

Apache ZooKeeper Essentials

A fast-paced guide to using Apache ZooKeeper
to coordinate services in distributed systems

Saurav Haloi

BIRMINGHAM - MUMBAI

Apache ZooKeeper Essentials

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2015

Production reference: 1220115

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-132-4

www.packtpub.com

www.packtpub.com

Credits

Author
Saurav Haloi

Reviewers
Hanish Bansal

Christopher Tang, PhD

Commissioning Editor
Ashwin Nair

Acquisition Editor
Richard Harvey

Rebecca Youé

Content Development Editor
Ajinkya Paranjape

Technical Editor
Anushree Arun Tendulkar

Copy Editors
Karuna Narayanan

Alfida Paiva

Project Coordinator
Harshal Ved

Proofreaders
Martin Diver

Ameesha Green

Indexer
Hemangini Bari

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

About the Author

Saurav Haloi works as a principal software engineer at EMC in its data protection
and availability division. With more than 10 years of experience in software
engineering, he has also been associated with prestigious software firms such as
Symantec Corporation and Tata Consultancy Services, where he worked in the design
and development of complex, large-scale, multiplatform, multi-tier, and enterprise
software systems in a storage, networking, and distributed systems domain. He
has been using Apache ZooKeeper since 2011 in a variety of different contexts. He
graduated from National Institute of Technology, Surathkal, India, with a bachelors
degree in computer engineering. An open source enthusiast and a hard rock and heavy
metal fanatic, he lives in the city of Pune in India, which is also known as the Oxford of
the East.

I would like to thank my family for their support and
encouragement throughout the writing of this book.

It was a pleasure to work with Packt Publishing, and I would like to
thank everyone associated with this book: the editors, reviewers, and
project coordinators, for their valuable comments, suggestions, and
assistance during the book development period. Special thanks to
Ajinkya Paranjape, my content development editor, who relentlessly
helped me while writing this book and patiently answered all my
queries relating to the editorial processes.

I would also like to thank the Apache ZooKeeper contributors,
committers, and the whole community for developing such a
fantastic piece of software and for their continuous effort in
getting ZooKeeper to the shape it is in now. Kudos to all of you!

About the Reviewers

Hanish Bansal is a software engineer with over 3 years of experience in developing
Big Data applications. He has worked on various technologies such as the Spring
framework, Hibernate, Hadoop, Hive, Flume, Kafka, Storm, and NoSQL databases,
which include HBase, Cassandra, MongoDB, and SearchEngines such as ElasticSearch.
He graduated in Information Technology from Jaipur Engineering College and
Research Center, Jaipur, India. He is currently working in Big Data R&D Group in
Impetus Infotech Pvt. Ltd., Noida (UP). He published a white paper on how to handle
data corruption in ElasticSearch, which can be read at http://bit.ly/1pQlvy5. In his
spare time, he loves to travel and listen to Punjabi music.

You can read his blog at http://hanishblogger.blogspot.in/ and follow him on
Twitter at @hanishbansal786.

I would like to thank my parents for their love, support,
encouragement, and the amazing opportunities they've given me
over the years.

Christopher Tang, PhD, is a technologist and software engineer who develops
scalable systems for research and analytics-oriented applications that involve rich
data in biology, education, and social engagement. He was one of the founding
engineers in the Adaptive Learning and Data Science team at Knewton, where
Apache ZooKeeper is used with PettingZoo for distributed service discovery and
configuration. He has a BS degree in biology from MIT, and received his doctorate
degree from Columbia University after completing his thesis in computational
protein structure recognition. He currently resides in New York City, where he
works at JWPlayer and advises startups such as KnewSchool, FindMine, and Moclos.

I'd like to extend my thanks to my family for their loving support,
without which all these wonderful opportunities would not have
been open to me.

http://bit.ly/1pQlvy5
http://hanishblogger.blogspot.in/

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

To my parents

Table of Contents
Preface	 1
Chapter 1: A Crash Course in Apache ZooKeeper	 7

Defining a distributed system	 8
Why coordination in a distributed system is so challenging	 10
Introducing Apache ZooKeeper	 11
Getting hands-on with Apache ZooKeeper	 12

Download and installation	 12
Downloading	 13
Installing	 13
Configuration	 14
Starting the ZooKeeper server	 15

Connecting to ZooKeeper with a Java-based shell	 17
Connecting to ZooKeeper with a C-based shell	 19
Setting up a multinode ZooKeeper cluster	 22

Starting the server instances	 23
Running multiple node modes for ZooKeeper	 24

Summary	 27
Chapter 2: Understanding the Inner Workings
of Apache ZooKeeper	 29

A top-down view of the ZooKeeper service	 29
The ZooKeeper data model	 31

Types of znodes	 32
The persistent znode	 32
The ephemeral znode	 33
The sequential znode	 33

Keeping an eye on znode changes – ZooKeeper Watches	 34
The ZooKeeper operations	 37
Watches and ZooKeeper operations	 40
The ZooKeeper access control lists	 42

Table of Contents

[ii]

The ZooKeeper stat structure	 43
Understanding the inner working of ZooKeeper	 45

The quorum mode	 47
Client establishment of sessions with the ZooKeeper service	 48
Implementation of ZooKeeper transactions	 51

Phase 1 – leader election	 52
Phase 2 – atomic broadcast	 53

Local storage and snapshots	 55
Summary	 55

Chapter 3: Programming with Apache ZooKeeper	 57
Using the Java client library	 58

Preparing your development environment	 58
The first ZooKeeper program	 59
Implementing a Watcher interface	 63
Example – a cluster monitor	 70

The C client library	 77
Getting started with the C API	 78
Example – the znode data watcher	 81

Python client bindings	 88
A watcher implementation	 89

Summary	 91
Chapter 4: Performing Common Distributed System Tasks	 93

ZooKeeper recipes	 94
Barrier	 94
Queue	 96
Lock	 98
Leader election	 100
Group membership	 102
Two-phase commit	 103
Service discovery	 105

Summary	 106
Chapter 5: Administering Apache ZooKeeper	 109

Configuring a ZooKeeper server	 110
Minimum configuration	 110
Storage configuration	 111
Network configuration	 112

Configuring a ZooKeeper ensemble	 113
Configuring a quorum	 114

Quota and authorization	 115

Table of Contents

[iii]

ZooKeeper best practices	 116
Monitoring a ZooKeeper instance	 117

Four-letter words	 117
Java Management Extensions	 119

Summary	 121
Chapter 6: Decorating ZooKeeper with Apache Curator	 123

Curator components	 124
Curator client	 125
Curator framework	 126
Curator recipes	 128
Curator utilities	 129
Curator extensions	 130

Exhibitor	 131
Summary	 132

Chapter 7: ZooKeeper in Action	 133
Projects powered by ZooKeeper	 134

Apache BookKeeper	 134
Apache Hadoop	 135
Apache HBase	 137
Apache Helix	 137
OpenStack Nova	 138

Organizations powered by ZooKeeper	 139
Yahoo!	 139
Facebook	 139
eBay	 140
Twitter	 140
Netflix	 140
Zynga	 141
Nutanix	 141
VMware vSphere Storage Appliance	 142

Summary	 142
Index	 143

Preface
Architecting and building a distributed system is not a trivial job, and implementing
coordination systems for the distributed applications is even harder. They are often
prone to errors such as race conditions and deadlocks, and such bugs are not easily
detectable. Apache ZooKeeper has been developed with this objective in mind, to
simplify the task of developing coordination and synchronization systems from
scratch. ZooKeeper is an open source service, which enables high performance and
provides highly available coordination services for distributed applications.

Apache ZooKeeper is a centralized service, which exposes a simple set of primitives
that distributed applications can build on, in order to implement high-level services
such as naming, configuration management, synchronization, group services, and
so on. ZooKeeper has been designed to be easily programmable with its simple and
elegant set of APIs and client bindings for a plethora of languages.

Apache ZooKeeper Essentials takes readers through an enriching practical journey
of learning ZooKeeper and understanding its role in developing scalable and
robust distributed applications. It starts with a crisp description of why building
coordination services for distributed applications is hard, which lays the stepping
stone for the need to know and learn ZooKeeper. This book then describes the
installation and configuration of a ZooKeeper instance, after which readers will
get a firsthand experience of using it.

This book covers the core concepts of ZooKeeper internals, its administration,
and the best practices for its usage. The ZooKeeper APIs and the data model are
presented in the most comprehensive manner for both beginners and experts,
followed by programming with ZooKeeper. Examples of developing client
applications have been given in three languages: Java, C, and Python. A full
chapter has been dedicated to discuss the various ZooKeeper recipes so that
readers get a vivid understanding of how ZooKeeper can be used to carry out
common distributed system tasks.

Preface

[2]

This book also introduces readers to two projects: Curator and Exhibitor, which
are used to ease the use of ZooKeeper in client applications and its management
in production. Real-world examples of software projects that use ZooKeeper have
been cited for readers to understand how ZooKeeper solves real problems. This
is followed by examples of organizations that use ZooKeeper in their production
platforms and enterprise software systems.

Apache ZooKeeper Essentials will help readers learn everything they need to get a
firm grasp of ZooKeeper so that they can start building scalable and high-performant
distributed applications with ease and full confidence.

