if	designed	well,	but	do	keep	the	visible	time	to	a
maximum	of	five	seconds;	any	longer	than	that	is	an	annoyance.

Call	the	UserForm	as	you	normally	would.	The	following	code	goes	into	the	UserForm
module,	in	this	example	for	a	five-second	appearance:

Private	Sub	UserForm_Activate()

Application.Wait	(Now	+	TimeValue("0:00:05"))

Unload	Me

End	Sub

Pre-sorting	the	ListBox	and	ComboBox	Items
Suppose	you	want	to	import	a	list	of	items	into	your	ListBox	(or	ComboBox)	such	as	a	list
of	cities	in	range	A1:A20	as	shown	in	Figure	23.4.	You	can	do	that	easily	with	this	event
code	for	a	ListBox:

Private	Sub	UserForm_Initialize()

ListBox1.List	=	Range("A1:A20").Value

End	Sub

Figure	23.4

Lists	tend	to	be	easier	to	work	with	when	they	are	alphabetized.	To	handle	that	seamlessly
for	the	user,	the	following	amendment	to	the	preceding	code	is	a	series	of	loops	with
variables	that	examine	each	element	in	the	ListBox,	and	sorts	it	in	ascending	alphabetical
order.	The	result	is	shown	in	Figure	23.4.

Private	Sub	UserForm_Initialize()

ListBox1.List	=	Range("A1:A20").Value

Dim	x	As	Integer,	y	As	Integer,	z	As	String

With	ListBox1

For	x	=	0	To	.ListCount	-	2

For	y	=	x	+	1	To	.ListCount	-	1

If	.List(x)	>	.List(y)	Then

z	=	.List(y)

.List(y)	=	.List(x)

.List(x)	=	z

End	If

Next	y

Next	x

End	With

End	Sub

Notice	two	additional	CommandButtons	near	the	bottom	of	the	UserForm.	One	is
captioned	Sort	Up	and	the	other	is	captioned	Sort	Down.	Users	appreciate	the	ability	to
customize	the	look	of	their	interface.	If	it	is	easier	for	some	people	to	read	a	list	from	Z	to
A,	and	others	from	A	to	Z,	so	be	it.	The	following	code	shows	an	example	of	how	each
button,	when	clicked,	sorts	the	ListBox.	First,	ascending:

Private	Sub	cmdSortUp_Click()

Dim	x	As	Integer,	y	As	Integer,	z	As	String

'Sort	ascending

With	ListBox1

For	x	=	0	To	.ListCount	-	2

For	y	=	x	+	1	To	.ListCount	-	1

If	.List(x)	>	.List(y)	Then

z	=	.List(y)

.List(y)	=	.List(x)

.List(x)	=	z

End	If

Next	y

Next	x

End	With

End	Sub

Then,	descending:

Private	Sub	cmdSortDown_Click()

Dim	x	As	Integer,	y	As	Integer,	z	As	String

'Sort	descending

With	ListBox1

For	x	=	0	To	.ListCount	-	2

For	y	=	x	+	1	To	.ListCount	-	1

If	.List(x)	<	.List(y)	Then

z	=	.List(y)

.List(y)	=	.List(x)

.List(x)	=	z

End	If

Next	y

Next	x

End	With

End	Sub

NOTE	If	you	were	to	do	this	in	real	practice,	you'd	eliminate	the	redundancy	of
declaring	the	same	variables	for	each	event,	and	instead	publicly	declare	them	once.

Populating	ListBoxes	and	ComboBoxes	with	Unique
Items
As	often	as	not,	when	you	load	a	ListBox	or	ComboBox	with	a	source	list	of	items	from	a
worksheet,	the	range	is	dynamic,	meaning	the	length	of	the	list	varies.	Also,	chances	are
pretty	good	that	the	source	list	contains	duplicate	entries,	and	there	is	no	need	to	place
more	than	one	unique	item	in	a	ListBox	or	ComboBox.

In	Figure	23.5,	column	A	contains	a	list	of	clothing	items	that	were	sold	in	a	department
store.	A	unique	list	of	these	items	was	compiled	in	a	ComboBox	as	shown	in	Figure	23.5,
with	the	following	code	to	demonstrate	how	to	populate	the	ComboBox	in	this	manner
when	the	length	of	the	source	list	is	not	known,	and	some	cells	in	the	source	list	might
have	no	entry.

Figure	23.5

Private	Sub	UserForm_Initialize()

'Declare	variables	for	a	Collection	and	cell	range.

Dim	myCollection	As	Collection,	cell	As	Range

'Error	bypass	to	set	a	new	collection.

On	Error	Resume	Next

Set	myCollection	=	New	Collection

'Open	a	With	structure	for	the	ComboBox

With	ComboBox1

'Clear	the	ComboBox

.Clear

'Open	a	For	Next	loop	to	examine	every	cell	starting	with	A2

'and	down	to	the	last	used	cell	in	column	A.

For	Each	cell	In	Range("A2:A"	&	Cells(Rows.Count,	1).End(xlUp).Row)

'If	the	cell	is	not	blank…

If	Len(cell)	<>	0	Then

'Clear	the	possible	error	for	a	Collection

'possibly	not	having	been	established	yet.

Err.Clear

'Add	the	cell's	value	to	the	Collection.

myCollection.Add	cell.Value,	cell.Value

'If	there	is	no	error,	that	is,	if	the	value	does	not

'already	exist	in	the	Collection,	add	the	item	to	the	ComboBox.

If	Err.Number	=	0	Then	.AddItem	cell.Value

End	If

'Loop	to	the	next	cell.

Next	cell

'Close	the	With	structure	for	the	ComboBox.

End	With

End	Sub

NOTE	If	you	want	the	first	item	in	the	ComboBox's	list	to	be	visible	when	the
UserForm	is	called,	add	this	line	before	the	End	Sub	line:

ComboBox1.ListIndex	=	0

To	expand	a	bit	on	the	possible	usefulness	of	listing	unique	items	in	a	ComboBox,	see	the
example	in	Figure	23.6,	where	two	Label	controls	were	added	(named	Label2	and	Label3)
to	the	right	of	the	ComboBox.	When	the	ComboBox	value	is	changed	with	the	following
code,	Label2's	caption	reflects	the	value	item,	and	Label3's	caption	sums	the	items	sold	in
column	B	for	the	item	that	was	selected	in	the	ComboBox.

Private	Sub	ComboBox1_Change()

Label2.Caption	=	_

"Total	"	&	ComboBox1.Value	&	"	Sold:"

Label3.Caption	=	_

WorksheetFunction.SumIf(Columns(1),	ComboBox1.Value,	Columns(2))

End	Sub

Figure	23.6

Displaying	a	Real-Time	Chart	in	a	UserForm
Earlier	in	this	lesson	you	saw	how	to	load	a	picture	into	an	Image	control.	You	can	also
create	a	temporary	graphic	file	on	the	fly,	load	that	file	into	a	UserForm's	Image	control,
and	delete	the	temporary	graphic	file,	all	with	the	user	being	none	the	wiser.

Figure	23.7	shows	a	list	of	cities,	ranked	by	their	approximate	population.	Elsewhere	in
the	workbook	is	a	chart	sheet	named	Chart1	with	a	bar	chart	of	this	city	population	data.
You	can	represent	the	Chart1	sheet's	chart	in	real	time	by	exporting	its	image	as	a	.gif	file
and	loading	it	onto	an	Image	control	when	the	UserForm	is	called.	Figure	23.7	shows	the
result	and	following	that	is	the	Initialize	event	code	that	handles	this	task.

Private	Sub	UserForm_Initialize()

ActiveWorkbook.Charts("Chart1").Export	"CityPopulation.gif"

Image1.Picture	=	LoadPicture("CityPopulation.gif")

Image1.PictureSizeMode	=	fmPictureSizeModeZoom

Kill	"CityPopulation.gif"

End	Sub	

NOTE	You	can	print	a	UserForm,	even	if	it	is	not	open,	with	the	following	line:

UserForm1.PrintForm

Figure	23.7

Try	It
For	this	lesson,	you	design	a	UserForm	to	have	the	basic	functionality	of	a	web	browser,
including	the	ability	to	navigate	to	the	websites	of	your	choice,	go	backward	and	forward
to	websites,	and	set	the	initial	website	when	the	UserForm	is	initialized.

Lesson	Requirements
To	get	the	workbook,	you	can	download	Lesson	23	from	the	book's	website	at
www.wrox.com/go/excelvba24hour.

Step-by-Step
1.	 Open	a	new	workbook	and	press	Alt+F11	to	get	into	the	Visual	Basic	Editor.

2.	 If	the	Project	Explorer	window	is	not	visible,	press	Ctrl+R,	and	if	the	Properties
window	is	not	visible,	press	the	F4	key.

3.	 In	the	Project	Explorer	window,	select	your	workbook	name,	and	from	the	menu	bar
click	Insert UserForm.

4.	 In	the	Properties	window	for	that	UserForm,	accept	the	default	Name	property	of
UserForm1,	set	the	Height	property	to	540	and	the	Width	property	to	852.

5.	 Click	the	Toolbox	icon,	or	from	the	menu	bar	click	View Toolbox.

6.	 Draw	a	TextBox	near	the	upper-left	corner	of	the	UserForm.	Accept	the	default	Name
property	of	TextBox1,	set	its	Height	property	to	24,	and	its	Width	property	to	252.

7.	 Draw	four	CommandButtons	along	the	top	of	the	UserForm	to	the	right	of	the
TextBox.	Each	CommandButton	should	be	the	same	size,	with	its	Height	property	set
at	24	and	its	Width	property	set	at	120.

8.	 Name	the	first	CommandButton	cmdNavigate	and	label	its	Caption	property	as
Navigate.	Set	its	Default	property	to	True.

9.	 Name	the	second	CommandButton	cmdBack	and	label	its	Caption	property	as	Back.

10.	 Name	the	third	CommandButton	cmdForward	and	label	its	Caption	property	as
Forward.

11.	 Name	the	fourth	CommandButton	cmdExit	and	label	its	Caption	property	as	Exit.

12.	 The	final	control	is	a	WebBrowser,	and	chances	are	its	icon	is	not	on	your	Toolbox's
Cover	tab.	If	that's	the	case,	right-click	the	Cover	tab	and	select	Additional	Controls	as
shown	in	Figure	23.8.

13.	 Scroll	down	the	list	of	available	controls	and	select	Microsoft	Web	Browser	as	shown
in	Figure	23.9.	Click	OK	to	place	the	WebBrowser	icon	on	your	Toolbox's	Cover	tab
as	shown	in	the	lower-left	corner	of	Figure	23.10.

14.	 Click	to	select	the	WebBrowser	icon	on	the	Toolbox	just	as	you	would	with	any
control,	and	draw	a	WebBrowser	control	onto	the	open	area	of	the	UserForm.	Accept
the	default	Name	property	of	WebBrowser1,	and	then	set	its	Height	property	to	450	and

http://www.wrox.com/go/excelvba24hour

its	Width	property	to	816.	This	completes	the	design	of	the	UserForm,	which	in	the
VBE	looks	like	Figure	23.11.

15.	 The	code	associated	with	this	UserForm	is	surprisingly	simple.	Double-click	the
UserForm	to	access	its	module.	In	the	Object	drop-down	list,	select	UserForm	and	in
the	Procedure	drop-down	list	select	Initialize.	The	Initialize	event	is	a	single	line	of
code	that	tells	the	WebBrowser	which	website	to	navigate	to	when	the	UserForm
initializes,	similar	to	the	homepage	setting	on	your	web	browser.	In	this	example,	I
entered	the	website	for	Microsoft,	at	www.microsoft.com.	Here	is	the	entire
Initialize	event	with	that	navigation	command:

Private	Sub	UserForm_Initialize()

WebBrowser1.Navigate	"http://www.microsoft.com"

End	Sub

16.	 You	have	an	Exit	button	named	cmdExit,	so	use	the	Unload	Me	command	for	that:

Private	Sub	cmdExit_Click()

Unload	Me

End	Sub

17.	 Regarding	the	CommandButton	for	navigation,	the	process	starts	by	the	user	entering	a
website	address	in	the	TextBox.	The	user	can	then	either	click	the	cmdNavigate
button,	or	press	the	Enter	key	because	you	set	the	Default	property	to	True	for	the
cmdNavigate	button	in	Step	8.	Thinking	ahead	for	more	convenience,	you	can
structure	the	cmdNavigate's	Click	event	to	assume	that	all	web	addresses	start	with
“http://www.”	which	saves	the	user	time	and	effort	by	just	entering	the	web	address's
domain	name.	For	example,	instead	of	entering	http://www.somwhere.com	in	the
TextBox,	a	user	need	only	enter	somewhere.com	with	this	code	for	the	cmdNavigate
button:

Private	Sub	cmdNavigate_Click()

WebBrowser1.Navigate	"http://www."	&	TextBox1.Text

End	Sub

18.	 All	that's	left	are	the	two	buttons	for	Back	and	Forward,	easily	handled	with	the
WebBrowser	control's	GoBack	and	GoForward	methods.	For	both	methods,	On	Error
Resume	Next	is	utilized	to	avoid	a	possible	runtime	error	if	the	browsing	session	is	at
its	starting	or	ending	point	when	the	cmdBack	or	cmdForward	button	is	clicked.	Here	is
the	code	for	the	Back	CommandButton:

Private	Sub	cmdBack_Click()

On	Error	Resume	Next

WebBrowser1.GoBack

Err.Clear

End	Sub

Here	is	the	code	for	the	Forward	CommandButton:

Private	Sub	cmdForward_Click()

On	Error	Resume	Next

WebBrowser1.GoForward

Err.Clear

http://www.microsoft.com
http://www.somwhere.com

End	Sub

19.	 When	you	call	the	UserForm,	Figure	23.12	shows	an	example	that	is	similar	to	what
you	see.

Figure	23.8

Figure	23.9

Figure	23.10

Figure	23.11

Figure	23.12

REFERENCE	Please	select	the	video	for	Lesson	23	online	at
www.wrox.com/go/excelvba24hour.	You	will	also	be	able	to	download	the	code	and
resources	for	this	lesson	from	the	website.

http://www.wrox.com/go/excelvba24hour

Lesson	24
Class	Modules
Class	modules—the	very	name	has	caused	many	a	burgeoning	Excel	VBA	programmer	to
turn	toward	other	areas	of	VBA	study.	For	some	reason,	the	use	of	class	modules	is	not	a
skill	held	by	many	otherwise	knowledgeable	VBA	programmers,	despite	the	power	and
flexibility	class	modules	can	provide	to	your	workbook	projects.

Class	modules	are	not	rocket	science,	but	they	are	a	different	kind	of	VBA	animal	that
takes	some	extra	attention	to	grasp.	I	want	to	express	three	objectives	in	this	lesson:

Explain	what	classes	and	class	modules	are.

Describe	what	class	modules	can	do	for	you.

Provide	examples	of	class	modules	applied	to	UserForm	and	embedded	worksheet
controls.

Here	is	an	opportunity	for	you	to	set	yourself	apart	from	the	VBA	crowd	and	learn	a
valuable	skill	that	has	actually	been	available	in	Excel	since	Office	97.	Though	you	won't
need	class	modules	for	most	of	your	projects,	this	lesson	helps	you	recognize	when	the
time	is	right	to	use	class	modules,	and	most	importantly,	how	to	program	them.

What	Is	a	Class?
A	class	is	the	formalized	definition	of	an	object	that	you	create.	Your	first	reaction	might
be	to	wonder	why	you'd	ever	need	to	create	yet	another	object	in	Excel,	which	seemingly
has	no	shortage	of	objects.	Actually,	you	normally	don't	need	to,	but	there	will	be	times
when	your	workbook	will	be	better	off	if	you	do.

A	new	class	(as	in	classification)	is	like	a	blueprint	for	your	created	object	and	its
properties,	methods,	and	events.	In	Lesson	19	you	learned	about	user-defined	functions;
where	class	modules	are	concerned,	you	can	think	of	a	class	as	a	user-defined	model	for
an	object	that	you	create.	You	see	examples	later	in	the	lesson	that	help	clarify	the	theory.

NOTE	It's	easy	to	get	lost	on	any	new	topic	if	the	emphasis	on	learning	it	is	based	on
definitions	and	theory.	That	is	why	most	of	this	lesson	relies	on	real-world	examples
to	show	what	class	modules	are	all	about.	Though	kept	to	a	minimum,	the	definitions
and	theory	in	this	lesson	are	useful	for	you	to	gain	a	perspective	on	class	modules.	If
you	don't	fully	comprehend	all	definitions	the	first	time	around,	don't	worry—the	VBA
examples	will	be	your	biggest	ally	in	helping	you	understand	the	process	of
developing	class	modules.

What	Is	a	Class	Module?
A	class	module	is	a	special	module	in	the	Visual	Basic	Editor	whose	purpose	is	to	hold
VBA	code	that	defines	classes.	A	class	module	looks	like	any	other	kind	of	module	you
have	seen,	and	in	its	own	way	acts	like	one,	too.	For	example,	whereas	the	code	for
worksheet	event	procedures	goes	into	worksheet	modules,	the	code	for	creating	and
defining	classes	goes	into	class	modules.

You	create	a	class	module	in	the	VBE	by	choosing	Insert Class	Module	from	the	menu
bar	as	shown	in	Figure	24.1.	A	class	module	is	created	with	the	default	name	of	Class1	as
shown	in	Figure	24.2.

Figure	24.1

Figure	24.2

NOTE	There	is	a	one-to-one	relationship	between	a	class	and	a	class	module.	A	class
module	provides	for	only	one	class	to	be	defined.	If	you	need	to	define	three	classes	in
your	workbook,	you	need	three	class	modules,	one	for	each	class.	For	example,
suppose	you	have	several	CheckBox	controls	on	your	UserForm,	and	you	want	to
color	the	CheckBoxes	green	when	they	are	checked	and	red	when	they	are	unchecked.
Instead	of	coding	this	functionality	for	every	CheckBox's	Click	event,	you	can	use	a
class	module	that	groups	all	the	CheckBoxes	as	a	single	collection	object.	That	way,
all	CheckBoxes	respond	to	the	same	Click	event,	with	one	VBA	class	procedure.	If
you	also	want	some	(or	all)	of	the	CommandButtons	on	a	UserForm	in	that	same
workbook	to	respond	to,	say,	a	MouseMove	event,	you'd	create	another	class	module
for	that.

Creating	Your	Own	Objects
I	started	this	lesson	saying	that	many	VBA	programmers	have	avoided	the	topic	of	class
modules,	and	it	wouldn't	surprise	me	if	a	primary	culprit	is	VBA's	intentionally	vague
concept	of	class	objects.	Seeing	actual	VBA	examples	of	class	modules	in	everyday
situations	is	the	best	way	to	pick	up	the	concept	of	class	objects.

Here's	the	theoretical	synopsis:	A	class	is	defined	in	a	class	module,	and	you	can	think	of	a
class	as	a	blueprint	or	template	for	an	object.	In	the	context	of	class	modules,	the	term
object	can	be	almost	any	object	in	Excel	whose	functionality	you	want	to	expand.	This
concept	becomes	clearer	with	VBA	examples	in	this	lesson	that	deal	with	controls	that	are
embedded	in	a	worksheet	or	are	placed	onto	UserForms.	You	can	have	those	controls	all
respond	to	one	single	event,	instead	of	needing	to	write	numerous	redundant	procedures
for	each	control.

A	class	module	only	serves	the	purpose	of	holding	the	code	that	defines	(but	does	not
create)	a	class	object.	In	some	other	module	that	is	not	a	class	module,	such	as	a	UserForm
module	or	workbook	module	(depending	on	the	task	you	are	solving),	you	can	declare	a
variable	of	the	class	type	and	create	an	instance	of	that	class	(known	as	instantiating	the
class)	with	the	New	keyword.	Upon	instantiation,	your	declared	variable	becomes	an	object
whose	events,	properties,	and	methods	are	defined	by	your	code	in	the	class	module.

An	Important	Benefit	of	Class	Modules
Suppose	you	have	a	UserForm	with	12	TextBoxes,	into	which	a	dollar	figure	for	budgeted
expenses	is	to	be	entered	for	each	month	of	the	year,	as	in	the	example	shown	in	Figure
24.3.

Figure	24.3

It's	important	that	only	numbers	are	entered,	so	you	want	to	validate	every	TextBox	entry
to	be	numeric,	while	disallowing	entry	of	an	alphabetic	letter,	symbol,	or	any	character
other	than	a	number.	The	following	example	can	handle	that	for	TextBox1	in	the
UserForm	module:

Private	Sub	TextBox1_KeyPress(ByVal	KeyAscii	As	MSForms.ReturnInteger)

Select	Case	KeyAscii

Case	48	To	57	'numbers	0-9

Case	Else

KeyAscii	=	0

MsgBox	"You	made	a	non-numeric	entry.",	vbCritical,	"Numbers	only	please."

End	Select

End	Sub

You	can	maybe	get	away	with	the	redundancy	of	writing	12	separate	events	to	monitor	the
entries	in	each	TextBox.	But	what	happens	if	your	project	requires	100	TextBoxes,	or	if
the	numeric	validation	process	expands	to	allow	decimals	or	negative	numbers?	You'd
have	to	do	a	lot	of	updates	for	each	TextBox,	and	the	volume	of	redundant	code	creates	a

bad	design	that's	destined	for	human	error	and	runtime	failure.

If	you	insert	a	class	module	instead,	you	can	define	an	object	that	would	be	a	group	of	12
TextBoxes.	You	can	name	your	group	object	TxtGroup	and	indicate	that	the	objects	in	that
group	are	TextBoxes.	There	is	nothing	special	about	the	name	TxtGroup.	I	chose	it	because
the	idea	is	to	group	TextBoxes,	but	whatever	object	name	makes	sense	to	you	works	just
as	well.

The	following	VBA	declaration	statement	is	a	common	example	that	is	placed	at	the	top	of
your	class	module.	It	defines	the	class	object	and	includes	the	WithEvents	keyword,
which	exposes	the	events	associated	with	TextBoxes:

Public	WithEvents	TxtGroup	As	MSForms.TextBox

Now	that	you	have	established	the	TxtGroup	object	as	a	group	of	TextBoxes,	you	can
invoke	it	to	handle	the	same	KeyPress	event	that	you	might	have	written	individually	for
all	12	TextBoxes.	As	shown	in	the	following	code,	you	now	make	the	TxtGroup	object
recognize	the	KeyPress	event	triggered	by	keyboard	data	entry	upon	any	one	of	its	12
TextBoxes.	The	code	to	handle	an	event	for	all	12	TextBoxes	is	the	same	for	TxtGroup	as
it	is	for	TextBox1,	except	for	the	name	of	the	object:

Private	Sub	TxtGroup_KeyPress(ByVal	KeyAscii	As	MSForms.ReturnInteger)

Select	Case	KeyAscii

Case	48	To	57	'numbers	0-9

Case	Else

KeyAscii	=	0

MsgBox	"You	made	a	non-numeric	entry.",	vbCritical,	"Numbers	only	please."

End	Select

End	Sub

Keep	in	mind	that,	so	far,	all	you	have	done	is	define	the	object,	but	it	still	exists	only	as	a
concept.	The	next	step	is	to	create	your	defined	object	(formally	known	as	instantiating	it)
to	make	it	a	working	object	that	responds	to	events,	and	becomes	associated	with	methods
and	properties.	At	this	moment,	with	the	UserForm	created	and	the	class	module	selected
with	the	preceding	code	in	it,	your	work	in	the	class	module	is	complete.	Your	VBE
window	should	look	similar	to	Figure	24.4.

Figure	24.4

The	final	step	is	to	go	into	the	UserForm	module	and	instantiate	the	TxtGroup	object	that
is	a	group	of	12	TextBoxes.	At	the	top	of	the	UserForm	module,	declare	a	variable	for	12
TextBoxes	to	instantiate	the	TxtGroup	class	object,	with	the	New	keyword	for	the	Class1
module	name:

Dim	txtBoxes(1	To	12)	As	New	Class1

Using	the	Initialize	event,	declare	an	Integer	type	variable	that	assists	in	looping
through	the	12	TextBoxes.	Set	each	TextBox	as	a	member	of	the	TxtGroup	class:

Private	Sub	UserForm_Initialize()

Dim	intCounterTextBox	As	Integer

For	intCounterTextBox	=	1	To	12

Set	txtBoxes(intCounterTextBox).TxtGroup	=	_

Controls("TextBox"	&	intCounterTextBox)

Next	intCounterTextBox

End	Sub

Your	entire	coding	process	relating	to	the	class	module	is	complete,	and	it	is	quite	a	bit
shorter	than	all	the	code	you'd	have	amassed	if	you	coded	the	KeyPress	event	for	every
TextBox!	If	you	were	to	open	the	UserForm	and	attempt	a	non-numeric	character	in	any	of
the	12	TextBoxes,	that	character	would	be	disallowed	and	the	message	box	would	appear,
looking	like	Figure	24.5.

Figure	24.5

Creating	Collections
In	the	preceding	example,	you	created	a	class	for	12	TextBoxes.	You	knew	ahead	of	time
the	number	of	TextBoxes	was	12	because	there	was	a	TextBox	for	each	of	the	12	calendar
months.	The	question	becomes,	what	do	you	do	if	the	count	of	inclusive	TextBoxes	is	not
known?	What	if	your	project	is	so	wide	in	scope	that	TextBoxes	are	being	frequently
added	and	subtracted	from	the	UserForm,	and	you	don't	want	to	keep	modifying	the	code
with	every	change	in	TextBox	count?

The	answer	is	to	create	a	collection	of	TextBoxes	by	looping	through	all	the	controls	in	the
UserForm.	Then,	when	a	TextBox	is	encountered	in	the	loop,	it	is	automatically	added	to
the	collection,	which	is	then	transferred	to	the	class	object.	Assuming	the	event	code	you
placed	in	the	class	module	has	not	changed,	all	you	need	to	adjust	is	the	code	in	the
UserForm	module	using	the	previous	example.	The	first	item	of	business	is	to	prepare	a
declaration	statement	at	the	top	of	the	module	that	does	not	specify	a	count	of	TextBox
names,	such	as	the	following	example:

Dim	TxtGroup()	As	New	Class1

Next,	the	following	code	in	the	UserForm's	Initialize	event	wraps	up	all	the	TextBoxes
into	one	array	package	using	the	ReDim	Preserve	keywords.	This	method	does	not	depend
on	how	many	TextBoxes	are	present	on	the	UserForm	it	simply	collects	all	the	ones	into
the	TxtGroup	object	that	it	finds:

Private	Sub	UserForm_Initialize()

Dim	intCounterTextBox	As	Integer,	ctl	As	Control

intCounterTextBox	=	0

For	Each	ctl	In	Controls

If	TypeName(ctl)	=	"TextBox"	Then

intCounterTextBox	=	intCounterTextBox	+	1

ReDim	Preserve	TxtGroup(1	To	intCounterTextBox)

Set	TxtGroup(intCounterTextBox).TxtGroup	=	ctl

End	If

Next	ctl

End	Sub

Class	Modules	for	Embedded	Objects
So	far,	UserForms	have	been	the	backdrop	for	objects	in	a	class	module.	You	can	also
create	a	class	of	objects	embedded	on	worksheets,	such	as	charts,	pivot	tables,	and
ActiveX	controls.	In	the	case	of	ActiveX	controls,	it's	worth	mentioning	a	syntax
difference	when	referring	to	them.

Suppose	you	have	an	unknown	number	of	CommandButtons	on	Sheet1	and	you	want	to
create	a	class	module	to	determine	which	button	was	clicked,	without	having	to	program
every	CommandButton's	Click	event.	This	example	of	code	in	a	class	module	named
Class1	demonstrates	how	to	extract	the	name,	caption,	and	address	of	the	cell	being
touched	by	the	top-left	corner	of	the	CommandButton	object.	Figure	24.6	shows	the
message	box	that	appears	when	you	click	one	of	the	CommandButtons.

Figure	24.6

Public	WithEvents	cmdButtonGroup	As	CommandButton

Private	Sub	cmdButtonGroup_Click()

MsgBox	_

"Hello,	my	name	is	''"	&	_

cmdButtonGroup.Name	&	"''."	&	vbCrLf	&	_

"My	caption	is	''"	&	_

cmdButtonGroup.Caption	&	"''."	&	vbCrLf	&	_

"My	top	left	corner	is	set	in	cell	"	&	_

cmdButtonGroup.TopLeftCell.Address(0,	0)	&	".",	_

64,	"You	just	clicked	me,	here's	my	info	:"

End	Sub

You	can	also	tap	into	other	events	in	the	same	class	module.	All	that's	required	is	that	you
use	the	same	class	object	(cmdButtonGroup	in	this	example),	and	that	the	event	is
supported	by	the	object.	With	CommandButtons,	the	MouseOver	event	can	help	you
identify	which	button	you	are	hovering	your	mouse	over	by	shading	it	orange,	while	all
other	CommandButtons	on	the	sheet	are	colored	gray.

NOTE	I	used	hex	codes	in	this	example	for	the	buttons'	BackColor	property,	to	show
how	you'd	use	hex	in	code	to	refer	to	colors.	These	hex	values	are	always	shown	in
the	Properties	window	of	ActiveX	controls	for	BackColor	and	ForeColor	properties,
and	I	personally	find	them	very	reliable	in	VBA	code	with	any	version	of	Excel.

Private	Sub	cmdButtonGroup_MouseMove(ByVal	Button	As	Integer,	_

ByVal	Shift	As	Integer,	ByVal	X	As	Single,	ByVal	Y	As	Single)

Dim	myBtn	As	Object

For	Each	myBtn	In	ActiveSheet.OLEObjects

If	TypeName(myBtn.Object)	=	"CommandButton"	Then	_

myBtn.Object.BackColor	=	&HC0C0C0	'turn	all	to	gray

Next	myBtn

cmdButtonGroup.BackColor	=	&H80FF&	'orange

End	Sub

NOTE	As	you	can	probably	tell,	despite	the	appearance	of	differently	shaped
CommandButtons	with	comical	captions,	the	larger	point	of	this	example	is	that	you
can	capture	various	properties	of	class	objects,	assign	them	to	a	variable,	and	utilize
that	variable	information	in	other	macros,	or	even	as	part	of	the	class	module's	event
code.	For	example,	in	real	practice,	you	don't	need	or	want	a	message	box	to	pop	up
and	tell	you	which	button	you	just	clicked;	you	already	know	that.	If,	for	example,
your	project	is	such	that	the	CommandButtons'	captions	have	a	word	or	phrase	to	be
used	as	a	criterion	for	automatically	filtering	a	table	of	data,	this	application	of
flexible	class	module	coding	will	save	you	a	lot	of	work.

