

Developing	Games	With	Ruby

For	those	who	write	code	for	living
	

Tomas	Varaneckas

	

This	book	is	for	sale	at	http://leanpub.com/developing-games-with-ruby

This	version	was	published	on	2014-12-16

*			*			*			*			*

This	is	a	Leanpub	book.	Leanpub	empowers	authors	and	publishers	with	the	Lean
Publishing	process.	Lean	Publishing	is	the	act	of	publishing	an	in-progress	ebook	using
lightweight	tools	and	many	iterations	to	get	reader	feedback,	pivot	until	you	have	the	right
book	and	build	traction	once	you	do.

*			*			*			*			*

©	2014	Tomas	Varaneckas

http://leanpub.com/developing-games-with-ruby
http://leanpub.com
http://leanpub.com/manifesto

Table	of	Contents

A	Boy	Who	Wanted	To	Create	Worlds

Why	Ruby?

What	You	Should	Know	Before	Reading	This	Book

What	Are	We	Going	To	Build?
Graphics
Game	Development	Library
Theme	And	Mechanics

Preparing	The	Tools
Getting	Gosu	to	run	on	Mac	Os	X

Getting	The	Sample	Code

Other	Tools

Gosu	Basics
Hello	World
Screen	Coordinates	And	Depth
Main	Loop
Moving	Things	With	Keyboard
Images	And	Animation
Music	And	Sound

Warming	Up
Using	Tilesets
Integrating	With	Texture	Packer
Combining	Tiles	Into	A	Map
Using	Tiled	To	Create	Maps
Loading	Tiled	Maps	With	Gosu
Generating	Random	Map	With	Perlin	Noise
Player	Movement	With	Keyboard	And	Mouse
Game	Coordinate	System

Prototyping	The	Game
Switching	Between	Game	States
Implementing	Menu	State
Implementing	Play	State
Implementing	World	Map
Implementing	Floating	Camera
Implementing	The	Tank
Implementing	Bullets	And	Explosions

Running	The	Prototype

Optimizing	Game	Performance
Profiling	Ruby	Code	To	Find	Bottlenecks
Advanced	Profiling	Techniques
Optimizing	Inefficient	Code
Profiling	On	Demand
Adjusting	Game	Speed	For	Variable	Performance
Frame	Skipping

Refactoring	The	Prototype
Game	Programming	Patterns
What	Is	Wrong	With	Current	Design
Decoupling	Using	Component	Pattern

Simulating	Physics
Adding	Enemy	Objects
Adding	Bounding	Boxes	And	Detecting	Collisions
Catching	Bullets
Implementing	Turn	Speed	Penalties
Implementing	Terrain	Speed	Penalties

Implementing	Health	And	Damage
Adding	Health	Component
Inflicting	Damage	With	Bullets

Creating	Artificial	Intelligence
Designing	AI	Using	Finite	State	Machine
Implementing	AI	Vision
Controlling	Tank	Gun
Implementing	AI	Input
Implementing	Tank	Motion	States
Wiring	Tank	Motion	States	Into	Finite	State	Machine

Making	The	Prototype	Playable
Drawing	Water	Beyond	Map	Boundaries
Generating	Tree	Clusters
Generating	Random	Objects
Implementing	A	Radar
Dynamic	Sound	Volume	And	Panning
Giving	Enemies	Identity
Respawning	Tanks	And	Removing	Dead	Ones
Displaying	Explosion	Damage	Trails
Debugging	Bullet	Physics
Making	Camera	Look	Ahead
Reviewing	The	Changes

Dealing	With	Thousands	Of	Game	Objects
Spatial	Partitioning
Implementing	A	Quadtree
Integrating	ObjectPool	With	QuadTree
Moving	Objects	In	QuadTree

Implementing	Powerups
Implementing	Base	Powerup
Implementing	Powerup	Graphics
Implementing	Powerup	Sounds
Implementing	Repair	Damage	Powerup
Implementing	Health	Boost
Implementing	Fire	Rate	Boost
Implementing	Tank	Speed	Boost
Spawning	Powerups	On	Map
Respawning	Powerups	After	Pickup

Implementing	Heads	Up	Display
Design	Considerations
Rendering	Text	With	Custom	Font
Implementing	HUD	Class

Implementing	Game	Statistics
Tracking	Kills,	Deaths	and	Damage
Making	Damage	Personal
Tracking	Damage	From	Chain	Reactions
Displaying	Game	Score

Building	Advanced	AI
Improving	Tank	Navigation
Implementing	Demo	State	To	Observe	AI
Visual	AI	Debugging
Making	AI	Collect	Powerups
Seeking	Health	Powerups	After	Heavy	Damage
Evading	Collisions	And	Getting	Unstuck

Wrapping	It	Up
Lessons	Learned

Special	Thanks

A	Boy	Who	Wanted	To	Create	Worlds

Once	there	was	a	boy	who	fell	in	love	with	this	magical	device	that	could	bring	things	to
life	inside	a	glaring	screen.	He	spent	endless	hours	exploring	imaginary	worlds,	fighting
strange	creatures,	shooting	pixelated	spaceships,	racing	boxy	cars.	The	boy	kept
pondering.	“How	is	this	made?	I	want	to	create	my	own	worlds…”.

Then	he	discovered	programming.	“I	can	finally	do	it!”	-	he	thought.	And	he	tried.	And
failed.	Then	he	tried	harder.	He	failed	again	and	again.	He	was	too	naive	to	realize	that
those	worlds	he	was	trying	to	create	were	too	sophisticated,	and	his	knowledge	was	too
limited.	He	gave	up	creating	those	worlds.

What	he	didn’t	give	up	is	writing	code	for	this	magical	device.	He	realized	he	isn’t	smart
enough	to	create	worlds,	yet	he	found	out	he	could	create	simpler	things	like	small
applications	-	web,	desktop,	server	side	or	whatnot.	Few	years	later	he	found	himself
getting	paid	to	make	those.

Applications	got	increasingly	bigger,	they	spanned	across	multiple	servers,	integrated	with
each	other,	became	pats	of	huge	infrastructures.	The	boy,	now	a	grown	man,	was	all	into
it.	It	was	fun	and	challenging	enough	to	spend	over	10000	hours	learning	and	building
what	others	wanted	him	to	build.

Some	of	these	things	were	useful,	some	where	boring	and	pointless.	Some	were	never
finished.	There	were	things	he	was	proud	of,	there	were	others	that	he	wouldn’t	want	to
talk	about,	nonetheless	everything	he	built	made	him	a	better	builder.	Yet	he	never	found
the	time,	courage	or	reason	to	build	what	he	really	wanted	to	build	since	he	was	a	little
boy	-	his	own	worlds.

Until	one	day	he	realized	that	no	one	can	stop	him	from	following	his	dream.	He	felt	that
equipped	with	his	current	knowledge	and	experience	he	will	be	able	to	learn	to	create
worlds	of	his	own.	And	he	went	for	it.

This	boy	must	live	in	many	software	developers,	who	dream	about	creating	games,	but
instead	sell	their	software	craftsmanship	skills	to	those	who	need	something	else.	This	boy
is	me,	and	you.	And	it’s	time	to	set	him	free.

Welcome	to	the	world	of	game	development	that	was	waiting	for	you	all	these	years.

Why	Ruby?

When	it	comes	to	game	development,	everyone	will	tell	you	that	you	should	go	with	C++
or	some	other	statically	typed	language	that	compiles	down	to	bare	metal	instructions.	Or
that	you	should	go	with	full	blown	game	development	platform	like	Unity.	Slow,	dynamic
languages	like	Ruby	seem	like	the	last	choice	any	sane	game	developer	would	go	for.

A	friend	of	mine	said	“There’s	little	reason	to	develop	a	desktop	game	with	Ruby”,	and	he
was	absolutely	right.	Perhaps	this	is	the	reason	why	there	are	no	books	about	it.	All	the
casual	game	action	happens	in	mobile	devices,	and	desktop	games	are	for	seasoned
gamers	who	demand	fast	and	detailed	3D	graphics,	motion-captured	animations	and
sophisticated	game	mechanics	-	things	we	know	we	are	not	going	to	be	able	to	build	on
our	own,	without	millions	from	VC	pockets	and	Hollywood	grade	equipment.

Now,	bear	with	me.	Your	game	will	not	be	a	3D	MMORPG	set	in	huge,	photo	realistic
representation	of	Middle-earth.	Let’s	leave	those	things	to	Bethesda,	Ubisoft	and	Rockstar
Games.	After	all,	everyone	has	to	start	somewhere,	and	you	have	to	be	smart	enough	to
understand,	that	even	though	that	little	boy	in	you	wants	to	create	an	improved	version	of
Grand	Theft	Auto	V,	we	will	have	to	go	for	something	that	resembles	lesser	known	Super
Nintendo	titles	instead.

Why	not	go	mobile	then?	Those	devices	seem	perfect	for	simpler	games.	If	you	are	a	true
gamer	at	heart,	you	will	agree	that	touch	screen	games	you	find	in	modern	phones	and
tablets	are	only	good	for	killing	10	minutes	of	your	time	while	taking	a	dump.	You	have	to
feel	the	resistance	when	you	click	a	button!	Screen	size	also	does	matter.	Playing	anything
on	mobile	phone	is	a	torture	for	those	who	know	what	playing	real	games	should	feel	like.

So,	your	game	will	have	to	be	small	enough	for	you	to	be	able	to	complete	it,	it	will	have
to	have	simple	2D	graphics,	and	would	not	require	the	latest	GeForce	with	at	least	512MB
of	RAM.	This	fact	gives	you	the	benefit	of	choice.	You	don’t	have	to	worry	about
performance	that	much.	You	can	choose	a	friendly	and	productive	language	that	is
designed	for	programmer	happiness.	And	this	is	where	Ruby	starts	to	shine.	It’s	beautiful,
simple	and	elegant.	It	is	close	to	poetry.

http://unity3d.com/
https://twitter.com/mmozuras/status/476240137199054848

What	You	Should	Know	Before	Reading	This	Book

As	you	can	read	on	the	cover,	this	book	is	“for	those	who	write	code	for	living”.	It’s	not	a
requirement,	and	you	will	most	likely	be	able	to	understand	everything	even	if	you	are	a
student	or	hobbyist,	but	this	book	will	not	teach	you	how	to	be	a	good	programmer.	If	you
want	to	learn	that,	start	with	timeless	classic:	The	Pragmatic	Programmer:	From
Journeyman	to	Master.

You	should	understand	Ruby	at	least	to	some	extent.	There	are	plenty	of	books	and
resources	covering	that	subject.	Try	Why’s	Poignant	Guide	To	Ruby	or	Eloquent	Ruby.
You	can	also	learn	it	while	reading	this	book.	It	shouldn’t	be	too	hard,	especially	if	you
already	write	code	for	living.	After	all	programming	language	is	merely	a	tool,	and	when
you	learn	one,	others	are	relatively	easy	to	switch	to.

You	should	know	how	to	use	the	command	line.	Basic	knowledge	of	Git	can	also	be
handy.

You	don’t	have	to	know	how	to	draw	or	compose	music.	We	will	use	media	that	is
available	for	free.	However,	knowledge	of	graphics	and	audio	editing	software	won’t	hurt.

https://www.goodreads.com/book/show/4099.The_Pragmatic_Programmer
http://mislav.uniqpath.com/poignant-guide/
https://www.goodreads.com/book/show/9364729-eloquent-ruby
http://git-scm.com/

What	Are	We	Going	To	Build?

This	question	is	of	paramount	importance.	The	answer	will	usually	determine	if	you	will
likely	to	succeed.	If	you	want	to	overstep	your	boundaries,	you	will	fail.	It	shouldn’t	be
too	easy	either.	If	you	know	something	about	programming	already,	I	bet	you	can
implement	Tic	Tac	Toe,	but	will	you	feel	proud	about	it?	Will	you	be	able	to	say	“I’ve
built	a	world!”.	I	wouldn’t.

Graphics
To	begin	with,	we	need	to	know	what	kind	of	graphics	we	are	aiming	for.	We	will
instantly	rule	out	3D	for	several	reasons:

We	don’t	want	to	increase	the	scope	and	complexity
Ruby	may	not	be	fast	enough	for	3D	games
Learning	proper	3D	graphics	programming	requires	reading	a	separate	book	that	is
several	times	thicker	than	this	one.

Now,	we	have	to	swallow	our	pride	and	accept	the	fact	that	the	game	will	have	simple	2D
graphics.	There	are	three	choices	to	go	for:

Parallel	Projection
Top	Down
Side-Scrolling

Parallel	Projection	(think	Fallout	1	&	2)	is	pretty	close	to	3D	graphics,	it	requires	detailed
art	if	you	want	it	to	look	decent,	so	we	would	have	a	rough	start	if	we	went	for	it.

Top	Down	view	(old	titles	of	Legend	of	Zelda)	offers	plenty	of	freedom	to	explore	the
environment	in	all	directions	and	requires	less	graphical	detail,	since	things	look	simpler
from	above.

Side	Scrolling	games	(Super	Mario	Bros.)	usually	involve	some	physics	related	to	jumping
and	require	more	effort	to	look	good.	Feeling	of	exploration	is	limited,	since	you	usually
move	from	left	to	right	most	of	the	time.

Going	with	Top	Down	view	will	give	us	a	chance	to	create	our	game	world	as	open	for
exploration	as	possible,	while	having	simple	graphics	and	movement	mechanics.	Sounds
like	the	best	choice	for	us.

If	you	are	as	bad	at	drawing	things	as	I	am,	you	could	still	wonder	how	we	are	going	to	get
our	graphics.	Thankfully,	there	is	this	opengameart.org.	It’s	like	GitHub	of	game	media,
we	will	surely	find	something	there.	It	also	contains	audio	samples	and	tracks.

Game	Development	Library

http://opengameart.org

Implement	it	all	yourself	or	harness	the	power	of	some	game	development	library	that
offers	you	boilerplates	and	convenient	access	to	common	functions?	If	you’re	like	me,	you
would	definitely	want	to	implement	it	all	yourself,	but	that	may	be	the	reason	why	I	failed
to	make	a	decent	game	so	many	times.

If	you	will	try	to	implement	it	all	yourself,	you	will	most	likely	end	up	reimplementing
some	existing	game	library,	poorly.	It	won’t	take	long	while	you	reach	a	point	where	you
need	to	interface	with	underlying	operating	system	libraries	to	get	graphics.	And	guess	if
those	bindings	will	work	in	a	different	operating	system?

So,	swallow	your	pride	again,	because	we	are	going	to	use	an	existing	game	development
library.	Good	news	is	that	you	will	be	able	to	actually	finish	the	game,	and	it	will	be
portable	to	Windows,	Mac	and	Linux.	We	will	still	have	to	build	our	own	game	engine	for
ourselves	on	top	of	it,	so	don’t	think	it	won’t	be	fun.

There	are	several	game	libraries	available	for	Ruby,	but	it’s	a	simple	choice,	because	Gosu
is	head	and	shoulders	above	others.	It’s	very	mature,	has	a	large	and	active	community,
and	it	is	mainly	written	in	C++	but	has	first	class	Ruby	support,	so	it	will	be	both	fast	and
convenient	to	use.

Many	of	other	Ruby	game	libraries	are	built	on	top	of	Gosu,	so	it’s	a	solid	choice.

Theme	And	Mechanics
Choosing	the	right	theme	is	undoubtedly	important.	It	should	be	something	that	appeals	to
you,	something	you	will	want	to	play,	and	it	should	not	imply	difficult	game	mechanics.	I
love	MMORPGs,	and	I	always	dreamed	of	making	an	open	world	game	where	you	can
roam	around,	meet	other	players,	fight	monsters	and	level	up.	Guess	how	many	times	I
started	building	such	a	game?	Even	if	I	wouldn’t	have	lost	the	count,	I	wouldn’t	be	proud
to	say	the	number.

This	time,	equipped	with	logic	and	sanity,	I’ve	picked	something	challenging	enough,	yet
still	pretty	simple	to	build.	Are	you	ready?

Drumroll…

We	will	be	building	a	multi	directional	shooter	arcade	game	where	you	control	a	tank,
roam	around	an	island,	shoot	enemy	tanks	and	try	not	to	get	destroyed	by	others.

If	you	have	played	Battle	City	or	Tank	Force,	you	should	easily	get	the	idea.	I	believe	that
implementing	such	a	game	(with	several	twists)	would	expose	us	to	perfect	level	of
difficulty	and	provide	substantial	amount	of	experience.

We	will	use	a	subset	of	these	gorgeous	graphics	which	are	available	on	opengameart.org,
generously	provided	by	Csaba	Felvegi.

https://www.ruby-toolbox.com/categories/game_libraries
http://www.libgosu.org/
http://en.wikipedia.org/wiki/Battle_City_(video_game)
http://en.wikipedia.org/wiki/Tank_Force
http://www.praire-chicken.com/chabull/tr.html
http://opengameart.org/users/chabull
https://www.google.com/search?q=Csaba+Felvegi

Preparing	The	Tools

While	writing	this	book,	I	will	be	using	Mac	OS	X	(10.9),	but	it	should	be	possible	to	run
all	the	examples	on	other	operating	systems	too.

Gosu	Wiki	has	“Getting	Started”	pages	for	Mac,	Linux	and	Windows,	so	I	will	not	be
going	into	much	detail	here.

Getting	Gosu	to	run	on	Mac	Os	X
If	you	haven’t	set	up	your	Mac	for	development,	first	install	Xcode	using	App	Store.
System	Ruby	should	work	just	fine,	but	you	may	want	to	use	Rbenv	or	RVM	to	avoid
polluting	system	Ruby.	I’ve	had	trouble	installing	Gosu	with	RVM,	but	your	experience
may	vary.

To	install	the	gem,	simply	run:
$	gem	install	gosu

You	may	need	to	prefix	it	with	sudo	if	you	are	using	system	Ruby.

To	test	if	gem	was	installed	correctly,	you	should	be	able	to	run	this	to	produce	an	empty
black	window:
$	irb

irb(main):001:0>	require	'gosu'

=>	true

irb(main):002:0>	Gosu::Window.new(320,	240,	false).show

=>	nil

Most	developers	who	use	Mac	every	day	will	also	recommend	installing	Homebrew
package	manager,	replace	Terminal	app	with	iTerm2	and	use	Oh-My-Zsh	to	manage	ZSH
configuration.

https://github.com/jlnr/gosu/wiki/Getting-Started-on-OS-X
https://github.com/jlnr/gosu/wiki/Getting-Started-on-Linux
https://github.com/jlnr/gosu/wiki/Getting-Started-on-Windows
https://github.com/sstephenson/rbenv
http://rvm.io/
http://brew.sh/
http://www.iterm2.com/
http://ohmyz.sh/

Getting	The	Sample	Code

You	can	find	sample	code	at	GitHub:	https://github.com/spajus/ruby-gamedev-book-
examples.

Clone	it	to	a	convenient	location:
$	cd	~/gamedev

$	git	clone	git@github.com:spajus/ruby-gamedev-book-examples.git

The	source	code	of	final	product	can	be	found	at	https://github.com/spajus/tank_island

https://github.com/spajus/ruby-gamedev-book-examples
https://github.com/spajus/tank_island

Other	Tools

All	you	need	for	this	adventure	is	a	good	text	editor,	terminal	and	probably	some	graphics
editor.	Try	GIMP	if	you	want	a	free	one.	I’m	using	Pixelmator,	it’s	wonderful,	but	for	Mac
only.	A	noteworthy	fact	is	that	Pixelmator	was	built	by	fellow	Lithuanians.

When	it	comes	to	editors,	I	don’t	leave	home	without	Vim,	but	as	long	as	what	you	use
makes	you	productive,	it	doesn’t	make	any	difference.	Vim,	Emacs	or	Sublime	are	all
good	enough	to	write	code,	just	have	some	good	plugins	that	support	Ruby,	and	you’re	set.
If	you	really	feel	you	need	an	IDE,	which	may	be	the	case	if	you	are	coming	from	a	static
language,	you	can’t	go	wrong	with	RubyMine.

http://www.gimp.org/
http://www.pixelmator.com/
http://www.jetbrains.com/ruby/

Gosu	Basics

By	now	Gosu	should	be	installed	and	ready	for	a	spin.	But	before	we	rush	into	building
our	game,	we	have	to	get	acquainted	with	our	library.	We	will	go	through	several	simple
examples,	familiarize	ourselves	with	Gosu	architecture	and	core	principles,	and	take	a
couple	of	baby	steps	towards	understanding	how	to	put	everything	together.

To	make	this	chapter	easier	to	read	and	understand,	I	recommend	watching	Writing	Games
With	Ruby	talk	given	by	Mike	Moore	at	LA	Ruby	Conference	2014.	In	fact,	this	talk
pushed	me	towards	rethinking	this	crazy	idea	of	using	Ruby	for	game	development,	so	this
book	wouldn’t	exist	without	it.	Thank	you,	Mike.

Hello	World
To	honor	the	traditions,	we	will	start	by	writing	“Hello	World”	to	get	a	taste	of	what	Gosu
feels	like.	It	is	based	on	Ruby	Tutorial	that	you	can	find	in	Gosu	Wiki.
01-hello/hello_world.rb

	1	require	'gosu'

	2	

	3	class	GameWindow	<	Gosu::Window

	4			def	initialize(width=320,	height=240,	fullscreen=false)

	5					super

	6					self.caption	=	'Hello'

	7					@message	=	Gosu::Image.from_text(

	8							self,	'Hello,	World!',	Gosu.default_font_name,	30)

	9			end

10	

11			def	draw

12					@message.draw(10,	10,	0)

13			end

14	end

15	

16	window	=	GameWindow.new

17	window.show

Run	the	code:
$	ruby	01-hello/hello_world.rb

You	should	see	a	neat	small	window	with	your	message:

http://www.confreaks.com/videos/3049-larubyconf2014-writing-games-with-ruby
http://blowmage.com/
https://github.com/jlnr/gosu/wiki/Ruby-Tutorial
https://github.com/jlnr/gosu/wiki

Hello	World

See	how	easy	that	was?	Now	let’s	try	to	understand	what	just	happened	here.

We	have	extended	Gosu::Window	with	our	own	GameWindow	class,	initializing	it	as
320x240	window.	super	passed	width,	height	and	fullscreen	initialization	parameters
from	GameWindow	to	Gosu::Window.

Then	we	defined	our	window’s	caption,	and	created	@message	instance	variable	with	an
image	generated	from	text	"Hello,	World!"	using	Gosu::Image.from_text.

We	have	overridden	Gosu::Window#draw	instance	method	that	gets	called	every	time	Gosu
wants	to	redraw	our	game	window.	In	that	method	we	call	draw	on	our	@message	variable,
providing	x	and	y	screen	coordinates	both	equal	to	10,	and	z	(depth)	value	equal	to	0.

Screen	Coordinates	And	Depth
Just	like	most	conventional	computer	graphics	libraries,	Gosu	treats	x	as	horizontal	axis
(left	to	right),	y	as	vertical	axis	(top	to	bottom),	and	z	as	order.

http://www.libgosu.org/rdoc/Gosu/Window.html
http://www.libgosu.org/rdoc/Gosu/Window.html#caption-instance_method
http://www.libgosu.org/rdoc/Gosu/Image.html#from_text-class_method
http://www.libgosu.org/rdoc/Gosu/Window.html#draw-instance_method
http://www.libgosu.org/rdoc/Gosu/Image.html#draw-instance_method

Screen	coordinates	and	depth

x	and	y	are	measured	in	pixels,	and	value	of	z	is	a	relative	number	that	doesn’t	mean
anything	on	it’s	own.	The	pixel	in	top-left	corner	of	the	screen	has	coordinates	of	0:0.

z	order	in	Gosu	is	just	like	z-index	in	CSS.	It	does	not	define	zoom	level,	but	in	case	two
shapes	overlap,	one	with	higher	z	value	will	be	drawn	on	top.

Main	Loop
The	heart	of	Gosu	library	is	the	main	loop	that	happens	in	Gosu::Window.	It	is	explained
fairly	well	in	Gosu	wiki,	so	we	will	not	be	discussing	it	here.

Moving	Things	With	Keyboard
We	will	modify	our	“Hello,	World!”	example	to	learn	how	to	move	things	on	screen.	The
following	code	will	print	coordinates	of	the	message	along	with	number	of	times	screen
was	redrawn.	It	also	allows	exiting	the	program	by	hitting	Esc	button.
01-hello/hello_movement.rb

	1	require	'gosu'

	2	

	3	class	GameWindow	<	Gosu::Window

	4			def	initialize(width=320,	height=240,	fullscreen=false)

	5					super

	6					self.caption	=	'Hello	Movement'

	7					@x	=	@y	=	10

	8					@draws	=	0

	9					@buttons_down	=	0

10			end

11	

12			def	update

13					@x	-=	1	if	button_down?(Gosu::KbLeft)

14					@x	+=	1	if	button_down?(Gosu::KbRight)

https://github.com/jlnr/gosu/wiki/Window-Main-Loop
http://www.libgosu.org/rdoc/Gosu/Window.html

15					@y	-=	1	if	button_down?(Gosu::KbUp)

16					@y	+=	1	if	button_down?(Gosu::KbDown)

17			end

18	

19			def	button_down(id)

20					close	if	id	==	Gosu::KbEscape

21					@buttons_down	+=	1

22			end

23	

24			def	button_up(id)

25					@buttons_down	-=	1

26			end

27	

28			def	needs_redraw?

29					@draws	==	0	||	@buttons_down	>	0

30			end

31	

32			def	draw

33					@draws	+=	1

34					@message	=	Gosu::Image.from_text(

35							self,	info,	Gosu.default_font_name,	30)

36					@message.draw(@x,	@y,	0)

37			end

38	

39			private

40	

41			def	info

42					"[x:#{@x};y:#{@y};draws:#{@draws}]"

43			end

44	end

45	

46	window	=	GameWindow.new

47	window.show

Run	the	program	and	try	pressing	arrow	keys:
$	ruby	01-hello/hello_movement.rb

The	message	will	move	around	as	long	as	you	keep	arrow	keys	pressed.

Use	arrow	keys	to	move	the	message	around

We	could	write	a	shorter	version,	but	the	point	here	is	that	if	we	wouldn’t	override
needs_redraw?	this	program	would	be	slower	by	order	of	magnitude,	because	it	would
create	@message	object	every	time	it	wants	to	redraw	the	window,	even	though	nothing
would	change.

Here	is	a	screenshot	of	top	displaying	two	versions	of	this	program.	Second	screen	has
needs_redraw?	method	removed.	See	the	difference?

http://www.libgosu.org/rdoc/Gosu/Window.html#needs_redraw%3F-instance_method

Redrawing	only	when	necessary	VS	redrawing	every	time

Ruby	is	slow,	so	you	have	to	use	it	wisely.

Images	And	Animation
It’s	time	to	make	something	more	exciting.	Our	game	will	have	to	have	explosions,
therefore	we	need	to	learn	to	animate	them.	We	will	set	up	a	background	scene	and	trigger
explosions	on	top	of	it	with	our	mouse.
01-hello/hello_animation.rb

	1	require	'gosu'

	2	

	3	def	media_path(file)

	4			File.join(File.dirname(File.dirname(

	5					__FILE__)),	'media',	file)

	6	end

	7	

	8	class	Explosion

	9			FRAME_DELAY	=	10	#	ms

10			SPRITE	=	media_path('explosion.png')

11	

12			def	self.load_animation(window)

13					Gosu::Image.load_tiles(

14							window,	SPRITE,	128,	128,	false)

15			end

16	

17			def	initialize(animation,	x,	y)

18					@animation	=	animation

19					@x,	@y	=	x,	y

20					@current_frame	=	0

21			end

22	

23			def	update

24					@current_frame	+=	1	if	frame_expired?

25			end

26	

27			def	draw

28					return	if	done?

29					image	=	current_frame

30					image.draw(

31							@x	-	image.width	/	2.0,

32							@y	-	image.height	/	2.0,

33							0)

34			end

35	

36			def	done?

37					@done	||=	@current_frame	==	@animation.size

38			end

39	

40			private

41	

42			def	current_frame

43					@animation[@current_frame	%	@animation.size]

44			end

45	

46			def	frame_expired?

47					now	=	Gosu.milliseconds

48					@last_frame	||=	now

49					if	(now	-	@last_frame)	>	FRAME_DELAY

50							@last_frame	=	now

51					end

52			end

53	end

54	

55	class	GameWindow	<	Gosu::Window

56			BACKGROUND	=	media_path('country_field.png')

57	

58			def	initialize(width=800,	height=600,	fullscreen=false)

59					super

60					self.caption	=	'Hello	Animation'

61					@background	=	Gosu::Image.new(

62							self,	BACKGROUND,	false)

63					@animation	=	Explosion.load_animation(self)

64					@explosions	=	[]

65			end

66	

67			def	update

68					@explosions.reject!(&:done?)

69					@explosions.map(&:update)

70			end

71	

72			def	button_down(id)

73					close	if	id	==	Gosu::KbEscape

74					if	id	==	Gosu::MsLeft

75							@explosions.push(

76									Explosion.new(

77											@animation,	mouse_x,	mouse_y))

78					end

79			end

80	

81			def	needs_cursor?

82					true

83			end

84	

85			def	needs_redraw?

86					!@scene_ready	||	@explosions.any?

87			end

88	

89			def	draw

90					@scene_ready	||=	true

91					@background.draw(0,	0,	0)

92					@explosions.map(&:draw)

93			end

94	end

95	

96	window	=	GameWindow.new

97	window.show

Run	it	and	click	around	to	enjoy	those	beautiful	special	effects:
$	ruby	01-hello/hello_animation.rb

Multiple	explosions	on	screen

Now	let’s	figure	out	how	it	works.	Our	GameWindow	initializes	with	@background
Gosu::Image	and	@animation,	that	holds	array	of	Gosu::Image	instances,	one	for	each
frame	of	explosion.	Gosu::Image.load_tiles	handles	it	for	us.

Explosion::SPRITE	points	to	“tileset”	image,	which	is	just	a	regular	image	that	contains
equally	sized	smaller	image	frames	arranged	in	ordered	sequence.	Rows	of	frames	are
read	left	to	right,	like	you	would	read	a	book.

http://www.libgosu.org/rdoc/Gosu/Image.html
http://www.libgosu.org/rdoc/Gosu/Image.html
http://www.libgosu.org/rdoc/Gosu/Image.html#load_tiles-class_method

Explosion	tileset

Given	that	explosion.png	tileset	is	1024x1024	pixels	big,	and	it	has	8	rows	of	8	tiles	per
row,	it	is	easy	to	tell	that	there	are	64	tiles	128x128	pixels	each.	So,	@animation[0]	holds
128x128	Gosu::Image	with	top-left	tile,	and	@animation[63]	-	the	bottom-right	one.

Gosu	doesn’t	handle	animation,	it’s	something	you	have	full	control	over.	We	have	to
draw	each	tile	in	a	sequence	ourselves.	You	can	also	use	tiles	to	hold	map	graphics	The
logic	behind	this	is	pretty	simple:

1.	 Explosion	knows	it’s	@current_frame	number.	It	begins	with	0.
2.	 Explosion#frame_expired?	checks	the	last	time	when	@current_frame	was

rendered,	and	when	it	is	older	than	Explosion::FRAME_DELAY	milliseconds,
@current_frame	is	increased.

3.	 When	GameWindow#update	is	called,	@current_frame	is	recalculated	for	all
@explosions.	Also,	explosions	that	have	finished	their	animation	(displayed	the	last

http://www.libgosu.org/rdoc/Gosu/Image.html
http://www.libgosu.org/rdoc/Gosu/Window.html#update-instance_method

frame)	are	removed	from	@explosions	array.
4.	 GameWindow#draw	draws	background	image	and	all	@explosions	draw	their

current_frame.
5.	 Again,	we	are	saving	resources	and	not	redrawing	when	there	are	no	@explosions	in

progress.	needs_redraw?	handles	it.

It	is	important	to	understand	that	update	and	draw	order	is	unpredictable,	these	methods
can	be	called	by	your	system	at	different	rate,	you	can’t	tell	which	one	will	be	called	more
often	than	the	other	one,	so	update	should	only	be	concerned	with	advancing	object	state,
and	draw	should	only	draw	current	state	on	screen	if	it	is	needed.	The	only	reliable	thing
here	is	time,	consult	Gosu.milliseconds	to	know	how	much	time	have	passed.

Rule	of	the	thumb:	draw	should	be	as	lightweight	as	possible.	Prepare	all	calculations	in
update	and	you	will	have	responsive,	smooth	graphics.

Music	And	Sound
Our	previous	program	was	clearly	missing	a	soundtrack,	so	we	will	add	one.	A
background	music	will	be	looping,	and	each	explosion	will	become	audible.
01-hello/hello_sound.rb

		1	require	'gosu'

		2	

		3	def	media_path(file)

		4			File.join(File.dirname(File.dirname(

		5					__FILE__)),	'media',	file)

		6	end

		7	

		8	class	Explosion

		9			FRAME_DELAY	=	10	#	ms

	10			SPRITE	=	media_path('explosion.png')

	11	

	12			def	self.load_animation(window)

	13					Gosu::Image.load_tiles(

	14							window,	SPRITE,	128,	128,	false)

	15			end

	16	

	17			def	self.load_sound(window)

	18					Gosu::Sample.new(

	19							window,	media_path('explosion.mp3'))

	20			end

	21	

	22			def	initialize(animation,	sound,	x,	y)

	23					@animation	=	animation

	24					sound.play

	25					@x,	@y	=	x,	y

	26					@current_frame	=	0

	27			end

	28	

	29			def	update

	30					@current_frame	+=	1	if	frame_expired?

	31			end

	32	

	33			def	draw

	34					return	if	done?

	35					image	=	current_frame

	36					image.draw(

	37							@x	-	image.width	/	2.0,

	38							@y	-	image.height	/	2.0,

	39							0)

	40			end

	41	

	42			def	done?

	43					@done	||=	@current_frame	==	@animation.size

http://www.libgosu.org/rdoc/Gosu/Window.html#draw-instance_method
http://www.libgosu.org/rdoc/Gosu.html#milliseconds-class_method

	44			end

	45	

	46			def	sound

	47					@sound.play

	48			end

	49	

	50			private

	51	

	52			def	current_frame

	53					@animation[@current_frame	%	@animation.size]

	54			end

	55	

	56			def	frame_expired?

	57					now	=	Gosu.milliseconds

	58					@last_frame	||=	now

	59					if	(now	-	@last_frame)	>	FRAME_DELAY

	60							@last_frame	=	now

	61					end

	62			end

	63	end

	64	

	65	class	GameWindow	<	Gosu::Window

	66			BACKGROUND	=	media_path('country_field.png')

	67	

	68			def	initialize(width=800,	height=600,	fullscreen=false)

	69					super

	70					self.caption	=	'Hello	Animation'

	71					@background	=	Gosu::Image.new(

	72							self,	BACKGROUND,	false)

	73					@music	=	Gosu::Song.new(

	74							self,	media_path('menu_music.mp3'))

	75					@music.volume	=	0.5

	76					@music.play(true)

	77					@animation	=	Explosion.load_animation(self)

	78					@sound	=	Explosion.load_sound(self)

	79					@explosions	=	[]

	80			end

	81	

	82			def	update

	83					@explosions.reject!(&:done?)

	84					@explosions.map(&:update)

	85			end

	86	

	87			def	button_down(id)

	88					close	if	id	==	Gosu::KbEscape

	89					if	id	==	Gosu::MsLeft

	90							@explosions.push(

	91									Explosion.new(

	92											@animation,	@sound,	mouse_x,	mouse_y))

	93					end

	94			end

	95	

	96			def	needs_cursor?

	97					true

	98			end

	99	

100			def	needs_redraw?

101					!@scene_ready	||	@explosions.any?

102			end

103	

104			def	draw

105					@scene_ready	||=	true

106					@background.draw(0,	0,	0)

107					@explosions.map(&:draw)

108			end

109	end

110	

111	window	=	GameWindow.new

112	window.show

Run	it	and	enjoy	the	cinematic	experience.	Adding	sound	really	makes	a	difference.
$	ruby	01-hello/hello_sound.rb

We	only	added	couple	of	things	over	previous	example.

72	@music	=	Gosu::Song.new(

73			self,	media_path('menu_music.mp3'))

74	@music.volume	=	0.5

75	@music.play(true)

GameWindow	creates	Gosu::Song	with	menu_music.mp3,	adjusts	the	volume	so	it’s	a	little
more	quiet	and	starts	playing	in	a	loop.
16	def	self.load_sound(window)

17			Gosu::Sample.new(

18					window,	media_path('explosion.mp3'))

19	end

Explosion	has	now	got	load_sound	method	that	loads	explosion.mp3	sound	effect
Gosu::Sample.	This	sound	effect	is	loaded	once	in	GameWindow	constructor,	and	passed
into	every	new	Explosion,	where	it	simply	starts	playing.

Handling	audio	with	Gosu	is	very	straightforward.	Use	Gosu::Song	to	play	background
music,	and	Gosu::Sample	to	play	effects	and	sounds	that	can	overlap.

http://www.libgosu.org/rdoc/Gosu/Song.html
http://www.libgosu.org/rdoc/Gosu/Sample.html
http://www.libgosu.org/rdoc/Gosu/Song.html
http://www.libgosu.org/rdoc/Gosu/Sample.html

Warming	Up

Before	we	start	building	our	game,	we	want	to	flex	our	skills	little	more,	get	to	know	Gosu
better	and	make	sure	our	tools	will	be	able	to	meet	our	expectations.

