








Data	Flow	Diagramming
by	Example

Process	Modeling	Techniques
for	Requirements	Elicitation

Thomas	Hathaway
Angela	Hathaway

©	2015	by	BA-Experts.

All	rights	reserved.	No	part	of	this	publication	may	be	reproduced,	stored	in	a	retrieval
system,	or	transmitted	in	any	form	or	by	any	means,	electronic,	mechanical,	photocopying,

recording,	or	otherwise	without	prior	permission	of	the	copyright	holder.

The	contents	of	this	publication	are	provided	in	good	faith	and	neither	The	Authors	nor
The	Publisher	can	be	held	responsible	for	any	errors	or	omissions	contained	herein.	Any
person	relying	upon	the	information	must	independently	satisfy	himself	or	herself	as	to	the
safety	or	any	other	implications	of	acting	upon	such	information	and	no	liability	shall	be

accepted	either	by	The	Author	or	The	Publisher	in	the	event	of	reliance	upon	such
information	nor	for	any	damage	or	injury	arising	from	any	interpretation	of	its	contents.

This	publication	may	not	be	used	in	any	process	of	risk	assessment.



Preface
This	eBook	was	neither	created	“For	Dummies®”	nor	“For	Complete	Idiots®”,	but	for
normal	people	in	the	real	world	to	give	them	a	basic	understanding	of	business	analysis
concepts	and	techniques.	Many	people	do	business	analysis	although	it	is	not	in	their	job
description.	Whether	you	are	the	CEO,	COO,	Director,	Manager,	or	on	the	front	lines,	you
may	be	involved	in	defining	how	technology	can	benefit	you	and	your	organization.	When
you	are	in	that	awesome	role,	you	are	at	that	time	“the	one	wearing	the	Business	Analysis
(BA)	hat”.

In	today’s	wired	world,	software	applications	often	take	center	stage	in	optimizing
workflow	and	increasing	productivity.	Unfortunately,	the	process	of	delivering	the	right
software	to	the	right	people	at	the	right	time	is	challenging	to	say	the	least.	This	eBook
presents	Data	Flow	Diagrams	(DFDs)	as	a	phenomenal	tool	for	visualizing	and	analyzing
dependencies	and	interactions	amongst	manual	and	automated	business	processes.	It
explains	what	a	DFD	is,	why	you	need	one,	and	how	to	create	it.	You	will	learn	the
benefits	of	process	visualization	for	the	business	community,	for	the	one	wearing	the	BA
hat,	for	those	tasked	with	developing	the	solution,	and	ultimately	for	the	entire
organization.	You	will	also	discover	how	DFDs	are	powerful	tools	for	recognizing	and
eliminating	two	of	the	major	problems	that	haunt	IT	projects,	namely	Scope	Creep	and
Project	Overruns	caused	by	late	project	change	requests.



About	the	Authors
Angela	and	Tom	Hathaway	have	authored	and	delivered	hundreds	of	training	courses	and
publications	to	thousands	of	business	analysts	around	the	world.	They	have	facilitated
numerous	requirements	discovery	sessions	for	information	technology	projects	under	a
variety	of	acronyms	(JAD,	ASAP,	JADr,	JRP,	etc.).

Based	on	their	personal	journey	and	experiences	reported	by	their	students,	they
recognized	how	much	anyone	can	benefit	from	a	basic	understanding	of	what	a	Data	Flow
Diagram	is,	what	they	represent,	who	needs	one,	and	how	to	get	started	creating	one.

Angela’s	and	Tom’s	mission	is	to	allow	anyone,	anywhere	access	to	simple,	easy-to-learn
techniques	by	sharing	their	experience	and	expertise	in	their	training	seminars,	blog	posts,
eBooks,	video	courses,	KnowledgeKnuggets™,	and	public	presentations.



Additional	Resources
The	contents	of	this	eBook	are	also	contained	in	our	instructor-led	training	which	we	offer
online	or	at	your	site.	Peruse	our	training	program.

http://businessanalysisexperts.com/instructor-led-online-business-analysis-training/


Table	of	Contents
Preface

About	the	Authors

Table	of	Contents

Introduction	to	Data	Flow	Diagrams	(DFDs)	for	the	Business

Business	Processes,	Data	Flows,	and	Value	Chains

Why	Create	a	Data	Flow	Diagram?

Modeling	the	Flow	of	Material	and	Data

Visualizing	Project	Scope

How	to	Identify	Internal	Processes	on	a	DFD

Getting	to	the	Next	Level

Mining	for	Processes

Drawing	a	Detail	Level	DFD

Discovering	Missing	Processes	and	Data

Detailed	Process	and	Data	Specifications

Optional	Process	Mini-Specs

Capturing	Data	Elements

Horizontal	Balancing	Reveals	Missing	Data	Elements

The	Power	of	Data	Flow	Diagrams

What	Does	the	Data	Flow	Diagram	Do	for	You?

A	Fully	Balanced	DFD

Creating	a	DFD	Fragment

Summary





Questions	answered	in	this	chapter:

What	is	a	Data	Flow	Diagram	(DFD)?

When	do	I	need	one?

Introduction	to	Data	Flow	Diagrams
(DFDs)	for	the	Business



Business	Processes,	Data	Flows,	and	Value	Chains

A	picture	really	is	worth	a	thousand	words,	especially	in	the	world	of	Business	Analysis
for	IT	projects.	Try	to	describe	workflows	or	business	processes	in	natural	language	and
the	chances	that	IT	will	deliver	the	solution	you	want	are	very	small	indeed.	The	challenge
is	what	picture	do	you	need	to	draw?

There	are	several	techniques	for	drawing	process	models	or	diagrams	at	various	levels	of
detail	and	each	has	a	specific	focus.	Data	Flow	Diagrams	(DFDs)	represent	the	workflow
or	steps	within	a	process	with	a	focus	on	the	flow	and	transformation	of	data.	You	can
create	DFDs	at	the	business	level	(as	in	this	example)	representing	business	processes	and
business	data	or	at	the	system	level	depicting	IT	applications,	databases,	and	files.	Since
we	are	talking	about	business	analysis,	our	focus	will	be	creating	and	using	data	flow
diagrams	at	the	business	level.

Every	business	process	is	a	more-or-less	complex	sequence	of	steps	that	changes
something	coming	in	to	create	something	new.	As	such,	the	process	needs	some	form	of
input,	which	could	be	information	or	any	other	resource.	By	definition,	a	data	flow
diagram	is	a	picture	of	how	the	depicted	processes	create,	consume,	transport,	and	store
data.	A	DFD	is	the	right	choice	for	business	process	modeling	if	you	need	to	understand
the	creation	and	use	of	data	within	the	individual	business	processes.	Those	processes	can
be	manual	or	automated;	it	does	not	matter	as	far	as	the	diagram	is	concerned.



Processes	use	input	to	create	output,	whether	the	output	is	something	altogether	new	or
simply	an	altered	version	of	the	original	input.	Since	the	process	adds	some	measurable
value	to	the	input,	we	often	refer	to	the	“value	chain”	of	the	organization.

Fundamentally,	any	diagram	is	simply	a	picture	with	constraints.	In	the	case	of	the	DFD,
the	constraints	are	which	symbols	you	can	use	and	what	each	symbol	means.	There	are
really	only	two	widely	used	conventions	for	drawing	DFDs	and	the	differences	are
minimal.	Both	allow	only	four	basic	symbols.

A	rounded	rectangle	(or	a	circle	depending	on	which	convention	you	follow)	represents	a
process	at	some	level	of	detail.	The	name	of	the	process	tells	us	what	the	process	does
(i.e.,	what	its	primary	function	is)	in	common	business	terms.	Since	functions	are	actions,
the	name	consists	of	an	active	verb	(what	is	done)	and	a	direct	object	(what	is	it	done	to	—
e.g.,	PROCESS	CREDIT	CARD,	SELL	PRODUCT,	CHECK	ITEM	PRICE).

As	you	can	see	from	the	examples,	the	named	process	can	be	at	any	level	of	detail,	from
the	very	high-level	(SELL	PRODUCT)	to	the	very	low-level	(CHECK	ITEM	PRICE).

Processes	Interact	with	Data

An	arrow	represents	a	data	flow,	meaning	information	coming	from	somewhere	and	going
somewhere	else.	Because	the	data	is	moving	from	somewhere	to	somewhere,	the	arrow
points	in	the	direction	of	movement.	Every	data	flow	has	to	have	a	name.	Because	it
represents	data	and	data	is	a	thing,	the	name	has	to	be	a	noun	with	or	without	appropriate
modifiers	(i.e.,	Credit	Card	Authorization,	Invoice,	Item	Number).	As	with	the	process,	the
named	data	flow	can	be	at	any	level	of	detail.



A	data	store	is	simply	data	at	rest.	It	is	not	going	anywhere	so	it	cannot	be	a	data	flow;	it	is
waiting	to	be	consumed	by	a	process.	A	data	store	is	not	necessarily	a	file	although	a	file	is
a	data	store	(like	a	square	is	a	rectangle	but	a	rectangle	is	not	necessarily	a	square).	A
special	symbol	consisting	of	a	small	square	with	the	top	and	bottom	lines	extending
outward	to	the	right	(or	simply	two	parallel	lines,	again	depending	on	convention)
represents	a	data	store.

A	DFD	Makes	Scope	Visible

A	simple	square	(with	or	without	an	optional	shadow)	represents	an	external	entity.	In	the
world	of	data	flow	diagramming,	an	external	entity	represents	a	person,	organization,	or
application	that	is	out	of	scope	for	the	project	from	the	perspective	of	the	DFD.
Specifically,	it	implies	that	the	represented	object	is	not	going	to	be	analyzed	or	impacted
by	any	project	using	this	diagram	although	data	flows	to	and	from	the	external	entity	have
to	be	analyzed.



Why	Create	a	Data	Flow	Diagram?

A	DFD	serves	multiple	purposes.	You	might	create	one	to	be	able	to	analyze	the	current
situation	with	the	goal	of	identifying	roadblocks	and	improving	efficiency.	You	might	also
create	one	to	present	and	discuss	the	process	with	others.	You	could	create	a	DFD	of	a
proposed	business	process	before	you	develop	detailed	processes	and	supporting	IT
applications	to	identify	potential	issues	before	they	occur.	Its	principle	use	is	presumably
to	identify,	document,	and	communicate	stakeholder	requirements	for	an	IT	project.

Fundamentally,	there	are	two	good	reasons	why	you	need	a	diagram.	First	off,	people	can
point	to	the	diagram	to	discuss	a	process	or	flow	instead	of	using	words	to	describe	what
they	mean.	The	diagram	represents	a	visual	mode	of	communication,	which	all	studies
show	is	much	more	effective	than	mere	words.	Pointing	power	proves	that	it	works.
Secondly,	studying	the	diagram	generates	questions	that	might	indicate	missing	steps	or
external	entities.	If	the	diagram	piques	your	curiosity,	it	is	well	worth	your	while	to
investigate	the	situation	to	find	an	answer.