For	embedded	ActiveX	controls,	you	can	instantiate	the	collection	of	OLE	objects,	in	this
example	for	CommandButtons,	with	the	following	code	that	goes	into	the	ThisWorkbook
module.	Be	sure	to	place	this	example	declaration	statement	at	the	top	of	the
ThisWorkbook	module:

Dim	cmdButtonHandler()	As	New	Class1

Finally,	utilize	the	Open	event	to	collect	the	CommandButtons	that	are	only	on	Sheet1.
Notice	the	references	to	the	OLEObject	and	OLEObjects	keywords	when	dealing	with
embedded	ActiveX	controls:

Private	Sub	Workbook_Open()

Dim	cmdButtonQuantity	As	Integer,	MYcmdButton	As	OLEObject

cmdButtonQuantity	=	0

With	ThisWorkbook

For	Each	MYcmdButton	In	.Worksheets("Sheet1").OLEObjects

If	TypeName(MYcmdButton.Object)	=	"CommandButton"	Then

cmdButtonQuantity	=	cmdButtonQuantity	+	1

ReDim	Preserve	cmdButtonHandler(1	To	cmdButtonQuantity)

Set	cmdButtonHandler(cmdButtonQuantity).cmdButtonGroup	_

=	MYcmdButton.Object

End	If

Next	MYcmdButton

End	With

End	Sub

Not	all	controls	recognize	the	same	event	types,	though,	so	you'd	need	to	set	a	class	event
that	the	object	type	can	recognize.

There	is	another	technique	using	the	Collection	keyword	for	grouping	the	same	types	of
objects	into	a	class.	In	this	example,	Sheet1	has	a	number	of	embedded	CheckBox
controls,	and	you	want	to	write	one	small	piece	of	VBA	code	that	applies	to	all
CheckBoxes.

The	visual	effect	you	want	is	for	any	CheckBox	on	Sheet1	to	be	shaded	black	if	it	is
checked,	and	white	if	it	is	unchecked.	Figure	24.7	shows	the	differences	in	color	shading
depending	on	the	status	of	the	CheckBoxes.

Figure	24.7

The	code	to	do	this	is	surprisingly	minimal.	Insert	a	new	class	module,	and	assuming	it	is
named	Class2	because	you	already	have	a	Class1	module	established,	this	code	goes	into
the	Class2	module:

Public	WithEvents	grpCBX	As	MSForms.CheckBox

Private	Sub	grpCBX_Click()

With	grpCBX

If	.Value	=	True	Then

.BackColor	=	&H0&	'Black	background

.ForeColor	=	&HFFFFFF	'White	font

Else

.BackColor	=	&HFFFFFF	'White	background

.ForeColor	=	&H0&	'Black	font

End	If

End	With

End	Sub

The	rest	of	the	code	goes	into	the	ThisWorkbook	module.	It	instantiates	the	grpCBX	object
and	is	refreshed	each	time	the	workbook	opens	by	utilizing	the	Workbook_Open	event:

Public	myControls	As	Collection

Private	Sub	Workbook_Open()

Dim	oleCtl	As	OLEObject,	ctl	As	Class2

Set	myControls	=	New	Collection

For	Each	oleCtl	In	Worksheets("Sheet1").OLEObjects

If	TypeOf	oleCtl.Object	Is	MSForms.CheckBox	Then

Set	ctl	=	New	Class1

Set	ctl.grpCBX	=	oleCtl.Object

myControls.Add	ctl

End	If

Next

End	Sub

Try	It
For	this	lesson,	you	create	a	class	module	to	handle	the	Click	event	of	some	of	the
OptionButtons	on	a	UserForm.	You	design	a	simple	UserForm	with	eight	OptionButtons,
of	which	only	five	are	a	part	of	the	class	module	that	identifies	by	name	which
OptionButton	and	caption	was	clicked.

Lesson	Requirements
To	get	the	sample	workbook,	you	can	download	Lesson	24	from	the	book's	website	at
www.wrox.com/go/excelvba24hour.

Step-by-Step
1.	 Open	a	new	workbook.

2.	 Press	Alt+F11	to	get	into	the	Visual	Basic	Editor.

3.	 From	the	menu	bar,	click	Insert UserForm,	and	size	the	UserForm	to	a	Height	of	200
and	a	Width	of	400.

4.	 Draw	a	Label	control	near	the	top-left	corner	of	your	UserForm,	and	caption	it	as
OptionButtons	In	Class	Module.

5.	 Draw	a	Label	control	near	the	top-right	corner	of	your	UserForm	and	caption	it	as
Other	OptionButtons.	Figure	24.8	shows	how	your	UserForm	should	look	so	far.

6.	 Under	the	first	Label	control,	draw	a	vertical	column	of	five	OptionButtons.	A	fast
way	to	do	this	is	to	draw	one	OptionButton	and	then	copy	and	paste	it	four	times.
Change	the	captions	of	those	five	OptionButtons	to	Apples,	Bananas,	Peaches,
Grapes,	and	Oranges,	as	shown	in	Figure	24.9.

7.	 Paste	three	more	OptionButtons	below	the	second	Label	control.	Change	the	captions
of	those	three	OptionButtons	to	Plums,	Pears,	and	Tangerines.	You	now	have	eight
OptionButtons	on	your	UserForm,	all	with	different	captions	that	are	the	names	of
fruits.	The	actual	VBA	names	of	the	eight	OptionButtons	have	not	changed;	they	all
are	still	named	by	default	as	OptionButton1,	OptionButton2,	and	so	on,	to
OptionButton8.	For	example,	if	you	were	to	select	the	OptionButton	that	is	captioned
Oranges,	you	would	see	in	its	Properties	window	that	it	is	named	OptionButton5.
Figure	24.10	shows	how	your	UserForm	looks	at	this	point.

8.	 Draw	a	CommandButton	in	the	lower-right	corner	of	the	UserForm.	Name	it	cmdExit
and	caption	it	as	Exit.

9.	 Double-click	the	cmdExit	button,	which	takes	you	into	the	UserForm's	module,	with
the	cmdExit	button's	Click	event	ready	for	your	code.	Type	Unload	Me,	and	your
UserForm	module	in	the	VBE	looks	like	Figure	24.11.

10.	 Insert	a	class	module.	From	the	menu	bar,	click	Insert Class	Module	and	accept	the
default	name	of	Class1.	Your	cursor	is	blinking	in	the	Class1	module's	Code	window.

11.	 The	purpose	of	this	particular	class	module	is	to	capture	an	event	that	is	associated
with	OptionButton	controls.	At	the	top	of	the	Class1	module,	publicly	declare	a

http://www.wrox.com/go/excelvba24hour

variable	that	refers	to	the	group	of	OptionButtons	you	will	involve	in	the	class	module
code.	In	that	same	statement,	expose	the	events	associated	with	OptionButtons	using
the	WithEvents	keyword.	The	following	statement	accomplishes	this	task:

Public	WithEvents	OptGroup	As	msforms.OptionButton

NOTE	There	is	nothing	special	about	the	OptGroup	variable	name;	you	can	give
your	class	module	variable	whatever	name	makes	sense	to	you.	What	makes	sense
to	me	is	that	I	am	grouping	some	OptionButton	controls	for	a	demonstration,	so
OptGroup	is	an	intuitive	name.

12.	 To	demonstrate	the	point	of	this	lesson,	you	can	use	the	Click	event	for	your	OptGroup
class.	A	message	box	displays	the	name	and	caption	of	the	OptionButton	that	was
clicked	if	that	OptionButton	is	included	in	the	class.	Figure	24.12	shows	how	the	VBE
looks	after	inputting	the	following	class	module	code.

Private	Sub	OptGroup_Click()

MsgBox	"Hello,	my	name	is	"	&	OptGroup.Name	&	"."	&	vbCrLf	&	_

"My	caption	is	"	&	OptGroup.Caption	&	".",	vbInformation,	_

"You	just	clicked	me,	here	is	my	info:"

End	Sub

NOTE	If	this	were	an	actual	workbook	project,	you	would	not	need	a	message
box	to	tell	you	which	OptionButton	was	just	clicked.	More	realistically,	you	might
assign	a	String	type	variable	to	the	selected	OptGroup.Caption	if	that	caption
string	is	needed	as	part	of	an	operation	elsewhere	in	your	project.

13.	 Return	to	the	UserForm	module.	At	the	top	of	the	module,	identify	which
OptionButtons	you	want	to	be	grouped	into	the	OptGroup	class.	For	this	example,	the
first	five	OptionButtons	are	grouped,	so	create	an	instance	of	the	OptGroup	class	with
the	New	keyword	for	the	Class1	module	name:

Dim	optButtons(1	To	5)	As	New	Class1

14.	 The	UserForm's	Initialize	event	is	a	good	opportunity	to	do	the	actual	grouping	of
the	five	OptionButtons.	From	the	Object	drop-down	list	select	UserForm,	and	in	the
Procedure	drop-down	list	select	Initialize.	VBA	enters	the	UserForm_Initialize	and
End	Sub	statements	with	an	empty	space	between	the	two	lines,	as	follows:

Private	Sub	UserForm_Initialize()

End	Sub

15.	 Declare	an	Integer	type	variable	that	helps	loop	through	the	five	OptionButtons	that
become	a	part	of	the	class	module:

Dim	intCounterOptionButton	As	Integer

16.	 Open	a	For	Next	loop	to	loop	through	the	five	OptionButtons:

For	intCounterOptionButton	=	1	To	5

17.	 Set	each	of	the	five	OptionButtons	as	members	of	the	OptGroup	class:

Set	optButtons(intCounterOptionButton).OptGroup	=	_

Controls("OptionButton"	&	intCounterOptionButton)

18.	 Continue	and	close	the	For	Next	loop	with	the	Next	statement:

Next	intCounterOptionButton

19.	 All	of	your	coding	is	complete.	The	entire	UserForm	module	contains	the	following
VBA	code:

Option	Explicit

Dim	optButtons(1	To	5)	As	New	Class1

Private	Sub	UserForm_Initialize()

Dim	intCounterOptionButton	As	Integer

For	intCounterOptionButton	=	1	To	5

Set	optButtons(intCounterOptionButton).OptGroup	=	_

Controls("OptionButton"	&	intCounterOptionButton)

Next	intCounterOptionButton

End	Sub

Private	Sub	cmdExit_Click()

Unload	Me

End	Sub

20.	 Test	your	class	module	by	showing	the	UserForm.	Press	Ctrl+G	to	open	the	Immediate
window,	type	the	statement	UserForm1.Show,	and	then	press	Enter.

21.	 Click	any	of	the	five	OptionButtons	on	the	left	to	display	the	message	box	that
identifies	the	name	and	caption	of	the	OptionButton	you	click.	In	Figure	24.13	I
clicked	OptionButton4,	which	has	the	caption	Grapes.	The	OptionButtons	on	the	right
side	of	the	UserForm	are	not	included	in	the	class,	and	if	clicked	do	not	invoke	a
message	box.

Figure	24.8

Figure	24.9

Figure	24.10

Figure	24.11

Figure	24.12

Figure	24.13

REFERENCE	Please	select	the	video	for	Lesson	24	online	at
www.wrox.com/go/excelvba24hour.	You	will	also	be	able	to	download	the	code	and
resources	for	this	lesson	from	the	website.

http://www.wrox.com/go/excelvba24hour

Lesson	25
Add-Ins
Add-ins	are	a	useful	feature	in	Excel,	considered	by	many	Excel	developers	to	be	an
indispensable	tool	when	distributing	their	custom	projects	to	a	wider	audience.	Anyone
can	create	an	add-in—it's	the	kind	of	thing	that's	easy	to	do	once	you	know	how.	This
lesson	discusses	the	concept	of	add-ins	and	how	to	incorporate	them	into	your	Excel
projects.

NOTE	This	lesson	discusses	standard	Excel	add-ins.	Two	other	types	of	add-ins	exist
that	are	not	developed	with	VBA	and	are	not	discussed	in	this	lesson.	One	of	the	other
types	is	called	COM	add-ins,	developed	with	languages	such	as	Visual	Basic,	C++,
and	J++	that	support	component	object	model	components.	The	other	type	is	DLL
add-ins,	which	are	Windows	files	known	as	Dynamic	Link	Library	files.

What	Is	an	Excel	Add-In?
An	Excel	add-in	is	a	special	type	of	Excel	workbook	that	has	been	converted	to	an	add-in
file.	There	is	no	magic	to	the	add-in	conversion	process,	but	after	you	create	an	add-in	file,
you'll	notice	its	unique	characteristics:

The	file	extension	is	.xla	for	Excel	versions	prior	to	2007,	and	.xlam	for	Excel
versions	2007	through	2013.

are	always	hidden;	you	do	not	open	and	view	them	as	you	would	an	Excel	workbook.

You	cannot	show	sheets	of	any	kind	belonging	to	the	add-in	file.

The	add-in	file	is	not	recognized	as	an	open	workbook	in	the	Workbooks	collection.

WHY	CREATE	AN	EXCEL	ADD-IN?
Add-ins	commonly	use	VBA	macros,	event	procedures,	user-defined	functions,	and
UserForms	to	make	everyday	tasks	faster	and	easier	to	accomplish.	Many	Excel	users
don't	find	the	need	to	create	an	add-in,	but	here	are	some	reasons	why	you	might	want
to:

Add-in	files	are	hidden	and	therefore	provide	seamless	integration	to	open	Excel
workbooks.	Novice	Excel	users	don't	need	to	worry	about	opening	an	add-in	after
it's	been	loaded,	and	they	won't	wonder	about	an	extra	open	Excel	file	because
add-ins	cannot	be	seen	or	unhidden.

Even	if	the	macro	security	is	set	to	its	most	restrictive	level,	the	VBA
programming	for	an	installed	add-in	can	still	run.

Add-ins	open	automatically	when	Excel	starts.

The	custom	feature(s)	contained	within	the	add-in	file	are	usually	available	to	any
of	the	open	workbooks.

The	programming	code	is	contained	in	the	add-in	file	itself,	and	does	not	travel
with	the	workbooks	that	use	it.	This	gives	you	more	control	over	how	the	file	is
distributed	and	who	can	access	its	code.

Add	ins-really	shine	in	their	ability	to	perform	actions	on	several	objects,	such	as
cells	or	sheets,	that	if	done	manually	would	be	cumbersome,	time-consuming,	and
require	some	knowledge	of	Excel	for	the	user	to	complete.	Novice	Excel	users
will	especially	appreciate	the	ease	of	clicking	a	button	to	do	tasks	that	they	might
not	know	how	to	do	manually,	or	might	not	know	the	most	efficient	methods	by
which	to	handle	those	tasks	quickly.

Creating	an	Add-In
You	create	an	Excel	add-in	file	manually,	but	you	make	its	features	available	by	using
VBA.	To	create	an	add-in,	the	first	thing	you	do	is	open	a	new	workbook.	Because	you
add	VBA	code	that	becomes	the	add-in's	functionality,	you	should	test	and	retest	your
code	before	releasing	the	add-in	for	others	to	use.	I	mention	this	obvious	point	because	if
your	add-in	deals	with	manipulating	worksheets	in	the	active	file,	you	need	to	observe	the
code's	effect	on	those	worksheets	to	make	sure	everything	is	working	properly.	After	you
convert	the	workbook	to	an	add-in,	you're	no	longer	able	to	view	the	worksheets,	so	you
want	to	construct	and	test	all	your	code	before	converting	your	workbook	as	an	add-in.

Suppose	you	want	to	create	an	add-in	that	offers	the	options	to	hide,	unhide,	protect,	or
unprotect	multiple	worksheets.	A	novice	Excel	user	might	perform	these	tasks	one	sheet	at
a	time—quite	an	undertaking	if	the	workbook	contains	dozens	or	hundreds	of	worksheets
and	the	tasks	are	a	frequent	chore.

PLAN	AHEAD	FOR	BEST	RESULTS
You	can	convert	any	workbook	to	an	add-in	file,	but	not	every	workbook	is	a	good
candidate	as	an	add-in.	When	I	create	an	add-in,	I	know	in	advance	what	features	I
want	the	add-in	to	have,	and	what	kind	of	code	to	avoid.	This	is	important,	because
the	add-in	file	is	a	hidden	workbook	that	cannot	contain	code	for	activating	a	sheet	or
a	range	of	cells.

You	can	write	data	to	your	add-in	file,	but	you	cannot	activate	the	add-in	file	at	any
time.	If	you	want	to	keep	any	data	you've	written	to	the	add-in	file,	you	need	to	save
the	file	in	the	Workbook_BeforeClose	event,	because	when	an	add-in	closes,	it	does
not	prompt	the	user	to	save	unsaved	changes.

In	your	new	workbook	that	is	destined	to	become	an	add-in,	press	Alt+F11	to	go	to	the
Visual	Basic	Editor.	From	the	VBE	menu	bar,	click	Insert UserForm.	If	the	Properties
window	is	not	visible,	press	the	F4	key.	Follow	these	steps	to	create	the	add-in:

1.	 Select	your	new	UserForm	in	its	design	area.	In	the	Properties	window,	name	the
UserForm	frmSheetManager,	enter	its	caption	as	Sheet	Manager,	and	set	its	Height
property	to	210	and	its	Width	property	to	276.

2.	 Place	the	following	controls	on	your	UserForm:

A	Label	control	near	the	top,	setting	its	Width	property	to	228	and	its	Caption
property	to	Please	select	your	action:.

An	OptionButton	control	below	the	Label	control,	keeping	the	default	name
OptionButton1,	setting	its	BackColor	property	to	white,	its	Width	property	to	228,
and	its	Caption	property	to	Unhide	all	sheets.

A	second	OptionButton	control	below	OptionButton1,	keeping	the	default	name
OptionButton2,	setting	its	BackColor	property	to	white,	its	Width	property	to	228,
and	its	Caption	property	to	Hide	all	sheets	except	active	sheet.

A	third	OptionButton	control	below	OptionButton2,	keeping	the	default	name
OptionButton3,	setting	its	BackColor	property	to	white,	its	Width	property	to	228,
and	its	Caption	property	to	Protect	all	sheets.

A	fourth	OptionButton	control	below	OptionButton3,	keeping	the	default	name
OptionButton3,	setting	its	BackColor	property	to	white,	its	Width	property	to	228,
and	its	Caption	property	to	Unprotect	all	sheets.

A	CommandButton	near	the	bottom-left	corner	of	the	UserForm,	setting	its	Name
property	to	cmdOK,	and	its	Caption	property	to	OK.

A	CommandButton	near	the	bottom-right	corner	of	the	UserForm,	setting	its	Name
property	to	cmdExit,	and	its	Caption	property	to	Exit.

Your	UserForm	ends	up	looking	like	Figure	25.1.

Figure	25.1

The	design	work	is	complete	for	your	UserForm.	In	the	UserForm	module,	enter	the
following	code,	which	is	mostly	triggered	by	the	cmdOK	button's	Click	event.	The
requested	task	is	performed	depending	on	which	OptionButton	was	selected:

Private	Sub	cmdOK_Click()

'Declare	an	Integer	type	variable	to	help	loop	through	the	worksheets.

Dim	intSheet	As	Integer

'Open	a	Select	Case	structure	to	evaluate	each	OptionButton.

Select	Case	True

'If	OptionButton1	was	selected	to	unhide	all	sheets:

Case	OptionButton1.Value	=	True

For	intSheet	=	1	To	Sheets.Count

Sheets(intSheet).Visible	=	xlSheetVisible

Next	intSheet

'If	OptionButton2	was	selected	to	hide	all	sheets	except	active	sheet:

Case	OptionButton2.Value	=	True

For	intSheet	=	1	To	Sheets.Count

If	Sheets(intSheet).Name	<>	ActiveSheet.Name	Then

Sheets(intSheet).Visible	=	xlSheetHidden

End	If

Next	intSheet

'If	OptionButton3	was	selected	to	protect	all	sheets.

Case	OptionButton3.Value	=	True

For	intSheet	=	1	To	Sheets.Count

Sheets(intSheet).Protect

Next	intSheet

'If	OptionButton4	was	selected	to	unprotect	all	sheets.

Case	OptionButton4.Value	=	True

For	intSheet	=	1	To	Sheets.Count

Sheets(intSheet).Unprotect

Next	intSheet

'If	no	OptionButton	was	selected:

Case	Else

MsgBox	"No	Action	option	was	selected",	,	"Please	select	an	option"

'Close	the	Select	Case	structure.

End	Select

End	Sub

Private	Sub	cmdExit_Click()

Unload	Me

End	Sub

Create	a	small	macro	to	call	the	UserForm.	From	the	VBE	menu	bar,	click	Insert Module
and	enter	the	following	macro:

Private	Sub	SheetManager()

frmSheetmanager.Show

End	Sub

After	completing	the	VBA	functionality	that	your	add-in	provides	to	its	users,	it's	almost
time	to	convert	the	workbook	to	an	add-in.	There	is	an	additional	step	you	can	take	to	add
a	description	to	the	file's	Properties	information.	It's	purely	optional	that	you	do	this,	but
it's	a	good	habit	to	get	into	because	it	helps	the	add-in's	users	know	what	the	add-in	does.

The	process	for	accessing	the	file's	Properties	information	depends	on	your	version	of
Excel.	To	access	the	Properties	dialog	box	in	Excel	versions	prior	to	2007,	click	File
Properties	from	the	worksheet	menu	bar	as	shown	in	Figure	25.2.	In	the	Properties	dialog
box,	some	fields	may	already	be	entered	for	you	by	default.	As	you	see	later	in	this	lesson,
the	most	useful	information	to	enter	is	the	Title	and	Comments	fields,	as	indicated	in
Figure	25.3.

Figure	25.2

Figure	25.3

To	reach	the	Properties	information	in	Excel	version	2007,	click	the	round	Office	button
near	the	top-left	corner	of	your	window.	You	see	a	vertical	pane	on	the	left	side	of	the
window.	Click	Prepare,	and	then	in	the	pane	on	the	right,	click	Properties,	as	shown	in
Figure	25.4.

Figure	25.4

To	reach	the	Properties	information	in	Excel	version	2010	and	2013,	click	the	File	tab	on
the	Ribbon,	and	in	the	vertical	pane	at	the	left,	click	Info.	At	the	far	right,	you	see	a
Properties	label	with	a	drop-down	arrow.	As	indicated	in	Figure	25.5,	selecting	the
Advanced	Properties	item	in	the	drop-down	list	displays	the	Properties	dialog	box.

Figure	25.5

Converting	a	File	to	an	Add-In
The	easiest	way	to	convert	a	file	to	an	add-in	is	to	save	the	file	as	an	Excel	Add-in	type.	In
versions	of	Excel	prior	to	2007,	from	the	worksheet	menu	click	File Save	As.	In	the	Save
As	dialog	box,	navigate	to	the	folder	where	you	want	the	add-in	to	reside.	In	Figure	25.6,	I
named	the	file	SheetManager,	and	I	created	a	subfolder	named	My	Addins.	From	the	Save
As	Type	field's	drop-down	list,	select	Microsoft	Office	Excel	Add-In	as	shown	in	Figure
25.6,	and	click	Save.

Figure	25.6

For	version	2007,	click	the	Office	button	and	select	Save	As.	For	versions	2010	and	2013,
click	the	File	tab	and	select	Save	As.	In	the	Save	As	dialog	box,	navigate	to	the	folder
where	you	want	the	add-in	to	reside	and	give	the	file	a	name.	As	shown	in	Figure	25.7,
select	Excel	Add-In	from	the	Save	As	Type	drop-down	list	and	click	Save.

Figure	25.7

NOTE	While	saving	a	file	as	an	add-in,	you	must	have	a	worksheet	be	the	active
sheet.	If	by	chance	you	have	a	chart	sheet	in	your	file	and	it	is	the	active	sheet,	the
Save	As	Type	drop-down	list	won't	include	an	Add-in	file	type.

Installing	an	Add-In
If	your	add-in	is	being	distributed	to	other	users,	the	first	thing	you	do	is	to	deliver	the
add-in	file	to	them	in	some	way,	such	as	by	e-mail,	or	on	a	flash	drive	if	by	hand	delivery.
In	any	case,	your	users	would	save	the	add-in	file	to	whatever	folder	they	prefer,	similar	to
how	you	saved	your	add-in	file	into	a	folder	on	your	computer.

The	easiest	way	to	install	an	add-in	is	to	use	the	Add-Ins	dialog	box,	which	you	can	do
from	any	open	workbook.	In	versions	of	Excel	prior	to	2007,	from	the	worksheet	menu
click	Tools Add-Ins	as	shown	in	Figure	25.8.	In	versions	2007	to	2013,	click	the
Developer	tab	on	the	Ribbon,	and	select	the	Add-Ins	icon	as	shown	in	Figure	25.9.	An
example	of	the	Add-Ins	dialog	box	is	shown	in	Figure	25.10.

Figure	25.8

Figure	25.9

Figure	25.10

The	Add-Ins	dialog	box	shows	a	list	of	all	the	add-ins	that	Excel	is	aware	of.	An	add-in	is
open	if	a	check	mark	is	next	to	its	name	in	the	list.	Notice	in	Figure	25.10	that	no	add-ins
are	selected,	and	that	the	SheetManager	add-in	is	not	listed	in	the	Add-Ins	dialog	box.

When	a	new	add-in	is	created,	it	does	not	automatically	appear	in	the	Add-Ins	dialog	box.
To	install	a	new	add-in,	you	first	need	to	list	it	in	the	Add-Ins	dialog	box,	and	then	select	it
in	the	list.

NOTE	The	Developer	tab	is	a	very	useful	item	to	place	on	your	Ribbon.	See	the
section	named	“Accessing	the	VBA	Environment”	in	Lesson	2	for	the	steps	to	display
the	Developer	tab.

NOTE	A	quick	way	to	open	the	Add-Ins	dialog	box	from	any	version	of	Excel	is	to
press	Alt+T+I—that	is,	hold	down	the	Alt	key	and	with	your	other	hand	press	the	T
key	and	the	I	key.	If	you	prefer	to	work	with	a	mouse	instead	of	the	keyboard,	and	you
prefer	not	to	show	the	Developer	tab,	you	can	access	the	Add-Ins	dialog	box	another
way.	In	Excel	version	2007,	click	the	Office	button,	then	click	the	Excel	Options
button.	In	Excel	versions	2010	and	2013,	click	the	File	tab,	click	the	Options	menu
item,	and	select	the	Add-Ins	menu	item.	At	the	bottom	of	the	window,	select	Excel
Add-Ins	from	the	Manage	drop-down	list,	and	click	Go.

To	include	an	add-in	on	the	Add-Ins	list,	click	the	Browse	button	on	the	Add-Ins	dialog
box.	Navigate	to	the	folder	where	you	saved	the	add-in	file,	select	the	filename,	and	click
OK	to	exit	the	Browse	dialog	box	as	indicated	in	Figure	25.11.

Figure	25.11

You	now	see	your	selected	file	listed	in	the	Add-Ins	dialog	box.	By	default,	Excel	places	a
check	mark	next	to	the	selected	add-in's	name.	If	you	don't	want	the	add-in	to	be	open—
that	is,	for	its	features	to	be	available	to	you—simply	deselect	the	add-in	by	unchecking
the	box	next	to	its	name.

If	and	when	you	do	select	your	new	add-in,	you	and	the	users	of	that	add-in	will
appreciate	the	extra	time	you	spent	in	the	Properties	window	before	you	converted	the
original	file	to	an	add-in.	Notice	that	the	selected	add-in's	filename	and	comments	appear
at	the	bottom	of	the	Add-Ins	dialog	box,	informing	the	user	what	the	add-in	does.	In	any
case,	now	that	you've	listed	the	add-in	file,	click	OK	to	exit	the	Add-Ins	dialog	box	as
indicated	in	Figure	25.12.

Figure	25.12

WHERE	DID	THOSE	OTHER	ADD-INS	COME
FROM?
Even	before	you	created	your	first	add-in,	you	saw	some	add-ins	already	listed	in	the
Add-Ins	dialog	box.	Excel	ships	with	four	available	add-ins,	which	are	not	open	until
you	select	them	in	the	Add-Ins	dialog	box:

The	Analysis	ToolPak	add-in,	which	provides	an	expanded	set	of	analysis	tools
not	available	in	standard	worksheet	functions	and	features

The	Analysis	ToolPak	VBA	add-in,	which	provides	an	expanded	set	of	functions
for	your	VBA	programming	code

The	Euro	Currency	Tools	add-in,	which	is	a	tool	for	converting	and	formatting	the
euro	currency

The	Solver	add-in,	which	is	a	what-if	analysis	tool	that	attempts	to	find	an	optimal
value	for	a	formula	in	one	cell	while	considering	constraints	placed	on	the	values
in	other	cells

Creating	a	User	Interface	for	Your	Add-In
Now	that	the	add-in	has	been	created	and	installed,	you	need	to	provide	your	users	with
the	ability	to	access	the	functionality.	As	it	stands	right	now,	all	that's	happened	is	the	add-
in	is	available	behind	the	scenes.	However,	because	the	SheetManager	add-in's
functionality	is	tied	to	a	UserForm,	you	need	to	establish	a	way	for	users	to	click	a	link	of
some	kind	that	calls	the	UserForm.

Before	the	Ribbon	came	along,	a	custom	worksheet	menu	item	was	created	using	the
CommandBar	object.	For	this	example,	I	named	the	menu	item	SheetManager,	and	it
appears	on	the	Tools	menu.	The	good	news	is,	Excel	versions	2007	through	2013	still
support	CommandBars,	and	you	can	use	the	same	code	to	achieve	a	user-friendly	custom
menu	interface	that	is	compatible	with	every	version	of	Excel	starting	with	Excel	97.

For	versions	of	Excel	prior	to	2007,	a	menu	item	named	Sheet	Manager	is	in	the	Tools
menu,	as	shown	in	Figure	25.13.	For	versions	2007,	2010,	and	2013,	the	menu	item	named
Sheet	Manager	is	in	the	Menu	Commands	section	of	a	new	tab	on	the	Ribbon	named	Add-
Ins.	The	Add-Ins	tab	appears	when	you	apply	custom	add-in	code.	In	any	case,	clicking
the	Sheet	Manager	menu	item	executes	the	macro	that	calls	the	UserForm,	as	shown	in
Figure	25.14.