Using	Tilesets
After	playing	around	with	Gosu	for	a	while,	we	should	be	comfortable	enough	to
implement	a	prototype	of	top-down	view	game	map	using	the	tileset	of	our	choice.	This
ground	tileset	looks	like	a	good	place	to	start.

Integrating	With	Texture	Packer
After	downloading	and	extracting	the	tileset,	it’s	obvious	that	Gosu::Image#load_tiles
will	not	suffice,	since	it	only	supports	tiles	of	same	size,	and	there	is	a	tileset	in	the
package	that	looks	like	this:

http://opengameart.org/content/ground-tileset-grass-sand
http://www.libgosu.org/rdoc/Gosu/Image.html#load_tiles-class_method

Tileset	with	tiles	of	irregular	size

And	there	is	also	a	JSON	file	that	contains	some	metadata:
{"frames":	{

"aircraft_1d_destroyed.png":

{

		"frame":	{"x":451,"y":102,"w":57,"h":42},

		"rotated":	false,

		"trimmed":	false,

		"spriteSourceSize":	{"x":0,"y":0,"w":57,"h":42},

		"sourceSize":	{"w":57,"h":42}

},

"aircraft_2d_destroyed.png":

{

		"frame":	{"x":2,"y":680,"w":63,"h":47},

		"rotated":	false,

		"trimmed":	false,

		"spriteSourceSize":	{"x":0,"y":0,"w":63,"h":47},

		"sourceSize":	{"w":63,"h":47}

},

...

}},

"meta":	{

	 "app":	"http://www.texturepacker.com",

	 "version":	"1.0",

	 "image":	"decor.png",

	 "format":	"RGBA8888",

	 "size":	{"w":512,"h":1024},

	 "scale":	"1",

	 "smartupdate":	"$TexturePacker:SmartUpdate:2e6b6964f24c7abfaa85a804e2dc1b05$"

}

Looks	like	these	tiles	were	packed	with	Texture	Packer.	After	some	digging	I’ve
discovered	that	Gosu	doesn’t	have	any	integration	with	it,	so	I	had	these	choices:

1.	 Cut	the	original	tileset	image	into	smaller	images.
2.	 Parse	JSON	and	harness	the	benefits	of	Texture	Packer.

First	option	was	too	much	work	and	would	prove	to	be	less	efficient,	because	loading
many	small	files	is	always	worse	than	loading	one	bigger	file.	Therefore,	second	option
was	the	winner,	and	I	also	thought	“why	not	write	a	gem	while	I’m	at	it”.	And	that’s
exactly	what	I	did,	and	you	should	do	the	same	in	such	a	situation.	The	gem	is	available
on	GitHub:

https://github.com/spajus/gosu-texture-packer

You	can	install	this	gem	using	gem	install	gosu_texture_packer.	If	you	want	to
examine	the	code,	easiest	way	is	to	clone	it	on	your	computer:
$	git	clone	git@github.com:spajus/gosu-texture-packer.git

Let’s	examine	the	main	idea	behind	this	gem.	Here	is	a	slightly	simplified	version	that
does	handles	everything	in	under	20	lines	of	code:
02-warmup/tileset.rb

	1	require	'json'

	2	class	Tileset

	3			def	initialize(window,	json)

	4					@json	=	JSON.parse(File.read(json))

	5					image_file	=	File.join(

	6							File.dirname(json),	@json['meta']['image'])

	7					@main_image	=	Gosu::Image.new(

	8							@window,	image_file,	true)

	9			end

10	

11			def	frame(name)

12					f	=	@json['frames'][name]['frame']

http://www.texturepacker.com
https://github.com/spajus/gosu-texture-packer

13					@main_image.subimage(

14							f['x'],	f['y'],	f['w'],	f['h'])

15			end

16	end

If	by	now	you	are	familiar	with	Gosu	documentation,	you	will	wonder	what	the	hell	is
Gosu::Image#subimage.	At	the	point	of	writing	it	was	not	documented,	and	I	accidentally
discovered	it	while	digging	through	Gosu	source	code.

I’m	lucky	this	function	existed,	because	I	was	ready	to	bring	out	the	heavy	artillery	and
use	RMagick	to	extract	those	tiles.	We	will	probably	need	RMagick	at	some	point	of	time
later,	but	it’s	better	to	avoid	dependencies	as	long	as	possible.

Combining	Tiles	Into	A	Map
With	tileset	loading	issue	out	of	the	way,	we	can	finally	get	back	to	drawing	that	cool	map
of	ours.

The	following	program	will	fill	the	screen	with	random	tiles.
02-warmup/random_map.rb

	1	require	'gosu'

	2	require	'gosu_texture_packer'

	3	

	4	def	media_path(file)

	5			File.join(File.dirname(File.dirname(

	6					__FILE__)),	'media',	file)

	7	end

	8	

	9	class	GameWindow	<	Gosu::Window

10			WIDTH	=	800

11			HEIGHT	=	600

12			TILE_SIZE	=	128

13	

14			def	initialize

15					super(WIDTH,	HEIGHT,	false)

16					self.caption	=	'Random	Map'

17					@tileset	=	Gosu::TexturePacker.load_json(

18							self,	media_path('ground.json'),	:precise)

19					@redraw	=	true

20			end

21	

22			def	button_down(id)

23					close	if	id	==	Gosu::KbEscape

24					@redraw	=	true	if	id	==	Gosu::KbSpace

25			end

26	

27			def	needs_redraw?

28					@redraw

29			end

30	

31			def	draw

32					@redraw	=	false

33					(0..WIDTH	/	TILE_SIZE).each	do	|x|

34							(0..HEIGHT	/	TILE_SIZE).each	do	|y|

35									@tileset.frame(

36											@tileset.frame_list.sample).draw(

37													x	*	(TILE_SIZE),

38													y	*	(TILE_SIZE),

39													0)

40							end

41					end

42			end

43	end

44	

45	window	=	GameWindow.new

46	window.show

http://www.libgosu.org/rdoc/
https://github.com/jlnr/gosu/blob/0c1a155dcb9034b345d7cfe41b0b86f39f57f540/ext/gosu/gosu.swg#L553-L558
https://github.com/jlnr/gosu/blob/master/feature_tests/image_subimage.rb#L25
https://github.com/rmagick/rmagick

Run	it,	then	press	spacebar	to	refill	the	screen	with	random	tiles.
$	ruby	02-warmup/random_map.rb

Map	filled	with	random	tiles

The	result	doesn’t	look	seamless,	so	we	will	have	to	figure	out	what’s	wrong.	After
playing	around	for	a	while,	I’ve	noticed	that	it’s	an	issue	with	Gosu::Image.

When	you	load	a	tile	like	this,	it	works	perfectly:
Gosu::Image.new(self,	image_path,	true,	0,	0,	128,	128)

Gosu::Image.load_tiles(self,	image_path,	128,	128,	true)

And	the	following	produces	so	called	“texture	bleeding”:
Gosu::Image.new(self,	image_path,	true)

Gosu::Image.new(self,	image_path,	true).subimage(0,	0,	128,	128)

Good	thing	we’re	not	building	our	game	yet,	right?	Welcome	to	the	intricacies	of	software
development!

Now,	I	have	reported	my	findings,	but	until	it	gets	fixed,	we	need	a	workaround.	And	the
workaround	was	to	use	RMagick.	I	knew	we	won’t	get	too	far	away	from	it.	But	our
random	map	now	looks	gorgeous:

https://github.com/jlnr/gosu/issues/227

Map	filled	with	seamless	random	tiles

Using	Tiled	To	Create	Maps
While	low	level	approach	to	drawing	tiles	in	screen	may	be	appropriate	in	some	scenarios,
like	randomly	generated	maps,	we	will	explore	another	alternatives.	One	of	them	is	this
great,	open	source,	cross	platform,	generic	tile	map	editor	called	Tiled.

It	has	some	limitations,	for	instance,	all	tiles	in	tileset	have	to	be	of	same	proportions.	On
the	upside,	it	would	be	easy	to	load	Tiled	tilesets	with	Gosu::Image#load_tiles.

http://www.mapeditor.org/
http://www.libgosu.org/rdoc/Gosu/Image.html#load_tiles-class_method

Tiled

Tiled	uses	it’s	own	custom,	XML	based	tmx	format	for	saving	maps.	It	also	allows
exporting	maps	to	JSON,	which	is	way	more	convenient,	since	parsing	XML	in	Ruby	is
usually	done	with	Nokogiri,	which	is	heavier	and	it’s	native	extensions	usually	cause	more
trouble	than	ones	JSON	parser	uses.	So,	let’s	see	how	that	JSON	looks	like:
02-warmup/tiled_map.json

	1	{	"height":10,

	2		"layers":[

	3									{

	4										"data":[65,	65,	65,	65,	65,	65,	65,	65,	65,	65,	65,	65,	65,	0,	0,	65,	6\

	5	5,	65,	65,	65,	65,	65,	65,	0,	0,	65,	65,	65,	65,	65,	65,	65,	65,	0,	0,	0,	65,	65\

	6	,	65,	65,	65,	65,	65,	0,	0,	0,	0,	65,	65,	65,	65,	65,	65,	0,	0,	0,	0,	65,	65,	65\

	7	,	65,	65,	65,	65,	65,	65,	65,	65,	65,	65,	65,	65,	65,	65,	65,	65,	65,	65,	65,	65\

	8	,	65,	65,	65,	65,	65,	65,	65,	65,	65,	65,	65,	65,	65,	65,	65,	65,	65,	65,	65,	65\

	9],

10										"height":10,

11										"name":"Water",

12										"opacity":1,

13										"type":"tilelayer",

14										"visible":true,

15										"width":10,

16										"x":0,

17										"y":0

18									},

19									{

20										"data":[0,	0,	7,	5,	57,	43,	0,	0,	0,	0,	0,	0,	28,	1,	1,	42,	0,	0,	0,	0,\

21		0,	0,	44,	1,	1,	42,	0,	0,	0,	0,	0,	0,	28,	1,	1,	27,	43,	0,	0,	0,	0,	0,	28,	1,	1\

22	,	1,	27,	43,	0,	0,	0,	0,	28,	1,	1,	1,	59,	16,	0,	0,	0,	0,	48,	62,	61,	61,	16,	0,\

23		0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0\

24	,	0,	0,	0,	0,	0],

25										"height":10,

26										"name":"Ground",

27										"opacity":1,

28										"type":"tilelayer",

http://nokogiri.org/

29										"visible":true,

30										"width":10,

31										"x":0,

32										"y":0

33									}],

34		"orientation":"orthogonal",

35		"properties":

36					{

37	

38					},

39		"tileheight":128,

40		"tilesets":[

41									{

42										"firstgid":1,

43										"image":"media\/ground.png",

44										"imageheight":1024,

45										"imagewidth":1024,

46										"margin":0,

47										"name":"ground",

48										"properties":

49													{

50	

51													},

52										"spacing":0,

53										"tileheight":128,

54										"tilewidth":128

55									},

56									{

57										"firstgid":65,

58										"image":"media\/water.png",

59										"imageheight":128,

60										"imagewidth":128,

61										"margin":0,

62										"name":"water",

63										"properties":

64													{

65	

66													},

67										"spacing":0,

68										"tileheight":128,

69										"tilewidth":128

70									}],

71		"tilewidth":128,

72		"version":1,

73		"width":10

74	}

There	are	following	things	listed	here:

Two	different	tilesets,	“ground”	and	“water”
Map	width	and	height	in	tile	count	(10x10)
Layers	with	data	array	contains	tile	numbers

Couple	of	extra	things	that	Tiled	maps	can	have:

Object	layers	containing	lists	of	objects	with	their	coordinates
Properties	hash	on	tiles	and	objects

This	doesn’t	look	too	difficult	to	parse,	so	we’re	going	to	implement	a	loader	for	Tiled
maps.	And	make	it	open	source,	of	course.

Loading	Tiled	Maps	With	Gosu
Probably	the	easiest	way	to	load	Tiled	map	is	to	take	each	layer	and	render	it	on	screen,
tile	by	tile,	like	a	cake.	We	will	not	care	about	caching	at	this	point,	and	the	only

optimization	would	be	not	drawing	things	that	are	out	of	screen	boundaries.

After	couple	of	days	of	test	driven	development,	I’ve	ended	up	writing	gosu_tiled	gem,
that	allows	you	to	load	Tiled	maps	with	just	a	few	lines	of	code.

I	will	not	go	through	describing	the	implementation,	but	if	you	want	to	examine	the
thought	process,	take	a	look	at	gosu_tiled	gem’s	git	commit	history.

To	use	the	gem,	do	gem	install	gosu_tiled	and	examine	the	code	that	shows	a	map	of
the	island	that	you	can	scroll	around	with	arrow	keys:
02-warmup/island.rb

	1	require	'gosu'

	2	require	'gosu_tiled'

	3	

	4	class	GameWindow	<	Gosu::Window

	5			MAP_FILE	=	File.join(File.dirname(

	6					__FILE__),	'island.json')

	7			SPEED	=	5

	8	

	9			def	initialize

10					super(640,	480,	false)

11					@map	=	Gosu::Tiled.load_json(self,	MAP_FILE)

12					@x	=	@y	=	0

13					@first_render	=	true

14			end

15	

16			def	button_down(id)

17					close	if	id	==	Gosu::KbEscape

18			end

19	

20			def	update

21					@x	-=	SPEED	if	button_down?(Gosu::KbLeft)

22					@x	+=	SPEED	if	button_down?(Gosu::KbRight)

23					@y	-=	SPEED	if	button_down?(Gosu::KbUp)

24					@y	+=	SPEED	if	button_down?(Gosu::KbDown)

25					self.caption	=	"#{Gosu.fps}	FPS.	Use	arrow	keys	to	pan"

26			end

27	

28			def	draw

29					@first_render	=	false

30					@map.draw(@x,	@y)

31			end

32	

33			def	needs_redraw?

34					[Gosu::KbLeft,

35						Gosu::KbRight,

36						Gosu::KbUp,

37						Gosu::KbDown].each	do	|b|

38							return	true	if	button_down?(b)

39					end

40					@first_render

41			end

42	end

43	

44	GameWindow.new.show

Run	it,	use	arrow	keys	to	scroll	the	map.
$	ruby	02-warmup/island.rb

The	result	is	quite	satisfying,	and	it	scrolls	smoothly	without	any	optimizations:

https://github.com/spajus/gosu-tiled
https://github.com/spajus/gosu-tiled/commits/master

Exploring	Tiled	map	in	Gosu

Generating	Random	Map	With	Perlin	Noise
In	some	cases	random	generated	maps	make	all	the	difference.	Worms	and	Diablo	would
probably	be	just	average	games	if	it	wasn’t	for	those	always	unique,	procedurally
generated	maps.

We	will	try	to	make	a	very	primitive	map	generator	ourselves.	To	begin	with,	we	will	be
using	only	3	different	tiles	-	water,	sand	and	grass.	For	implementing	fully	tiled	edges,	the
generator	must	be	aware	of	available	tilesets	and	know	how	to	combine	them	in	valid
ways.	We	may	come	back	to	it,	but	for	now	let’s	keep	things	simple.

Now,	generating	naturally	looking	randomness	is	something	worth	having	a	book	of	it’s
own,	so	instead	of	trying	to	poorly	reinvent	what	other	people	have	already	done,	we	will
use	a	well	known	algorithm	perfectly	suited	for	this	task	-	Perlin	noise.

If	you	have	ever	used	Photoshop’s	Cloud	filter,	you	already	know	how	Perlin	noise	looks
like:

http://en.wikipedia.org/wiki/Perlin_noise

Perlin	noise

Now,	we	could	implement	the	algorithm	ourselves,	but	there	is	perlin_noise	gem	already
available,	it	looks	pretty	solid,	so	we	will	use	it.

The	following	program	generates	100x100	map	with	30%	chance	of	water,	15%	chance	of
sand	and	55%	chance	of	grass:
02-warmup/perlin_noise_map.rb

		1	require	'gosu'

		2	require	'gosu_texture_packer'

		3	require	'perlin_noise'

		4	

		5	def	media_path(file)

		6			File.join(File.dirname(File.dirname(

		7					__FILE__)),	'media',	file)

		8	end

		9	

	10	class	GameWindow	<	Gosu::Window

	11			MAP_WIDTH	=	100

	12			MAP_HEIGHT	=	100

	13			WIDTH	=	800

	14			HEIGHT	=	600

	15			TILE_SIZE	=	128

	16	

	17			def	initialize

	18					super(WIDTH,	HEIGHT,	false)

	19					load_tiles

	20					@map	=	generate_map

	21					@zoom	=	0.2

	22			end

	23	

	24			def	button_down(id)

	25					close	if	id	==	Gosu::KbEscape

	26					@map	=	generate_map	if	id	==	Gosu::KbSpace

	27			end

	28	

	29			def	update

	30					adjust_zoom(0.005)	if	button_down?(Gosu::KbDown)

	31					adjust_zoom(-0.005)	if	button_down?(Gosu::KbUp)

	32					set_caption

	33			end

	34	

	35			def	draw

	36					tiles_x.times	do	|x|

	37							tiles_y.times	do	|y|

	38									@map[x][y].draw(

	39											x	*	TILE_SIZE	*	@zoom,

	40											y	*	TILE_SIZE	*	@zoom,

	41											0,

https://github.com/junegunn/perlin_noise

	42											@zoom,

	43											@zoom)

	44							end

	45					end

	46			end

	47	

	48			private

	49	

	50			def	set_caption

	51					self.caption	=	'Perlin	Noise.	'	<<

	52							"Zoom:	#{'%.2f'	%	@zoom}.	"	<<

	53							'Use	Up/Down	to	zoom.	Space	to	regenerate.'

	54			end

	55	

	56			def	adjust_zoom(delta)

	57					new_zoom	=	@zoom	+	delta

	58					if	new_zoom	>	0.07	&&	new_zoom	<	2

	59							@zoom	=	new_zoom

	60					end

	61			end

	62	

	63			def	load_tiles

	64					tiles	=	Gosu::Image.load_tiles(

	65							self,	media_path('ground.png'),	128,	128,	true)

	66					@sand	=	tiles[0]

	67					@grass	=	tiles[8]

	68					@water	=	Gosu::Image.new(

	69							self,	media_path('water.png'),	true)

	70			end

	71	

	72			def	tiles_x

	73					count	=	(WIDTH	/	(TILE_SIZE	*	@zoom)).ceil	+	1

	74					[count,	MAP_WIDTH].min

	75			end

	76	

	77			def	tiles_y

	78					count	=	(HEIGHT	/	(TILE_SIZE	*	@zoom)).ceil	+	1

	79					[count,	MAP_HEIGHT].min

	80			end

	81	

	82			def	generate_map

	83					noises	=	Perlin::Noise.new(2)

	84					contrast	=	Perlin::Curve.contrast(

	85							Perlin::Curve::CUBIC,	2)

	86					map	=	{}

	87					MAP_WIDTH.times	do	|x|

	88							map[x]	=	{}

	89							MAP_HEIGHT.times	do	|y|

	90									n	=	noises[x	*	0.1,	y	*	0.1]

	91									n	=	contrast.call(n)

	92									map[x][y]	=	choose_tile(n)

	93							end

	94					end

	95					map

	96			end

	97	

	98			def	choose_tile(val)

	99					case	val

100					when	0.0..0.3	#	30%	chance

101							@water

102					when	0.3..0.45	#	15%	chance,	water	edges

103							@sand

104					else	#	55%	chance

105							@grass

106					end

107			end

108	

109	end

110	

111	window	=	GameWindow.new

112	window.show

Run	the	program,	zoom	with	up	/	down	arrows	and	regenerate	everything	with	spacebar.
$	ruby	02-warmup/perlin_noise_map.rb

Map	generated	with	Perlin	noise

This	is	a	little	longer	than	our	previous	examples,	so	we	will	analyze	some	parts	to	make	it
clear.
81	def	generate_map

82			noises	=	Perlin::Noise.new(2)

83			contrast	=	Perlin::Curve.contrast(

84					Perlin::Curve::CUBIC,	2)

85			map	=	{}

86			MAP_WIDTH.times	do	|x|

87					map[x]	=	{}

88					MAP_HEIGHT.times	do	|y|

89							n	=	noises[x	*	0.1,	y	*	0.1]

90							n	=	contrast.call(n)

91							map[x][y]	=	choose_tile(n)

92					end

93			end

94			map

95	end

generate_map	is	the	heart	of	this	program.	It	creates	two	dimensional	Perlin::Noise
generator,	then	chooses	a	random	tile	for	each	location	of	the	map,	according	to	noise
value.	To	make	the	map	a	little	sharper,	cubic	contrast	is	applied	to	noise	value	before
choosing	the	tile.	Try	commenting	out	contrast	application	-	it	will	look	like	a	boring	golf
course,	since	noise	values	will	keep	buzzing	around	the	middle.
	97	def	choose_tile(val)

	98			case	val

	99			when	0.0..0.3	#	30%	chance

100					@water

101			when	0.3..0.45	#	15%	chance,	water	edges

102					@sand

103			else	#	55%	chance

104					@grass

105			end

106	end

Here	we	could	go	crazy	if	we	had	more	different	tiles	to	use.	We	could	add	deep	waters	at
0.0..0.1,	mountains	at	0.9..0.95	and	snow	caps	at	0.95..1.0.	And	all	this	would	have
beautiful	transitions.

Player	Movement	With	Keyboard	And	Mouse
We	have	learned	to	draw	maps,	but	we	need	a	protagonist	to	explore	them.	It	will	be	a	tank
that	you	can	move	around	the	island	with	WASD	keys	and	use	your	mouse	to	target	it’s
gun	at	things.	The	tank	will	be	drawn	on	top	of	our	island	map,	and	it	will	be	above
ground,	but	below	tree	layer,	so	it	can	sneak	behind	palm	trees.	That’s	as	close	to	real	deal
as	it	gets!
02-warmup/player_movement.rb

		1	require	'gosu'

		2	require	'gosu_tiled'

		3	require	'gosu_texture_packer'

		4	

		5	class	Tank

		6			attr_accessor	:x,	:y,	:body_angle,	:gun_angle

		7	

		8			def	initialize(window,	body,	shadow,	gun)

		9					@x	=	window.width	/	2

	10					@y	=	window.height	/	2

	11					@window	=	window

	12					@body	=	body

	13					@shadow	=	shadow

	14					@gun	=	gun

	15					@body_angle	=	0.0

	16					@gun_angle	=	0.0

	17			end

	18	

	19			def	update

	20					atan	=	Math.atan2(320	-	@window.mouse_x,

	21																							240	-	@window.mouse_y)

	22					@gun_angle	=	-atan	*	180	/	Math::PI

	23					@body_angle	=	change_angle(@body_angle,

	24							Gosu::KbW,	Gosu::KbS,	Gosu::KbA,	Gosu::KbD)

	25			end

	26	

	27			def	draw

	28					@shadow.draw_rot(@x	-	1,	@y	-	1,	0,	@body_angle)

	29					@body.draw_rot(@x,	@y,	1,	@body_angle)

	30					@gun.draw_rot(@x,	@y,	2,	@gun_angle)

	31			end

	32	

	33			private

	34	

	35			def	change_angle(previous_angle,	up,	down,	right,	left)

	36					if	@window.button_down?(up)

	37							angle	=	0.0

	38							angle	+=	45.0	if	@window.button_down?(left)

	39							angle	-=	45.0	if	@window.button_down?(right)

	40					elsif	@window.button_down?(down)

	41							angle	=	180.0

	42							angle	-=	45.0	if	@window.button_down?(left)

	43							angle	+=	45.0	if	@window.button_down?(right)

	44					elsif	@window.button_down?(left)

	45							angle	=	90.0

	46							angle	+=	45.0	if	@window.button_down?(up)

	47							angle	-=	45.0	if	@window.button_down?(down)

	48					elsif	@window.button_down?(right)

	49							angle	=	270.0

	50							angle	-=	45.0	if	@window.button_down?(up)

	51							angle	+=	45.0	if	@window.button_down?(down)

	52					end

	53					angle	||	previous_angle

	54			end

	55	end

	56	

	57	class	GameWindow	<	Gosu::Window

	58			MAP_FILE	=	File.join(File.dirname(

	59					__FILE__),	'island.json')

	60			UNIT_FILE	=	File.join(File.dirname(File.dirname(

	61					__FILE__)),	'media',	'ground_units.json')

	62			SPEED	=	5

	63	

	64			def	initialize

	65					super(640,	480,	false)

	66					@map	=	Gosu::Tiled.load_json(self,	MAP_FILE)

	67					@units	=	Gosu::TexturePacker.load_json(

	68							self,	UNIT_FILE,	:precise)

	69					@tank	=	Tank.new(self,

	70							@units.frame('tank1_body.png'),

	71							@units.frame('tank1_body_shadow.png'),

	72							@units.frame('tank1_dualgun.png'))

	73					@x	=	@y	=	0

	74					@first_render	=	true

	75					@buttons_down	=	0

	76			end

	77	

	78			def	needs_cursor?

	79					true

	80			end

	81	

	82			def	button_down(id)

	83					close	if	id	==	Gosu::KbEscape

	84					@buttons_down	+=	1

	85			end

	86	

	87			def	button_up(id)

	88					@buttons_down	-=	1

	89			end

	90	

	91			def	update

	92					@x	-=	SPEED	if	button_down?(Gosu::KbA)

	93					@x	+=	SPEED	if	button_down?(Gosu::KbD)

	94					@y	-=	SPEED	if	button_down?(Gosu::KbW)

	95					@y	+=	SPEED	if	button_down?(Gosu::KbS)

	96					@tank.update

	97					self.caption	=	"#{Gosu.fps}	FPS.	"	<<

	98							'Use	WASD	and	mouse	to	control	tank'

	99			end

100	

101			def	draw

102					@first_render	=	false

103					@map.draw(@x,	@y)

104					@tank.draw()

105			end

106	end

107	

108	GameWindow.new.show

Tank	sprite	is	rendered	in	the	middle	of	screen.	It	consists	of	three	layers,	body	shadow,
body	and	gun.	Body	and	it’s	shadow	are	always	rendered	in	same	angle,	one	on	top	of
another.	The	angle	is	determined	by	keys	that	are	pressed.	It	supports	8	directions.

Gun	is	a	little	bit	different.	It	follows	mouse	cursor.	To	determine	the	angle	we	had	to	use
some	math.	The	formula	to	get	angle	in	degrees	is	arctan(delta_x	/	delta_y)	*	180	/
PI.	You	can	see	it	explained	in	more	detail	on	stackoverflow.

Run	it	and	stroll	around	the	island.	You	can	still	move	on	water	and	into	the	darkness,
away	from	the	map	itself,	but	we	will	handle	it	later.

http://stackoverflow.com/questions/7586063/how-to-calculate-the-angle-between-a-line-and-the-horizontal-axis

$	ruby	02-warmup/player_movement.rb

See	that	tank	hiding	between	the	bushes,	ready	to	go	in	8	directions	and	blow	things	up
with	that	precisely	aimed	double	cannon?

Tank	moving	around	and	aiming	guns

Game	Coordinate	System
By	now	we	may	start	realizing,	that	there	is	one	key	component	missing	in	our	designs.
We	have	a	virtual	map,	which	is	bigger	than	our	screen	space,	and	we	should	perform	all
calculations	using	that	map,	and	only	then	cut	out	the	required	piece	and	render	it	in	our
game	window.

There	are	three	different	coordinate	systems	that	have	to	map	with	each	other:

1.	 Game	coordinates
2.	 Viewport	coordinates
3.	 Screen	coordinates

Coordinate	systems

Game	Coordinates

This	is	where	all	logic	will	happen.	Player	location,	enemy	locations,	powerup	locations	-
all	this	will	have	game	coordinates,	and	it	should	have	nothing	to	do	with	your	screen
position.

Viewport	Coordinates

Viewport	is	the	position	of	virtual	camera,	that	is	“filming”	world	in	action.	Don’t	confuse
it	with	screen	coordinates,	because	viewport	will	not	necessarily	be	mapped	pixel	to	pixel
to	your	game	window.	Imagine	this:	you	have	a	huge	world	map,	your	player	is	standing
in	the	middle,	and	game	window	displays	the	player	while	slowly	zooming	in.	In	this

scenario,	viewport	is	constantly	shrinking,	while	game	map	stays	the	same,	and	game
window	also	stays	the	same.

Screen	Coordinates

This	is	your	game	display,	pixel	by	pixel.	You	will	draw	static	information,	like	your	HUD
directly	on	it.

How	To	Put	It	All	Together

In	our	games	we	will	want	to	separate	game	coordinates	from	viewport	and	screen	as
much	as	possible.	Basically,	we	will	program	ourselves	a	“camera	man”	who	will	be	busy
following	the	action,	zooming	in	and	out,	perhaps	changing	the	view	angle	now	and	then.

Let’s	implement	a	prototype	that	will	allow	us	to	navigate	and	zoom	around	a	big	map.	We
will	only	draw	objects	that	are	visible	in	viewport.	Some	math	will	be	unavoidable,	but	in
most	cases	it’s	pretty	basic	-	that’s	the	beauty	of	2D	games:
02-warmup/coordinate_system.rb

		1	require	'gosu'

		2	

		3	class	WorldMap

		4			attr_accessor	:on_screen,	:off_screen

		5	

		6			def	initialize(width,	height)

		7					@images	=	{}

		8					(0..width).step(50)	do	|x|

		9							@images[x]	=	{}

	10							(0..height).step(50)	do	|y|

	11									img	=	Gosu::Image.from_text(

	12											$window,	"#{x}:#{y}",

	13											Gosu.default_font_name,	15)

	14									@images[x][y]	=	img

	15							end

	16					end

	17			end

	18	

	19			def	draw(camera)

	20					@on_screen	=	@off_screen	=	0

	21					@images.each	do	|x,	row|

	22							row.each	do	|y,	val|

	23									if	camera.can_view?(x,	y,	val)

	24											val.draw(x,	y,	0)

	25											@on_screen	+=	1

	26									else

	27											@off_screen	+=	1

	28									end

	29							end

	30					end

	31			end

	32	end

	33	

	34	class	Camera

	35			attr_accessor	:x,	:y,	:zoom

	36	

	37			def	initialize

	38					@x	=	@y	=	0

	39					@zoom	=	1

	40			end

	41	

	42			def	can_view?(x,	y,	obj)

	43					x0,	x1,	y0,	y1	=	viewport

	44					(x0	-	obj.width..x1).include?(x)	&&

	45							(y0	-	obj.height..y1).include?(y)

	46			end

	47	

	48			def	viewport

http://en.wikipedia.org/wiki/HUD_(video_gaming)

	49					x0	=	@x	-	($window.width	/	2)		/	@zoom

	50					x1	=	@x	+	($window.width	/	2)		/	@zoom

	51					y0	=	@y	-	($window.height	/	2)	/	@zoom

	52					y1	=	@y	+	($window.height	/	2)	/	@zoom

	53					[x0,	x1,	y0,	y1]

	54			end

	55	

	56			def	to_s

	57					"FPS:	#{Gosu.fps}.	"	<<

	58							"#{@x}:#{@y}	@	#{'%.2f'	%	@zoom}.	"	<<

	59							'WASD	to	move,	arrows	to	zoom.'

	60			end

	61	

	62			def	draw_crosshair

	63					$window.draw_line(

	64							@x	-	10,	@y,	Gosu::Color::YELLOW,

	65							@x	+	10,	@y,	Gosu::Color::YELLOW,	100)

	66					$window.draw_line(

	67							@x,	@y	-	10,	Gosu::Color::YELLOW,

	68							@x,	@y	+	10,	Gosu::Color::YELLOW,	100)

	69			end

	70	end

	71	

	72	

	73	class	GameWindow	<	Gosu::Window

	74			SPEED	=	10

	75	

	76			def	initialize

	77					super(800,	600,	false)

	78					$window	=	self

	79					@map	=	WorldMap.new(2048,	1024)

	80					@camera	=	Camera.new

	81			end

	82	

	83			def	button_down(id)

	84					close	if	id	==	Gosu::KbEscape

	85					if	id	==	Gosu::KbSpace

	86							@camera.zoom	=	1.0

	87							@camera.x	=	0

	88							@camera.y	=	0

	89					end

	90			end

	91	

	92			def	update

	93					@camera.x	-=	SPEED	if	button_down?(Gosu::KbA)

	94					@camera.x	+=	SPEED	if	button_down?(Gosu::KbD)

	95					@camera.y	-=	SPEED	if	button_down?(Gosu::KbW)

	96					@camera.y	+=	SPEED	if	button_down?(Gosu::KbS)

	97	

	98					zoom_delta	=	@camera.zoom	>	0	?	0.01	:	1.0

	99	

100					if	button_down?(Gosu::KbUp)

101							@camera.zoom	-=	zoom_delta

102					end

103					if	button_down?(Gosu::KbDown)

104							@camera.zoom	+=	zoom_delta

105					end

106					self.caption	=	@camera.to_s

107			end

108	

109			def	draw

110					off_x	=	-@camera.x	+	width	/	2

111					off_y	=	-@camera.y	+	height	/	2

112					cam_x	=	@camera.x

113					cam_y	=	@camera.y

114					translate(off_x,	off_y)	do

115							@camera.draw_crosshair

116							zoom	=	@camera.zoom

117							scale(zoom,	zoom,	cam_x,	cam_y)	do

118									@map.draw(@camera)

119							end

120					end

121					info	=	'Objects	on/off	screen:	'	<<

122							"#{@map.on_screen}/#{@map.off_screen}"

123					info_img	=	Gosu::Image.from_text(

124							self,	info,	Gosu.default_font_name,	30)

125					info_img.draw(10,	10,	1)

126			end

127	end

128	

129	GameWindow.new.show

Run	it,	use	WASD	to	navigate,	up	/	down	arrows	to	zoom	and	spacebar	to	reset	the
camera.
$	ruby	02-warmup/coordinate_system.rb

It	doesn’t	look	impressive,	but	understanding	the	concept	of	different	coordinate	systems
and	being	able	to	stitch	them	together	is	paramount	to	the	success	of	our	final	product.

Prototype	of	separate	coordinate	systems

Luckily	for	us,	Gosu	helps	us	by	providing	Gosu::Window#translate	that	handles	camera
offset,	Gosu::Window#scale	that	aids	zooming,	and	Gosu::Window#rotate	that	was	not
used	yet,	but	will	be	great	for	shaking	the	view	to	emphasize	explosions.

http://www.libgosu.org/rdoc/Gosu/Window.html#translate-instance_method
http://www.libgosu.org/rdoc/Gosu/Window.html#scale-instance_method
http://www.libgosu.org/rdoc/Gosu/Window.html#rotate-instance_method

Prototyping	The	Game

Warming	up	was	really	important,	but	let’s	combine	everything	we	learned,	add	some	new
challenges,	and	build	a	small	prototype	with	following	features:

1.	 Camera	loosely	follows	tank.
2.	 Camera	zooms	automatically	depending	on	tank	speed.
3.	 You	can	temporarily	override	automatic	camera	zoom	using	keyboard.
4.	 Music	and	sound	effects.
5.	 Randomly	generated	map.
6.	 Two	modes:	menu	and	gameplay.
7.	 Tank	movement	with	WADS	keys.
8.	 Tank	aiming	and	shooting	with	mouse.
9.	 Collision	detection	(tanks	don’t	swim).
10.	 Explosions,	visible	bullet	trajectories.
11.	 Bullet	range	limiting.

Sounds	fun?	Hell	yes!	However,	before	we	start,	we	should	plan	ahead	a	little	and	think
how	our	game	architecture	will	look	like.	We	will	also	structure	our	code	a	little,	so	it	will
not	be	smashed	into	one	ruby	class,	as	we	did	in	earlier	examples.	Books	should	show
good	manners!

Switching	Between	Game	States
First,	let’s	think	how	to	hook	into	Gosu::Window.	Since	we	will	have	two	game	states,
State	pattern	naturally	comes	to	mind.

So,	our	GameWindow	class	could	look	like	this:
03-prototype/game_window.rb

	1	class	GameWindow	<	Gosu::Window

	2	

	3			attr_accessor	:state

	4	

	5			def	initialize

	6					super(800,	600,	false)

	7			end

	8	

	9			def	update

10					@state.update

11			end

12	

13			def	draw

14					@state.draw

15			end

16	

17			def	needs_redraw?

18					@state.needs_redraw?

19			end

20	

21			def	button_down(id)

22					@state.button_down(id)

http://www.libgosu.org/rdoc/Gosu/Window.html
http://en.wikipedia.org/wiki/State_pattern

23			end

24	

25	end

It	has	current	@state,	and	all	usual	main	loop	actions	are	executed	on	that	state	instance.
We	will	add	base	class	that	all	game	states	will	extend.	Let’s	name	it	GameState:
03-prototype/states/game_state.rb

	1	class	GameState

	2	

	3			def	self.switch(new_state)

	4					$window.state	&&	$window.state.leave

	5					$window.state	=	new_state

	6					new_state.enter

	7			end

	8	

	9			def	enter

10			end

11	

12			def	leave

13			end

14	

15			def	draw

16			end

17	

18			def	update

19			end

20	

21			def	needs_redraw?

22					true

23			end

24	

25			def	button_down(id)

26			end

27	end

This	class	provides	GameState.switch,	that	will	change	the	state	for	our	Gosu::Window,
and	all	enter	and	leave	methods	when	appropriate.	These	methods	will	be	useful	for
things	like	switching	music.