Questions	answered	in	this	chapter:

What	is	a	Rigorous	Physical	Process	Model
(RPPM)	and	why	do	I	need	one?

What	symbols	does	it	use?

How	can	I	create	an	RPPM	from	interview
notes?

Modeling	the	Flow	of	Material	and	Data

A	Rigorous	Physical	Process	Model	shows	the	movement	of	physical	objects	and	data
amongst	the	units	in	an	organization.	The	idea	is	to	represent	the	real	world	as	closely	as
possible.	Given	that	the	proposed	information	technology	(IT)	solution	will	need	to	know
something	about	the	physical	objects,	these	will	have	to	be	represented	in	data	as	well.
The	power	of	an	RPPM	lies	in	its	simplicity.	It	only	allows	two	symbols,	a	circle	to
represent	people	or	places	and	an	arrow	representing	the	movement	of	physical	material	or
data.	This	simplicity	makes	it	easy	to	implement	and	it	is	an	ideal	precursor	to	a	Data
Flow	Diagram.

Now	that	you	know	the	symbols	for	creating	an	RPPM,	I	would	like	to	walk	you	through
the	exercise	of	analyzing	a	situation	to	create	one	using	a	standard	scenario	from	our
instructor-led	class.	FYI,	this	is	a	transcript	of	an	interview	with	the	Manager	of	the	Order
Entry	Department,	Mary	(the	project	sponsor).

Interview	Notes

The	customer	triggers	all	the	action	in	our
department.	We	receive	an	order	(with	or	without

payment),	a	complaint	or	a	payment	(with	or	without
invoice	copy)	from	the	customer.	These	are	separated

and	the	following	actions	take	place:

If	it	is	an	order,	we	verify	an	existing	customer’s
credit	status	and	then	we	verify	that	the	item	numbers

are	valid	by	checking	our	inventory	file.		New
customer’s	orders	are	sent	to	the	credit	department
and	held	until	they	clear	a	credit	check.		(If	half



payment	or	more	is	included,	that	order	is	treated	as	if
it	were	a	credit	order	with	good	credit.)

Valid	orders	are	accumulated	and	grouped	into
shipping	zones	and	transmitted	to	the	warehouse	to	be
filled.	After	an	order	is	filled,	the	customer	address	is
attached,	the	best	or	requested	shipping	method

determined,	postage	or	shipping	costs	calculated,	the
order	is	shipped,	and	the	warehouse	inventory	is
reduced.	A	copy	of	the	packing	slip	goes	to

accounting	where	an	invoice	is	created	and	sent	to	the
customer,	and	the	customer’s	account	updated.	Copies

of	orders	with	payments	and	payments	go	to
accounting,	where	the	payments	are	applied	to	the
customer’s	account.	The	item	inventory	is	officially

updated	in	accounting.

Customer	complaints	go	directly	to	customer
service.	They	research	the	situation	and	respond	to
the	customer	as	soon	as	possible.	Any	action	taken	by

customer	service,	which	affects	accounting	or
inventory,	is	passed	to	them	for	updating.	Possible
actions	are	a	new	order,	a	debit,	or	a	credit.	These

look	exactly	like	the	regular	order	process.	

My	approach	is	to	read	the	text	and	look	for	people	and	places	that	I	want	to	represent	in
my	RPPM.	When	I	find	a	noun,	I	decide	whether	it	names	a	person	or	place	on	my	process
model	or	simply	names	data	or	physical	material	I	need	to	track.	I’ll	try	my	best,	but	don’t
have	to	be	perfect	as	this	is	my	first	cut	at	it.

Interview	Notes

The	customer	triggers	all	the	action	in	our
department.	We	receive	an	order	(with	or	without

payment),	a	complaint,	or	a	payment	(with	or	without



invoice	copy)	from	the	customer.	These	are	separated
and	the	following	actions	take	place:

If	it	is	an	order,	we	verify	an	existing	customer’s
credit	status	and	then	we	verify	that	the	item	numbers

are	valid	by	checking	our	inventory	file.		New
customer’s	orders	are	sent	to	the	credit	department
and	held	until	they	clear	a	credit	check.	(If	half

payment	or	more	is	included,	that	order	is	treated	as	if
it	were	a	credit	order	with	good	credit.)

Valid	orders	are	accumulated	and	grouped	into
shipping	zones	and	transmitted	to	the	warehouse	to	be
filled.	After	an	order	is	filled,	the	customer	address	is
attached,	the	best	or	requested	shipping	method

determined,	postage	or	shipping	costs	calculated,	the
order	is	shipped,	and	the	warehouse	inventory	is
reduced.	A	copy	of	the	packing	slip	goes	to

accounting	where	an	invoice	is	created	and	sent	to	the
customer,	and	the	customer’s	account	updated.	Copies

of	orders	with	payments	and	payments	go	to
accounting,	where	the	payments	are	applied	to	the
customer’s	account.	The	item	inventory	is	officially

updated	in	accounting.

Customer	complaints	go	directly	to	customer
service.	They	research	the	situation	and	respond	to
the	customer	as	soon	as	possible.	Any	action	taken	by

customer	service,	which	affects	accounting	or
inventory,	is	passed	to	them	for	updating.	Possible
actions	are	a	new	order,	a	debit,	or	a	credit.	These

look	exactly	like	the	regular	order	process.	

I	usually	use	color-coding	while	I	am	doing	this,	so	as	you	see	here,	I	highlighted	five



nouns	that	I	think	represent	people	or	places	(our	department	–	aka	ORDER	ENTRY,
CREDIT	DEPARTMENT,	WAREHOUSE,	ACCOUNTING,	and	CUSTOMER
SERVICE)	and	the	CUSTOMER.	There	are	a	lot	of	other	nouns	in	the	narrative,	but	I
think	they	are	all	simply	things	I	may	need	to	keep	track	of,	so	I	am	going	to	ignore	them
for	now.	At	this	time,	I	am	only	interested	in	people	and	places	(in	this	case,
organizational	units)	where	the	data	might	come	from	or	go	to.

Since	the	text	indicates	that	everything	starts	with	the	customer,	I	start	my	diagram	by
drawing	a	circle	in	the	upper	left-hand	corner	of	the	page	and	labeling	it	CUSTOMER.
The	next	part	mentioned	in	the	narrative	is	‘our	department’,	so	I	draw	another	circle
diagonally	to	the	right	of	and	below	the	CUSTOMER	and	name	it	ORDER	ENTRY.	Since
I	will	add	flows	between	the	entities,	I	need	to	leave	room	enough	for	a	label	and	one	or
more	arrows	between	the	two	circles.	Analyzing	the	narrative,	I	see	that	ORDER	ENTRY
receives	Orders,	Payments,	and	Complaints	from	the	CUSTOMER,	so	I	draw	the	arrow
indicating	the	flow	from	the	CUSTOMER	to	ORDER	ENTRY	and	label	it	respectively.

Next,	I	read	several	things	that	ORDER	ENTRY	does	with	the	incoming	flow.	I	am	going
to	be	interested	in	these	specific	actions	later	(once	I	know	the	scope	of	this	project)	but
for	the	time	being,	I	am	ignoring	them.		All	I	am	really	interested	in	at	this	time	is	the	flow
of	data	between	departments	and	not	what	each	department	does	with	it.	Because	of	that,
the	next	flow	I	find	in	the	narrative	is	that	ORDER	ENTRY	sends	new	customer	orders	to
the	CREDIT	DEPARTMENT.	That	causes	me	to	add	a	circle	diagonally	above	and	to	the
right	of	the	ORDER	ENTRY	symbol,	labelling	it	CREDIT	DEPARTMENT,	adding	an
arrow	from	ORDER	ENTRY	to	the	CREDIT	DEPARTMENT,	and	labelling	the	arrow
New	Customer	Order.	Again,	I	need	to	make	sure	the	spacing	between	the	circles	leaves
room	for	the	arrow	and	its	label.



Reading	on,	I	note	that	valid	orders	are	transmitted	to	the	WAREHOUSE,	so	I	add	a	circle
labelled	“WAREHOUSE”	below	the	one	labelled	CREDIT	DEPARTMENT	and	add	a
Valid	Order	arrow	originating	from	ORDER	ENTRY.	As	you	can	by	now	surmise,	I	am
trying	to	draw	the	diagram	diagonally	from	the	upper	left	to	the	lower	right	of	the	page
following	the	flow	of	the	order	as	expressed	in	the	narrative.	The	major	reason	for	this	is
cultural.	English	and	many	other	languages	are	written	from	left	to	right	starting	at	the	top
of	the	page	and	continue	down	to	the	bottom.	If	my	diagram	conforms	to	this	convention,
it	is	easier	for	most	people	to	follow.

Back	to	the	narrative,	the	next	flow	of	data	that	I	note	is	the	WAREHOUSE	shipping	the
order	to	the	customer.	To	represent	this	flow,	I	could	draw	an	arrow	from	the
WAREHOUSE	around	the	CREDIT	DEPARTMENT	back	to	the	CUSTOMER	but	that
would	violate	my	left-to-right,	top-to-bottom	flow.	Since	I	consider	the	readability	of	the



diagram	to	be	critical,	I’m	going	to	‘cheat’	by	adding	a	second	circle	labelled
CUSTOMER	/2	(indicating	that	this	symbol	is	a	repeat)	diagonally	below	and	to	the	right
of	the	WAREHOUSE	symbol	and	insert	an	arrow	labelled	Shipment	from	the
WAREHOUSE	to	the	CUSTOMER	/2	symbol.	This	positioning	keeps	the	directional	flow
intact.

Next,	I	read	a	copy	of	the	Packing	Slip	goes	from	the	WAREHOUSE	to	ACCOUNTING,
so	I	add	an	appropriately	labelled	circle	below,	to	the	left	of	the	WAREHOUSE	symbol,
and	add	the	flow	Copy	of	Packing	Slip	from	the	WAREHOUSE	to	ACCOUNTING.
ACCOUNTING	sends	an	invoice	to	the	customer	which	I	represent	with	an	arrow	labelled
invoice	from	ACCOUNTING	to	CUSTOMER	/2,	again	maintaining	the	proper	reading
direction	of	the	diagram.	When	I	read	‘copies	of	orders	with	payments	and	payments	go	to
accounting’,	I	have	to	backtrack	to	the	beginning	of	the	narrative	to	discover	that	these	are
coming	from	the	CUSTOMER	to	ORDER	ENTRY,	so	this	simply	adds	a	new	flow	from
ORDER	ENTRY	to	ACCOUNTING	with	the	label	Copy	of	Order	with	Payment,
Payments.	Updating	the	Item	Inventory	is	internal	to	ACCOUNTING,	so	it	does	not
concern	me	here.