What this book covers
Chapter 1, A Crash Course in Apache ZooKeeper, introduces you to distributed
systems and explains why getting distributed coordination is a hard problem.
It then introduces you to Apache ZooKeeper and explains how ZooKeeper solves
coordination problems in distributed systems. After this, you will learn how to
install and configure ZooKeeper, and get ready to start using it.

Chapter 2, Understanding the Inner Workings of Apache ZooKeeper, discusses the
architecture of ZooKeeper and introduces you to its data model and the various
operations supported by it. This chapter then delves deeper into the internals of
ZooKeeper so that you understand how various components of ZooKeeper function
in tandem.

Chapter 3, Programming with Apache ZooKeeper, introduces you to programming with
the ZooKeeper client libraries and explains how to develop client applications for
ZooKeeper in Java, C, and Python. This chapter presents ready-to-compile code for
you to understand the nitty-gritty of ZooKeeper programming.

Chapter 4, Performing Common Distributed System Tasks, discusses the various recipes
of distributed system tasks such as locks, queues, leader election, and so on. After
going through these recipes, you will understand how ZooKeeper can be used to
solve common coordination problems that are often encountered while building
distributed systems.

Chapter 5, Administering Apache ZooKeeper, provides you with all the information that
you need to know about the administration and configuration of ZooKeeper. It also
presents the best practices of ZooKeeper usage and the various ways to monitor it.

Chapter 6, Decorating ZooKeeper with Apache Curator, cites details about two projects,
Curator and Exhibitor, that make ZooKeeper programming and management easier
and simpler.

Preface

[3]

Chapter 7, ZooKeeper in Action, discusses examples of real-world software systems,
which use ZooKeeper at its core to carry out their functionalities. This chapter
also presents examples of how various organizations are using ZooKeeper in their
distributed platforms to solve coordination and synchronization problems and to
build scalable and highly performant systems.

What you need for this book
Readers who are familiar with the concepts of distributed systems and any high-level
programming language such as Java, C, or Python will feel very comfortable to grasp
the concepts and code samples presented in this book with much ease. However, the
book doesn't need readers to have any prior experience with Apache ZooKeeper.

The procedure to download, install, and configure ZooKeeper is presented in the first
chapter of this book. To play around with ZooKeeper and run the example code of
this book, readers need to have access to a system with the following requirements:

•	 Operating System: A recent version of a Linux operating system, such as
Ubuntu, Fedora, or CentOS.

•	 Java SE Development Kit 7: This is downloadable from Oracle at
http://www.oracle.com/technetwork/java/javase/downloads/jdk7-
downloads-1880260.html.

•	 GCC Compiler suite: This compiles the C code of this book. GCC usually
comes pre-installed with Ubuntu, Fedora flavor, or Linux, or it can be
installed as follows:

°° For Ubuntu, the sudo apt-get install gcc command is used.
°° For Fedora/CentOS, the sudo yum install gcc command can

be used.

•	 Python 2.7.x: This is required to run the Python code samples. Python can
be downloaded from https://www.python.org/downloads/.

Who this book is for
Apache ZooKeeper Essentials is intended for students, software professionals, and
administrators who are involved in the design, implementation, or maintenance of
complex distributed applications and platforms. This book will allow both beginners
as well as individuals who already have some exposure to ZooKeeper to master the
concepts of ZooKeeper, its usage, and programming. Some sections of this book
assume that the readers have prior knowledge of the concepts of distributed systems
and are familiar with a high-level programming language, but no prior experience
with ZooKeeper is required.

http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html
https://www.python.org/downloads/

Preface

[4]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "The org.apache.zookeeper is composed
of the interface definition for ZooKeeper watches and various callback handlers
of ZooKeeper."

A block of code is set as follows:

public class HelloZooKeeper {
 public static void main(String[] args) throws IOException {
 String hostPort = "localhost:2181";
 String zpath = "/";
 List <String> zooChildren = new ArrayList <String> ();
 ZooKeeper zk = new ZooKeeper(hostPort, 2000, null);
 }
}

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

from kazoo.client import KazooClient
zoo_path = '/MyPath'
zk = KazooClient(hosts='localhost:2181')
zk.start()
zk.ensure_path(zoo_path)

Any command-line input or output is written as follows:

${ZK_HOME}/bin/zkCli.sh –server zk_server:port

New terms and important words are shown in bold. Words that you see on
the screen, in menus, or dialog boxes for example, appear in the text like this:
"The MBeans tab shows detailed information about ZooKeeper's internal state."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[5]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/books/
content/support and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/books/content/support
http://www.packtpub.com/books/content/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[6]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

A Crash Course in Apache
ZooKeeper

In the past couple of decades, the Internet has changed the way we live our lives.
Services offered over the Internet are often backed up by complex software systems,
which span over a large number of servers and are often located geographically
apart. Such systems are known as distributed systems in computer science
terminology. In order to run these large systems correctly and efficiently, processes
within these systems should have some sort of agreement among themselves;
this agreement is also known as distributed coordination. An agreement by the
components that constitute the distributed system includes the overall goal of the
distributed system or an agreement to accomplish some subtasks that ultimately lead
to the goal. This is not as simple as it sounds, because the processes must not only
agree but also know and be sure about what their peers agree to.

Although coordinating tasks and processes in a large distributed system sounds
easy, it is a very tough problem when it comes to implementing them correctly
in a fault-tolerant manner. Apache ZooKeeper, a project of the Apache Software
Foundation, aims to solve these coordination problems in the design and
development of distributed systems by providing a set of reliable primitives
through simple APIs.

In this chapter, we will cover the following topics:

•	 What a distributed system is and its characteristics
•	 Why coordination in a distributed system is hard
•	 An introduction to Apache ZooKeeper
•	 Downloading and installing Apache ZooKeeper
•	 Connecting to ZooKeeper with the ZooKeeper shell
•	 Multinode ZooKeeper cluster configuration

A Crash Course in Apache ZooKeeper

[8]

Defining a distributed system
A distributed system is defined as a software system that is composed of
independent computing entities linked together by a computer network whose
components communicate and coordinate with each other to achieve a common goal.
An e-mail system such as Gmail or Yahoo! Mail is an example of such a distributed
system. A multiplayer online game that has the capability of being played by players
located geographically apart is another example of a distributed system.

In order to identify a distributed system, here are the key characteristics that you
need to look out for:

•	 Resource sharing: This refers to the possibility of using the resources in the
system, such as storage space, computing power, data, and services from
anywhere, and so on

•	 Extendibility: This refers to the possibility of extending and improving the
system incrementally, both from hardware and software perspectives

•	 Concurrency: This refers to the system's capability to be used by multiple
users at the same time to accomplish the same task or different tasks

•	 Performance and scalability: This ensures that the response time of the
system doesn't degrade as the overall load increases

•	 Fault tolerance: This ensures that the system is always available even if some
of the components fail or operate in a degraded mode

•	 Abstraction through APIs: This ensures that the system's individual
components are concealed from the end users, revealing only the end
services to them

It is difficult to design a distributed system, and it's even harder when a collection
of individual computing entities are programmed to function together. Designers
and developers often make some assumptions, which are also known as fallacies
of distributed computing. A list of these fallacies was initially coined at Sun
Microsystems by engineers while working on the initial design of the Network File
System (NFS); you can refer to these in the following table:

Assumptions Reality
The network is reliable In reality, the network or the interconnection among the

components can fail due to internal errors in the system or
due to external factors such as power failure.

Latency is zero Users of a distributed system can connect to it from
anywhere in the globe, and it takes time to move data from
one place to another. The network's quality of service also
influences the latency of an application.

Chapter 1

[9]

Assumptions Reality
Bandwidth is infinite Network bandwidth has improved many folds in the recent

past, but this is not uniform across the world. Bandwidth
depends on the type of the network (T1, LAN, WAN, mobile
network, and so on).

The network is secure The network is never secure. Often, systems face denial
of-service attacks for not taking the security aspects of an
application seriously during their design.

Topology doesn't change In reality, the topology is never constant. Components get
removed/added with time, and the system should have the
ability to tolerate such changes.

There is one administrator Distributed systems never function in isolation. They
interact with other external systems for their functioning;
this can be beyond administrative control.

Transport cost is zero This is far from being true, as there is cost involved
everywhere, from setting up the network to sending
network packets from source to destination. The cost can be
in the form of CPU cycles spent to actual dollars being paid
to network service providers.

The network is
homogeneous

A network is composed of a plethora of different entities.
Thus, for an application to function correctly, it needs to
be interoperable with various components, be it the type
of network, operating system, or even the implementation
languages.

Distributed system designers have to design the system keeping in mind all the
preceding points. Beyond this, the next tricky problem to solve is to make the
participating computing entities, or independent programs, coordinate their
actions. Often, developers and designers get bogged down while implementing this
coordination logic; this results in incorrect and inefficient system design. It is with
this motive in mind that Apache ZooKeeper is designed and developed; this enables
a highly reliable distributed coordination.

Apache ZooKeeper is an effort to develop a highly scalable, reliable, and robust
centralized service to implement coordination in distributed systems that developers
can straightaway use in their applications through a very simple interface to a
centralized coordination service. It enables application developers to concentrate
on the core business logic of their applications and rely entirely on the ZooKeeper
service to get the coordination part correct and help them get going with their
applications. It simplifies the development process, thus making it more nimble.