Figure	25.13

Figure	25.14

The	following	event	code,	found	in	the	ThisWorkbook	module	of	the	add-in	file,
establishes	the	custom	user	interface:

Private	Sub	Workbook_Open()

'Declare	a	CBC	variable	for	the	custom	menu	item.

Dim	objCmdControl	As	CommandBarControl

'The	custom	menu	item	will	be	named	"Sheet	Manager"

'and	it	will	go	onto	the	Tools	menu	for	versions	before	2007.

Set	objCmdControl	=	_

Application.CommandBars("Worksheet	Menu	Bar")	_

.Controls("Tools").Controls.Add

'For	the	new	menu	item,	give	it	a	meaningful	caption,

'help	it	to	clearly	stand	out	by	starting	a	BeginGroup.

'The	OnAction	method	will	call	the	UserForm.

'The	Face	ID	is	a	small	icon	next	to	the	menu	item

'that	is	optional,	but	adds	a	feeling	of	customization.

With	objCmdControl

.Caption	=	"Sheet	Manager"

.BeginGroup	=	True

.OnAction	=	"SheetManager"

.FaceId	=	144

End	With

End	Sub

Private	Sub	Workbook_BeforeClose(Cancel	As	Boolean)

'Delete	the	custom	menu	item	from	the	Tools	menu.

'The	error	bypass	is	for	cases	when	the	"Sheet	Manager"

'item	is	not	listed	on	the	Tools	menu.

On	Error	Resume	Next

Application.CommandBars("Worksheet	Menu	Bar")	_

.Controls("Tools").Controls("Sheet	Manager").Delete

Err.Clear

End	Sub

Changing	the	Add-In's	Code
You'll	find	that	some	of	your	add-ins	are	a	work	in	progress.	Users	will	enjoy	the	ease	of
performing	add-in	tasks,	and	you'll	be	requested	to	make	enhancements	to	the	add-in	for
more	functionality.	As	you	pick	up	more	VBA	programming	skills,	you'll	want	to	improve
your	original	code	by	making	edits	for	speed	and	efficiency.

You	make	any	changes	to	your	add-in	file	in	the	Visual	Basic	Editor.	Open	your	add-in
file,	and	all	you	see	is	an	empty-looking	Excel	file	because	all	the	sheets	in	an	add-in	are
hidden	and	cannot	be	viewed.	Press	Alt+F11	to	go	to	the	VBE,	and	just	as	if	it	were	any
Excel	workbook,	make	whatever	changes	to	the	code	you	need	to	make.	When	you	are
done,	save	your	changes	in	the	VBE	and	close	the	add-in	file.

NOTE	For	add-ins	that	you	distribute	to	other	users,	you	want	to	protect	the	code
from	being	inadvertently	changed	or	viewed	by	others.	The	process	for	protecting
your	add-in	code	is	the	same	as	with	any	Excel	workbook,	and	that	is	to	lock	and
protect	the	project	in	the	Visual	Basic	Editor.	The	steps	to	do	this	are	discussed	in
Lesson	4,	in	the	section	“Locking	and	Protecting	the	VBE.”

Closing	Add-Ins
As	you	saw	in	the	section	“Changing	the	Add-In's	Code,”	you	can	open	an	add-in	file,	but
you	might	like	to	know	how	to	close	an	add-in	file	because	it	cannot	be	closed	the	same
way	you	close	a	workbook.	You	have	three	ways	to	close	an	add-in	file:

1.	 Deselect	(uncheck)	the	add-in's	name	in	the	Add-Ins	dialog	box.

2.	 Go	into	the	VBE	and	press	Ctrl+G	to	ensure	that	the	Immediate	window	is	open.	In	the
Immediate	window,	enter	a	line	of	code	that	closes	the	add-in	file	and	press	Enter.	An
example	of	such	code	for	the	SheetManager	add-in	is	as	follows:

Workbooks("SheetManager.xlam").Close

3.	 Close	Excel,	which	closes	all	files,	including	add-ins.

Removing	an	Add-In	from	the	Add-Ins	List
At	some	point	in	the	future,	you	might	want	to	remove	the	add-in	from	the	list	of	available
add-ins	in	the	Add-Ins	dialog	box,	if	the	add-in	is	outdated	or	you	just	don't	need	it
anymore.	To	accomplish	this	is	an	example	of	how	science	meets	art,	because	Excel	does
not	have	a	built-in	way	to	remove	an	add-in's	name	from	the	list.	Here	are	the	steps	to
make	this	happen:

1.	 Close	Excel.

2.	 Open	Windows	Explorer	and	navigate	to	the	folder	that	holds	your	add-in	file.

3.	 Select	the	add-in	filename,	and	without	opening	the	file,	either	change	its	name,	drag
the	file	to	a	different	folder,	or,	if	you	really	no	longer	need	the	add-in,	delete	the	file
altogether.

4.	 Open	Excel,	and	when	you	do,	you	receive	a	message	telling	you	that	the	add-in	file
cannot	be	found.	Click	OK	as	indicated	in	Figure	25.15.

5.	 Open	the	Add-Ins	dialog	box	and	uncheck	the	name	of	the	add-in	you	want	to	remove.
Excel	reminds	you	that	the	file	cannot	be	found,	and	asks	for	confirmation	that	you
want	to	delete	the	file	from	the	list	of	available	add-ins.	Click	Yes	as	indicated	in
Figure	25.16.

Figure	25.15

Figure	25.16

Try	It
For	this	lesson,	you	create,	install,	and	test	an	add-in	that	contains	a	user-defined	function
to	return	the	text	of	another	cell's	comment.

Lesson	Requirements
To	get	the	sample	workbook,	you	can	download	Lesson	25	from	the	book's	website	at
www.wrox.com/go/excelvba24hour.

Step-by-Step
1.	 Open	a	new	workbook.

2.	 Go	to	the	Properties	window.	In	the	Title	field	enter	Comment	Text	and	in	the
Comments	field	enter	Return	text	of	comments	in	other	cells.

3.	 Exit	the	Properties	window	and	press	Alt+F11	to	go	into	the	Visual	Basic	Editor.

4.	 From	the	menu	bar	in	the	VBE,	click	Insert Module.	Copy	the	following	user-defined
function	into	the	module:

Function	GetComment(rng	As	Range)	As	String

Dim	strText	As	String

If	rng.Comment	Is	Nothing	Then

strText	=	"No	comment"

Else

strText	=	rng.Comment.Text

End	If

GetComment	=	strText

End	Function

5.	 Press	Ctrl+S	to	display	the	Save	As	dialog	box.	Navigate	to	the	folder	into	which	you
want	to	save	this	file.	Name	the	file	CommentText	and	select	Excel	Add-In	in	the	Save
As	Type	field,	as	indicated	in	Figure	25.17.	Click	Save,	which	converts	this	workbook
as	a	new	add-in	file	named	CommentText.xlam.

6.	 Close	Excel.

7.	 Restart	Excel	and	open	a	new	workbook.

8.	 Right-click	cell	B2	of	the	active	worksheet,	and	select	Insert	Comment.	Enter	some
text	in	your	comment.

9.	 Select	cell	G1.

10.	 Press	Alt+T+I	to	show	the	Add-Ins	dialog	box.

11.	 Click	Browse	and	navigate	to	the	folder	where	you	saved	the	CommentText	add-in	file.
Select	the	CommentText	file	and	click	OK.	Your	Add-Ins	dialog	box	looks	like	Figure
25.18,	with	the	CommentText	add-in	loaded.	Recall	that	the	file	is	named	CommentText
but	the	Add-Ins	dialog	box	shows	it	as	Comment	Text,	and	also	shows	the	description
of	the	add-in,	because	that	is	the	information	you	entered	in	Step	2	about	the	add-in
file	in	its	Properties	dialog	box.	Click	OK	to	exit	the	Add-Ins	dialog	box.

http://www.wrox.com/go/excelvba24hour

12.	 In	cell	G1,	enter	the	user-defined	function	=GetComment(B1)	and	press	Enter.	Copy	the
formula	down	to	cell	G2.	You	see	that	the	UDF	returned	No	comment	in	cell	G1
because	no	comment	exists	in	cell	B1.	However,	you	did	enter	a	comment	into	cell	B2
in	Step	8,	so	the	UDF	in	cell	G2	returns	the	text	of	the	comment	from	cell	B2.	Your
worksheet	looks	similar	to	Figure	25.19.

13.	 Note	that	the	workbook	you	are	looking	at	does	not	contain	the	GetComment	UDF
code.	You	can	utilize	that	UDF	because	its	code	belongs	to	the	CommentText	add-in
file	that	you	installed	for	the	active	workbook.

Figure	25.17

Figure	25.18

Figure	25.19

REFERENCE	Please	select	the	video	for	Lesson	25	at
www.wrox.com/go/excelvba24hour.	You	will	also	be	able	to	download	the	code	and
resources	for	this	lesson	from	the	website.

http://www.wrox.com/go/excelvba24hour

Lesson	26
Managing	External	Data
One	of	the	most	versatile	and	useful	benefits	of	Excel	is	its	ability	to	import	data	from
external	sources.	Lessons	29–33	include	examples	of	sharing	data	back	and	forth	with
other	Microsoft	Office	applications	from	Excel.

Prior	to	Excel	97,	data	in	an	Excel	workbook	was	entered	manually.	An	Excel	workbook
was	essentially	a	self-contained	object,	having	almost	no	contact	with	the	outside	world
except	for	the	person	working	in	the	project.

Starting	with	Office	97,	Microsoft	became	devoted	to	providing	more	and	better	tools	for
importing	and	exporting	data	to	the	Internet,	database	programs,	and	text-related	software
applications.	Excel	leads	the	way	in	this	effort	among	all	Office	applications.	In	this
lesson,	you	learn	how	to	use	VBA	to	share	data	between	Excel	and	other	external	sources,
including	Access,	the	Internet,	and	text	files.

Creating	QueryTables	from	Web	Queries
The	Internet	as	we	know	it	has	only	been	around	since	the	mid-1990s—not	that	long	ago
really—but	it's	hard	to	imagine	what	life	would	be	like	today	without	the	World	Wide
Web.	The	public's	desire	is	only	increasing	for	access	to	the	galaxy	of	information	that	is
stored	on	the	web.	With	each	new	release	of	its	Office	suite,	Microsoft	has	improved	the
capacity	of	its	applications	to	interact	with	web-based	information.

NOTE	When	you	connect	Excel	to	an	external	source	such	as	the	Internet,	you	add	a
QueryTable	to	your	worksheet.	Objects	that	can	connect	to	external	data	sources
include	a	cell	range,	an	Excel	table,	a	pivot	table,	a	text	file,	and	a	web	query.	In	this
case,	you	are	adding	a	QueryTable	to	a	worksheet	because	you	are	querying	the	web
for	information	that	will	be	displayed	on	your	worksheet.

Suppose	you	are	interested	in	monitoring	the	stock	prices	of	a	half-dozen	or	so	technology
companies.	If	you	want	to	avoid	the	monotony	of	going	to	a	financial	website	and	entering
the	same	stock	symbols	every	time,	you	can	automate	the	process	with	a	web	query,	and
refresh	the	data	anytime	you	like.

When	you	build	a	web	query,	you	need	to	tell	Excel	the	website	from	which	to	extract	the
information,	and	the	cell	address	on	the	destination	sheet	where	you	want	the	QueryTable
to	be	located.	Some	background	information	about	URLs	and	their	parameters	might	be
helpful	for	you	to	understand	what	is	going	on.

If	you	open	your	web	browser	and	enter	the	URL
http://money.cnn.com/quote/quote.html?symb=YHOO+GOOG,	you	reach	a	site	that
provides	a	table	of	stock	quotes	for	Yahoo!	and	Google.	With	this	URL,	you	are
essentially	passing	URL	parameters	that	enable	you	to	pass	information	such	as	search
criteria	to	a	website.	In	this	case,	the	URL	parameters	being	used	are	the	symbols	for
Yahoo!	(YHOO)	and	Google	(GOOG).

The	following	macro	places	the	QueryTable	on	cell	A1,	and	points	to	one	of	the	bevy	of
websites	out	there	that	provide	current	stock	quotes.	For	demonstration	purposes,	I	chose	a
few	companies	that	are	all	headquartered	in	the	Silicon	Valley	area	where	I	live	and	own
my	Excel	development	company.	The	stock	symbols	of	those	companies	are	the	criteria
that	apply	URL	parameters	through	the	code	to	gather	the	stock	quote	information	that
populates	the	QueryTable.	Figure	26.1	shows	what	the	result	looked	like	when	I	ran	this
macro	in	November	2014:

Sub	ImportStocks()

'Declare	variables	for	destination	worksheet,

'and	two	halves	of	the	connection	string:

'one	half	for	the	URL,	and	the	other	half	for

'the	quotes,	to	make	it	easier	for	you	to	edit.

Dim	wsDestination	As	Worksheet

Dim	strURL	As	String,	strStocks	As	String

'Set	your	preferred	destination	worksheet;	here	it	is	Sheet2.

Set	wsDestination	=	Worksheets("Sheet2")

'Define	the	URL	for	getting	your	stock	quotes.

http://money.cnn.com/quote/quote.html?symb=YHOO+GOOG

'There	are	many	websites	where	you	can	do	this.

strURL	=	"http://money.cnn.com/quote/quote.html?symb="

'Define	your	stocks	of	interest.	I	only	selected	these

'as	an	example	of	nearby	Silicon	Valley	businesses.

strStocks	=	"AAPL,CSCO,EBAY,GOOG,INTC,ORCL,YHOO"

'My	preference	is	to	activate	the	destination	worksheet

'and	select	cell	A1.

Application.Goto	wsDestination.Range("A1"),	True

'Clear	the	cells	in	the	worksheet	so	you	know	the	data

'being	imported	will	not	be	confused	with	other	data

'you	may	have	imported	previously	and	not	yet	deleted.

Cells.Clear

'Add	your	QueryTable	with	the	connection	string

'and	other	useful	methods	you	see	in	the	With	structure.

With	wsDestination.QueryTables.Add	_

(Connection:="URL;"	&	strURL	&	strStocks,	_

Destination:=Range("A1"))

.BackgroundQuery	=	True

.SaveData	=	True

.AdjustColumnWidth	=	True

.WebSelectionType	=	xlSpecifiedTables

.WebFormatting	=	xlWebFormattingNone

.WebTables	=	"""wsod_multiquoteTable"""

.Refresh	BackgroundQuery:=False

End	With

'Release	object	variable	memory.

Set	wsDestination	=	Nothing

End	Sub

Figure	26.1

With	the	worksheet	active,	you	can	refresh	the	data	by	right-clicking	cell	A1	and	selecting
Refresh,	as	shown	in	Figure	26.2.	Alternatively,	you	can	execute	the	VBA	expression
Range("A1").QueryTable.Refresh	in	the	Immediate	window	or	in	a	macro.	Each	time
you	refresh	the	data,	you	see	the	most	recent	version	of	the	information	in	the	data	source,
including	any	changes	that	were	made	to	the	data.

Figure	26.2

NOTE	Does	your	web	query	take	too	long	to	refresh?	You	can	cancel	the	Refresh
method	if	it's	running	longer	than	you	want	to	wait	with	this	block	of	code:

If	Application.Wait(Now	+	TimeValue("0:00:10"))	Then

With	Worksheets(1).QueryTables(1)

If	.Refreshing	Then

.CancelRefresh

MsgBox	"Refresh	was	cancelled.",	,	"FYI…"

End	If

End	With

End	If

While	on	the	subject	of	corporate	performance,	the	following	macro	opens	a	.csv	file	for
you,	depending	on	which	stock	symbol	you	are	searching	for,	and	copies	several	years	of
historical	stock	price	activity	to	Sheet3	of	your	workbook:

Sub	ImportHistory()

Dim	strStockSymbol	As	String

Dim	strURL1	As	String,	strURL2	As	String

'Download	the	past	years'	stock	price	activity.

strURL1	=	"http://ichart.finance.yahoo.com/table.csv?s="

strURL2	=	"&d=2&e=18&f=2010&g=d&a=2&b=13&c=1986&ignore=.csv"

strStockSymbol	=	"EBAY"

Workbooks.Open	Filename:=strURL1	&	strStockSymbol	&	strURL2

'Copy	data	from	the	csv	file	to	your	worksheet.

Range("A1").CurrentRegion.Copy	_

ThisWorkbook.Worksheets("Sheet3").Range("A1")

'Close	the	csv	file	without	saving	it.

ActiveWorkbook.Close	False

'Autofit	the	columns.

Columns.AutoFit

End	Sub

NOTE	Another	example	in	the	Try	It	section	leads	you	in	a	step-by-step	process	of
creating	a	web	query.

Creating	a	QueryTable	for	Access
In	upcoming	lessons	you	learn	about	importing	and	exporting	data	between	Excel	and
Access,	using	VBA	and	a	technology	called	Structured	Query	Language,	or	SQL.	Because
this	lesson	deals	with	external	data,	you	might	be	interested	to	know	how	to	quickly,	albeit
manually,	import	an	Access	table	directly	to	your	worksheet.

Click	the	Data	tab	on	the	Ribbon,	and	find	the	Get	External	Data	section	at	the	far	left.
Click	the	leftmost	icon	that	is	labeled	From	Access	as	shown	in	Figure	26.3.

Figure	26.3

You	see	the	Select	Data	Source	dialog	box.	Navigate	to	the	folder	holding	your	Access
database,	select	the	folder,	and	also	select	the	name	of	the	database	file.	Click	Open	as
shown	in	Figure	26.4.

Figure	26.4

The	Select	Table	dialog	box	displays,	so	all	you	need	to	do	is	click	to	select	the	name	of
the	table,	and	then	click	OK	as	shown	in	Figure	26.5.	After	that,	the	Import	dialog	box
displays.	I	chose	to	keep	the	imported	table	as	a	Table	format,	placed	onto	my	worksheet,
starting	in	cell	A1	as	shown	in	Figure	26.6.	Your	Access	table	loads	onto	your	worksheet
as	shown	in	Figure	26.7,	with	the	top	row	having	AutoFilter	buttons	to	help	you	with	your
future	searches.

Figure	26.5

Figure	26.6

Figure	26.7

NOTE	The	Select	Table	dialog	box	may	contain	tables	and	queries,	and	you	can
import	data	from	either	of	them.	You	might	want	to	be	aware	that	parameter	queries
do	not	appear	in	this	dialog	box.

Using	Text	Files	to	Store	External	Data
Hail	the	text	file,	the	true	foot	soldier	interface	for	transferring	information	between	two	or
more	otherwise	disparate	platforms.	In	the	modern	age	of	computing,	it's	always	been	the
text	file	that	could	be	relied	on	for	one	application	downloading	its	information	in	a
comma-delimited	or	fixed-length	file,	and	another	application	like	Excel	being	able	to
accept	the	data.

Text	files	are	not	pretty,	they	are	almost	never	formatted,	and	they	are	not	easy	to	read.	But
when	all	else	fails,	they	come	through	and	are	fairly	easy	to	program.	The	following
examples	show	how	text	files	can	help	you	in	your	everyday	work.

Suppose	you	want	Excel	to	add	a	new	record	to	a	text	file	that	records	the	date	and	time	a
particular	Excel	workbook	was	saved.	Let's	say	your	C	drive	has	a	folder	named
YourFilePath,	which	holds	a	text	file	named	LogFile.txt.	The	following	VBA	code	goes
into	the	ThisWorkbook	module	of	the	Excel	file	you	are	monitoring.	Modify	the	macro	as
needed	for	your	folder	path	and/or	name	of	your	text	file.

Private	Sub	Workbook_BeforeSave(ByVal	SaveAsUI	As	Boolean,	Cancel	As	

Boolean)

Dim	intCounter	As	Integer,	myFileName	As	String

myFileName	=	"C:\YourFilePath\LogFile.txt"

intCounter	=	FreeFile

Open	myFileName	For	Append	As	#intCounter

Write	#intCounter,	ThisWorkbook.FullName,	Now,	Application.UserName

Close	#intCounter

End	Sub

This	macro	creates	four	new	text	files,	naming	each	with	the	prefix	MyFile,	followed	by	a
number	suffix	in	order	from	1	to	4.	For	example,	the	first	file	is	named	MyFile001.txt,
the	second	file	is	named	MyFile002.txt,	and	so	on.	The	starting	number	of	1	is	derived	by
the	code	line	For	intCounter	=	1	to	4.	If	you	wanted	to	create	four	new	text	files
starting	with	the	name	MyFile038.txt,	you'd	establish	the	starting	number	of	38	by
specifying	it	with	the	line	of	code	For	intCounter	=	38	to	41.

Sub	CreateTextFiles()

Dim	intCounter	As	Integer,	strFile	As	String

For	intCounter	=	1	To	4

strFile	=	"MyFile"	&	Format(intCounter,	"000")

strFile	=	"C:\YourFilePath\"	&	strFile	&	".txt"

Open	strFile	For	Output	As	#1

Close

Next	intCounter

End	Sub

The	following	macro	copies	the	text	of	your	comments	in	your	worksheet's	used	range
into	a	text	file,	where	they	are	listed	along	with	the	cell	values	in	that	range.	This	is	a	very
fast	macro.

Sub	Comment2Text()

Dim	cmt	As	Comment,	rng	As	Range

Dim	iRow	As	Long,	iCol	As	Long

Dim	strText	As	String

Set	rng	=	Range("A1").CurrentRegion

Open	"C:\YourFilePath\YourFileName.txt"	For	Output	As	#1

For	iRow	=	1	To	rng.Rows.Count

For	iCol	=	1	To	rng.Columns.Count

If	Not	Cells(iRow,	iCol).Comment	Is	Nothing	Then

strText	=	strText	&	Cells(iRow,	iCol).Text	&	_

"("	&	Cells(iRow,	iCol).Comment.Text	&	")"	&	";"

Else

strText	=	strText	&	Cells(iRow,	iCol).Text	&	";"

End	If

Next	iCol

strText	=	Left(strText,	Len(strText)	-	1)

Print	#1,	strText

strText	=	""

Next	iRow

Close

End	Sub

If	you	want	to	know	how	many	lines	a	particular	text	file	has,	the	following	macro	tells
you:

Sub	Test1()

Dim	MyObject	As	Object,	LineCount	As	Variant

Set	MyObject	=	_

CreateObject("Scripting.FileSystemObject")

With	MyObject.OpenTextFile("C:\YourFilePath\YourFileName.txt",	1)

LineCount	=	Split(.ReadAll,	vbNewLine)

End	With

MsgBox	UBound(LineCount)	-	LBound(LineCount)	+	1

End	Sub

Export	each	sheet	in	this	workbook	as	a	text	file,	with	each	file	named	as	the	sheet	tab
name.	Text	file	macros	compile	very	quickly.

Sub	TextExport()

Dim	rng	As	Range

Dim	iWks	As	Integer,	LRow	As	Long,	iCol	As	Long

Dim	sTxt	As	String,	sPath	As	String

sPath	=	"C:\YourFilePath\"

For	iWks	=	1	To	Worksheets.Count

Open	sPath	&	Worksheets(iWks).Name	&	".txt"	For	Output	As	#1

Set	rng	=	Worksheets(iWks).Range("A1").CurrentRegion

For	LRow	=	1	To	rng.Rows.Count

For	iCol	=	1	To	rng.Columns.Count

sTxt	=	sTx	t&	Worksheets(iWks).Cells(LRow,	iCol).Value	&	vbTab

Next	iCol

Print	#1,	Left(sTxt,	Len(sTxt)	-	1)

sTxt	=	""

Next	LRow

Close	#1

Next	iWks

MsgBox	"The	text	files	can	be	found	in	"	&	Left(sPath,	Len(sPath)	-	1)

End	Sub

If	you	would	like	to	see	a	text	file's	contents	in	a	message	box,	you	can	use	the	following

code:

Sub	GetTextMessage()

Dim	sTxt	As	String,	sText	As	String,	sPath	As	String

sPath	=	"C:\YourFilePath\YourFileName.txt"

If	Dir(sPath)	=	""	Then

MsgBox	"File	was	not	found."

Exit	Sub

End	If

Close

Open	sPath	For	Input	As	#1

Do	Until	EOF(1)

Line	Input	#1,	sTxt

sText	=	sText	&	sTxt	&	vbLf

Loop

Close

sText	=	Left(sText,	Len(sText)	-	1)

MsgBox	sText

End	Sub

Suppose	you	want	to	save	the	contents	of	cell	A1	on	Sheet1	as	a	text	file.	The	following
example	shows	how	you	can	do	that:

Sub	SaveCellValue()

Open	"C:\YourFilePath\YourFileName.txt"	For	Append	As	#1

Print	#1,	Sheets("Sheet1").Range("A1").Value

Close	#1

End	Sub

Finally,	this	macro	demonstrates	how	to	delete	a	text	file	if	it	exists,	and	replaces	it	with	a
new	text	file	of	the	same	name.	If	the	text	file	does	not	exist,	the	macro	creates	a	new	text
file:

Sub	DeleteAndCreate()

Dim	strFile	As	String,	intFactor	As	Integer

On	Error	Resume	Next

strFile	=	"C:\YourFilePath\YourFileName.txt"

Kill	strFile

Err.Clear

intFactor	=	FreeFile

Open	strFile	For	Output	Access	Write	As	#intFactor

Close	#intFactor

End	Sub

Try	It
What	is	today's	date,	and	what	is	the	current	time	of	day?	In	this	lesson	you	create	a	web
query	to	access	the	website	of	the	United	States	Naval	Observatory,	where	the	day	and
time	are	recorded	on	the	Master	Clock	of	the	United	States	Navy.	The	web	query	imports
a	display	of	the	current	day	and	time	for	several	North	American	time	zones.

Lesson	Requirements
To	get	the	sample	workbook,	you	can	download	Lesson	26	from	the	book's	website	at
www.wrox.com/go/excelvba24hour.

Step-by-Step
1.	 Open	a	new	workbook.

2.	 From	your	worksheet,	press	Alt+F11	to	go	to	the	Visual	Basic	Editor.

3.	 From	the	menu	bar	in	the	VBE,	click	Insert Module.

4.	 In	your	new	module,	type	Sub	TimeAfterTime	and	press	Enter.	VBA	produces	the
following	two	lines	of	code,	separated	by	an	empty	line:

Sub	TimeAfterTime()

End	Sub

5.	 Open	a	With	structure	for	the	destination	worksheet:

With	Worksheets("Sheet1")

6.	 Declare	a	String	type	variable	for	the	website	address:

Dim	strURL	As	String

7.	 Define	the	website	address	from	which	the	information	will	be	imported	to	your
worksheet:

strURL	=	_

"http://tycho.usno.navy.mil/cgi-bin/timer.pl"

8.	 For	consistency,	I	prefer	to	activate	the	worksheet	that	will	receive	the	web	data.	Cell
A1	is	a	convenient	cell	to	start	with:

Application.Goto	.Range("A1"),	True

9.	 Clear	the	cells	in	the	worksheet	so	you	know	the	data	being	imported	will	not	be
confused	with	other	data	you	may	have	imported	previously	and	not	yet	deleted:

Cells.Clear

10.	 Open	a	With	structure	for	the	Add	method	of	your	new	QueryTable.	You	must	specify
the	connection,	URL,	destination	sheet,	and	other	information	that	follows:

With	.QueryTables.Add	_

http://www.wrox.com/go/excelvba24hour

(Connection:="URL;"	&strURL,	Destination:=.Range("A1"))

.BackgroundQuery	=	True

.TablesOnlyFromHTML	=	False

.Refresh	BackgroundQuery:=False

.SaveData	=	True

11.	 Close	the	With	structure	of	the	QueryTable's	Add	method:

End	With

12.	 Close	the	With	structure	for	the	destination	worksheet:

End	With

13.	 Your	entire	macro	looks	as	follows:

Sub	TimeAfterTime()

'Open	a	With	structure	for	the	destination	worksheet.

With	Worksheets("Sheet1")

'Declare	a	String	type	variable	for	the	website	address.

Dim	strURL	As	String

'Define	the	website	address,	from	which	the	information

'will	be	imported	to	your	worksheet.

strURL	=	_

"http://tycho.usno.navy.mil/cgi-bin/timer.pl"

'For	consistency,	I	prefer	to	activate	the	worksheet

'that	will	receive	the	web	data.

'Cell	A1	is	a	convenient	cell	to	situate	yourself.

Application.Goto	.Range("A1"),	True

'Clear	the	cells	in	the	worksheet	so	you	know	the	data

'being	imported	will	not	be	confused	with	other	data

'you	may	have	imported	previously	and	not	yet	deleted.

Cells.Clear

'Open	a	With	structure	for	the	Add	method	of	your	new

'QueryTable.	The	connection,	URL,	and	destination	sheet,

'and	other	information	that	follows,	must	be	specified.

With	.QueryTables.Add	_

(Connection:="URL;"	&strURL,	Destination:=.Range("A1"))

.BackgroundQuery	=	True

.TablesOnlyFromHTML	=	False

.Refresh	BackgroundQuery:=False

.SaveData	=	True

'Close	the	With	structure	of	the	QueryTable's	Add	method.

End	With

'Close	the	With	structure	for	the	destination	worksheet.

End	With

End	Sub

14.	 Press	Alt+Q	to	return	to	the	worksheet.

15.	 You	can	test	the	macro	by	pressing	Alt+F8	to	display	the	Macro	dialog	box	as	shown
in	Figure	26.8.	Run	the	macro	named	TimeAfterTime.	The	result	resembles	Figure
26.9.

Figure	26.8

Figure	26.9

REFERENCE	Please	select	the	video	for	Lesson	26	online	at
www.wrox.com/go/excelvba24hour.	You	will	also	be	able	to	download	the	code	and
resources	for	this	lesson	from	the	website.

http://www.wrox.com/go/excelvba24hour

Lesson	27
Data	Access	with	ActiveX	Data	Objects
The	topic	of	data	access	has	become	one	of	the	most	intensive	forces	in	driving	the	recent
development	of	commercial	software	applications.	Data	storage	and	search	engine
companies	have	become	the	face	of	the	worldwide	voracious	demand	for	accessing
information.

Excel	is	without	peer	in	its	powerful	features	for	calculating	and	analyzing	data,	and	in	its
ability	to	produce	customized	reports	in	an	instant	with	VBA.	For	users	who	deal	with
extremely	large	volumes	of	source	data,	Excel	can	still	fall	short	as	a	data	storage
application.	Microsoft	has	built	Excel	with	some	robust	methods	for	importing	external
data	into	your	workbooks,	making	Excel	a	terrific	front-end	application	that	analyzes	data
it	does	not	need	to	store.