The	final	paragraph	is	a	bit	more	confusing.	First	off,	complaints	go	directly	to
CUSTOMER	SERVICE.	Again,	by	rereading	the	first	paragraph,	I	recognize	that	ORDER
ENTRY	received	the	complaints,	so	I	add	the	arrow	complaints	going	from	ORDER
ENTRY	to	CUSTOMER	SERVICE.	CUSTOMER	SERVICE	sends	a	Response	to	the
customer	which	is	an	arrow	between	CUSTOMER	SERVICE	and	CUSTOMER	/2.	In
reading	the	actions	CUSTOMER	SERVICE	takes,	I	conclude	that	I	also	need	a	flow
labeled	Debit	or	Credit	from	CUSTOMER	SERVICE	to	ACCOUNTING	and	a	New
Order	flow	from	CUSTOMER	SERVICE	back	to	the	ORDER	ENTRY	department	(which
makes	these	“look	exactly	like	the	regular	order	process”	as	expressed	in	the	interview
notes).



I	now	have	a	picture	of	the	process	depicted	in	the	interview	notes	from	Mary.	I	can	use	it
to	present	the	process	to	any	audience.	We	can	focus	our	discussions	about	the	process	by
pointing	at	the	various	units	and	flows.	A	simple,	clear	picture	like	this	increases
comprehension	and	retention.	Once	I	have	gained	Mary’s	approval	that	my	diagram	is	an
accurate	representation	of	the	process	flow,	we	can	initiate	the	process	of	morphing	this
Rigorous	Physical	Process	Model	into	a	legitimate	Data	Flow	Diagram.





Questions	answered	in	this	chapter:

What	is	the	difference	between	a	Rigorous
Physical	Process	Model	and	a	Context-Level
DFD?

How	can	I	convert	the	RPPM	to	a	legitimate
DFD?

Why	is	this	conversion	necessary?

Visualizing	Project	Scope

At	this	point,	I	have	a	great	diagram	of	the	situation	described	in	the	narrative.	The
problem	is	that	it	does	not	follow	the	rules	governing	symbols	on	a	Data	Flow	Diagram.
All	I	have	are	circles	with	NOUN	names	but	according	to	the	rules,	circles	represent
PROCESSES	on	a	DFD	and	PROCESSES	have	to	have	a	VERB/OBJECT	name	(do
something	to	something)!	The	reason	for	this	is	that	I	drew	the	Rigorous	Physical	Process
Model	without	knowing	which	of	these	depicted	people	and	places	are	in	scope	for	my
project	and	which	are	not.	I	need	to	get	an	answer	to	the	scope	question	to	convert	this
Rigorous	Physical	Process	Model	to	a	Context	Data	Flow	Diagram.

As	the	one	wearing	the	BA	hat,	I	cannot	make	a	decision	regarding	the	scope	of	the
project.	That	decision	ultimately	has	to	be	made	by	the	project	sponsor	(the	common	title
for	the	individual	in	the	organization	who	is	funding	the	project).	Mary	is	our	project
sponsor	and	the	Department	Manager	of	Order	Entry.	Her	authority	is	limited	to	anything
the	Order	Entry	Department	does.	Based	on	her	authority,	I	can	now	convert	my	initial
diagram	by	following	a	few	simple	rules.	First	off,	since	ORDER	ENTRY	is	in	scope	for
my	project,	I	need	to	change	the	noun	ORDER	ENTRY	to	a	VERB/OBJECT	to	make	it	a
legitimate	function.	What	I	look	for	is	the	primary	function	that	ORDER	ENTRY
performs	and	Mary	agrees	that	their	primary	function	is	to	ENTER	ORDERS.



By	changing	the	name	of	the	circle	from	the	department	ORDER	ENTRY	to	the	function
ENTER	ORDERS,	I	not	only	have	a	legitimate	function,	I	also	made	a	critical
psychological	shift.	As	the	project	progresses,	I	am	going	to	analyze	what	happens	inside
the	ENTER	ORDERS	process	which	will	lead	to	the	recognition	that	there	are	several
problems	with	how	the	unit	currently	processes	orders	(that’s	why	the	project	was
initiated).

If	I	leave	the	name	of	the	object	ORDER	ENTRY,	I	would	be	accusing	the	department	of
making	errors,	which	leads	to	pointing	fingers	and	making	accusations.	This	can	result	in
a	lot	of	pushback	from	the	employees	in	the	department	as	they	feel	unjustly	criticized.
Having	changed	the	name	from	the	department	to	the	function,	I	can	critically	analyze	the
ENTER	ORDERS	function	and	find	flaws	in	it.	In	this	case,	the	same	employees	will	join
in	enthusiastically	because	the	problems	are	caused	by	the	process	and	it	is	not	their	fault.
This	seemingly	simple	step	can	literally	make	or	break	the	project.

Next,	I	convert	all	other	circles	on	the	diagram	to	squares	to	turn	them	into	legitimate
external	entities	to	get	to	an	almost	legitimate	DFD.	The	only	remaining	problem	is	that
the	diagram	violates	a	simple	but	powerful	rule	of	data	flow	diagramming,	namely	that
flows	between	two	external	entities	are	logically	out	of	scope	(since	both	ends	of	the	flow
are	out	of	scope).



To	comply	with	that	rule,	I	eliminate	the	Debit	or	Credit	flow	from	CUSTOMER
SERVICE	to	ACCOUNTING	and	the	flow	Response	from	CUSTOMER	SERVICE	to
CUSTOMER	/2.	I	can	further	ignore	the	Shipment	flow	from	the	WAREHOUSE	to
CUSTOMER	/2,	the	Copy	of	Packing	Slip	from	the	WAREHOUSE	to	ACCOUNTING,
and	the	Invoice	flow	from	ACCOUNTING	to	CUSTOMER	/2.	After	eliminating	all	of
these	out-of-scope	flows,	I	see	that	the	CUSTOMER	/2	entity	I	had	added	to	maintain	the
logical	left-to-right,	top-down	flow	is	unnecessary	since	it	is	no	longer	involved	in	any
data	flows,	so	I	can	also	delete	it.



I	now	have	a	perfectly	legitimate	Context	Level	Data	Flow	Diagram	(aka	a	“Context
Diagram”,	a	“Level		O	(Zero)	DFD”,	or	sometimes	a	“Level	1	DFD”)	for	the	project.	Note
that	every	flow	on	the	diagram	either	goes	into	or	comes	out	of	the	one	process	on	the
diagram	that	is	in	scope,	namely	ENTER	ORDERS.	That	is	one	of	the	hallmarks	of	a	good
Context	Level	DFD.	Its	primary	reason	for	being	is	to	manage	the	scope	of	the	project.
Assuming	my	diagram	is	an	accurate	representation	of	the	situation,	anything	done	during
the	ENTER	ORDERS	process	is	in	scope	and	subject	to	change;	everything	else	is	out	of
scope	for	this	project.	If	anyone	starts	to	discuss	problems	with	selecting	the	best	shipping
method	for	a	shipment	(based	on	the	narrative	this	is	done	in	the	WAREHOUSE),	I	point
to	the	diagram	to	show	why	that	problem	is	irrelevant	to	the	current	scope	of	the	project
and	therefore	we	should	not	spend	project	resources	discussing	it.

When	I	look	at	this	diagram,	I	recognize	a	different	problem.	I	am	sending	New	Customer
Orders	to	the	CREDIT	DEPARTMENT	where	according	to	the	narrative	they	are	‘held
until	they	clear	a	credit	check’.	That	begs	the	question,	‘What	happens	to	them	once	they
have	cleared	the	credit	check?’	What	does	the	CREDIT	DEPARTMENT	do	with	them?
When	I	pose	that	question	to	my	project	sponsor,	she	explains	that	the	CREDIT
DEPARTMENT	sends	approved	orders	back	to	ORDER	ENTRY,	which	ODER	ENTRY
has	to	continue	processing	the	same	as	other	orders	from	known	customers	with	good
credit.	That	fact	causes	me	to	add	the	flow	Credit	OK	Orders	from	the	CREDIT
DEPARTMENT	to	the	ENTER	ORDERS	process.



As	a	side	note,	it	is	not	unusual	to	discover	missing	flows	such	as	this	once	you	start	to
work	with	the	Context	Level	DFD.	The	earlier	in	the	project	that	you	can	identify	them,
the	cheaper	it	is	to	incorporate	them	into	your	project	work.	By	the	way,	if	you	identified
this	issue	while	you	were	creating	the	original	diagram	and	added	this	flow	at	that	time,
kudos,	you	are	one	step	ahead	of	me.





Questions	answered	in	this	chapter:

What	does	“exploding	a	process”	mean?

What	is	the	business	value	of	doing	it?

What	processes	will	the	lower	level	diagram
contain?

How	to	Identify	Internal	Processes	on	a
DFD



Getting	to	the	Next	Level

As	revealing	and	useful	as	a	Context	Diagram	may	be,	it	is	certainly	lacking	a	lot	of	detail.
In	Data	Flow	Diagramming	lingo,	the	detail	is	revealed	by	“exploding”	or	“levelling”
complex	processes	(e.g.	ORDER	GOODS)	to	identify	internal	processes	and	flows	that
are	not	visible	at	the	higher	level.	By	exploding	a	process,	you	will	also	identify	internal
data	stores,	meaning	places	where	the	data	just	sits	within	the	process	waiting	until	it	is
used	by	another	process.	Delving	into	this	level	of	detail	may	allow	you	to	discover
additional	missing	flows	such	as	the	Credit	OK	Orders	flow	we	dealt	with	previously.

Each	of	these	internal	processes	creates	and	consumes	specific	data.	If	you	draw	a	data
flow	diagram	at	this	more	detailed	level,	you	uncover	internal	data	flows	and	data	stores
that	are	more	specific	and	detailed	as	well.	Any	process	at	any	level	of	detail	is	a	potential
candidate	for	exploding.	The	only	factor	to	consider	is	whether	you	understand	the	process
sufficiently	to	predict	how	change	will	affect	it.

For	example,	to	analyze	how	the	ENTER	ORDERS	process	works,	I	need	details.	To
represent	it,	I	am	going	to	look	inside	the	ENTER	ORDERS	process	and	define	how	it
currently	works.



Mining	for	Processes

Given	that	all	I	have	at	this	time	are	my	interview	notes	from	the	project	sponsor,	I	start	by
analyzing	them	to	find	these	lower-level	details.	Specifically,	I	am	looking	for	actions	that
represent	lower	level	processes	performed	within	ENTER	ORDERS.	We	express	actions
as	verbs,	but	the	verbs	have	to	pass	a	couple	of	other	tests	before	I	will	consider	them
candidates	for	a	process	on	my	detail-level	diagram:

1.	 Verb-Object

I	will	only	accept	verbs	in	their	active	voice	(e.g.,	‘enter	orders’	is	active	whereas
‘orders	are	entered’	is	passive).	When	I	find	a	verb	in	the	passive	voice,	I	convert
it	to	active	voice	to	evaluate	if	it	is	a	legitimate	process.	Specifically,	I	try	to	give
each	prospect	a	proper	active-verb-direct-object	name	as	recommended	for
naming	processes	on	a	DFD	(e.g.,	Check	Inventory,	Separate	Mail).