A Crash Course in Apache ZooKeeper

[10]

With ZooKeeper, developers can implement common distributed coordination tasks,
such as the following:

•	 Configuration management
•	 Naming service
•	 Distributed synchronization, such as locks and barriers
•	 Cluster membership operations, such as detection of node leave/node join

Any distributed application needs these kinds of services one way or another, and
implementing them from scratch often leads to bugs that cause the application to
behave erratically. Zookeeper mitigates the need to implement coordination and
synchronization services in distributed applications from scratch by providing
simple and elegant primitives through a rich set of APIs.

Why coordination in a distributed system
is so challenging
After getting introduced to Apache ZooKeeper and its role in the design and
development of a distributed application, let's drill down deeper into why
coordination in a distributed system is a hard problem. Let's take the example
of doing configuration management for a distributed application that comprises
multiple software components running independently and concurrently, spanning
across multiple physical servers. Now, having a master node where the cluster
configuration is stored and other worker nodes that download it from this master
node and auto configure themselves seems to be a simple and elegant solution.
However, this solution suffers from a potential problem of the master node being
a single point of failure. Even if we assume that the master node is designed to be
fault-tolerant, designing a system where change in the configuration is propagated
to all worker nodes dynamically is not straightforward.

Another coordination problem in a distributed system is service discovery. Often,
to sustain the load and increase the availability of the application, we add more
physical servers to the system. However, we can get the client or worker nodes
to know about this change in the cluster memberships and availability of newer
machines that host different services in the cluster is something. This needs careful
design and implementation of logic in the client application itself.

Chapter 1

[11]

Scalability improves availability, but it complicates coordination. A horizontally
scalable distributed system that spans over hundreds and thousands of physical
machines is often prone to failures such as hardware faults, system crashes,
communication link failures, and so on. These types of failures don't really follow
any pattern, and hence, to handle such failures in the application logic and design
the system to be fault-tolerant is truly a difficult problem.

Thus, from what has been noted so far, it's apparent that architecting a distributed
system is not so simple. Making correct, fast, and scalable cluster coordination is
hard and often prone to errors, thus leading to an overall inconsistency in the cluster.
This is where Apache ZooKeeper comes to the rescue as a robust coordination
service in the design and development of distributed systems.

Introducing Apache ZooKeeper
Apache ZooKeeper is a software project of the Apache Software Foundation;
it provides an open source solution to the various coordination problems in
large distributed systems. ZooKeeper was originally developed at Yahoo!

A paper on ZooKeeper, ZooKeeper: Wait-free Coordination for
Internet-scale Systems by Patrick Hunt and Mahadev Konar from
Yahoo! Grid and Flavio P. Junqueira and Benjamin Reed from
Yahoo! Research, was published in USENIX ATC 2010. You can
access the full paper at http://bit.ly/XWSYiz.

ZooKeeper, as a centralized coordination service, is distributed and highly reliable,
running on a cluster of servers called a ZooKeeper ensemble. Distributed consensus,
group management, presence protocols, and leader election are implemented by the
service so that the applications do not need to reinvent the wheel by implementing
them on their own. On top of these, the primitives exposed by ZooKeeper can be
used by applications to build much more powerful abstractions to solve a wide
variety of problems. We will dive deeper into these concepts in Chapter 4, Performing
Common Distributed System Tasks.

Apache ZooKeeper is implemented in Java. It ships with C, Java, Perl, and Python
client bindings. Community-contributed client libraries are available for a plethora
of languages such as Go, Scala, Erlang, and so on.

A full listing of the client bindings for ZooKeeper can be found
at https://cwiki.apache.org/confluence/display/
ZOOKEEPER/ZKClientBindings.

http://bit.ly/XWSYiz
https://cwiki.apache.org/confluence/display/ZOOKEEPER/ZKClientBindings
https://cwiki.apache.org/confluence/display/ZOOKEEPER/ZKClientBindings

A Crash Course in Apache ZooKeeper

[12]

Apache ZooKeeper is widely used by a large number of organizations, such as
Yahoo! Inc., Twitter, Netflix, and Facebook, in their distributed application platforms
as a coordination service. We will discuss more about how ZooKeeper is used in the
real world in Chapter 7, ZooKeeper in Action.

A detailed listing of organizations and projects using ZooKeeper as a
coordination service is available at https://cwiki.apache.org/
confluence/display/ZOOKEEPER/PoweredBy.

Getting hands-on with Apache
ZooKeeper
In this section, we will show you how to download and install Apache ZooKeeper
so that we can start using ZooKeeper straightaway. This section is aimed at
developers wanting to get their hands dirty using ZooKeeper for their distributed
applications' needs by giving detailed installation and usage instructions. We will
start with a single node ZooKeeper installation by getting acquainted with the basic
configuration, followed by learning the ZooKeeper shell. Finally, you will be taught
how to to set up a multinode ZooKeeper cluster.

Download and installation
ZooKeeper is supported by a wide variety of platforms. GNU/Linux and Oracle
Solaris are supported as development and production platforms for both server and
client. Windows and Mac OS X are recommended only as development platforms for
both server and client.

In this book, we will assume a GNU-based/Linux-based installation
of Apache ZooKeeper for installation and other instructions.

ZooKeeper is implemented in Java and requires Java 6 or later versions to run.
While Oracle's version of Java is recommended, OpenJDK should also work fine
for the correct functioning of ZooKeeper and many of the code samples in this book.

Oracle's version of Java can be downloaded from http://www.oracle.com/
technetwork/java/javase/downloads/index.html.

https://cwiki.apache.org/confluence/display/ZOOKEEPER/PoweredBy
https://cwiki.apache.org/confluence/display/ZOOKEEPER/PoweredBy
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Chapter 1

[13]

ZooKeeper runs as a server ensemble known as a ZooKeeper ensemble. In a
production cluster, three ZooKeeper servers is the minimum recommended size
for an ensemble, and it is recommended that you run them on separate machines.
However, you can learn and evaluate ZooKeeper by installing it on a single machine
in standalone mode.

A recent stable ZooKeeper distribution can be downloaded from
one of the Apache Download Mirrors (http://bit.ly/1xEl8hA).
At the time of writing this book, release 3.4.6 was the latest stable
version available.

Downloading
Let's download the stable version from one of the mirrors, say Georgia Tech's Apache
download mirror (http://b.gatech.edu/1xElxRb) in the following example:

$ wget
http://www.gtlib.gatech.edu/pub/apache/zookeeper/stable/zookeeper-
3.4.6.tar.gz
$ ls -alh zookeeper-3.4.6.tar.gz

-rw-rw-r-- 1 saurav saurav 17M Feb 20 2014 zookeeper-3.4.6.tar.gz

Installing
Once we have downloaded the ZooKeeper tarball, installing and setting up a
standalone ZooKeeper node is pretty simple and straightforward. Let's extract the
compressed tar archive into /usr/share:

$ tar -C /usr/share -zxf zookeeper-3.4.6.tar.gz

$ cd /usr/share/zookeeper-3.4.6/

$ ls

bin CHANGES.txt contrib docs ivy.xml LICENSE.txt
README_packaging.txt recipes zookeeper-3.4.6.jar zookeeper-
3.4.6.jar.md5

build.xml conf dist-maven ivysettings.xml lib
NOTICE.txt README.txt src zookeeper-3.4.6.jar.asc
zookeeper-3.4.6.jar.sha1

The location where the ZooKeeper archive is extracted in our case, /usr/share/
zookeeper-3.4.6, can be exported as ZK_HOME as follows:

$ export ZK_HOME=/usr/share/zookeeper-3.4.6

http://bit.ly/1xEl8hA
http://b.gatech.edu/1xElxRb

A Crash Course in Apache ZooKeeper

[14]

Configuration
Once we have extracted the tarball, the next thing is to configure ZooKeeper.
The conf folder holds the configuration files for ZooKeeper. ZooKeeper needs a
configuration file called zoo.cfg in the conf folder inside the extracted ZooKeeper
folder. There is a sample configuration file that contains some of the configuration
parameters for reference.

Let's create our configuration file with the following minimal parameters and save it
in the conf directory:

$ cat conf/zoo.cfg

tickTime=2000

dataDir=/var/lib/zookeeper

clientPort=2181

The configuration parameters' meanings are explained here:

•	 tickTime: This is measured in milliseconds; it is used for session registration
and to do regular heartbeats by clients with the ZooKeeper service. The
minimum session timeout will be twice the tickTime parameter.

•	 dataDir: This is the location to store the in-memory state of ZooKeeper;
it includes database snapshots and the transaction log of updates to the
database. Extracting the ZooKeeper archive won't create this directory, so if
this directory doesn't exist in the system, you will need to create it and set
writable permission to it.

•	 clientPort: This is the port that listens for client connections, so it is where
the ZooKeeper clients will initiate a connection. The client port can be set to
any number, and different servers can be configured to listen on different
ports. The default is 2181.

We will learn about the various storage, network, and cluster configuration
parameters of ZooKeeper in more detail in Chapter 5, Administering Apache ZooKeeper.

As mentioned previously, ZooKeeper needs a Java Runtime Environment for
it to work.

It is assumed that readers already have a working version of Java running
in their system where ZooKeeper is being installed and configured.