Introducing	ADO
ADO	is	an	acronym	for	ActiveX	Data	Objects,	which	is	the	technology	Microsoft
recommends	for	accessing	data	in	external	databases.	Excel's	spreadsheets,	being	tabular
row	and	column	objects,	share	common	features	with	database	tables,	providing	a	natural
environment	for	data	to	be	transferred	between	Excel	and	relational	databases.

From	Excel,	using	ADO	you	can	do	the	following:

Connect	to	most	any	external	database	in	the	Windows	operating	system,	as	long	as
that	database	has,	as	many	do,	an	ODBC	(Open	Database	Connectivity)	or	OLE	DB
(Object	Linking	and	Embedding	Database)	driver.

Add,	delete,	and	edit	records	from	a	database	to	your	workbook,	or	from	your
workbook	to	a	database.

Query	data	to	return	a	recordset,	enabling	you	to	import	some	or	all	records	from	a
database	table	directly	to	your	worksheet,	for	whatever	analysis	you	want	to	perform,
just	as	if	the	data	was	already	in	Excel.

DEFINITIONS	OF	DATABASE	TERMS
Because	this	lesson	introduces	concepts	for	external	data	access,	it	contains	more
descriptive	theory	about	databases	than	actual	code	examples.	In	Lesson	32,	you	see
several	working	examples	of	how	Excel	utilizes	ADO	and	SQL	in	conjunction	with
Access	databases.	If	you	are	unfamiliar	with	database	terminology,	the	following
definitions	for	common	database	terms	might	help	you	throughout	this	lesson.

A	database	is	an	organized	collection	of	related	information.

DAO	(Data	Access	Objects)	is	a	library	of	objects	and	their	associated	methods	and
properties	that	can	be	used	to	represent	objects	in	databases,	enabling	Excel	to	interact
directly	with	databases	through	VBA.

DBMS	is	an	abbreviation	for	database	management	system.	Popular	examples	of
database	management	systems	include	dBASE,	Paradox,	and	Microsoft	Access.

A	field	is	a	column	in	a	list	such	as	in	an	Excel	worksheet	or	Access	database	that
describes	a	characteristic	about	records,	such	as	first	name	or	city.

ODBC	(Open	Database	Connectivity)	is	a	database	standard	that	allows	a	program	to
connect	to	and	manipulate	a	data	source,	enabling	a	single	user	to	access	many
different	databases.

A	primary	key	is	one	or	more	fields	that	determine	the	uniqueness	of	each	record	in	a
database.

A	query	is	a	series	of	statements	written	in	Structured	Query	Language	to	specify	the
tables	and	fields	you	want	to	work	with	that	add,	modify,	remove,	or	return	data	from
a	database.

A	record	is	a	row	of	data	in	a	table.

A	recordset	is	one	or	more	records	(rows)	of	data	derived	from	a	table.

A	relational	database	is	a	collection	of	data	items	organized	as	a	set	of	formally
described	tables	from	which	data	can	be	accessed	or	reassembled	in	many	ways.

NOTE	Prior	to	ADO,	Microsoft's	primary	recommended	tool	for	accessing	external
data	was	an	interface	called	DAO,	or	Data	Access	Objects.	The	DAO	interface	has
become	all	but	obsolete	due	to	its	limitations	as	compared	to	ADO,	though	DAO	is
still	supported	by	ADO.	The	two	technologies	share	many	of	the	same	code	syntaxes
but	they	are	not	the	same	in	terms	of	flexibility	and	performance.	You	still	do	have	a
choice	between	the	two,	but	you'll	be	much	better	served	by	ADO,	which	is	why	it	is
covered	in	this	book.

With	entire	books	devoted	to	database	integration	with	ADO,	there	is	much	more
complexity	to	the	topic	than	this	lesson	is	meant	to	cover.	The	best	way	to	start	becoming
familiar	with	ADO	is	to	examine	the	three	primary	tools	in	its	object	model:	the
Connection	object,	the	Recordset	object,	and	the	Command	object.

The	Connection	Object
The	Connection	object	establishes	a	path	that	connects	Excel	and	the	database.	With	ADO
from	Excel,	you	normally	issue	commands	that	pass	information	back	and	forth	through
the	Connection	object.	Among	the	key	methods	belonging	to	the	Connection	object	are
Open,	which	establishes	the	database	connection,	and	Close,	which	closes	the	connection.
The	Connection	object's	ConnectionString	property	defines	how	to	connect	to	the
database.

You	connect	to	the	database	with	the	Provider	keyword.	The	following	line	of	code	is	a
common	syntax	for	Excel	versions	2007	through	2013:

Provider	=	"Microsoft.ACE.OLEDB.12.0;Data	Source=	_

C:\YourFilePath\Database1.accdb";Persist	Security	Info=False;"

In	versions	of	Excel	prior	to	2007,	the	Provider	would	have	been	specified	as	the
Microsoft	Jet	database	engine	of	Access:

Provider	=	"Microsoft.Jet.OLEDB.4.0;"	&	_

"Data	Source=C:\YourFilePath\Database1.accdb;	Extended	Properties=Excel	

8.0;"

Or,	depending	on	the	circumstance,	more	simply:

Provider	=	"Microsoft.Jet.OLEDB.4.0"

NOTE	When	working	with	databases,	you	almost	always	connect	to	them,	meaning
you	do	not	open	them	in	the	way	you'd	open	a	Word	document	if	you	were	working
with	Word	from	Excel.	The	Connection	object	is	like	a	conduit	between	Excel	and
your	database.

The	Recordset	Object
The	Recordset	object	is	probably	the	most	commonly	used	object	in	ADO.	When	you
instruct	ADO	to	retrieve	a	single	record	or	the	entire	count	of	records	from	a	database
table,	you	use	the	Recordset	object	to	do	that.

Among	the	key	members	of	the	Recordset	object	are	the	following:

The	ActiveConnection	property,	which	is	a	connection	string	or	a	Connection	object
that	identifies	the	connection	being	used	to	access	the	database.	As	with	this	property
for	the	Command	object,	where	objRecordset	and	objConnection	are	object	variables,
the	ActiveConnection	syntax	is

Set	objRecordset.ActiveConnection	=	objConnection

The	Open	method	opens	the	Recordset	object	so	you	can	access	the	data.	Its	syntax	is

Recordset.Open	Source,	ActiveConnection,	CursorType,	LockType,	Options

Note	that	the	Source	argument	is	often	a	string	that	names	the	table	from	which	the

recordset	should	be	retrieved.

The	Close	method	closes	an	open	Recordset	object.	With	the	Recordset	object
declared	as	dbRecordset,	the	syntax	for	Close	would	be

dbRecordset.Close

The	Command	Object
The	Command	object	holds	information	about	the	kind	of	task	being	run,	which	is	usually
related	to	action	queries	in	Access,	or	procedures	in	SQL,	which	are	described	in	the	next
section.	A	Command	object	can	also	return	a	list	of	data	records,	and	is	most	often	run	with
a	combination	of	parameters,	of	which	there	are	more	than	this	lesson	can	possibly	cover.

The	Command	object	has	three	important	properties:

The	ActiveConnection	property,	which,	like	the	ActiveConnection	property	for	the
Recordset	object,	is	a	connection	string	or	a	Connection	object	that	identifies	the
connection	being	used	to	access	the	database.	For	example,	this	syntax	assigns	a
Connection	object	to	the	ActiveConnection	property,	where	objRecordset	and
objConnection	are	object	variables:

Set	objRecordset.ActiveConnection	=	objConnection

The	CommandText	property,	which	sets	the	command	that	will	be	executed	by	the
database	and	will	usually	be	an	SQL	string.

The	CommandType	property,	which	tells	the	database	how	to	interpret	and	execute	the
CommandText's	instructions.

An	Introduction	to	Structured	Query	Language	(SQL)
Structured	Query	Language	(SQL)	is	a	database	language	used	for	querying,	updating,	and
managing	relational	databases.	SQL	is	used	to	communicate	with	the	vast	majority	of
databases	that	are	commonly	in	use	today.

SQL	is	a	complex	language	in	response	to	the	rigid	nature	of	table	design	in	relational
database	construction.	This	lesson	covers	SQL's	four	basic	operations	of	SELECT,	INSERT,
UPDATE,	and	DELETE.	As	a	reminder	of	what	I	mentioned	at	the	beginning	of	this	lesson,
you'll	find	several	examples	of	these	operations	in	Lesson	32	that	show	how	to	work	with
Access	from	Excel.

NOTE	Notice	that	SQL	statements,	such	as	SELECT	and	INSERT,	are	shown	in
uppercase.	This	is	a	standard	SQL	programming	practice	and	a	good	habit	to	get	into
from	the	start.	The	SQL	code	examples	in	this	book	are	relatively	small,	but	SQL	code
can	be	very	large	and	complex.	SQL	is	easier	to	read	when	its	statements	are	shown
in	uppercase,	which	distinguishes	them	from	the	clauses	of	code	with	which	they	are
associated.

The	SELECT	Statement
The	SELECT	statement	retrieves	data	in	the	form	of	one	or	more	rows	(records)	from	one	or
more	tables.	The	SELECT	statement	is	probably	SQL's	most	commonly	used	operation,
because	it	tells	the	data	source	what	field(s)	you	want	to	return	from	what	table(s).

If	you	want	to	retrieve	all	columns	and	all	rows	from	the	Vendors	table,	the	expression	in
SQL	is	as	follows:

SELECT	*

FROM	Vendors

Sometimes	you	might	not	want	to	retrieve	all	columns.	The	following	example	retrieves
the	State	column	from	the	Vendors	table,	if	you	want	to	know	the	count	of	your	vendors
per	state:

SELECT	State

FROM	Vendors

If	you	want	to	see	a	list	of	vendors	and	the	names	of	their	contact	people,	but	only	for
vendors	in	California,	the	following	example	accomplishes	that.	Note	that	the	literal	string
criterion	California	is	in	single	quotes,	which	is	SQL's	required	syntax:

SELECT	VendorName,	ContactName

FROM	Vendors

WHERE	State	'California'

If	you	want	to	retrieve	the	previous	recordset	by	having	it	already	sorted	by	the
VendorName	field,	you	could	add	the	ORDER	BY	statement	and	specify	the	field	name	as
follows:

SELECT	VendorName,	ContactName

FROM	Vendors

WHERE	State	'California'

ORDER	BY	VendorName

The	INSERT	Statement
The	INSERT	statement	adds	a	new	row	(record)	to	a	table.	You	need	to	specify	the	name	of
the	table	where	the	row	will	be	added.	You	can	optionally	omit	the	field	names	from	the
INSERT	statement,	but	it	is	advisable	that	you	name	them	anyway	because	it	helps	you	to
see	that	the	values	you	are	entering	are	in	the	same	order	as	the	field	names.

An	example	of	using	INSERT	is	this	fictional	pair	of	statements	that	respectively	place	the
values	5432,	Doe,	John,	Male	into	a	table	named	Employees,	for	fields	named
EmployeeID,	LastName,	FirstName,	and	Gender:

INSERT	INTO	Employees	(EmployeeID,	LastName,	FirstName,	Gender)

VALUES	('5432',	'Doe',	'John',	'Male')

NOTE	It's	standard	SQL	programming	practice	to	enter	the	statements	in	uppercase.
It	is	mandatory	SQL	programming	practice	to	place	the	string	literal	VALUES	within
single	quotes,	just	as	you	see	it	here.

If	you	had	opted	to	enter	the	preceding	SQL	code	without	naming	each	field,	the	syntax
example	for	that	same	procedure	would	have	been	as	follows:

INSERT	INTO	Employees

VALUES	('5432',	'Doe',	'John',	'Male')

The	UPDATE	Statement
The	UPDATE	statement	enables	you	to	change	the	values	in	one	or	more	columns	(fields)	in
a	table.	UPDATE	is	most	commonly	used	to	modify	the	value	of	a	specific	record	that	you
identify	with	the	WHERE	clause.	You	also	need	to	specify	each	column	you	want	to	change,
and	what	each	column's	new	value	should	be.

The	following	example	shows	how	you	could	update	the	contact	name	of	one	of	your
company's	vendors	in	the	ContactName	column	of	the	Vendors	table.	You	need	to	be
careful	to	specify	the	WHERE	clause	so	that	only	one	record	is	changed,	and	that	it	is	the
correct	record.

In	the	Vendors	table,	you	have	a	field	named	VendorID	that	lists	unique	vendor
identification	numbers.	The	vendor	name	itself	is	Widgets,	Inc.,	but	that	is	not	as
important	as	its	vendor	identification	number.	Suppose	that	the	vendor	identification
number	for	Widgets,	Inc.	is	1234.	The	new	contact	name	is	John	Doe,	executed	with	these
three	statements	in	SQL:

UPDATE	Vendors

SET	ContactName	=	'John	Doe'

WHERE	VendorID	=	'1234'

If	the	ContactName	field	had	many	empty	(referred	to	as	Null)	values,	and	you	wanted	to
fill	those	empty	spaces	with	the	word	Unknown,	the	following	example	would	accomplish
that:

UPDATE	Vendors

SET	ContactName	=	'Unknown'

WHERE	ContactName	IS	NULL

The	DELETE	Statement
The	DELETE	statement	deletes	one	or	more	rows	from	a	table.	If	you	want	to	delete	the
vendor	named	Widgets,	Inc.,	you	would	use	the	WHERE	statement	to	specify	which	value	in
which	column	should	identify	the	record	for	Widgets,	Inc.	The	VendorID	column	is	the
perfect	column	for	this	task	because	a	large	company	might	have	two	vendors	with	the
same	name.

The	following	SQL	statements	would	delete	the	record	from	the	Vendors	table	that	has	the
value	1234	in	the	VendorID	column:

DELETE	FROM	Vendors

WHERE	VendorID	=	'1234'

NOTE	Make	absolutely	certain	you	specify	the	WHERE	clause,	because	if	you	do	not,
every	row	from	the	Vendors	table	would	be	deleted.	If	an	empty	table	is	what	you
want,	this	fictional	sequence	would	accomplish	that:

DELETE	FROM	Vendors

Odds	are,	you	don't	want	an	empty	table	with	all	rows	deleted	from	it.	The	kicker	is
that	after	the	rows	are	deleted,	you	cannot	undo	that	action	as	you	can	in	Excel.
Unless	you	are	good	friends	with	an	experienced	database	programmer	who	might
(or	might	not)	be	able	to	recover	your	unintentionally	deleted	rows,	take	heed	and
always	specify	the	WHERE	clause	in	your	SQL	DELETE	actions.

Try	It
This	lesson	introduced	the	fundamentals	of	ADO	and	SQL.	You	see	several	examples	in
Lesson	32	of	VBA	macros	that	show	how	to	program	ADO	with	SQL	to	interact	with
Access	databases	from	Excel.

Here	is	a	way	to	get	a	head	start	on	the	instruction	in	Lesson	32	to	become	familiar	with
database	tables.	Open	Access	and	create	a	new	database.	Create	a	new	table	and	enter
some	fictional	data	such	as	a	mailing	list	with	fields	for	FirstName,	LastName,
StreetAddress,	City,	State,	Country,	and	Postal	Code.	Make	a	dozen	or	so	entries	and	get	a
feel	for	navigating	and	editing	a	database	table.	For	example,	Figure	27.1	shows	a	table	in
Access	being	populated	with	hypothetical	employee	information,	such	as	you	might	see	in
a	company's	personnel	database.

Figure	27.1

You'll	notice	an	important	distinction	between	an	Access	table	and	an	Excel	worksheet.
Database	tables	do	not	have	row	headers	as	numbers,	or	columns	designated	by	letters.
Columns	(called	fields	in	a	database	environment)	rely	on	being	identified	by	their	field
headers	such	as	FirstName,	LastName,	and	so	on.	Rows	(called	records)	rely	on	being
identified	by	one	or	more	key	fields,	or	certain	properties	of	other	fields	such	as	being
empty	(Null)	or	having	date	entries	between	a	start	date	and	an	end	date.

You	might	also	want	to	surf	the	Web	for	sites	that	list	SQL	objects	and	their	associated
properties	and	methods.	Keep	in	mind	that	SQL's	capacity	for	database	interaction	goes
far	beyond	what	you'll	need	it	to	do	for	your	Excel	projects,	so	stick	with	the	basics	for
now	when	perusing	SQL	instructional	material.

REFERENCE	There	is	no	video	or	code	download	to	accompany	this	lesson.

Lesson	28
Impressing	Your	Boss	(or	at	Least	Your	Friends)
Microsoft	estimates	that	Excel	is	loaded	onto	some	600	million	computers	worldwide.
One	trait	all	Excel	users	have	in	common	is	that	no	one	knows	all	there	is	to	know	about
Excel.	The	power	and	diversity	of	Excel's	native	capabilities	alone	are	more	than	enough
to	master.	With	VBA	for	Excel—each	new	version	having	more	features	than	the	one
before—the	capabilities	for	performance,	object	programming,	and	data	management	are
virtually	limitless.

The	theme	of	this	lesson	is	to	show	a	variety	of	examples	of	what	Excel	can	achieve	with
VBA.	I	encourage	you	to	continue	advancing	your	VBA	skills	after	reading	this	book,	and
hopefully,	being	inspired	by	the	more	advanced	examples	in	this	lesson.

NOTE	In	general,	the	examples	in	this	lesson	are	a	bit	more	advanced	than	what
you've	seen	in	the	book	so	far.	Be	sure	to	watch	the	15	videos	of	advanced	VBA
examples	that	accompany	this	book!

Selecting	Cells	and	Ranges
A	common	request	I	have	received	from	Excel	users	is	how	to	show	the	current	location
on	a	worksheet	by	highlighting	the	active	cell,	row,	or	column.	It	is	easier	to	maintain	your
bearings	in	worksheets	such	as	budgets	and	financial	statements	when	a	color	stands	out	to
show	where	you	are.

Coloring	the	Active	Cell,	Row,	or	Column
In	Figure	28.1,	three	examples	are	shown	that	format	either	the	active	cell	only,	the	active
cell's	entire	row	and	column,	or	the	row	and	column	within	the	active	cell's	current	region.

Figure	28.1

These	are	Worksheet_SelectionChange	events.	To	install	this	behavior	for	a	worksheet,
right-click	that	worksheet	tab,	select	View	Code,	and	paste	either	of	the	following
procedures	(but	not	more	than	one	at	a	time	per	worksheet)	into	the	large	white	area	that	is
the	worksheet	module.	Press	Alt+Q	to	return	to	the	worksheet.	Then,	select	a	few	cells	to
see	the	effects	of	the	code.

To	format	the	active	cell	only:

Private	Sub	Worksheet_SelectionChange(ByVal	Target	As	Range)

Application.ScreenUpdating	=	False

Cells.Interior.ColorIndex	=	0

Target.Interior.Color	=	vbCyan

Application.ScreenUpdating	=	True

End	Sub

To	format	the	entire	row	and	column	of	the	active	cell:

Private	Sub	Worksheet_SelectionChange(ByVal	Target	As	Range)

If	Target.Cells.Count	>	1	Then	Exit	Sub

Application.ScreenUpdating	=	False

Cells.Interior.ColorIndex	=	0

With	Target

.EntireColumn.Interior.Color	=	vbCyan

.EntireRow.Interior.Color	=	vbCyan

End	With

Application.ScreenUpdating	=	True

End	Sub

To	format	the	row	and	column	within	the	current	region	of	the	active	cell:

Private	Sub	Worksheet_SelectionChange(ByVal	Target	As	Range)

Cells.Interior.ColorIndex	=	0

If	IsEmpty(Target)	Or	Target.Cells.Count	>	1	Then	Exit	Sub

Application.ScreenUpdating	=	False

With	ActiveCell

Range(Cells(.Row,	.CurrentRegion.Column),	_

Cells(.Row,	.CurrentRegion.Columns.Count	+	.CurrentRegion.Column	-	1))	_

.Interior.Color	=	vbCyan

Range(Cells(.CurrentRegion.Row,	.Column),	_

Cells(.CurrentRegion.Rows.Count	+	.CurrentRegion.Row	-	1,	.Column))	_

.Interior.Color	=	vbCyan

End	With

Application.ScreenUpdating	=	True

End	Sub

Coloring	the	Current	and	Prior	Selected	Cells
This	section	explains	how	you	can	highlight	not	only	the	current	cell	but	also	the	cell	you
selected	before	you	selected	your	current	cell.	To	make	it	easy	to	distinguish	between	the
two	cells,	the	currently	selected	cell	is	colored	cyan,	and	the	prior	selected	cell	is	colored
magenta.

In	Figure	28.2,	cell	C5	is	the	active	(currently	selected)	cell,	indicated	by	its	cyan	color
when	you	install	the	following	code	into	your	workbook.	You	can	also	see	its	address	in
the	address	bar.	Before	the	image	of	Figure	28.2	was	created,	cell	H12	had	been	selected,
evidenced	by	its	magenta	color.

Figure	28.2

In	Figure	28.3,	the	currently	selected	cell	is	L18,	colored	cyan.	Now	cell	C5,	which	was
selected	before	as	seen	in	Figure	28.2,	is	colored	magenta.

Figure	28.3

The	following	procedure	that	produces	this	functionality	is	a	Selection_Change	event.
Place	it	into	your	worksheet	module	and	test	the	code	by	selecting	a	few	cells:

Private	Sub	Worksheet_SelectionChange(ByVal	Target	As	Range)

Cells.Interior.ColorIndex	=	0

Static	PriorCell	As	Range

If	Not	PriorCell	Is	Nothing	Then	_

PriorCell.Interior.Color	=	vbMagenta

Target.Interior.Color	=	vbCyan

Set	PriorCell	=	Target

End	Sub

Filtering	Dates
When	it	comes	to	filtering	dates,	a	little	VBA	goes	a	long	way	in	dealing	with	the	nemesis
of	seemingly	countless	different	formats	in	which	a	date	can	be	represented	in	Excel.	The
key	to	filtering	dates	is	to	treat	them	as	the	numeric	value	they	are,	and	to	use	the
DateSerial	function	for	an	unambiguous	date	reference.	No	matter	what	the	date
formatting	gods	throw	at	you,	the	following	macros	filter	your	dates.

Filtering	between	Dates
On	the	left	in	Figure	28.4,	dates	are	shown	in	many	formats	in	column	A.	To	make	it	more
challenging,	cells	B2	and	B3	contain	the	start	and	end	date	criteria	that	are	formatted	the
same	as	only	one	cell	in	the	list	being	filtered.	The	macro	named	FilterBetweenDates
filters	the	dates	as	shown	on	the	right	in	Figure	28.4.

Figure	28.4

Sub	FilterBetweenDates()

Application.ScreenUpdating	=	False

ActiveSheet.AutoFilterMode	=	False

Dim	StartDate	As	Date,	EndDate	As	Date

Dim	FilterStartDate	As	Date,	FilterEndDate	As	Date

Dim	LastRow	As	Long

Dim	FilterRange	As	Range

StartDate	=	Range("B2").Value

EndDate	=	Range("B3").Value

LastRow	=	_

Cells.Find(What:="*",	After:=Range("A1"),	_

SearchOrder:=xlByRows,	SearchDirection:=xlPrevious).Row

Set	FilterRange	=	Range("A5:A"	&	LastRow)

FilterStartDate	=	_

DateSerial(Year(StartDate),	Month(StartDate),	Day(StartDate)	-	1)

FilterEndDate	=	_

DateSerial(Year(EndDate),	Month(EndDate),	Day(EndDate)	+	1)

FilterRange.AutoFilter	_

Field:=1,	Criteria1:=">"	&	CDbl(FilterStartDate),	_

Operator:=xlAnd,	_

Criteria2:="<"	&	CDbl(FilterEndDate)

Set	FilterRange	=	Nothing

Application.ScreenUpdating	=	True

End	Sub

Filtering	for	Dates	before	Today's	Date
The	macro	named	FilterDateBeforeToday	filters	for	dates	before	today's	date.	The
reference	to	where	the	data	table	begins	is	the	same	as	what	is	shown	in	Figure	28.4.

Sub	FilterDateBeforeToday()

Application.ScreenUpdating	=	False

ActiveSheet.AutoFilterMode	=	False

Dim	LastRow	As	Long,	FilterRange	As	Range

LastRow	=	_

Cells.Find(What:="*",	After:=Range("A1"),	_

SearchOrder:=xlByRows,	SearchDirection:=xlPrevious).Row

Set	FilterRange	=	Range("A5:A"	&	LastRow)

FilterRange.AutoFilter	Field:=1,	Criteria1:="<"	&	CDbl(Date)

Set	FilterRange	=	Nothing

Application.ScreenUpdating	=	True

End	Sub

Filtering	for	Dates	after	Today's	Date
The	macro	named	FilterDateAfterToday	filters	for	dates	after	today's	date.	The
reference	to	where	the	data	table	begins	is	the	same	as	what	is	shown	in	Figure	28.4.

Sub	FilterDateAfterToday()

Application.ScreenUpdating	=	False

ActiveSheet.AutoFilterMode	=	False

Dim	LastRow	As	Long,	FilterRange	As	Range

LastRow	=	Cells.Find(What:="*",	After:=Range("A1"),	_

SearchOrder:=xlByRows,	SearchDirection:=xlPrevious).Row

Set	FilterRange	=	Range("A5:A"	&	LastRow)

FilterRange.AutoFilter	Field:=1,	Criteria1:=">"	&	CDbl(Date)

Set	FilterRange	=	Nothing

Application.ScreenUpdating	=	True

End	Sub

Deleting	Rows	for	Filtered	Dates	More	Than	Three	Years	Ago
The	macro	named	DeleteRows3YearsOld	filters	for	dates	that	are	three	years	ago	from
today's	date:

Sub	DeleteRows3YearsOld()

Application.ScreenUpdating	=	False

ActiveSheet.AutoFilterMode	=	False

Dim	FilterRange	As	Range,	myDate	As	Date

myDate	=	DateSerial(Year(Date)	-	3,	Month(Date),	Day(Date))

Set	FilterRange	=	_

Range("A5:A"	&	Cells(Rows.Count,	1).End(xlUp).Row)

FilterRange.AutoFilter	Field:=1,	Criteria1:="<"	&	CDbl(myDate)

On	Error	Resume	Next

With	FilterRange

.Offset(1).Resize(.Rows.Count	-	

1).SpecialCells(xlCellTypeVisible).EntireRow.Delete

End	With

Err.Clear

Set	FilterRange	=	Nothing

ActiveSheet.AutoFilterMode	=	False

Application.ScreenUpdating	=	True

End	Sub

Setting	Page	Breaks	for	Specified	Areas
If	your	worksheet	has	areas	of	data	that	you	want	to	print	on	separate	pages,	you	can
establish	page	breaks	based	on	a	wide	choice	of	cell	properties	or	text	values.	With	the
following	macro	named	PageBreakInsert,	page	breaks	are	set	below	each	cell	in	column
A	that	starts	with	Total,	as	shown	in	Figure	28.5.

Sub	PageBreakInsert()

Cells.PageBreak	=	xlPageBreakNone

Dim	cell	As	Range

For	Each	cell	In	Columns(1).SpecialCells(xlCellTypeConstants)

If	Left(cell.Value,	5)	=	"Total"	Then

With	ActiveSheet

.HPageBreaks.Add	Cells(cell.Row	+	1,	1)

.DisplayAutomaticPageBreaks	=	True

End	With

End	If

Next	cell

End	Sub

Figure	28.5

Using	a	Comment	to	Log	Changes	in	a	Cell
This	section	shows	how	you	can	keep	a	running	log	of	changes	to	a	cell's	text.	Suppose
you	want	your	employees	to	enter	an	explanation	or	description	into	a	cell	regarding	a
topic	on	your	spreadsheet.	Maybe	there's	a	new	product	being	developed	and	you'll	utilize
cell	A1	for	team	members	to	enter	their	ideas	during	production.	You	want	to	keep	a
record	of	everything	entered,	without	burdening	anyone	with	how	to	edit	existing	text	or
how	to	add	a	new	comment	to	a	cell.

In	Figure	28.6,	new	entries	are	made	into	cell	A1	on	an	ongoing	basis.	Although	each	new
entry	overrides	preexisting	text,	the	following	procedure	captures	all	the	text	that	has	been
previously	entered.	There's	also	a	date	and	time	stamp	for	each	new	entry,	and	an	empty
line	between	entries	in	the	comment	for	readability.	This	is	a	Worksheet_Change
procedure,	which	goes	into	your	worksheet	module:

Private	Sub	Worksheet_Change(ByVal	Target	As	Range)

With	Target

If	.Address	<>	"A1"	Then	Exit	Sub

If	IsEmpty(Target)	Then	Exit	Sub

Dim	strNewText$,	strCommentOld$,	strCommentNew$

strNewText	=	.Text

If	Not	.Comment	Is	Nothing	Then

strCommentOld	=	.Comment.Text	&	Chr(10)	&	Chr(10)

Else

strCommentOld	=	""

End	If

On	Error	Resume	Next

.Comment.Delete

Err.Clear

.AddComment

.Comment.Visible	=	False

.Comment.Text	Text:=strCommentOld	&	_

Format(VBA.Now,	"MM/DD/YYYY	at	h:MM	AM/PM")	&	Chr(10)	&	strNewText

.Comment.Shape.TextFrame.AutoSize	=	True

End	With

End	Sub

Figure	28.6

Using	the	Windows	API	with	VBA
With	the	Windows	API	(application	programming	interface),	you	can	program	Windows
objects	that	are	not	specific	to	Excel.	Examples	of	Windows	objects	are	the	browser
window,	the	status	bar,	and,	as	the	following	two	macros	demonstrate,	the	clipboard	and
the	recycle	bin.

NOTE	Starting	in	version	2010	and	continuing	with	version	2013,	you	can	install
Excel	as	a	64-bit	application	if	you	are	running	a	64-bit	version	of	Windows.	Many
Excel	users,	including	myself,	prefer	the	32-bit	version	because	it	provides	all	the
power	needed	while	supporting	ActiveX	controls.	Other	Excel	users	prefer	the	64-bit
version	if	they	work	with	enormous	amounts	of	data.

The	examples	in	this	section	are	32-bit	API	declarations	and	might	not	work	in	64-bit
versions.	This	raises	the	larger	point	that	if	your	workbooks	will	be	shared	among
both	versions,	your	code	must	be	compatible	for	either	version	to	run	it.