Notice	that	Gosu::Window	is	accessed	using	global	$window	variable,	which	will	be
considered	an	anti-pattern	by	most	good	programmers,	but	there	is	some	logic	behind	this:

1.	 There	will	be	only	one	Gosu::Window	instance.
2.	 It	lives	as	long	as	the	game	runs.
3.	 It	is	used	in	some	way	by	nearly	all	other	classes,	so	we	would	have	to	pass	it	around

all	the	time.
4.	 Accessing	it	using	Singleton	or	static	utility	class	would	not	give	any	clear	benefits,

just	add	more	complexity.

Chingu,	another	game	framework	built	on	top	of	Gosu,	also	uses	global	$window,	so	it’s
probably	not	the	worst	idea	ever.

We	will	also	need	an	entry	point	that	would	fire	up	the	game	and	enter	the	first	game	state
-	the	menu.
03-prototype/main.rb

	1	require	'gosu'

	2	require_relative	'states/game_state'

	3	require_relative	'states/menu_state'

	4	require_relative	'states/play_state'

https://github.com/ippa/chingu

	5	require_relative	'game_window'

	6	

	7	module	Game

	8			def	self.media_path(file)

	9					File.join(File.dirname(File.dirname(

10							__FILE__)),	'media',	file)

11			end

12	end

13	

14	$window	=	GameWindow.new

15	GameState.switch(MenuState.instance)

16	$window.show

In	our	entry	point	we	also	have	a	small	helper	which	will	help	loading	images	and	sounds
using	Game.media_path.

The	rest	is	obvious:	we	create	GameWindow	instance	and	store	it	in	$window	variable,	as
discussed	before.	Then	we	use	GameState.switch)	to	load	MenuState,	and	show	the	game
window.

Implementing	Menu	State
This	is	how	simple	MenuState	implementation	looks	like:
03-prototype/states/menu_state.rb

	1	require	'singleton'

	2	class	MenuState	<	GameState

	3			include	Singleton

	4			attr_accessor	:play_state

	5	

	6			def	initialize

	7					@message	=	Gosu::Image.from_text(

	8							$window,	"Tanks	Prototype",

	9							Gosu.default_font_name,	100)

10			end

11	

12			def	enter

13					music.play(true)

14					music.volume	=	1

15			end

16	

17			def	leave

18					music.volume	=	0

19					music.stop

20			end

21	

22			def	music

23					@@music	||=	Gosu::Song.new(

24							$window,	Game.media_path('menu_music.mp3'))

25			end

26	

27			def	update

28					continue_text	=	@play_state	?	"C	=	Continue,	"	:	""

29					@info	=	Gosu::Image.from_text(

30							$window,	"Q	=	Quit,	#{continue_text}N	=	New	Game",

31							Gosu.default_font_name,	30)

32			end

33	

34			def	draw

35					@message.draw(

36							$window.width	/	2	-	@message.width	/	2,

37							$window.height	/	2	-	@message.height	/	2,

38							10)

39					@info.draw(

40							$window.width	/	2	-	@info.width	/	2,

41							$window.height	/	2	-	@info.height	/	2	+	200,

42							10)

43			end

44	

45			def	button_down(id)

46					$window.close	if	id	==	Gosu::KbQ

47					if	id	==	Gosu::KbC	&&	@play_state

48							GameState.switch(@play_state)

49					end

50					if	id	==	Gosu::KbN

51							@play_state	=	PlayState.new

52							GameState.switch(@play_state)

53					end

54			end

55	end

It’s	a	Singleton,	so	we	can	always	get	it	with	MenuState.instance.

It	starts	playing	menu_music.mp3	when	you	enter	the	menu,	and	stop	the	music	when	you
leave	it.	Instance	of	Gosu::Song	is	cached	in	@@music	class	variable	to	save	resources.

We	have	to	know	if	play	is	already	in	progress,	so	we	can	add	a	possibility	to	go	back	to
the	game.	That’s	why	MenuState	has	@play_state	variable,	and	either	allows	creating
new	PlayState	when	N	key	is	pressed,	or	switches	to	existing	@play_state	if	C	key	is
pressed.

Here	comes	the	interesting	part,	implementing	the	play	state.

Implementing	Play	State
Before	we	start	implementing	actual	gameplay,	we	need	to	think	what	game	entities	we
will	be	building.	We	will	need	a	Map	that	will	hold	our	tiles	and	provide	world	coordinate
system.	We	will	also	need	a	Camera	that	will	know	how	to	float	around	and	zoom.	There
will	be	Bullets	flying	around,	and	each	bullet	will	eventually	cause	an	Explosion.

Having	all	that	taken	care	of,	PlayState	should	look	pretty	simple:
03-prototype/states/play_state.rb

	1	require_relative	'../entities/map'

	2	require_relative	'../entities/tank'

	3	require_relative	'../entities/camera'

	4	require_relative	'../entities/bullet'

	5	require_relative	'../entities/explosion'

	6	class	PlayState	<	GameState

	7	

	8			def	initialize

	9					@map	=	Map.new

10					@tank	=	Tank.new(@map)

11					@camera	=	Camera.new(@tank)

12					@bullets	=	[]

13					@explosions	=	[]

14			end

15	

16			def	update

17					bullet	=	@tank.update(@camera)

18					@bullets	<<	bullet	if	bullet

19					@bullets.map(&:update)

20					@bullets.reject!(&:done?)

21					@camera.update

22					$window.caption	=	'Tanks	Prototype.	'	<<

23							"[FPS:	#{Gosu.fps}.	Tank	@	#{@tank.x.round}:#{@tank.y.round}]"

24			end

25	

26			def	draw

27					cam_x	=	@camera.x

28					cam_y	=	@camera.y

29					off_x	=		$window.width	/	2	-	cam_x

30					off_y	=		$window.height	/	2	-	cam_y

31					$window.translate(off_x,	off_y)	do

32							zoom	=	@camera.zoom

http://www.ruby-doc.org/stdlib-2.1.2/libdoc/singleton/rdoc/Singleton.html
http://www.libgosu.org/rdoc/Gosu/Song.html

33							$window.scale(zoom,	zoom,	cam_x,	cam_y)	do

34									@map.draw(@camera)

35									@tank.draw

36									@bullets.map(&:draw)

37							end

38					end

39					@camera.draw_crosshair

40			end

41	

42			def	button_down(id)

43					if	id	==	Gosu::MsLeft

44							bullet	=	@tank.shoot(*@camera.mouse_coords)

45							@bullets	<<	bullet	if	bullet

46					end

47					$window.close	if	id	==	Gosu::KbQ

48					if	id	==	Gosu::KbEscape

49							GameState.switch(MenuState.instance)

50					end

51			end

52	

53	end

Update	and	draw	calls	are	passed	to	the	underlying	game	entities,	so	they	can	handle	them
the	way	they	want	it	to.	Such	encapsulation	reduces	complexity	of	the	code	and	allows
doing	every	piece	of	logic	where	it	belongs,	while	keeping	it	short	and	simple.

There	are	a	few	interesting	parts	in	this	code.	Both	@tank.update	and	@tank.shoot	may
produce	a	new	bullet,	if	your	tank’s	fire	rate	is	not	exceeded,	and	if	left	mouse	button	is
kept	down,	hence	the	update.	If	bullet	is	produced,	it	is	added	to	@bullets	array,	and	they
live	their	own	little	lifecycle,	until	they	explode	and	are	no	longer	used.
@bullets.reject!(&:done?)	cleans	up	the	garbage.

PlayState#draw	deserves	extra	explanation.	@camera.x	and	@camera.y	points	to	game
coordinates	where	Camera	is	currently	looking	at.	Gosu::Window#translate	creates	a
block	within	which	all	Gosu::Image	draw	operations	are	translated	by	given	offset.
Gosu::Window#scale	does	the	same	with	Camera	zoom.

Crosshair	is	drawn	without	translating	and	scaling	it,	because	it’s	relative	to	screen,	not	to
world	map.

Basically,	this	draw	method	is	the	place	that	takes	care	drawing	only	what	@camera	can
see.

If	it’s	hard	to	understand	how	this	works,	get	back	to	“Game	Coordinate	System”	chapter
and	let	it	sink	in.

Implementing	World	Map
We	will	start	analyzing	game	entities	with	Map.
03-prototype/entities/map.rb

	1	require	'perlin_noise'

	2	require	'gosu_texture_packer'

	3	

	4	class	Map

	5			MAP_WIDTH	=	100

	6			MAP_HEIGHT	=	100

	7			TILE_SIZE	=	128

	8	

	9			def	initialize

10					load_tiles

11					@map	=	generate_map

http://www.libgosu.org/rdoc/Gosu/Window.html#translate-instance_method
http://www.libgosu.org/rdoc/Gosu/Image.html
http://www.libgosu.org/rdoc/Gosu/Window.html#scale-instance_method

12			end

13	

14			def	find_spawn_point

15					while	true

16							x	=	rand(0..MAP_WIDTH	*	TILE_SIZE)

17							y	=	rand(0..MAP_HEIGHT	*	TILE_SIZE)

18							if	can_move_to?(x,	y)

19									return	[x,	y]

20							else

21									puts	"Invalid	spawn	point:	#{[x,	y]}"

22							end

23					end

24			end

25	

26			def	can_move_to?(x,	y)

27					tile	=	tile_at(x,	y)

28					tile	&&	tile	!=	@water

29			end

30	

31			def	draw(camera)

32					@map.each	do	|x,	row|

33							row.each	do	|y,	val|

34									tile	=	@map[x][y]

35									map_x	=	x	*	TILE_SIZE

36									map_y	=	y	*	TILE_SIZE

37									if	camera.can_view?(map_x,	map_y,	tile)

38											tile.draw(map_x,	map_y,	0)

39									end

40							end

41					end

42			end

43	

44			private

45	

46			def	tile_at(x,	y)

47					t_x	=	((x	/	TILE_SIZE)	%	TILE_SIZE).floor

48					t_y	=	((y	/	TILE_SIZE)	%	TILE_SIZE).floor

49					row	=	@map[t_x]

50					row[t_y]	if	row

51			end

52	

53			def	load_tiles

54					tiles	=	Gosu::Image.load_tiles(

55							$window,	Game.media_path('ground.png'),

56							128,	128,	true)

57					@sand	=	tiles[0]

58					@grass	=	tiles[8]

59					@water	=	Gosu::Image.new(

60							$window,	Game.media_path('water.png'),	true)

61			end

62	

63			def	generate_map

64					noises	=	Perlin::Noise.new(2)

65					contrast	=	Perlin::Curve.contrast(

66							Perlin::Curve::CUBIC,	2)

67					map	=	{}

68					MAP_WIDTH.times	do	|x|

69							map[x]	=	{}

70							MAP_HEIGHT.times	do	|y|

71									n	=	noises[x	*	0.1,	y	*	0.1]

72									n	=	contrast.call(n)

73									map[x][y]	=	choose_tile(n)

74							end

75					end

76					map

77			end

78	

79			def	choose_tile(val)

80					case	val

81					when	0.0..0.3	#	30%	chance

82							@water

83					when	0.3..0.45	#	15%	chance,	water	edges

84							@sand

85					else	#	55%	chance

86							@grass

87					end

88			end

89	end

This	implementation	is	very	similar	to	the	Map	we	had	built	in	“Generating	Random	Map
With	Perlin	Noise”,	with	some	extra	additions.	can_move_to?	verifies	if	tile	under	given
coordinates	is	not	water.	Pretty	simple,	but	it’s	enough	for	our	prototype.

Also,	when	we	draw	the	map	we	have	to	make	sure	if	tiles	we	are	drawing	are	currently
visible	by	our	camera,	otherwise	we	will	end	up	drawing	off	screen.	camera.can_view?
handles	it.	Current	implementation	will	probably	be	causing	a	bottleneck,	since	it	brute
forces	through	all	the	map	rather	than	cherry-picking	the	visible	region.	We	will	probably
have	to	get	back	and	change	it	later.

find_spawn_point	is	one	more	addition.	It	keeps	picking	a	random	point	on	map	and
verifies	if	it’s	not	water	using	can_move_to?.	When	solid	tile	is	found,	it	returns	the
coordinates,	so	our	Tank	will	be	able	to	spawn	there.

Implementing	Floating	Camera
If	you	played	the	original	Grand	Theft	Auto	or	GTA	2,	you	should	remember	how
fascinating	the	camera	was.	It	backed	away	when	you	were	driving	at	high	speeds,	closed
in	when	you	were	walking	on	foot,	and	floated	around	as	if	a	smart	drone	was	following
your	protagonist	from	above.

The	following	Camera	implementation	is	far	inferior	to	the	one	GTA	had	nearly	two
decades	ago,	but	it’s	a	start:
03-prototype/entities/camera.rb

	1	class	Camera

	2			attr_accessor	:x,	:y,	:zoom

	3	

	4			def	initialize(target)

	5					@target	=	target

	6					@x,	@y	=	target.x,	target.y

	7					@zoom	=	1

	8			end

	9	

10			def	can_view?(x,	y,	obj)

11					x0,	x1,	y0,	y1	=	viewport

12					(x0	-	obj.width..x1).include?(x)	&&

13							(y0	-	obj.height..y1).include?(y)

14			end

15	

16			def	mouse_coords

17					x,	y	=	target_delta_on_screen

18					mouse_x_on_map	=	@target.x	+

19							(x	+	$window.mouse_x	-	($window.width	/	2))	/	@zoom

20					mouse_y_on_map	=	@target.y	+

21							(y	+	$window.mouse_y	-	($window.height	/	2))	/	@zoom

22					[mouse_x_on_map,	mouse_y_on_map].map(&:round)

23			end

24	

25			def	update

26					@x	+=	@target.speed	if	@x	<	@target.x	-	$window.width	/	4

27					@x	-=	@target.speed	if	@x	>	@target.x	+	$window.width	/	4

28					@y	+=	@target.speed	if	@y	<	@target.y	-	$window.height	/	4

29					@y	-=	@target.speed	if	@y	>	@target.y	+	$window.height	/	4

30	

31					zoom_delta	=	@zoom	>	0	?	0.01	:	1.0

32					if	$window.button_down?(Gosu::KbUp)

33							@zoom	-=	zoom_delta	unless	@zoom	<	0.7

34					elsif	$window.button_down?(Gosu::KbDown)

35							@zoom	+=	zoom_delta	unless	@zoom	>	10

http://en.wikipedia.org/wiki/Grand_Theft_Auto_(video_game)

36					else

37							target_zoom	=	@target.speed	>	1.1	?	0.85	:	1.0

38							if	@zoom	<=	(target_zoom	-	0.01)

39									@zoom	+=	zoom_delta	/	3

40							elsif	@zoom	>	(target_zoom	+	0.01)

41									@zoom	-=	zoom_delta	/	3

42							end

43					end

44			end

45	

46			def	to_s

47					"FPS:	#{Gosu.fps}.	"	<<

48							"#{@x}:#{@y}	@	#{'%.2f'	%	@zoom}.	"	<<

49							'WASD	to	move,	arrows	to	zoom.'

50			end

51	

52			def	target_delta_on_screen

53					[(@x	-	@target.x)	*	@zoom,	(@y	-	@target.y)	*	@zoom]

54			end

55	

56			def	draw_crosshair

57					x	=	$window.mouse_x

58					y	=	$window.mouse_y

59					$window.draw_line(

60							x	-	10,	y,	Gosu::Color::RED,

61							x	+	10,	y,	Gosu::Color::RED,	100)

62					$window.draw_line(

63							x,	y	-	10,	Gosu::Color::RED,

64							x,	y	+	10,	Gosu::Color::RED,	100)

65			end

66	

67			private

68	

69			def	viewport

70					x0	=	@x	-	($window.width	/	2)		/	@zoom

71					x1	=	@x	+	($window.width	/	2)		/	@zoom

72					y0	=	@y	-	($window.height	/	2)	/	@zoom

73					y1	=	@y	+	($window.height	/	2)	/	@zoom

74					[x0,	x1,	y0,	y1]

75			end

76	end

Our	Camera	has	@target	that	it	tries	to	follow,	@x	and	@y	that	it	currently	is	looking	at,	and
@zoom	level.

All	the	magic	happens	in	update	method.	It	keeps	track	of	the	distance	between	@target
and	adjust	itself	to	stay	nearby.	And	when	@target.speed	shows	some	movement
momentum,	camera	slowly	backs	away.

Camera	also	tels	if	you	can_view?	an	object	at	some	coordinates,	so	when	other	entities
draw	themselves,	they	can	check	if	there	is	a	need	for	that.

Another	noteworthy	method	is	mouse_coords.	It	translates	mouse	position	on	screen	to
mouse	position	on	map,	so	the	game	will	know	where	you	are	targeting	your	guns.

Implementing	The	Tank
Most	of	our	tank	code	will	be	taken	from	“Player	Movement	With	Keyboard	And	Mouse”:
03-prototype/entities/tank.rb

		1	class	Tank

		2			attr_accessor	:x,	:y,	:body_angle,	:gun_angle

		3			SHOOT_DELAY	=	500

		4	

		5			def	initialize(map)

		6					@map	=	map

		7					@units	=	Gosu::TexturePacker.load_json(

		8							$window,	Game.media_path('ground_units.json'),	:precise)

		9					@body	=	@units.frame('tank1_body.png')

	10					@shadow	=	@units.frame('tank1_body_shadow.png')

	11					@gun	=	@units.frame('tank1_dualgun.png')

	12					@x,	@y	=	@map.find_spawn_point

	13					@body_angle	=	0.0

	14					@gun_angle	=	0.0

	15					@last_shot	=	0

	16					sound.volume	=	0.3

	17			end

	18	

	19			def	sound

	20					@@sound	||=	Gosu::Song.new(

	21							$window,	Game.media_path('tank_driving.mp3'))

	22			end

	23	

	24			def	shoot(target_x,	target_y)

	25					if	Gosu.milliseconds	-	@last_shot	>	SHOOT_DELAY

	26							@last_shot	=	Gosu.milliseconds

	27							Bullet.new(@x,	@y,	target_x,	target_y).fire(100)

	28					end

	29			end

	30	

	31			def	update(camera)

	32					d_x,	d_y	=	camera.target_delta_on_screen

	33					atan	=	Math.atan2(($window.width	/	2)	-	d_x	-	$window.mouse_x,

	34																							($window.height	/	2)	-	d_y	-	$window.mouse_y)

	35					@gun_angle	=	-atan	*	180	/	Math::PI

	36					new_x,	new_y	=	@x,	@y

	37					new_x	-=	speed	if	$window.button_down?(Gosu::KbA)

	38					new_x	+=	speed	if	$window.button_down?(Gosu::KbD)

	39					new_y	-=	speed	if	$window.button_down?(Gosu::KbW)

	40					new_y	+=	speed	if	$window.button_down?(Gosu::KbS)

	41					if	@map.can_move_to?(new_x,	new_y)

	42							@x,	@y	=	new_x,	new_y

	43					else

	44							@speed	=	1.0

	45					end

	46					@body_angle	=	change_angle(@body_angle,

	47							Gosu::KbW,	Gosu::KbS,	Gosu::KbA,	Gosu::KbD)

	48	

	49					if	moving?

	50							sound.play(true)

	51					else

	52							sound.pause

	53					end

	54	

	55					if	$window.button_down?(Gosu::MsLeft)

	56							shoot(*camera.mouse_coords)

	57					end

	58			end

	59	

	60			def	moving?

	61					any_button_down?(Gosu::KbA,	Gosu::KbD,	Gosu::KbW,	Gosu::KbS)

	62			end

	63	

	64			def	draw

	65					@shadow.draw_rot(@x	-	1,	@y	-	1,	0,	@body_angle)

	66					@body.draw_rot(@x,	@y,	1,	@body_angle)

	67					@gun.draw_rot(@x,	@y,	2,	@gun_angle)

	68			end

	69	

	70			def	speed

	71					@speed	||=	1.0

	72					if	moving?

	73							@speed	+=	0.03	if	@speed	<	5

	74					else

	75							@speed	=	1.0

	76					end

	77					@speed

	78			end

	79	

	80			private

	81	

	82			def	any_button_down?(*buttons)

	83					buttons.each	do	|b|

	84							return	true	if	$window.button_down?(b)

	85					end

	86					false

	87			end

	88	

	89			def	change_angle(previous_angle,	up,	down,	right,	left)

	90					if	$window.button_down?(up)

	91							angle	=	0.0

	92							angle	+=	45.0	if	$window.button_down?(left)

	93							angle	-=	45.0	if	$window.button_down?(right)

	94					elsif	$window.button_down?(down)

	95							angle	=	180.0

	96							angle	-=	45.0	if	$window.button_down?(left)

	97							angle	+=	45.0	if	$window.button_down?(right)

	98					elsif	$window.button_down?(left)

	99							angle	=	90.0

100							angle	+=	45.0	if	$window.button_down?(up)

101							angle	-=	45.0	if	$window.button_down?(down)

102					elsif	$window.button_down?(right)

103							angle	=	270.0

104							angle	-=	45.0	if	$window.button_down?(up)

105							angle	+=	45.0	if	$window.button_down?(down)

106					end

107					angle	||	previous_angle

108			end

109	end

Tank	has	to	be	aware	of	the	Map	to	check	where	it’s	moving,	and	it	uses	Camera	to	find	out
where	to	aim	the	guns.	When	it	shoots,	it	produces	instances	of	Bullet,	that	are	simply
returned	to	the	caller.	Tank	won’t	keep	track	of	them,	it’s	“fire	and	forget”.

Implementing	Bullets	And	Explosions
Bullets	will	require	some	simple	vector	math.	You	have	a	point	that	moves	along	the
vector	with	some	speed.	It	also	needs	to	limit	the	maximum	vector	length,	so	if	you	try	to
aim	too	far,	the	bullet	will	only	go	as	far	as	it	can	reach.
03-prototype/entities/bullet.rb

	1	class	Bullet

	2			COLOR	=	Gosu::Color::BLACK

	3			MAX_DIST	=	300

	4			START_DIST	=	20

	5	

	6			def	initialize(source_x,	source_y,	target_x,	target_y)

	7					@x,	@y	=	source_x,	source_y

	8					@target_x,	@target_y	=	target_x,	target_y

	9					@x,	@y	=	point_at_distance(START_DIST)

10					if	trajectory_length	>	MAX_DIST

11							@target_x,	@target_y	=	point_at_distance(MAX_DIST)

12					end

13					sound.play

14			end

15	

16			def	draw

17					unless	arrived?

18							$window.draw_quad(@x	-	2,	@y	-	2,	COLOR,

19																									@x	+	2,	@y	-	2,	COLOR,

20																									@x	-	2,	@y	+	2,	COLOR,

21																									@x	+	2,	@y	+	2,	COLOR,

22																									1)

23					else

24							@explosion	||=	Explosion.new(@x,	@y)

25							@explosion.draw

26					end

27			end

28	

29			def	update

30					fly_distance	=	(Gosu.milliseconds	-	@fired_at)	*	0.001	*	@speed

31					@x,	@y	=	point_at_distance(fly_distance)

32					@explosion	&&	@explosion.update

33			end

34	

35			def	arrived?

36					@x	==	@target_x	&&	@y	==	@target_y

37			end

38	

39			def	done?

40						exploaded?

41			end

42	

43			def	exploaded?

44					@explosion	&&	@explosion.done?

45			end

46	

47			def	fire(speed)

48					@speed	=	speed

49					@fired_at	=	Gosu.milliseconds

50					self

51			end

52	

53			private

54	

55			def	sound

56					@@sound	||=	Gosu::Sample.new(

57							$window,	Game.media_path('fire.mp3'))

58			end

59	

60			def	trajectory_length

61					d_x	=	@target_x	-	@x

62					d_y	=	@target_y	-	@y

63					Math.sqrt(d_x	*	d_x	+	d_y	*	d_y)

64			end

65	

66			def	point_at_distance(distance)

67					return	[@target_x,	@target_y]	if	distance	>	trajectory_length

68					distance_factor	=	distance.to_f	/	trajectory_length

69					p_x	=	@x	+	(@target_x	-	@x)	*	distance_factor

70					p_y	=	@y	+	(@target_y	-	@y)	*	distance_factor

71					[p_x,	p_y]

72			end

73	end

Possibly	the	most	interesting	part	of	Bullet	implementation	is	point_at_distance
method.	It	returns	coordinates	of	point	that	is	between	bullet	source,	which	is	point	that
bullet	was	fired	from,	and	it’s	target,	which	is	the	destination	point.	The	returned	point	is
as	far	away	from	source	point	as	distance	tells	it	to.

After	bullet	has	done	flying,	it	explodes	with	fanfare.	In	our	prototype	Explosion	is	a	part
of	Bullet,	because	it’s	the	only	thing	that	triggers	it.	Therefore	Bullet	has	two	stages	of
it’s	lifecycle.	First	it	flies	towards	the	target,	then	it’s	exploding.	That	brings	us	to
Explosion:
03-prototype/entities/explosion.rb

	1	class	Explosion

	2			FRAME_DELAY	=	10	#	ms

	3	

	4			def	animation

	5					@@animation	||=

	6					Gosu::Image.load_tiles(

	7							$window,	Game.media_path('explosion.png'),	128,	128,	false)

	8			end

	9	

10			def	sound

11					@@sound	||=	Gosu::Sample.new(

12							$window,	Game.media_path('explosion.mp3'))

13			end

14	

15			def	initialize(x,	y)

16					sound.play

17					@x,	@y	=	x,	y

18					@current_frame	=	0

19			end

20	

21			def	update

22					@current_frame	+=	1	if	frame_expired?

23			end

24	

25			def	draw

26					return	if	done?

27					image	=	current_frame

28					image.draw(

29							@x	-	image.width	/	2	+	3,

30							@y	-	image.height	/	2	-	35,

31							20)

32			end

33	

34			def	done?

35					@done	||=	@current_frame	==	animation.size

36			end

37	

38			private

39	

40			def	current_frame

41					animation[@current_frame	%	animation.size]

42			end

43	

44			def	frame_expired?

45					now	=	Gosu.milliseconds

46					@last_frame	||=	now

47					if	(now	-	@last_frame)	>	FRAME_DELAY

48							@last_frame	=	now

49					end

50			end

51	end

There	is	nothing	fancy	about	this	implementation.	Most	of	it	is	taken	from	“Images	And
Animation”	chapter.

Running	The	Prototype
We	have	walked	through	all	the	code.	You	can	get	it	at	GitHub.

Now	it’s	time	to	give	it	a	spin.	There	is	a	video	of	me	playing	it	available	on	YouTube,	but
it’s	always	best	to	experience	it	firsthand.	Run	main.rb	to	start	the	game:
$	ruby	03-prototype/main.rb

Hit	N	to	start	new	game.

https://github.com/spajus/ruby-gamedev-book-examples/tree/master/03-prototype
https://www.youtube.com/watch?v=ZP5y63JIXfc

Tanks	Prototype	menu

Time	to	go	crazy!

Tanks	Prototype	gameplay

One	thing	should	be	bugging	you	at	this	point.	FPS	shows	only	30,	rather	than	60.	That
means	our	prototype	is	slow.	We	will	put	it	back	to	60	FPS	in	next	chapter.

Optimizing	Game	Performance

To	make	games	that	are	fast	and	don’t	require	a	powerhouse	to	run,	we	must	learn	how	to
find	and	fix	bottlenecks.	Good	news	is	that	if	you	wasn’t	thinking	about	performance	to
begin	with,	your	program	can	usually	be	optimized	to	run	twice	as	fast	just	by	eliminating
one	or	two	biggest	bottlenecks.

We	will	be	using	a	copy	of	the	prototype	code	to	keep	both	optimized	and	original	version,
therefore	if	you	are	exploring	sample	code,	look	at	04-prototype-optimized.

Profiling	Ruby	Code	To	Find	Bottlenecks
We	will	try	to	find	bottlenecks	in	our	Tanks	prototype	game	by	profiling	it	with	ruby-
prof.

It’s	a	ruby	gem,	just	install	it	like	this:
$	gem	install	ruby-prof

There	are	several	ways	you	can	use	ruby-prof,	so	we	will	begin	with	the	easiest	one.
Instead	of	running	the	game	with	ruby,	we	will	run	it	with	ruby-prof:
$	ruby-prof	03-prototype/main.rb

The	game	will	run,	but	everything	will	be	ten	times	slower	as	usual,	because	every	call	to
every	function	is	being	recorded,	and	after	you	exit	the	program,	profiling	output	will	be
dumped	directly	to	your	console.

Downside	of	this	approach	is	that	we	are	going	to	profile	everything	there	is,	including	the
super-slow	map	generation	that	uses	Perlin	Noise.	We	don’t	want	to	optimize	that,	so	in
order	to	find	bottlenecks	in	our	play	state	rather	than	map	generation,	we	have	to	keep
playing	at	dreadful	2	FPS	for	at	least	30	seconds.

This	was	the	output	of	first	“naive”	profiling	session:

https://github.com/ruby-prof/ruby-prof

Initial	profiling	results

It’s	obvious,	that	Camera#viewport	and	Camera#can_view?	are	top	CPU	burners.	This
means	either	that	our	implementation	is	either	very	bad,	or	the	assumption	that	checking	if
camera	can	view	object	is	slower	than	drawing	the	object	off	screen.

Here	are	those	slow	methods:
class	Camera

		#	...

		def	can_view?(x,	y,	obj)

				x0,	x1,	y0,	y1	=	viewport

				(x0	-	obj.width..x1).include?(x)	&&

						(y0	-	obj.height..y1).include?(y)

		end

		#	...

		def	viewport

				x0	=	@x	-	($window.width	/	2)		/	@zoom

				x1	=	@x	+	($window.width	/	2)		/	@zoom

				y0	=	@y	-	($window.height	/	2)	/	@zoom

				y1	=	@y	+	($window.height	/	2)	/	@zoom

				[x0,	x1,	y0,	y1]

		end

		#	...

end

It	doesn’t	look	fundamentally	broken,	so	we	will	try	our	“checking	is	slower	than
rendering”	hypothesis	by	short-circuiting	can_view?	to	return	true	every	time:
class	Camera

		#	...

		def	can_view?(x,	y,	obj)

				return	true	#	short	circuiting

				x0,	x1,	y0,	y1	=	viewport

				(x0	-	obj.width..x1).include?(x)	&&

						(y0	-	obj.height..y1).include?(y)

		end

		#	...

end

After	saving	camera.rb	and	running	the	game	without	profiling,	you	will	notice	a
significant	speedup.	Hypothesis	was	correct,	checking	visibility	is	more	expensive	than
simply	rendering	it.	That	means	we	can	throw	away	Camera#can_view?	and	calls	to	it.

But	before	doing	that,	let’s	profile	once	again:

Profiling	results	after	short-circuiting	Camera#can_view?

We	can	see	Camera#can_view?	is	still	in	top	3,	so	we	will	remove	if	camera.can_view?
(map_x,	map_y,	tile)	from	Map#draw	and	for	now	keep	it	like	this:
class	Map

		#	...

		def	draw(camera)

				@map.each	do	|x,	row|

						row.each	do	|y,	val|

								tile	=	@map[x][y]

								map_x	=	x	*	TILE_SIZE

								map_y	=	y	*	TILE_SIZE

								tile.draw(map_x,	map_y,	0)

						end

				end

		end

		#	...

end

After	completely	removing	Camera#can_view?,	profiling	session	looks	like	dead-end	-	no
more	low	hanging	fruits	on	top:

Profiling	results	after	removing	Camera#can_view?

The	game	still	doesn’t	feel	fast	enough,	FPS	occasionally	keeps	dropping	down	to	~45,	so
we	will	have	to	do	profile	our	code	in	smarter	way.

Advanced	Profiling	Techniques
We	would	get	more	accuracy	when	profiling	only	what	we	want	to	optimize.	In	our	case	it
is	everything	that	happens	in	PlayState,	except	for	Map	generation.	This	time	we	will
have	to	use	ruby-prof	API	to	hook	into	places	we	need.

Map	generation	happens	in	PlayState	initializer,	so	we	will	leverage	GameState#enter
and	GameState#leave	to	start	and	stop	profiling,	since	it	happens	after	state	is	initialized.
Here	is	how	we	hook	in:
require	'ruby-prof'

class	PlayState	<	GameState

		#	...

		def	enter

				RubyProf.start

		end

		def	leave

				result	=	RubyProf.stop

				printer	=	RubyProf::FlatPrinter.new(result)

				printer.print(STDOUT)

		end

		#	...

end

Then	we	run	the	game	as	usual:
$	ruby	04-prototype-optimized/main.rb

https://github.com/ruby-prof/ruby-prof

Now,	after	we	press	N	to	start	new	game,	Map	generation	happens	relatively	fast,	and	then
profiling	kicks	in,	FPS	drops	to	15.	After	moving	around	and	shooting	for	a	while	we	hit
Esc	to	return	to	the	menu,	and	at	that	point	PlayState#leave	spits	profiling	results	out	to
the	console:

Profiling	results	for	PlayState

We	can	see	that	Gosu::Image#draw	takes	up	to	20%	of	all	execution	time.	Then	goes
Gosu::Window#caption,	but	we	need	it	to	measure	FPS,	so	we	will	leave	it	alone,	and
finally	we	can	see	Hash#each,	which	is	guaranteed	to	be	the	one	from	Map#draw,	and	it
triggers	all	those	Gosu::Image#draw	calls.

Optimizing	Inefficient	Code
According	to	profiling	results,	we	need	to	optimize	this	method:
class	Map

		#	...

		def	draw(camera)

				@map.each	do	|x,	row|

						row.each	do	|y,	val|

								tile	=	@map[x][y]

								map_x	=	x	*	TILE_SIZE

								map_y	=	y	*	TILE_SIZE

								tile.draw(map_x,	map_y,	0)

						end

				end

		end

		#	...

end

But	we	have	to	optimize	it	in	more	clever	way	than	we	did	before.	If	instead	of	looping
through	all	map	rows	and	columns	and	blindly	rendering	every	tile	or	checking	if	tile	is
visible	we	could	calculate	the	exact	map	cells	that	need	to	be	displayed,	we	would	reduce
method	complexity	and	get	major	performance	boost.	Let’s	do	that.

http://www.libgosu.org/rdoc/Gosu/Image.html#draw-instance_method
http://www.libgosu.org/rdoc/Gosu/Window.html#caption-instance_method
http://www.ruby-doc.org/core-2.1.2/Hash.html#method-i-each

We	will	use	Camera#viewport	to	return	map	boundaries	that	are	visible	by	camera,	then
divide	those	boundaries	by	Map#TILE_SIZE	to	get	tile	numbers	instead	of	pixels,	and
retrieve	them	from	the	map.
class	Map

		#	...

		def	draw(camera)

				viewport	=	camera.viewport

				viewport.map!	{	|p|	p	/	TILE_SIZE	}

				x0,	x1,	y0,	y1	=	viewport.map(&:to_i)

				(x0..x1).each	do	|x|

						(y0..y1).each	do	|y|

								row	=	@map[x]

								if	row

										tile	=	@map[x][y]

										map_x	=	x	*	TILE_SIZE

										map_y	=	y	*	TILE_SIZE

										tile.draw(map_x,	map_y,	0)

								end

						end

				end

		end

This	optimization	yielded	astounding	results.	We	are	now	getting	nearly	stable	60	FPS
even	when	profiling	the	code!	Compare	that	to	2	FPS	while	profiling	when	we	started.

Profiling	results	for	PlayState	after	Map#draw	optimization

Now	we	just	have	to	do	something	about	that	Gosu::Window#caption,	because	it	is
consuming	1/3	of	our	CPU	cycles!	Even	though	game	is	already	flying	so	fast	that	we	will
have	to	reduce	tank	and	bullet	speeds	to	make	it	look	more	realistic,	we	cannot	let
ourselves	leave	this	low	hanging	fruit	remain	unpicked.

We	will	update	the	caption	once	per	second,	it	should	remove	the	bottleneck:
class	PlayState	<	GameState

		#	...

		def	update

				#	...

				update_caption

		end

		#	...

		private

		def	update_caption

				now	=	Gosu.milliseconds

				if	now	-	(@caption_updated_at	||	0)	>	1000

						$window.caption	=	'Tanks	Prototype.	'	<<

								"[FPS:	#{Gosu.fps}.	"	<<

								"Tank	@	#{@tank.x.round}:#{@tank.y.round}]"

						@caption_updated_at	=	now

				end

		end

end

Now	it’s	getting	hard	to	get	FPS	to	drop	below	58,	and	profiling	results	show	that	there	are
no	more	bottlenecks:

http://www.libgosu.org/rdoc/Gosu/Window.html#caption-instance_method

Profiling	results	for	PlayState	after	introducing	Gosu::Window#caption	cache

We	can	now	sleep	well	at	night.

Profiling	On	Demand
When	you	develop	a	game,	you	may	want	to	turn	on	profiling	now	and	then.	To	avoid
commenting	out	or	adding	and	removing	profiling	every	time	you	want	to	do	so,	use	this
trick:
#	...

require	'ruby-prof'	if	ENV['ENABLE_PROFILING']

class	PlayState	<	GameState

		#	...

		def	enter

				RubyProf.start	if	ENV['ENABLE_PROFILING']

		end

		def	leave

				if	ENV['ENABLE_PROFILING']

						result	=	RubyProf.stop

						printer	=	RubyProf::FlatPrinter.new(result)

						printer.print(STDOUT)

				end

		end

		def	button_down(id)

				#	...

				if	id	==	Gosu::KbQ

						leave

						$window.close

				end

		end

		#	...

end

Now,	to	enable	profiling,	simply	start	your	game	with	ENABLE_PROFILING=1
environmental	variable,	like	this:
$	ENABLE_PROFILING=1	ruby-prof	03-prototype/main.rb

Adjusting	Game	Speed	For	Variable	Performance
You	should	have	noticed	that	our	optimized	Tanks	prototype	runs	way	too	fast.	Tanks	and
bullets	should	travel	same	distance	no	matter	how	fast	or	slow	the	code	is.