Chapter 1

[15]

To see if Java is installed on your system, run the following command:

$ java –version

If Java is installed and its path is configured properly, then depending on the version
and release of Java (Oracle or OpenJDK), the preceding command will show the
version of Java and Java Runtime installed on your system. For example, in my
system, I have Java 1.7.0.67 installed. So, using the preceding command, this will
return the following output in my system:

$ java -version

java version "1.7.0_67"

Java(TM) SE Runtime Environment (build 1.7.0_67-b01)

Java HotSpot(TM) 64-Bit Server VM (build 24.65-b04, mixed mode)

ZooKeeper needs the JAVA_HOME environment variable to be set correctly. To see if
this is set in your system, run the following command:

$ echo $JAVA_HOME

On my system, JAVA_HOME is set to /usr/java/latest, and hence, I got the
following output:

$ echo $JAVA_HOME

/usr/java/latest

Starting the ZooKeeper server
Now, considering that Java is installed and working properly, let's go ahead and
start the ZooKeeper server. All ZooKeeper administration scripts to start/stop the
server and invoke the ZooKeeper command shell are shipped along with the archive
in the bin folder with the following code:

$ pwd

/usr/share/zookeeper-3.4.6/bin

$ ls

README.txt zkCleanup.sh zkCli.cmd zkCli.sh zkEnv.cmd zkEnv.sh
zkServer.cmd zkServer.sh

The scripts with the .sh extension are for Unix platforms (GNU/Linux, Mac OS
X, and so on), and the scripts with the .cmd extension are for Microsoft Windows
operating systems.

A Crash Course in Apache ZooKeeper

[16]

To start the ZooKeeper server in a GNU/Linux system, you need to execute the
zkServer.sh script as follows. This script gives options to start, stop, restart, and see
the status of the ZooKeeper server:

$./zkServer.sh

JMX enabled by default

Using config: /usr/share/zookeeper-3.4.6/bin/../conf/zoo.cfg

Usage: ./zkServer.sh

{start|start-foreground|stop|restart|status|upgrade|print-cmd}

To avoid going to the ZooKeeper install directory to run these scripts, you can
include it in your PATH variable as follows:

export PATH=$PATH:/usr/share/zookeeper-3.4.6/bin

Executing zkServer.sh with the start argument will start the ZooKeeper server.
A successful start of the server will show the following output:

$ zkServer.sh start

JMX enabled by default

Using config: /usr/share/zookeeper-3.4.6/bin/../conf/zoo.cfg

Starting zookeeper ... STARTED

To verify that the ZooKeeper server has started, you can use the following
ps command:

$ ps –ef | grep zookeeper | grep –v grep | awk '{print $2}'

5511

If the jps command is installed on your system, you can verify the ZooKeeper
server's status as follows:

$ which jps

jps is /usr/bin/jps

$ jps

5511 QuorumPeerMain

5565 Jps

The ZooKeeper process is listed as QuorumPeerMain. In this case, as reported
by jps, the ZooKeeper server is running with the 5511 process ID that matches
the one reported by the ps command.

Chapter 1

[17]

The ZooKeeper server's status can be checked with the zkServer.sh script
as follows:

$ zkServer.sh status

JMX enabled by default

Using config: /usr/share/zookeeper-3.4.6/bin/../conf/zoo.cfg

Mode: standalone

To stop the server process, you can use the same script with the stop argument:

$ zkServer.sh stop

JMX enabled by default

Using config: /usr/share/zookeeper-3.4.6/bin/../conf/zoo.cfg

Stopping zookeeper ... STOPPED

Checking the status of ZooKeeper when it has stopped or is not running will show
the following result:

$ zkServer.sh status

JMX enabled by default

Using config: /usr/share/zookeeper-3.4.6/bin/../conf/zoo.cfg

Error contacting service. It is probably not running.

Once our ZooKeeper instance is running, the next thing to do is to connect to it.
ZooKeeper ships with a default Java-based command-line shell to connect to a
ZooKeeper instance. There is a C client as well, which we will discuss in a later section.

Connecting to ZooKeeper with a Java-based
shell
To start the Java-based ZooKeeper command-line shell, we simply need to run
zkCli.sh of the ZK_HOME/bin folder with the server IP and port as follows:

${ZK_HOME}/bin/zkCli.sh –server zk_server:port

In our case, we are running our ZooKeeper server on the same machine, so the
ZooKeeper server will be localhost, or the loopback address will be 127.0.0.1.
The default port we configured was 2181:

$ zkCli.sh -server localhost:2181

A Crash Course in Apache ZooKeeper

[18]

As we connect to the running ZooKeeper instance, we will see the output similar
to the following one in the terminal (some output is omitted):

Connecting to localhost:2181

...............

...............

Welcome to ZooKeeper!

JLine support is enabled

...............

WATCHER::

WatchedEvent state:SyncConnected type:None path:null

[zk: localhost:2181(CONNECTED) 0]

To see a listing of the commands supported by the ZooKeeper Java shell, you can run
the help command in the shell prompt:

[zk: localhost:2181(CONNECTED) 0] help

ZooKeeper -server host:port cmd args

 connect host:port

 get path [watch]

 ls path [watch]

 set path data [version]

 rmr path

 delquota [-n|-b] path

 quit

 printwatches on|off

 create [-s] [-e] path data acl

 stat path [watch]

 close

 ls2 path [watch]

 history

 listquota path

 setAcl path acl

 getAcl path

 sync path

 redo cmdno

 addauth scheme auth

 delete path [version]

 setquota -n|-b val path

Chapter 1

[19]

We can execute a few simple commands to get a feel of the command-line interface.
Let's start by running the ls command, which, as in Unix, is used for listing:

[zk: localhost:2181(CONNECTED) 1] ls /

[zookeeper]

Now, the ls command returned a string called zookeeper, which is a znode in the
ZooKeeper terminology. Note that we will get introduced to the ZooKeeper data
model in the next chapter, Chapter 2, Understanding the Inner Workings of Apache
ZooKeeper. We can create a znode through the ZooKeeper shell as follows:

To begin with, let's create a HelloWorld znode with empty data:

[zk: localhost:2181(CONNECTED) 2] create /HelloWorld ""

Created /HelloWorld

[zk: localhost:2181(CONNECTED) 3] ls /

[zookeeper, HelloWorld]

We can delete the znode created by issuing the delete command as follows:

[zk: localhost:2181(CONNECTED) 4] delete /HelloWorld

[zk: localhost:2181(CONNECTED) 5] ls /

[zookeeper]

The operations shown here will be clearer as we learn more about the ZooKeeper
architecture, its data model, and namespace and internals in the subsequent
chapters. We will look at setting up the C language-based command-line shell
of the ZooKeeper distribution.

Connecting to ZooKeeper with a C-based shell
ZooKeeper is shipped with a C language-based command-line shell. However, to
use this shell, we need to build the C sources in ${ZK_HOME}/src/c. A GNU/GCC
compiler is required to build the sources. To build them, just run the following three
commands in the preceding directory:

$./configure

$ make

$ make install

By default, this installs the C client libraries under /usr/local/lib. The C client
libraries are built for both single-threaded as well as multithreaded libraries. The
single-threaded library is suffixed with _st, while the multithreaded library is
suffixed with _mt.

A Crash Course in Apache ZooKeeper

[20]

The C-based ZooKeeper shell uses these libraries for its execution. As such, after
the preceding build procedure, two executables called cli_st and cli_mt are also
generated in the current folder. These two binaries are the single-threaded and
multithreaded command-line shells, respectively. When cli_mt is run, we get the
following output:

$ cli_mt

USAGE cli_mt zookeeper_host_list
[clientid_file|cmd:(ls|ls2|create|od|...)]

Version: ZooKeeper cli (c client) version 3.4.6

To connect to our ZooKeeper server instance with this C-based shell, execute the
following command in your terminal:

$ cli_mt localhost:2181

Watcher SESSION_EVENT state = CONNECTED_STATE

Got a new session id: 0x148b540cc4d0004

The C-based ZooKeeper shell also supports multiple commands, such as the
Java version. Let's see the available commands under this shell by executing
the help command:

help

 create [+[e|s]] <path>

 delete <path>

 set <path> <data>

 get <path>

 ls <path>

 ls2 <path>

 sync <path>

 exists <path>

 wexists <path>

 myid

 verbose

 addauth <id> <scheme>

 quit

 prefix the command with the character 'a' to run the command
 asynchronously.run the 'verbose' command to toggle verbose logging.

 i.e. 'aget /foo' to get /foo asynchronously

Chapter 1

[21]

We can issue the same set of commands to list the znodes, create a znode, and finally
delete it:

ls /

time = 3 msec

/: rc = 0

zookeeper

time = 5 msec

create /HelloWorld

Creating [/HelloWorld] node

Watcher CHILD_EVENT state = CONNECTED_STATE for path /

[/HelloWorld]: rc = 0

name = /HelloWorld

ls /

time = 3 msec

/: rc = 0

zookeeper

HelloWorld

time = 3 msec

delete /HelloWorld

Watcher CHILD_EVENT state = CONNECTED_STATE for path /

ls /

time = 3 msec

/: rc = 0

zookeeper

time = 3 msec

The format of the C-based ZooKeeper shell output displays the amount of time spent
during the command execution as well as the return code (rc). A return code equal
to zero denotes successful execution of the command.