In	most	cases,	your	32-bit	API	declarations	will	be	compatible	with	64-bit	versions	by
inserting	PtrSafe	after	the	Declare	key	word.	Fortunately,	you	don't	need	to	create
two	workbooks,	but	you	do	need	to	declare	your	API	functions	twice,	using	an
If…Then…Else	statement	to	establish	the	API	calls	for	both	versions.	Lesson	32
shows	this	construction	for	an	example	that	opens	an	Access	database	file.

The	introduction	of	64-bit	Excel	is	relatively	new,	and	it	can	be	difficult	to	remember
the	nuances,	as	well	as	the	syntaxes.	For	example,	versions	of	Excel	before	2010,
including	version	2007,	do	not	recognize	the	PtrSafe	keyword.	For	an	excellent
resource	about	this	topic,	Jan	Karel	Pieterse	of	JKP	Application	Development
Services	(http://www.jkp-ads.com)	maintains	an	ongoing	list	of	proper	syntax	for
API	declarations	in	32-bit	and	64-bit	versions.	You	can	visit	Jan	Karel's	web	page	at
http://www.jkp-ads.com/articles/apideclarations.asp.

Clearing	the	Clipboard
The	Windows	clipboard	is	a	temporary	storage	area	for	information	that	you	have	copied
or	moved	from	one	place	and	plan	to	use	somewhere	else.	You	cannot	see	or	touch	the
clipboard	but	you	can	work	with	it	to	copy,	cut,	paste,	and	clear	data.

You	can	copy	some	30	types	of	data	onto	your	clipboard	beyond	just	text	and	formulas,
such	as	graphics,	charts,	and	hyperlinks.	To	truly	empty	the	clipboard	requires	more	than
just	pressing	the	Esc	key	or	executing	the	VBA	statement	Application.CutCopyMode	=
False.

With	the	Windows	API,	the	macro	named	ClearClipboard	clears	all	data	types	on	your
clipboard.	The	API	function	calls	that	precede	the	macro	go	at	the	top	of	your	module,
above	and	outside	of	the	macro	itself:

Public	Declare	Function	OpenClipboard	Lib	"user32"	_

(ByVal	hwnd	As	Long)	As	Long

Public	Declare	Function	CloseClipboard	Lib	"user32"	()	As	Long

http://www.jkp-ads.com
http://www.jkp-ads.com/articles/apideclarations.asp

Public	Declare	Function	EmptyClipboard	Lib	"user32"	()	As	Long

Sub	ClearClipboard()

OpenClipboard	(0&)

EmptyClipboard

CloseClipboard

End	Sub

Emptying	the	Recycle	Bin
This	macro	named	RecycleBinEmpty	empties	the	recycle	bin.	The	API	function	call
named	EmptyRecycleBin	goes	at	the	top	of	your	module,	above	and	outside	of	the	macro
itself:

Declare	Function	EmptyRecycleBin	_

Lib	"shell32.dll"	Alias	"SHEmptyRecycleBinA"	_

(ByVal	hwnd	As	Long,	_

ByVal	pszRootPath	As	String,	_

ByVal	dwFlags	As	Long)	As	Long

Sub	RecycleBinEmpty()

Dim	rbEmpty	As	Long

rbEmpty	=	EmptyRecycleBin(0&,	vbNullString,	1&)

End	Sub

Scheduling	Your	Workbook	for	Suicide
If	you	have	developed	a	workbook	that	you	want	to	self-expire	by	a	certain	date,	such	as	a
demonstration	model	or	one	that	contains	information	or	usefulness	that	will	be	outdated,
you	can	program	the	workbook	to	delete	itself.	In	this	example,	the	workbook's	suicide
date	is	scheduled	for	December	31,	2015.

In	actual	practice,	you	might	want	to	have	a	message	box—say,	seven	days	prior	to	the
suicide	date—to	let	the	workbook's	users	know	what	to	expect	on	the	upcoming	date	of
demise.	You	would	also	lock	and	password-protect	the	Visual	Basic	Editor	to	reduce	the
chance	for	the	code	to	be	altered	or	deleted.

Please	be	careful	when	employing	this	code.	When	it	executes,	the	recycle	bin	is
bypassed,	so	your	workbook	is	gone	forever.	The	code	goes	into	the	workbook	module
and	is	evaluated	every	time	the	workbook	opens.

Sub	Workbook_Open()

If	Date	<=	#12/31/2015#	Then	Exit	Sub

MsgBox	"This	workbook	has	expired.",	vbExclamation,	"Goodbye."

With	ThisWorkbook

.Saved	=	True

.ChangeFileAccess	xlReadOnly

Kill	.FullName

.Close	False

End	With

End	Sub

Try	It
For	this	lesson,	you	establish	data	validation	in	a	cell,	for	which	the	allowable	entries	are
the	items	in	a	custom	list.	Data	validation	by	itself	cannot	directly	access	custom	lists,	but
with	VBA	you	can	establish	data	validation	to	access	a	custom	list	in	your	Excel
application.

Custom	lists	are	identified	in	VBA	by	their	index	number.	In	the	collection	of	custom	lists
on	my	computer,	a	fifth	one	will	be	added	and	used	for	this	example.

Lesson	Requirements
If	you	have	not	already	done	so,	please	establish	a	fifth	custom	list	in	your	Excel
application.	You	probably	already	have	four	that	came	with	your	Excel	version.
Otherwise,	you	will	need	to	edit	the	number	5	in	Step	11	to	a	lower	number	representing
an	existing	custom	list	that	you	prefer	to	use.

To	get	the	sample	workbook,	you	can	download	Lesson	28	from	the	book's	website	at
www.wrox.com/go/excelvba24hour.

Hints
The	macro	for	this	example	uses	the	fifth	custom	list	in	an	Excel	application.	If	you	are
not	familiar	with	custom	lists,	Steps	2	to	6	explain	how	to	add	a	custom	list.

You	can	add,	delete,	or	edit	the	items	in	your	custom	list.	When	you	run	the	macro	again,
those	changes	show	in	the	data	validation	drop-down	list.

Step-by-Step
1.	 Start	by	opening	a	new	workbook.

2.	 If	you	are	not	familiar	with	adding	a	custom	list,	click	the	File	tab	and	select	the
Options	menu	item	as	shown	in	Figure	28.7.

3.	 In	the	Excel	Options	dialog	box,	click	the	Advanced	menu	item.	Scroll	down	to	the
General	section,	and	click	the	Edit	Custom	Lists	button	as	shown	in	Figure	28.8.

4.	 Click	NEW	LIST	in	the	list	box	at	the	left,	enter	your	list	items	in	the	list	box	at	the
right,	and	click	Add	as	shown	in	Figure	28.9.

5.	 You	see	your	new	list	of	items	in	the	list	box	at	the	left.	Click	OK	as	shown	in	Figure
28.10.

6.	 Click	OK	to	exit	the	Excel	Options	dialog	box	as	shown	in	Figure	28.11.

7.	 Press	Alt+F11	to	go	to	the	Visual	Basic	Editor.

8.	 From	the	VBE	menu	bar,	click	Insert	 	Module.

9.	 In	the	module	you	just	created,	type	Sub	CustomListDV	and	press	Enter.	VBA
automatically	places	a	pair	of	empty	parentheses	at	the	end	of	the	Sub	line,	followed
by	an	empty	line,	and	the	End	Sub	line	below	that.	Your	macro	should	look	like	this	so
far:

http://www.wrox.com/go/excelvba24hour

Sub	CustomListDV()

End	Sub

10.	 Declare	a	String	type	variable	for	custom	items	to	be	allowed	by	data	validation,	an
Integer	type	variable	to	iterate	through	the	array	of	items	in	your	custom	list,	and	a
Variant	type	for	the	array	itself:

Dim	strCustomItems	As	String,	intArray	As	Integer

Dim	myCustomList	As	Variant

11.	 Identify	your	custom	list	by	its	index	number:

myCustomList	=	Application.GetCustomListContents(5)

12.	 Open	a	For…Next	loop	to	iterate	through	each	element	in	your	custom	list:

For	intArray	=	LBound(myCustomList)	To	UBound(myCustomList)

13.	 Build	the	string	for	each	custom	item,	separated	by	a	comma:

strCustomItems	=	strCustomItems	&	myCustomList(intArray)	&	","

14.	 Continue	the	loop	until	completion:

Next	intArray

15.	 Delete	the	trailing	comma	after	the	last	custom	list	item:

strCustomItems	=	Mid(strCustomItems,	1,	Len(strCustomItems)	-	1)

16.	 Establish	data	validation	for	the	cell	of	interest:

With	Range("B7").Validation

'Delete	the	existing	data	validation.

.Delete

'Add	the	string	of	items	from	your	custom	list.

.Add	Type:=xlValidateList,	_

AlertStyle:=xlValidAlertStop,	_

Operator:=xlBetween,	_

Formula1:=strCustomItems

'Error	title	if	an	invalid	entry	is	attempted.

.ErrorTitle	=	"Invalid	entry	!"

'Error	message	if	an	invalid	entry	is	attempted.

'Note	the	ascii	10	character	which	is	for	a	line	break.

.ErrorMessage	=	"Please	enter	an	item"	&	Chr(10)	&	_

"from	the	drop-down	list."

'Show	the	error	icon	in	the	message	for	invalid	entries.

.ShowError	=	True

End	With

End	Sub

17.	 With	your	macro	completed,	press	Alt+Q	to	return	to	the	worksheet.	To	test	the	macro,
press	Alt+F8	to	show	the	Macro	dialog	box.	Select	the	macro	named	CustomListDV
and	click	Run.	Here	is	what	the	macro	looks	like	in	its	entirety:

Sub	CustomListDV()

'Declare	variables:

'Custom	items	to	be	allowed	by	data	validation,

'a	counter	for	the	array	elements	in	the	custom	list,

'and	your	custom	list.

Dim	strCustomItems	As	String,	intArray	As	Integer

Dim	myCustomList	As	Variant

'Identify	your	custom	list	by	its	index	number.

myCustomList	=	Application.GetCustomListContents(5)

'Loop	through	each	element	in	your	custom	list.

For	intArray	=	LBound(myCustomList)	To	UBound(myCustomList)

'Build	the	string	for	each	custom	item,	separated	by	a	comma.

strCustomItems	=	strCustomItems	&	myCustomList(intArray)	&	","

'Continue	the	loop	until	completion.

Next	intArray

'Delete	the	trailing	comma	after	the	last	custom	list	item.

strCustomItems	=	Mid(strCustomItems,	1,	Len(strCustomItems)	-	1)

'Establish	data	validation	for	the	cell(s)	of	interest.

With	Range("B7").Validation

'Delete	the	existing	data	validation.

.Delete

'Add	the	string	of	items	from	your	custom	list.

.Add	Type:=xlValidateList,	_

AlertStyle:=xlValidAlertStop,	_

Operator:=xlBetween,	_

Formula1:=strCustomItems

'Error	title	if	an	invalid	entry	is	attempted.

.ErrorTitle	=	"Invalid	entry	!"

'Error	message	if	an	invalid	entry	is	attempted.

'Note	the	ascii	10	character	which	is	for	a	line	break.

.ErrorMessage	=	"Please	enter	an	item"	&	Chr(10)	&	_

"from	the	drop-down	list."

'Show	the	error	icon	in	the	message	for	invalid	entries.

.ShowError	=	True

End	With

End	Sub

Figure	28.7

Figure	28.8

Figure	28.9

Figure	28.10

Figure	28.11

REFERENCE	Please	select	the	video	for	Lesson	28	online	at
www.wrox.com/go/excelvba24hour.	You	will	also	be	able	to	download	the	code	and
resources	for	this	lesson	from	the	website.

http://www.wrox.com/go/excelvba24hour

Part	V
Understanding	the	BASICs
Lesson	29:	Overview	of	Office	Automation	from	Excel

Lesson	30:	Working	with	Word	from	Excel

Lesson	31:	Working	with	Outlook	from	Excel

Lesson	32:	Working	with	Access	from	Excel

Lesson	33:	Working	with	PowerPoint	from	Excel

Lesson	29
Overview	of	Office	Automation	from	Excel
As	you	may	recall	from	Lesson	1,	Visual	Basic	for	Applications	is	a	programming
language	created	by	Microsoft	to	automate	operations	in	applications	that	support	it,	such
as	Excel.	VBA	is	also	the	language	that	manipulates	Microsoft	Office	applications	in
Access,	Word,	PowerPoint,	and	Outlook.	So	far,	the	focus	of	this	book	has	been	on
running	VBA	from	Excel,	for	the	purpose	of	acting	directly	upon	Excel	in	some	way.

This	section	shows	how	to	control	other	Office	applications	from	Excel,	using	the	same
VBA	programming	language	with	which	you	are	now	familiar,	but	using	a	different	set	of
methods	and	statements	with	which	those	other	Office	applications	are	familiar.	The
reasons	for	interacting	with	other	Office	applications	might	not	be	for	the	purpose	of
changing	your	Excel	workbook	application,	but	they	will	always	be	for	the	purpose	of
making	your	workbook	projects	more	robust,	versatile,	and	easier	to	use	when	the
situation	calls	for	it.

Why	Automate	Another	Application?
In	the	dawn	of	this	modern	era	of	personal	computers,	it	was	rare	that	two	or	more
separate	applications	were	able	to	communicate	with	each	other.	For	two	applications	to
share	the	same	information,	you	usually	had	to	retype	the	information	manually	into	the
other	application	that	needed	it.	Today,	thanks	to	the	advances	of	drag	and	drop,	and	copy
and	paste,	it	has	become	a	simple	matter	to	share	data	across	many	applications.

The	business	of	Excel	is	to	perform	calculations	and	analyze	data.	You	can	enter	and	edit
text	in	Excel,	but	it	is	not	a	word	processor.	You	can	build	data	tables	and	compare	their
information,	but	Excel	is	not	a	relational	database	application.	You	can	create	charts	and
graphics	in	Excel	but	they	cannot	be	presented	in	a	sophisticated	slideshow	format.	You
can	send	a	workbook	through	e-mail	but	Excel	cannot	manage	your	calendar	or	incoming
e-mails	the	way	an	e-mail	client	can.

You	get	the	idea—sooner	or	later	you'll	need	to	perform	some	kind	of	operation	that
another	application	was	specially	made	to	handle.	This	lesson	lays	the	groundwork	for	you
to	understand	Office	automation	from	Excel,	and	the	theory	behind	some	best	practices	in
doing	so.

Understanding	Office	Automation
Where	VBA	is	concerned,	the	only	difference	between	Excel,	Word,	Access,	PowerPoint,
and	Outlook	lies	in	their	object	models.	Each	of	these	applications	can	access	another's
object	model,	so	long	as	the	target	application	has	been	properly	installed	on	the	host
computer.	Controlling	one	Office	application	from	another	becomes	a	simple	matter	of
knowing	how	to	link	to	the	object	model	of	the	Office	application	you	want	to	control.

The	term	“automation”	is	an	Office	programmer's	way	of	referring	to	the	VBA	technology
that	provides	the	ability	to	manipulate	another	application's	objects.	Though	VBA	is	the
common	language	among	Office	applications,	the	respective	object	models	differ	in	their
objects'	names,	methods,	and	properties.	Both	Excel	and	Word	have	a	Range	object	but
with	different	properties.	Excel	has	a	Workbooks	object,	which	is	the	counterpart	to
PowerPoint's	Presentations	object.

For	Excel	to	access	another	Office	application's	object	model,	a	connection	needs	to	be
established	to	that	target	application.	Two	options	for	doing	this	exist:	One	option	is	called
early	binding,	and	the	other	option	is	called	late	binding.	The	term	“binding”	refers	to	the
verification	that	an	object	exists,	and	that	the	command	to	manipulate	that	object's
methods	and	properties	is	valid.

Early	Binding
With	early	binding,	you	establish	a	reference	with	the	target	application's	object	library
before	you	write	your	macro,	so	that	the	application's	objects,	methods,	and	properties	can
be	accessed	in	your	code.	For	example,	if	you	are	using	Office	2013	and	you	want	to	write
a	macro	to	open	Word	and	edit	a	document,	you	would	first	need	to	establish	a	reference
to	the	Microsoft	Word	15.0	Object	Library.	To	do	that,	you	can	go	to	the	Visual	Basic
Editor,	and	from	the	menu	bar	click	Tools References.	Scroll	to	select	the	reference	and
click	OK,	as	shown	in	Figure	29.1.

NOTE	VBA	sees	versions	of	Microsoft	Office	as	numbers,	not	names.	For	example,
VBA	knows	Office	2003	as	version	11,	Office	2007	as	version	12,	Office	2010	as
version	14	(Microsoft	knowingly	skipped	unlucky	number	13),	and	Office	2013	as
version	15.	Therefore,	if	you	are	working	with	Office	2010	at	home,	you'd	have	Word
14	listed	in	your	VBA	References,	but	if	you	are	using	Office	2013	at	work,	you'd	see
Word	15	listed.

Figure	29.1

After	you	have	established	the	proper	reference,	you	can	write	a	macro	using	early	binding
that	will,	for	example,	open	a	Word	document	in	Office	2013.	Suppose	you	already	have	a
Word	document	named	myWordDoc.docx	that	you	keep	in	the	path	C:\Your\File\Path\.
The	following	macro	opens	that	document,	using	early	binding:

Sub	EarlyBindingTest()

Dim	wdapp	As	Word.Application,	wddoc	As	Word.Document

Set	wdapp	=	New	Word.Application

wdapp.Visible	=	True

Set	wddoc	=	

wdapp.Documents.Open(Filename:="C:\Your\File\Path\myWordDoc.docx")

End	Sub

When	you	attempt	to	run	this	macro,	you	would	immediately	know	if	you	did	not	properly
establish	the	Word	15.0	library	reference	because	you	would	be	prompted	by	a	compile
error	message,	as	shown	in	Figure	29.2.

Figure	29.2

As	you	compose	a	macro	using	early	binding,	you	will	have	the	benefit	of	VBA's
IntelliSense	feature,	where	objects	and	properties	pop	up	as	you	type	your	code's	object
references.	And	macros	with	early	binding	run	faster	than	macros	performing	the	same
task	with	late	binding,	because	a	reference	has	already	been	established	to	the	target
application's	objects,	methods,	and	properties.

NOTE	If	your	macro	runs	without	errors	but	you	don't	see	a	Word	document,	or	you
don't	even	see	Word	on	your	taskbar,	it	could	be	that	you	really	did	create	a	new
instance	of	Word,	but	it	is	not	visible.	In	the	Immediate	window,	type
Word.Application.Visible	=	True	and	press	Enter.

So	then,	why	would	you	ever	not	want	to	use	early	binding?	Actually,	there	is	a	very	good
reason	why	not:	The	referenced	object	(Word	15.0	in	this	example)	must	exist	on	the
computer.	If	it	does	not	exist,	an	error	occurs	such	as	the	one	shown	in	Figure	29.2.

The	concern	is,	unless	you	are	composing	your	Office	automation	macros	to	be	run	on	a
system	that	you	know	for	a	fact	will	(a)	be	installed	with	the	target	application	and	(b)
have	the	proper	object	library	reference	established	in	advance,	chances	are	pretty	good
the	macro	will	fail	using	early	binding.	And	with	new	Office	versions	being	released	every
few	years,	when	you	upgrade	your	Office	version	you	need	to	edit	all	the	macros	in	which
you	utilized	early	binding	so	that	they	don't	refer	to	an	outdated	earlier	version.

Late	Binding
With	late	binding,	you	declare	an	object	variable	that	refers	to	the	target	application,	just
as	you	would	with	early	binding.	However,	instead	of	setting	the	variable	to	a	specific	(in
this	case)	Word	object,	you	create	an	object	called	a	Word	application.

If	you	use	late	binding,	you	do	not	use	Tools References	to	set	a	reference	(as	is	required
for	early	binding)	because	you	do	not	know	which	Word	object	library	version	will	be	on	a
user's	machine.	Instead,	you	use	code	to	create	the	object.	The	following	macro	named
LateBindingTest	accomplishes	the	same	task	as	the	EarlyBindingTest	by	opening	a
specific	Word	document:

Sub	LateBindingTest()

Dim	WdApp	As	Object,	wddoc	As	Object

Set	WdApp	=	CreateObject("Word.Application")

WdApp.Visible	=	True

Set	wddoc	=	

WdApp.Documents.Open(Filename:="C:\Your\File\Path\myWordDoc.docx")

End	Sub

In	a	nutshell,	when	you	declare	a	variable	As	Object	and	set	it	as	CreateObject,	VBA
doesn't	know	whether	the	object	is	a	cell,	a	worksheet,	a	Word	application,	or	any	other
object.	The	code	goes	through	a	series	of	tests	behind	the	scenes	until	it	finds	the	correct
application	for	the	use	intended	by	your	code.	That's	the	essential	reason	why	late	binding
takes	longer	to	execute.

Which	One	Is	Better?
For	my	money,	even	with	moderately	sized	macros,	the	extra	seconds	of	run	time	due	to
late	binding	make	up	for	the	headaches	of	trying	to	accommodate	every	version	of	your
target	Office	application,	from	2000	through	2013.	You	will	find	that	the	VBA	skills	you
are	acquiring	will	lead	to	composing	macros	that	others	will	use,	and	you'll	never	know
what	Office	versions	are	installed	on	users'	systems.	People	have	varying	opinions	on	the
merits	of	early	versus	late	binding,	so	consider	the	pros	and	cons	of	both	methods	to
decide	which	approach	is	best	for	you.

NOTE	I	said	that	late	binding	code	“takes	longer”	to	execute	than	early	binding.
Depending	on	the	task	at	hand,	this	should	not	dissuade	you	from	using	late	binding.
In	fact,	I	use	late	binding	exclusively	in	all	my	cross-application	Office	programming
because	of	the	benefits	I	mentioned.

As	you	become	more	involved	with	programming,	you'll	find	yourself	identifying
opportunities	for	efficiency	in	code	execution.	In	the	case	of	early	versus	late	binding,
or	any	set	of	programmable	alternatives	when	the	difference	of	execution	is	only	a
second	or	two,	keep	in	mind	that	the	project	and	its	users	are	best	served	by	code	that
gets	the	job	done	with	minimal	risk	for	error.	No	one	notices	an	extra	second	or	two
of	macro	execution.	Everyone	notices	runtime	or	performance	errors.

Try	It
In	this	lesson,	you	compose	a	macro	using	late	binding	that	opens	a	presentation	file	in
PowerPoint.

Lesson	Requirements
For	this	lesson,	you	first	create	a	PowerPoint	presentation,	name	that	file
PowerPointExample1,	and	save	it	into	the	folder	path	C:\Your\File\Path\.

To	get	the	sample	Excel	workbook	and	PowerPoint	presentation	files,	you	can	download
Lesson	29	from	the	book's	website	at	www.wrox.com/go/excelvba24hour.

Hints
Late	binding	is	a	useful	approach	in	cases	like	this,	when	the	Office	version	is	unknown.

If	you	want	to	refer	to	a	sample	PowerPoint	presentation	with	a	different	name	than
PowerPointExample1,	or	a	folder	path	other	than	C:\Your\File\Path\,	be	sure	to	modify
those	references	in	the	following	code.

Step-by-Step
1.	 Open	a	new	workbook	and	press	Alt+F11	to	go	to	the	Visual	Basic	Editor.

2.	 From	the	menu	at	the	top	of	the	VBE,	click	Insert Module.

3.	 In	the	module	you	just	created,	type	Sub	OpenPowerPoint	and	press	Enter.	VBA
automatically	places	a	pair	of	empty	parentheses	at	the	end	of	the	Sub	line,	followed
by	an	empty	line,	and	the	End	Sub	line	below	that.	Your	macro	looks	like	this	so	far:

Sub	OpenPowerPoint()

End	Sub

4.	 Declare	variables	for	the	file	path,	the	PowerPoint	filename,	and	the	file	extension.
The	reason	for	the	variable	extension	is	that	starting	with	Office	version	2007,
PowerPoint	file	extensions	are	commonly	.pptx	or	.pptm.	Prior	to	2007,	the	extension
for	PowerPoint	files	was	simply	.ppt.

Dim	myPath	As	String,	myFileName	As	String,	myExtension	As	String

5.	 Define	the	variables	for	myPath	and	myFileName:

myPath	=	"C:\Your\File\Path\"

myFileName	=	"PowerPointExample1"

6.	 Use	an	If	structure	to	define	the	extension	String	variable.	Note	the	Val	statement,
which	ensures	the	Office	application	version	is	regarded	as	a	number	for	the	logical
evaluation	of	being	less	than	or	equal	to	version	11,	which	is	Office	2003:

If	Val(Application.Version)	<=	11	Then

myExtension	=	".ppt"

Else

myExtension	=	".pptx"

http://www.wrox.com/go/excelvba24hour

End	If

7.	 Declare	the	PowerPoint	application	object	and	set	it	using	the	CreateObject	method
for	late	binding:

Dim	appPPT	As	Object

Set	appPPT	=	CreateObject("PowerPoint.Application")

8.	 When	opening	other	applications,	don't	forget	to	make	them	visible:

appPPT.Visible	=	True

9.	 Compose	the	Open	statement	for	PowerPoint	that	combines	the	myPath,	myFileName,
and	myExtension	variables:

appPPT.Presentations.Open	Filename:=myPath	&	myFileName	&	myExtension

10.	 When	completed,	the	macro	looks	like	this,	with	comments	that	have	been	added	to
explain	each	step:

Sub	OpenPowerPoint()

'Declare	variables	for	path,	file	name	and	file	extension.

Dim	myPath	As	String,	myFileName	As	String,	myExtension	As	String

'Define	the	myPath	and	myFileName	variables.

myPath	=	"C:\Your\File\Path\"

myFileName	=	"PowerPointExample1"

'Using	an	If	structure	and	depending	on	the	host	computer's	Office	

version,

'define	the	extension	of	the	PowerPoint	file.

If	Val(Application.Version)	=	11	Then

myExtension	=	".ppt"

Else

myExtension	=	".pptx"

End	If

'Declare	a	variable	for	what	will	be	the	PowerPoint	object.

'Set	the	object	to	late	binding	by	using	the	CreateObject	method.

Dim	appPPT	As	Object

Set	appPPT	=	CreateObject("PowerPoint.Application")

'Make	sure	you	include	the	command	to	make	the	application	visible.

appPPT.Visible	=	True

'Open	the	PowerPoint	file.

appPPT.Presentations.Open	Filename:=myPath	&	myFileName	&	myExtension

End	Sub

11.	 Press	Alt+Q	to	return	to	the	worksheet.	Press	Alt+F8	to	show	the	Macro	dialog	box,
and	test	the	macro	by	selecting	the	macro	name	and	clicking	the	Run	button.

REFERENCE	Please	select	the	video	for	Lesson	29	online	at
www.wrox.com/go/excelvba24hour.	You	will	also	be	able	to	download	the	code	and
resources	for	this	lesson	from	the	website.

http://www.wrox.com/go/excelvba24hour

Lesson	30
Working	with	Word	from	Excel
With	the	ubiquitous	presence	of	Microsoft	Office,	a	common	task	is	to	create	and	maintain
documents	in	Microsoft	Word	that	either	accompany,	or	include	as	part	of	their	narrative
content,	data	and	information	from	Excel	workbooks.	From	your	own	experience,	you
have	probably	seen	situations	that	call	for	information	from	Word	documents	to	be
appended,	printed,	or	exported	from	Word	into	your	Excel	workbook.

Word	and	Excel	work	very	well	together	in	sharing	data	across	their	respective
applications.	You	can	automate	these	tasks	with	VBA	macros	right	from	Excel,	to	provide
your	workbook	projects	with	robust	and	user-friendly	methods	of	integrating	data	with
Word.

Activating	a	Word	Document
In	Lesson	29,	you	saw	a	macro	named	LateBindingTest	that	opened	a	Word	document
named	myWordDoc.docx.	However,	in	this	complicated	world	of	ours,	a	seemingly	simple
task	like	activating	a	Word	document	involves	a	few	considerations:

Word	might	not	be	open.

Word	is	open	but	the	document	itself	is	not	open.

The	Word	document	is	already	open.

The	Word	document	you	want	to	open	does	not	exist.

For	such	tasks	that	have	multiple	considerations,	the	“divide	and	conquer”	approach	is	a
good	way	to	cover	your	bases.	If	you	take	each	consideration	in	turn,	you	can	craft	a
single	macro	to	handle	the	entire	process	seamlessly.

Activating	the	Word	Application
The	basic	premise	of	activating	Word	is	that	you	must	tell	Excel	you	are	leaving	Excel
altogether	for	a	totally	different	application	destination.	The	GetObject	function	is	a
reliable	way	to	do	this,	as	shown	in	the	following	macro:

Sub	ActivateWord()

Dim	wdApp	As	Object

Set	wdApp	=	GetObject(,	"Word.Application")

wdApp.Activate

End	Sub

The	GetObject	function	has	two	arguments,	the	first	of	which	is	an	optional	pathname
argument	that	tells	VBA	where	to	look	for	a	specified	object.	Because	the	pathname	is	not
specified	(which	it	need	not	be	because	it	is	optional),	GetObject	activates	Word,	because
Word.Application	is	the	object	being	specified	in	the	second	argument.

But	what	if	Word	is	not	open?	If	you	try	running	the	ActivateWord	macro	without	Word
being	open,	a	runtime	error	occurs	because	VBA	is	being	told	to	activate	an	object	that
can't	be	activated.	You	need	to	insert	an	error	bypass	in	your	macro	to	tell	VBA	to	activate
Word	only	if	Word	is	open,	and	to	open	and	then	activate	Word	only	if	Word	is	closed.

You	can	accomplish	this	with	the	On	Error	Resume	Next	statement	that	monitors	runtime
error	number	429,	which	is	the	VBA	error	number	that	occurs	with	the	GetObject
function	if	Word	is	not	open.	In	that	case,	VBA	opens	a	new	instance	of	Word,	as	shown	in
the	following	modified	ActivateWord	macro:

Sub	ActivateWord()

Dim	wdApp	As	Object

On	Error	Resume	Next

Set	wdApp	=	GetObject(,	"Word.Application")

If	Err.Number	=	429	Then

Err.Clear

Set	wdApp	=	CreateObject("Word.Application")

wdApp.Visible	=	True

End	If

wdApp.Activate

End	Sub

Opening	and	Activating	a	Word	Document
Now	that	you	have	Word	open,	it's	reasonable	to	assume	that	the	next	item	on	your	agenda
is	to	open	an	existing	Word	document	or	to	create	a	new	Word	document.	If	the	plan	is	to
open	an	existing	document,	a	wise	programming	practice	is	to	account	for	the	possibility
that	the	document	does	not	exist	in	the	specified	folder	path.