One	would	expect	Gosu::Window#update_interval	to	be	designed	exactly	for	that
purpose,	but	it	returns	16.6666	in	both	original	and	optimized	version	of	the	prototype,	so
you	can	guess	it	is	the	desired	interval,	not	the	actual	one.

To	find	out	actual	update	interval,	we	will	use	Gosu.milliseconds	and	calculate	it
ourselves.	To	do	that,	we	will	introduce	Game#track_update_interval	that	will	be	called
in	GameWindow#update,	and	Game#update_interval	which	will	retrieve	actual	update
interval,	so	we	can	use	it	to	adjust	our	run	speed.

We	will	also	add	Game#adjust_speed	method	that	will	take	arbitrary	speed	value	and	shift
it	so	is	as	fast	as	it	was	when	the	game	was	running	at	30	FPS.	The	formula	is	simple,	if	60
FPS	expects	to	call	Gosu::Window#update	every	16.66	ms,	our	speed	adjustment	will
divide	actual	update	rate	from	33.33,	which	roughly	equals	to	16.66	*	2.	So,	if	bullet
would	fly	100	pixels	per	update	in	30	FPS,	adjusted	speed	will	change	it	to	50	pixels	at	60
FPS.

Here	is	the	implementation:
#	04-prototype-optimized/main.rb

module	Game

		#	...

		def	self.track_update_interval

				now	=	Gosu.milliseconds

				@update_interval	=	(now	-	(@last_update	||=	0)).to_f

				@last_update	=	now

		end

		def	self.update_interval

				@update_interval	||=	$window.update_interval

		end

		def	self.adjust_speed(speed)

				speed	*	update_interval	/	33.33

		end

end

#	04-prototype-optimized/game_window.rb

class	GameWindow	<	Gosu::Window

		#	...

		def	update

				Game.track_update_interval

				@state.update

		end

		#	...

end

Now,	to	fix	that	speed	problem,	we	will	need	to	apply	Game.adjust_speed	to	tank,	bullet
and	camera	movements.

Here	are	all	the	changes	needed	to	make	our	game	run	at	roughly	same	speed	in	different
conditions:

http://www.libgosu.org/rdoc/Gosu/Window.html#update_interval-instance_method
http://www.libgosu.org/rdoc/Gosu.html#milliseconds-class_method

#	04-prototype-optimized/entities/tank.rb

class	Tank

		#	...

		def	update(camera)

				#	...

				shift	=	Game.adjust_speed(speed)

				new_x	-=	shift	if	$window.button_down?(Gosu::KbA)

				new_x	+=	shift	if	$window.button_down?(Gosu::KbD)

				new_y	-=	shift	if	$window.button_down?(Gosu::KbW)

				new_y	+=	shift	if	$window.button_down?(Gosu::KbS)

				#	...

		end

		#	...

end

#	04-prototype-optimized/entities/bullet.rb

class	Bullet

		#	...

		def	update

				#	...

				fly_speed	=	Game.adjust_speed(@speed)

				fly_distance	=	(Gosu.milliseconds	-	@fired_at)	*	0.001	*	fly_speed

				@x,	@y	=	point_at_distance(fly_distance)

				#	...

		end

		#	...

end

#	04-prototype-optimized/entities/camera.rb

class	Camera

		#	...

		def	update

				shift	=	Game.adjust_speed(@target.speed)

				@x	+=	shift	if	@x	<	@target.x	-	$window.width	/	4

				@x	-=	shift	if	@x	>	@target.x	+	$window.width	/	4

				@y	+=	shift	if	@y	<	@target.y	-	$window.height	/	4

				@y	-=	shift	if	@y	>	@target.y	+	$window.height	/	4

				zoom_delta	=	@zoom	>	0	?	0.01	:	1.0

				zoom_delta	=	Game.adjust_speed(zoom_delta)

				#	...

		end

		#	...

end

There	is	one	more	trick	to	make	the	game	playable	even	at	very	low	FPS.	You	can
simulate	such	conditions	by	adding	sleep	0.3	to	GameWindow#draw	method.	At	that
framerate	game	cursor	is	very	unresponsive,	so	you	may	want	to	start	showing	native
mouse	cursor	when	things	get	ugly,	i.e.	when	update	interval	exceeds	200	milliseconds:
#	04-prototype-optimized/game_window.rb

class	GameWindow	<	Gosu::Window

		#	...

		def	needs_cursor?

				Game.update_interval	>	200

		end

		#	...

end

Frame	Skipping
You	will	see	strange	things	happening	at	very	low	framerates.	For	example,	bullet
explosions	are	showing	up	frame	by	frame,	so	explosion	speed	seems	way	too	slow	and
unrealistic.	To	avoid	that,	we	will	modify	our	Explosion	class	to	employ	frame	skipping	if
update	rate	is	too	slow:
#	04-prototype-optimized/explosion.rb

class	Explosion

		FRAME_DELAY	=	16.66	#	ms

		#	...

		def	update

				advance_frame

		end

		def	done?

				@done	||=	@current_frame	>=	animation.size

		end

		#	...

		private

		#	...

		def	advance_frame

				now	=	Gosu.milliseconds

				delta	=	now	-	(@last_frame	||=	now)

				if	delta	>	FRAME_DELAY

						@last_frame	=	now

				end

				@current_frame	+=	(delta	/	FRAME_DELAY).floor

		end

end

Now	our	prototype	is	playable	even	at	lower	frame	rates.

Refactoring	The	Prototype

At	this	point	you	may	be	thinking	where	to	go	next.	We	want	to	implement	enemies,
collision	detection	and	AI,	but	design	of	current	prototype	is	already	limiting.	Code	is
becoming	tightly	coupled,	there	is	no	clean	separation	between	different	domains.

If	we	were	to	continue	building	on	top	of	our	prototype,	things	would	get	ugly	quickly.
Thus	we	will	untangle	the	spaghetti	and	rewrite	some	parts	from	scratch	to	achieve
elegance.

Game	Programming	Patterns
I	would	like	to	tip	my	hat	to	Robert	Nystrom,	who	wrote	this	amazing	book	called	Game
Programming	Patterns.	The	book	is	available	online	for	free,	it	is	a	relatively	quick	read	-
I’ve	devoured	it	with	pleasure	in	roughly	4	hours.	If	you	are	guessing	that	this	chapter	is
inspired	by	that	book,	you	are	absolutely	right.

Component	pattern	is	especially	noteworthy.	We	will	be	using	it	to	do	major
housekeeping,	and	it	is	great	time	to	do	so,	because	we	haven’t	implemented	much	of	the
game	yet.

What	Is	Wrong	With	Current	Design
Until	this	point	we	have	been	building	the	code	in	monolithic	fashion.	Tank	class	holds	the
code	that:

1.	 Loads	all	ground	unit	sprites.	If	some	other	class	handled	it,	we	could	reuse	the	code
to	load	other	units.

2.	 Handles	sound	effects.
3.	 Uses	Gosu::Song	for	moving	sounds.	That	limits	only	one	tank	movement	sound	per

whole	game.	Basically,	we	abused	Gosu	here.
4.	 Handles	keyboard	and	mouse.	If	we	were	to	create	AI	that	controls	the	tank,	we

would	not	be	able	to	reuse	Tank	class	because	of	this.
5.	 Draws	graphics	on	screen.
6.	 Calculates	physical	properties,	like	speed,	acceleration.
7.	 Detects	movement	collisions.

Bullet	is	not	perfect	either:

1.	 It	renders	it’s	graphics.
2.	 It	handles	it’s	movement	trajectories	and	other	physics.
3.	 It	treats	Explosion	as	part	of	it’s	own	lifecycle.
4.	 Draws	graphics	on	screen.
5.	 Handles	sound	effects.

http://gameprogrammingpatterns.com/
http://gameprogrammingpatterns.com/component.html
http://www.libgosu.org/rdoc/Gosu/Song.html

Even	the	relatively	small	Explosion	class	is	too	monolithic:

1.	 It	loads	it’s	graphics.
2.	 It	handles	rendering,	animation	and	frame	skipping
3.	 It	loads	and	plays	it’s	sound	effects.

Decoupling	Using	Component	Pattern
Best	design	separates	concerns	in	code	so	that	everything	has	it’s	own	place,	and	every
class	handles	only	one	thing.	Let’s	try	splitting	up	Tank	class	into	components	that	handle
specific	domains:

Decoupled	Tank

We	will	introduce	GameObject	class	will	contain	shared	functionality	for	all	game	objects
(Tank,	Bullet,	Explosion),	each	of	them	would	have	it’s	own	set	of	components.	Every
component	will	have	it’s	parent	object,	so	it	will	be	able	to	interact	with	it,	change	it’s
attributes,	or	possibly	invoke	other	components	if	it	comes	to	that.

Game	objects	and	their	components

All	these	objects	will	be	held	within	ObjectPool,	which	would	not	care	to	know	if	object
is	a	tank	or	a	bullet.	Purpose	of	ObjectPool	is	a	little	different	in	Ruby,	since	GC	will	take
care	of	memory	fragmentation	for	us,	but	we	still	need	a	single	place	that	knows	about
every	object	in	the	game.

Object	Pool

PlayState	would	then	iterate	through	@object_pool.objects	and	invoke	update	and
draw	methods.

Now,	let’s	begin	by	implementing	base	class	for	GameObject:
05-refactor/entities/game_object.rb

	1	class	GameObject

	2			def	initialize(object_pool)

	3					@components	=	[]

	4					@object_pool	=	object_pool

	5					@object_pool.objects	<<	self

http://gameprogrammingpatterns.com/object-pool.html

	6			end

	7	

	8			def	components

	9					@components

10			end

11	

12			def	update

13					@components.map(&:update)

14			end

15	

16			def	draw(viewport)

17					@components.each	{	|c|	c.draw(viewport)	}

18			end

19	

20			def	removable?

21					@removable

22			end

23	

24			def	mark_for_removal

25					@removable	=	true

26			end

27	

28			protected

29	

30			def	object_pool

31					@object_pool

32			end

33	end

When	GameObject	is	initialized,	it	registers	itself	with	ObjectPool	and	prepares	empty
@components	array.	Concrete	GameObject	classes	should	initialize	Components	so	that
array	would	not	be	empty.

update	and	draw	methods	would	cycle	through	@components	and	delegate	those	calls	to
each	of	them	in	a	sequence.	It	is	important	to	update	all	components	first,	and	only	then
draw	them.	Keep	in	mind	that	@components	array	order	has	significance.	First	elements
will	always	be	updated	and	drawn	before	last	ones.

We	will	also	provide	removable?	method	that	would	return	true	for	objects	that
mark_for_removal	was	invoked	on.	This	way	we	will	be	able	to	weed	out	old	bullets	and
explosions	and	feed	them	to	GC.

Next	up,	base	Component	class:
05-refactor/entities/components/component.rb

	1	class	Component

	2			def	initialize(game_object	=	nil)

	3					self.object	=	game_object

	4			end

	5	

	6			def	update

	7					#	override

	8			end

	9	

10			def	draw(viewport)

11					#	override

12			end

13	

14			protected

15	

16			def	object=(obj)

17					if	obj

18							@object	=	obj

19							obj.components	<<	self

20					end

21			end

22	

23			def	x

24					@object.x

25			end

26	

27			def	y

28					@object.y

29			end

30	

31			def	object

32					@object

33			end

34	end

It	registers	itself	with	GameObject#components,	provides	some	protected	methods	to
access	parent	object	and	it’s	most	often	called	properties	-	x	and	y.

Refactoring	Explosion

Explosion	was	probably	the	smallest	class,	so	we	will	extract	it’s	components	first.
05-refactor/entities/explosion.rb

	1	class	Explosion	<	GameObject

	2			attr_accessor	:x,	:y

	3	

	4			def	initialize(object_pool,	x,	y)

	5					super(object_pool)

	6					@x,	@y	=	x,	y

	7					ExplosionGraphics.new(self)

	8					ExplosionSounds.play

	9			end

10	end

It	is	much	cleaner	than	before.	ExplosionGraphics	will	be	a	Component	that	handles
animation,	and	ExplosionSounds	will	play	a	sound.
05-refactor/entities/components/explosion_graphics.rb

	1	class	ExplosionGraphics	<	Component

	2			FRAME_DELAY	=	16.66	#	ms

	3	

	4			def	initialize(game_object)

	5					super

	6					@current_frame	=	0

	7			end

	8	

	9			def	draw(viewport)

10					image	=	current_frame

11					image.draw(

12							x	-	image.width	/	2	+	3,

13							y	-	image.height	/	2	-	35,

14							20)

15			end

16	

17			def	update

18					now	=	Gosu.milliseconds

19					delta	=	now	-	(@last_frame	||=	now)

20					if	delta	>	FRAME_DELAY

21							@last_frame	=	now

22					end

23					@current_frame	+=	(delta	/	FRAME_DELAY).floor

24					object.mark_for_removal	if	done?

25			end

26	

27			private

28	

29			def	current_frame

30					animation[@current_frame	%	animation.size]

31			end

32	

33			def	done?

34					@done	||=	@current_frame	>=	animation.size

35			end

36	

37			def	animation

38					@@animation	||=

39					Gosu::Image.load_tiles(

40							$window,	Utils.media_path('explosion.png'),

41							128,	128,	false)

42			end

43	end

Everything	that	is	related	to	animating	the	explosion	is	now	clearly	separated.
mark_for_removal	is	called	on	the	explosion	after	it’s	animation	is	done.
05-refactor/entities/components/explosion_sounds.rb

	1	class	ExplosionSounds

	2			class	<<	self

	3					def	play

	4							sound.play

	5					end

	6	

	7					private

	8	

	9					def	sound

10							@@sound	||=	Gosu::Sample.new(

11									$window,	Utils.media_path('explosion.mp3'))

12					end

13			end

14	end

Since	explosion	sounds	are	triggered	only	once,	when	it	starts	to	explode,
ExplosionSounds	is	a	static	class	with	play	method.

Refactoring	Bullet

Now,	let’s	go	up	a	little	and	reimplement	our	Bullet:
05-refactor/entities/bullet.rb

	1	class	Bullet	<	GameObject

	2			attr_accessor	:x,	:y,	:target_x,	:target_y,	:speed,	:fired_at

	3	

	4			def	initialize(object_pool,	source_x,	source_y,	target_x,	target_y)

	5					super(object_pool)

	6					@x,	@y	=	source_x,	source_y

	7					@target_x,	@target_y	=	target_x,	target_y

	8					BulletPhysics.new(self)

	9					BulletGraphics.new(self)

10					BulletSounds.play

11			end

12	

13			def	explode

14					Explosion.new(object_pool,	@x,	@y)

15					mark_for_removal

16			end

17	

18			def	fire(speed)

19					@speed	=	speed

20					@fired_at	=	Gosu.milliseconds

21			end

22	end

All	physics,	graphics	and	sounds	are	extracted	into	individual	components,	and	instead	of
managing	Explosion,	it	just	registers	a	new	Explosion	with	ObjectPool	and	marks	itself
for	removal	in	explode	method.
05-refactor/entities/components/bullet_physics.rb

	1	class	BulletPhysics	<	Component

	2			START_DIST	=	20

	3			MAX_DIST	=	300

	4	

	5			def	initialize(game_object)

	6					super

	7					object.x,	object.y	=	point_at_distance(START_DIST)

	8					if	trajectory_length	>	MAX_DIST

	9							object.target_x,	object.target_y	=	point_at_distance(MAX_DIST)

10					end

11			end

12	

13			def	update

14					fly_speed	=	Utils.adjust_speed(object.speed)

15					fly_distance	=	(Gosu.milliseconds	-	object.fired_at)	*	0.001	*	fly_speed

16					object.x,	object.y	=	point_at_distance(fly_distance)

17					object.explode	if	arrived?

18			end

19	

20			def	trajectory_length

21					d_x	=	object.target_x	-	x

22					d_y	=	object.target_y	-	y

23					Math.sqrt(d_x	*	d_x	+	d_y	*	d_y)

24			end

25	

26			def	point_at_distance(distance)

27					if	distance	>	trajectory_length

28							return	[object.target_x,	object.target_y]

29					end

30					distance_factor	=	distance.to_f	/	trajectory_length

31					p_x	=	x	+	(object.target_x	-	x)	*	distance_factor

32					p_y	=	y	+	(object.target_y	-	y)	*	distance_factor

33					[p_x,	p_y]

34			end

35	

36			private

37	

38			def	arrived?

39					x	==	object.target_x	&&	y	==	object.target_y

40			end

41	end

BulletPhysics	is	where	the	most	of	Bullet	ended	up	at.	It	does	all	the	calculations	and
triggers	Bullet#explode	when	ready.	When	we	will	be	implementing	collision	detection,
the	implementation	will	go	somewhere	here.
05-refactor/entities/components/bullet_graphics.rb

	1	class	BulletGraphics	<	Component

	2			COLOR	=	Gosu::Color::BLACK

	3	

	4			def	draw(viewport)

	5					$window.draw_quad(x	-	2,	y	-	2,	COLOR,

	6																							x	+	2,	y	-	2,	COLOR,

	7																							x	-	2,	y	+	2,	COLOR,

	8																							x	+	2,	y	+	2,	COLOR,

	9																							1)

10			end

11	

12	end

After	pulling	away	Bullet	graphics	code,	it	looks	very	small	and	elegant.	We	will
probably	never	have	to	edit	anything	here	again.
05-refactor/entities/components/bullet_sounds.rb

	1	class	BulletSounds

	2			class	<<	self

	3					def	play

	4							sound.play

	5					end

	6	

	7					private

	8	

	9					def	sound

10							@@sound	||=	Gosu::Sample.new(

11									$window,	Utils.media_path('fire.mp3'))

12					end

13			end

14	end

Just	like	ExplosionSounds,	BulletSounds	are	stateless	and	static.	We	could	make	it	just
like	a	regular	component,	but	consider	it	our	little	optimization.

Refactoring	Tank

Time	to	take	a	look	at	freshly	decoupled	Tank:
05-refactor/entities/tank.rb

	1	class	Tank	<	GameObject

	2			SHOOT_DELAY	=	500

	3			attr_accessor	:x,	:y,	:throttle_down,	:direction,	:gun_angle,	:sounds,	:physics

	4	

	5			def	initialize(object_pool,	input)

	6					super(object_pool)

	7					@input	=	input

	8					@input.control(self)

	9					@physics	=	TankPhysics.new(self,	object_pool)

10					@graphics	=	TankGraphics.new(self)

11					@sounds	=	TankSounds.new(self)

12					@direction	=	@gun_angle	=	0.0

13			end

14	

15			def	shoot(target_x,	target_y)

16					if	Gosu.milliseconds	-	(@last_shot	||	0)	>	SHOOT_DELAY

17							@last_shot	=	Gosu.milliseconds

18							Bullet.new(object_pool,	@x,	@y,	target_x,	target_y).fire(100)

19					end

20			end

21	end

Tank	class	was	reduced	over	5	times.	We	could	go	further	and	extract	Gun	component,	but
for	now	it’s	simple	enough	already.	Now,	the	components.
05-refactor/entities/components/tank_physics.rb

	1	class	TankPhysics	<	Component

	2			attr_accessor	:speed

	3	

	4			def	initialize(game_object,	object_pool)

	5					super(game_object)

	6					@object_pool	=	object_pool

	7					@map	=	object_pool.map

	8					game_object.x,	game_object.y	=	@map.find_spawn_point

	9					@speed	=	0.0

10			end

11	

12			def	can_move_to?(x,	y)

13					@map.can_move_to?(x,	y)

14			end

15	

16			def	moving?

17					@speed	>	0

18			end

19	

20			def	update

21					if	object.throttle_down

22							accelerate

23					else

24							decelerate

25					end

26					if	@speed	>	0

27							new_x,	new_y	=	x,	y

28							shift	=	Utils.adjust_speed(@speed)

29							case	@object.direction.to_i

30							when	0

31									new_y	-=	shift

32							when	45

33									new_x	+=	shift

34									new_y	-=	shift

35							when	90

36									new_x	+=	shift

37							when	135

38									new_x	+=	shift

39									new_y	+=	shift

40							when	180

41									new_y	+=	shift

42							when	225

43									new_y	+=	shift

44									new_x	-=	shift

45							when	270

46									new_x	-=	shift

47							when	315

48									new_x	-=	shift

49									new_y	-=	shift

50							end

51							if	can_move_to?(new_x,	new_y)

52									object.x,	object.y	=	new_x,	new_y

53							else

54									object.sounds.collide	if	@speed	>	1

55									@speed	=	0.0

56							end

57					end

58			end

59	

60			private

61	

62			def	accelerate

63					@speed	+=	0.08	if	@speed	<	5

64			end

65	

66			def	decelerate

67					@speed	-=	0.5	if	@speed	>	0

68					@speed	=	0.0	if	@speed	<	0.01	#	damp

69			end

70	end

While	we	had	to	rip	player	input	away	from	it’s	movement,	we	got	ourselves	a	benefit	-
tank	now	both	accelerates	and	decelerates.	When	directional	buttons	are	no	longer
pressed,	tank	keeps	moving	in	last	direction,	but	quickly	decelerates	and	stops.	Another
addition	that	would	have	been	more	difficult	to	implement	on	previous	Tank	is	collision
sound.	When	Tank	abruptly	stops	by	hitting	something	(for	now	it’s	only	water),	collision
sound	is	played.	We	will	have	to	fix	that,	because	metal	bang	is	not	appropriate	when	you
stop	on	the	edge	of	a	river,	but	we	now	did	it	for	the	sake	of	science.
05-refactor/entities/components/tank_graphics.rb

	1	class	TankGraphics	<	Component

	2			def	initialize(game_object)

	3					super(game_object)

	4					@body	=	units.frame('tank1_body.png')

	5					@shadow	=	units.frame('tank1_body_shadow.png')

	6					@gun	=	units.frame('tank1_dualgun.png')

	7			end

	8	

	9			def	draw(viewport)

10					@shadow.draw_rot(x	-	1,	y	-	1,	0,	object.direction)

11					@body.draw_rot(x,	y,	1,	object.direction)

12					@gun.draw_rot(x,	y,	2,	object.gun_angle)

13			end

14	

15			private

16	

17			def	units

18					@@units	=	Gosu::TexturePacker.load_json(

19							$window,	Utils.media_path('ground_units.json'),	:precise)

20			end

21	end

Again,	graphics	are	neatly	packed	and	separated	from	everything	else.	Eventually	we
should	optimize	draw	to	take	viewport	into	consideration,	but	it’s	good	enough	for	now,
especially	when	we	have	only	one	tank	in	the	game.
05-refactor/entities/components/tank_sounds.rb

	1	class	TankSounds	<	Component

	2			def	update

	3					if	object.physics.moving?

	4							if	@driving	&&	@driving.paused?

	5									@driving.resume

	6							elsif	@driving.nil?

	7									@driving	=	driving_sound.play(1,	1,	true)

	8							end

	9					else

10							if	@driving	&&	@driving.playing?

11									@driving.pause

12							end

13					end

14			end

15	

16			def	collide

17					crash_sound.play(1,	0.25,	false)

18			end

19	

20			private

21	

22			def	driving_sound

23					@@driving_sound	||=	Gosu::Sample.new(

24							$window,	Utils.media_path('tank_driving.mp3'))

25			end

26	

27			def	crash_sound

28					@@crash_sound	||=	Gosu::Sample.new(

29							$window,	Utils.media_path('crash.ogg'))

30			end

31	end

Unlike	Explosion	and	Bullet,	Tank	sounds	are	stateful.	We	have	to	keep	track	of
tank_driving.mp3,	which	is	no	longer	Gosu::Song,	but	Gosu::Sample,	like	it	should	have
been.

When	Gosu::Sample#play	is	invoked,	Gosu::SampleInstance	is	returned,	and	we	have
full	control	over	it.	Now	we	are	ready	to	play	sounds	for	more	than	one	tank	at	once.
05-refactor/entities/components/player_input.rb

	1	class	PlayerInput	<	Component

	2			def	initialize(camera)

	3					super(nil)

	4					@camera	=	camera

	5			end

	6	

	7			def	control(obj)

	8					self.object	=	obj

	9			end

10	

11			def	update

12					d_x,	d_y	=	@camera.target_delta_on_screen

13					atan	=	Math.atan2(($window.width	/	2)	-	d_x	-	$window.mouse_x,

http://www.libgosu.org/rdoc/Gosu/Song.html
http://www.libgosu.org/rdoc/Gosu/Sample.html
http://www.libgosu.org/rdoc/Gosu/Sample.html#play-instance_method
http://www.libgosu.org/rdoc/Gosu/SampleInstance.html

14																							($window.height	/	2)	-	d_y	-	$window.mouse_y)

15					object.gun_angle	=	-atan	*	180	/	Math::PI

16					motion_buttons	=	[Gosu::KbW,	Gosu::KbS,	Gosu::KbA,	Gosu::KbD]

17	

18					if	any_button_down?(*motion_buttons)

19							object.throttle_down	=	true

20							object.direction	=	change_angle(object.direction,	*motion_buttons)

21					else

22							object.throttle_down	=	false

23					end

24	

25					if	Utils.button_down?(Gosu::MsLeft)

26							object.shoot(*@camera.mouse_coords)

27					end

28			end

29	

30			private

31	

32			def	any_button_down?(*buttons)

33					buttons.each	do	|b|

34							return	true	if	Utils.button_down?(b)

35					end

36					false

37			end

38	

39			def	change_angle(previous_angle,	up,	down,	right,	left)

40					if	Utils.button_down?(up)

41							angle	=	0.0

42							angle	+=	45.0	if	Utils.button_down?(left)

43							angle	-=	45.0	if	Utils.button_down?(right)

44					elsif	Utils.button_down?(down)

45							angle	=	180.0

46							angle	-=	45.0	if	Utils.button_down?(left)

47							angle	+=	45.0	if	Utils.button_down?(right)

48					elsif	Utils.button_down?(left)

49							angle	=	90.0

50							angle	+=	45.0	if	Utils.button_down?(up)

51							angle	-=	45.0	if	Utils.button_down?(down)

52					elsif	Utils.button_down?(right)

53							angle	=	270.0

54							angle	-=	45.0	if	Utils.button_down?(up)

55							angle	+=	45.0	if	Utils.button_down?(down)

56					end

57					angle	=	(angle	+	360)	%	360	if	angle	&&	angle	<	0

58					(angle	||	previous_angle)

59			end

60	end

We	finally	come	to	a	place	where	keyboard	and	mouse	input	is	handled	and	converted	to
Tank	commands.	We	could	have	used	Command	pattern	to	decouple	everything	even	further.

Refactoring	PlayState
05-refactor/game_states/play_state.rb

	1	require	'ruby-prof'	if	ENV['ENABLE_PROFILING']

	2	class	PlayState	<	GameState

	3			attr_accessor	:update_interval

	4	

	5			def	initialize

	6					@map	=	Map.new

	7					@camera	=	Camera.new

	8					@object_pool	=	ObjectPool.new(@map)

	9					@tank	=	Tank.new(@object_pool,	PlayerInput.new(@camera))

10					@camera.target	=	@tank

11			end

12	

13			def	enter

14					RubyProf.start	if	ENV['ENABLE_PROFILING']

15			end

16	

17			def	leave

18					if	ENV['ENABLE_PROFILING']

http://gameprogrammingpatterns.com/command.html

19							result	=	RubyProf.stop

20							printer	=	RubyProf::FlatPrinter.new(result)

21							printer.print(STDOUT)

22					end

23			end

24	

25			def	update

26					@object_pool.objects.map(&:update)

27					@object_pool.objects.reject!(&:removable?)

28					@camera.update

29					update_caption

30			end

31	

32			def	draw

33					cam_x	=	@camera.x

34					cam_y	=	@camera.y

35					off_x	=		$window.width	/	2	-	cam_x

36					off_y	=		$window.height	/	2	-	cam_y

37					viewport	=	@camera.viewport

38					$window.translate(off_x,	off_y)	do

39							zoom	=	@camera.zoom

40							$window.scale(zoom,	zoom,	cam_x,	cam_y)	do

41									@map.draw(viewport)

42									@object_pool.objects.map	{	|o|	o.draw(viewport)	}

43							end

44					end

45					@camera.draw_crosshair

46			end

47	

48			def	button_down(id)

49					if	id	==	Gosu::KbQ

50							leave

51							$window.close

52					end

53					if	id	==	Gosu::KbEscape

54							GameState.switch(MenuState.instance)

55					end

56			end

57	

58			private

59	

60			def	update_caption

61					now	=	Gosu.milliseconds

62					if	now	-	(@caption_updated_at	||	0)	>	1000

63							$window.caption	=	'Tanks	Prototype.	'	<<

64									"[FPS:	#{Gosu.fps}.	"	<<

65									"Tank	@	#{@tank.x.round}:#{@tank.y.round}]"

66							@caption_updated_at	=	now

67					end

68			end

69	end

Implementation	of	PlayState	is	now	also	a	little	simpler.	It	doesn’t	update	@tank	or
@bullets	individually	anymore.	Instead,	it	uses	ObjectPool	and	does	all	object	operations
in	bulk.

Other	Improvements
05-refactor/main.rb

	1	#!/usr/bin/env	ruby

	2	

	3	require	'gosu'

	4	

	5	root_dir	=	File.dirname(__FILE__)

	6	require_pattern	=	File.join(root_dir,	'**/*.rb')

	7	@failed	=	[]

	8	

	9	#	Dynamically	require	everything

10	Dir.glob(require_pattern).each	do	|f|

11			next	if	f.end_with?('/main.rb')

12			begin

13					require_relative	f.gsub("#{root_dir}/",	'')

14			rescue

15					#	May	fail	if	parent	class	not	required	yet

16					@failed	<<	f

17			end

18	end

19	

20	#	Retry	unresolved	requires

21	@failed.each	do	|f|

22			require_relative	f.gsub("#{root_dir}/",	'')

23	end

24	

25	$window	=	GameWindow.new

26	GameState.switch(MenuState.instance)

27	$window.show

Finally,	we	made	some	improvements	to	main.rb	-	it	now	recursively	requires	all	*.rb
files	within	same	directory,	so	we	don’t	have	to	worry	about	it	in	other	classes.
05-refactor/utils.rb

	1	module	Utils

	2			def	self.media_path(file)

	3					File.join(File.dirname(File.dirname(

	4							__FILE__)),	'media',	file)

	5			end

	6	

	7			def	self.track_update_interval

	8					now	=	Gosu.milliseconds

	9					@update_interval	=	(now	-	(@last_update	||=	0)).to_f

10					@last_update	=	now

11			end

12	

13			def	self.update_interval

14					@update_interval	||=	$window.update_interval

15			end

16	

17			def	self.adjust_speed(speed)

18					speed	*	update_interval	/	33.33

19			end

20	

21			def	self.button_down?(button)

22					@buttons	||=	{}

23					now	=	Gosu.milliseconds

24					now	=	now	-	(now	%	150)

25					if	$window.button_down?(button)

26							@buttons[button]	=	now

27							true

28					elsif	@buttons[button]

29							if	now	==	@buttons[button]

30									true

31							else

32									@buttons.delete(button)

33									false

34							end

35					end

36			end

37	end

Another	notable	change	is	renaming	Game	module	into	Utils.	The	name	finally	makes
more	sense,	I	have	no	idea	why	I	put	utility	methods	into	Game	module	in	the	first	place.
Also,	Utils	received	button_down?	method,	that	solves	the	issue	of	changing	tank
direction	when	button	is	immediately	released.	It	made	very	difficult	to	stop	at	diagonal
angle,	because	when	you	depressed	two	buttons,	16	ms	was	enough	for	Gosu	to	think	“he
released	W,	and	S	is	still	pressed,	so	let’s	change	direction	to	S”.	Utils#button_down?
gives	a	soft	150	ms	window	to	synchronize	button	release.	Now	controls	feel	more
natural.

Simulating	Physics

To	make	the	game	more	realistic,	we	will	spice	things	up	with	some	physics.	This	is	the
feature	set	we	are	going	to	implement:

1.	 Collision	detection.	Tank	will	bump	into	other	objects	-	stationary	tanks.	Bullets	will
not	go	through	them	either.

2.	 Terrain	effects.	Tank	will	go	fast	on	grass,	slower	on	sand.

Adding	Enemy	Objects
It’s	boring	to	play	alone,	so	we	will	make	a	quick	change	and	spawn	some	stationary	tanks
that	will	be	deployed	randomly	around	the	map.	They	will	be	stationary	in	the	beginning,
but	we	will	still	need	a	dummy	AI	class	to	replace	PlayerInput:
06-physics/entities/components/ai_input.rb

1	class	AiInput	<	Component

2			def	control(obj)

3					self.object	=	obj

4			end

5	end

A	quick	and	dirty	way	to	spawn	some	tanks	would	be	when	initializing	PlayState:
class	PlayState	<	GameState

		#	...

		def	initialize

				@map	=	Map.new

				@camera	=	Camera.new

				@object_pool	=	ObjectPool.new(@map)

				@tank	=	Tank.new(@object_pool,	PlayerInput.new(@camera))

				@camera.target	=	@tank

				#	...

				50.times	do

						Tank.new(@object_pool,	AiInput.new)

				end

		end

		#	...

end

And	unless	we	want	all	stationary	tanks	face	same	direction,	we	will	randomize	it:
class	Tank	<	GameObject

		#	...

		def	initialize(object_pool,	input)

				#	...

				@direction	=	rand(0..7)	*	45

				@gun_angle	=	rand(0..360)

		end

		#	...

end

Fire	up	the	game,	and	wander	around	frozen	tanks.	You	can	pass	through	them	as	if	they
were	ghosts,	but	we	will	fix	that	in	a	moment.

Brain	dead	enemies

Adding	Bounding	Boxes	And	Detecting	Collisions
We	want	our	collision	detection	to	be	pixel	perfect,	that	means	we	need	to	have	a
bounding	box	and	check	colisions	against	it.	Get	ready	for	some	math!

First,	we	need	to	find	a	correct	way	to	construct	a	bounding	box.	Tank	has	it’s	body	image,
so	let’s	see	how	it’s	boundaries	look	like.	We	will	add	some	code	to	TankGraphics
component	to	see	it:
class	TankGraphics	<	Component

		def	draw(viewport)

				#	...

				draw_bounding_box

		end

		def	draw_bounding_box

				$window.rotate(object.direction,	x,	y)	do

						w	=	@body.width

						h	=	@body.height

						$window.draw_quad(

								x	-	w	/	2,	y	-	h	/	2,	Gosu::Color::RED,

								x	+	w	/	2,	y	-	h	/	2,	Gosu::Color::RED,

								x	+	w	/	2,	y	+	h	/	2,	Gosu::Color::RED,

								x	-	w	/	2,	y	+	h	/	2,	Gosu::Color::RED,

								100)

				end

		end

		#	...

end

Result	is	pretty	good,	we	have	tank	shaped	box,	so	we	will	be	using	body	image
dimensions	to	determine	our	bounding	box	corners:

Tank’s	bounding	box	visualized

There	is	one	problem	here	though.	Gosu::Window#rotate	does	the	rotation	math	for	us,
and	we	need	to	perform	these	calculations	on	our	own.	We	have	four	points	that	we	want
to	rotate	around	a	center	point.	It’s	not	very	difficult	to	find	how	to	do	this.	Here	is	a	Ruby
method	for	you:
module	Utils

		#	...

		def	self.rotate(angle,	around_x,	around_y,	*points)

				result	=	[]

				points.each_slice(2)	do	|x,	y|

						r_x	=	Math.cos(angle)	*	(x	-	around_x)	-

								Math.sin(angle)	*	(y	-	around_y)	+	around_x

						r_y	=	Math.sin(angle)	*	(x	-	around_x)	+

								Math.cos(angle)	*	(y	-	around_y)	+	around_y

						result	<<	r_x

						result	<<	r_y

				end

				result

		end

		#	...

end

We	can	now	calculate	edges	of	our	bounding	box,	but	we	need	one	more	function	which
tells	if	point	is	inside	a	polygon.	This	problem	has	been	solved	million	times	before,	so
just	poke	the	internet	for	it	and	drink	from	the	information	firehose	until	you	understand
how	to	do	this.

http://www.libgosu.org/rdoc/Gosu/Window.html#rotate-instance_method

If	you	wasn’t	familiar	with	the	term	yet,	by	now	you	should	discover	what	vertex	is.	In
geometry,	a	vertex	(plural	vertices)	is	a	special	kind	of	point	that	describes	the	corners	or
intersections	of	geometric	shapes.

Here’s	what	I	ended	up	writing:
module	Utils

		#	...

		#	http://www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/pnpoly.html

		def	self.point_in_poly(testx,	testy,	*poly)

				nvert	=	poly.size	/	2	#	Number	of	vertices	in	poly

				vertx	=	[]

				verty	=	[]

				poly.each_slice(2)	do	|x,	y|

						vertx	<<	x

						verty	<<	y

				end

				inside	=	false

				j	=	nvert	-	1

				(0..nvert	-	1).each	do	|i|

						if	(((verty[i]	>	testy)	!=	(verty[j]	>	testy))	&&

									(testx	<	(vertx[j]	-	vertx[i])	*	(testy	-	verty[i])	/

									(verty[j]	-	verty[i])	+	vertx[i]))

								inside	=	!inside

						end

						j	=	i

				end

				inside

		end

		#	...

It	is	Jordan	curve	theorem	reimplemented	in	Ruby.	Looks	ugly,	but	it	actually	works,	and
is	pretty	fast	too.