The C static and shared libraries that we built earlier and installed in /usr/local/
lib are required for ZooKeeper programming for distributed applications written in
the C programming language. The Perl and Python client bindings shipped with the
ZooKeeper distribution are also based on this C-based interface.

A Crash Course in Apache ZooKeeper

[22]

Setting up a multinode ZooKeeper cluster
So far, we have set up a ZooKeeper server instance in standalone mode. A
standalone instance is a potential single point of failure. If the ZooKeeper server fails,
the whole application that was using the instance for its distributed coordination
will fail and stop functioning. Hence, running ZooKeeper in standalone mode is not
recommended for production, although for development and evaluation purposes, it
serves the need.

In a production environment, ZooKeeper should be run on multiple servers in a
replicated mode, also called a ZooKeeper ensemble. The minimum recommended
number of servers is three, and five is the most common in a production environment.
The replicated group of servers in the same application domain is called a quorum.
In this mode, the ZooKeeper server instance runs on multiple different machines, and
all servers in the quorum have copies of the same configuration file. In a quorum,
ZooKeeper instances run in a leader/follower format. One of the instances is elected
the leader, and others become followers. If the leader fails, a new leader election
happens, and another running instance is made the leader. However, these intricacies
are fully hidden from applications using ZooKeeper and from developers.

The ZooKeeper configuration file for a multinode mode is similar to the one we used
for a single instance mode, except for a few entries. An example configuration file is
shown here:

tickTime=2000

dataDir=/var/lib/zookeeper

clientPort=2181

initLimit=5

syncLimit=2

server.1=zoo1:2888:3888

server.2=zoo2:2888:3888

server.3=zoo3:2888:3888

The two configuration parameters are also explained here:

•	 initLimit: This parameter is the timeout, specified in number of ticks, for a
follower to initially connect to a leader

•	 syncLimit: This is the timeout, specified in number of ticks, for a follower to
sync with a leader

Chapter 1

[23]

Both of these timeouts are specified in the unit of time called tickTime.
Thus, in our example, the timeout for initLimit is 5 ticks at 2000 milliseconds
a tick, or 10 seconds.

The other three entries in the preceding example in the server.id=host:port:port
format are the list of servers that constitute the quorum. The .id identifier is a
number that is used for the server with a hostname in the quorum. In our example
configuration, the zoo1 quorum member host is assigned an identifier 1.

The identifier is needed to be specified in a file called myid in the data directory
of that server. It's important that the myid file should consist of a single line that
contains only the text (ASCII) of that server's ID. The id must be unique within the
ensemble and should have a value between 1 and 255.

Again, we have the two port numbers after each server hostname: 2888 and 3888.
They are explained here:

•	 The first port, 2888, is mostly used for peer-to-peer communication in the
quorum, such as to connect followers to leaders. A follower opens a TCP
connection to the leader using this port.

•	 The second port, 3888, is used for leader election, in case a new leader arises
in the quorum. As all communication happens over TCP, a second port is
required to respond to leader election inside the quorum.

Starting the server instances
After setting up the configuration file for each of the servers in the quorum,
we need to start the ZooKeeper server instances. The procedure is the same as
for standalone mode. We have to connect to each of the machines and execute the
following command:

${ZK_HOME}/bin/zkServer.sh start

Once the instances are started successfully, we will execute the following command
on each of the machines to check the instance states:

${ZK_HOME}/bin/zkServer.sh status

For example, take a look at the next quorum:

[zoo1] # ${ZK_HOME}/bin/zkServer.sh status

JMX enabled by default

Using config: /usr/share/zookeeper-3.4.6/bin/../conf/zoo.cfg

Mode: follower

[zoo2] # ${ZK_HOME}/bin/zkServer.sh status

A Crash Course in Apache ZooKeeper

[24]

JMX enabled by default

Using config: /usr/share/zookeeper-3.4.6/bin/../conf/zoo.cfg

Mode: leader

[zoo3] # ${ZK_HOME}/bin/zkServer.sh status

JMX enabled by default

Using config: /usr/share/zookeeper-3.4.6/bin/../conf/zoo.cfg

Mode: follower

As seen in the preceding example, zoo2 is made the leader of the quorum, while
zoo1 and zoo3 are the followers. Connecting to the ZooKeeper quorum through the
command-line shell is also the same as in standalone mode, except that we should
now specify a connection string in the host1:port2, host2:port2 … format to the server
argument of ${ZK_HOME}/bin/zkCli.sh:

$ zkCli.sh -server zoo1:2181,zoo2:2181,zoo3:2181

Connecting to zoo1:2181, zoo2:2181, zoo3:2181

… … … …

Welcome to ZooKeeper!

… … … …

[zk: zoo1:2181,zoo2:2181,zoo3:2181 (CONNECTED) 0]

Once the ZooKeeper cluster is up and running, there are ways to monitor it using
Java Management Extensions (JMX) and by sending some commands over the client
port, also known as the Four Letter Words. We will discuss ZooKeeper monitoring
in more detail in Chapter 5, Administering Apache ZooKeeper.

Running multiple node modes for ZooKeeper
It is also possible to run ZooKeeper in multiple node modes on a single machine.
This is useful for testing purposes. To run multinode modes on the same machine,
we need to tweak the configuration a bit; for example, we can set the server name as
localhost and specify the unique quorum and leader election ports.

Let's use the following configuration file to set up a multinode ZooKeeper cluster
using a single machine:

tickTime=2000

initLimit=5

syncLimit=2

dataDir=/var/lib/zookeeper

clientPort=2181

server.1=localhost:2666:3666

Chapter 1

[25]

server.2=localhost:2667:3667

server.3=localhost:2668:3668

As already explained in the previous section, each entry of the server X specifies
the address and port numbers used by the X ZooKeeper server. The first field is the
hostname or IP address of server X. The second and third fields are the TCP port
numbers used for quorum communication and leader election, respectively. As we
are starting three ZooKeeper server instances on the same machine, we need to use
different port numbers for each of the server entries.

Second, as we are running more than one ZooKeeper server process on the same
machine, we need to have different client ports for each of the instances.

Last but not least, we have to customize the dataDir parameter as well for each of
the instances we are running.

Putting all these together, for a three-instance ZooKeeper cluster, we will create three
different configuration files. We will call these zoo1.cfg, zoo2.cfg, and zoo3.cfg
and store them in the conf folder of ${ZK_HOME}. We will create three different data
folders for the instances, say zoo1, zoo2, and zoo3, in /var/lib/zookeeper. Thus,
the three configuration files are shown next.

Here, you will see the configuration file for the first instance:

tickTime=2000

initLimit=5

syncLimit=2

dataDir=/var/lib/zookeeper/zoo1

clientPort=2181

server.1=localhost:2666:3666

server.2=localhost:2667:3667

server.3=localhost:2668:3668

The second instance is shown here:

tickTime=2000

initLimit=5

syncLimit=2

dataDir=/var/lib/zookeeper/zoo2

clientPort=2182

server.1=localhost:2666:3666

server.2=localhost:2667:3667

server.3=localhost:2668:3668

A Crash Course in Apache ZooKeeper

[26]

The third and final instance is then shown here:

tickTime=2000

initLimit=5

syncLimit=2

dataDir=/var/lib/zookeeper/zoo3

clientPort=2183

server.1=localhost:2666:3666

server.2=localhost:2667:3667

server.3=localhost:2668:3668

We also need to fix the server ID parameter correctly in the myid file for each
instance. This can be done using the following three commands:

$ echo 1 > /var/lib/zookeeper/zoo1/myid

$ echo 2 > /var/lib/zookeeper/zoo2/myid

$ echo 3 > /var/lib/zookeeper/zoo3/myid

Now, we are all set to start the ZooKeeper instances. Let's start the instances
as follows:

$ ${ZK_HOME}/bin/zkServer.sh start ${ZK_HOME}/conf/zoo1.cfg

$ ${ZK_HOME}/bin/zkServer.sh start ${ZK_HOME}/conf/zoo2.cfg

$ ${ZK_HOME}/bin/zkServer.sh start ${ZK_HOME}/conf/zoo3.cfg

Once all the instances start, we can use the zkCli.sh script to connect to the
multinode ZooKeeper cluster, like we did earlier:

$ ${ZK_HOME}/bin/zkCli.sh –server \

 localhost:2181, localhost:2182, localhost:2183

Voila! We have a three-node ZooKeeper cluster running on the same machine!

Chapter 1

[27]

Summary
In this chapter, you learned the general definition of a distributed system and
why coordination among entities that constitute a large system is hard and a very
important problem to be solved. You learned how Apache ZooKeeper is a great tool
for distributed system designer and developers to solve coordination problems.
This chapter provided details on installing and configuring a ZooKeeper in various
modes, such as standalone, clustered, and also talked about how to connect to a
ZooKeeper service from the command line with the ZooKeeper shell.

In the next chapter, you will learn about the internals and architecture of Apache
ZooKeeper. You will learn in detail about the ZooKeeper data model and the API
interfaces exposed by the ZooKeeper service. The concepts introduced in the next
chapter will help you master the design semantics of ZooKeeper and equip readers
with confidence in using ZooKeeper in their distributed applications.