NOTE	You	never	know—files	get	deleted,	have	their	names	changed,	or	get	moved
from	one	folder	to	another.	A	VBA	runtime	error	will	eventually	come	back	to	bite	you
when	a	command	is	given	to	open	a	file	that	has	an	unrecognized	name	or	location.

For	demonstration	purposes,	say	you	maintain	a	Word	document	named	myWordDoc.docx
in	the	folder	path	C:\Your\File\Path\.	Before	you	attempt	to	open	the	document,	check
the	directory	to	make	sure	it	resides	in	the	expected	folder	path.	If	the	Word	document	is
not	where	your	macro	thinks	it	should	be,	exit	the	macro	with	a	message	box	informing
the	user	why	the	process	could	not	be	completed.

Finally,	your	macro	needs	to	keep	its	eyes	on	the	prize	(that	being	the	Word	document),
which	might	already	be	open	if	Word	is	already	open.	You	can	see	there's	a	lot	to
remember,	but	this	is	what	macros	are	for…	tell	them	once	and	they'll	do	what	they're
told.	Here	is	the	complete	modification	of	the	ActivateWord	macro	that	wraps	it	all	up
into	a	single	package:

Sub	ActivateWord()

'Declare	Object	variables	for	the	Word	application	and	document.

Dim	WdApp	As	Object,	wddoc	As	Object

'Declare	a	String	variable	for	the	example	document's	name	and	folder	path.

Dim	strDocName	As	String

'On	Error	statement	if	Word	is	not	already	open.

On	Error	Resume	Next

'Activate	Word	if	it	is	already	open.

Set	WdApp	=	GetObject(,	"Word.Application")

If	Err.Number	=	429	Then

Err.Clear

'Create	a	Word	application	if	Word	is	not	already	open.

Set	WdApp	=	CreateObject("Word.Application")

End	If

'Make	sure	the	Word	application	is	visible.

WdApp.Visible	=	True

'Define	the	strDocName	String	variable.

strDocName	=	"C:\Your\File\Path\myWordDoc.docx"

'Check	the	directory	for	the	presence	of	the	document

'name	in	the	folder	path.

'If	it	is	not	recognized,	inform	the	user	and	exit	the	macro.

If	Dir(strDocName)	=	""	Then

MsgBox	"The	file	myWordDoc.docx"	&	vbCrLf	&	_

"was	not	found	in	the	folder	path"	&	vbCrLf	&	_

"C:\Your\File\Path\.",	_

vbExclamation,	_

"Sorry,	that	document	name	does	not	exist."

Exit	Sub

End	If

'Activate	the	Word	application.

WdApp.Activate

'Set	the	Object	variable	for	the	Word	document's	full	name	and	folder	path.

Set	wddoc	=	WdApp.Documents(strDocName)

'If	the	Word	document	is	not	already	open,	then	open	it.

If	wddoc	Is	Nothing	Then	Set	wddoc	=	WdApp.Documents.Open(strDocName)

'The	document	is	open,	so	activate	it.

wddoc.Activate

'Release	system	memory	that	was	reserved	for	the	two	Object	variables.

Set	wddoc	=	Nothing

Set	WdApp	=	Nothing

End	Sub

Creating	a	New	Word	Document
You	can	easily	create	a	new	Word	document	from	scratch	with	the	Documents.Add	method
statement	associated	with	your	Word	application	Object	variable.	For	example,	in	the
previous	macro	named	ActivateWord,	the	Word	application	was	declared	as	Dim	WdApp
As	Object.	Toward	the	end	of	that	macro,	before	the	wddoc	and	WdApp	Object	variables
were	set	to	Nothing,	you	could	insert	this	line	to	add	a	new	document	to	that	open	instance
of	Word:

WdApp.Documents.Add

You'll	typically	create	a	new	Word	document	for	the	purpose	of	holding	some	kind	of
narrative	or	data,	which	means	you	want	to	save	your	new	document.	Tapping	into	many
of	the	same	processes	that	were	covered	in	the	ActivateWord	macro,	here	is	an	example	of
a	macro	that	creates	and	saves	a	new	Word	document:

Sub	CreateWordDoc()

'Declare	Object	variables	for	the	Word	application	and	new	document.

Dim	objWordApp	As	Object,	objWordDoc	As	Object

'On	Error	statement	if	Word	is	not	already	open.

On	Error	Resume	Next

'Activate	Word	if	it	is	already	open.

Set	objWordApp	=	GetObject(,	"Word.Application")

If	Err.Number	=	429	Then

Err.Clear

'Create	a	Word	application	if	Word	is	not	already	open.

Set	objWordApp	=	CreateObject("Word.Application")

End	If

'Make	sure	the	Word	application	is	visible.

objWordApp.Visible	=	True

'Activate	the	Word	application.

objWordApp.Activate

'Create	your	new	Word	document.

Set	objWordDoc	=	objWordApp.Documents.Add

'Save	your	new	Word	document	in	a	folder	path.

objWordDoc.SaveAs	"C:\Your\File\Path\myNewWordDoc.docx"

'Release	system	memory	that	was	reserved	for	the	two	Object	variables.

Set	objWordApp	=	Nothing

Set	objWordDoc	=	Nothing

End	Sub

Copying	an	Excel	Range	to	a	Word	Document
Suppose	you	have	a	table	of	data	in	your	Excel	workbook	on	Sheet1	in	range	A1:H25.
You	want	to	export	the	table	into	an	existing	Word	document	named	myWordDoc.docx,
which	you	know	exists	and	you	know	is	closed.	To	make	it	interesting,	say	the	task	calls
for	the	following	set	of	actions:

1.	 Open	Word.

2.	 Open	myWordDoc.docx.

3.	 Export	the	data	table	from	Excel	into	the	myWordDoc.docx	document.

4.	 Save	myWordDoc.docx.

5.	 Close	myWordDoc.docx.

The	following	macro	accomplishes	this	task	very	quickly.	Note	that	you	can	copy	a
worksheet's	used	range	or	current	region	of	a	cell;	you	do	not	need	to	refer	to	a	specific
range	address	as	this	example	does:

Sub	ExportFromExcelToWord()

'Turn	off	ScreenUpdating.

Application.ScreenUpdating	=	False

'Copy	the	Excel	range	to	be	exported.

Worksheets("Sheet1").Range("A1:H25").Copy

'Declare	object	variables.

Dim	WdApp	As	Object,	wddoc	As	Object

'Open	Word

Set	WdApp	=	CreateObject("Word.Application")

'Open	the	Word	document	that	will	accept	the	exported	data.

Set	wddoc	=	

WdApp.Documents.Open(Filename:="C:\Your\File\Path\myWordDoc.docx")

'Paste	the	copied	data	from	Excel	to	the	Word	document.

wddoc.Range.Paste

'Close	the	Word	document	and	save	changes.

wddoc.Close	savechanges:=True

'Quit	the	Word	application.

WdApp.Quit

'Set	the	Object	variables	to	Nothing	to	release	system	memory.

Set	wddoc	=	Nothing

Set	WdApp	=	Nothing

'Exit	Copy	mode.

Application.CutCopyMode	=	False

'Turn	ScreenUpdating	back	on.

Application.ScreenUpdating	=	True

End	Sub

Printing	a	Word	Document	from	Excel
To	print	a	Word	document,	you	can	use	the	PrintOut	method	to	print	the	entire	document,
or	only	a	portion	of	the	document	if	you	so	choose.	The	following	macro	shows	an
example	of	opening	and	printing	a	Word	document:

Sub	PrintWordDoc()

'Declare	object	variables.

Dim	WdApp	As	Object,	wddoc	As	Object

'Open	Word

Set	WdApp	=	CreateObject("Word.Application")

'Open	the	Word	document	to	be	printed.

Set	wddoc	=	

WdApp.Documents.Open(Filename:="C:\Your\File\Path\myWordDoc.docx")

'Print	the	entire	Word	document.

WdApp.ActiveDocument.PrintOut

'Give	the	print	job	5	seconds	to	complete	before	closing	Word.

Application.Wait	Now	+	TimeSerial(0,	0,	5)

'Close	the	Word	document,	no	need	to	save	changes.

wddoc.Close	savechanges:=False

'Quit	the	Word	application.

WdApp.Quit

'Set	the	Object	variables	to	Nothing	to	release	system	memory.

Set	wddoc	=	Nothing

Set	WdApp	=	Nothing

End	Sub

NOTE	You	might	have	noticed	that	this	macro—and	a	couple	of	others	in	this	lesson
—do	not	include	the	statement	to	make	the	Word	application	visible.	It's	easy	to	forget
that	you	have	an	open	application	if	you	cannot	see	it.	The	point	is,	remember	to
include	the	Close	and	Quit	statements	in	your	macros	when	opening	applications	and
files	that	you	intend	to	be	closed	when	the	macro	is	completed.	Otherwise,	when	you
rerun	the	macro,	you	get	read-only	messages	and	error	messages,	because	VBA
interprets	your	coded	instructions	as	an	attempt	to	re-open	a	file	that	is	already	open.

If	you	want	to	print	only	a	portion	of	the	Word	document,	for	example	only	page	2,	then	in
the	preceding	PrintWordDoc	macro,	substitute	the	statement

WdApp.ActiveDocument.PrintOut

with

WdApp.ActiveDocument.PrintOut	pages:="2"

Importing	a	Word	Document	to	Excel
There	may	be	times	when	you	want	to	import	some	text	from	Word	into	Excel.	Admittedly
this	is	not	a	common	task,	because	Excel	cells	are	not	meant	to	serve	as	word	processing
instruments	for	extensive	amounts	of	text.	But	because	it's	possible,	here's	a	macro	that
opens	a	Word	document,	copies	the	second	paragraph,	and	pastes	that	text	into	the	active
cell	of	your	workbook:

Sub	ImportToExcelFromWord()

'Declare	Object	variables	for	the	Word	application	and	document.

Dim	WdApp	As	Object,	wddoc	As	Object

'Declare	a	String	variable	for	the	example	document's	name	and	folder	path.

Dim	strDocName	As	String

'On	Error	statement	if	Word	is	not	already	open.

On	Error	Resume	Next

'Activate	Word	if	it	is	already	open.

Set	WdApp	=	GetObject(,	"Word.Application")

If	Err.Number	=	429	Then

Err.Clear

'Create	a	Word	application	if	Word	is	not	already	open.

Set	WdApp	=	CreateObject("Word.Application")

End	If

'Make	sure	the	Word	application	is	visible.

WdApp.Visible	=	True

'Define	the	strDocName	String	variable.

strDocName	=	"C:\Your\File\Path\myWordDoc.docx"

'Activate	the	Word	application.

WdApp.Activate

'Set	the	Object	variable	for	the	Word	document's	full	name	and	folder	path.

Set	wddoc	=	WdApp.Documents(strDocName)

'If	the	Word	document	is	not	already	open,	then	open	it.

If	wddoc	Is	Nothing	Then	Set	wddoc	=	WdApp.Documents.Open(strDocName)

'The	document	is	open,	so	activate	it.

wddoc.Activate

'Copy	paragraph	2

wddoc.Paragraphs(2).Range.Copy

'Activate	your	workbook	and	paste	the	copied	text	into	the	active	cell.

ThisWorkbook.Activate

'Paste	paragraph	2	from	the	Word	document.

ActiveSheet.Paste

'Close	the	Word	document,	no	need	to	save	changes.

wddoc.Close	Savechanges:=False

'Quit	the	Word	application.

WdApp.Quit

'Release	the	system	memory	that	was	reserved	for	the	two	Object	variables.

Set	wddoc	=	Nothing

Set	WdApp	=	Nothing

End	Sub

Try	It
For	this	lesson,	you	write	a	macro	that	uses	an	InputBox	to	ask	for	the	name	of	a	Word
document	to	be	opened	from	a	predetermined	folder.	If	the	Word	document	exists,	it	is
opened,	but	if	it	does	not	exist,	the	user	is	advised	of	that.

Lesson	Requirements
To	get	the	sample	workbook	you	can	download	Lesson	30	from	the	book's	website	at
www.wrox.com/excelvba24hour.

Step-by-Step
1.	 From	any	worksheet	in	your	Excel	workbook,	press	Alt+F11	to	go	to	the	Visual	Basic

Editor.

2.	 From	the	VBE	menu	bar,	click	Insert Module.

3.	 In	the	module	you	just	created,	type	Sub	OpenRequestedWordDoc	and	press	Enter.
VBA	automatically	places	a	pair	of	empty	parentheses	at	the	end	of	the	Sub	line,
followed	by	an	empty	line,	and	the	End	Sub	line	below	that.	Your	macro	looks	like	this
so	far:

Sub	OpenRequestedWordDoc()

End	Sub

4.	 Declare	a	String	type	variable	for	the	predetermined	folder	path:

Dim	myPath	As	String

5.	 Define	the	String	type	variable	for	the	example	folder	path:

myPath	=	"C:\Your\File\Path\"

6.	 Declare	a	String	type	variable	for	the	anticipated	InputBox	entry:

Dim	myFileName	As	String

7.	 Define	the	myFileName	variable	with	an	InputBox	to	ask	the	user	for	the	name	of	the
Word	document	to	be	opened	from	the	predetermined	folder	path.	Note	the
opportunity	to	use	the	InputBox's	optional	third	argument	to	show	an	example	entry	of
a	document's	full	name	including	its	extension:

myFileName	=	InputBox	_

("Enter	the	full	Word	document	name	to	be	opened"	&	Chr(10)	&	_

"from	the	folder	path	"	&	myPath	&	":",	_

"What	file	name	with	extension	do	you	wish	to	open?",	_

"YourDocumentName.docx")

8.	 Exit	the	macro	if	nothing	is	entered	or	if	the	Cancel	button	is	clicked:

If	myFileName	=	""	Then	Exit	Sub

9.	 Declare	a	String	type	variable	for	the	combined	folder	path	and	document	name:

http://www.wrox.com/excelvba24hour

Dim	myDocName	As	String

10.	 Define	the	String	type	variable	for	the	combined	folder	path	and	document	name:

myDocName	=	myPath	&	myFileName

11.	 Check	to	see	whether	the	Word	document	name	exists	in	the	folder	path.	If	it	does	not,
advise	the	user	and	exit	the	macro.	Notice	that	you	are	providing	a	piece	of	user-
friendly	information	in	the	message	box	that	reminds	the	user	that	the	document	name
entered	was	not	found:

If	Dir(myDocName)	=	""	Then

MsgBox	"The	file	"	&	myFileName	&	vbCrLf	&	_

"was	not	found	in	the	folder	path"	&	vbCrLf	&	_

myPath	&	".",	_

vbExclamation,	_

"No	such	animal."

Exit	Sub

End	If

12.	 At	this	point,	the	Word	document	would	be	determined	to	exist	in	the	folder.	Declare
Object	variables	for	the	Word	application	and	the	Word	document:

Dim	appWord	As	Object,	wdDoc	As	Object

13.	 Using	late	binding,	create	a	Word	application:

Set	appWord	=	CreateObject("Word.Application")

14.	 Make	the	created	Word	application	visible:

appWord.Visible	=	True

15.	 Open	the	requested	Word	document	name	using	the	Set	statement	for	your	wdDoc
variable:

Set	wdDoc	=	appWord.Documents.Open(myDocName)

16.	 Release	the	reserved	memory	in	VBA	for	the	declared	Object	type	variables	now	that
they	have	served	their	purpose	and	are	no	longer	needed:

Set	wdDoc	=	Nothing

Set	appWord	=	Nothing

17.	 Go	ahead	and	test	your	macro,	which	looks	like	this	in	its	entirety:

Sub	OpenRequestedWordDoc()

'Declare	a	String	variable	for	the	predetermined	folder	path.

Dim	myPath	As	String

'Define	the	String	variable	with	the	example	folder	path.

myPath	=	"C:\Your\File\Path\"

'Declare	a	String	variable	for	the	anticipated	InputBox	entry.

Dim	myFileName	As	String

'Show	the	InputBox	to	ask	the	user	for	the	name	of	the	Word

'document	they	want	to	open	from	the	predetermined	folder	path.

myFileName	=	InputBox	_

("Enter	the	full	Word	document	name	to	be	opened"	&	Chr(10)	&	_

"from	the	folder	path	"	&	myPath	&	":",	_

"What	file	name	with	extension	do	you	wish	to	open?",	_

"YourDocumentName.docx")

'Exit	the	macro	if	nothing	is	entered	or	the	Cancel	button	is	clicked.

If	myFileName	=	""	Then	Exit	Sub

'Declare	a	String	variable	for	the	combined	folder	path

'and	document	name.

Dim	myDocName	As	String

'Define	the	String	variable	for	the	combined	folder	path

'and	document	name.

myDocName	=	myPath	&	myFileName

'Check	to	see	if	the	Word	document	name	actually	exists

'in	the	folder	path.

'If	it	does	not,	then	advise	the	user	and	exit	the	macro.

If	Dir(myDocName)	=	""	Then

MsgBox	"The	file	"	&	myFileName	&	vbCrLf	&	_

"was	not	found	in	the	folder	path"	&	vbCrLf	&	_

myPath	&	".",	_

vbExclamation,	_

"No	such	animal."

Exit	Sub

End	If

'At	this	point,	the	Word	document	is	determined	to	exist

'in	the	folder.

'Declare	Object	variables	for	the	Word	application	and

'the	Word	document.

Dim	appWord	As	Object,	wdDoc	As	Object

'Using	late	binding	in	this	example,	create	a	Word	application.

Set	appWord	=	CreateObject("Word.Application")

'Make	the	created	Word	application	visible.

appWord.Visible	=	True

'Open	the	requested	Word	document	name.

Set	wdDoc	=	appWord.Documents.Open(myDocName)

'Release	the	reserved	memory	in	VBA	for	the	declared	Object	variables

'now	that	they	have	served	their	purpose	and	are	no	longer	needed.

Set	wdDoc	=	Nothing

Set	appWord	=	Nothing

End	Sub

REFERENCE	Please	select	the	video	for	Lesson	30	online	at	www.wrox.com/go
/excelvba24hour.	You	will	also	be	able	to	download	the	code	and	resources	for	this
lesson	from	the	website.

http://www.wrox.com/go /excelvba24hour

Lesson	31
Working	with	Outlook	from	Excel
Microsoft	Outlook	is	the	e-mail	client	application	that	is	included	in	Microsoft's	Office
suite.	In	addition	to	e-mail	management,	Outlook	also	provides	personal	information
management	capabilities	with	its	Calendar,	Contacts,	and	Task	Manager	features.	Each	of
these	components	in	Outlook	can	be	controlled	from	Excel	with	VBA.

NOTE	With	all	the	competing	e-mail	clients	to	choose	from,	Outlook	continues	to	be
far	and	away	the	world's	most	popular	e-mail	application.	Chances	are	pretty	good
that	Outlook	is	your	e-mail	client	at	work	or	at	home,	or	it	is	being	used	by	the
recipients	of	e-mails	you	send.

Opening	Outlook
Before	diving	into	the	programming	of	Outlook	from	Excel,	it's	worth	noting	that	Outlook
is	different	than	Excel,	Word,	Access,	and	PowerPoint	in	one	key	respect.	Unlike	those
other	Office	applications	for	which	you	might	create	multiple	instances	in	your	work,
Outlook	is	not	the	kind	of	application	for	doing	that.	When	it	comes	to	handling	e-mails,
tasks,	and	calendars,	it's	just	common	sense	to	have	only	a	single	instance	of	Outlook	open
at	any	one	time.

The	following	macro	first	checks	to	see	if	Outlook	is	already	open,	and	if	so,	allows	your
macro	to	continue.	If	Outlook	happens	to	be	closed,	the	macro	terminates,	with	a	message
box	alerting	you	to	please	open	Outlook	in	order	to	continue:

Sub	OpenOutlook()

Dim	objOutlook	As	Object

On	Error	Resume	Next

Set	objOutlook	=	GetObject(,	"Outlook.Application")

If	objOutlook	Is	Nothing	Then

Err.Clear

MsgBox	"Cannot	continue,	Outlook	is	not	open.",	,	_

"Please	open	Outlook	and	try	again."

Exit	Sub

Else

MsgBox	"The	rest	of	your	code	goes	here.",	,	"Outlook	is	open!"

End	If

End	Sub

NOTE	You	might	have	noticed	that	my	OpenOutlook	macro	does	not	follow	the	same
process	of	opening	Outlook	if	it	is	not	already	open,	such	as	I	have	shown	how	to	do
for	Word	and	PowerPoint.	The	reason	is	that	Outlook	is	a	different	animal	than	other
Office	applications	with	regard	to	how	it	opens	using	late	binding.	The	programming
code	with	late	binding	to	open	Outlook,	without	it	already	being	open,	involves	VBA
methods	beyond	the	scope	of	this	introductory	lesson.	That's	OK,	because	in	everyday
practice,	it's	not	uncommon	to	show	user-friendly	messages,	such	as	the	OpenOutlook
macro	does,	to	request	a	simple	manual	step	be	performed	before	proceeding.

Composing	an	E-mail	in	Outlook	from	Excel
Most	of	the	time,	when	you	open	Outlook,	whether	manually	or	with	VBA,	it's	for	the
purpose	of	doing	something,	such	as	to	receive	or	send	e-mails,	but	also	to	update	your
calendar	or	manage	your	task	list.	Building	upon	the	previous	code	that	opens	or	activates
Outlook,	this	section	explains	how	to	compose	and	send	a	complete	e-mail	message	from
Excel.

Creating	a	MailItem	Object
Where	VBA	is	concerned,	MailItem	is	an	Outlook	object	that	you	know	quite	well	as	a
typical	e-mail	message	that	arrives	in	your	Inbox.	The	MailItem	object	is	made	up	of	the
familiar	fields	To,	CC,	and	Subject.	The	other	components	of	the	MailItem	object	are	the
Body	where	you	type	the	text	of	your	message,	an	optional	level	of	Importance,	and
maybe	an	attachment.

When	you	want	to	compose	an	e-mail	with	VBA,	you	declare	a	variable	for	the	MailItem
object	and	set	it	as	a	created	item	of	the	Outlook	application	object.	For	example,	the
following	macro	creates	an	e-mail	message	with	a	workbook	attachment.	Figure	31.1
shows	the	e-mail	that	is	created.

Sub	SendEmail()

'Declare	the	Object	variables	for	Outlook.

Dim	objOutlook	As	Object

'Verify	Outlook	is	open.

On	Error	Resume	Next

Set	objOutlook	=	GetObject(,	"Outlook.Application")

'If	Outlook	is	not	open,	end	the	Sub.

If	objOutlook	Is	Nothing	Then

Err.Clear

MsgBox	_

"Cannot	continue,	Outlook	is	not	open.",	,	_

"Please	open	Outlook	and	try	again."

Exit	Sub

'Outlook	is	determined	to	be	open,	so	OK	to	proceed.

Else

'Establish	an	Object	variable	for	a	mailitem.

Dim	objMailItem	As	Object

Set	objMailItem	=	objOutlook.CreateItem(0)

'Build	the	mailitem.

With	objMailItem

.To	=	"tom@atlaspm.com"

.CC	=	"tomurtis@gmail.com"

.Subject	=	"Testing	Lesson	31	email	code"

.Importance	=	1	'Sets	it	as	Normal	importance	(Low	=	0	and	High	=	2)

.Body	=	"Hello,	this	is	a	test."	&	vbNewLine	&	"Have	a	nice	day."

.Attachments.Add	"C:\Your\File\Path\YourFileName.xlsx"

'Change	the	Display	command	to	Send	without	reviewing	the	email.

.Display

End	With

'Close	the	If	block.

End	If

End	Sub

NOTE	The	Importance	property	is	optional;	you	don't	need	to	include	it.	If	you	do
include	it	as	I	did	with	this	example,	the	1	is	a	reference	to	Normal	Importance.	Low
Importance	would	be	0	and	High	Importance	would	be	2.	Also,	in	all	the	e-mail
examples	in	this	lesson,	Display	is	utilized	rather	than	Send,	so	that	when	you	test
these	examples,	you	can	actually	see	the	resulting	MailItem	object	without	sending	it.

Figure	31.1

Transferring	an	Excel	Range	to	the	Body	of	Your	E-mail
In	the	preceding	example	of	composing	a	MailItem	object,	the	body	of	the	e-mail	message
was	hard-coded	into	the	macro,	with	this	statement:

.Body	=	"Hello,	this	is	a	test."	&	vbNewLine	&	"Have	a	nice	day."

You	might	be	interested	to	know	that	you	can	represent	a	range	of	worksheet	data	in	the
body	of	an	e-mail	message.	One	way	to	accomplish	that	is	to	loop	through	the	cells	and
create	a	text	string,	with	a	line	break	character	to	simulate	each	row	item.	Figure	31.2
shows	a	simple	list	that	is	referred	to	in	this	example.

Figure	31.2

To	copy	the	list,	declare	a	String	variable	for	the	text	values	as	you	loop	through	each	cell
in	the	list,	and	declare	Long	variables	for	the	count	of	rows	and	columns	in	the	range	you
are	copying.	In	this	example,	two	columns	are	being	copied.	However,	the	range	you	want

to	copy	might	have	an	unknown	number	of	rows	and	columns	to	be	represented	in	your	e-
mail.

The	following	macro	named	BuildDynamicString	builds	a	continuous	string,	taking	into
consideration	a	dynamic	range	based	on	the	CurrentRegion	property	of	cell	A1	that	is
shown	in	Figure	31.2.	This	next	macro	demonstrates	how	to	build	a	string	that	will	be
placed	in	the	body	of	an	e-mail.	The	message	box	shown	in	Figure	31.3	gives	you	a	quick
glance	at	this	code's	immediate	result.

Sub	BuildDynamicString()

'Declare	a	String	variable	for	the	worksheet	data.

Dim	strtext	As	String

'Declare	Long	variables	for	the	range's	Row	and	Columns.

Dim	xRow	As	Long,	xColumn	As	Long

'Build	the	string	that	is	the	text	inside	the	range

'you	want	to	represent	in	the	Body	of	the	email.

For	xRow	=	1	To	Range("A1").CurrentRegion.Rows.Count

For	xColumn	=	1	To	Range("A1").CurrentRegion.Columns.Count

strtext	=	strtext	&	Range("A1").Cells(xRow,	xColumn).Value	&	vbTab

Next	xColumn

strtext	=	strtext	&	Chr(10)

Next	xRow

'Show	the	string	in	a	message	box,	just	for	demo	purposes.

MsgBox	strtext,	,	"Example"

End	Sub

Figure	31.3

Putting	It	All	Together
The	following	macro	ties	together	all	the	previous	code	examples	in	this	lesson.	Figure
31.4	shows	what	your	e-mail	would	look	like	in	Outlook	2013	after	running	the	macro
named	ExampleEmail.

Sub	ExampleEmail()

'Declare	the	Object	variables	for	Outlook.

Dim	objOutlook	As	Object

'Verify	Outlook	is	open.

On	Error	Resume	Next

Set	objOutlook	=	GetObject(,	"Outlook.Application")

'If	Outlook	is	not	open,	end	the	Sub.

If	objOutlook	Is	Nothing	Then

Err.Clear

MsgBox	"Cannot	continue—Outlook	is	not	open.",	,	_

"Please	open	Outlook	and	try	again."

Exit	Sub

'Outlook	is	determined	to	be	open,	so	OK	to	proceed.

Else

'Declare	a	String	variable	for	the	worksheet	data.

Dim	strtext	As	String

'Declare	Long	variables	for	the	range's	row	and	columns.

Dim	xRow	As	Long,	xColumn	As	Long

'Build	the	string	that	is	the	text	inside	the	range

'you	want	to	represent	in	the	Body	of	the	email.

For	xRow	=	1	To	Range("A1").CurrentRegion.Rows.Count

For	xColumn	=	1	To	Range("A1").CurrentRegion.Columns.Count

strtext	=	strtext	&	Range("A1").Cells(xRow,	xColumn).Value	&	vbTab

Next	xColumn

strtext	=	strtext	&	Chr(10)

Next	xRow

'Establish	an	Object	variable	for	a	mailitem.

Dim	objMailItem	As	Object

Set	objMailItem	=	objOutlook.CreateItem(0)

'Build	the	mailitem	and	attach	a	workbook.

With	objMailItem

.To	=	"tom@atlaspm.com"

.CC	=	"tomurtis@gmail.com"

.Subject	=	"Testing	Lesson	31	email	code"

.Importance	=	1	'Sets	it	as	Normal	importance	(Low	=	0	and	High	=	2)

.Body	=	"List	of	employees	and	positions:"	&	vbNewLine	&	vbNewLine	&	

strtext

'Change	the	Display	command	to	Send	without	reviewing	the	email.

.Display

End	With

'Close	the	If	block.

End	If

'Release	object	variables	from	system	memory.

Set	objOutlook	=	Nothing

Set	objMailItem	=	Nothing

End	Sub

NOTE	Before	testing	the	ExampleEmail	macro,	you	probably	need	to	modify	the
folder	path	and	filename	of	the	attachment.	If	you	want	to	test	the	macro	without
attaching	a	file,	you	can	simply	delete	or	comment	out	the	Attachments.Add
statement.

Figure	31.4

E-mailing	a	Single	Worksheet
You	can	e-mail	a	single	worksheet	using	SendMail	with	Microsoft	Outlook.	The	following
macro	copies	the	active	worksheet	and	sends	it	as	the	lone	worksheet	in	its	own
workbook:

Sub	EmailSingleSheet()

ActiveSheet.Copy

On	Error	Resume	Next

ActiveWorkbook.SendMail	"tom@atlaspm.com",	"Test	of	single	sheet."

Err.Clear

ActiveWorkbook.Close	False

End	Sub

NOTE	SendMail	can	send	a	single	worksheet	as	an	attachment	by	housing	that
worksheet	in	its	own	workbook	and	e-mailing	it.	SendMail	does	not	require	specifying
a	Simple	Mail	Transport	Protocol	(SMTP)	server;	it	sends	the	mail	using	your
installed	mail	system.	This	has	the	advantage	of	bypassing	much	of	the	Outlook-
related	code	you've	seen	so	far,	but	it	comes	with	disadvantages,	such	as	limited
ability	to	attach	files,	and	no	available	CC	argument.