Also,	this	works	on	more	sophisticated	polygons,	and	our	tank	is	shaped	more	like	an	H
rather	than	a	rectangle,	so	we	could	define	a	pixel	perfect	polygon.	Some	pen	and	paper
will	help.
class	TankPhysics	<	Component

		#...

		#	Tank	box	looks	like	H.	Vertices:

		#	1			2			5			6

		#					3			4

		#

		#				10			9

		#	12	11			8			7

		def	box

				w	=	box_width	/	2	-	1

				h	=	box_height	/	2	-	1

				tw	=	8	#	track	width

				fd	=	8	#	front	depth

				rd	=	6	#	rear	depth

				Utils.rotate(object.direction,	x,	y,

																	x	+	w,						y	+	h,						#1

																	x	+	w	-	tw,	y	+	h,						#2

																	x	+	w	-	tw,	y	+	h	-	fd,	#3

																	x	-	w	+	tw,	y	+	h	-	fd,	#4

																	x	-	w	+	tw,	y	+	h,						#5

																	x	-	w,						y	+	h,						#6

																	x	-	w,						y	-	h,						#7

																	x	-	w	+	tw,	y	-	h,						#8

																	x	-	w	+	tw,	y	-	h	+	rd,	#9

																	x	+	w	-	tw,	y	-	h	+	rd,	#10

																	x	+	w	-	tw,	y	-	h,						#11

																	x	+	w,						y	-	h,						#12

)

		end

http://en.wikipedia.org/wiki/Vertex_(geometry)
http://en.wikipedia.org/wiki/Jordan_curve_theorem

		#	...

end

To	visually	see	it,	we	will	improve	our	draw_bounding_box	method:
class	TankGraphics	<	Component

		#	...

		DEBUG_COLORS	=	[

				Gosu::Color::RED,

				Gosu::Color::BLUE,

				Gosu::Color::YELLOW,

				Gosu::Color::WHITE

]

		#	...

		def	draw_bounding_box

				i	=	0

				object.box.each_slice(2)	do	|x,	y|

						color	=	DEBUG_COLORS[i]

						$window.draw_triangle(

								x	-	3,	y	-	3,	color,

								x,					y,					color,

								x	+	3,	y	-	3,	color,

								100)

						i	=	(i	+	1)	%	4

				end

		end

		#	...

Now	we	can	visually	test	bounding	box	edges	and	see	that	they	actually	are	where	they
belong.

High	precision	bounding	boxes

Time	to	pimp	our	TankPhysics	to	detect	those	collisions.	While	our	algorithm	is	pretty
fast,	it	doesn’t	make	sense	to	check	collisions	for	objects	that	are	pretty	far	apart.	This	is
why	we	need	our	ObjectPool	to	know	how	to	query	objects	in	close	proximity.
class	ObjectPool

		#	...

		def	nearby(object,	max_distance)

				@objects.select	do	|obj|

						distance	=	Utils.distance_between(

								obj.x,	obj.y,	object.x,	object.y)

						obj	!=	object	&&	distance	<	max_distance

				end

		end

end

Back	to	TankPhysics:
class	TankPhysics	<	Component

		#	...

		def	can_move_to?(x,	y)

				old_x,	old_y	=	object.x,	object.y

				object.x	=	x

				object.y	=	y

				return	false	unless	@map.can_move_to?(x,	y)

				@object_pool.nearby(object,	100).each	do	|obj|

						if	collides_with_poly?(obj.box)

								#	Allow	to	get	unstuck

								old_distance	=	Utils.distance_between(

										obj.x,	obj.y,	old_x,	old_y)

								new_distance	=	Utils.distance_between(

										obj.x,	obj.y,	x,	y)

								return	false	if	new_distance	<	old_distance

						end

				end

				true

		ensure

				object.x	=	old_x

				object.y	=	old_y

		end

		#	...

		private

		def	collides_with_poly?(poly)

				if	poly

						poly.each_slice(2)	do	|x,	y|

								return	true	if	Utils.point_in_poly(x,	y,	*box)

						end

						box.each_slice(2)	do	|x,	y|

								return	true	if	Utils.point_in_poly(x,	y,	*poly)

						end

				end

				false

		end

		#	...

end

It’s	probably	not	the	most	elegant	solution	you	could	come	up	with,	but	can_move_to?
temporarily	changes	Tank	location	to	make	a	collision	test,	and	then	reverts	old
coordinates	just	before	returning	the	result.	Now	our	tanks	stop	with	banging	sound	when
they	hit	each	other.

Tanks	colliding

Catching	Bullets
Right	now	bullets	fly	right	through	our	tanks,	and	we	want	them	to	collide.	It’s	a	pretty
simple	change,	which	mostly	affects	BulletPhysics	class:
#	06-physics/entities/components/bullet_physics.rb

class	BulletPhysics	<	Component

		#	...

		def	update

				#	...

				check_hit

				object.explode	if	arrived?

		end

		#	...

		private

		def	check_hit

				@object_pool.nearby(object,	50).each	do	|obj|

						next	if	obj	==	object.source	#	Don't	hit	source	tank

						if	Utils.point_in_poly(x,	y,	*obj.box)

								object.target_x	=	x

								object.target_y	=	y

								return

						end

				end

		end

		#	...

end

Now	bullets	finally	hit,	but	don’t	do	any	damage	yet.	We	will	come	back	to	that	soon.

Bullet	hitting	enemy	tank

Implementing	Turn	Speed	Penalties
Tanks	cannot	make	turns	and	go	into	reverse	at	full	speed	while	keeping	it’s	inertia,	right?
It	is	easy	to	implement.	Since	it’s	related	to	physics,	we	will	delegate	changing	Tank’s
@direction	to	our	TankPhysics	class:
#	06-physics/entities/components/player_input.rb

class	PlayerInput	<	Component

		#	...

		def	update

				#	...

				motion_buttons	=	[Gosu::KbW,	Gosu::KbS,	Gosu::KbA,	Gosu::KbD]

				if	any_button_down?(*motion_buttons)

						object.throttle_down	=	true

						object.physics.change_direction(

								change_angle(object.direction,	*motion_buttons))

				else

						object.throttle_down	=	false

				end

				#	...

		end

		#	...

end

#	06-physics/entities/components/tank_physics.rb

class	TankPhysics	<	Component

		#	...

		def	change_direction(new_direction)

				change	=	(new_direction	-	object.direction	+	360)	%	360

				change	=	360	-	change	if	change	>	180

				if	change	>	90

						@speed	=	0

				elsif	change	>	45

						@speed	*=	0.33

				elsif	change	>	0

						@speed	*=	0.66

				end

				object.direction	=	new_direction

		end

		#	...

end

Implementing	Terrain	Speed	Penalties
Now,	let’s	see	how	can	we	make	terrain	influence	our	movement.	It	sounds	reasonable	for
TankPhysics	to	consult	with	Map	about	speed	penalty	of	current	tile:
#	06-physics/entities/map.rb

class	Map

		#	...

		def	movement_penalty(x,	y)

				tile	=	tile_at(x,	y)

				case	tile

				when	@sand

						0.33

				else

						0

				end

		end

		#	...

end

#	06-physics/entities/components/tank_physics.rb

class	TankPhysics	<	Component

		#	...

		def	update

				#	...

						speed	=	apply_movement_penalty(@speed)

						shift	=	Utils.adjust_speed(speed)

				#	...

		end

		#	...

		private

		def	apply_movement_penalty(speed)

				speed	*	(1.0	-	@map.movement_penalty(x,	y))

		end

		#	...

end

This	makes	all	tanks	move	33%	slower	on	sand.

Implementing	Health	And	Damage

I	know	you	have	been	waiting	for	this.	We	will	be	implementing	health	system	and	most
importantly,	damage.	Soo	we	will	be	ready	to	blow	things	up.

To	implement	this,	we	need	to:

1.	 Add	TankHealth	component.	Start	with	100	health.
2.	 Render	tank	health	next	to	tank	itself.
3.	 Inflict	damage	to	tank	when	it	is	in	explosion	zone
4.	 Render	different	sprite	for	dead	tank.
5.	 Cut	off	player	input	when	tank	is	dead.

Adding	Health	Component
If	we	didn’t	have	Component	system	in	place,	it	would	be	way	more	difficult.	Now	we	just
kick	in	a	new	class:
07-damage/entities/components/tank_health.rb

	1	class	TankHealth	<	Component

	2			attr_accessor	:health

	3	

	4			def	initialize(object,	object_pool)

	5					super(object)

	6					@object_pool	=	object_pool

	7					@health	=	100

	8					@health_updated	=	true

	9					@last_damage	=	Gosu.milliseconds

10			end

11	

12			def	update

13					update_image

14			end

15	

16			def	update_image

17					if	@health_updated

18							if	dead?

19									text	=	'✝'
20									font_size	=	25

21							else

22									text	=	@health.to_s

23									font_size	=	18

24							end

25							@image	=	Gosu::Image.from_text(

26											$window,	text,

27											Gosu.default_font_name,	font_size)

28							@health_updated	=	false

29					end

30			end

31	

32			def	dead?

33					@health	<	1

34			end

35	

36			def	inflict_damage(amount)

37					if	@health	>	0

38							@health_updated	=	true

39							@health	=	[@health	-	amount.to_i,	0].max

40							if	@health	<	1

41									Explosion.new(@object_pool,	x,	y)

42							end

43					end

44			end

45	

46			def	draw(viewport)

47					@image.draw(

48							x	-	@image.width	/	2,

49							y	-	object.graphics.height	/	2	-

50							@image.height,	100)

51			end

52	end

It	hooks	itself	into	the	game	right	away,	after	we	initialize	it	in	Tank	class:
class	Tank	<	GameObject

		attr_accessor	:health

		#	...

		def	initialize(object_pool,	input)

				#	...

				@health	=	TankHealth.new(self,	object_pool)

				#	..

		end

		#	..

end

Inflicting	Damage	With	Bullets
There	are	two	ways	to	inflict	damage	-	directly	and	indirectly.	When	bullet	hits	enemy
tank	(collides	with	tank	bounding	box),	we	should	inflict	direct	damage.	It	can	be	done	in
BulletPhysics#check_hit	method	that	we	already	had:
class	BulletPhysics	<	Component

		#	...

		def	check_hit

				@object_pool.nearby(object,	50).each	do	|obj|

						next	if	obj	==	object.source	#	Don't	hit	source	tank

						if	Utils.point_in_poly(x,	y,	*obj.box)

								#	Direct	hit	-	extra	damage

								obj.health.inflict_damage(20)

								object.target_x	=	x

								object.target_y	=	y

								return

						end

				end

		end

		#	...

end

Finally,	Explosion	itself	should	inflict	additional	damage	to	anything	that	are	nearby.	The
effect	will	be	diminishing	and	it	will	be	determined	by	object	distance.
class	Explosion	<	GameObject

		#	...

		def	initialize(object_pool,	x,	y)

				#	...

				inflict_damage

		end

		private

		def	inflict_damage

				object_pool.nearby(self,	100).each	do	|obj|

						if	obj.class	==	Tank

								obj.health.inflict_damage(

										Math.sqrt(3	*	100	-	Utils.distance_between(

														obj.x,	obj.y,	x,	y)))

						end

				end

		end

end

This	is	it,	we	are	ready	to	deal	damage.	But	we	want	to	see	if	we	actually	killed	somebody,
so	TankGraphics	should	be	aware	of	health	and	should	draw	different	set	of	sprites	when
tank	is	dead.	Here	is	what	we	need	to	change	in	our	current	TankGraphics	to	achieve	the
result:
class	TankGraphics	<	Component

		#	...

		def	initialize(game_object)

				super(game_object)

				@body_normal	=	units.frame('tank1_body.png')

				@shadow_normal	=	units.frame('tank1_body_shadow.png')

				@gun_normal	=	units.frame('tank1_dualgun.png')

				@body_dead	=	units.frame('tank1_body_destroyed.png')

				@shadow_dead	=	units.frame('tank1_body_destroyed_shadow.png')

				@gun_dead	=	nil

		end

		def	update

				if	object.health.dead?

						@body	=	@body_dead

						@gun	=	@gun_dead

						@shadow	=	@shadow_dead

				else

						@body	=	@body_normal

						@gun	=	@gun_normal

						@shadow	=	@shadow_normal

				end

		end

		def	draw(viewport)

				@shadow.draw_rot(x	-	1,	y	-	1,	0,	object.direction)

				@body.draw_rot(x,	y,	1,	object.direction)

				@gun.draw_rot(x,	y,	2,	object.gun_angle)	if	@gun

		end

		#	...

end

Now	we	can	blow	them	up	and	enjoy	the	view:

Target	practice

But	what	if	we	blow	ourselves	up	by	shooting	nearby?	We	would	still	be	able	to	move
around.	To	fix	this,	we	will	simply	cut	out	player	input	when	we	are	dead:
class	PlayerInput	<	Component

		#	...

		def	update

				return	if	object.health.dead?

				#	...

		end

		#	...

end

And	to	prevent	tank	from	throttling	forever	if	the	pedal	was	down	before	it	got	killed:
class	TankPhysics	<	Component

		#	...

		def	update

				if	object.throttle_down	&&	!object.health.dead?

						accelerate

				else

						decelerate

				end

				#	...

		end

		#	...

end

That’s	it.	All	we	need	right	now	is	some	resistance	from	those	brain	dead	enemies.	We	will
spark	some	life	into	them	in	next	chapter.

Creating	Artificial	Intelligence

Artificial	Intelligence	is	a	subject	so	vast	that	we	will	barely	scratch	the	surface.	AI	in
Video	Games	is	usually	heavily	simplified	and	therefore	easier	to	implement.

There	is	this	wonderful	series	of	articles	called	Designing	Artificial	Intelligence	for
Games	that	I	highly	recommend	reading	to	get	a	feeling	how	game	AI	should	be	done.	We
will	be	continuing	our	work	on	top	of	what	we	already	have,	example	code	for	this	chapter
will	be	in	08-ai.

Designing	AI	Using	Finite	State	Machine
Non	player	tanks	in	our	game	will	be	lone	rangers,	hunting	everything	that	moves	while
trying	to	survive.	We	will	use	Finite	State	Machine	to	implement	tank	behavior.

First,	we	need	to	think	“what	would	a	tank	do?”	How	about	this	scenario:

1.	 Tank	wanders	around,	minding	it’s	own	business.
2.	 Tank	encounters	another	tank.	It	then	starts	doing	evasive	moves	and	tries	hitting	the

enemy.
3.	 Enemy	took	some	damage	and	started	driving	away.	Tank	starts	chasing	the	enemy

trying	to	finish	it.
4.	 Another	tank	appears	and	fires	a	couple	of	accurate	shots,	dealing	serious	damage.

Our	tank	starts	running	away,	because	if	it	kept	receiving	damage	at	such	rate,	it
would	die	very	soon.

5.	 Tank	keeps	fleeing	and	looking	for	safety	until	it	gets	cornered	or	the	opponent	looks
damaged	too.	Then	tank	goes	into	it’s	final	battle.

We	can	now	draw	a	Finite	State	Machine	using	this	scenario:

Vigilante	Tank	FSM

http://en.wikipedia.org/wiki/Artificial_intelligence_(video_games)
https://software.intel.com/en-us/articles/designing-artificial-intelligence-for-games-part-1/
http://en.wikipedia.org/wiki/Finite-state_machine

If	you	are	on	a	path	to	become	a	game	developer,	FSM	should	not	stand	for	Flying
Spaghetti	Monster	for	you	anymore.

Implementing	AI	Vision
To	make	opponents	realistic,	we	have	to	give	them	senses.	Let’s	create	a	class	for	that:
08-ai/entities/components/ai/vision.rb

	1	class	AiVision

	2			CACHE_TIMEOUT	=	500

	3			attr_reader	:in_sight

	4	

	5			def	initialize(viewer,	object_pool,	distance)

	6					@viewer	=	viewer

	7					@object_pool	=	object_pool

	8					@distance	=	distance

	9			end

10	

11			def	update

12					@in_sight	=	@object_pool.nearby(@viewer,	@distance)

13			end

14	

15			def	closest_tank

16					now	=	Gosu.milliseconds

17					@closest_tank	=	nil

18					if	now	-	(@cache_updated_at	||=	0)	>	CACHE_TIMEOUT

19							@closest_tank	=	nil

20							@cache_updated_at	=	now

21					end

22					@closest_tank	||=	find_closest_tank

23			end

24	

25			private

26	

27			def	find_closest_tank

28					@in_sight.select	do	|o|

29							o.class	==	Tank	&&	!o.health.dead?

30					end.sort	do	|a,	b|

31							x,	y	=	@viewer.x,	@viewer.y

32							d1	=	Utils.distance_between(x,	y,	a.x,	a.y)

33							d2	=	Utils.distance_between(x,	y,	b.x,	b.y)

34							d1	<=>	d2

35					end.first

36			end

37	end

It	uses	ObjectPool	to	put	nearby	objects	in	sight,	and	gets	a	short	term	focus	on	one
closest	tank.	Closest	tank	is	cached	for	500	milliseconds	for	two	reasons:

1.	 Performance.	Uncached	version	would	do	Array#select	and	Array#sort	60	times
per	second,	now	it	will	do	2	times.

2.	 Focus.	When	you	choose	a	target,	you	should	keep	it	a	little	longer.	This	should	also
avoid	“jitters”,	when	tank	would	shake	between	two	nearby	targets	that	are	within
same	distance.

Controlling	Tank	Gun
After	we	made	AiVision,	we	can	now	use	it	to	automatically	aim	and	shoot	at	closest
tank.	It	should	work	like	this:

1.	 Every	instance	of	the	gun	has	it’s	own	unique	combination	of	speed,	accuracy	and
aggressiveness.

http://en.wikipedia.org/wiki/Flying_Spaghetti_Monster

2.	 Gun	will	automatically	target	closest	tank	in	sight.
3.	 If	no	other	tank	is	in	sight,	gun	will	target	in	same	direction	as	tank’s	body.
4.	 If	other	tank	is	aimed	at	and	within	shooting	distance,	gun	will	make	a	decision	once

in	a	while	whether	it	should	shoot	or	not,	based	on	aggressiveness	level.	Aggressive
tanks	will	be	trigger	happy	all	the	time,	while	less	aggressive	ones	will	make	small
random	pauses	between	shots.

5.	 Gun	will	have	a	“desired”	angle	that	it	will	be	automatically	adjusting	to,	according
to	it’s	speed.

Here	is	the	implementation:
08-ai/entities/components/ai/gun.rb

		1	class	AiGun

		2			DECISION_DELAY	=	1000

		3			attr_reader	:target,	:desired_gun_angle

		4	

		5			def	initialize(object,	vision)

		6					@object	=	object

		7					@vision	=	vision

		8					@desired_gun_angle	=	rand(0..360)

		9					@retarget_speed	=	rand(1..5)

	10					@accuracy	=	rand(0..10)

	11					@aggressiveness	=	rand(1..5)

	12			end

	13	

	14			def	adjust_angle

	15					adjust_desired_angle

	16					adjust_gun_angle

	17			end

	18	

	19			def	update

	20					if	@vision.in_sight.any?

	21							if	@vision.closest_tank	!=	@target

	22									change_target(@vision.closest_tank)

	23							end

	24					else

	25							@target	=	nil

	26					end

	27	

	28					if	@target

	29							if	(0..10	-	rand(0..@accuracy)).include?(

	30									(@desired_gun_angle	-	@object.gun_angle).abs.round)

	31									distance	=	distance_to_target

	32									if	distance	-	50	<=	BulletPhysics::MAX_DIST

	33											target_x,	target_y	=	Utils.point_at_distance(

	34													@object.x,	@object.y,	@object.gun_angle,

	35													distance	+	10	-	rand(0..@accuracy))

	36											if	can_make_new_decision?	&&	@object.can_shoot?	&&

	37															should_shoot?

	38													@object.shoot(target_x,	target_y)

	39											end

	40									end

	41							end

	42					end

	43			end

	44	

	45			def	distance_to_target

	46					Utils.distance_between(

	47							@object.x,	@object.y,	@target.x,	@target.y)

	48			end

	49	

	50	

	51			def	should_shoot?

	52					rand	*	@aggressiveness	>	0.5

	53			end

	54	

	55			def	can_make_new_decision?

	56					now	=	Gosu.milliseconds

	57					if	now	-	(@last_decision	||=	0)	>	DECISION_DELAY

	58							@last_decision	=	now

	59							true

	60					end

	61			end

	62	

	63			def	adjust_desired_angle

	64					@desired_gun_angle	=	if	@target

	65								Utils.angle_between(

	66									@object.x,	@object.y,	@target.x,	@target.y)

	67					else

	68							@object.direction

	69					end

	70			end

	71	

	72			def	change_target(new_target)

	73					@target	=	new_target

	74					adjust_desired_angle

	75			end

	76	

	77			def	adjust_gun_angle

	78					actual	=	@object.gun_angle

	79					desired	=	@desired_gun_angle

	80					if	actual	>	desired

	81							if	actual	-	desired	>	180	#	0	->	360	fix

	82									@object.gun_angle	=	(actual	+	@retarget_speed)	%	360

	83									if	@object.gun_angle	<	desired

	84											@object.gun_angle	=	desired	#	damp

	85									end

	86							else

	87									@object.gun_angle	=	[actual	-	@retarget_speed,	desired].max

	88							end

	89					elsif	actual	<	desired

	90							if	desired	-	actual	>	180	#	360	->	0	fix

	91									@object.gun_angle	=	(360	+	actual	-	@retarget_speed)	%	360

	92									if	@object.gun_angle	>	desired

	93											@object.gun_angle	=	desired	#	damp

	94									end

	95							else

	96									@object.gun_angle	=	[actual	+	@retarget_speed,	desired].min

	97							end

	98					end

	99			end

100	end

There	is	some	math	involved,	but	it	is	pretty	straightforward.	We	need	to	find	out	an	angle
between	two	points,	to	know	where	our	gun	should	point,	and	the	other	thing	we	need	is
coordinates	of	point	which	is	in	some	distance	away	from	source	at	given	angle.	Here	are
those	functions:
module	Utils

		#	...

		def	self.angle_between(x,	y,	target_x,	target_y)

				dx	=	target_x	-	x

				dy	=	target_y	-	y

				(180	-	Math.atan2(dx,	dy)	*	180	/	Math::PI)	+	360	%	360

		end

		def	self.point_at_distance(source_x,	source_y,	angle,	distance)

				angle	=	(90	-	angle)	*	Math::PI	/	180

				x	=	source_x	+	Math.cos(angle)	*	distance

				y	=	source_y	-	Math.sin(angle)	*	distance

				[x,	y]

		end

		#	...

end

Implementing	AI	Input
At	this	point	our	tanks	can	already	defend	themselves,	even	through	motion	is	not	yet
implemented.	Let’s	wire	everything	we	have	in	AiInput	class	that	we	had	prepared	earlier.

We	will	need	a	blank	TankMotionFSM	class	with	3	argument	initializer	and	empty	update,
on_collision(with)	and	on_damage(amount)	methods	for	it	to	work:
08-ai/entities/components/ai_input.rb

	1	class	AiInput	<	Component

	2			UPDATE_RATE	=	200	#	ms

	3	

	4			def	initialize(object_pool)

	5					@object_pool	=	object_pool

	6					super(nil)

	7					@last_update	=	Gosu.milliseconds

	8			end

	9	

10			def	control(obj)

11					self.object	=	obj

12					@vision	=	AiVision.new(obj,	@object_pool,

13																												rand(700..1200))

14					@gun	=	AiGun.new(obj,	@vision)

15					@motion	=	TankMotionFSM.new(obj,	@vision,	@gun)

16			end

17	

18			def	on_collision(with)

19					@motion.on_collision(with)

20			end

21	

22			def	on_damage(amount)

23					@motion.on_damage(amount)

24			end

25	

26			def	update

27					return	if	object.health.dead?

28					@gun.adjust_angle

29					now	=	Gosu.milliseconds

30					return	if	now	-	@last_update	<	UPDATE_RATE

31					@last_update	=	now

32					@vision.update

33					@gun.update

34					@motion.update

35			end

36	end

It	adjust	gun	angle	all	the	time,	but	does	updates	at	UPDATE_RATE	to	save	CPU	power.	AI	is
usually	one	of	the	most	CPU	intensive	things	in	games,	so	it’s	a	common	practice	to
execute	it	less	often.	Refreshing	enemy	brains	5	per	second	is	enough	to	make	them
deadly.

Make	sure	you	spawn	some	AI	controlled	tanks	in	PlayState	and	try	killing	them	now.	I
bet	they	will	eventually	get	you	even	while	standing	still.	You	can	also	make	tanks	spawn
below	mouse	cursor	when	you	press	T	key:
class	PlayState	<	GameState

		#	...

		def	initialize

				#	...

				10.times	do	|i|

						Tank.new(@object_pool,	AiInput.new(@object_pool))

				end

		end

		#	...

		def	button_down(id)

				#	...

				if	id	==	Gosu::KbT

						t	=	Tank.new(@object_pool,

																			AiInput.new(@object_pool))

						t.x,	t.y	=	@camera.mouse_coords

				end

				#	...

		end

		#	...

end

Implementing	Tank	Motion	States
This	is	the	place	where	we	will	need	Finite	State	Machine	to	get	things	right.	We	will
design	it	like	this:

1.	 TankMotionFSM	will	decide	which	motion	state	tank	should	be	in,	considering	various
parameters,	e.g.	existence	of	target	or	lack	thereof,	health,	etc.

2.	 There	will	be	TankMotionState	base	class	that	will	offer	common	methods	like
drive,	wait	and	on_collision.

3.	 Concrete	motion	classes	will	implement	update,	change_direction	and	other
methods,	that	will	fiddle	with	Tank#throttle_down	and	Tank#direction	to	make	it
move	and	turn.

We	will	begin	with	TankMotionState:
08-ai/entities/components/ai/tank_motion_state.rb

	1	class	TankMotionState

	2			def	initialize(object,	vision)

	3					@object	=	object

	4					@vision	=	vision

	5			end

	6	

	7			def	enter

	8					#	Override	if	necessary

	9			end

10	

11			def	change_direction

12					#	Override

13			end

14	

15			def	wait_time

16					#	Override	and	return	a	number

17			end

18	

19			def	drive_time

20					#	Override	and	return	a	number

21			end

22	

23			def	turn_time

24					#	Override	and	return	a	number

25			end

26	

27			def	update

28					#	Override

29			end

30	

31			def	wait

32					@sub_state	=	:waiting

33					@started_waiting	=	Gosu.milliseconds

34					@will_wait_for	=	wait_time

35					@object.throttle_down	=	false

36			end

37	

38			def	drive

39					@sub_state	=	:driving

40					@started_driving	=	Gosu.milliseconds

41					@will_drive_for	=	drive_time

42					@object.throttle_down	=	true

43			end

44	

45			def	should_change_direction?

46					return	true	unless	@changed_direction_at

47					Gosu.milliseconds	-	@changed_direction_at	>

48							@will_keep_direction_for

49			end

50	

51			def	substate_expired?

52					now	=	Gosu.milliseconds

53					case	@sub_state

54					when	:waiting

55							true	if	now	-	@started_waiting	>	@will_wait_for

56					when	:driving

57							true	if	now	-	@started_driving	>	@will_drive_for

58					else

59							true

60					end

61			end

62	

63			def	on_collision(with)

64					change	=	case	rand(0..100)

65					when	0..30

66							-90

67					when	30..60

68							90

69					when	60..70

70							135

71					when	80..90

72							-135

73					else

74							180

75					end

76					@object.physics.change_direction(

77							@object.direction	+	change)

78			end

79	end

Nothing	extraordinary	here,	and	we	need	a	concrete	implementation	to	get	a	feeling	how	it
would	work,	therefore	let’s	examine	TankRoamingState.	It	will	be	the	default	state	which
tank	would	be	in	if	there	were	no	enemies	around.

Tank	Roaming	State
08-ai/entities/components/ai/tank_roaming_state.rb

	1	class	TankRoamingState	<	TankMotionState

	2			def	initialize(object,	vision)

	3					super

	4					@object	=	object

	5					@vision	=	vision

	6			end

	7	

	8			def	update

	9					change_direction	if	should_change_direction?

10					if	substate_expired?

11							rand	>	0.3	?	drive	:	wait

12					end

13			end

14	

15			def	change_direction

16					change	=	case	rand(0..100)

17					when	0..30

18							-45

19					when	30..60

20							45

21					when	60..70

22							90

23					when	80..90

24							-90

25					else

26							0

27					end

28					if	change	!=	0

29							@object.physics.change_direction(

30									@object.direction	+	change)

31					end

32					@changed_direction_at	=	Gosu.milliseconds

33					@will_keep_direction_for	=	turn_time

34			end

35	

36			def	wait_time

37					rand(500..2000)

38			end

39	

40			def	drive_time

41					rand(1000..5000)

42			end

43	

44			def	turn_time

45					rand(2000..5000)

46			end

47	end

The	logic	here:

1.	 Tank	will	randomly	change	direction	every	turn_time	interval,	which	is	between	2
and	5	seconds.

2.	 Tank	will	choose	to	drive	(80%	chance)	or	to	stand	still	(20%	chance).
3.	 If	tank	chose	to	drive,	it	will	keep	driving	for	drive_time,	which	is	between	1	and	5

seconds.
4.	 Same	goes	with	waiting,	but	wait_time	(0.5	-	2	seconds)	will	be	used	for	duration.
5.	 Direction	changes	and	driving	/	waiting	are	independent.

This	will	make	an	impression	that	our	tank	is	driving	around	looking	for	enemies.

Tank	Fighting	State

When	tank	finally	sees	an	opponent,	it	will	start	fighting.	Fighting	motion	should	be	more
energetic	than	roaming,	we	will	need	a	sharper	set	of	choices	in	change_direction	among
other	things.
08-ai/entities/components/ai/tank_fighting_state.rb

	1	class	TankFightingState	<	TankMotionState

	2			def	initialize(object,	vision)

	3					super

	4					@object	=	object

	5					@vision	=	vision

	6			end

	7	

	8			def	update

	9					change_direction	if	should_change_direction?

10					if	substate_expired?

11							rand	>	0.2	?	drive	:	wait

12					end

13			end

14	

15			def	change_direction

16					change	=	case	rand(0..100)

17					when	0..20

18							-45

19					when	20..40

20							45

21					when	40..60

22							90

23					when	60..80

24							-90

25					when	80..90

26							135

27					when	90..100

28							-135

29					end

30					@object.physics.change_direction(

31							@object.direction	+	change)

32					@changed_direction_at	=	Gosu.milliseconds

33					@will_keep_direction_for	=	turn_time

34			end

35	

36			def	wait_time

37					rand(300..1000)

38			end

39	

40			def	drive_time

41					rand(2000..5000)

42			end

43	

44			def	turn_time

45					rand(500..2500)

46			end

47	end

We	will	have	much	less	waiting	and	much	more	driving	and	turning.

Tank	Chasing	State

If	opponent	is	fleeing,	we	will	want	to	set	our	direction	towards	the	opponent	and	hit	pedal
to	the	metal.	No	waiting	here.	AiGun#desired_gun_angle	will	point	directly	to	our	enemy.
08-ai/entities/components/ai/tank_chasing_state.rb

	1	class	TankChasingState	<	TankMotionState

	2			def	initialize(object,	vision,	gun)

	3					super(object,	vision)

	4					@object	=	object

	5					@vision	=	vision

	6					@gun	=	gun

	7			end

	8	

	9			def	update

10					change_direction	if	should_change_direction?

11					drive

12			end

13	

14			def	change_direction

15					@object.physics.change_direction(

16							@gun.desired_gun_angle	-

17							@gun.desired_gun_angle	%	45)

18	

19					@changed_direction_at	=	Gosu.milliseconds

20					@will_keep_direction_for	=	turn_time

21			end

22	

23			def	drive_time

24					10000

25			end

26	

27			def	turn_time

28					rand(300..600)

29			end

30	end

Tank	Fleeing	State

Now,	if	our	health	is	low,	we	will	do	the	opposite	of	chasing.	Gun	will	be	pointing	and
shooting	at	the	opponent,	but	we	want	body	to	move	away,	so	we	won’t	get	ourselves
killed.	It	is	very	similar	to	TankChasingState	where	change_direction	adds	extra	180
degrees	to	the	equation,	but	there	is	one	more	thing.	Tank	can	only	flee	for	a	while.	Then	it
gets	itself	together	and	goes	into	final	battle.	That’s	why	we	provide	can_flee?	method
that	TankMotionFSM	will	consult	with	before	entering	fleeing	state.

We	have	implemented	all	the	states,	that	means	we	are	moments	away	from	actually
playable	prototype	with	tank	bots	running	around	and	fighting	with	you	and	each	other.

Wiring	Tank	Motion	States	Into	Finite	State	Machine
Implementing	TankMotionFSM	after	we	have	all	motion	states	ready	is	surprisingly	easy:
08-ai/entities/components/ai/tank_motion_fsm.rb

	1	class	TankMotionFSM

	2			STATE_CHANGE_DELAY	=	500

	3	

	4			def	initialize(object,	vision,	gun)

	5					@object	=	object

	6					@vision	=	vision

	7					@gun	=	gun

	8					@roaming_state	=	TankRoamingState.new(object,	vision)

	9					@fighting_state	=	TankFightingState.new(object,	vision)

10					@fleeing_state	=	TankFleeingState.new(object,	vision,	gun)

11					@chasing_state	=	TankChasingState.new(object,	vision,	gun)

12					set_state(@roaming_state)

13			end

14	

15			def	on_collision(with)

16					@current_state.on_collision(with)

17			end

18	

19			def	on_damage(amount)

20					if	@current_state	==	@roaming_state

21							set_state(@fighting_state)

22					end

23			end

24	

25			def	update

26					choose_state

27					@current_state.update

28			end

29	

30			def	set_state(state)

31					return	unless	state

32					return	if	state	==	@current_state

33					@last_state_change	=	Gosu.milliseconds

34					@current_state	=	state

35					state.enter

36			end

37	

38			def	choose_state

39					return	unless	Gosu.milliseconds	-

40							(@last_state_change)	>	STATE_CHANGE_DELAY

41					if	@gun.target

42							if	@object.health.health	>	40

43									if	@gun.distance_to_target	>	BulletPhysics::MAX_DIST

44											new_state	=	@chasing_state

45									else

46											new_state	=	@fighting_state

47									end

48							else

49									if	@fleeing_state.can_flee?

50											new_state	=	@fleeing_state

51									else

52											new_state	=	@fighting_state

53									end

54							end

55					else

56							new_state	=	@roaming_state

57					end

58					set_state(new_state)

59			end

60	end

All	the	logic	is	in	choose_state	method,	which	is	pretty	ugly	and	procedural,	but	it	does
the	job.	The	code	should	be	easy	to	understand,	so	instead	of	describing	it,	here	is	a
picture	worth	thousand	words:

First	real	battle

You	may	notice	a	new	crosshair,	which	replaced	the	old	one	that	was	never	visible:
class	Camera

		#	...

		def	draw_crosshair

				factor	=	0.5

				x	=	$window.mouse_x

				y	=	$window.mouse_y

				c	=	crosshair

				c.draw(x	-	c.width	*	factor	/	2,

											y	-	c.height	*	factor	/	2,

											1000,	factor,	factor)

		end

		#	...

		private

		def	crosshair

				@crosshair	||=	Gosu::Image.new(

						$window,	Utils.media_path('c_dot.png'),	false)

		end

end

However	this	new	crosshair	didn’t	help	me	win,	I	got	my	ass	kicked	badly.	Increasing
game	window	size	helped,	but	we	obviously	need	to	fine	tune	many	things	in	this	AI,	to
make	it	smart	and	challenging	rather	than	dumb	and	deadly	accurate.

Making	The	Prototype	Playable

Right	now	we	have	a	somewhat	playable,	but	boring	prototype	without	any	scores	or
winning	conditions.	You	can	just	run	around	and	shoot	other	tanks.	Nobody	would	play	a
game	like	this,	hence	we	need	to	to	add	the	missing	parts.	There	is	a	crazy	amount	of
them.	It	is	time	to	give	it	a	thorough	play	through	and	write	down	all	the	ideas	and	pain
points	about	the	prototype.

Here	is	my	list:

1.	 Enemy	tanks	do	not	respawn.
2.	 Enemy	tanks	shoot	at	my	current	location,	not	at	where	I	will	be	when	bullet	hits	me.
3.	 Enemy	tanks	don’t	avoid	collisions.
4.	 Random	maps	are	boring	and	lack	detail,	could	use	more	tiles	or	random

environment	objects.
5.	 Bullets	are	hard	to	see	on	green	surface.
6.	 Hard	to	tell	where	enemies	are	coming	from,	radar	would	help.
7.	 Sounds	play	at	full	volume	even	when	something	happens	across	the	whole	map.
8.	 My	tank	should	respawn	after	it’s	dead.
9.	 Motion	and	firing	mechanics	seem	clumsy.
10.	 Map	boundaries	are	visible	when	you	come	to	the	edge.
11.	 Enemy	tank	movement	patterns	need	polishing	and	improvement.
12.	 Both	my	tank	and	enemies	don’t	have	any	identity.	Sometimes	hard	to	distinguish

who	is	who.
13.	 No	idea	who	has	most	kills.	HUD	with	score	and	some	state	that	displays	score

details	would	help.
14.	 Would	be	great	to	have	random	powerups	like	health,	extra	damage.
15.	 Explosions	don’t	leave	a	trace.
16.	 Tanks	could	leave	trails.
17.	 Dead	tanks	keep	piling	up	and	cluttering	the	map.
18.	 Camera	should	be	scouting	ahead	of	you	when	you	move,	not	dragging	behind.
19.	 Bullets	seem	to	accelerate.