Understanding the
Inner Workings of

Apache ZooKeeper
In the previous chapter, we learned about the general definition of a distributed
system and why implementing coordination among components of such a system
is hard. We learned how Apache ZooKeeper solves this problem, followed by how
to install and configure it. In this chapter, we will read more about the internals and
architecture of ZooKeeper. As such, we will cover the following topics here in this
second chapter:

•	 The architecture of the ZooKeeper service
•	 The data model behind ZooKeeper
•	 The operations supported by the ZooKeeper data model
•	 Probing the inner workings of ZooKeeper

A top-down view of the ZooKeeper
service
As you are aware, Apache ZooKeeper is a coordination service for distributed
applications. It aims to solve the tough problems associated with the coordination of
components in a distributed application. It does this by exposing a simple yet powerful
interface of primitives. Applications can be designed on these primitives implemented
through ZooKeeper APIs to solve the problems of distributed synchronization, cluster
configuration management, group membership, and so on.

Understanding the Inner Workings of Apache ZooKeeper

[30]

ZooKeeper is, in itself, a replicated and distributed application, with the intention to
be run as a service, similar to the way we run DNS or any other centralized service.
A view of the ZooKeeper service is shown in the following diagram:

A ZooKeeper service and how clients connect to the service

From the preceding diagram (the image is referenced from http://zookeeper.
apache.org/doc/r3.4.6/zookeeperOver.html), you will see the replicated set of
servers on which the ZooKeeper service is run. This is called an ensemble. Clients
can connect to a ZooKeeper service by connecting to any member of the ensemble.
You can send and receive requests and responses as well as event notifications
between clients and the service, which are all done by maintaining a TCP connection
and by periodically sending heartbeats.

The members of the ensemble are aware of each other's state. By this,
I mean that the current in-memory state, transaction logs, and the
point-in-time copies of the state of the service are stored in a durable
manner in the local data store by the individual hosts that form the
ensemble. It is important to remember that ZooKeeper is a highly
available service, so as long as a majority of the servers are available,
the service will always be available.

With this, ZooKeeper maintains a strict ordering of its transactions, which enables
the implementation of advanced distributed synchronization primitives that are
simple and reliable. With its design to be robust, reliable, high performing, and
fast, this coordination service makes it possible to be used in large and complex
distributed applications.

http://zookeeper.apache.org/doc/r3.4.6/zookeeperOver.html
http://zookeeper.apache.org/doc/r3.4.6/zookeeperOver.html

Chapter 2

[31]

The ZooKeeper data model
As defined by the ZooKeeper wiki, ZooKeeper allows distributed processes to
coordinate with each other through a shared hierarchical namespace of data registers.
The namespace looks quite similar to a Unix filesystem. The data registers are known
as znodes in the ZooKeeper nomenclature. You can see examples of znodes in the
following image:

A ZooKeeper's hierarchical namespace

Here, you can see that znodes are organized hierarchically, much like a tree,
as a standard filesystem. Some important points to take note of are as follows:

•	 The root node has one child znode called /zoo, which in turn has three znodes.
•	 Every znode in the ZooKeeper tree is identified by a path, and the path

elements are separated by /.
•	 The znodes are called data registers because they can store data. Thus, a

znode can have children as well as data associated with it. It's analogous to
having a filesystem that allows a file to also be a path.

The data in a znode is typically stored in a byte format, with a maximum data size
in each znode of no more than 1 MB. ZooKeeper is designed for coordination, and
almost all forms of coordination data are relatively small in size; hence, this limit on
the size of data is imposed. It is recommended that the actual data size be much less
than this limit as well.

Understanding the Inner Workings of Apache ZooKeeper

[32]

The slash-separated znode paths are canonical and have to be absolute. Relative
paths and references are not recognized by ZooKeeper. It is useful to know that the
znode names can be composed of Unicode characters and that the znodes can have
any name. The exception to this is that the word ZooKeeper is reserved. On top of
this, the use of "." is illegal as a path component.

Like files in a filesystem, znodes maintain a stat structure that includes version
numbers for data changes and an access control list that changes along with
timestamps associated with changes. The version number increases whenever the
znode's data changes. ZooKeeper uses the version numbers along with the associated
timestamps to validate its in-core cache. The znode version number also enables
the client to update or delete a particular znode through ZooKeeper APIs. If the
version number specified doesn't match the current version of a znode, the operation
fails. However, this can be overridden by specifying 0 as the version number while
performing a znode update or delete operation.

Types of znodes
ZooKeeper has two types of znodes: persistent and ephemeral. There is a third type
that you might have heard of, called a sequential znode, which is a kind of a qualifier
for the other two types. Both persistent and ephemeral znodes can be sequential
znodes as well. Note that a znode's type is set at its creation time.

The persistent znode
As the name suggests, persistent znodes have a lifetime in the ZooKeeper's namespace
until they're explicitly deleted. A znode can be deleted by calling the delete API call.
It's not necessary that only the client that created a persistent znode has to delete it.
Note that any authorized client of the ZooKeeper service can delete a znode.

It's time to put this newly acquired knowledge into practice, so let's create a
persistent znode using the ZooKeeper Java shell:

[zk: localhost(CONNECTED) 1] create /[PacktPub] "ApacheZooKeeper"

Created /[PacktPub]

[zk: localhost(CONNECTED) 2] get /[PacktPub]

"ApacheZooKeeper"

Persistent znodes are useful for storing data that needs to be highly available and
accessible by all the components of a distributed application. For example, an
application can store the configuration data in a persistent znode. The data as
well as the znode will exist even if the creator client dies.

Chapter 2

[33]

The ephemeral znode
By contrast, an ephemeral znode is deleted by the ZooKeeper service when the
creating client's session ends. An end to a client's session can happen because of
disconnection due to a client crash or explicit termination of the connection. Even
though ephemeral nodes are tied to a client session, they are visible to all clients,
depending on the configured Access Control List (ACL) policy.

An ephemeral znode can also be explicitly deleted by the creator client or any other
authorized client by using the delete API call. An ephemeral znode ceases to exist
once its creator client's session with the ZooKeeper service ends. Hence, in the
current version of ZooKeeper, ephemeral znodes are not allowed to have children.

To create an ephemeral znode using the ZooKeeper Java Shell, we have to specify the
-e flag in the create command, which can be done using the following command:

[zk: localhost(CONNECTED) 1] create -e /[PacktPub] "ApacheZooKeeper"

Created /[PacktPub]

Now, since an ephemeral znode is not allowed to have children, if we try to create
a child znode to the one we just created, we will be thrown an error, as follows:

[zk: localhost(CONNECTED) 2] create -e /[PacktPub]/EphemeralChild
"ChildOfEphemeralZnode"

Ephemerals cannot have children: /[PacktPub]/EphemeralChild

The concept of ephemeral znodes can be used to build distributed applications
where the components need to know the state of the other constituent components or
resources. For example, a distributed group membership service can be implemented
by using ephemeral znodes. The property of ephemeral nodes getting deleted when
the creator client's session ends can be used as an analogue of a node that is joining or
leaving a distributed cluster. Using the membership service, any node is able discover
the members of the group at any particular time. We will discuss this in more detail in
Chapter 4, Performing Common Distributed System Tasks.

The sequential znode
A sequential znode is assigned a sequence number by ZooKeeper as a part of
its name during its creation. The value of a monotonously increasing counter
(maintained by the parent znode) is appended to the name of the znode.

The counter used to store the sequence number is a signed integer (4 bytes).
It has a format of 10 digits with 0 (zero) padding. For example, look at /path/to/
znode-0000000001. This naming convention is useful to sort the sequential znodes
by the value assigned to them.

Understanding the Inner Workings of Apache ZooKeeper

[34]

Sequential znodes can be used for the implementation of a distributed
global queue, as sequence numbers can impose a global ordering. They
may also be used to design a lock service for a distributed application.
The recipes for a distributed queue and lock service will be discussed
in Chapter 4, Performing Common Distributed System Tasks.

Since both persistent and ephemeral znodes can be sequential znodes, we have a
total of four modes of znodes:

•	 persistent
•	 ephemeral
•	 persistent_sequential
•	 ephemeral_sequential

To create a sequential znode using the ZooKeeper Java shell, we have to use the -s
flag of the create command:

[zk: localhost(CONNECTED) 1] create -s /[PacktPub]
"PersistentSequentialZnode"

Created /[PacktPub]0000000001

[zk: localhost(CONNECTED) 3] create -s -e /[PacktPub]
"EphemeralSequentialZnode"

Created /[PacktPub]0000000008

Keeping an eye on znode changes –
ZooKeeper Watches
ZooKeeper is designed to be a scalable and robust centralized service for very large
distributed applications. A common design anti-pattern associated while accessing
such services by clients is through polling or a pull kind of model. A pull model
often suffers from scalability problems when implemented in large and complex
distributed systems. To solve this problem, ZooKeeper designers implemented a
mechanism where clients can get notifications from the ZooKeeper service instead of
polling for events. This resembles a push model, where notifications are pushed to
the registered clients of the ZooKeeper service.

Clients can register with the ZooKeeper service for any changes associated with
a znode. This registration is known as setting a watch on a znode in ZooKeeper
terminology. Watches allow clients to get notifications when a znode changes in
any way. A watch is a one-time operation, which means that it triggers only one
notification. To continue receiving notifications over time, the client must reregister
the watch upon receiving each event notification.

Chapter 2

[35]

Let's walk through an example of a cluster group membership model to illustrate the
concept of ZooKeeper watches and notifications:

•	 In the cluster, a node, say Client1, is interested in getting notified when
another node joins the cluster. Any node that is joining the cluster creates
an ephemeral node in the ZooKeeper path /Members.