NOTE	A	worksheet	in	Excel	cannot	exist	on	its	own;	a	worksheet	must	be	housed	in	a
parent	Excel	workbook.

Try	It
In	this	lesson,	you	write	a	macro	in	Excel	that	creates	an	e-mail	in	Microsoft	Outlook	for
multiple	recipients	whose	addresses	are	listed	in	column	A	of	your	worksheet.	The	macro
populates	the	e-mail's	To	field	with	the	recipients'	names,	and	attaches	the	active	Excel
workbook	to	that	e-mail.

Lesson	Requirements
To	get	the	sample	workbook,	you	can	download	Lesson	31	from	the	book's	website	at
www.wrox.com/excelvba24hour.

Step-by-Step
1.	 In	column	A	of	your	worksheet,	list	a	few	sample	recipient	names.	For	example:

In	cell	A1	enter	no_one@nowhere.com.

In	cell	A2	enter	anyone@anywhere.com.

In	cell	A3	enter	someone@somewhere.com.

2.	 Press	Alt+F11	to	go	to	the	Visual	Basic	Editor.

3.	 From	the	menu	bar	at	the	top	of	the	VBE,	click	Insert	 	Module.

4.	 In	the	module	you	just	created,	type	Sub	EmailAttachmentRecipients	and	press
Enter.	VBA	automatically	places	a	pair	of	empty	parentheses	at	the	end	of	the	Sub	line,
followed	by	an	empty	line,	and	the	End	Sub	line	below	that.	Your	macro	looks	like	this
so	far:

Sub	EmailAttachmentRecipients	()

End	Sub

5.	 Establish	the	Object	variable	for	Outlook:

Dim	objOutlook	As	Object

6.	 Verify	whether	Outlook	is	open:

On	Error	Resume	Next

Set	objOutlook	=	GetObject(,	"Outlook.Application")

7.	 If	Outlook	is	not	open,	end	the	macro:

If	objOutlook	Is	Nothing	Then

Err.Clear

MsgBox	"Cannot	continue—Outlook	is	not	open.",	,	_

"Please	open	Outlook	and	try	again."

Exit	Sub

8.	 At	this	point,	Outlook	is	verified	to	be	open.	Establish	an	Object	variable	for	a
mailitem:

Else

http://www.wrox.com/excelvba24hour
mailto:no_one@nowhere.com
mailto:anyone@anywhere.com
mailto:someone@somewhere.com

Dim	objMailItem	As	Object

Set	objMailItem	=	objOutlook.CreateItem(0)

9.	 Declare	a	String	variable	for	the	recipient	list,	and	a	Long	variable	for	the	count	of
cells	in	column	A	that	contain	e-mail	addresses:

Dim	strTo	As	String

Dim	i	As	Integer

strTo	=	""

i	=	1

10.	 Loop	through	the	recipient	e-mail	addresses	you	entered	from	Step	1	to	build	a
continuous	string	where	each	recipient	address	is	separated	by	a	semicolon	and	a
space,	just	as	it	would	appear	in	an	Outlook	To	field:

Do

strTo	=	strTo	&	Cells(i,	1).Value	&	";	"

i	=	i	+	1

Loop	Until	IsEmpty(Cells(i,	1))

'Remove	the	last	two	characters	from	the	string,

'which	are	an	unneeded	semicolon	and	space.

strTo	=	Mid(strTo,	1,	Len(strTo)	-	2)

11.	 Display	the	e-mail	message,	including	the	attachment	of	the	active	workbook:

With	objMailItem

.To	=	strTo

.Subject	=	"Test	of	multiple	recipients"

.Body	=	_

"Hello	everyone,	testing	multiple	recipients	with	a	workbook	

attachment."

.Attachments.Add	ActiveWorkbook.FullName

.Display	'Change	to	Send

End	With

NOTE	The	active	workbook	you	are	attaching	must	be	an	actual	workbook	that
has	been	named	and	saved,	or	the	code	line	.Attachments.Add
ActiveWorkbook.FullName	will	fail.

12.	 Release	Object	variables	from	system	memory:

Set	objOutlook	=	Nothing

Set	objMailItem	=	Nothing

13.	 Close	the	If	structure:

End	If

14.	 When	your	macro	is	complete,	it	should	look	like	this:

Sub	EmailAttachmentRecipients()

'Declare	the	Object	variable	for	Outlook.

Dim	objOutlook	As	Object

'Verify	Outlook	is	open.

On	Error	Resume	Next

Set	objOutlook	=	GetObject(,	"Outlook.Application")

'If	Outlook	is	not	open,	end	the	Sub.

If	objOutlook	Is	Nothing	Then

Err.Clear

MsgBox	"Cannot	continue—Outlook	is	not	open.",	,	_

"Please	open	Outlook	and	try	again."

Exit	Sub

'Outlook	is	determined	to	be	open,	so	OK	to	proceed.

Else

'Establish	an	Object	variable	for	a	mailitem.

Dim	objMailItem	As	Object

Set	objMailItem	=	objOutlook.CreateItem(0)

'Declare	a	String	variable	for	the	recipient	list,

'and	a	Long	variable	for	the	count	of	cells	in	column	A

'that	contain	email	addresses.

Dim	strTo	As	String

Dim	i	As	Integer

strTo	=	""

i	=	1

'Loop	through	the	recipient	email	addresses	you	entered	from	Step	1,

'in	order	to	build	a	continuous	string	where	each	recipient	address

'is	separated	by	a	semicolon	and	a	space,	just	as	it	would	appear

'in	an	Outlook	"To"	field.

Do

strTo	=	strTo	&	Cells(i,	1).Value	&	";	"

i	=	i	+	1

Loop	Until	IsEmpty(Cells(i,	1))

'Remove	the	last	two	characters	from	the	string,

'which	are	an	unneeded	semicolon	and	space.

strTo	=	Mid(strTo,	1,	Len(strTo)	-	2)

'Display	the	email	message,	including	the	attachment	of	the	active	

workbook.

With	objMailItem

.To	=	strTo

.Subject	=	"Test	of	multiple	recipients"

.Body	=	_

"Hello	everyone,	testing	multiple	recipients	with	a	workbook	

attachment."

.Attachments.Add	ActiveWorkbook.FullName

.Display	'Change	to	Send

End	With

'Release	object	variables	from	system	memory.

Set	objOutlook	=	Nothing

Set	objMailItem	=	Nothing

'Close	the	If	structure.

End	If

End	Sub

15.	 Press	Alt+Q	to	return	to	the	worksheet.	Press	Alt+F8	to	show	the	Macro	dialog	box,
and	test	the	macro	by	selecting	its	name	and	clicking	the	Run	button.

REFERENCE	Please	select	the	video	for	Lesson	31	online	at	www.wrox.com/go
/excelvba24hour.	You	will	also	be	able	to	download	the	code	and	resources	for	this
lesson	from	the	website.

http://www.wrox.com/go /excelvba24hour

Lesson	32
Working	with	Access	from	Excel
As	terrific	a	product	as	Excel	is,	there	can	come	a	point	when	the	volume	of	data	you	are
working	with	will	exceed	Excel's	capacity	for	storing	records.	Even	with	more	than	one
million	available	rows	starting	with	version	2007,	some	projects	require	a	larger	data
management	platform	with	Microsoft	Access.	If	you	plan	to	develop	projects	for	business
clients,	sooner	or	later	you'll	encounter	a	client	that	uses	Access	for	its	relational	database
capabilities.

Using	Excel	VBA	with	the	storage	capabilities	of	an	Access	relational	database	is	a
powerful	combination	for	front-end	data	management.	This	lesson	offers	examples	for
adding,	retrieving,	and	updating	records	in	Access	data	tables	from	the	familiar	comfort	of
your	Excel	workbook.

Adding	a	Record	to	an	Access	Table
Among	the	more	common	actions	you'll	do	when	interacting	with	Access	from	Excel	is	to
transfer	records	from	an	Excel	worksheet	to	an	Access	database	table,	and	vice	versa.
Suppose	there	is	an	Access	database	named	Database2.accdb	that	contains	a	table	named
Table1	with	six	fields.	In	Sheet5	of	your	Excel	workbook,	you	amass	records	during	the
day	that	are	added	to	Table1	at	the	end	of	the	workday.

NOTE	A	reference	to	the	Microsoft	ActiveX	Data	Objects	2.8	Library	is	required	for
the	code	in	this	lesson	to	run.	Before	attempting	to	run	the	macros,	get	into	the	VBE
and	from	the	menu	bar,	click	Tools	 	References.	Navigate	to	the	reference	for
Microsoft	ActiveX	Data	Objects	2.8	Library	(or	the	highest	Data	Objects	Library
number	you	see	starting	with	the	number	2),	select	it	as	indicated	in	Figure	32.1,	and
click	OK.

Figure	32.1

Suppose	you	have	a	table	named	Table1	in	an	Access	database	file	to	maintain	a	list	of

employees	at	your	company,	as	shown	in	Figure	32.2.	As	the	company	hires	new
employees,	the	information	is	first	recorded	in	an	Excel	workbook	for	other	internal
business	purposes.	Figure	32.3	shows	that	two	new	employees	were	hired	in	2015,	whose
information	needs	to	be	appended	to	the	existing	table	in	Access.

Figure	32.2

Figure	32.3

To	automate	the	task	of	updating	a	table	in	Access	with	records	from	Excel,	you	would
maintain	the	Excel	table	with	the	fields	in	the	same	order,	and	the	field	headers	spelled
exactly	the	same	way	as	they	are	found	in	the	Access	table	you	will	update.	Notice	that	the
field	headers	are	identical	in	Figures	32.2	and	32.3.

NOTE	In	the	previous	paragraph,	I	wrote	that	field	headers	on	your	spreadsheet	and
in	your	Access	table	must	be	identical,	in	the	same	order	and	spelled	exactly	the
same.	I'm	using	this	tip	as	a	reminder	that	any	difference,	such	as	a	stray	spacebar
character	or	misspelling,	will	cause	the	following	macro	to	fail.	If	you	get	a	runtime
error	number	3265,	your	first	move	should	be	to	check	for	any	differences	in	how
your	field	headers	are	arranged	and/or	spelled.

The	following	Excel	macro	named	AppendRecords	appends	the	two	new	employee
records	from	the	Excel	worksheet	into	Table1	of	the	Database2	file.	Figure	32.4	shows
how	Table1	looks	after	the	AppendRecords	macro	adds	the	two	new	employee	records.

Sub	AppendRecords()

'Declare	variables.

Dim	dbConnection	As	ADODB.Connection

Dim	dbFileName	As	String

Dim	dbRecordset	As	ADODB.Recordset

Dim	xRow	As	Long,	xColumn	As	Long

Dim	LastRow	As	Long

'Go	to	the	worksheet	containing	the	records	you	want	to	transfer.

Worksheets("Sheet5").Activate

'Determine	the	last	row	of	data	based	on	column	A.

LastRow	=	Cells(Rows.Count,	1).End(xlUp).Row

'Create	the	connection	to	the	database.

Set	dbConnection	=	New	ADODB.Connection

'Define	the	database	file	name.

dbFileName	=	"C:\Your\File\Path\Database2.accdb"

'Define	the	Provider	and	open	the	connection.

With	dbConnection

.Provider	=	"Microsoft.ACE.OLEDB.12.0;Data	Source="	&	dbFileName	&	_

";Persist	Security	Info=False;"

.Open	dbFileName

End	With

'Create	the	recordset.

Set	dbRecordset	=	New	ADODB.Recordset

dbRecordset.CursorLocation	=	adUseServer

dbRecordset.Open	Source:="Table1",	_

ActiveConnection:=dbConnection,	_

CursorType:=adOpenDynamic,	_

LockType:=adLockOptimistic,	_

Options:=adCmdTable

'Load	the	records	from	Excel	to	Access,	by	looping	through	the	rows	and	

columns.

'Assume	row	1	is	the	header	row,	so	start	at	row	2.

For	xRow	=	2	To	LastRow

dbRecordset.AddNew

'Assume	this	is	an	6-column	(field)	table	starting	with	column	A.

For	xColumn	=	1	To	6

dbRecordset(Cells(1,	xColumn).Value)	=	Cells(xRow,	xColumn).Value

NOTE	The	preceding	line	of	code	will	fail	and	result	in	a	runtime	error	if	any	field	in
your	Excel	table	contains	data	that	is	in	conflict	with	the	specified	data	type	of	its
corresponding	field	in	the	Access	table.	For	example,	if	the	second	field	in	your
Access	table	is	specified	to	be	a	Number	data	type,	and	in	your	Excel	worksheet,
column	B	has	a	text	value	in	it,	the	macro	will	fail	at	this	point	because	the	code	is
attempting	to	place	a	text	value	into	an	Access	field	meant	to	accept	only	numbers.

Next	xColumn

dbRecordset.Update

Next	xRow

'Close	the	connections.

dbRecordset.Close

dbConnection.Close

'Release	Object	variable	memory.

Set	dbRecordset	=	Nothing

Set	dbConnection	=	Nothing

'Alert	the	user	that	the	process	is	complete.

MsgBox	"Transfer	complete!",	,	"Done!"

End	Sub

Figure	32.4

NOTE	You	are	probably	aware	that	beginning	with	the	release	of	Office	97,
extensions	changed	for	Microsoft	applications.	For	example,	Excel	workbooks	that
had	the	extension	.xls	now	are	either	.xlsx	or	.xlsm.	Access	extensions	also
changed,	from	.mdb	to	.accdb,	as	shown	in	the	preceding	macro.

Take	note	of	the	version(s)	of	Excel	and	Access	when	the	time	comes	to	implement	this
code.	Especially,	the	Provider	line	in	the	code	is

.Provider	=	"Microsoft.ACE.OLEDB.12.0;Data	Source="	_

&	dbFileName	&	";Persist	Security	Info=False;".

Had	this	been	a	version	of	Office	prior	to	2007,	that	same	line	might	have	been

.Provider	=	"Microsoft.Jet.OLEDB.4.0"

or

.Provider	=	"Microsoft.Jet.OLEDB.4.0;"	&	"Data	Source="	_

&	dbFileName	&	";"	&	"Extended	Properties=Excel	8.0;".

Exporting	an	Access	Table	to	an	Excel	Spreadsheet
As	mentioned	earlier,	you	will	commonly	need	to	import	a	table	from	an	Access	database
into	an	Excel	worksheet	to	take	advantage	of	Excel's	versatile	formatting	and	data
manipulation	capabilities.	To	export	the	database's	Table1	data,	you	define	the	recordset
while	passing	an	SQL	string	to	the	connection.	In	this	example,	the	entire	count	of	records
in	Table1	is	copied	to	Sheet2	in	your	Excel	workbook:

Sub	AccessToExcel()

'Declare	variables.

Dim	dbConnection	As	ADODB.Connection

WHAT	IF	YOU	ONLY	WANT	TO	OPEN	AN	ACCESS
DATABASE	FILE	FROM	EXCEL?
A	common	theme	you'll	notice	with	the	examples	in	this	lesson	is	that	Excel	is	acting
upon	the	Access	files	by	connecting	to	them,	rather	than	by	opening	and	closing	them
as	you	see	in	the	lessons	for	working	with	Word,	Outlook,	and	PowerPoint.	You	will
rarely	need	Excel	to	open	an	Access	database	just	for	the	sake	of	opening	it.

If	the	situation	arises	where	you	do	need	to	open	an	Access	database	from	Excel,	the
following	example	is	what	I	use.	It	works	by	incorporating	a	ShellExecute	command
in	conjunction	with	the	declaration	of	the	ShellExecute	function	from	the	Windows
API.	The	ShellExecute	function	in	the	Windows	API	performs	an	operation	on	a
specified	file.	In	this	case,	the	specified	file	is	the	one	you	want	to	open	(named
Database1.accdb	in	the	hypothetical	directory	path	C:\Your\File\Path),	and	the
operation	is	to	open	that	database	file,	using	the	parameters	in	the	declaration
statement.	This	code	is	placed	in	a	standard	Excel	VBA	module	just	as	any	macro
would	be,	and	works	with	Windows	versions	from	XP	through	Windows	8.1.	If	you
are	running	Excel	with	the	64-bit	version	of	Office,	there	is	an	explanation	of	the
PtrSafe	keyword	in	Lesson	28	in	the	section	“Using	the	Windows	API	with	VBA.”

#If	VBA7	Then

Public	Declare	PtrSafe	Function	_

ShellExecute	Lib	"shell32.dll"	Alias	"ShellExecuteA"	(_

ByVal	hwnd	As	LongPtr,	ByVal	lpOperation	As	String,	_

ByVal	lpFile	As	String,	ByVal	lpParameters	As	String,	_

ByVal	lpDirectory	As	String,	ByVal	nShowCmd	As	Long)	As	LongPtr

#Else

Public	Declare	Function	_

ShellExecute	Lib	"shell32.dll"	Alias	"ShellExecuteA"	(_

ByVal	hwnd	As	Long,	ByVal	lpOperation	As	String,	_

ByVal	lpFile	As	String,	ByVal	lpParameters	As	String,	_

ByVal	lpDirectory	As	String,	ByVal	nShowCmd	As	Long)	As	Long

#End	If

Sub	OpenAccessDB()

Call	ShellExecute(0,	"Open",	"Database1.accdb",	"",	_

"C:\Your\File\Path",	1)

End	Sub

Dim	dbRecordset	As	ADODB.Recordset

Dim	dbFileName	As	String

Dim	strSQL	As	String

Dim	DestinationSheet	As	Worksheet

'Set	the	assignments	to	the	Object	variables.

Set	dbConnection	=	New	ADODB.Connection

Set	dbRecordset	=	New	ADODB.Recordset

Set	DestinationSheet	=	Worksheets("Sheet2")

'Define	the	Access	database	path	and	name.

dbFileName	=	"C:\Your\File\Path\Database2.accdb"

'Define	the	Provider	for	post-2007	database	files.

dbConnection.Provider	=	"Microsoft.ACE.OLEDB.12.0;Data	Source="	_

&	dbFileName	&	";Persist	Security	Info=False;"

'Use	SQL's	SELECT	and	FROM	statements	for	importing	Table1.

strSQL	=	"SELECT	Table1.*	FROM	Table1;"

'Clear	the	destination	worksheet.

DestinationSheet.Cells.Clear

With	dbConnection

'Open	the	connection.

.Open

'The	purpose	of	this	line	is	to	disconnect	the	recordset.

.CursorLocation	=	adUseClient

End	With

With	dbRecordset

'Create	the	recordset.

.Open	strSQL,	dbConnection

'Disconnect	the	recordset.

Set	.ActiveConnection	=	Nothing

End	With

'Copy	the	table1	recordset	to	Sheet2	starting	in	cell	A2.

'Row	1	contains	headers	that	will	be	populated	at	the	next	step.

DestinationSheet.Range("A2").CopyFromRecordset	dbRecordset

'Reinstate	field	headers	(assumes	a	6-column	table).

'Note	that	the	ID	field	will	also	transfer	into	column	A,

'so	you	can	optionally	delete	column	A.

DestinationSheet.Range("A1:G1").Value	=	_

Array("ID",	"FirstName",	"LastName",	"Gender",	"Title",	"Region",	

"YearHired")

'Close	the	recordset.

dbRecordset.Close

'Close	the	connection.

dbConnection.Close

'Release	Object	variable	memory.

Set	dbRecordset	=	Nothing

Set	dbConnection	=	Nothing

Set	DestinationSheet	=	Nothing

End	Sub

NOTE	Here's	a	tip	to	import	a	database	table	into	your	spreadsheet	manually.	It'll
come	with	the	alternating	shaded	rows	and	field	header	drop-down	arrows,	but	it's
fast	and	easy!	With	the	database	file	closed,	the	keyboard	shortcut	Alt+D+D+D
shows	the	Select	Data	Source	window.	Navigate	to	your	database	file,	select	its	name,
and	click	Open.	In	the	Select	Table	dialog	box,	select	the	name	of	the	table	you	want
to	import	and	click	OK.	In	the	Import	Data	dialog	box,	select	the	option	for	Table.
Finally,	select	the	option	for	Existing	Worksheet	and	specify	the	cell	address,	or	the
option	for	New	Worksheet,	and	click	OK.

Creating	a	New	Table	in	Access
Suppose	you	are	managing	a	project	that	involves	both	Excel	and	Access,	and	you	need	to
add	a	new	table	to	the	Access	database.	You	can	do	that	with	the	following	macro,	and
from	there	if	need	be,	using	the	first	macro	in	this	lesson	named	AppendRecords,	you	can
transfer	any	records	you	may	have	accumulated	for	that	new	table.

In	this	example,	you	create	a	simple	three-field	table	to	maintain	a	company's	Employee
Identification	Number,	which	is	a	Primary	Field,	and	the	employees'	last	names	and	first
names.	The	new	table	is	named	tblEmployees,	and	it	is	added	to	the	Database2.accdb
file	that's	been	the	subject	of	this	lesson.	Figure	32.5	shows	Database2.accdb	with	the
new	table	added	after	running	the	following	macro	named	CreateAccessTable:

Sub	CreateAccessTable()

'Create	a	three-column	table	in	an	existing	Access	database:

'EmployeeID

'LastName

'FirstName

'Declare	variables.

Dim	dbConnection	As	ADODB.Connection

Dim	dbCommand	As	ADODB.Command

Dim	dbFileName	As	String

'Define	the	Access	database	path	and	name.

dbFileName	=	"C:\Your\File\Path\Database2.accdb"

'Set	the	assignment	to	open	the	connection.

Set	dbConnection	=	New	ADODB.Connection

'Define	the	Provider	and	open	the	connection.

With	dbConnection

.Provider	=	"Microsoft.ACE.OLEDB.12.0;Data	Source="	&	dbFileName	&	_

";Persist	Security	Info=False;"

.Open	dbFileName

End	With

'Set	the	Command	variables.

Set	dbCommand	=	New	ADODB.Command

Set	dbCommand.ActiveConnection	=	dbConnection

'Create	the	table,	which	will	be	named	tblEmployees.

dbCommand.CommandText	=	_

"CREATE	TABLE	tblEmployees	(EmployeeID	Char(10)	"	&	_

"Primary	Key,	LastName	text,	FirstName	text)"

'Execute	the	command	to	create	the	table.

dbCommand.Execute	,	,	adCmdText

'Release	Object	variable	memory.

Set	dbCommand	=	Nothing

Set	dbConnection	=	Nothing

End	Sub

NOTE	The	text	reference	following	the	field	names	in	the	CommandText	statement	is
to	advise	Access	that	the	fields'	data	type	will	be	Text.	As	you	may	know,	with	Access
tables,	other	field	types	are	Memo,	Number,	Date/Time,	Currency,	Yes/No,	OLE
Object,	Hyperlink,	and	Attachment.

Figure	32.5

Try	It
For	this	lesson,	you	maintain	an	Access	database	named	Database2.accdb.	In	that
database	is	a	table	named	tblEmployees,	for	which	you	write	a	macro	that	adds	a	new
field	to	hold	the	middle	names	of	employees.

Lesson	Requirements
To	get	the	sample	Excel	workbook	and	Access	database,	you	can	download	Lesson	32
from	the	book's	website	at	www.wrox.com/go/excelvba24hour.

Step-by-Step
1.	 In	your	Excel	workbook,	press	Alt+F11	to	go	to	the	Visual	Basic	Editor.

2.	 From	the	VBE	menu	bar,	click	Insert	 	Module.

3.	 In	the	new	module,	type	the	name	of	your	macro:	AddNewField.	Press	Enter,	and	VBA
automatically	places	a	pair	of	parentheses	after	the	macro	name,	followed	by	an	empty
line,	followed	by	the	End	Sub	statement.	Your	code	looks	as	follows:

Sub	AddNewField()

End	Sub

4.	 Similar	to	what	you	have	seen	in	this	lesson's	macros,	declare	three	variables:	one	for
the	ADO	connection,	one	for	the	ADO	command,	and	one	for	the	full	path	and	name
of	the	Access	database	you	are	working	with:

Dim	dbConnection	As	ADODB.Connection

Dim	dbCommand	As	ADODB.Command

Dim	dbFileName	As	String

5.	 Define	the	Access	database	path	and	name:

dbFileName	=	"C:\Your\File\Path\Database2.accdb"

6.	 Set	the	assignment	to	open	the	connection:

Set	dbConnection	=	New	ADODB.Connection

7.	 Define	the	Provider	and	open	the	connection:

With	dbConnection

.Provider	=	"Microsoft.ACE.OLEDB.12.0;Data	Source="	&	dbFileName	&	_

";Persist	Security	Info=False;"

.Open	dbFileName

End	With

8.	 Set	the	Command	variables:

Set	dbCommand	=	New	ADODB.Command

Set	dbCommand.ActiveConnection	=	dbConnection

9.	 Establish	the	command	that	adds	a	field	for	a	middle	name:

http://www.wrox.com/go/excelvba24hour

dbCommand.CommandText	=	_

"ALTER	TABLE	tblEmployees	Add	Column	MiddleName	text)"

10.	 Execute	the	command	to	create	the	new	field:

dbCommand.Execute	,	,	adCmdText

11.	 Release	Object	variable	memory:

Set	dbCommand	=	Nothing

Set	dbConnection	=	Nothing

12.	 Examine	the	Database2.accdb	file	to	confirm	the	existence	of	your	new	field	for	a
middle	name.	Figure	32.6	shows	what	you	should	see,	and	the	following	code	shows
the	complete	macro.

Sub	AddNewField()

'Declare	variables

Dim	dbConnection	As	ADODB.Connection

Dim	dbCommand	As	ADODB.Command

Dim	dbFileName	As	String

'Define	the	Access	database	path	and	name.

dbFileName	=	"C:\Your\File\Path\Database2.accdb"

'Set	the	assignment	to	open	the	connection.

Set	dbConnection	=	New	ADODB.Connection

'Define	the	Provider	and	open	the	connection.

With	dbConnection

.Provider	=	"Microsoft.ACE.OLEDB.12.0;Data	Source="	&	dbFileName	&	_

";Persist	Security	Info=False;"

.Open	dbFileName

End	With

'Set	the	Command	variables.

Set	dbCommand	=	New	ADODB.Command

Set	dbCommand.ActiveConnection	=	dbConnection

'Establish	the	command	that	adds	a	field	for	a	middle	name.

dbCommand.CommandText	=	_

"ALTER	TABLE	tblEmployees	Add	Column	MiddleName	text)"

'Execute	the	command	to	create	the	new	field.

dbCommand.Execute	,	,	adCmdText

'Release	Object	variable	memory.

Set	dbCommand	=	Nothing

Set	dbConnection	=	Nothing

End	Sub

Figure	32.6

REFERENCE	Please	select	the	video	for	Lesson	32	online	at
www.wrox.com/go/excelvba24hour.	You	will	also	be	able	to	download	the	code	and
resources	for	this	lesson	from	the	website.

http://www.wrox.com/go/excelvba24hour

Lesson	33
Working	with	PowerPoint	from	Excel
With	each	new	release	of	its	Office	suite,	Microsoft	has	made	it	increasingly	easier	to
share	information	between	applications.	Copying	data	from	Excel,	such	as	a	worksheet
range	or	chart,	and	pasting	it	into	a	PowerPoint	slide	is	as	simple	as	copying	and	pasting
from	Excel	into	a	Word	document.

Still,	PowerPoint	is	a	unique	animal	in	that	its	primary	purpose	is	not	to	manipulate	data
but	to	display	images	of	data	for	presentation	purposes.	When	you	need	to	transfer	data
from	Excel	to	PowerPoint,	such	as	a	chart	or	a	range	of	cells,	I	recommend	you	use	VBA's
CopyPicture	method,	which	pastes	an	image	of	the	data—not	the	data	itself—into
PowerPoint.

Creating	a	New	PowerPoint	Presentation
Creating	a	new	PowerPoint	presentation	file	is	an	uncomplicated	process;	all	you	do	is
follow	the	usual	steps	for	creating	the	PowerPoint	application	and	then	add	a	presentation
with	the	expression	Presentations.Add.	Here's	an	example	from	start	to	finish,	ending	up
with	a	new	presentation	file	and	an	initial	slide:

Sub	CreateNewPresentation()

'Declare	Object	variables	for	the	PowerPoint	application

'and	for	the	PowerPoint	presentation	file.

Dim	ppApp	As	Object,	ppPres	As	Object

'Declare	Object	variable	for	a	PowerPoint	slide.

Dim	ppSlide	As	Object

'Open	PowerPoint.

Set	ppApp	=	CreateObject("PowerPoint.Application")

'Make	the	PowerPoint	application	visible.

ppApp.Visible	=	msoTrue

'Create	a	new	Presentation	and	add	a	slide.

Set	ppPres	=	ppApp.Presentations.Add

With	ppPres.Slides

'11	is	the	numeric	Constant	for	ppLayoutTitleOnly.

'The	Constant	is	used	with	late	binding.

Set	ppSlide	=	.Add(.Count	+	1,	11)

End	With

'Save	your	new	file.

ppPres.SaveAs	Filename:=ThisWorkbook.Path	&	"\CreateTest.pptx"

'Release	system	memory	reserved	for	the	Object	variables.

Set	ppApp	=	Nothing

Set	ppPres	=	Nothing

Set	ppSlide	=	Nothing

End	Sub

Copying	a	Worksheet	Range	to	a	PowerPoint	Slide
Now	that	you	have	just	created	a	PowerPoint	presentation	file,	while	it's	still	open,
suppose	you	want	to	copy	a	worksheet	range	into	that	presentation's	first	slide.	The
following	macro	uses	an	InputBox	for	the	user	to	select	a	range	to	be	copied.

NOTE	Please	note	that	this	macro	relies	on	the	PowerPoint	presentation	file	to	be
open.	The	code	will	not	copy	an	Excel	worksheet	range	to	a	closed	PowerPoint
presentation.

Sub	CopyRange()

'Declare	a	Range	type	variable.

Dim	rng	As	Range

'Use	an	Application	InputBox	to	have	the	user	select	the	desired	range.

'Exit	the	macro	if	the	user	cancels.

On	Error	Resume	Next

Set	rng	=	Application.InputBox("Select	a	range	to	be	copied:",	Type:=8)

If	Err.Number	<>	0	Then

Err.Clear

MsgBox	"You	did	not	enter	a	range.",	vbInformation,	"Cancelled"

Exit	Sub

End	If

'Monitor	the	size	of	the	range	so	an	unreasonably	large	range	is	not	

attempted.