2.	 Transforming	Action

The	stated	action	has	to	do	something	that	will	ultimately	be	represented	in	the
form	of	data,	meaning	it	transforms	incoming	data	into	outgoing	data.	If	the
action	affects	physical	material	(e.g.,	‘Shipment’),	the	application	will	have	to
know	something	about	the	material	and	that	something	will	also	be	data	in	some
form	or	another.

3.	 In	Scope

The	action	has	to	be	within	the	scope	of	the	process	I	am	analyzing	(in	this	case,
Enter	Orders).

Only	if	the	action	passes	all	three	rules	will	I	consider	it	as	a	potential	internal	process.

To	make	sure	that	my	lower	level	diagram	is	an	accurate	depiction	of	how	the	ENTER
ORDERS	process	really	works	today,	I	involve	a	representative	from	the	group	who
actually	does	the	work.	Managers	such	as	Mary	typically	do	not	need	to	know	the	level	of
detail	I	need.	Assuming	they	were	promoted	from	the	ranks,	they	probably	know	how	they
did	the	work	back	then	but	they	may	not	be	up	to	date	on	exactly	how	the	work	is	done
today.		To	get	a	truly	accurate	and	current	picture	of	the	ENTER	ORDERS	process,	I
review	the	narrative	and	identify	the	internal	processes	with	Paul,	an	Order	Entry	Clerk.
Since	processes	on	a	DFD	are	actions,	we	simply	look	for	verbs	stating	or	implying
actions	and	then	apply	my	three	rules.	Here	is	a	list	of	the	candidates	we	identify	in	our
analysis	of	the	interview	notes.

Interview	Notes

The	customer	triggers	all	the	action	in	our
department.	We	receive	an	order	(with	or	without

payment),	a	complaint,	or	a	payment	(with	or	without



invoice	copy)	from	the	customer.	These	are	separated
and	the	following	actions	take	place:

If	it	is	an	order,	we	verify	an	existing	customer’s
credit	status	and	then	we	verify	that	the	item	numbers

are	valid	by	checking	our	inventory	file.		New
customer’s	orders	are	sent	to	the	credit	department
and	held	until	they	clear	a	credit	check.		(If	half

payment	or	more	is	included,	that	order	is	treated	as	if
it	were	a	credit	order	with	good	credit.)

Valid	orders	are	accumulated	and	grouped	into
shipping	zones	and	transmitted	to	the	warehouse	to	be

filled.	After	an	order	is	filled,	…

After	applying	our	aforementioned	rules,	the	following	picture	emerges:

An	analysis	of	the	remaining	interview	notes	does	not	reveal	any	additional	actions	that



are	in	scope	AND	transform	data.	As	you	can	see,	out	of	the	rather	lengthy	interview	notes
from	Mary	we	actually	identified	only	four	internal	processes	that	are	part	of	the	ENTER
ORDERS	process:

SORT	MAIL

										VERIFY	CREDIT

										VALIDATE	ITEMS

										GROUP	VALID	ORDERS

A	Level	2	Data	Flow	Diagram	will	show	how	these	four	internal	processes	transform	the
incoming	flows	to	create	all	outgoing	flows.	While	drawing	the	diagram,	we	may	discover
missing	flows	and/or	missing	internal	processes.	That	is	not	a	bad	thing;	it	is	one	of	the
major	benefits	of	exploding	or	leveling	a	process.





Questions	answered	in	this	chapter:

What	is	a	simple	approach	for	drilling	down
into	a	process?

Why	do	it	and	where	can	I	start?

How	can	I	show	the	internal	processes	and
flows	that	produce	the	results?

Drawing	a	Detail	Level	DFD

Looking	at	the	Context	diagram,	the	“Orders,	Complaints,	and	Payments”	data	flow	from
the	CUSTOMER	is	where	it	all	starts	and	looking	at	our	list	of	potential	internal
processes,	SORT	MAIL	appears	to	be	the	first	step	in	the	process.

The	customer	triggers	all	the	action	in	our
department.	We	receive	an	order	(with	or	without

payment),	a	complaint,	or	a	payment	(with	or	without
invoice	copy)	from	the	customer.	These	are	separated

and	the	following	actions	take	place:

Therefore,	I	start	my	detailed	diagram	on	the	left	side	of	a	new	sheet	of	paper	with	the
Orders,	Complaints,	and	Payments	flow	coming	from	the	left	into	the	process	SORT
MAIL.	By	the	way,	data	flow	diagrams	tend	to	grow	wide	as	opposed	to	high	so	I	suggest
drawing	the	diagram	in	‘Landscape’	orientation.	With	that	layout	option,	I	am	going	to	try
to	simply	draw	the	diagram	horizontally	across	the	middle	of	the	page,	leaving	space	both
above	and	below	the	symbols	for	additional	information	that	I	somehow	always	need.

Note	that	I	am	exploding	a	process	ENTER	ORDERS	from	a	higher	level	diagram	which
clearly	shows	the	Orders,	Complaints,	and	Payments	data	flow	coming	from	the	external
entity	CUSTOMER.	Technically	speaking,	I	do	not	have	to	repeat	the	external	entity
symbol	on	the	lower	level	diagram	—	but	I	will	if	it	adds	clarity.

Based	on	Paul’s	explanation	of	what	the	SORT	MAIL	process	entails,	I	add	three	separate
flows	Orders,	Complaints,	Payments	as	the	outcome	of	the	process.	Since	my	primary
interest	is	the	Orders,	that	is	the	data	flow	going	out	to	the	right	of	the	process.	The	other
two	secondary	flows	come	out	of	the	lower	part	of	the	process	symbol.



Based	on	the	narrative,	the	next	step	in	the	process	is	VERIFY	CREDIT	so	I	add	a	process
with	that	name	to	the	right	of	the	SORT	MAIL	process	with	the	Orders	data	flow	coming
into	it	from	the	left.

Interview	Notes

If	it	is	an	order,	we	verify	an	existing	customer’s
credit	status	and	then	we	verify	that	the	item	numbers

are	valid	by	checking	our	inventory	file.	New
customer’s	orders	are	sent	to	the	credit	department
and	held	until	they	clear	a	credit	check.	(If	half

payment	or	more	is	included,	that	order	is	treated	as	if
it	were	a	credit	order	with	good	credit.)

The	verb	‘Verify’	on	a	process	model	always	implies	two	inputs.	I	need	something	to
verify	(in	this	case	the	customer	info	from	the	Order)	and	something	to	verify	it	against.
The	narrative	does	not	state	what	that	is	but	Paul	explains	to	me	that	he	verifies	a
customer’s	credit	status	by	checking	the	CUSTOMERS	data	store.



This	revelation	causes	me	to	add	the	data	store	CUSTOMERS	above	the	VERIFY
CREDIT	process	and	the	data	flow	Customer	Credit	Status	from	CUSTOMERS	to
VERIFY	CREDIT.	Drawing	this	forces	me	to	ask	Paul	what	happens	if	the	customer	is	not
in	the	CUSTOMERS	data	store?	“Well,	that	would	mean	it	is	a	new	customer	in	which
case	we	send	the	order	over	to	the	CREDIT	DEPARTMENT	for	a	credit	check,”	Paul
replies.

I	represent	this	knowledge	by	adding	a	data	flow	labeled	New	Customer	Order	coming	out
of	the	bottom	of	the	VERIFY	CREDIT	process.	Since	the	flow	with	that	name	is	shown	on
the	Context	Diagram	going	from	ENTER	ORDERS	to	the	CREDIT	DEPARTMENT,	I	do
not	have	to	draw	the	external	entity	CREDIT	DEPARTMENT	on	my	detailed	diagram
(but	I	will	if	it	adds	clarity).

Customers	with	good	credit	go	to	the	next	process,	which	our	narrative	indicates	is	the
VALIDATE	ITEMS	process	so	I	add	Credit	OK	Orders	coming	out	of	the	right-hand	side
of	the	VERIFY	CREDIT	process	going	into	the	left	side	of	the	new	VALIDATE	ITEMS
process.

Interview	Notes

If	it	is	an	order,	we	verify	an	existing	customer’s
credit	status	and	then	we	verify	that	the	item	numbers



are	valid	by	checking	our	inventory	file.	New
customer’s	orders	are	sent	to	the	credit	department
and	held	until	they	clear	a	credit	check.	(If	half

payment	or	more	is	included,	that	order	is	treated	as	if
it	were	a	credit	order	with	good	credit.)

That	begs	the	question,	“What	happens	to	customers	with	bad	credit?”	which	Paul
explains	are	also	sent	to	the	CREDIT	DEPARTMENT.	This	adds	the	flow	Credit	NOK
Orders	drawn	parallel	to	the	New	Customer	Orders	flow	below	the	process.	Since	both
data	flows	are	going	to	the	CREDIT	DEPARTMENT,	I	add	that	external	entity	to	the
diagram	to	make	it	visible	at	this	level.

Having	done	that,	I	refer	back	to	the	context	diagram	and	see	the	Credit	OK	Orders	data
flow	coming	from	the	CREDIT	DEPARTMENT	once	a	new	customer	has	cleared	a	credit
check.	I	ask	Paul	and	he	explains	that	these	orders	go	directly	into	the	VALIDATE	ITEMS
process	the	same	as	the	Credit	OK	Orders	coming	from	our	internal	VERIFY	CREDIT
process.	I	can	simplify	my	diagram	then	by	merging	the	two	incoming	flows	and
removing	the	name	from	the	data	flow	from	the	CREDIT	DEPARTMENT.	I	like	to	keep
the	diagram	as	‘clean’	as	possible	as	too	much	clutter	confuses	people.	If	two	flows	are
identical,	I	would	like	to	have	the	name	of	the	data	flow	on	the	diagram	where	the	two



become	one.

According	to	the	narrative,	the	VALIDATE	ITEMS	process	needs	access	to	an
INVENTORY	file,	so	we	add	the	data	store	symbol	with	that	name.	When	I	ask	Paul	what
they	need	from	the	INVENTORY	file	to	verify	the	item	numbers,	he	replies	Item	Numbers
and	Descriptions,	so	I	add	that	flow	from	INVENTORY	to	VALIDATE	ITEMS.

The	action	‘validate’	is	just	like	‘verify’	in	that	there	will	always	be	two	possible
outcomes,	a	good	and	a	bad.	Orders	on	which	all	item	numbers	are	valid	are	called	Valid
Orders	and	these	are	accumulated	—	which	is	not	a	legitimate	internal	process	but	implies
a	data	store.	I	add	the	data	flow	Valid	Orders	going	out	the	right	side	of	VALIDATE	ITEMS
into	a	new	data	store	with	the	same	name.