•	 Now, another node, Client2, joins the cluster and creates an ephemeral node
called Host2 in /Members.

•	 Client1 issues a getChildren request on the ZooKeeper path /Members,
and sets a watch on it for any changes. When Client2 creates a znode as /
Members/Host2, the watch gets triggered and Client1 receives a notification
from the ZooKeeper service. If Client1 now issues getChildren request on
the ZooKeeper path /Members, it sees the new znode Host2. This flow of the
setting of watches, and notifications and subsequent resetting of the watches
is shown in the following image:

An image to representing how the relationship between two clients and
ZooKeeper works through watches and notifications

Understanding the Inner Workings of Apache ZooKeeper

[36]

ZooKeeper watches are a one-time trigger. What this means is that if a client receives
a watch event and wants to get notified of future changes, it must set another watch.
Whenever a watch is triggered, a notification is dispatched to the client that had
set the watch. Watches are maintained in the ZooKeeper server to which a client is
connected, and this makes it a fast and lean method of event notification.

The watches are triggered for the following three changes to a znode:

1.	 Any changes to the data of a znode, such as when new data is written to the
znode's data field using the setData operation.

2.	 Any changes to the children of a znode. For instance, children of a znode are
deleted with the delete operation.

3.	 A znode being created or deleted, which could happen in the event that
a new znode is added to a path or an existing one is deleted.

Again, ZooKeeper asserts the following guarantees with respect to watches
and notifications:

•	 ZooKeeper ensures that watches are always ordered in the first in first out
(FIFO) manner and that notifications are always dispatched in order

•	 Watch notifications are delivered to a client before any other change is made
to the same znode

•	 The order of the watch events are ordered with respect to the updates seen
by the ZooKeeper service

Since ZooKeeper watches are one-time triggers and due to the
latency involved between getting a watch event and resetting of
the watch, it's possible that a client might lose changes done to a
znode during this interval. In a distributed application in which
a znode changes multiple times between the dispatch of an event
and resetting the watch for events, developers must be careful to
handle such situations in the application logic.

When a client gets disconnected from the ZooKeeper server, it doesn't receive
any watches until the connection is re-established. If the client then reconnects,
any previously registered watches will also be reregistered and triggered. If the
client connects to a new server, the watch will be triggered for any session events.
This disconnection from a server and reconnection to a new server happens in a
transparent way for the client applications.

Chapter 2

[37]

Although ZooKeeper guarantees that all registered watches get dispatched to the
client, even if the client disconnects from one server and reconnects to another server
within the ZooKeeper service, there is one possible scenario worth mentioning where
a watch might be missed by a client. This specific scenario is when a client has set a
watch for the existence of a znode that has not yet been created. In this case, a watch
event will be missed if the znode is created, and deleted while the client is in the
disconnected state.

The ZooKeeper operations
ZooKeeper's data model and its API support the following nine basic operations:

Operation Description
create Creates a znode in a specified path of the ZooKeeper namespace
delete Deletes a znode from a specified path of the ZooKeeper namespace
exists Checks if a znode exists in the path
getChildren Gets a list of children of a znode
getData Gets the data associated with a znode
setData Sets/writes data into the data field of a znode
getACL Gets the ACL of a znode
setACL Sets the ACL in a znode
sync Synchronizes a client's view of a znode with ZooKeeper

Let's look at the ZooKeeper operations mentioned in the preceding table using
ZooKeeper Java shell:

1.	 Create a znode called root with ThisIsTheRootNode as its data:
[zk: localhost(CONNECTED) 0] create /root "ThisIsTheRootNode"

Created /root

2.	 Get the content of the just created znode root:
[zk: localhost(CONNECTED) 1] get /root

"ThisIsTheRootNode"

…… ……

…… ……

Understanding the Inner Workings of Apache ZooKeeper

[38]

3.	 Create a child znode child-1 for root with ThisIsChild-1 as its data:
[zk: localhost(CONNECTED) 2] create /root/child-1
 "ThisIsChild-1"

Created /root/child-1

4.	 Create a child znode child-2 for root with ThisIsChild-2 as its data:
[zk: localhost(CONNECTED) 3] create /root/child-2
 "ThisIsChild-2"

Created /root/child-2

5.	 List the children of root:
[zk: localhost(CONNECTED) 4] ls /root

[child-2, child-1]

6.	 Get the access control listing for root:
[zk: localhost(CONNECTED) 5] getAcl /root

'world,'anyone

: cdrwa

7.	 Deleting the root is not allowed as root has 2 child znodes:
[zk: localhost(CONNECTED) 6] delete /root

Node not empty: /root

8.	 Delete child-1:
[zk: localhost(CONNECTED) 7] delete /root/child-1

9.	 Delete child-2:
[zk: localhost(CONNECTED) 8] delete /root/child-2

10.	 List the content of root:
[zk: localhost(CONNECTED) 9] ls2 /root

[]

…… ……

…… ……

Chapter 2

[39]

11.	 Delete root:
[zk: localhost(CONNECTED) 10] delete /root

Apart from the operations described so far, ZooKeeper also supports batch updates
to znodes with an operation called multi. This batches together multiple primitive
operations into a single unit. A multi operation is also atomic in nature, which means
that either all the updates succeed or the whole bunch of updates fails in its entirety.

ZooKeeper does not allow partial writes or reads of the znode data. When setting
the data of a znode or reading it, the content of the znode is replaced or read
entirely. Update operations in ZooKeeper, such as a delete or setData operation,
have to specify the version number of the znode that is being updated. The version
number can be obtained by using the exists() call. The update operation will fail
if the specified version number does not match the one in the znode. Also, another
important thing to note is that updates in ZooKeeper are non-blocking operations.

The read and write operations in ZooKeeper are shown in the following image:

An image that shows the read and write operations in ZooKeeper

Understanding the Inner Workings of Apache ZooKeeper

[40]

From the preceding image, we need to take note of the following two crucial aspects
of these operations:

•	 Read requests: These are processed locally in the ZooKeeper server to which
the client is currently connected

•	 Write requests: These are forwarded to the leader and go through majority
consensus before a response is generated

The read and write processing by ZooKeeper is described
in more detail in the ZooKeeper implementation section
later in this chapter.

Watches and ZooKeeper operations
The write operations in ZooKeeper are atomic and durable. There is the guarantee
of a successful write operation if it has been written to persistent storage on a
majority of ZooKeeper's servers. However, the eventual consistency model of
ZooKeeper permits reads to log the latest state of the ZooKeeper service, and the
sync operation allows a client to be up-to-date with the most recent state of the
ZooKeeper service.

The read operations in znodes, such as exists, getChildren, and getData, allow
watches to be set on them. On the other hand, the watches triggered by znode's
write operations, such as create, delete, and setData ACL operations do not
participate in watches.

The following are the types of watch events that might occur during a znode
state change:

•	 NodeChildrenChanged: A znode's child is created or deleted
•	 NodeCreated: A znode is created in a ZooKeeper path
•	 NodeDataChanged: The data associated with a znode is updated
•	 NodeDeleted: A znode is deleted in a ZooKeeper path

Chapter 2

[41]

A watch event's type depends on the watch and the operation that triggered it. Some
crucial information about how the three main operations have event-generating
actions is shown in this table:

Operation Event-generating Actions
exists A znode is created or deleted, or its data is updated

getChildren A child of a znode is created or deleted, or the znode itself
is deleted

getData A znode is deleted or its data is updated

A watch event includes the path of the znode where the event was generated.
Thus, a client can find a znode creation and deletion for the NodeCreated and
NodeDeleted events through the inspection of the path to the znode. To discover
which children have changed after a NodeChildrenChanged event, the operation
getChildren has to be called to retrieve the new list of children. Similarly, in order
to discover the new data for a NodeDataChanged event, getData has to be called.

ZooKeeper provides a set of guarantees from its data model perspectives and watch
infrastructure built on top of it, which enables the easy, fast, and scalable building of
other distributed coordination primitives:

•	 Sequential consistency: This ensures that the updates from clients are
always applied in a FIFO order.

•	 Atomicity: This ensures that the updates either succeed or fail, so there is no
partial commit.

•	 Single system image: A client sees the same view of the ZooKeeper service,
which doesn't depend on which ZooKeeper server in the ensemble it
connects to.

•	 Reliability: This ensures that the updates will persist once they are applied.
This is until they are overwritten by some clients.

•	 Timeliness: The clients' view of the system is guaranteed to be up-to-date
within a certain time bound. This is known as eventual consistency.

Understanding the Inner Workings of Apache ZooKeeper

[42]

The ZooKeeper access control lists
ZooKeeper's data model provides a mechanism to control the access to znodes using
ACL. While creating a znode, the ACLs determine the permissions with respect to the
various operations that you can perform on the znodes. The ZooKeeper ACL model
is similar to the Unix/Linux file permissions in terms of permitting or preventing
operations being done on a znode by setting/unsetting permission bits. However,
the ZooKeeper node doesn't have the concept of ownership, which is present in
the Unix/Linux filesystem. ACLs are determined on the basis of the authentication
mechanism of the client and the ZooKeeper service.