This	will	keep	us	busy	for	a	while,	but	in	the	end	we	will	probably	have	something	that
will	hopefully	be	able	to	entertain	people	for	more	than	3	minutes.

Some	items	on	this	list	are	easy	fixes.	After	playing	around	with	Pixelmator	for	15
minutes,	I	ended	up	with	a	bullet	that	is	visible	on	both	light	and	dark	backgrounds:

Highly	visible	bullet

Motion	and	firing	mechanics	will	either	have	to	be	tuned	setting	by	setting,	or	rewritten
from	scratch.	Implementing	score	system,	powerups	and	improving	enemy	AI	deserve	to
have	chapters	of	their	own.	The	rest	can	be	taken	care	of	right	away.

Drawing	Water	Beyond	Map	Boundaries
We	don’t	want	to	see	darkness	when	we	come	to	the	edge	of	game	world.	Luckily,	it	is	a
trivial	fix.	In	Map#draw	we	check	if	tile	exists	in	map	before	drawing	it.	When	tile	does	not
exist,	we	can	draw	water	instead.	And	we	can	always	fallback	to	water	tile	in
Map#tile_at:
class	Map

		#	...

		def	draw(viewport)

				viewport.map!	{	|p|	p	/	TILE_SIZE	}

				x0,	x1,	y0,	y1	=	viewport.map(&:to_i)

				(x0..x1).each	do	|x|

						(y0..y1).each	do	|y|

								row	=	@map[x]

								map_x	=	x	*	TILE_SIZE

								map_y	=	y	*	TILE_SIZE

								if	row

										tile	=	@map[x][y]

										if	tile

												tile.draw(map_x,	map_y,	0)

										else

												@water.draw(map_x,	map_y,	0)

										end

								else

										@water.draw(map_x,	map_y,	0)

								end

						end

				end

		end

		#	...

		private

		#	...

		def	tile_at(x,	y)

				t_x	=	((x	/	TILE_SIZE)	%	TILE_SIZE).floor

				t_y	=	((y	/	TILE_SIZE)	%	TILE_SIZE).floor

				row	=	@map[t_x]

				row	?	row[t_y]	:	@water

		end

		#	...

end

Now	the	edge	looks	much	better:

Map	edge

Generating	Tree	Clusters
To	make	the	map	more	fun	to	play	at,	we	will	generate	some	trees.	Let’s	start	with	Tree
class:
09-polishing/entities/tree.rb

	1	class	Tree	<	GameObject

	2			attr_reader	:x,	:y,	:health,	:graphics

	3	

	4			def	initialize(object_pool,	x,	y,	seed)

	5					super(object_pool)

	6					@x,	@y	=	x,	y

	7					@graphics	=	TreeGraphics.new(self,	seed)

	8					@health	=	Health.new(self,	object_pool,	30,	false)

	9					@angle	=	rand(-15..15)

10			end

11	

12			def	on_collision(object)

13					@graphics.shake(object.direction)

14			end

15	

16			def	box

17					[x,	y]

18			end

19	end

Nothing	fancy	here,	we	want	it	to	shake	on	collision,	and	it	has	graphics	and	health.	seed
will	used	to	generate	clusters	of	similar	trees.	Let’s	take	a	look	at	TreeGraphics:
09-polishing/entities/components/tree_graphics.rb

	1	class	TreeGraphics	<	Component

	2			SHAKE_TIME	=	100

	3			SHAKE_COOLDOWN	=	200

	4			SHAKE_DISTANCE	=	[2,	1,	0,	-1,	-2,	-1,	0,	1,	0,	-1,	0]

	5			def	initialize(object,	seed)

	6					super(object)

	7					load_sprite(seed)

	8			end

	9	

10			def	shake(direction)

11					now	=	Gosu.milliseconds

12					return	if	@shake_start	&&

13							now	-	@shake_start	<	SHAKE_TIME	+	SHAKE_COOLDOWN

14					@shake_start	=	now

15					@shake_direction	=	direction

16					@shaking	=	true

17			end

18	

19			def	adjust_shake(x,	y,	shaking_for)

20					elapsed	=	[shaking_for,	SHAKE_TIME].min	/	SHAKE_TIME.to_f

21					frame	=	((SHAKE_DISTANCE.length	-	1)	*	elapsed).floor

22					distance	=	SHAKE_DISTANCE[frame]

23					Utils.point_at_distance(x,	y,	@shake_direction,	distance)

24			end

25	

26			def	draw(viewport)

27					if	@shaking

28							shaking_for	=	Gosu.milliseconds	-	@shake_start

29							shaking_x,	shaking_y	=	adjust_shake(

30									center_x,	center_y,	shaking_for)

31							@tree.draw(shaking_x,	shaking_y,	5)

32							if	shaking_for	>=	SHAKE_TIME

33									@shaking	=	false

34							end

35					else

36							@tree.draw(center_x,	center_y,	5)

37					end

38					Utils.mark_corners(object.box)	if	$debug

39			end

40	

41			def	height

42					@tree.height

43			end

44	

45			def	width

46					@tree.width

47			end

48	

49			private

50	

51			def	load_sprite(seed)

52					frame_list	=	trees.frame_list

53					frame	=	frame_list[(frame_list.size	*	seed).round]

54					@tree	=	trees.frame(frame)

55			end

56	

57			def	center_x

58					@center_x	||=	x	-	@tree.width	/	2

59			end

60	

61			def	center_y

62					@center_y	||=	y	-	@tree.height	/	2

63			end

64	

65			def	trees

66					@@trees	||=	Gosu::TexturePacker.load_json($window,

67							Utils.media_path('trees_packed.json'))

68			end

69	end

Shaking	is	probably	the	most	interesting	part	here.	When	shake	is	called,	graphics	will
start	drawing	tree	shifted	in	given	direction	by	amount	defined	in	SHAKE_DISTANCE	array.
draw	will	be	stepping	through	SHAKE_DISTANCE	depending	on	SHAKE_TIME,	and	it	will	not
be	shaken	again	for	SHAKE_COOLDOWN	period,	to	avoid	infinite	shaking	while	driving	into	it.

We	also	need	some	adjustments	to	TankPhysics	and	Tank	to	be	able	to	hit	trees.	First,	we
want	to	create	an	empty	on_collision(object)	method	in	GameObject	class,	so	all	game
objects	will	be	able	to	collide.

Then,	TankPhysics	starts	calling	Tank#on_collision	when	collision	is	detected:
class	Tank	<	GameObject

		#	...

		def	on_collision(object)

				return	unless	object

				#	Avoid	recursion

				if	object.class	==	Tank

						#	Inform	AI	about	hit

						object.input.on_collision(object)

				else

						#	Call	only	on	non-tanks	to	avoid	recursion

						object.on_collision(self)

				end

				#	Bullets	should	not	slow	Tanks	down

				if	object.class	!=	Bullet

						@sounds.collide	if	@physics.speed	>	1

				end

		end

		#	...

end

The	final	ingredient	to	our	Tree	is	Health,	which	is	extracted	from	TankHealth	to	reduce
duplication.	TankHealth	now	extends	it:
09-polishing/entities/components/health.rb

	1	class	Health	<	Component

	2			attr_accessor	:health

	3	

	4			def	initialize(object,	object_pool,	health,	explodes)

	5					super(object)

	6					@explodes	=	explodes

	7					@object_pool	=	object_pool

	8					@initial_health	=	@health	=	health

	9					@health_updated	=	true

10			end

11	

12			def	restore

13					@health	=	@initial_health

14					@health_updated	=	true

15			end

16	

17			def	dead?

18					@health	<	1

19			end

20	

21			def	update

22					update_image

23			end

24	

25			def	inflict_damage(amount)

26					if	@health	>	0

27							@health_updated	=	true

28							@health	=	[@health	-	amount.to_i,	0].max

29							after_death	if	dead?

30					end

31			end

32	

33			def	draw(viewport)

34					return	unless	draw?

35					@image	&&	@image.draw(

36							x	-	@image.width	/	2,

37							y	-	object.graphics.height	/	2	-

38							@image.height,	100)

39			end

40	

41			protected

42	

43			def	draw?

44					$debug

45			end

46	

47			def	update_image

48					return	unless	draw?

49					if	@health_updated

50							text	=	@health.to_s

51							font_size	=	18

52							@image	=	Gosu::Image.from_text(

53											$window,	text,

54											Gosu.default_font_name,	font_size)

55							@health_updated	=	false

56					end

57			end

58	

59			def	after_death

60					if	@explodes

61							if	Thread.list.count	<	8

62									Thread.new	do

63											sleep(rand(0.1..0.3))

64											Explosion.new(@object_pool,	x,	y)

65											sleep	0.3

66											object.mark_for_removal

67									end

68							else

69									Explosion.new(@object_pool,	x,	y)

70									object.mark_for_removal

71							end

72					else

73							object.mark_for_removal

74					end

75			end

76	end

Yes,	you	can	make	tree	explode	when	it’s	destroyed.	And	it	causes	cool	chain	reactions
blowing	up	whole	tree	clusters.	But	let’s	not	do	that,	because	we	will	add	something	more
appropriate	for	explosions.

Our	Tree	is	ready	to	fill	the	landscape.	We	will	do	it	in	Map	class,	which	will	now	need	to
know	about	ObjectPool,	because	trees	will	go	there.
class	Map

		#	...

		def	initialize(object_pool)

				load_tiles

				@object_pool	=	object_pool

				object_pool.map	=	self

				@map	=	generate_map

				generate_trees

		end

		#	...

		def	generate_trees

				noises	=	Perlin::Noise.new(2)

				contrast	=	Perlin::Curve.contrast(

						Perlin::Curve::CUBIC,	2)

				trees	=	0

				target_trees	=	rand(300..500)

				while	trees	<	target_trees	do

						x	=	rand(0..MAP_WIDTH	*	TILE_SIZE)

						y	=	rand(0..MAP_HEIGHT	*	TILE_SIZE)

						n	=	noises[x	*	0.001,	y	*	0.001]

						n	=	contrast.call(n)

						if	tile_at(x,	y)	==	@grass	&&	n	>	0.5

								Tree.new(@object_pool,	x,	y,	n	*	2	-	1)

								trees	+=	1

						end

				end

		end

		#	...

end

Perlin	noise	is	used	in	similar	fashion	as	it	was	when	we	generated	map	tiles.	We	allow
creating	trees	only	if	noise	level	is	above	0.5,	and	use	noise	level	as	seed	value	-	n	*	2	-
1	will	be	a	number	between	0	and	1	when	n	is	in	0.5..1	range.	And	we	only	allow
creating	trees	on	grass	tiles.

Now	our	map	looks	a	little	better:

Hiding	among	procedurally	generated	trees

Generating	Random	Objects
Trees	are	great,	but	we	want	more	detail.	Let’s	spice	things	up	with	explosive	boxes	and
barrels.	They	will	be	using	the	same	class	with	single	sprite	sheet,	so	while	the	sprite	will
be	chosen	randomly,	behavior	will	be	the	same.	This	new	class	will	be	called	Box:
09-polishing/entities/box.rb

	1	class	Box	<	GameObject

	2			attr_reader	:x,	:y,	:health,	:graphics,	:angle

	3	

	4			def	initialize(object_pool,	x,	y)

	5					super(object_pool)

	6					@x,	@y	=	x,	y

	7					@graphics	=	BoxGraphics.new(self)

	8					@health	=	Health.new(self,	object_pool,	10,	true)

	9					@angle	=	rand(-15..15)

10			end

11	

12			def	on_collision(object)

13					return	unless	object.physics.speed	>	1.0

14					@x,	@y	=	Utils.point_at_distance(@x,	@y,	object.direction,	2)

15					@box	=	nil

16			end

17	

18			def	box

19					return	@box	if	@box

20					w	=	@graphics.width	/	2

21					h	=	@graphics.height	/	2

22					#	Bounding	box	adjusted	to	trim	shadows

23					@box	=	[x	-	w	+	4,					y	-	h	+	8,

24													x	+	w	,	y	-	h	+	8,

25													x	+	w	,	y	+	h,

26													x	-	w	+	4,					y	+	h]

27					@box	=	Utils.rotate(@angle,	@x,	@y,	*@box)

28			end

29	end

It	will	be	generated	with	slight	random	angle,	to	preserve	realistic	shadows	but	give	an
impression	of	chaotic	placement.	Tanks	will	also	be	able	to	push	boxes	a	little	on	collision,
but	only	when	going	fast	enough.	Health	component	is	the	same	one	that	Tree	has,	but
initialized	with	less	health	and	explosive	flag	is	true,	so	the	box	will	blow	up	after	one	hit
and	deal	extra	damage	to	the	surroundings.

BoxGraphics	is	nothing	fancy,	it	just	loads	random	sprite	upon	initialization:
09-polishing/entities/components/box_graphics.rb

	1	class	BoxGraphics	<	Component

	2			def	initialize(object)

	3					super(object)

	4					load_sprite

	5			end

	6	

	7			def	draw(viewport)

	8					@box.draw_rot(x,	y,	0,	object.angle)

	9					Utils.mark_corners(object.box)	if	$debug

10			end

11	

12			def	height

13					@box.height

14			end

15	

16			def	width

17					@box.width

18			end

19	

20			private

21	

22			def	load_sprite

23					frame	=	boxes.frame_list.sample

24					@box	=	boxes.frame(frame)

25			end

26	

27			def	center_x

28					@center_x	||=	x	-	width	/	2

29			end

30	

31			def	center_y

32					@center_y	||=	y	-	height	/	2

33			end

34	

35			def	boxes

36					@@boxes	||=	Gosu::TexturePacker.load_json($window,

37							Utils.media_path('boxes_barrels.json'))

38			end

39	end

Time	to	generate	boxes	in	our	Map.	It	will	be	similar	to	trees,	but	we	won’t	need	Perlin
noise,	since	there	will	be	way	fewer	boxes	than	trees,	so	we	don’t	need	to	form	patterns.
All	we	need	to	do	is	to	check	if	we’re	not	generating	box	on	water.
class	Map

		#	...

		def	initialize(object_pool)

				#	...

				generate_boxes

		end

		#	...

		def	generate_boxes

				boxes	=	0

				target_boxes	=	rand(10..30)

				while	boxes	<	target_boxes	do

						x	=	rand(0..MAP_WIDTH	*	TILE_SIZE)

						y	=	rand(0..MAP_HEIGHT	*	TILE_SIZE)

						if	tile_at(x,	y)	!=	@water

								Box.new(@object_pool,	x,	y)

								boxes	+=	1

						end

				end

		end

		#	...

end

Now	give	it	a	go.	Beautiful,	isn’t	it?

Boxes	and	barrels	in	the	jungle

Implementing	A	Radar
With	all	the	visual	noise	it	is	getting	increasingly	difficult	to	see	enemy	tanks.	That’s	why
we	will	implement	a	Radar	to	help	ourselves.
09-polishing/entities/radar.rb

	1	class	Radar

	2			UPDATE_FREQUENCY	=	1000

	3			WIDTH	=	150

	4			HEIGHT	=	100

	5			PADDING	=	10

	6			#	Black	with	33%	transparency

	7			BACKGROUND	=	Gosu::Color.new(255	*	0.33,	0,	0,	0)

	8			attr_accessor	:target

	9	

10			def	initialize(object_pool,	target)

11					@object_pool	=	object_pool

12					@target	=	target

13					@last_update	=	0

14			end

15	

16			def	update

17					if	Gosu.milliseconds	-	@last_update	>	UPDATE_FREQUENCY

18							@nearby	=	nil

19					end

20					@nearby	||=	@object_pool.nearby(@target,	2000).select	do	|o|

21							o.class	==	Tank	&&	!o.health.dead?

22					end

23			end

24	

25			def	draw

26					x1,	x2,	y1,	y2	=	radar_coords

27					$window.draw_quad(

28							x1,	y1,	BACKGROUND,

29							x2,	y1,	BACKGROUND,

30							x2,	y2,	BACKGROUND,

31							x1,	y2,	BACKGROUND,

32							200)

33					draw_tank(@target,	Gosu::Color::GREEN)

34					@nearby	&&	@nearby.each	do	|t|

35							draw_tank(t,	Gosu::Color::RED)

36					end

37			end

38	

39			private

40	

41			def	draw_tank(tank,	color)

42					x1,	x2,	y1,	y2	=	radar_coords

43					tx	=	x1	+	WIDTH	/	2	+	(tank.x	-	@target.x)	/	20

44					ty	=	y1	+	HEIGHT	/	2	+		(tank.y	-	@target.y)	/	20

45					if	(x1..x2).include?(tx)	&&	(y1..y2).include?(ty)

46							$window.draw_quad(

47									tx	-	2,	ty	-	2,	color,

48									tx	+	2,	ty	-	2,	color,

49									tx	+	2,	ty	+	2,	color,

50									tx	-	2,	ty	+	2,	color,

51									300)

52					end

53			end

54	

55			def	radar_coords

56					x1	=	$window.width	-	WIDTH	-	PADDING

57					x2	=	$window.width	-	PADDING

58					y1	=	$window.height	-	HEIGHT	-	PADDING

59					y2	=	$window.height	-	PADDING

60					[x1,	x2,	y1,	y2]

61			end

62	end

Radar,	like	Camera,	also	has	a	target.	It	uses	ObjectPool	to	query	nearby	objects	and
filters	out	instances	of	alive	Tank.	Then	it	draws	a	transparent	black	background	and	small
dots	for	each	tank,	green	for	target,	red	for	the	rest.

To	avoid	querying	ObjectPool	too	often,	Radar	updates	itself	only	once	every	second.

It	is	initialized,	updated	and	drawn	in	PlayState,	right	after	Camera:
class	PlayState	<	GameState

		#	...

		def	initialize

				#	...

				@camera.target	=	@tank

				@radar	=	Radar.new(@object_pool,	@tank)

				#	...

		end

		#	...

		def	update

				#	...

				@camera.update

				@radar.update

				#	...

		end

		#	...

		def	draw

				#	...

				@camera.draw_crosshair

				@radar.draw

		end

		#	...

end

Time	to	enjoy	the	results.

Radar	in	action

Dynamic	Sound	Volume	And	Panning
We	have	improved	the	visuals,	but	sound	is	still	terrible.	Like	some	superhero,	you	can
hear	everything	that	happens	in	the	map,	and	it	can	drive	you	insane.	We	will	fix	that	in	a
moment.

The	idea	is	to	make	everything	that	happens	further	away	from	camera	target	sound	less
loud,	until	the	sound	fades	away	completely.	To	make	player’s	experience	more
immersive,	we	will	also	take	advantage	of	stereo	speakers	-	sounds	should	appear	to	be
coming	from	the	right	direction.

Unfortunately,	Gosu::Sample#play_pan	does	not	work	as	one	would	expect	it	to.	If	you
play	the	sample	with	just	a	little	panning,	it	completely	cuts	off	the	opposite	channel,
meaning	that	if	you	play	a	sample	with	pan	level	of	0.1	(10%	to	the	right),	you	would
expect	to	hear	something	in	left	speaker	as	well.	The	actual	behavior	is	that	sound	plays
through	the	right	speaker	pretty	loudly,	and	if	you	increase	pan	level	to,	say,	0.7,	you	will
hear	the	sound	through	right	speaker	again,	but	it	will	be	way	more	silent.

To	implement	realistic	stereo	sounds	that	come	through	both	speakers	when	panned,	we
need	to	play	two	samples	with	opposite	pan	level.	After	some	experimenting,	I	discovered

http://www.libgosu.org/rdoc/Gosu/Sample.html#play_pan-instance_method

that	fiddling	with	pan	level	makes	things	sound	weird,	while	playing	with	volume
produces	softer,	more	subtle	effect.	This	is	what	I	ended	up	having:
09-polishing/misc/stereo_sample.rb

	1	class	StereoSample

	2			@@all_instances	=	[]

	3	

	4			def	self.register_instances(instances)

	5					@@all_instances	<<	instances

	6			end

	7	

	8			def	self.cleanup

	9					@@all_instances.each	do	|instances|

10							instances.each	do	|key,	instance|

11									unless	instance.playing?	||	instance.paused?

12											instances.delete(key)

13									end

14							end

15					end

16			end

17	

18			def	initialize(window,	sound_l,	sound_r	=	sound_l)

19					@sound_l	=	Gosu::Sample.new(window,	sound_l)

20					#	Use	same	sample	in	mono	->	stereo

21					if	sound_l	==	sound_r

22							@sound_r	=	@sound_l

23					else

24							@sound_r	=	Gosu::Sample.new(window,	sound_r)

25					end

26					@instances	=	{}

27					self.class.register_instances(@instances)

28			end

29	

30			def	paused?(id	=	:default)

31					i	=	@instances["#{id}_l"]

32					i	&&	i.paused?

33			end

34	

35			def	playing?(id	=	:default)

36					i	=	@instances["#{id}_l"]

37					i	&&	i.playing?

38			end

39	

40			def	stopped?(id	=	:default)

41					@instances["#{id}_l"].nil?

42			end

43	

44			def	play(id	=	:default,	pan	=	0,

45												volume	=	1,	speed	=	1,	looping	=	false)

46					@instances["#{id}_l"]	=	@sound_l.play_pan(

47							-0.2,	0,	speed,	looping)

48					@instances["#{id}_r"]	=	@sound_r.play_pan(

49							0.2,	0,	speed,	looping)

50					volume_and_pan(id,	volume,	pan)

51			end

52	

53			def	pause(id	=	:default)

54					@instances["#{id}_l"].pause

55					@instances["#{id}_r"].pause

56			end

57	

58			def	resume(id	=	:default)

59					@instances["#{id}_l"].resume

60					@instances["#{id}_r"].resume

61			end

62	

63			def	stop

64					@instances.delete("#{id}_l").stop

65					@instances.delete("#{id}_r").stop

66			end

67	

68			def	volume_and_pan(id,	volume,	pan)

69					if	pan	>	0

70							pan_l	=	1	-	pan	*	2

71							pan_r	=	1

72					else

73							pan_l	=	1

74							pan_r	=	1	+	pan	*	2

75					end

76					pan_l	*=	volume

77					pan_r	*=	volume

78					@instances["#{id}_l"].volume	=	[pan_l,	0.05].max

79					@instances["#{id}_r"].volume	=	[pan_r,	0.05].max

80			end

81	end

StereoSample	manages	stereo	playback	of	sample	instances,	and	to	avoid	memory	leaks,
it	has	cleanup	that	scans	all	sample	instances	and	removes	samples	that	have	finished
playing.	For	this	removal	to	work,	we	need	to	place	a	call	to	StereoSample.cleanup
inside	PlayState#update	method.

To	determine	correct	pan	and	volume,	we	will	create	some	helper	methods	in	Utils
module:
module	Utils

		HEARING_DISTANCE	=	1000.0

		#	...

		def	self.volume(object,	camera)

				return	1	if	object	==	camera.target

				distance	=	Utils.distance_between(

						camera.target.x,	camera.target.y,

						object.x,	object.y)

				distance	=	[(HEARING_DISTANCE	-	distance),	0].max

				distance	/	HEARING_DISTANCE

		end

		def	self.pan(object,	camera)

				return	0	if	object	==	camera.target

				pan	=	object.x	-	camera.target.x

				sig	=	pan	>	0	?	1	:	-1

				pan	=	(pan	%	HEARING_DISTANCE)	/	HEARING_DISTANCE

				if	sig	>	0

						pan

				else

						-1	+	pan

				end

		end

		def	self.volume_and_pan(object,	camera)

				[volume(object,	camera),	pan(object,	camera)]

		end

end

Apparently,	having	access	to	Camera	is	necessary	for	calculating	sound	volume	and	pan,
so	we	will	add	attr_accessor	:camera	to	ObjectPool	class	and	assign	it	in	PlayState
constructor.	You	may	wonder	why	we	didn’t	use	Camera#target	right	away.	The	answer	is
that	camera	can	change	it’s	target.	E.g.	when	your	tank	dies,	new	instance	will	be
generated	when	you	respawn,	so	if	all	other	objects	would	still	have	the	reference	to	your
old	tank,	guess	what	you	would	hear?

Remastered	TankSounds	component	is	probably	the	most	elaborate	example	of	how
StereoSample	should	be	used:
09-polishing/entities/components/tank_sounds.rb

	1	class	TankSounds	<	Component

	2			def	initialize(object,	object_pool)

	3					super(object)

	4					@object_pool	=	object_pool

	5			end

	6	

	7			def	update

	8					id	=	object.object_id

	9					if	object.physics.moving?

10							move_volume	=	Utils.volume(

11									object,	@object_pool.camera)

12							pan	=	Utils.pan(object,	@object_pool.camera)

13							if	driving_sound.paused?(id)

14									driving_sound.resume(id)

15							elsif	driving_sound.stopped?(id)

16									driving_sound.play(id,	pan,	0.5,	1,	true)

17							end

18							driving_sound.volume_and_pan(id,	move_volume	*	0.5,	pan)

19					else

20							if	driving_sound.playing?(id)

21									driving_sound.pause(id)

22							end

23					end

24			end

25	

26			def	collide

27					vol,	pan	=	Utils.volume_and_pan(

28							object,	@object_pool.camera)

29					crash_sound.play(self.object_id,	pan,	vol,	1,	false)

30			end

31	

32			private

33	

34			def	driving_sound

35					@@driving_sound	||=	StereoSample.new(

36							$window,	Utils.media_path('tank_driving.mp3'))

37			end

38	

39			def	crash_sound

40					@@crash_sound	||=	StereoSample.new(

41							$window,	Utils.media_path('metal_interaction2.wav'))

42			end

43	end

And	this	is	how	static	ExplosionSounds	looks	like:
09-polishing/entities/components/explosion_sounds.rb

	1	class	ExplosionSounds

	2			class	<<	self

	3					def	play(object,	camera)

	4							volume,	pan	=	Utils.volume_and_pan(object,	camera)

	5							sound.play(object.object_id,	pan,	volume)

	6					end

	7	

	8					private

	9	

10					def	sound

11							@@sound	||=	StereoSample.new(

12									$window,	Utils.media_path('explosion.mp3'))

13					end

14			end

15	end

After	wiring	everything	so	that	sound	components	have	access	to	ObjectPool,	the	rest	is
straightforward.

Giving	Enemies	Identity
Wouldn’t	it	be	great	if	you	could	tell	yourself	apart	from	the	enemies.	Moreover,	enemies
could	have	names,	so	you	would	know	which	one	is	more	aggressive	or	have,	you	know,
personal	issues	with	someone.

To	do	that	we	need	to	ask	the	player	to	input	a	nickname,	and	choose	some	funny	names
for	each	enemy	AI.	Here	is	a	nice	list	we	will	grab:
http://www.paulandstorm.com/wha/clown-names/

We	first	compile	everything	into	a	text	filed	called	names.txt,	that	looks	like	this:
media/names.txt

Strippy

Boffo

Buffo

Drips

...

Now	we	need	a	class	to	parse	the	list	and	give	out	random	names	from	it.	We	also	want	to
limit	name	length	to	something	that	displays	nicely.
09-polishing/misc/names.rb

	1	class	Names

	2			def	initialize(file)

	3					@names	=	File.read(file).split("\n").reject	do	|n|

	4							n.size	>	12

	5					end

	6			end

	7	

	8			def	random

	9					name	=	@names.sample

10					@names.delete(name)

11					name

12			end

13	end

Then	we	need	to	place	those	names	somewhere.	We	could	assign	them	to	tanks,	but	think
ahead	-	if	our	player	and	AI	enemies	will	respawn,	we	should	give	names	to	inputs,
because	Tank	is	replaceable,	driver	is	not.	Well,	it	is,	but	let’s	not	get	too	deep	into	it.

For	now	we	just	add	name	parameter	to	PlayerInput	and	AiInput	initializers,	save	it	in
@name	instance	variable,	and	then	add	draw(viewport)	method	to	make	it	render	below
the	tank:
#	09-polishing/entities/components/player_input.rb

class	PlayerInput	<	Component

		#	Dark	green

		NAME_COLOR	=	Gosu::Color.argb(0xee084408)

		def	initialize(name,	camera)

				super(nil)

				@name	=	name

				@camera	=	camera

		end

		#	...

		def	draw(viewport)

				@name_image	||=	Gosu::Image.from_text(

						$window,	@name,	Gosu.default_font_name,	20)

				@name_image.draw(

						x	-	@name_image.width	/	2	-	1,

						y	+	object.graphics.height	/	2,	100,

						1,	1,	Gosu::Color::WHITE)

				@name_image.draw(

						x	-	@name_image.width	/	2,

						y	+	object.graphics.height	/	2,	100,

						1,	1,	NAME_COLOR)

		end

		#	...

end

#	09-polishing/entities/components/ai_input.rb

class	AiInput	<	Component

		#	Dark	red

		NAME_COLOR	=	Gosu::Color.argb(0xeeb10000)

		def	initialize(name,	object_pool)

				super(nil)

				@object_pool	=	object_pool

				@name	=	name

				@last_update	=	Gosu.milliseconds

		end

		#	...

		def	draw(viewport)

				@motion.draw(viewport)

				@gun.draw(viewport)

				@name_image	||=	Gosu::Image.from_text(

						$window,	@name,	Gosu.default_font_name,	20)

				@name_image.draw(

						x	-	@name_image.width	/	2	-	1,

						y	+	object.graphics.height	/	2,	100,

						1,	1,	Gosu::Color::WHITE)

				@name_image.draw(

						x	-	@name_image.width	/	2,

						y	+	object.graphics.height	/	2,	100,

						1,	1,	NAME_COLOR)

		end

		#	...

end

We	can	see	that	generic	Input	class	can	be	easily	extracted,	but	let’s	follow	the	Rule	of
three	and	not	do	premature	refactoring.

Instead,	run	the	game	and	enjoy	dying	from	a	bunch	of	mad	clowns.

http://en.wikipedia.org/wiki/Rule_of_three_(computer_programming)

Identity	makes	a	difference

Respawning	Tanks	And	Removing	Dead	Ones
To	implement	respawning	we	could	use	Map#find_spawn_point	every	time	we	wanted	to
respawn,	but	it	may	get	slow,	because	it	brute	forces	the	map	for	random	spots	that	are	not
water.	We	don’t	want	our	game	to	start	freezing	when	tanks	are	respawning,	so	we	will
change	how	tank	spawning	works.	Instead	of	looking	for	a	new	respawn	point	all	the	time,
we	will	pre-generate	several	of	them	for	reuse.
class	Map

		#	...

		def	spawn_points(max)

				@spawn_points	=	(0..max).map	do

						find_spawn_point

				end

				@spawn_points_pointer	=	0

		end

		def	spawn_point

				@spawn_points[(@spawn_points_pointer	+=	1)	%	@spawn_points.size]

		end

		#	...

end

Here	we	have	spawn_points	method	that	prepares	a	number	of	spawn	points	and	stores
them	in	@spawn_points	instance	variable,	and	spawn_point	method	that	cycles	through	all

@spawn_points	and	returns	them	one	by	one.	find_spawn_point	can	now	become
private.

We	will	use	Map#spawn_points	when	initializing	PlayState	and	pass	ObjectPool	to
PlayerInput	(AiInput	already	has	it),	so	that	we	will	be	able	to	call
@object_pool.map.spawn_point	when	needed.
class	PlayState	<	GameState

		#	...

		def	initialize

				#	...

				@map	=	Map.new(@object_pool)

				@map.spawn_points(15)

				@tank	=	Tank.new(@object_pool,

						PlayerInput.new('Player',	@camera,	@object_pool))

				#	...

				10.times	do	|i|

						Tank.new(@object_pool,	AiInput.new(

								@names.random,	@object_pool))

				end

		end

		#	...

end

When	tank	dies,	we	want	it	to	stay	dead	for	5	seconds	and	then	respawn	in	one	of	our
predefined	spawn	points.	We	will	achieve	that	by	adding	respawn	method	and	calling	it	in
PlayerInput#update	and	AiInput#update	if	tank	is	dead.
#	09-polishing/entities/components/player_input.rb

class	PlayerInput	<	Component

		#	...

		def	update

				return	respawn	if	object.health.dead?

				#	...

		end

		#	...

		private

		def	respawn

				if	object.health.should_respawn?

						object.health.restore

						object.x,	object.y	=	@object_pool.map.spawn_point

						@camera.x,	@camera.y	=	x,	y

						PlayerSounds.respawn(object,	@camera)

				end

		end

		#	...

end

#	09-polishing/entities/components/ai_input.rb

class	AiInput	<	Component

		#	...

		def	update

				return	respawn	if	object.health.dead?

				#	...

		end

		#	...

		private

		def	respawn

				if	object.health.should_respawn?

						object.health.restore

						object.x,	object.y	=	@object_pool.map.spawn_point

						PlayerSounds.respawn(object,	@object_pool.camera)

				end

		end

end

We	need	some	changes	in	TankHealth	class	too:
class	TankHealth	<	Health

		RESPAWN_DELAY	=	5000

		#	...

		def	should_respawn?

				Gosu.milliseconds	-	@death_time	>	RESPAWN_DELAY

		end

		#	...

		def	after_death

				@death_time	=	Gosu.milliseconds

				#	...

		end

end

class	Health	<	Component

		#	...

		def	restore

				@health	=	@initial_health

				@health_updated	=	true

		end

		#	...

end

It	shouldn’t	be	hard	to	put	everything	together	and	enjoy	the	never	ending	gameplay.

You	may	have	noticed	that	we	also	added	a	sound	that	will	be	played	when	player
respawns.	A	nice	“whoosh”.
09-polishing/entities/components/player_sounds.rb

	1	class	PlayerSounds

	2			class	<<	self

	3					def	respawn(object,	camera)

	4							volume,	pan	=	Utils.volume_and_pan(object,	camera)

	5							respawn_sound.play(object.object_id,	pan,	volume	*	0.5)

	6					end

	7	

	8					private

	9	

10					def	respawn_sound

11							@@respawn	||=	StereoSample.new(

12									$window,	Utils.media_path('respawn.wav'))

13					end

14			end

15	end

Displaying	Explosion	Damage	Trails
When	something	blows	up,	you	expect	it	to	leave	a	trail,	right?	In	our	case	explosions
disappear	as	if	nothing	has	ever	happened,	and	we	just	can’t	leave	it	like	this.	Let’s
introduce	Damage	game	object	that	will	be	responsible	for	displaying	explosion	residue	on
sand	and	grass:
09-polishing/entities/damage.rb

	1	class	Damage	<	GameObject

	2			MAX_INSTANCES	=	100

	3			attr_accessor	:x,	:y

	4			@@instances	=	[]

	5	

	6			def	initialize(object_pool,	x,	y)

	7					super(object_pool)

	8					DamageGraphics.new(self)

	9					@x,	@y	=	x,	y

10					track(self)

11			end

12	

13			def	effect?

14					true

15			end

16	

17			private

18	

19			def	track(instance)

20					if	@@instances.size	<	MAX_INSTANCES

21							@@instances	<<	instance

22					else

23							out	=	@@instances.shift

24							out.mark_for_removal

25							@@instances	<<	instance

26					end

27			end

28	end

Damage	tracks	it’s	instances	and	starts	removing	old	ones	when	MAX_INSTANCES	are
reached.	Without	this	optimization,	the	game	would	get	increasingly	slower	every	time
somebody	shoots.

We	have	also	added	a	new	game	object	trait	-	effect?	returns	true	on	Damage	and
Explosion,	false	on	Tank,	Tree,	Box	and	Bullet.	That	way	we	can	filter	out	effects	when
querying	ObjectPool#nearby	for	collisions	or	enemies.
09-polishing/entities/object_pool.rb

	1	class	ObjectPool

	2			attr_accessor	:objects,	:map,	:camera

	3	

	4			def	initialize

	5					@objects	=	[]

	6			end

	7	

	8			def	nearby(object,	max_distance)

	9					non_effects.select	do	|obj|

10							obj	!=	object	&&

11									(obj.x	-	object.x).abs	<	max_distance	&&

12									(obj.y	-	object.y).abs	<	max_distance	&&

13									Utils.distance_between(

14											obj.x,	obj.y,	object.x,	object.y)	<	max_distance

15					end

16			end

17	

18			def	non_effects

19					@objects.reject(&:effect?)