Another	convention	of	DFD’s	states	that	if	the	data	flow	going	into	a	data	store	has	the
same	name	as	the	data	store	itself,	I	do	not	have	to	name	the	data	flow	as	it	is	self-evident.
Removing	the	name	from	the	flow	allows	me	to	shorten	the	arrow	and	move	the	data	store
VALID	ORDERS	closer	to	VALIDATE	ITEMS,	which	frees	up	space	for	one	more
process.

First,	however,	I	have	to	ask	Paul	what	happens	if	there	is	a	mismatch	between	an	item
number	and	description	on	the	order	and	the	item	number	and	description	on	the
INVENTORY	file.	He	replies	that	would	make	it	an	Invalid	Order	which	they	send	to
CUSTOMER	SERVICE	so	they	can	contact	the	customer	to	clarify	exactly	what	the
customer	intended	to	order.	Since	this	revelation	is	new	to	me,	I	add	the	external



CUSTOMER	SERVICE	below	the	VALIDATE	ITEMS	process	as	the	recipient	of	the
Complaints	flow	and	add	the	data	flow	Invalid	Orders	coming	from	VALIDATE	ITEMS
to	CUSTOMER	SERVICE.

As	always	when	I	discover	a	new	flow	to	an	external,	I	need	to	ask	the	follow-on	question,
“Do	you	get	anything	back?”

“Sure,	we	get	a	Valid	Order	back	from	CUSTOMER	SERVICE,”	Paul	replies.

“And	what	do	you	do	with	that	Valid	Order?”

“It	goes	directly	into	the	VALID	ORDERS	pile	just	like	those	orders	that	passed	the
VALIDATE	ITEM	test.”

This	statement	adds	the	flow	from	CUSTOMER	SERVICE	to	the	data	store	VALID
ORDERS.	Again,	since	the	data	flow	and	the	data	store	have	the	same	name,	I	do	not	put
the	name	on	the	data	flow.



The	final	internal	process	on	our	list	of	candidates	is	GROUP	ORDERS	and	the	narrative
confirms	that	valid	orders	are	‘grouped	into	shipping	zones’,	so	I	add	a	process	GROUP
ORDERS	to	the	diagram	and	add	a	data	flow	coming	from	the	VALID	ORDERS	data
store.

Interview	Notes

Valid	orders	are	accumulated	and	grouped	into
shipping	zones	and	transmitted	to	the	warehouse	to	be
filled.	After	an	order	is	filled,	the	customer	address	is
attached,	the	best	or	requested	shipping	method

determined,	postage	or	shipping	costs	calculated,	the
order	is	shipped,	and	the	…

My	discussion	with	Paul	reveals	that	SHIPPING	ZONES	is	a	data	store,	which	I	add
above	the	process	GROUP	ORDERS	and	connect	the	two	with	a	data	flow	down	to	the
process.



The	phrase	‘transmitted	to	the	warehouse’	represents	a	flow	from	the	GROUP	ORDERS
process	to	the	WAREHOUSE.

Interview	Notes

Valid	orders	are	accumulated	and	grouped	into
shipping	zones	and	transmitted	to	the	warehouse	to	be
filled.	After	an	order	is	filled,	the	customer	address	is
attached,	the	best	or	requested	shipping	method

determined,	postage	or	shipping	costs	calculated,	the
order	is	shipped,	and	the	…

Logically,	we	name	the	data	flow	Groups	of	Valid	Orders	to	indicate	that	both	the
validation	and	grouping	processes	are	complete.	As	per	convention,	I	can	either	put	the
WAREHOUSE	entity	on	the	diagram	or	leave	it	off,	as	it	is	obvious	on	the	context
diagram.



The	next	sentences	in	the	interview	notes	from	Mary	describe	what	the	WAREHOUSE
then	does	with	the	order.	The	WAREHOUSE	might	be	of	interest	if	I	decide	to	create	a
data	flow	diagram	of	the	order	fulfillment	process,	but	in	that	case,	I	would	really	have	to
talk	to	someone	in	the	WAREHOUSE	to	make	sure	I	understand	that	process.	Since	the
WAREHOUSE	is	an	external	entity,	I	do	not	have	to	worry	about	that	for	this	project.

At	this	point,	we	have	used	all	of	the	internal	processes	we	identified	in	our	initial	analysis
of	the	interview	notes.	Looking	at	the	diagram,	I	notice	that	every	flow	leaving	one	of	the
internal	processes	goes	to	an	external	entity	at	this	level	with	the	exception	of	the
Payments	flow,	so	I	add	ACCOUNTING	to	the	diagram	to	make	it	consistent.		Voila,	we
now	have	a	first	cut	data	flow	diagram	of	how	the	ENTER	ORDERS	process	works.	The
only	question	is,	how	can	we	confirm	that	it	is	complete?







Questions	answered	in	this	chapter:

What	does	balancing	a	Data	Flow	Diagram
mean?

What	is	the	business	value	of	balancing?

What	is	the	most	efficient	approach	to
balancing	a	DFD?

Discovering	Missing	Processes	and	Data

To	confirm	that	it	is	indeed	correct	and	complete,	the	next	step	is	to	‘balance’	the	two
diagrams.	What	does	that	mean?

There	are	actually	two	steps	to	balance	the	individual	levels	of	DFDs.	The	first	step	is	very
simple	in	that	you	are	comparing	flows	entering	and	leaving	the	detail	level	diagram	with
the	higher	level	diagram.	To	do	that,	I	need	to	be	able	to	view	both	diagrams	at	the	same
time.

In	our	example,	we	exploded	the	ENTER	ORDERS	process	from	the	context	diagram.	If	I
now	compare	the	exploded	version	with	the	context	version,	logic	dictates	that	all	flows
going	into	or	coming	out	of	the	ENTER	ORDERS	process	on	the	context	diagram	have	to
show	up	on	the	exploded	version	going	into	or	coming	from	one	of	the	more	detailed
processes	at	that	level	and	vice	versa.

I	find	it	simplest	to	balance	starting	at	the	upper	level	and	comparing	flows	clockwise
from	that	diagram	to	make	sure	they	all	appear	on	the	lower	level.	I	check	the	flows	off	on
both	diagrams	as	I	go	to	have	a	visible	trail	and	ensure	that	I	am	not	missing	anything.
Looking	at	the	context	diagram,	I	see	Orders,	Payments,	Complaints	coming	from
customer	into	ENTER	ORDERS.	I	see	the	same	flow	on	the	detailed	view	coming	from



CUSTOMER	into	SORT	MAIL.	These	flows	are	the	same;	therefore,	I	put	a	checkmark	on
them	on	each	diagram.

Continuing	clockwise	around	ENTER	ORDERS	on	the	Context	Level	diagram,	I	see	a
New	Customer	Order	going	to	the	CREDIT	DEPARTMENT.	I	see	the	same	flow	in	the
same	direction	on	the	lower	level	diagram,	so	I	check	those	off.	I	also	see	matching	Credit



OK	Orders	coming	back	from	the	CREDIT	DEPARTMENT	and	can	check	them	off	as
well.

Next	I	see	Valid	Orders	going	from	ENTER	ORDERS	to	the	WAREHOUSE.	On	the
detailed	diagram,	I	see	Groups	of	Valid	Orders	going	to	the	WAREHOUSE.	After
confirming	with	Paul	that	that	is	the	only	data	flow	to	the	warehouse,	I	would	like	to
remove	the	discrepancy	to	avoid	misinterpretation.	Since	the	detailed	level	is	more
specific,	I	change	the	context	diagram	to	read	Groups	of	Valid	Orders	and	check	both
flows	off.

On	the	context	diagram,	the	next	flow	out	of	ENTER	ORDERS	is	the	Copy	of	Order	with
Payment,	Payments	being	sent	to	ACCOUNTING.	On	the	detail	level	I	see	Payments
going	from	SORT	MAIL	to	ACCOUNTING,	so	I	can	check	off	that	part	of	the	flow,	but
what	about	the	other	half?	It	appears	that	we	missed	something.



I	ask	Paul	where	the	Copy	of	Order	with	Payment	comes	from	and	he	explains	that
ACCOUNTING	requested	a	copy	of	any	order	that	has	an	attached	payment.	As	a	result,
while	they	sort	the	mail,	they	separate	orders	with	payment	from	orders	without	payment.
Once	they	are	done	sorting,	they	go	through	the	stack	with	attached	payments,	remove
attached	checks	from	orders,	make	a	physical	copy	of	that	order,	attach	the	check	to	the
copy,	and	put	the	copy	of	the	order	with	the	attached	check	on	the	stack	of	payments
destined	for	ACCOUNTING.	If	the	attached	payment	is	at	least	half	of	the	total	order
price,	the	original	order	is	stamped	“Credit	OK”	and	sent	directly	to	the	VALIDATE
ITEMS	process,	bypassing	the	VERIFY	CREDIT	process.

This	additional	information	creates	a	problem.	Obviously,	we	missed	this	little	nuance	in
our	original	analysis,	so	we	have	no	choice	but	to	correct	the	lower	level	diagram	to	reflect
the	newly	discovered	facts.	We	add	a	process	COPY	ORDERS	w/$	between	SORT	MAIL
and	ACCOUNTING.	We	add	a	flow	Orders	w/$	from	SORT	MAIL	to	COPY	ORDERS
w/$	and	then	add	the	outgoing	flows	Copied	Orders	w/$	to	ACCOUNTING,	Original
Order	to	VERIFY	CREDIT,	and	Credit	OK	ORDERS	flow	to	the	VALIDATE	ITEMS
process.	I	have	to	change	the	Order	flow	between	SORT	MAIL	and	VERIFY	CREDIT	to
read	Orders	w/o	$.	In	addition,	I	change	the	context	diagram	flow	Copy	of	Order	with
Payment,	Payments	to	read	Copied	Orders	W/$,	Payments	and	check	matching	flows	off
on	both	diagrams.



That	is	a	great	example	of	how	exploding	and	leveling	a	data	flow	diagram	can	identify	a
missing	process.

Back	to	the	context	diagram,	I	see	a	New	Order	coming	in	from	CUSTOMER	SERVICE.
On	the	detail	view,	I	have	a	Valid	Order	and	a	Credit	OK	Order	both	coming	from
CUSTOMER	SERVICE.	Which	is	the	New	Order?	Paul	explains	that	the	New	Order	is
one	that	CUSTOMER	SERVICE	creates	in	response	to	a	complaint.	It	is	considered	a
Credit	OK	Order	by	the	Order	Entry	Department	and	they	just	check	the	item	numbers,	so
I	change	the	New	Order	flow	on	the	context	diagram	to	read	Credit	OK	Order	and	mark
those	two	flows	off.	Note,	I	can	only	mark	the	Credit	OK	Order	from	CUSTOMER
SERVICE	off	on	the	detailed	diagram	although	I	have	three	other	flows	on	that	diagram
that	are	all	named	Credit	OK	Orders.	I	also	mark	the	matching	flows	Complaints	going
from	ENTER	ORDERS	to	CUSTOMER	SERVICE	on	both	diagrams.