If	rng.Columns.Count	>	6	Or	rng.Rows.Count	>	20	Then

MsgBox	"You	selected	a	range	that	is	too	large."	&	vbCrLf	&	_

"Please	select	a	range	that	has	no	more	than"	&	vbCrLf	&	_

"6	columns	and/or	20	rows.",	vbCritical,	"Range	too	large!"

Exit	Sub

End	If

'Declare	Object	variables.

Dim	ppApp	As	Object,	ppPres	As	Object,	ppSlide	As	Object

'Assign	the	PowerPoint	application	you	are	working	in	to	the	ppApp	

variable.

Set	ppApp	=	GetObject(,	"Powerpoint.Application")

'Assign	the	presentation	file	you	are	working	in.

Set	ppPres	=	ppApp.ActivePresentation

Set	ppSlide	=	

ppPres.Slides(ppApp.ActiveWindow.Selection.SlideRange.SlideIndex)

'Copy	the	range	as	a	picture.

rng.CopyPicture	Appearance:=xlScreen,	Format:=xlPicture

'Paste	the	picture	of	the	range	onto	the	slide.

ppSlide.Shapes.Paste.Select

'Align	the	range	picture	to	be	centered	in	the	slide.

With	ppApp.ActiveWindow.Selection.ShapeRange

.Align	msoAlignCenters,	msoTrue

.Align	msoAlignMiddles,	msoTrue

End	With

'Release	system	memory	reserved	for	the	Object	variables.

Set	rng	=	Nothing

Set	ppApp	=	Nothing

Set	ppPres	=	Nothing

Set	ppSlide	=	Nothing

End	Sub

NOTE	One	consideration	to	monitor	is	the	selected	size	of	a	range,	as	you	can	see	in
the	code.	My	column	and	row	limitations	are	just	for	example	purposes.	Whatever
limit,	if	any,	that	you	decide,	the	objective	should	be	to	place	a	clear,	concise	image
on	the	slide.

Copying	Chart	Sheets	to	PowerPoint	Slides
The	Try	It	section	of	this	lesson	discusses	how	to	copy	an	embedded	chart	into
PowerPoint.	If	you	have	a	choice	between	copying	embedded	charts	or	chart	sheets,
choose	embedded	charts—they	provide	you	with	greater	control	over	how	well	they	can
be	sized	to	fit	a	PowerPoint	slide.	This	is	because	the	ChartObject	object	is	the	container
for	an	embedded	chart,	and	it	has	properties	that	you	can	control	for	height,	width,	and
location	(where	you	can	place	it	on	the	worksheet).	Charts	on	chart	sheets	do	not	allow
you	to	control	their	size.

Sometimes	you	won't	have	a	choice,	such	as	when	a	project	calls	for	chart	sheets	to	be
copied	into	PowerPoint,	and	that	is	what	the	following	macro	accomplishes.	To	take	things
a	step	further,	this	macro	does	the	following:

1.	 Creates	a	new	PowerPoint	presentation.

2.	 Adds	an	initial	title	slide.

3.	 Loops	through	all	chart	sheets,	and	with	each	one,	copies	its	image	and	pastes	it	into	a
new	slide.

4.	 Places	a	header	title	on	each	slide,	then	populates	it	with	the	chart	name	and	formats
the	text.

5.	 Saves	the	file.

Sub	CopyChartSheets()

'Declare	Object	variables	for	the	PowerPoint	application

'and	for	the	PowerPoint	presentation	file.

Dim	ppApp	As	Object,	pptPres	As	Object

'Declare	Object	variable	for	a	PowerPoint	slide.

Dim	pptSlide	As	Object

'Declare	variables	for	the	Charts	you	will	copy.

Dim	ch	As	Chart

'Declare	an	Integer	type	variable	for	a	running	count	of	slides

'as	each	chart	sheet	is	added	to	the	new	presentation	file.

Dim	SlideCount	As	Integer

'Open	PowerPoint.

Set	ppApp	=	CreateObject("PowerPoint.Application")

'Make	the	PowerPoint	application	visible.

ppApp.Visible	=	msoTrue

'Create	a	new	Presentation	and	add	a	title	slide.

Set	pptPres	=	ppApp.Presentations.Add

With	pptPres.Slides

Set	pptSlide	=	.Add(.Count	+	1,	11)

End	With

pptSlide.Shapes.Title.TextFrame.TextRange.Text	=	"Chart	sheet	copy	test"

'Open	a	For…Next	loop	to	place	each	Chart	sheet	in	a	slide.

For	Each	ch	in	ThisWorkbook.Charts

ch.CopyPicture	Appearance:=xlScreen,	Format:=xlPicture,	Size:=xlScreen

'Add	a	new	slide.

SlideCount	=	pptPres.Slides.Count

Set	pptSlide	=	pptPres.Slides.Add(SlideCount	+	1,	11)

ppApp.ActiveWindow.View.GotoSlide	pptSlide.SlideIndex

'Paste	and	select	the	chart	picture.

pptSlide.Shapes.Paste

'Select	the	pasted	shape.

pptSlide.Shapes(1).Select

'Align	the	chart	to	be	centered	in	the	slide.

With	ppApp.ActiveWindow.Selection.ShapeRange

.Align	msoAlignCenters,	msoTrue

.Align	msoAlignMiddles,	msoTrue

End	With

'Set	the	position	of	the	slide's	header	label.

With	ppApp.ActiveWindow.Selection

.SlideRange.Shapes.AddLabel	_

(msoTextOrientationHorizontal,	300,	20,	500,	50).Select

.ShapeRange.TextFrame.WordWrap	=	msoFalse

'Format	the	header	label.

With	.ShapeRange.TextFrame.TextRange

.Characters(Start:=1,	Length:=0).Select

.Text	=	"This	is	"	&	ch.Name

With	.Font

.Name	=	"Arial"

.Size	=	12

.Bold	=	msoTrue

End	With

End	With

End	With

'Continue	the	loop	until	all	chart	sheets	have	been	copied.

Next	ch

'End	the	macro	by	activating	the	first	slide.

ppApp.ActiveWindow.View.GotoSlide	1

'Save	your	new	file.

pptPres.SaveAs	Filename:=ThisWorkbook.Path	&	"\ChartSheetTest.pptx"

'Release	system	memory	reserved	for	the	Object	variables.

Set	ppApp	=	Nothing

Set	pptSlide	=	Nothing

Set	pptPres	=	Nothing

Set	ppApp	=	Nothing

End	Sub

Running	a	PowerPoint	Presentation	from	Excel
Running	a	PowerPoint	presentation	from	Excel	provides	a	dynamic	effect	to	your	Excel
project.	Unlike	Word,	Outlook,	or	Access,	just	opening	a	presentation	file	in	PowerPoint	is
not	enough	if	you	want	to	show	what	that	file	contains.	You	can	cycle	through	the	slides
with	the	slideshowsettings.Run	statement.	Notice	the	With	structure	that	demonstrates	a
method	of	setting	the	amount	of	time	(three	seconds	of	the	advancetime	property	in	this
example)	that	each	slide	is	shown,	without	affecting	the	user's	local	PowerPoint	slide
transition	settings:

Sub	PowerPointSlideshow()

'Declare	Object	variables	for	the	PowerPoint	application

'and	for	the	PowerPoint	presentation	file.

Dim	ppApp	As	Object,	ppPres	As	Object

'Declare	String	variables	for	folder	path	and	name	of	file.

Dim	strFilePath	As	String,	strFileName	As	String

'Define	the	String	variables	with	the	directory	path	and	name.

strFilePath	=	"C:\Your\File\Path\"

strFileName	=	"PowerPointExample1.pptx"

'Verify	if	the	path	and	filename	really	exist.

'If	not,	exit	the	macro	and	advise	the	user.

If	Dir(strFilePath	&	strFileName)	=	""	Then

MsgBox	_

"The	PowerPoint	file	"	&	strFileName	&	vbCrLf	&	_

"does	not	exist	in	the	folder	path"	&	vbCrLf	&	_

strFilePath	&	".",	_

vbInformation,	"No	such	animal."

Exit	Sub

End	If

'Open	PowerPoint.

Set	ppApp	=	CreateObject("PowerPoint.Application")

'Make	the	PowerPoint	application	visible.

ppApp.Visible	=	msoTrue

'Open	the	PowerPoint	presentation	you	want	to	run.

Set	ppPres	=	ppApp.Presentations.Open(strFilePath	&	strFileName)

'Establish	the	amount	of	time	each	slide	should	be	shown

'which	in	this	example	is	3	seconds.

With	ppPres.slides.Range.slideshowtransition

.advanceontime	=	True

.advancetime	=	3

End	With

'Run	the	PowerPoint	presentation.

ppPres.slideshowsettings.Run

'When	the	presentation	is	completed,	have	VBA	regard	it	as	saved

'so	you	are	not	prompted	to	save	the	presentation	when	you	close	it.

ppPres.Saved	=	True

'Quit	Powerpoint	(optional)

'ppApp.Quit

'Release	memory	taken	from	the	Object	variables.

Set	ppPres	=	Nothing

Set	ppApp	=	Nothing

End	Sub

Try	It
In	this	lesson,	you	copy	an	embedded	chart	from	a	worksheet	and	paste	its	picture	image
into	an	empty	slide	in	an	open	PowerPoint	presentation.

Lesson	Requirements
To	get	the	sample	workbook	you	can	download	Lesson	33	from	the	book's	website	at
www.wrox.com/go/excelvba24hour.

Step-by-Step
1.	 From	your	workbook,	press	Alt+F11	to	go	to	the	Visual	Basic	Editor.

2.	 From	the	menu	bar	at	the	top	of	the	VBE,	click	Insert	 	Module.

3.	 In	the	module	you	just	created,	type	Sub	CopyEmbeddedChart	and	press	Enter.	VBA
automatically	places	a	pair	of	empty	parentheses	at	the	end	of	the	Sub	line,	followed
by	an	empty	line,	and	the	End	Sub	line	below	that.	Your	macro	looks	like	this	so	far:

Sub	CopyEmbeddedChart()

End	Sub

4.	 This	example	assumes	you	have	PowerPoint	open,	with	your	destination	presentation
file	open,	and	your	destination	slide	selected.	Declare	variables	for	the	PowerPoint
application,	presentation	filename,	and	Slide	object:

Dim	ppApp	As	Object,	ppPres	As	Object,	ppSlide	As	Object

5.	 For	this	example,	you	want	to	copy	the	first	chart	on	your	worksheet.	Select	the	chart
programmatically	by	its	index	number	1:

ActiveSheet.ChartObjects(1).Select

6.	 Establish	the	identity	of	the	open	PowerPoint	application:

'Establish	the	identity	of	the	open	PowerPoint	application.

'Check	to	make	sure	PowerPoint	is	open.

'If	PowerPoint	is	not	open,	halt	the	macro	and	inform	the	user.

On	Error	Resume	Next

Set	ppApp	=	GetObject(,	"Powerpoint.Application")

If	Err.Number	=	429	Then

Err.Clear

MsgBox	"Please	open	PowerPoint	first,"	&	vbCrLf	&	_

"and	open	the	presentation	where"	&	vbCrLf	&	_

"you	want	to	paste	the	copied	chart.",	48,	"Cannot	continue."

Range("A1").Select

Exit	Sub

End	If

7.	 Establish	the	identity	of	the	open	PowerPoint	presentation:

Set	ppPres	=	ppApp.ActivePresentation

http://www.wrox.com/go/excelvba24hour

8.	 Establish	a	reference	to	the	destination	slide	you	have	manually	selected:

Set	ppSlide	=	

ppPres.Slides(ppApp.ActiveWindow.Selection.SlideRange.SlideIndex)

9.	 Copy	the	selected	chart:

ActiveChart.CopyPicture	Appearance:=xlScreen,	Size:=xlScreen,	

Format:=xlPicture

10.	 Paste	the	chart	into	the	PowerPoint	slide:

ppSlide.Shapes.Paste

11.	 Select	the	picture	of	the	chart	you	just	pasted	onto	the	PowerPoint	slide:

ppSlide.Shapes(1).Select

12.	 Align	the	chart	picture	to	be	centered	in	the	slide:

With	ppApp.ActiveWindow.Selection.ShapeRange

.Align	msoAlignCenters,	msoTrue

.Align	msoAlignMiddles,	msoTrue

End	With

13.	 Deselect	the	selected	chart:

Range("A1").Select

14.	 Release	system	memory	reserved	for	the	Object	variables:

Set	ppApp	=	Nothing

Set	ppPres	=	Nothing

Set	ppSlide	=	Nothing

15.	 When	completed,	the	macro	looks	like	this,	with	comments	that	have	been	added	to
explain	each	step:

Sub	CopyEmbeddedChart()

'This	example	assumes	you	have	PowerPoint	open,

'with	your	destination	presentation	file	open,

'and	your	destination	slide	selected.

'Declare	variables	for	the	PowerPoint	application,

'presentation	filename,	and	Slide	object.

Dim	ppApp	As	Object,	ppPres	As	Object,	ppSlide	As	Object

'For	this	example,	you	want	to	copy	the	first	chart	on	your	worksheet.

'Select	the	chart	by	its	index	number	one.

ActiveSheet.ChartObjects(1).Select

'Establish	the	identity	of	the	open	PowerPoint	application.

'Check	to	make	sure	PowerPoint	is	open.

'If	PowerPoint	is	not	open,	halt	the	macro	and	inform	the	user.

On	Error	Resume	Next

Set	ppApp	=	GetObject(,	"Powerpoint.Application")

If	Err.Number	=	429	Then

Err.Clear

MsgBox	"Please	open	PowerPoint	first,"	&	vbCrLf	&	_

"and	open	the	presentation	where"	&	vbCrLf	&	_

"you	want	to	paste	the	copied	chart.",	48,	"Cannot	continue."

Range("A1").Select

Exit	Sub

End	If

'Establish	the	identity	of	the	open	PowerPoint	presentation.

Set	ppPres	=	ppApp.ActivePresentation

'Establish	a	reference	to	the	destination	slide	you	have	manually	

selected.

Set	ppSlide	=	

ppPres.Slides(ppApp.ActiveWindow.Selection.SlideRange.SlideIndex)

'Copy	the	selected	chart.

ActiveChart.CopyPicture	Appearance:=xlScreen,	Size:=xlScreen,	

Format:=xlPicture

'Paste	the	chart	into	the	PowerPoint	slide.

ppSlide.Shapes.Paste

'Select	the	picture	of	the	chart	you	just	pasted	onto	the	PowerPoint	

slide.

ppSlide.Shapes(1).Select

'Align	the	range	picture	to	be	centered	in	the	slide.

With	ppApp.ActiveWindow.Selection.ShapeRange

.Align	msoAlignCenters,	msoTrue

.Align	msoAlignMiddles,	msoTrue

End	With

'Deselect	the	selected	chart.

Range("A1").Select

'Release	system	memory	reserved	for	the	Object	variables.

Set	ppApp	=	Nothing

Set	ppPres	=	Nothing

Set	ppSlide	=	Nothing

End	Sub

16.	 Press	Alt+Q	to	return	to	the	worksheet.	Press	Alt+F8	to	show	the	Macro	dialog	box,
and	test	the	macro	by	selecting	the	macro	name	and	clicking	the	Run	button.

REFERENCE	Please	select	the	video	for	Lesson	33	online	at	www.wrox.com/go
/excelvba24hour.	You	will	also	be	able	to	download	the	code	and	resources	for	this
lesson	from	the	website.

http://www.wrox.com/go /excelvba24hour

Excel®	VBA
24-Hour	Trainer

Second	Edition
Tom	Urtis

	

	

Excel®	VBA	24-Hour	Trainer,	Second	Edition

Published	by
John	Wiley	&	Sons,	Inc.
10475	Crosspoint	Boulevard
Indianapolis,	IN	46256
www.wiley.com

Copyright	©	2015	by	John	Wiley	&	Sons,	Inc.,	Indianapolis,	Indiana

Published	simultaneously	in	Canada

ISBN:	978-1-118-99137-4
ISBN:	978-1-118-99140-4	(ebk)
ISBN:	978-1-118-99141-1	(ebk)

No	part	of	this	publication	may	be	reproduced,	stored	in	a	retrieval	system	or	transmitted	in	any	form	or	by	any	means,
electronic,	mechanical,	photocopying,	recording,	scanning	or	otherwise,	except	as	permitted	under	Sections	107	or	108
of	the	1976	United	States	Copyright	Act,	without	either	the	prior	written	permission	of	the	Publisher,	or	authorization
through	payment	of	the	appropriate	per-copy	fee	to	the	Copyright	Clearance	Center,	222	Rosewood	Drive,	Danvers,	MA
01923,	(978)	750-8400,	fax	(978)	646-8600.	Requests	to	the	Publisher	for	permission	should	be	addressed	to	the
Permissions	Department,	John	Wiley	&	Sons,	Inc.,	111	River	Street,	Hoboken,	NJ	07030,	(201)	748-6011,	fax	(201)
748-6008,	or	online	at	http://www.wiley.com/go/permissions.

Limit	of	Liability/Disclaimer	of	Warranty:	The	publisher	and	the	author	make	no	representations	or	warranties	with
respect	to	the	accuracy	or	completeness	of	the	contents	of	this	work	and	specifically	disclaim	all	warranties,	including
without	limitation	warranties	of	fitness	for	a	particular	purpose.	No	warranty	may	be	created	or	extended	by	sales	or
promotional	materials.	The	advice	and	strategies	contained	herein	may	not	be	suitable	for	every	situation.	This	work	is
sold	with	the	understanding	that	the	publisher	is	not	engaged	in	rendering	legal,	accounting,	or	other	professional
services.	If	professional	assistance	is	required,	the	services	of	a	competent	professional	person	should	be	sought.	Neither
the	publisher	nor	the	author	shall	be	liable	for	damages	arising	herefrom.	The	fact	that	an	organization	or	Web	site	is
referred	to	in	this	work	as	a	citation	and/or	a	potential	source	of	further	information	does	not	mean	that	the	author	or	the
publisher	endorses	the	information	the	organization	or	Web	site	may	provide	or	recommendations	it	may	make.	Further,
readers	should	be	aware	that	Internet	Web	sites	listed	in	this	work	may	have	changed	or	disappeared	between	when	this
work	was	written	and	when	it	is	read.

For	general	information	on	our	other	products	and	services	please	contact	our	Customer	Care	Department	within	the
United	States	at	(877)	762-2974,	outside	the	United	States	at	(317)	572-3993	or	fax	(317)	572-4002.

Wiley	publishes	in	a	variety	of	print	and	electronic	formats	and	by	print-on-demand.	Some	material	included	with
standard	print	versions	of	this	book	may	not	be	included	in	e-books	or	in	print-on-demand.	If	this	book	refers	to	media
such	as	a	CD	or	DVD	that	is	not	included	in	the	version	you	purchased,	you	may	download	this	material	at
http://booksupport.wiley.com.	For	more	information	about	Wiley	products,	visit	www.wiley.com.

Library	of	Congress	Control	Number:	2015930536

Trademarks:	Wiley,	the	Wiley	logo,	Wrox,	the	Wrox	logo,	Programmer	to	Programmer,	and	related	trade	dress	are
trademarks	or	registered	trademarks	of	John	Wiley	&	Sons,	Inc.	and/or	its	affiliates,	in	the	United	States	and	other
countries,	and	may	not	be	used	without	written	permission.	Excel	is	a	registered	trademark	of	Microsoft	Corporation.	All
other	trademarks	are	the	property	of	their	respective	owners.	John	Wiley	&	Sons,	Inc.,	is	not	associated	with	any	product
or	vendor	mentioned	in	this	book.

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com

To	my	father,	Bill	Urtis.

About	the	Author

TOM	URTIS	is	a	Microsoft	Excel	MVP	who	has	been	using	Excel	since	1994.	Tom	owns
Atlas	Programming	Management	(www.atlaspm.com),	a	Microsoft	Office	solutions
company	specializing	in	Excel	programming,	development,	testing,	and	training	for	an
international	clientele.	As	an	Excel	trainer,	Tom	created	the	Excel	Aptitude	Test	(XAT®,
http://xat.atlaspm.com),	an	innovative	test	that	measures	knowledge	and	aptitude	of
Excel	for	individuals	and	businesses.

Tom	has	co-authored	Don't	Fear	The	Spreadsheet	(Holy	Macro!	Books,	2012)	and	Holy
Macro,	It's	2500	Excel	VBA	Examples	(Holy	Macro!	Books,	2005),	and	he	has	served	as
technical	editor	and	consultant	for	other	Excel	books	and	training	material.	Tom	actively
contributes	to	the	Excel	community	through	his	blog,	in	forums,	and	with	his	daily	Excel
tips	and	examples	on	social	media.

Tom	is	a	graduate	of	Michigan	State	University.	He	has	lived	in	the	San	Francisco	Bay
Area	since	1983,	where	he	enjoys	the	outdoor	life	that	California	offers.	Tom	is	an	avid
fan	of	college	and	professional	sports,	and	a	collector	of	rare	sports	memorabilia.	Tom	can
be	reached	by	e-mail	at	tom@atlaspm.com.

http://www.atlaspm.com
http://xat.atlaspm.com
mailto:tom@atlaspm.com

About	the	Technical	Editor
Mike	Alexander	is	a	Microsoft	Certified	Application	Developer	(MCAD)	and	author	of
more	than	a	dozen	books	on	advanced	business	analysis	with	Microsoft	Access	and	Excel.
He	has	more	than	16	years	experience	consulting	and	developing	Office	solutions.
Michael	has	been	named	a	Microsoft	MVP	for	his	ongoing	contributions	to	the	Excel
community.

Credits
EXECUTIVE	EDITOR
Carol	Long

PROJECT	EDITOR
Charlotte	Kughen

TECHNICAL	EDITOR
Michael	Alexander

PRODUCTION	EDITOR
Christine	O'Connor

COPY	EDITOR
Kim	Cofer

MANAGER	OF	CONTENT	DEVELOPMENT	AND	ASSEMBLY
Mary	Beth	Wakefield

MARKETING	DIRECTOR
David	Mayhew

MARKETING	MANAGER
Carrie	Sherrill

PROFESSIONAL	TECHNOLOGY	&	STRATEGY	DIRECTOR
Barry	Pruett

BUSINESS	MANAGER
Amy	Knies

ASSOCIATE	PUBLISHER
Jim	Minatel

PROJECT	COORDINATOR,	COVER
Brent	Savage

PROOFREADER
Josh	Chase,	Word	One	New	York

INDEXER
Ted	Laux

COVER	DESIGNER
Wiley

COVER	IMAGE
Wiley

Acknowledgments
THE	PRODUCTION	OF	THIS	BOOK	WAS	made	possible	by	the	combined	efforts	of
highly	talented	people,	starting	with	the	entire	Wiley	Publishing	team,	all	of	whom	are	a
pleasure	to	work	with.	Thanks	to	Carol	Long,	the	executive	editor	who	got	the	project
approved,	and	kept	the	process	moving	from	start	to	finish.	Thanks	to	Technical	Editor
Mike	Alexander,	who	introduced	me	to	Wiley	Publishing	in	2010	when	I	wrote	the	first
edition	to	this	book.	Thanks	to	Charlotte	Kughen,	the	project	editor;	to	Kim	Cofer,	the
copy	editor;	and	to	Christine	O'Connor,	the	production	editor.

Thank	you	to	my	family	and	friends	for	your	understanding	and	support	of	my	book-
writing	schedule,	and	of	my	everyday	drive	for	working	with	Excel	and	teaching	it	to
others.	Many	thanks	to	the	Excel	development	team	at	Microsoft	Corporation	for
improving	Excel	with	each	new	release	of	Office,	while	considering	suggestions	from
Excel	users.	A	special	thanks	to	the	global	Excel	community.	You've	shown	me	creative
ways	to	use	Excel	over	the	years,	and	taught	me	how	to	explain	technical	concepts	to
beginning	Excel	users.

Finally,	I	want	to	thank	you	for	buying	this	book.	Please	tell	us	what	you	think	about	it,
including	what	you	liked	so	we	keep	doing	it,	or	what	you	think	can	be	improved.	After
all,	this	is	your	book.

WILEY	END	USER	LICENSE	AGREEMENT
Go	to	www.wiley.com/go/eula	to	access	Wiley's	ebook	EULA.

http://www.wiley.com/go/eula

	Introduction
	Who This Book Is For
	What This Book Covers
	How This Book Is Structured
	What You Need to Use This Book
	Conventions
	Errata
	p2p.wrox.com

	Part I: Understanding the BASICs
	Lesson 1: Introducing VBA
	What is VBA?
	A Brief History of VBA
	What VBA Can Do for You
	Liabilities of VBA
	Try It

	Lesson 2: Getting Started with Macros
	Composing Your First Macro
	Running A Macro
	Try It

	Lesson 3: Introducing the Visual Basic Editor
	What is the VBE?
	Try It

	Lesson 4: Working in the VBE
	Toolbars in the VBE
	Macros and Modules
	Understanding the Code
	Editing a Macro with Comments and Improvements to the Code
	Try It

	Part II: Diving Deeper into VBA
	Lesson 5: Object-Oriented Programming: An Overview
	What “Object-Oriented Programming” Means
	The Object Model
	Try It

	Lesson 6: Variables, Data Types, and Constants
	What is a Variable?
	Assigning Values to Variables
	Why You Need Variables
	Data Types
	Forcing Variable Declaration
	Understanding a Variable's Scope
	Try It

	Lesson 7: Understanding Objects and Collections
	Workbooks
	Cells and Ranges
	Try It

	Lesson 8: Working with Ranges
	Working with Contiguously Populated Ranges
	Working with Noncontiguously Populated Ranges
	Try It

	Lesson 9: Making Decisions with VBA
	Understanding Logical Operators
	Choosing between this or that
	Getting Users to Make Decisions
	Try It

	Part III: Beyond the Macro Recorder: Writing Your Own Code
	Lesson 10: Repeating Actions with Loops
	What is a Loop?
	Nesting Loops
	Try It

	Lesson 11: Programming Formulas
	Understanding A1 and R1C1 References
	Programming Your Formula Solutions with VBA
	Try It

	Lesson 12: Working with Arrays
	What is an Array?
	The Option Base Statement
	Boundaries in Arrays
	Declaring Arrays with Fixed Elements
	Declaring Dynamic Arrays with Redim and Preserve
	Try It

	Lesson 13: Automating Procedures with Worksheet Events
	What Is an Event?
	Worksheet Events: An Overview
	Examples of Common Worksheet Events
	Try It

	Lesson 14: Automating Procedures with Workbook Events
	Workbook Events: An Overview
	Examples of Common Workbook Events
	Try It

	Lesson 15: Handling Duplicate Items and Records
	Deleting Rows Containing Duplicate Entries
	Working with Duplicate Data
	Try It

	Lesson 16: Using Embedded Controls
	Working with Form Controls and ActiveX Controls
	Try It

	Lesson 17: Programming Charts
	Adding a Chart to a Chart Sheet
	Adding an Embedded Chart to a Worksheet
	Moving a Chart
	Looping Through All Embedded Charts
	Try It

	Lesson 18: Programming PivotTables and PivotCharts
	Creating a PivotTable Report
	Understanding PivotCaches
	Manipulating PivotFields in VBA
	Manipulating PivotItems with VBA
	Creating a PivotTables Collection
	Try It

	Lesson 19: User-Defined Functions
	What Is a User-Defined Function?
	UDF Examples That Solve Common Tasks
	Volatile Functions
	Try It

	Lesson 20: Debugging Your Code
	What Is Debugging?
	What Causes Errors?
	Weapons of Mass Debugging
	Trapping Errors
	Try It

	Part IV: Advanced Programming Techniques
	Lesson 21: Creating UserForms
	What Is a UserForm?
	Creating a UserForm
	Designing a UserForm
	Adding Controls to a UserForm
	Showing a UserForm
	Where Does the UserForm's Code Go?
	Closing a UserForm
	Try It

	Lesson 22: UserForm Controls and Their Functions
	Understanding the Frequently Used UserForm Controls
	Try It

	Lesson 23: Advanced UserForms
	The UserForm Toolbar
	Modal versus Modeless
	Disabling the UserForm's Close Button
	Maximizing Your UserForm's Size
	Selecting and Displaying Photographs on a UserForm
	Unloading a UserForm Automatically
	Pre-sorting the ListBox and ComboBox Items
	Populating ListBoxes and ComboBoxes with Unique Items
	Displaying a Real-Time Chart in a UserForm
	Try It

	Lesson 24: Class Modules
	What Is a Class?
	What Is a Class Module?
	Creating Your Own Objects
	An Important Benefit of Class Modules
	Creating Collections
	Class Modules for Embedded Objects
	Try It

	Lesson 25: Add-Ins
	What Is an Excel Add-In?
	Creating an Add-In
	Converting a File to an Add-In
	Installing an Add-In
	Creating a User Interface for Your Add-In
	Closing Add-Ins
	Removing an Add-In from the Add-Ins List
	Try It

	Lesson 26: Managing External Data
	Creating QueryTables from Web Queries
	Creating a QueryTable for Access
	Using Text Files to Store External Data
	Try It

	Lesson 27: Data Access with ActiveX Data Objects
	Introducing ADO
	An Introduction to Structured Query Language (SQL)
	Try It

	Lesson 28: Impressing Your Boss (or at Least Your Friends)
	Selecting Cells and Ranges
	Filtering Dates
	Setting Page Breaks for Specified Areas
	Using a Comment to Log Changes in a Cell
	Using the Windows API with VBA
	Scheduling Your Workbook for Suicide
	Try It

	Part V: Interacting with Other Office Applications
	Lesson 29: Overview of Office Automation from Excel
	Why Automate Another Application?
	Understanding Office Automation
	Try It

	Lesson 30: Working with Word from Excel
	Activating a Word Document
	Creating a New Word Document
	Copying an Excel Range to a Word Document
	Printing a Word Document from Excel
	Importing a Word Document to Excel
	Try It

	Lesson 31: Working with Outlook from Excel
	Opening Outlook
	Composing an E-mail in Outlook from Excel
	Putting It All Together
	E-mailing a Single Worksheet
	Try It

	Lesson 32: Working with Access from Excel
	Adding a Record to an Access Table
	Exporting an Access Table to an Excel Spreadsheet
	Creating a New Table in Access
	Try It

	Lesson 33: Working with PowerPoint from Excel
	Creating a New PowerPoint Presentation
	Copying a Worksheet Range to a PowerPoint Slide
	Copying Chart Sheets to PowerPoint Slides
	Running a PowerPoint Presentation from Excel
	Try It

	Advertisement

	End User License Agreement