20			end

21	end

When	it	comes	to	rendering	graphics,	to	make	an	impression	of	randomness,	we	will	cycle
through	several	different	damage	images	and	draw	them	rotated:
09-polishing/entities/components/damage_graphics.rb

	1	class	DamageGraphics	<	Component

	2			def	initialize(object_pool)

	3					super

	4					@image	=	images.sample

	5					@angle	=	rand(0..360)

	6			end

	7	

	8			def	draw(viewport)

	9					@image.draw_rot(x,	y,	0,	@angle)

10			end

11	

12			private

13	

14			def	images

15					@@images	||=	(1..4).map	do	|i|

16							Gosu::Image.new($window,

17									Utils.media_path("damage#{i}.png"),	false)

18					end

19			end

20	end

Explosion	will	be	responsible	for	creating	Damage	instances	on	solid	ground,	just	before
explosion	animation	starts:
class	Explosion	<	GameObject

		def	initialize(object_pool,	x,	y)

				#	...

				if	@object_pool.map.can_move_to?(x,	y)

						Damage.new(@object_pool,	@x,	@y)

				end

				#	...

		end

		#	...

end

And	this	is	how	the	result	looks	like:

Damaged	battlefield

Debugging	Bullet	Physics
When	playing	the	game,	there	is	a	feeling	that	bullets	start	out	slow	when	fired	and	gain
speed	as	time	goes.	Let’s	review	BulletPhysics#update	and	think	why	this	is	happening:
class	BulletPhysics	<	Component

		#	...

		def	update

				fly_speed	=	Utils.adjust_speed(object.speed)

				fly_distance	=	(Gosu.milliseconds	-	object.fired_at)	*

						0.001	*	fly_speed	/	2

				object.x,	object.y	=	point_at_distance(fly_distance)

				check_hit

				object.explode	if	arrived?

		end

		#	...

end

Flaw	here	is	very	obvious.	Gosu.milliseconds	-	object.fired_at	will	be	increasingly
bigger	as	time	goes,	thus	increasing	fly_distance.	The	fix	is	straightforward	-	we	want	to
calculate	fly_distance	using	time	passed	between	calls	to	BulletPhysics#update,	like
this:
class	BulletPhysics	<	Component

		#	...

		def	update

				fly_speed	=	Utils.adjust_speed(object.speed)

				now	=	Gosu.milliseconds

				@last_update	||=	object.fired_at

				fly_distance	=	(now	-	@last_update)	*	0.001	*	fly_speed

				object.x,	object.y	=	point_at_distance(fly_distance)

				@last_update	=	now

				check_hit

				object.explode	if	arrived?

		end

		#	...

end

But	if	you	would	run	the	game	now,	bullets	would	fly	so	slow,	that	you	would	feel	like
Neo	in	The	Matrix.	To	fix	that,	we	will	have	to	tell	our	tank	to	fire	bullets	a	little	faster.
class	Tank	<	GameObject

		#	...

		def	shoot(target_x,	target_y)

				if	can_shoot?

						@last_shot	=	Gosu.milliseconds

						Bullet.new(object_pool,	@x,	@y,	target_x,	target_y)

								.fire(self,	1500)	#	Old	value	was	100

				end

		end

		#	...

end

Now	bullets	fly	like	they	are	supposed	to.	I	can	only	wonder	why	haven’t	I	noticed	this
bug	in	the	very	beginning.

Making	Camera	Look	Ahead
One	of	the	most	annoying	things	with	current	state	of	prototype	is	that	Camera	is	dragging
behind	instead	of	showing	what	is	in	the	direction	you	are	moving.	To	fix	the	issue,	we
need	to	change	the	way	how	Camera	moves	around.	First	we	need	to	know	where	Camera
wants	to	be.	We	will	use	Utils.point_at_distance	to	choose	a	spot	ahead	of	the	Tank.
Then,	Camera#update	needs	to	be	rewritten,	so	Camera	can	dynamically	adjust	to	it’s
desired	spot.	Here	are	the	changes:
class	Camera

		#	...

		def	desired_spot

				if	@target.physics.moving?

						Utils.point_at_distance(

								@target.x,	@target.y,

								@target.direction,

								@target.physics.speed.ceil	*	25)

				else

						[@target.x,	@target.y]

				end

		end

		#	...

		def	update

				des_x,	des_y	=	desired_spot

				shift	=	Utils.adjust_speed(

						@target.physics.speed).floor	+	1

				if	@x	<	des_x

						if	des_x	-	@x	<	shift

								@x	=	des_x

						else

								@x	+=	shift

						end

				elsif	@x	>	des_x

						if	@x	-	des_x	<	shift

								@x	=	des_x

						else

								@x	-=	shift

						end

				end

				if	@y	<	des_y

						if	des_y	-	@y	<	shift

								@y	=	des_y

						else

								@y	+=	shift

						end

				elsif	@y	>	des_y

						if	@y	-	des_y	<	shift

								@y	=	des_y

						else

								@y	-=	shift

						end

				end

				#	...

		end

		#	...

end

It	wouldn’t	win	code	style	awards,	but	it	does	the	job.	Game	is	now	much	more	playable.

Reviewing	The	Changes
Let’s	get	back	to	our	list	of	improvements	to	see	what	we	have	done:

1.	 Enemy	tanks	do	not	respawn.
2.	 Random	maps	are	boring	and	lack	detail,	could	use	more	tiles	or	random

environment	objects.
3.	 Bullets	are	hard	to	see	on	green	surface.
4.	 Hard	to	tell	where	enemies	are	coming	from,	radar	would	help.
5.	 Sounds	play	at	full	volume	even	when	something	happens	across	The	whole	map.
6.	 My	tank	should	respawn	after	it’s	dead.
7.	 Map	boundaries	are	visible	when	you	come	to	the	edge.
8.	 Both	my	tank	and	enemies	don’t	have	any	identity.	Sometimes	hard	to	distinguish

who	is	who.
9.	 Explosions	don’t	leave	a	trace.
10.	 Dead	tanks	keep	piling	up	and	cluttering	the	map.
11.	 Camera	should	be	scouting	ahead	of	you	when	you	move,	not	dragging	behind.
12.	 Bullets	seem	to	accelerate.

Not	bad	for	a	start.	This	is	what	we	still	need	to	cover	in	next	couple	of	chapters:

1.	 Enemy	tanks	shoot	at	my	current	location,	not	at	where	I	will	be	when	bullet	hits	me.
2.	 Enemy	tanks	don’t	avoid	collisions.
3.	 Enemy	tank	movement	patterns	need	polishing	and	improvement.
4.	 No	idea	who	has	most	kills.	HUD	with	score	and	some	state	that	displays	score

details	would
5.	 Would	be	great	to	have	random	powerups	like	health,	extra	damage.
6.	 Motion	and	firing	mechanics	seem	clumsy.	help.
7.	 Tanks	could	leave	trails.

I	will	add	“Optimize	ObjectPool	performance”,	because	game	starts	slowing	down	when
too	many	objects	are	added	to	the	pool,	and	profiling	shows	that	Array#select,	which	is
the	heart	of	ObjectPool#nearby,	is	the	main	cause.	Speed	is	one	of	most	important
features	of	any	game,	so	let’s	not	hesitate	to	improve	it.

Dealing	With	Thousands	Of	Game	Objects

Gosu	is	blazing	fast	when	it	comes	to	drawing,	but	there	are	more	things	going	on.
Namely,	we	use	ObjectPool#nearby	quite	often	to	loop	through	thousands	of	objects	60
times	per	second	to	measure	distances	among	them.	This	slows	everything	down	when
object	pool	grows.

To	demonstrate	the	effect,	we	will	generate	1500	trees,	30	tanks,	~100	boxes	and	leave
1000	damage	trails	from	explosions.	It	was	enough	to	drop	FPS	below	30:

Running	slow	with	thousands	of	game	objects

Spatial	Partitioning
There	is	a	solution	for	this	particular	problem	is	“Spatial	Partitioning”,	and	the	essence	of
it	is	that	you	have	to	use	a	tree-like	data	structure	that	divides	space	into	regions,	places
objects	there	and	lets	you	query	itself	in	logarithmic	time,	omitting	objects	that	fall	out	of
query	region.	Spatial	Partitioning	is	explained	well	in	Game	Programming	Patterns.

Probably	the	most	appropriate	data	structure	for	our	2D	game	is	quadtree.	To	quote
Wikipedia,	“quadtrees	are	most	often	used	to	partition	a	two-dimensional	space	by
recursively	subdividing	it	into	four	quadrants	or	regions.”	Here	is	how	it	looks	like:

http://en.wikipedia.org/wiki/Logarithmic_time#Logarithmic_time
http://gameprogrammingpatterns.com/spatial-partition.html
http://en.wikipedia.org/wiki/Quadtree

Visual	representation	of	quadtree

Implementing	A	Quadtree
There	are	some	implementations	of	quadtree	available	for	Ruby	-	rquad,	rubyquadtree	and
rubyquad,	but	it	seems	easy	to	implement,	so	we	will	build	one	tailored	(read:	closely
coupled)	to	our	game	using	the	pseudo	code	from	Wikipedia.

Axis	Aligned	Bounding	Box

One	of	prerequisites	of	quadtree	is	Axis	aligned	bounding	box,	sometimes	referred	to	as
“AABB”.	It	is	simply	a	box	that	surrounds	the	shape	but	has	edges	that	are	in	parallel	with
the	axes	of	underlying	coordinate	system.	The	advantage	of	this	box	is	that	it	gives	a
rough	estimate	where	the	shape	is	and	is	very	efficient	when	it	comes	to	querying	if	a
point	is	inside	or	outside	it.

https://github.com/cantino/rquad
https://github.com/danielgrigg/rubyquadtree
https://github.com/bhelx/rubyquad
http://en.wikipedia.org/wiki/Minimum_bounding_box#Axis-aligned_minimum_bounding_box

Axis	aligned	bounding	box	with	center	point	and	half	dimension

To	define	axis	aligned	bounding	box,	we	need	it’s	center	point	and	half	dimension	vector,
which	points	from	center	point	to	one	of	the	corners	of	the	box,	and	two	methods,	one	that
tells	if	AABB	contains	a	point,	and	one	that	tells	if	AABB	intersects	with	another	AABB.
This	is	how	our	implementation	looks	like:
10-partitioning/misc/axis_aligned_bounding_box.rb

	1	class	AxisAlignedBoundingBox

	2			attr_reader	:center,	:half_dimension

	3			def	initialize(center,	half_dimension)

	4					@center	=	center

	5					@half_dimension	=	half_dimension

	6					@dhx	=	(@half_dimension[0]	-	@center[0]).abs

	7					@dhy	=	(@half_dimension[1]	-	@center[1]).abs

	8			end

	9	

10			def	contains?(point)

11					return	false	unless	(@center[0]	+	@dhx)	>=	point[0]

12					return	false	unless	(@center[0]	-	@dhx)	<=	point[0]

13					return	false	unless	(@center[1]	+	@dhy)	>=	point[1]

14					return	false	unless	(@center[1]	-	@dhy)	<=	point[1]

15					true

16			end

17	

18			def	intersects?(other)

19					ocx,	ocy	=	other.center

20					ohx,	ohy	=	other.half_dimension

21					odhx	=	(ohx	-	ocx).abs

22					return	false	unless	(@center[0]	+	@dhx)	>=	(ocx	-	odhx)

23					return	false	unless	(@center[0]	-	@dhx)	<=	(ocx	+	odhx)

24					odhy	=	(ohy	-	ocy).abs

25					return	false	unless	(@center[1]	+	@dhy)	>=	(ocy	-	odhy)

26					return	false	unless	(@center[1]	-	@dhy)	<=	(ocy	+	odhy)

27					true

28			end

29	

30			def	to_s

31					"c:	#{@center},	h:	#{@half_dimension}"

32			end

33	end

If	you	dig	in	10-partitioning/specs,	you	will	find	tests	for	this	implementation	too.

The	math	used	in	AxisAlignedBoundingBox#contains?	and
AxisAlignedBoundingBox#intersects?	is	fairly	simple	and	hopefully	very	fast,	because
these	methods	will	be	called	billions	of	times	throughout	the	game.

QuadTree	For	Game	Objects

To	implement	the	glorious	QuadTree	itself,	we	need	to	initialize	it	with	boundary,	that	is
defined	by	an	instance	of	AxisAlignedBoundingBox	and	provide	methods	for	inserting,
removing	and	querying	the	tree.	Private	QuadTree#subdivide	method	will	be	called	when
we	try	to	insert	an	object	into	a	tree	that	has	more	objects	than	it’s	NODE_CAPACITY.
10-partitioning/misc/quad_tree.rb

	1	class	QuadTree

	2			NODE_CAPACITY	=	12

	3			attr_accessor	:ne,	:nw,	:se,	:sw,	:objects

	4	

	5			def	initialize(boundary)

	6					@boundary	=	boundary

	7					@objects	=	[]

	8			end

	9	

10			def	insert(game_object)

11					return	false	unless	@boundary.contains?(

12							game_object.location)

13	

14					if	@objects.size	<	NODE_CAPACITY

15							@objects	<<	game_object

16							return	true

17					end

18	

19					subdivide	unless	@nw

20	

21					return	true	if	@nw.insert(game_object)

22					return	true	if	@ne.insert(game_object)

23					return	true	if	@sw.insert(game_object)

24					return	true	if	@se.insert(game_object)

25	

26					#	should	never	happen

27					raise	"Failed	to	insert	#{game_object}"

28			end

29	

30			def	remove(game_object)

31					return	false	unless	@boundary.contains?(

32							game_object.location)

33					if	@objects.delete(game_object)

34							return	true

35					end

36					return	false	unless	@nw

37					return	true	if	@nw.remove(game_object)

38					return	true	if	@ne.remove(game_object)

39					return	true	if	@sw.remove(game_object)

40					return	true	if	@se.remove(game_object)

41					false

42			end

43	

44			def	query_range(range)

45					result	=	[]

46					unless	@boundary.intersects?(range)

47							return	result

48					end

49	

50					@objects.each	do	|o|

51							if	range.contains?(o.location)

52									result	<<	o

53							end

54					end

55	

56					#	Not	subdivided

57					return	result	unless	@ne

58	

59					result	+=	@nw.query_range(range)

60					result	+=	@ne.query_range(range)

61					result	+=	@sw.query_range(range)

62					result	+=	@se.query_range(range)

63	

64					result

65			end

66	

67			private

68	

69			def	subdivide

70					cx,	cy	=	@boundary.center

71					hx,	hy	=	@boundary.half_dimension

72					hhx	=	(cx	-	hx).abs	/	2.0

73					hhy	=	(cy	-	hy).abs	/	2.0

74					@nw	=	QuadTree.new(

75							AxisAlignedBoundingBox.new(

76									[cx	-	hhx,	cy	-	hhy],

77									[cx,	cy]))

78					@ne	=	QuadTree.new(

79							AxisAlignedBoundingBox.new(

80									[cx	+	hhx,	cy	-	hhy],

81									[cx,	cy]))

82					@sw	=	QuadTree.new(

83							AxisAlignedBoundingBox.new(

84									[cx	-	hhx,	cy	+	hhy],

85									[cx,	cy]))

86					@se	=	QuadTree.new(

87							AxisAlignedBoundingBox.new(

88									[cx	+	hhx,	cy	+	hhy],

89									[cx,	cy]))

90			end

91	end

This	is	a	vanilla	quadtree	that	stores	instances	of	GameObject	and	uses
GameObject#location	for	indexing	objects	in	space.	It	also	has	specs	that	you	can	find	in
code	samples.

You	can	experiment	with	QuadTree#NODE_CAPACITY,	but	I	found	that	values	between	8
and	16	works	best,	so	I	settled	with	12.

Integrating	ObjectPool	With	QuadTree
We	have	implemented	a	QuadTree,	but	it	is	not	yet	incorporated	into	our	game.	To	do	that,
we	will	hook	it	into	ObjectPool	and	try	to	keep	the	old	interface	intact,	so	that
ObjectPool#nearby	will	still	work	as	usual,	but	will	be	able	to	cope	with	way	more
objects	than	before.
10-partitioning/entities/object_pool.rb

	1	class	ObjectPool

	2			attr_accessor	:map,	:camera,	:objects

	3	

	4			def	size

	5					@objects.size

	6			end

	7	

	8			def	initialize(box)

	9					@tree	=	QuadTree.new(box)

10					@objects	=	[]

11			end

12	

13			def	add(object)

14					@objects	<<	object

15					@tree.insert(object)

16			end

17	

18			def	tree_remove(object)

19					@tree.remove(object)

20			end

21	

22			def	tree_insert(object)

23					@tree.insert(object)

24			end

25	

26			def	update_all

27					@objects.map(&:update)

28					@objects.reject!	do	|o|

29							if	o.removable?

30									@tree.remove(o)

31									true

32							end

33					end

34			end

35	

36			def	nearby(object,	max_distance)

37					cx,	cy	=	object.location

38					hx,	hy	=	cx	+	max_distance,	cy	+	max_distance

39					#	Fast,	rough	results

40					results	=	@tree.query_range(

41							AxisAlignedBoundingBox.new([cx,	cy],	[hx,	hy]))

42					#	Sift	through	to	select	fine-grained	results

43					results.select	do	|o|

44							o	!=	object	&&

45									Utils.distance_between(

46											o.x,	o.y,	object.x,	object.y)	<=	max_distance

47					end

48			end

49	

50			def	query_range(box)

51					@tree.query_range(box)

52			end

53	end

An	old	fashioned	array	of	all	objects	is	still	used,	because	we	still	need	to	loop	through
everything	and	invoke	GameObject#update.	ObjectPool#query_range	was	introduced	to
quickly	grab	objects	that	have	to	be	rendered	on	screen,	and	ObjectPool#nearby	now
queries	tree	and	measures	distances	only	on	rough	result	set.

This	is	how	we	will	render	things	from	now	on:
class	PlayState	<	GameState

		#	...

		def	draw

				cam_x	=	@camera.x

				cam_y	=	@camera.y

				off_x	=		$window.width	/	2	-	cam_x

				off_y	=		$window.height	/	2	-	cam_y

				viewport	=	@camera.viewport

				x1,	x2,	y1,	y2	=	viewport

				box	=	AxisAlignedBoundingBox.new(

						[x1	+	(x2	-	x1)	/	2,	y1	+	(y2	-	y1)	/	2],

						[x1	-	Map::TILE_SIZE,	y1	-	Map::TILE_SIZE])

				$window.translate(off_x,	off_y)	do

						zoom	=	@camera.zoom

						$window.scale(zoom,	zoom,	cam_x,	cam_y)	do

								@map.draw(viewport)

								@object_pool.query_range(box).map	do	|o|

										o.draw(viewport)

								end

						end

				end

				@camera.draw_crosshair

				@radar.draw

		end

		#	...

end

Moving	Objects	In	QuadTree
There	is	one	more	errand	we	now	have	to	take	care	of.	Everything	works	fine	when	things
are	static,	but	when	tanks	and	bullets	move,	we	need	to	update	them	in	our	QuadTree.
That’s	why	ObjectPool	has	tree_remove	and	tree_insert,	which	are	called	from
GameObject#move.	From	now	on,	the	only	way	to	change	object’s	location	will	be	by	using
GameObject#move:
class	GameObject

		attr_reader	:x,	:y,	:location,	:components

		def	initialize(object_pool,	x,	y)

				@x,	@y	=	x,	y

				@location	=	[x,	y]

				@components	=	[]

				@object_pool	=	object_pool

				@object_pool.add(self)

		end

		def	move(new_x,	new_y)

				return	if	new_x	==	@x	&&	new_y	==	@y

				@object_pool.tree_remove(self)

				@x	=	new_x

				@y	=	new_y

				@location	=	[new_x,	new_y]

				@object_pool.tree_insert(self)

		end

		#	...

end

At	this	point	we	have	to	go	through	all	the	game	objects	and	change	how	they	initialize
their	base	class	and	update	x	and	y	coordinates,	but	we	won’t	cover	that	here.	If	in	doubt,
refer	to	code	at	10-partitioning.

Finally,	FPS	is	back	to	stable	60	and	we	can	focus	on	gameplay	again.

Spatial	partitioning	saves	the	day

Implementing	Powerups

Game	would	become	more	strategic	if	there	were	ways	to	repair	your	damaged	tank,	boost
it’s	speed	or	increase	rate	of	fire	by	picking	up	various	powerups.	This	should	not	be	too
difficult	to	implement.	We	will	use	some	of	these	images:

Powerups

For	now,	there	will	be	four	kinds	of	powerups:

1.	 Repair	damage.	Wrench	badge	will	restore	damaged	tank’s	health	back	to	100	when
picked	up.

2.	 Health	boost.	Green	+1	badge	will	add	25	health,	up	to	200	total,	if	you	keep	picking
them	up.

3.	 Fire	boost.	Double	bullet	badge	will	increase	reload	speed	by	25%,	up	to	200%	if
you	keep	picking	them	up.

4.	 Speed	boost.	Airplane	badge	will	increase	movement	speed	by	10%,	up	to	150%	if
you	keep	picking	them	up

These	powerups	will	be	placed	randomly	around	the	map,	and	will	automatically	respawn
30	seconds	after	pickup.

Implementing	Base	Powerup
Before	rushing	forward	to	implement	this,	we	have	to	do	some	research	and	think	how	to
elegantly	integrate	this	into	the	whole	game.	First,	let’s	agree	that	Powerup	is	a
GameObject.	It	will	have	graphics,	sounds	and	it’s	coordinates.	Effects	can	by	applied	by
harnessing	GameObject#on_collision	-	when	Tank	collides	with	Powerup,	it	gets	it.
11-powerups/entities/powerups/powerup.rb

	1	class	Powerup	<	GameObject

	2			def	initialize(object_pool,	x,	y)

	3					super

	4					PowerupGraphics.new(self,	graphics)

	5			end

	6	

	7			def	box

	8					[x	-	8,	y	-	8,

	9						x	+	8,	y	-	8,

10						x	+	8,	y	+	8,

11						x	-	8,	y	+	8]

12			end

13	

14			def	on_collision(object)

http://opengameart.org/content/pickups-powerups

15					if	pickup(object)

16							PowerupSounds.play(object,	object_pool.camera)

17							remove

18					end

19			end

20	

21			def	pickup(object)

22					#	override	and	implement	application

23			end

24	

25			def	remove

26					object_pool.powerup_respawn_queue.enqueue(

27							respawn_delay,

28							self.class,	x,	y)

29					mark_for_removal

30			end

31	

32			def	respawn_delay

33					30

34			end

35	end

Ignore	Powerup#remove,	we	will	get	to	it	when	implementing	PowerupRespawnQueue.	The
rest	should	be	straightforward.

Implementing	Powerup	Graphics
All	powerups	will	use	the	same	sprite	sheet,	so	there	could	be	a	single	PowerupGraphics
class	that	will	be	rendering	given	sprite	type.	We	will	use	gosu-texture-packer	gem,
since	sprite	sheet	is	conveniently	packed	already.
11-powerups/entities/components/powerup_graphics.rb

	1	class	PowerupGraphics	<	Component

	2			def	initialize(object,	type)

	3					super(object)

	4					@type	=	type

	5			end

	6	

	7			def	draw(viewport)

	8					image.draw(x	-	12,	y	-	12,	1)

	9					Utils.mark_corners(object.box)	if	$debug

10			end

11	

12			private

13	

14			def	image

15					@image	||=	images.frame("#{@type}.png")

16			end

17	

18			def	images

19					@@images	||=	Gosu::TexturePacker.load_json(

20							$window,	Utils.media_path('pickups.json'))

21			end

22	end

Implementing	Powerup	Sounds
It’s	even	simpler	with	sounds.	All	powerups	will	emit	a	mellow	“bleep”	when	picked	up,
so	PowerupSounds	can	be	completely	static,	like	ExplosionSounds	or	BulletSounds:
11-powerups/entities/components/powerup_sounds.rb

	1	class	PowerupSounds

	2			class	<<	self

	3					def	play(object,	camera)

	4							volume,	pan	=	Utils.volume_and_pan(object,	camera)

	5							sound.play(object.object_id,	pan,	volume)

	6					end

	7	

	8					private

	9	

10					def	sound

11							@@sound	||=	StereoSample.new(

12									$window,	Utils.media_path('powerup.mp3'))

13					end

14			end

15	end

Implementing	Repair	Damage	Powerup
Repairing	broken	tank	is	probably	the	most	important	powerup	of	them	all,	so	let’s
implement	it	first:
11-powerups/entities/powerups/repair_powerup.rb

	1	class	RepairPowerup	<	Powerup

	2			def	pickup(object)

	3					if	object.class	==	Tank

	4							if	object.health.health	<	100

	5									object.health.restore

	6							end

	7							true

	8					end

	9			end

10	

11			def	graphics

12					:repair

13			end

14	end

This	was	incredibly	simple.	Health#restore	already	existed	since	we	had	to	respawn	our
tanks.	We	can	only	hope	other	powerups	are	as	simple	to	implement	as	this	one.

Implementing	Health	Boost
Repairing	damage	is	great,	but	how	about	boosting	some	extra	health	for	upcoming
battles?	Health	boost	to	the	rescue:
11-powerups/entities/powerups/health_powerup.rb

	1	class	HealthPowerup	<	Powerup

	2			def	pickup(object)

	3					if	object.class	==	Tank

	4							object.health.increase(25)

	5							true

	6					end

	7			end

	8	

	9			def	graphics

10					:life_up

11			end

12	end

This	time	we	have	to	implement	Health#increase,	but	it	is	pretty	simple:
class	Health	<	Component

		#	...

		def	increase(amount)

				@health	=	[@health	+	25,	@initial_health	*	2].min

				@health_updated	=	true

		end

		#	...

end

Since	Tank	has	@initial_health	equal	to	100,	increasing	health	won’t	go	over	200,
which	is	exactly	what	we	want.

Implementing	Fire	Rate	Boost
How	about	boosting	tank’s	fire	rate?
11-powerups/entities/powerups/fire_rate_powerup.rb

	1	class	FireRatePowerup	<	Powerup

	2			def	pickup(object)

	3					if	object.class	==	Tank

	4							if	object.fire_rate_modifier	<	2

	5									object.fire_rate_modifier	+=	0.25

	6							end

	7							true

	8					end

	9			end

10	

11			def	graphics

12					:straight_gun

13			end

14	end

We	need	to	introduce	@fire_rate_modifier	in	Tank	class	and	use	it	when	calling
Tank#can_shoot?:
class	Tank	<	GameObject

		#	...

		attr_accessor	:fire_rate_modifier

		#	...

		def	can_shoot?

				Gosu.milliseconds	-	(@last_shot	||	0)	>

						(SHOOT_DELAY	/	@fire_rate_modifier)

		end

		#	...

		def	reset_modifiers

				@fire_rate_modifier	=	1

		end

		#	...

end

Tank#reset_modifier	should	be	called	when	respawning,	since	we	want	tanks	to	lose
their	powerups	when	they	die.	It	can	be	done	in	TankHealth#after_death:
class	TankHealth	<	Health

		#	...

		def	after_death

				object.reset_modifiers

				#	...

		end

end

Implementing	Tank	Speed	Boost
Tank	speed	boost	is	very	similar	to	fire	rate	powerup:
11-powerups/entities/powerups/tank_speed_powerup.rb

	1	class	TankSpeedPowerup	<	Powerup

	2			def	pickup(object)

	3					if	object.class	==	Tank

	4							if	object.speed_modifier	<	1.5

	5									object.speed_modifier	+=	0.10

	6							end

	7							true

	8					end

	9			end

10	

11			def	graphics

12					:wingman

13			end

14	end

We	have	to	add	@speed_modifier	to	Tank	class	and	use	it	in	TankPhysics#update	when
calculating	movement	distance.
#	11-powerups/entities/tank.rb

class	Tank	<	GameObject

		#	...

		attr_accessor	:speed_modifier

		#	...

		def	reset_modifiers

				#	...

				@speed_modifier	=	1

		end

		#	...

end

#	11-powerups/entities/components/tank_physics.rb

class	TankPhysics	<	Component

		#	...

		def	update

				#	...

						new_x,	new_y	=	x,	y

						speed	=	apply_movement_penalty(@speed)

						shift	=	Utils.adjust_speed(speed)	*	object.speed_modifier

				#	...

		end

		#	...

end

Camera#update	has	also	refer	to	Tank#speed_modifier,	otherwise	the	operator	will	fail	to
catch	up	and	camera	will	be	lagging	behind.
class	Camera

		#	...

		def	update

				#	...

				shift	=	Utils.adjust_speed(

						@target.physics.speed).floor	*

						@target.speed_modifier	+	1

				#	...

		end

		#	...

end

Spawning	Powerups	On	Map
Powerups	are	implemented,	but	not	yet	spawned.	We	will	spawn	20	-	30	random	powerups
when	generating	the	map:
class	Map

		#	...

		def	initialize(object_pool)

				#	...

				generate_powerups

		end

		#	...

		def	generate_powerups

				pups	=	0

				target_pups	=	rand(20..30)

				while	pups	<	target_pups	do

						x	=	rand(0..MAP_WIDTH	*	TILE_SIZE)

						y	=	rand(0..MAP_HEIGHT	*	TILE_SIZE)

						if	tile_at(x,	y)	!=	@water

								random_powerup.new(@object_pool,	x,	y)

								pups	+=	1

						end

				end

		end

		def	random_powerup

				[HealthPowerup,

					RepairPowerup,

					FireRatePowerup,

					TankSpeedPowerup].sample

		end

		#	...

end

The	code	is	very	similar	to	generating	boxes.	It’s	probably	not	the	best	way	to	distribute
powerups	on	map,	but	it	will	have	to	do	for	now.

Respawning	Powerups	After	Pickup
When	we	pick	up	a	powerup,	we	want	it	to	reappear	in	same	spot	30	seconds	later.	A
thought	“we	can	start	a	new	Thread	with	sleep	and	initialize	the	same	powerup	there”
sounds	very	bad,	but	I	had	it	for	a	few	seconds.	Then	PowerupRespawnQueue	was	born.

First,	let’s	recall	how	Powerup#remove	method	looks	like:
class	Powerup	<	GameObject

		#	...

		def	remove

				object_pool.powerup_respawn_queue.enqueue(

						respawn_delay,

						self.class,	x,	y)

				mark_for_removal

		end

		#	...

end

Powerup	enqueues	itself	for	respawn	when	picked	up,	providing	it’s	class	and	coordinates.
PowerupRespawnQueue	holds	this	data	and	respawns	powerups	at	right	time	with	help	of
ObjectPool:
11-powerups/entities/powerups/powerup_respawn_queue.rb

	1	class	PowerupRespawnQueue

	2			RESPAWN_DELAY	=	1000

	3			def	initialize

	4					@respawn_queue	=	{}

	5					@last_respawn	=	Gosu.milliseconds

	6			end

	7	

	8			def	enqueue(delay_seconds,	type,	x,	y)

	9					respawn_at	=	Gosu.milliseconds	+	delay_seconds	*	1000

10					@respawn_queue[respawn_at.to_i]	=	[type,	x,	y]

11			end

12	

13			def	respawn(object_pool)

14					now	=	Gosu.milliseconds

15					return	if	now	-	@last_respawn	<	RESPAWN_DELAY

16					@respawn_queue.keys.each	do	|k|

17							next	if	k	>	now	#	not	yet

18							type,	x,	y	=	@respawn_queue.delete(k)

19							type.new(object_pool,	x,	y)

20					end

21					@last_respawn	=	now

22			end

23	end

PowerupRespawnQeueue#respawn	is	called	from	ObjectPool#update_all,	but	is	throttled
to	run	once	per	second	for	better	performance.
class	ObjectPool

		#	...

		attr_accessor	:powerup_respawn_queue

		#	...

		def	update_all

				#	...

				@powerup_respawn_queue.respawn(self)

		end

		#	...

end

This	is	it,	the	game	should	now	contain	randomly	placed	powerups	that	respawn	30
seconds	after	picked	up.	Time	to	enjoy	the	result.

Playing	with	powerups

We	haven’t	done	any	changes	to	AI	though,	that	means	enemies	will	only	be	picking	those
powerups	by	accident,	so	now	you	have	a	significant	advantage	and	the	game	has
suddenly	became	too	easy	to	play.	Don’t	worry,	we	will	be	fixing	that	when	overhauling
the	AI.

Implementing	Heads	Up	Display

In	order	to	know	what’s	happening,	we	need	some	sort	of	HUD.	We	already	have
crosshair	and	radar,	but	they	are	scattered	around	in	code.	Now	we	want	to	display	active
powerup	modifiers,	so	you	would	know	what	is	your	fire	rate	and	speed,	and	if	it’s	worth
getting	one	more	powerup	before	going	into	the	next	fight.

Design	Considerations
While	creating	our	HUD	class,	we	will	have	to	start	building	game	stats,	because	we	want
to	display	number	of	kills	our	tank	made.	Stats	topic	will	be	covered	in	depth	later,	but	for
now	let’s	assume	that	@tank.input.stats.kills	gives	us	the	kill	count,	which	we	want
to	draw	in	top-left	corner	of	the	screen,	along	with	player	health	and	modifier	values.

HUD	will	also	be	responsible	for	drawing	crosshair	and	radar.

Rendering	Text	With	Custom	Font
Previously,	all	text	were	rendered	with	Gosu.default_font_name,	and	we	want	something
more	fancy	and	more	thematic,	probably	a	dirty	stencil	based	font	like	this	one:

Armalite	Rifle	font

And	one	more	fancy	font	will	make	our	game	title	look	good.	Too	bad	we	don’t	have	a
title	yet,	but	“Tanks	Prototype”	writen	in	a	thematic	way	still	looks	pretty	good.

To	have	convenient	access	to	these	fonts,	we	will	add	a	helper	methods	in	Utils:
module	Utils

		#	...

		def	self.title_font

				media_path('top_secret.ttf')

		end

		def	self.main_font

				media_path('armalite_rifle.ttf')

http://www.fontsquirrel.com/fonts/Armalite-Rifle

		end

		#	...

end

Use	it	instead	of	Gosu.default_font_name:
size	=	20

Gosu::Image.from_text($window,	"Your	text",	Utils.main_font,	size)

Implementing	HUD	Class
After	we	have	put	everything	together,	we	will	get	HUD	class:
12-stats/entities/hud.rb

	1	class	HUD

	2			attr_accessor	:active

	3			def	initialize(object_pool,	tank)

	4					@object_pool	=	object_pool

	5					@tank	=	tank

	6					@radar	=	Radar.new(@object_pool,	tank)

	7			end

	8	

	9			def	player=(tank)

10					@tank	=	tank

11					@radar.target	=	tank

12			end

13	

14			def	update

15					@radar.update

16			end

17	

18			def	health_image

19					if	@health.nil?	||	@tank.health.health	!=	@health

20							@health	=	@tank.health.health

21							@health_image	=	Gosu::Image.from_text(

22									$window,	"Health:	#{@health}",	Utils.main_font,	20)

23					end

24					@health_image

25			end

26	

27			def	stats_image

28					stats	=	@tank.input.stats

29					if	@stats_image.nil?	||	stats.changed_at	<=	Gosu.milliseconds

30							@stats_image	=	Gosu::Image.from_text(

31									$window,	"Kills:	#{stats.kills}",	Utils.main_font,	20)

32					end

33					@stats_image

34			end

35	

36			def	fire_rate_image

37					if	@tank.fire_rate_modifier	>	1

38							if	@fire_rate	!=	@tank.fire_rate_modifier

39									@fire_rate	=	@tank.fire_rate_modifier

40									@fire_rate_image	=	Gosu::Image.from_text(

41											$window,	"Fire	rate:	#{@fire_rate.round(2)}X",

42											Utils.main_font,	20)

43							end

44					else

45							@fire_rate_image	=	nil

46					end

47					@fire_rate_image

48			end

49	

50			def	speed_image

51					if	@tank.speed_modifier	>	1

52							if	@speed	!=	@tank.speed_modifier

53									@speed	=	@tank.speed_modifier

54									@speed_image	=	Gosu::Image.from_text(

55											$window,	"Speed:	#{@speed.round(2)}X",

56											Utils.main_font,	20)

57							end

58					else

59							@speed_image	=	nil

60					end

61					@speed_image

62			end

63	

64			def	draw

65					if	@active

66							@object_pool.camera.draw_crosshair

67					end

68					@radar.draw

69					offset	=	20

70					health_image.draw(20,	offset,	1000)

71					stats_image.draw(20,	offset	+=	30,	1000)

72					if	fire_rate_image

73							fire_rate_image.draw(20,	offset	+=	30,	1000)

74					end

75					if	speed_image

76							speed_image.draw(20,	offset	+=	30,	1000)

77					end

78			end

79	end

To	use	it,	we	need	to	hook	into	PlayState:
class	PlayState	<	GameState

		#	...

		def	initialize

				#	...

				@hud	=	HUD.new(@object_pool,	@tank)

		end

		def	update

				#	...

				@hud.update

		end

		def	draw

				#	...

				@hud.draw

		end

		#	...

end

Assuming	you	have	mocked	@tank.input.stats.kills	in	HUD,	you	should	get	a	neat
view	showing	interesting	things	in	top-left	corner	of	the	screen:

Shiny	new	HUD

Implementing	Game	Statistics

Games	like	one	we	are	building	are	all	about	competition,	and	you	cannot	compete	if	you
don’t	know	the	score.	Let	us	introduce	a	class	that	will	be	responsible	for	keeping	tabs	on
various	statistics	of	every	tank.
12-stats/misc/stats.rb

	1	class	Stats

	2			attr_reader	:name,	:kills,	:deaths,	:shots,	:changed_at

	3			def	initialize(name)

	4					@name	=	name

	5					@kills	=	@deaths	=	@shots	=	@damage	=	@damage_dealt	=	0

	6					changed

	7			end

	8	

	9			def	add_kill(amount	=	1)

10					@kills	+=	amount

11					changed

12			end

13	

14			def	add_death

15					@deaths	+=	1

16					changed

17			end

18	

19			def	add_shot

20					@shots	+=	1

21					changed

22			end

23	

24			def	add_damage(amount)

25					@damage	+=	amount

26					changed

27			end

28	

29			def	damage

30					@damage.round

31			end

32	

33			def	add_damage_dealt(amount)

34					@damage_dealt	+=	amount

35					changed

36			end

37	

38			def	damage_dealt

39					@damage_dealt.round

40			end

41	

42			def	to_s

43					"[kills:	#{@kills},	"	\

44							"deaths:	#{@deaths},	"	\

45							"shots:	#{@shots},	"	\

46							"damage:	#{damage},	"	\

47							"damage_dealt:	#{damage_dealt}]"

48			end

49	

50			private

51	

52			def	changed

53					@changed_at	=	Gosu.milliseconds

54			end

55	end

While	building	the	HUD,	we	established	that	Stats	should	belong	to	Tank#input,	because
it	defines	who	is	controlling	the	tank.	So,	every	instance	of	PlayerInput	and	AiInput	has
to	have	it’s	own	Stats:
#	12-stats/entities/components/player_input.rb

class	PlayerInput	<	Component

		#	...

		attr_reader	:stats

		def	initialize(name,	camera,	object_pool)

				#	...

				@stats	=	Stats.new(name)

		end

		#	...

		def	on_damage(amount)

				@stats.add_damage(amount)

		end

		#	...

end

#	12-stats/entities/components/ai_input.rb

class	AiInput	<	Component

		#	...

		attr_reader	:stats

		def	initialize(name,	object_pool)

				#	...

				@stats	=	Stats.new(name)

		end

		def	on_damage(amount)

				#	...

				@stats.add_damage(amount)

		end

end

That	itch	to	extract	a	base	class	from	PlayerInput	and	AiInput	is	getting	stronger,	but	we
will	have	to	resist	the	urge,	for	now.