Having	completed	that	step,	I	am	satisfied	that	all	flows	that	are	on	the	context	diagram
involving	ENTER	ORDERS	are	taken	care	of.	What	about	the	opposite,	have	I	checked	off
all	of	the	flows	coming	into	or	leaving	the	detailed	diagram?	Here	I	am	only	interested	in
flows	that	are	between	the	detailed	processes	and	external	entities	and	can	ignore	the



internal	flows	between	processes.

Starting	with	the	data	flow	Orders,	Payments,	Complaints	coming	from	the	CUSTOMER,
I	proceed	clockwise	around	the	lower-level	diagram	to	see	if	there	are	any	unmatched
flows.	I	note	an	Invalid	Items	data	flow	going	to	CUSTOMER	SERVICE	that	has	no
match	at	the	context	level.	Confirming	with	Paul	that	the	detailed	view	is	correct,	I	simply
have	to	add	that	flow	to	the	context	diagram	flowing	from	ORDER	ENTRY	to
CUSTOMER	SERVICE.	I	can	then	mark	both	flows	as	matching.



Continuing,	I	discover	that	the	detailed	diagram	also	shows	CUSTOMER	SERVICE
sending	Valid	Orders	directly	into	the	internal	data	store	with	that	name.	On	the	context
level	diagram,	they	only	send	Credit	OK	Orders.	Checking	with	Paul,	I	discover	that	Valid
Orders	from	Customer	Service	are	the	corrected	Invalid	Orders	they	received	from
VALIDATE	ITEMS.	As	a	result,	I	add	a	separate	flow	Valid	Orders	from	CUSTOMER
SERVICE	to	ENTER	ORDERS	on	the	higher	level	diagram.

Finally,	I	find	a	Credit	NOK	Order	going	to	the	CREDIT	DEPARTMENT	on	the	lower
level	that	is	also	unmatched.	Again,	since	the	flow	is	correct,	I	simply	add	it	to	the	context
diagram	and	mark	it	off	on	both	diagrams.



I	now	have	a	wonderfully	balanced	set	of	two	diagrams,	one	showing	the	context	of	the
project	and	the	second	detailing	the	ENTER	ORDERS	process.	Obviously,	if	my	project
had	included	the	WAREHOUSE	or	CREDIT	DEPARTMENT,	I	would	repeat	the	process
for	each	respectively	and	would	probably	identify	additional	disconnects	there.	Given	the
scope	of	this	project,	I	could	be	done	at	this	time.	If	I	feel	that	all	project	stakeholders
understand	every	process	on	my	lower	level	diagram	at	the	level	of	detail	they	need	to
make	their	contributions,	I	would	consider	the	diagramming	step	complete.	Otherwise,
there	is	still	work	to	be	done.





Questions	answered	in	this	chapter:

What	business	value	do	detailed	process
specifications	offer?

How	can	I	express	detailed	specifications	for
processes	and	data?

What	is	“metadata”	and	why	do	you	need	it?

Detailed	Process	and	Data	Specifications



Optional	Process	Mini-Specs

If	we	feel	that	a	process	on	the	detail	diagram,	e.g.,	the	VERIFY	CREDIT	process,	is	still
too	vague	and	we	need	more	detail,	we	could	explode	that	process	following	the	steps	I
just	outlined.	In	data	flow	diagramming	language,	any	process	that	you	do	not	explode	to	a
lower	level	of	detail	is	called	a	‘Functional	Primitive’.	Functional	Primitives	are	not	good
candidates	for	further	explosion	because	analyzing	the	data	flows	within	them	would
reveal	nothing	of	value.

Nonetheless,	you	may	need	to	describe	what	happens	inside	a	Functional	Primitive	using	a
different	tool	to	enable	a	thorough	analysis	or	to	inform	the	downstream	developers	what
the	process	really	does.	A	description	of	a	Functional	Primitive	is	called	a	‘Mini-Spec’	or	a
‘Process	Specification’.	You	have	a	wide	range	of	possible	tools	for	documenting	these
Specifications.

You	could	use	plain,	simple	English	by	writing	a	brief	description	of	how	we	SORT	MAIL.
In	our	example,	I	could	write:

The	mail	arrives	between	8am	and	10am	Monday	through	Friday.	The	Mail	Clerk
opens	each	envelope	and	separates	the	contents	into	four	stacks:	Orders	with
Payments,	Orders	without	Payments,	Payments,	and	Complaints.	Once	that	is
complete,	the	Mail	Clerk	processes	the	stack	of	Orders	with	Payments.

For	each	order,	he	carefully	separates	the	check	from	the	order	without	damaging
either,	makes	a	copy	of	the	order,	staples	the	check	to	the	copy,	and	adds	the	copy	with
check	attached	to	the	stack	of	Payments	destined	for	ACCOUNTING.	If	the	amount	of
payment	exceeds	50%	of	the	total	price,	he	stamps	the	order	“Credit	OK”	and	puts	it
on	a	stack	labeled	Prepaid	Orders;	otherwise,	he	places	the	original	order	on	the



Orders	without	Payment	stacks.

Once	he	has	processed	all	Orders	with	Payment,	the	Mail	Clerk	distributes	the	stacks
to	the	appropriate	department:

Original	Orders	stay	in	the	Order	Entry	Department
Payments	and	Copies	of	Orders	with	Payment	got	to	Accounting
Complaints	go	to	Customer	Service

If	you	and	your	target	audience	are	comfortable	with	concepts	such	as	Pseudo	Code	or
Structured	English,	you	could	also	write	the	specification	thusly:

If	the	process	is	primarily	a	decision-making	process	and	your	target	audience	is
comfortable	with	them,	you	can	also	use	a	decision	table	(also	called	‘Truth	Tables	’).	To
create	a	decision	table,	open	a	spreadsheet,	and	write	down	each	potential	action	as	a
column	header	starting	with	the	second	column.	Our	column	headers	for	this	example	will
be:



If	the	process	involves	a	lot	of	logical	branching,	you	might	consider	an	Activity	Diagram,
an	Event-Response	Diagram,	a	System	Flow	Chart,	or	any	other	tool	suited	for	depicting
conditional	sequences	of	actions.

If	the	Functional	Primitive	is	already	automated,	consider	referencing	existing
documentation	from	that	application.	If	it	is	not	automated,	check	for	a	procedure	manual
describing	how	to	do	it.

Often,	processes	are	controlled	by	business	rules.	You	might	consider	simply	listing	the
relevant	business	rules	as	process	specifications:

Sort	Mail	Rules:

1.	 Orders	with	more	than	½	payment	are	credit	OK	orders.
2.	 Checks	will	be	forwarded	to	accounting	for	immediate	deposit.
3.	 Complaints	will	be	forwarded	to	Customer	Service.

Given	the	state	of	technology	today,	you	can	use	your	smart	phone	to	make	a	video
showing	the	people	performing	the	process.	The	key	here	is	that	you	have	many	options
for	capturing	and	expressing	what	a	Functional	Primitive	does	and	these	options	far
exceed	the	scope	of	this	publication.	Each	of	the	presented	examples	contain	the	same
information	about	the	SORT	MAIL	process.	As	the	one	wearing	the	BA	hat,	you	have	to
pick	the	mode	of	presentation	that	is	suitable	for	the	process	it	defines	and	that	you	and
your	target	audience	both	understand.



Capturing	Data	Elements

The	other	side	of	a	data	flow	diagram	is	the	data.	Recognize	that	every	arrow	on	the
diagram	represents	data	flowing	from	somewhere	to	somewhere	and	every	data	store
represents	data	at	rest.	At	the	lowest	level	of	detail,	you	need	to	understand	exactly	what
data	is	contained	within	each	data	flow	and	in	each	data	store.

Very	often,	problems	in	a	process	are	caused	by	missing,	incomplete,	inaccurate,	or
untimely	data.	To	be	able	to	isolate	data	issues	and	to	define	the	requirements	for	how	a
future	application	can	avoid	them,	you	need	to	know	the	data	elements.	You	could
consider	this	the	equivalent	of	exploding	a	process.	If	you	explode	a	data	flow	or	a	data
store	to	its	lowest	level	of	detail,	you	find	a	bunch	of	Data	Elements.

A	Data	Element	is	atomic	data,	meaning	a	piece	of	data	that	only	has	value	as	a	whole.	For
example,	the	data	flow	Credit	OK	Order	contains	all	of	the	data	describing	the	order
(customer	name	and	address,	items	ordered,	order	date,	etc.)	and	some	indicator	that	this
customer	has	good	credit.	To	show	the	data	on	your	data	flow	diagram,	you	can	list	all	of
the	data	elements	on	every	data	flow	and	every	data	store.	Whereas	this	level	of	detail	is
overkill	for	most	projects,	it	might	be	very	valuable	to	explode	one	or	two	data	flows	or
data	stores	down	to	the	elementary	level	to	uncover	hidden	problems	or	ensure
understandable	requirements.	You	might	also	consider	hyperlinking	the	data	flow	or	data
store	to	a	word	document	listing	the	relevant	data	elements.

Let	us	look	at	a	concrete	example.	This	is	the	Order	Form	that	our	example	uses:



If	I	ignore	the	physical	layout	and	look	only	at	the	individual	data	elements	on	the	form,	I
get	this	list:

Order	Date
Order	Number
Customer	PO#
Customer	ID
Customer	Name
Ship-To	Address
Bill-To	Address
Item#
Item	Description
Unit	Price
Quantity	Ordered
Extended	Price
Desired	Shipping	Method
Total	Price

This	list	represents	the	minimum	data	content	for	every	data	flow	on	my	diagram	that
contains	the	word	Order	(e.g.,	Orders	w/$,	Orders	w/o	$,	New	Customer	Order,	etc.).	It	is
also	the	data	content	for	the	data	store	Valid	Orders.	Of	course,	that	is	primarily	because
the	diagram	represents	a	manual	process	involving	physical	order	forms	being	moved
from	one	process	to	another.	There	will	be	additional,	flow-specific	data	elements



associated	with	the	state	the	order	is	in	(with	payment,	without	payment,	new	customer,
etc.)	but	this	list	is	my	starting	point.

What	does	the	one	wearing	the	BA	hat	need	to	communicate	about	each	of	these	data
elements	to	the	solution	providers	so	they	can	do	their	job?	Typically,	they	need	to	know
what	the	element	contains	(its	description),	where	does	it	come	from	(its	source),	who	has
the	authority	to	change	it	(its	owner),	what	kind	of	data	does	it	contain	(its	type),	how	to
validate	its	contents	(data	range,	validation	rules),	etc.	Collectively,	this	data	about	each
data	element	is	called	‘Metadata’.	Depending	on	the	role	you	as	the	one	wearing	the	BA
hat	have	on	the	project,	capturing	and	communicating	the	Metadata	may	or	may	not	fall
into	your	area	of	responsibility.

If	you	do	have	to	capture	this,	I	recommend	creating	a	simple	spreadsheet	containing	all
relevant	metadata	about	each	data	element,	for	example:

Obviously,	the	columns	in	the	spreadsheet	can	be	different	based	on	your	organization’s
needs	and	the	project.	The	key	takeaway	here	is	that	solution	providers	need	to	know	a	ton
of	details	about	the	data	that	the	solution	will	manipulate.	Whether	the	responsibility	of
the	one	wearing	the	BA	hat	or	another	role	(i.e.,	the	one	wearing	the	data	analyst	hat)	does
this,	it	should	be	business	decisions	made	by	the	appropriate	decision	makers	within	the
business	community	and	not	left	to	the	imagination	of	those	tasked	with	developing	the
solution	or	even	the	one	wearing	the	BA	hat.



Horizontal	Balancing	Reveals	Missing	Data	Elements

If	you	invest	the	time	to	create	a	data	flow	diagram	(DFD),	make	sure	that	you	are	getting
the	most	out	of	it.	You	can	use	the	diagram	to	identify	potentially	missing	data,	redundant
data,	and	possible	data	conflicts.	We	would	like	to	introduce	a	technique	called
‘Horizontal	Balancing’	or	the	‘Preservation	of	Data’	law.	The	technique	can	be	very	useful
for	identifying	data	discrepancies,	inconsistencies,	and	conflicts	which	are	three	major
contributors	to	IT	project	overruns	and	failures.

Based	on	the	rules	governing	DFDs,	a	process	has	to	transform	data,	meaning	the	data	it
produces	has	to	be	different	than	the	data	it	consumes.	Logic	dictates	that	the	data	coming
out	of	a	process	can	only	come	from	two	possible	sources:	either	it	comes	directly	via	an
incoming	data	flow	OR	the	process	creates	it	using	the	data	it	receives.

A	data	flow	can	come	from	a	data	store,	another	process,	or	an	external	entity.	Processes
need	algorithms	or	business	rules	to	create	data.	For	example,	the	simple	process
Determine	Age	contains	the	algorithm	Age	=	Current	Year	(from	today’s	date)	–	Birth
Year	(from	the	Employee’s	Date	of	Birth).	Algorithms	and	business	rules	in	turn	need	data
(getting	the	Birth	Year	requires	an	Employee	ID	to	select	the	appropriate	employee)
which	has	to	either	come	into	the	process	from	an	incoming	data	flow	or	itself	be	created
by	a	different	algorithm	or	business	rule.	In	the	end,	you	should	account	for	every	data
element	the	process	creates	and	every	data	element	it	needs	to	create	the	output.



To	simplify	horizontal	balancing,	focus	on	data	from	the	incoming	data	flow	that	each
process	needs	to	create	the	relevant	output.	For	example,	the	physical	order	form	is	sent
from	one	process	to	the	next	in	our	example,	but	each	process	only	needs	specific	data
elements.	For	example,	the	VERIFY	CREDIT	process	only	needs	the	Customer	ID	and/or
Customer	Name	to	access	the	CUSTOMERS	data	store.	Customer	ID	and	Customer
Name	are	essential;	all	of	the	other	data	elements	on	the	order	form	are	irrelevant	to
accessing	the	customer	data.

I	will	demonstrate	this	concept	using	the	VERIFY	CREDIT	process	from	our	retail	store
order	entry	example.

All	three	outgoing	data	flows	have	the	word	‘Orders’	in	their	name	because	they	deal	with
physical	order	forms.

In	my	analysis	of	the	Order	Form	shown	in	the	last	chapter,	I	discovered	it	contains	the
data	elements:

Order	Date
Order	Number
Customer	PO#
Customer	ID
Customer	Name
Ship-To	Address
Bill-To	Address



Item#
Item	Description
Unit	Price
Quantity	Ordered
Extended	Price
Desired	Shipping	Method
Total	Price

From	the	sample	orders	Paul,	an	Order	Entry	Clerk,	provided,	I	also	note	that	some	have	a
stamp	‘Attached	Payment’	with	a	dollar	amount	handwritten	below	it.	Some	also	have	a
‘Credit	OK’	stamp	and	others	have	one	stating	‘Credit	Check	Requested’.	In	rifling
through	those	stamped	‘Credit	Check	Requested’,	I	also	find	several	orders	in	which	the
Customer	ID	field	is	blank.

I	initiate	horizontal	balancing	starting	with	the	‘norm’	or	most	common	flow	created	by
the	process.	According	to	Paul,	that	is	the	Credit	OK	Orders	data	flow	going	to	the
VALIDATE	ITEMS	process.	When	I	ask	Paul	to	identify	the	Essential	Data	Elements	on
that	flow,	he	replies,	“The	only	Essential	Data	Element	in	this	case	would	be	the	CreditOK
Indicator	on	the	order.	It	just	shows	that	the	order	is	approved	for	further	processing.”

“I	understand.	But	I	also	think	you	would	need	to	know	which	order	that	‘Credit	OK
Stamp’	is	on,	wouldn’t	you?”

Paul	replies,	“That	makes	sense.	I	guess	we	also	need	the	Order	Number,	which	is



assigned	when	we	sort	the	mail.	It	is	added	to	each	order	by	whichever	of	us	is	sorting	the
mail.	It	simply	consists	of	the	current	date	plus	a	4-digit	running	number.	The	example	I
have	here	has	order	number	141103_1966	written	on	it	by	whoever	sorted	the	mail	on
November	3,	2014.”

Based	on	that	information,	I	add	Order#,	CreditOK	Indicator	beneath	the	line	labeled
Credit	OK	Orders	in	parenthesis	to	indicate	these	are	data	elements.

“OK,	the	next	flow	is	the	Credit	NOK	Orders	being	sent	to	the	CREDIT	DEPARTMENT.
What	is	the	essential	information	on	that	flow?	I	assume	the	Order	Number	and	some
kind	of	a	stamp	indicating	the	credit	is	not	OK?”

Paul:	“Those	would	be	the	ones	with	‘Credit	Check	Requested’	stamped	on	them.	That
indicates	it	is	either	a	new	customer	which	we	indicate	by	leaving	the	‘Customer	ID’	blank
or	an	existing	customer	who	owes	us	from	previous	orders.”

“Makes	sense.	So	Essential	Data	for	the	Credit	NOK	Orders	data	flow	would	be	the
‘Order	Number’	and	the	‘Check	Credit	Request	Stamp’,	right?	Does	the	CREDIT
DEPARTMENT	need	any	other	information	to	deal	with	these	orders?”

“Sure,	they	need	to	know	the	‘Total	Price’	on	the	order	so	they	can	determine	whether	they
should	OK	the	order	and	send	it	back	to	us	with	the	‘CreditOK	Stamp’on	it	or	not.”

“What	do	they	do	with	Credit	NOK	Orders	that	you	send	them	that	they	do	not	approve?”

“You	would	have	to	ask	someone	in	the	CREDIT	DEPARTMENT	that.	I	think	they	send



them	over	to	Customer	Service	to	contact	the	customer	since	they	are	the	only	ones	in	the
company	who	are	allowed	direct	customer	contact.”

“If	that	is	true,	that	would	be	between	the	CREDIT	DEPARTMENT	and	CUSTOMER
SERVICE,	both	of	whom	are	out	of	scope	for	our	project	so	we	won’t	worry	about	those
orders.”	I	jot	down	Order#,	CheckCreditRequest	Indicator,	Total	Price	below	the	Credit
NOK	Orders	label.

“And	I	guess	the	same	is	true	for	New	Customer	Orders,	right?”

“No.	An	order	is	from	a	new	customer	if	we	can’t	match	the	‘Customer	Name’	and	‘Bill-
To’	from	the	order	with	any	customers	in	our	CUSTOMERS	file.	Actually,	if	the	customer
provides	a	‘Customer	ID’,	we	look	for	that	first	and	if	we	find	it	in	our	file,	we	compare
the	‘Customer	Name’	and	‘Bill-To	Address’	from	the	‘Order’	to	our	file.	If	they	match,
then	we	simply	look	at	the	customer’s	‘Credit	Status’	and	put	the	respective	stamp	on	the
order.

“If	the	‘Customer	ID’	on	the	form	is	blank,	we	have	to	search	the	alphabetical	customer
list	to	try	to	find	the	customer.	If	we	have	a	customer	with	a	matching	name,	we	compare
the	‘Bill-To	Address’	on	the	form	with	the	one	in	our	CUSTOMERS	file.	If	they	match,
we	fill	in	the	‘Customer	ID’	on	the	‘Order’	and	again,	add	the	respective	‘Credit	Status
Stamp’.	If	we	can’t	find	the	customer	either	by	the	‘Customer	ID’	or	by	the	‘Customer
Name’,	we	stamp	the	‘Order	Credit	Check	Requested’	and	put	it	on	the	pile	going	to	the
CREDIT	DEPARTMENT.”



I	add	the	data	elements	CustomerID,	Customer	Name,	Bill-To	Address,	and	Credit	Status
to	the	data	flow	coming	from	the	CUSTOMERS	data	store	into	the	VERIFY	CREDIT
process.	In	addition,	I	add	the	Customer	Name,	Bill-To	Address,	CheckCreditRequest
Indicator,	and	Total	Price	below	the	New	Customer	Orders	label	and	ask,	“Does	that
accurately	represent	what	you	just	told	me?”

Paul	replies,	“I	think	so.	I	don’t	know	whether	the	CREDIT	DEPARTMENT	needs
anything	else	from	us	for	a	New	Customer	Order,	but	what	you	wrote	down	makes	sense
to	me.	I	am	not	sure	they	don’t	need	the	Ship-To	Address	for	the	customer	as	well.	You
might	want	to	check	with	them	to	confirm	that	they	do	not	need	anything	else,	though.”

“I	will	certainly	run	this	by	them	to	see	if	this	is	all	the	data	they	need	to	process	either	a
New	Customer	Order	or	one	from	a	customer	with	bad	credit.	For	now,	we	will	assume
that	the	Data	Elements	I	listed	on	the	diagram	are	the	essential	Data	Elements	on	each
flow	coming	out	of	the	VERIFY	CREDIT	process.	As	I	explained	earlier,	each	of	these
data	elements	has	to	come	into	the	process	on	one	of	the	incoming	data	flows	or	be	created
in	the	process.	Coming	back	to	the	primary	data	flow	Credit	OK	Orders,	you	told	me	that
the	Order#	is	created	in	the	SORT	MAIL	process,	right?”

“Right.	That’s	the	number	we	have	to	add	to	make	sure	we	can	keep	track	of	the	order.”

“Great.”	I	write	Order#	beneath	the	data	flow	labels	Orders	w/o	$	and	Original	Order	and
add	“I	assume	that	this	is	true	whether	the	order	had	any	payment	attached	or	not,
correct?”	Paul	confirms	my	assumption.