Tracking	Kills,	Deaths	and	Damage
To	begin	tracking	kills,	we	need	to	know	whom	does	every	bullet	belong	to.	Bullet
already	has	source	attribute,	which	contains	the	tank	that	fired	it,	there	will	be	no	trouble
to	find	out	who	was	the	shooter	when	bullet	gets	a	direct	hit.	But	how	about	explosions?
Bullets	that	hit	the	ground	nearby	a	tank	deals	indirect	damage	from	the	explosion.

Solution	is	simple,	we	need	to	pass	the	source	of	the	Bullet	to	the	Explosion	when	it’s
being	initialized.
class	Bullet	<	GameObject

		#	...

		def	explode

				Explosion.new(object_pool,	@x,	@y,	@source)

				#	...

		end

		#	...

end

Making	Damage	Personal
Now	that	we	have	the	source	of	every	Bullet	and	Explosion	they	trigger,	we	can	start
passing	the	cause	of	damage	to	Health#inflict_damage	and	incrementing	the	appropriate
stats.
#	12-stats/entities/components/health.rb

class	Health	<	Component

		#	...

		def	inflict_damage(amount,	cause)

				if	@health	>	0

						@health_updated	=	true

						if	object.respond_to?(:input)

								object.input.stats.add_damage(amount)

								#	Don't	count	damage	to	trees	and	boxes

								if	cause.respond_to?(:input)	&&	cause	!=	object

										cause.input.stats.add_damage_dealt(amount)

								end

						end

						@health	=	[@health	-	amount.to_i,	0].max

						after_death(cause)	if	dead?

				end

		end

		#	...

end

#	12-stats/entities/components/tank_health.rb

class	TankHealth	<	Health

		#	...

		def	after_death(cause)

				#	...

				object.input.stats.add_death

				kill	=	object	!=	cause	?	1	:	-1

				cause.input.stats.add_kill(kill)

				#	...

		end

#	...

end

Tracking	Damage	From	Chain	Reactions
There	is	one	more	way	to	cause	damage.	When	you	shoot	a	tree,	box	or	barrel,	it	explodes,
probably	triggering	a	chain	reaction	of	explosions	around	it.	If	those	explosions	kill
somebody,	it	would	only	be	fair	to	account	that	kill	for	the	tank	that	triggered	this	chain
reaction.

To	solve	this,	simply	pass	the	cause	of	death	to	the	Explosion	that	gets	triggered
afterwards.
#	12-stats/entities/components/health.rb

class	Health	<	Component

		#	...

		def	after_death(cause)

				if	@explodes

						Thread.new	do

								#	...

								Explosion.new(@object_pool,	x,	y,	cause)

								#	...

						end

						#	...

				end

		end

end

#	12-stats/entities/components/tank_health.rb

class	TankHealth	<	Health

		#	...

		def	after_death(cause)

				#	...

				Thread.new	do

						#	...

						Explosion.new(@object_pool,	x,	y,	cause)

				end

		end

end

Now	every	bit	of	damage	gets	accounted	for.

Displaying	Game	Score
Having	all	the	data	is	useless	unless	we	display	it	somehow.	For	this,	let’s	rethink	our
game	states.	Now	we	have	MenuState	and	PlayState.	Both	of	them	can	switch	one	into
another.	What	if	we	introduced	a	PauseState,	which	would	freeze	the	game	and	display
the	list	of	all	tanks	along	with	their	kills.	Then	MenuState	would	switch	to	PlayState,	and
from	PlayState	you	would	be	able	to	get	to	PauseState.

Let’s	begin	by	implementing	ScoreDisplay,	that	would	print	a	sorted	list	of	tank	kills
along	with	their	names.
12-stats/entities/score_display.rb

	1	class	ScoreDisplay

	2			def	initialize(object_pool)

	3					tanks	=	object_pool.objects.select	do	|o|

	4							o.class	==	Tank

	5					end

	6					stats	=	tanks.map(&:input).map(&:stats)

	7					stats.sort!	do	|stat1,	stat2|

	8							stat2.kills	<=>	stat1.kills

	9					end

10					create_stats_image(stats)

11			end

12	

13			def	create_stats_image(stats)

14					text	=	stats.map	do	|stat|

15							"#{stat.kills}:	#{stat.name}	"

16					end.join("\n")

17					@stats_image	=	Gosu::Image.from_text(

18							$window,	text,	Utils.main_font,	30)

19			end

20	

21			def	draw

22					@stats_image.draw(

23							$window.width	/	2	-	@stats_image.width	/	2,

24							$window.height	/	4	+	30,

25							1000)

26			end

27	end

We	will	have	to	initialize	ScoreDisplay	every	time	when	we	want	to	show	the	updated
score.	Time	to	create	the	PauseState	that	would	show	the	score.
12-stats/game_states/pause_state.rb

	1	require	'singleton'

	2	class	PauseState	<	GameState

	3			include	Singleton

	4			attr_accessor	:play_state

	5	

	6			def	initialize

	7					@message	=	Gosu::Image.from_text(

	8							$window,	"Game	Paused",

	9							Utils.title_font,	60)

10			end

11	

12			def	enter

13					music.play(true)

14					music.volume	=	1

15					@score_display	=	ScoreDisplay.new(@play_state.object_pool)

16					@mouse_coords	=	[$window.mouse_x,	$window.mouse_y]

17			end

18	

19			def	leave

20					music.volume	=	0

21					music.stop

22					$window.mouse_x,	$window.mouse_y	=	@mouse_coords

23			end

24	

25			def	music

26					@@music	||=	Gosu::Song.new(

27							$window,	Utils.media_path('menu_music.mp3'))

28			end

29	

30			def	draw

31					@play_state.draw

32					@message.draw(

33							$window.width	/	2	-	@message.width	/	2,

34							$window.height	/	4	-	@message.height,

35							1000)

36					@score_display.draw

37			end

38	

39			def	button_down(id)

40					$window.close	if	id	==	Gosu::KbQ

41					if	id	==	Gosu::KbC	&&	@play_state

42							GameState.switch(@play_state)

43					end

44					if	id	==	Gosu::KbEscape

45							GameState.switch(@play_state)

46					end

47			end

48	end

You	will	notice	that	PauseState	invokes	PlayState#draw,	but	without	PlayState#update
this	will	be	a	still	image.	We	make	sure	we	hide	the	crosshair	and	restore	previous	mouse
location	when	resuming	play	state.	That	way	player	would	not	be	able	to	cheat	by	pausing
the	game,	targeting	the	tank	while	nothing	moves	and	then	unpausing	ready	to	deal
damage.	Our	HUD	had	attr_accessor	:active	exactly	for	this	reason,	but	we	need	to
switch	it	on	and	off	in	PlayState#enter	and	PlayState#leave.
class	PlayState	<	GameState

		#	...

		def	button_down(id)

				#	...

				if	id	==	Gosu::KbEscape

						pause	=	PauseState.instance

						pause.play_state	=	self

						GameState.switch(pause)

				end

				#	...

		end

		#	...

		def	leave

				StereoSample.stop_all

				@hud.active	=	false

		end

		def	enter

				@hud.active	=	true

		end

		#	...

end

Time	for	a	test	drive.

Pausing	the	game	to	see	the	score

For	now,	scoring	most	kills	is	relatively	simple.	This	should	change	when	we	will	tell
enemy	AI	to	collect	powerups	when	appropriate.

Building	Advanced	AI

The	AI	we	have	right	now	can	kick	some	ass,	but	it	is	too	dumb	for	any	seasoned	gamer	to
compete	with.	This	is	the	list	of	current	flaws:

1.	 It	does	not	navigate	well,	gets	stuck	among	trees	or	somewhere	near	water.
2.	 It	is	not	aware	of	powerups.
3.	 It	could	do	better	job	at	shooting.
4.	 It’s	field	of	vision	is	too	small,	compared	to	player’s,	who	is	equipped	with	radar.

We	will	tackle	these	issues	in	current	chapter.

Improving	Tank	Navigation
Tanks	shouldn’t	behave	like	Roombas,	randomly	driving	around	and	bumping	into	things.
They	could	be	navigating	like	this:

1.	 Consult	with	current	AI	state	and	find	or	update	destination	point.
2.	 If	destination	has	changed,	calculate	shortest	path	to	destination.
3.	 Move	along	the	calculated	path.
4.	 Repeat.

If	this	looks	easy,	let	me	assure	you,	it	would	probably	require	rewriting	the	majority	of	AI
and	Map	code	we	have	at	this	point,	and	it	is	pretty	tricky	to	implement	with	procedurally
generated	maps,	because	normally	you	would	use	a	map	editor	to	set	up	waypoints,
navigation	mesh	or	other	hints	for	AI	so	it	doesn’t	get	stuck.	Sometimes	it	is	better	to	have
something	working	imperfectly	over	a	perfect	solution	that	never	happens,	thus	we	will
use	simple	things	that	will	make	as	much	impact	as	possible	without	rewriting	half	of	the
code.

Generating	Friendlier	Maps

One	of	main	reasons	why	tanks	get	stuck	is	bad	placement	of	spawn	points.	They	don’t
take	trees	and	boxes	into	account,	so	enemy	tank	can	spawn	in	the	middle	of	a	forest,	with
no	chance	of	getting	out	without	blowing	things	up.	A	simple	fix	would	be	to	consult	with
ObjectPool	before	placing	a	spawn	point	only	where	there	are	no	other	game	objects
around	in,	say,	150	pixel	radius:
class	Map

		#	...

		def	find_spawn_point

				while	true

						x	=	rand(0..MAP_WIDTH	*	TILE_SIZE)

						y	=	rand(0..MAP_HEIGHT	*	TILE_SIZE)

						if	can_move_to?(x,	y)	&&

										@object_pool.nearby_point(x,	y,	150).empty?

								return	[x,	y]

						end

				end

		end

		#	...

end

How	about	powerups?	They	can	also	spawn	in	the	middle	of	a	forest,	and	while	tanks	are
not	seeking	them	yet,	we	will	be	implementing	this	behavior,	and	leading	tanks	into
wilderness	of	trees	is	not	the	best	idea	ever.	Let’s	fix	it	too:
class	Map

		#	...

		def	generate_powerups

				pups	=	0

				target_pups	=	rand(20..30)

				while	pups	<	target_pups	do

						x	=	rand(0..MAP_WIDTH	*	TILE_SIZE)

						y	=	rand(0..MAP_HEIGHT	*	TILE_SIZE)

						if	tile_at(x,	y)	!=	@water	&&

										@object_pool.nearby_point(x,	y,	150).empty?

								random_powerup.new(@object_pool,	x,	y)

								pups	+=	1

						end

				end

		end

		#	...

end

We	could	also	reduce	tree	count,	but	that	would	make	the	map	look	worse,	so	we	are
going	to	keep	this	in	our	pocket	as	a	mean	of	last	resort.

Implementing	Demo	State	To	Observe	AI
Probably	the	best	way	to	figure	out	if	our	AI	is	any	good	is	to	target	one	of	AI	tanks	with
our	game	camera	and	see	how	it	plays.	It	will	give	us	a	great	visual	testing	tool	that	will
allow	tweaking	AI	settings	and	seeing	if	they	perform	better	or	worse.	For	that	we	will
introduce	DemoState	where	only	AI	tanks	will	be	present	in	the	map,	and	we	will	be	able
to	switch	camera	from	one	tank	to	another.

DemoState	is	very	similar	to	PlayState,	the	main	difference	is	that	there	is	no	player.	We
will	extract	create_tanks	method	that	will	be	overridden	in	DemoState.
class	PlayState	<	GameState

		attr_accessor	:update_interval,	:object_pool,	:tank

		def	initialize

				#	...

				@camera	=	Camera.new

				@object_pool.camera	=	@camera

				create_tanks(4)

		end

		#	...

		private

		def	create_tanks(amount)

				@map.spawn_points(amount	*	3)

				@tank	=	Tank.new(@object_pool,

						PlayerInput.new('Player',	@camera,	@object_pool))

				amount.times	do	|i|

						Tank.new(@object_pool,	AiInput.new(

								@names.random,	@object_pool))

				end

				@camera.target	=	@tank

				@hud	=	HUD.new(@object_pool,	@tank)

		end

		#	...

end

We	will	also	want	to	display	a	smaller	version	of	score	in	top-right	corner	of	the	screen,	so
let’s	add	some	adjustments	to	ScoreDisplay:
class	ScoreDisplay

		def	initialize(object_pool,	font_size=30)

				@font_size	=	font_size

				#	...

		end

		def	create_stats_image(stats)

				#	...

				@stats_image	=	Gosu::Image.from_text(

						$window,	text,	Utils.main_font,	@font_size)

		end

		#	...

		def	draw_top_right

				@stats_image.draw(

						$window.width	-	@stats_image.width	-	20,

						20,

						1000)

		end

end

And	here	is	the	extended	DemoState:
13-advanced-ai/game_states/demo_state.rb

	1	class	DemoState	<	PlayState

	2			attr_accessor	:tank

	3	

	4			def	enter

	5					#	Prevent	reactivating	HUD

	6			end

	7	

	8			def	update

	9					super

10					@score_display	=	ScoreDisplay.new(

11							object_pool,	20)

12			end

13	

14			def	draw

15					super

16					@score_display.draw_top_right

17			end

18	

19			def	button_down(id)

20					super

21					if	id	==	Gosu::KbSpace

22							target_tank	=	@tanks.reject	do	|t|

23									t	==	@camera.target

24							end.sample

25							switch_to_tank(target_tank)

26					end

27			end

28	

29			private

30	

31			def	create_tanks(amount)

32					@map.spawn_points(amount	*	3)

33					@tanks	=	[]

34					amount.times	do	|i|

35							@tanks	<<	Tank.new(@object_pool,	AiInput.new(

36									@names.random,	@object_pool))

37					end

38					target_tank	=	@tanks.sample

39					@hud	=	HUD.new(@object_pool,	target_tank)

40					@hud.active	=	false

41					switch_to_tank(target_tank)

42			end

43	

44			def	switch_to_tank(tank)

45					@camera.target	=	tank

46					@hud.player	=	tank

47					self.tank	=	tank

48			end

49	end

To	have	a	possibility	to	enter	DemoState,	we	need	to	change	MenuState	a	little:
class	MenuState	<	GameState

		#	...

		def	update

				text	=	"Q:	Quit\nN:	New	Game\nD:	Demo"

				#	...

		end

		#	...

		def	button_down(id)

				#	...

				if	id	==	Gosu::KbD

						@play_state	=	DemoState.new

						GameState.switch(@play_state)

				end

		end

end

Now,	main	menu	has	the	option	to	enter	demo	state:

Overhauled	main	menu

Observing	AI	in	demo	state

Visual	AI	Debugging
After	watching	AI	behavior	in	demo	mode	for	a	while,	I	was	terrified.	When	playing	game
normally,	you	usually	see	tanks	in	“fighting”	state,	which	works	pretty	well,	but	when
tanks	go	roaming,	it’s	a	complete	disaster.	They	get	stuck	easily,	they	don’t	go	too	far	from
the	original	location,	they	wait	too	much.

Some	things	could	be	improved	just	by	changing	wait_time,	turn_time	and	drive_time
to	different	values,	but	we	certainly	have	to	do	bigger	changes	than	that.

On	the	other	hand,	“observe	AI	in	action,	tweak,	repeat”	cycle	proved	to	be	very	effective,
I	will	definitely	use	this	technique	in	all	my	future	games.

To	make	visual	debugging	easier,	build	yourself	some	tooling.	One	way	to	do	it	is	to	have
global	$debug	variable	which	you	can	toggle	by	pressing	some	button:
class	PlayState	<	GameState

		#	...

		def	button_down(id)

				#	...

				if	id	==	Gosu::KbF1

						$debug	=	!$debug

				end

				#	...

		end

		#	...

end

Then	add	extra	drawing	instructions	to	your	objects	and	their	components.	For	example,
this	will	make	Tank	display	it’s	current	TankMotionState	implementation	class	beneath	it:
class	TankMotionFSM

		#	...

		def	set_state(state)

				#	...

				if	$debug

						@image	=	Gosu::Image.from_text(

										$window,	state.class.to_s,

										Gosu.default_font_name,	18)

				end

		end

		#	...

		def	draw(viewport)

				if	$debug

						@image	&&	@image.draw(

								@object.x	-	@image.width	/	2,

								@object.y	+	@object.graphics.height	/	2	-

								@image.height,	100)

				end

		end

		#	...

end

To	mark	tank’s	desired	gun	angle	as	blue	line	and	actual	gun	angle	as	red	line,	you	can	do
this:
class	AiGun

		#	...

		def	draw(viewport)

				if	$debug

						color	=	Gosu::Color::BLUE

						x,	y	=	@object.x,	@object.y

						t_x,	t_y	=	Utils.point_at_distance(x,	y,	@desired_gun_angle,

																																									BulletPhysics::MAX_DIST)

						$window.draw_line(x,	y,	color,	t_x,	t_y,	color,	1001)

						color	=	Gosu::Color::RED

						t_x,	t_y	=	Utils.point_at_distance(x,	y,	@object.gun_angle,

																																									BulletPhysics::MAX_DIST)

						$window.draw_line(x,	y,	color,	t_x,	t_y,	color,	1000)

				end

		end

		#	...

end

Finally,	you	can	automatically	mark	collision	box	corners	on	your	graphics	components.
Let’s	take	BoxGraphics	for	example:
#	13-advanced-ai/misc/utils.rb

module	Utils

		#	...

		def	self.mark_corners(box)

				i	=	0

				box.each_slice(2)	do	|x,	y|

						color	=	DEBUG_COLORS[i]

						$window.draw_triangle(

								x	-	3,	y	-	3,	color,

								x,					y,					color,

								x	+	3,	y	-	3,	color,

								100)

						i	=	(i	+	1)	%	4

				end

		end

		#	...

end

#	13-advanced-ai/entities/components/box_graphics.rb

class	BoxGraphics	<	Component

		#	..

		def	draw(viewport)

				@box.draw_rot(x,	y,	0,	object.angle)

				Utils.mark_corners(object.box)	if	$debug

		end

		#	...

end

As	a	developer,	you	can	make	yourself	see	nearly	everything	you	want,	make	use	of	it.

Visual	debugging	of	AI	behavior

Although	it	hurts	the	framerate	a	little,	it	is	very	useful	when	building	not	only	AI,	but	the
rest	of	the	game	too.	Using	this	visual	debugging	together	with	Demo	mode,	you	can
tweak	all	the	AI	values	to	make	it	shoot	more	often,	fight	better,	and	be	more	agile.	We
won’t	go	through	this	minor	tuning,	but	you	can	find	the	changes	by	viewing	changes
introduced	in	13-advanced-ai.

Making	AI	Collect	Powerups
To	even	out	the	odds,	we	have	to	make	AI	seek	powerups	when	they	are	required.	The
logic	behind	it	can	be	implemented	using	a	couple	of	simple	steps:

1.	 AI	would	know	what	powerups	are	currently	needed.	This	may	vary	from	state	to
state,	i.e.	speed	and	fire	rate	powerups	are	nice	to	have	when	roaming,	but	not	that
important	when	fleeing	after	taking	heavy	damage.	And	we	don’t	want	AI	to	waste
time	and	collect	speed	powerups	when	speed	modifier	is	already	maxed	out.

2.	 AiVision	would	return	closest	visible	powerup,	filtered	by	acceptable	powerup	types.
3.	 Some	TankMotionState	implementation	would	adjust	tank	direction	towards	closest

visible	powerup	in	change_direction	method.

Finding	Powerups	In	Sight

https://github.com/spajus/ruby-gamedev-book-examples/compare/8727db2…0e3c926

To	implement	changes	in	AiVision,	we	will	introduce	closest_powerup	method.	It	will
query	objects	in	sight	and	filter	them	out	by	their	class	and	distance.
class	AiVision

		#	...

		POWERUP_CACHE_TIMEOUT	=	50

		#	...

		def	closest_powerup(*suitable)

				now	=	Gosu.milliseconds

				@closest_powerup	=	nil

				if	now	-	(@powerup_cache_updated_at	||=	0)	>	POWERUP_CACHE_TIMEOUT

						@closest_powerup	=	nil

						@powerup_cache_updated_at	=	now

				end

				@closest_powerup	||=	find_closest_powerup(*suitable)

		end

		private

		def	find_closest_powerup(*suitable)

				if	suitable.empty?

						suitable	=	[FireRatePowerup,

																		HealthPowerup,

																		RepairPowerup,

																		TankSpeedPowerup]

				end

				@in_sight.select	do	|o|

						suitable.include?(o.class)

				end.sort	do	|a,	b|

						x,	y	=	@viewer.x,	@viewer.y

						d1	=	Utils.distance_between(x,	y,	a.x,	a.y)

						d2	=	Utils.distance_between(x,	y,	b.x,	b.y)

						d1	<=>	d2

				end.first

		end

		#	...

end

It	is	very	similar	to	AiVision#closest_tank,	and	parts	should	probably	be	extracted	to
keep	the	code	dry,	but	we	will	not	bother.

Seeking	Powerups	While	Roaming

Roaming	is	when	most	picking	should	happen,	because	Tank	sees	no	enemies	in	sight	and
needs	to	prepare	for	upcoming	battles.	Let’s	see	how	can	we	implement	this	behavior
while	leveraging	the	newly	made	AiVision#closest_powerup:
class	TankRoamingState	<	TankMotionState

		#	...

		def	required_powerups

				required	=	[]

				health	=	@object.health.health

				if	@object.fire_rate_modifier	<	2	&&	health	>	50

						required	<<	FireRatePowerup

				end

				if	@object.speed_modifier	<	1.5	&&	health	>	50

						required	<<	TankSpeedPowerup

				end

				if	health	<	100

						required	<<	RepairPowerup

				end

				if	health	<	190

						required	<<	HealthPowerup

				end

				required

		end

		def	change_direction

				closest_powerup	=	@vision.closest_powerup(

						*required_powerups)

				if	closest_powerup

						@seeking_powerup	=	true

						angle	=	Utils.angle_between(

								@object.x,	@object.y,

								closest_powerup.x,	closest_powerup.y)

						@object.physics.change_direction(

								angle	-	angle	%	45)

				else

						@seeking_powerup	=	false

						#	...	choose	random	direction

				end

				@changed_direction_at	=	Gosu.milliseconds

				@will_keep_direction_for	=	turn_time

		end

		#	...

		def	turn_time

				if	@seeking_powerup

						rand(100..300)

				else

						rand(1000..3000)

				end

		end

end

It	is	simple	as	that,	and	our	AI	tanks	are	now	getting	buffed	on	their	spare	time.

Seeking	Health	Powerups	After	Heavy	Damage
To	seek	health	when	damaged,	we	need	to	change	TankFleeingState#change_direction:
class	TankFleeingState	<	TankMotionState

		#	...

		def	change_direction

				closest_powerup	=	@vision.closest_powerup(

						RepairPowerup,	HealthPowerup)

				if	closest_powerup

						angle	=	Utils.angle_between(

								@object.x,	@object.y,

								closest_powerup.x,	closest_powerup.y)

						@object.physics.change_direction(

								angle	-	angle	%	45)

				else

						#	...	reverse	from	enemy

				end

				@changed_direction_at	=	Gosu.milliseconds

				@will_keep_direction_for	=	turn_time

		end

		#	...

end

This	small	change	tells	AI	to	pick	up	health	while	fleeing.	The	interesting	part	is	that	when
tank	picks	up	RepairPowerup,	it’s	health	gets	fully	restored	and	AI	should	switch	back	to
TankFightingState.	This	simple	thing	is	a	major	improvement	in	AI	behavior.

Evading	Collisions	And	Getting	Unstuck
While	observing	AI	navigation,	it	was	noticeable	that	tanks	often	got	stuck,	even	in	simple
situations,	like	driving	into	a	tree	and	hitting	it	repeatedly	for	a	dozen	of	seconds.	To
reduce	the	number	of	such	occasions,	we	will	introduce	TankNavigatingState,	which
would	help	avoid	collisions,	and	TankStuckState,	which	would	be	responsible	for	driving
out	of	dead	ends	as	quickly	as	possible.

To	implement	these	states,	we	need	to	have	a	way	to	tell	if	tank	can	go	forward	and	a	way
of	getting	a	direction	which	is	not	blocked	by	other	objects.	Let’s	add	a	couple	of	methods
to	AiVision:
class	AiVision

		#	...

		def	can_go_forward?

				in_front	=	Utils.point_at_distance(

						*@viewer.location,	@viewer.direction,	40)

				@object_pool.map.can_move_to?(*in_front)	&&

						@object_pool.nearby_point(*in_front,	40,	@viewer)

								.reject	{	|o|	o.is_a?	Powerup	}.empty?

		end

		def	closest_free_path(away_from	=	nil)

				paths	=	[]

				5.times	do	|i|

						if	paths.any?

								return	farthest_from(paths,	away_from)

						end

						radius	=	55	-	i	*	5

						range_x	=	range_y	=	[-radius,	0,	radius]

						range_x.shuffle.each	do	|x|

								range_y.shuffle.each	do	|y|

										x	=	@viewer.x	+	x

										y	=	@viewer.y	+	y

										if	@object_pool.map.can_move_to?(x,	y)	&&

														@object_pool.nearby_point(x,	y,	radius,	@viewer)

																.reject	{	|o|	o.is_a?	Powerup	}.empty?

												if	away_from

														paths	<<	[x,	y]

												else

														return	[x,	y]

												end

										end

								end

						end

				end

				false

		end

		alias	:closest_free_path_away_from	:closest_free_path

		#	...

		private

		def	farthest_from(paths,	away_from)

				paths.sort	do	|p1,	p2|

						Utils.distance_between(*p1,	*away_from)	<=>

								Utils.distance_between(*p2,	*away_from)

				end.first

		end

		#	...

end

AiVision#can_go_forward?	tells	if	tank	can	move	ahead,	and
AiVision#closest_free_path	finds	a	point	where	tank	can	move	without	obstacles.	You
can	also	call	AiVision#closest_free_path_away_from	and	provide	coordinates	you	are
trying	to	get	away	from.

We	will	use	closest_free_path	methods	in	newly	implemented	tank	motion	states,	and
can_go_forward?	in	TankMotionFSM,	to	make	a	decision	when	to	jump	into	navigating	or
stuck	state.

Those	new	states	are	nothing	fancy:
13-advanced-ai/entities/components/ai/tank_navigating_state.rb

	1	class	TankNavigatingState	<	TankMotionState

	2			def	initialize(object,	vision)

	3					@object	=	object

	4					@vision	=	vision

	5			end

	6	

	7			def	update

	8					change_direction	if	should_change_direction?

	9					drive

10			end

11	

12			def	change_direction

13					closest_free_path	=	@vision.closest_free_path

14					if	closest_free_path

15							@object.physics.change_direction(

16									Utils.angle_between(

17											@object.x,	@object.y,	*closest_free_path))

18					end

19					@changed_direction_at	=	Gosu.milliseconds

20					@will_keep_direction_for	=	turn_time

21			end

22	

23			def	wait_time

24					rand(10..100)

25			end

26	

27			def	drive_time

28					rand(1000..2000)

29			end

30	

31			def	turn_time

32					rand(300..1000)

33			end

34	end

TankNavigatingState	simply	chooses	a	random	free	path,	changes	direction	to	it	and
keeps	driving.
13-advanced-ai/entities/components/ai/tank_stuck_state.rb

	1	class	TankNavigatingState	<	TankMotionState

	2			def	initialize(object,	vision)

	3					@object	=	object

	4					@vision	=	vision

	5			end

	6	

	7			def	update

	8					change_direction	if	should_change_direction?

	9					drive

10			end

11	

12			def	change_direction

13					closest_free_path	=	@vision.closest_free_path

14					if	closest_free_path

15							@object.physics.change_direction(

16									Utils.angle_between(

17											@object.x,	@object.y,	*closest_free_path))

18					end

19					@changed_direction_at	=	Gosu.milliseconds

20					@will_keep_direction_for	=	turn_time

21			end

22	

23			def	wait_time

24					rand(10..100)

25			end

26	

27			def	drive_time

28					rand(1000..2000)

29			end

30	

31			def	turn_time

32					rand(300..1000)

33			end

34	end

TankStuckState	is	nearly	the	same,	but	it	keeps	driving	away	from	@stuck_at	point,
which	is	set	by	TankMotionFSM	upon	transition	to	this	state.
class	TankMotionFSM

		STATE_CHANGE_DELAY	=	500

		LOCATION_CHECK_DELAY	=	5000

		def	initialize(object,	vision,	gun)

				#	...

				@stuck_state	=	TankStuckState.new(object,	vision,	gun)

				@navigating_state	=	TankNavigatingState.new(object,	vision)

				set_state(@roaming_state)

		end

		#	...

		def	choose_state

				unless	@vision.can_go_forward?

						unless	@current_state	==	@stuck_state

								set_state(@navigating_state)

						end

				end

				#	Keep	unstucking	itself	for	a	while

				change_delay	=	STATE_CHANGE_DELAY

				if	@current_state	==	@stuck_state

						change_delay	*=	5

				end

				now	=	Gosu.milliseconds

				return	unless	now	-	@last_state_change	>	change_delay

				if	@last_location_update.nil?

						@last_location_update	=	now

						@last_location	=	@object.location

				end

				if	now	-	@last_location_update	>	LOCATION_CHECK_DELAY

						puts	"checkin	location"

						unless	@last_location.nil?	||	@current_state.waiting?

								if	Utils.distance_between(*@last_location,	*@object.location)	<	20

										set_state(@stuck_state)

										@stuck_state.stuck_at	=	@object.location

										return

								end

						end

						@last_location_update	=	now

						@last_location	=	@object.location

				end

				#	...

		end

		#	...

end

What	this	does	is	automatically	change	state	to	navigating	when	tank	is	about	to	hit	an
obstacle.	It	also	tracks	tank	location,	and	if	tank	hasn’t	moved	20	pixels	away	from	it’s
original	direction	for	5	seconds,	it	enters	TankStuckState,	which	deliberately	tries	to
navigate	away	from	the	stock_at	spot.

AI	navigation	has	just	got	significantly	better,	and	it	didn’t	take	that	many	changes.

Wrapping	It	Up

Our	journey	into	the	world	of	game	development	has	come	to	an	end.	We	have	learned
enough	to	produced	a	playable	game,	yet	only	scratched	the	surface.	Writing	this	book
was	a	very	enlightening	experience,	and	hopefully	reading	it	inspired	or	helped	someone
to	get	a	start.

Lessons	Learned
Building	this	small	tanks	game	and	learning	about	game	development	with	Ruby	certainly
had	some	nasty	bumps	along	the	way,	some	of	them	made	my	head	hit	the	ceiling.

Ruby	Is	Slow

This	shouldn’t	be	a	shocker,	because	Ruby	is	a	dynamic,	interpreted	language,	but	how
exactly	slow	it	is	at	some	points	was	a	staggering	discovery.	Probably	the	best	evidence	is
that	drawing	map	tiles	off	screen	using	native	extensions	was	actually	faster	than	doing
Camera#can_view?	checks	that	involve	simple	integer	arithmetic	and	range	checks.

If	your	game	is	going	to	deal	with	large	number	of	entities,	Ruby	will	start	letting	you
down.	Dreaming	about	going	pro?	Go	for	C++,	you	won’t	make	a	mistake	here.

Knowing	this,	keep	in	mind	that	Ruby	is	a	wonderful	language,	that	has	it’s	own	strengths.
It’s	great	for	prototyping	and	dynamic	things.	Some	5-10	lines	of	Ruby	could	translate	into
50-100	lines	of	C++.	Also,	knowing	multiple	languages	makes	you	a	better	developer.

Packaging	Ruby	Games	Sucks

Unless	you	are	releasing	your	game	for	tech	savvy	guys	who	can	gem	install	it,	get
ready	to	go	through	hell.	There	is	no	nice	and	easy	way	to	create	a	standalone	executable
application	from	Ruby	code	that	involves	native	extensions.	And	you	will	go	through	hell
once	for	every	operating	system	you	want	to	publish	your	game	for.

That’s	not	everything.	Want	to	use	the	latest	Ruby	version?	Check	if	you	can	make	a
package	for	it	in	your	target	OS	before	you	start	coding.	Thinking	of	using	something	that
relies	on	ImageMagick?	Too	bad,	you	probably	won’t	be	able	to	package	the	game	into	a
native	standalone	app,	at	least	on	OSX.	If	you	are	planning	on	releasing	the	game,
package	early	and	package	often,	for	every	OS,	and	check	if	there	will	be	no	problems
with	native	extensions.

Plan	Networked	Multiplayer	Early

If	you	are	going	to	build	a	game,	don’t	make	a	mistake	of	thinking	“I’ll	just	make	it
multiplayer	later”,	start	at	the	very	beginning.	This	was	a	lesson	I	learned	the	hard	way.
There	had	to	be	a	chapter	in	this	book	about	turning	Tanks	into	multiplayer,	but	it	didn’t
happen,	because	it	would	require	a	major	rewrite	of	the	code.

Creating	A	Well	Polished	Game	Requires	Extraordinary	Effort

Hacking	up	a	rough	prototype	is	extremely	fun.	You	get	to	build	an	engine,	wire
everything	together.	It	definitely	gives	a	sense	of	achievement.	Turning	it	into	a	great
game,	however,	is	a	different	story.	You	can	spend	hours	or	even	days	tweaking	how	game
controls	work	and	still	remain	unsatisfied.	Every	tiny	detail	can	be	pushed	further.	Prefer
quality	over	quantity,	and	remember	that	you	probably	cannot	afford	both	and	actually
finish	it	within	next	couple	of	years.

Start	Small,	Take	Baby	Steps

Your	first	few	games	should	be	small	experiments,	prototypes	or	demos.	Don’t	attempt	to
build	a	game	you	wanted	to	build	forever	with	your	first	shot.	Try	reimplementing	Tetris,
Pacman	or	Bejeweled	instead.	You	will	find	it	to	be	challenging	enough,	and	when	you
will	feel	you	have	the	skills	to	do	something	bigger,	practice	just	a	little	more.

Don’t	Reinvent	The	Wheel

Before	doing	anything,	research.	You	will	probably	not	get	point	in	poly	collision
detection	better	than	W.	Randolph	Franklin	did	it	in	his	research.	Even	if	you	think	you
can	do	it	on	your	own,	learn	what	others	discovered	before	you.	Learn	from	other’s
mistakes,	not	your	own.

http://www.ecse.rpi.edu/~wrf/Research/Short_Notes/pnpoly.html

Special	Thanks

I	would	like	to	thank	Julian	Raschke	for	creating	and	maintaining	Gosu	and	for	all	the
help	on	IRC,	Gosu	forums	and	GitHub.	This	book	would	not	exist	without	your	enormous
contribution	to	Ruby	game	development	scene.

Shout	out	goes	to	Shawn	Anderson,	creator	of	Gamebox.	Thank	you	for	moral	support	and
encouragement.	Studying	Gamebox	source	code	taught	me	many	things	about	Gosu	and
game	development.

You	can	find	Julian,	Shawn	and	more	game	development	enthusiasts	in	#gosu	on
FreeNode.

And	most	importantly,	thank	you	for	reading	this	book!

https://github.com/jlnr
https://github.com/jlnr/gosu
https://github.com/shawn42
http://gamebox.io
https://freenode.net/

	Table of Contents
	A Boy Who Wanted To Create Worlds
	Why Ruby?
	What You Should Know Before Reading This Book
	What Are We Going To Build?
	Preparing The Tools
	Getting The Sample Code
	Other Tools
	Gosu Basics
	Warming Up
	Prototyping The Game
	Optimizing Game Performance
	Refactoring The Prototype
	Simulating Physics
	Implementing Health And Damage
	Creating Artificial Intelligence
	Making The Prototype Playable
	Dealing With Thousands Of Game Objects
	Implementing Powerups
	Implementing Heads Up Display
	Implementing Game Statistics
	Building Advanced AI
	Wrapping It Up
	Special Thanks