“Furthermore,	I	understood	you	earlier	to	indicate	that	you	always	get	a	‘Customer	Name’,
and	‘Bill-to	Address’	from	the	order	and	sometimes	you	also	get	a	‘CustomerID’.”	After
Paul	confirms,	I	add	those	Data	Element	names	below	the	Order#	on	both,	the	Orders	w/o
$	and	Original	Order	data	flows.	I	also	notice	that	the	Total	Price	is	on	order	form	so	I
add	it	as	a	data	element	to	the	Orders	w/o	$	and	the	Original	Order	data	flows.

Having	dealt	with	all	outgoing	and	incoming	flows,	I	now	review	the	results	with	Paul.	“It
appears	that	the	only	data	VERIFY	CREDIT	creates	is	the	CreditOK	Indicator	or	the
CheckCreditRequest	Indicator.	Both	of	them	are	created	based	on	the	contents	of	the
Customer’s	Credit	Status,	which	is	coming	out	of	the	CUSTOMERS	File.	You	find	the
customer	based	on	either	the	CustomerID	or	both	Customer	Name	and	Bill-To	Address.
Both	of	them	are	coming	in	on	one	of	the	two	order	data	flows.	Is	that	all	correct?”

Paul	agrees.





Questions	answered	in	this	chapter:

Why	should	I	draw	a	Data	Flow	Diagram?

What	does	a	fully	balanced	DFD	look	like?

What	value	does	a	DFD	fragment	provide?

The	Power	of	Data	Flow	Diagrams



What	Does	the	Data	Flow	Diagram	Do	for	You?

From	the	perspective	of	the	one	wearing	the	BA	hat,	the	act	of	creating	a	data	flow
diagram	is	an	awakening.	Drawing	the	diagram	forces	you	to	ask	questions	that	you	might
otherwise	overlook.	It	is	also	an	awakening	for	members	of	the	business	community
whose	process	you	are	depicting.	The	people	in	the	trenches	and	those	managing	them
quite	often	have	never	seen	a	picture	of	their	process	and	a	picture	activates	parts	of	the
human	brain	that	words	cannot.	As	a	result,	the	phrase,	“I	see”	takes	on	a	whole	different
meaning	when	you	are	presented	with	a	picture	of	your	process.	For	that	reason,	I
recommend	drawing	a	DFD	just	to	get	everyone	involved	on	the	same	page.

Once	you	have	a	DFD,	exploding	a	process	and	balancing	the	data	inputs	and	outputs
between	the	levels	often	reveals	missing	data	flows.	

After	all,	no	one	can	think	of	everything	at	once.	If	the	tool	finds	a	single	missed	data
flow,	it	is	probably	well	worth	the	time	it	took	to	draw	the	diagram	and	apply	the
technique.	The	same	is	true	of	horizontal	balancing	to	reveal	missing	data	elements.	If	we
asked	IT	to	automate	a	process	with	a	missing	data	flow,	we	most	likely	will	end	up	with
an	application	that	does	not	meet	the	business	needs.

IT	professionals	are	generally	extremely	good	at	their	job	and	they	will	most	likely
recognize	that	they	are	missing	something	at	some	point	in	the	development	process.	The
problem	is	the	timing	of	the	discovery	and	the	related	cost	when	the	omission	is



discovered.	Adding	a	missing	process	late	in	the	project	is	a	relatively	simple	step,	but
missing	data	often	affects	a	multitude	of	processes,	making	it	one	of	the	most	expensive
errors	for	IT	projects.	The	simple	act	of	identifying	data	elements	and	ensuring	their
completeness	allows	you	to	recognize	and	resolve	these	issues	before	you	involve
developers.	In	my	experience,	that	is	one	of	the	most	powerful	arguments	for	spending
time	to	develop	and	analyze	a	data	flow	diagram.



A	Fully	Balanced	DFD

To	recap,	a	completely	balanced	(levelled)	data	flow	diagram	starts	at	the	top	with	a
context	diagram	consisting	of	one	or	more	processes	that	are	in	scope	for	your	project	and
all	external	entities	with	which	those	processes	exchange	data.

Each	of	those	Level	1	processes	explodes	to	a	Level	2	data	flow	diagram	depicting	the
detailed	processes	inside	the	Level	1	process	with	all	data	flows	and	data	stores	that	are
internal	to	the	exploded	process.	Each	process	on	the	Level	2	diagram	would	either
explode	further	to	a	Level	3	DFD	(and	from	Level	3	to	Level	4,	etc.)	or	be	described	in
detailed	process	specifications.	Each	data	flow	and	each	data	store	on	the	lowest	level
DFD	would	explode	to	a	list	of	the	contained	data	elements.



Creating	a	DFD	Fragment

Although	balancing	a	completely	levelled	DFD	reveals	data	discrepancies	and
disconnects,	it	may	not	be	necessary	for	your	project.	Many	people	(in	particular	on
projects	following	an	Agile	approach	to	delivering	technology)	only	need	a	small
fragment	of	a	DFD	to	understand	the	inner	workings	of	a	specific	process.	The	time
required	to	create	a	completely	balanced	diagram	is	not	justified	if	a	developer	only	needs
to	know	how	the	CREDIT	DEPARTMENT	establishes	the	credit	limit	for	a	new	customer.
In	that	case,	a	DFD	fragment	might	suffice.

The	following	is	an	example	of	a	DFD	fragment	based	on	an	exercise	that	we	use	in	our
instructor-led	classes.	To	test	your	understanding	of	the	concepts	presented,	you	might
want	to	take	this	opportunity	to	draw	a	DFD	fragment	using	the	project	Scope	Statement
and	the	Interview	Notes	that	follow	before	peeking	at	our	solution.

Scope	Statement:	This	project	will	enhance	our	web-based	Policy	Maintenance
System	by	allowing	policyholders	to	interact	directly	with	their	insurance	policies
or	claims.	The	system	will	support	web-based	policy	payments	and	allow	prospects
to	apply	for	temporary	coverage	pending	underwriting	rate	approval.	Once	the
application	is	received	by	Underwriting,	it	will	follow	standard	Underwriting
procedures.

Interview	Notes:	In	the	future,	a	prospect	will	submit	his/her	application	via	our
website.	If	the	prospect	does	not	yet	have	a	policy	with	us,	the	site	will	request	a
credit	check	web	service	and	either	reject	or	approve	the	application	directly.	If	the
request	is	from	one	of	our	current	customers	in	good	standing	or	approved	via	the
credit	check,	the	site	will	provide	a	temporary	proof	of	insurance	certificate	that	the
prospect	can	print	out	and	use	to	register	his/her	vehicle.	In	any	case,	the	request
will	then	be	forwarded	to	underwriting	for	normal	processing,	which	will	either
lead	to	acceptance	(the	norm),	modification	(overriding	a	web	rejection)	or
rejection	(bad	risk).	If	the	request	is	approved,	a	policy	will	be	issued	and	sent	to
the	customer	via	standard	mail.



Here	is	an	example	of	the	diagram	that	many	of	our	students	have	produced	for	this
scenario.

Note	that	this	data	flow	diagram	shows	a	business	process	at	some	indeterminate	level	of
detail.	Some	of	the	processes	might	be	very	high-level	whereas	others	are	very	specific.	If
you	need	to	understand	how	any	of	these	processes	works	in	detail,	you	could	“explode”	it
to	see	its	internal	processes.



Summary

Creating	a	Data	Flow	Diagram	is	an	extremely	revealing	and	rewarding	step	in	the
analysis	of	a	business	process.	I	have	never	used	any	other	tool	that	is	as	effective	at
triggering	animated	discussions	amongst	the	stakeholders	about	how	a	business	process
works	and	how	it	could	be	improved.	Obviously,	creating	the	diagram	is	just	the	first	step.
The	diagram	opens	the	door	to	a	series	of	specific	business	analysis	techniques	that	will
help	the	business	community	recognize	how	their	actions	impact	other	downstream
processes.	You	can	also	identify	problem	areas,	timing	anomalies,	and	error	handling
issues	that	can	lead	to	missing	requirements.

It	is	important	to	note	that	the	diagram	is	a	snapshot	in	time.	Once	you	present	the
business	community	with	this	versatile	visual	aid,	they	may	immediately	start	to	make
changes.	Because	of	the	cumulative	effect	of	those	changes,	you	should	never	assume	that
the	diagram	you	created	a	few	months	or	even	years	ago	is	valid.	If	you	really	need	to
understand	the	current	business	process,	you	are	best	served	by	starting	from	scratch	as	we
demonstrated.	The	problem	you	face	is,	of	course,	the	effort	required	to	flush	out	all	of	the
details	presented	in	the	balancing	section.	Is	it	really	worth	the	time?

A	data	flow	diagram	as	a	tool	that	benefits	the	project	or	reduces	the	risk	of	potential
project	failure	can	be	worth	its	weight	in	gold.	We	recommend	against	spending	project
resources	developing	one	just	for	the	sake	of	having	a	picture.

“I	think	by	drawing,	so	I’ll	draw	or	diagram	everything	from	a	piece	of	furniture	to
a	stage	gesture.	I	understand	things	best	when	they’re	in	graphics,	not	words.”
-	Robert	Wilson

	



Table	of	Contents

Preface

About	the	Authors

Table	of	Contents

Introduction	to	Data	Flow	Diagrams	(DFDs)	for	the	Business

Business	Processes,	Data	Flows,	and	Value	Chains

Why	Create	a	Data	Flow	Diagram?

Modeling	the	Flow	of	Material	and	Data

Visualizing	Project	Scope

How	to	Identify	Internal	Processes	on	a	DFD

Getting	to	the	Next	Level

Mining	for	Processes

Drawing	a	Detail	Level	DFD

Discovering	Missing	Processes	and	Data

Detailed	Process	and	Data	Specifications

Optional	Process	Mini-Specs

Capturing	Data	Elements

Horizontal	Balancing	Reveals	Missing	Data	Elements

The	Power	of	Data	Flow	Diagrams

What	Does	the	Data	Flow	Diagram	Do	for	You?

A	Fully	Balanced	DFD

Creating	a	DFD	Fragment

Summary


	Preface
	About the Authors
	Table of Contents
	Introduction to Data Flow Diagrams (DFDs) for the Business
	Business Processes, Data Flows, and Value Chains
	Why Create a Data Flow Diagram?

	Modeling the Flow of Material and Data
	Visualizing Project Scope
	How to Identify Internal Processes on a DFD
	Getting to the Next Level
	Mining for Processes

	Drawing a Detail Level DFD
	Discovering Missing Processes and Data
	Detailed Process and Data Specifications
	Optional Process Mini-Specs
	Capturing Data Elements
	Horizontal Balancing Reveals Missing Data Elements

	The Power of Data Flow Diagrams
	What Does the Data Flow Diagram Do for You?
	A Fully Balanced DFD
	Creating a DFD Fragment

	Summary