ZooKeeper provides the following built-in authentication mechanisms based
on ACLs:

•	 World: This represents anyone who is connecting to the ZooKeeper service
•	 Auth: This represents any authenticated user, but doesn't use any ID
•	 Digest: This represents the username and password way of authentication
•	 IP address: This represents authentication with the IP address of

the client

In addition to the authentication schemes mentioned in the preceding list, ZooKeeper
also supports a pluggable authentication mechanism, which makes it possible to
integrate third-party authentication schemes if needed. Any authentication schemes
in ZooKeeper consist of the following two main authentication operations:

•	 Firstly, the authentication framework in ZooKeeper authenticates the client.
The client authentication occurs when the client connects to the ZooKeeper
service by validating client information.

•	 Secondly, the authentication framework finds the entries in the ACL,
which correspond to the client. ACL entries are pairs that consist of <IDs,
Permissions> pairs, where IDs are some strings that identify the client.

An important point about znode ACLs is that the ACL associated with a particular
znode doesn't propagate to its children. A client's authentication with ZooKeeper
is optional; if the ACLs associated with a znode require a client to authenticate,
then it must authenticate using any of the previously mentioned authentication
mechanisms. An ACL is the combination of an authentication mechanism, an
identity for that mechanism, and a set of permissions.

Chapter 2

[43]

ZooKeeper's ACLs support the following permissions:

Operation ACL Permission
CREATE Creates a child znode
READ Gets a list of child znodes and the data associated with a znode
WRITE Sets (writes) data to a znode
DELETE Deletes a child znode
ADMIN Sets ACLs (permissions)

Any client that is connecting to a ZooKeeper service has the permission to check
the existence of a znode. This exist operation is permission-free, which allows
to retrieve the stat structure of a znode. We will read about the stat structure of
ZooKeeper in the next section.

There are a number of predefined ACLs in ZooKeeper. These IDs, as defined by
ZooKeeper ACLs, are shown in the following table:

ACL Description
ANYONE_ID_UNSAFE This ID represents anyone
AUTH_IDS This is used to set ACLs, which get substituted with

the IDs of the authenticated client
OPEN_ACL_UNSAFE This denotes a completely open ACL, and grants all

permissions except the ADMIN permission
CREATOR_ALL_ACL This ACL grants all the permissions to the creator of

the znode
READ_ACL_UNSAFE This ACL gives the world the ability to read

The ZooKeeper stat structure
Every znode in ZooKeeper's namespace has a stat structure associated with it, which
is analogous to the stat structure of files in a Unix/Linux filesystem. The fields in the
stat structure of a znode are shown as follows with their respective meanings:

•	 cZxid: This is the transaction ID of the change that caused this znode to
be created.

•	 mZxid: This is the transaction ID of the change that last modified this znode.
•	 pZxid: This is the transaction ID for a znode change that pertains to adding

or removing children.

Understanding the Inner Workings of Apache ZooKeeper

[44]

•	 ctime: This denotes the creation time of a znode in milliseconds from epoch.
•	 mtime: This denotes the last modification time of a znode in milliseconds

from epoch.
•	 dataVersion: This denotes the number of changes made to the data of

this znode.
•	 cversion: This denotes the number of changes made to the children of

this znode.
•	 aclVersion: This denotes the number of changes made to the ACL of

this znode.
•	 ephemeralOwner: This is the session ID of the znode's owner if the znode

is an ephemeral node. If the znode is not an ephemeral node, this field is
set to zero.

•	 dataLength: This is the length of the data field of this znode.
•	 numChildren: This denotes the number of children of this znode.

In the ZooKeeper Java shell, the stat structure of a znode can be viewed using
the stat or ls2 command. This is illustrated as follows:

•	 View the znode stat structure using the stat command:
[zk: localhost(CONNECTED) 0] stat /zookeeper

cZxid = 0x0

ctime = Thu Jan 01 05:30:00 IST 1970

mZxid = 0x0

mtime = Thu Jan 01 05:30:00 IST 1970

pZxid = 0x0

cversion = -1

dataVersion = 0

aclVersion = 0

ephemeralOwner = 0x0

dataLength = 0

numChildren = 1

Chapter 2

[45]

•	 View the znode stat structure using the ls2 command:
[zk: localhost(CONNECTED) 1] ls2 /zookeeper

[quota]

cZxid = 0x0

ctime = Thu Jan 01 05:30:00 IST 1970

mZxid = 0x0

mtime = Thu Jan 01 05:30:00 IST 1970

pZxid = 0x0

cversion = -1

dataVersion = 0

aclVersion = 0

ephemeralOwner = 0x0

dataLength = 0

numChildren = 1

Understanding the inner working of
ZooKeeper
So far, we have discussed the basics of the ZooKeeper service and learned in detail
about the data model and its attributes. We have also been acquainted with the
ZooKeeper watch concept, which is an eventing mechanism that is done when
any changes are made to a znode in the ZooKeeper namespace. We read how
authentication and a basic security model are implemented by exposing a set of
ACLs to be associated with znodes.

In this section, we will discuss and learn about the lifetime of a client's interaction
with a ZooKeeper service by introducing the concept of ZooKeeper sessions. We
will also read in detail how ZooKeeper works internally by describing its protocols.
It is important to know about the inner workings to gain a deep insight, which will
help in designing distributed applications with ZooKeeper and understanding the
intricacies of the things associated with it.

Let's start with how clients interact with a ZooKeeper service. In order for distributed
applications to make use of the ZooKeeper service, they have to use APIs through
a client library. ZooKeeper client libraries have language bindings for almost all
popular programming languages. The client library is responsible for the interaction
of an application with the ZooKeeper service. We will learn about ZooKeeper APIs
in the next chapter.

Understanding the Inner Workings of Apache ZooKeeper

[46]

An application's interaction with the ZooKeeper service is illustrated in the
following image:

An image that represents how an application interacts with
the ZooKeeper service through client libraries

Chapter 2

[47]

The ZooKeeper service can run in two modes: standalone and quorum. In the
standalone mode, there is a single ZooKeeper server. On the other hand, the quorum
mode means that ZooKeeper runs in a replicated mode on a cluster of machines, also
known as an ensemble.

The standalone mode is useful only for evaluation and to test application
code, but should not be used in production as it's a potential single point
of failure. In the quorum mode, ZooKeeper achieves high availability
through replication and can provide a service as long as a majority of the
machines in the ensemble are up.

The quorum mode
A ZooKeeper quorum constitutes majority of replica nodes that store the most recent
state of the ZooKeeper service among all servers in the ensemble. It's basically the
minimum number of server nodes that must be up and running and available for client
requests. Any update done to the ZooKeeper tree by the clients must be persistently
stored in this quorum of nodes for a transaction to be completed successfully.

For example, in a five-node ensemble, any two machines can fail, and we can have a
quorum of three servers, and the ZooKeeper service will still work. At a later time, if
the other two failed nodes come up, they can sync up the ZooKeeper service state by
getting the most recent state from the existing quorum.

Sizing the number of server nodes in a ZooKeeper service is very
important for ZooKeeper to function correctly. As all transaction commits
depend upon the concept of majority consensus, it's recommended that a
ZooKeeper ensemble should have an odd number of machines in it.

Let's look at an example to see why this makes sense. Suppose we have a ZooKeeper
ensemble of five servers. If any two servers fail, the ensemble can still function
because a quorum can be formed out of the remaining three nodes. Thus, a five-node
ZooKeeper ensemble can tolerate failure of up to two nodes.

Now, for a six-node ensemble, the ZooKeeper service can tolerate a failure of only
up to two nodes. This is because with three nodes failing, a quorum can't be formed;
a majority consensus can't be achieved there for the ensemble. Again, ZooKeeper
quorums must guarantee that any transaction that is acknowledged to the client
as a success should be durable and visible across the nodes that form the quorum.

Understanding the Inner Workings of Apache ZooKeeper

[48]

If a ZooKeeper quorum is not formed with the majority nodes in the ensemble, there
can be inconsistencies in the state of the ZooKeeper namespace, leading to incorrect
results. Apart from node failures, network partitions between the nodes in an
ensemble can lead to inconsistent operations as the quorum members won't be able
to communicate updates among themselves. This leads to a common problem seen
in distributed clusters, called split-brain.

Split-brain is a scenario when two subsets of servers in the ensemble function
independently. It leads to an inconsistent state in the whole ZooKeeper service, and
different clients get different results for the same request, depending upon the server
they are connected to. By having a ZooKeeper cluster running with odd numbers of
nodes, we can reduce the chance of such errors to a probabilistic minimum.

Client establishment of sessions with the
ZooKeeper service
A client that is connecting to ZooKeeper can be configured with a list of servers that
form a ZooKeeper ensemble. A client tries to connect to the servers in the list by
picking up a random server from the list. If the connection fails, it tries to connect to
the next server, and so on. This process goes on until all the servers in the list have
been tried or a successful connection is established.

Once a connection between the client and the ZooKeeper server has been established,
a session is created between the client and the server, represented as a 64-bit
number, which is assigned to the client. The concept of sessions is very important
for the operation of ZooKeeper. A session is associated with every operation a client
executes in a ZooKeeper service.

Sessions play a very important role in ZooKeeper. For example, the whole notion
of ephemeral znodes is based on the concept of sessions between the client and
the ZooKeeper server. Ephemeral znodes have the lifetime of a session being
active between a client and ZooKeeper; when this session ends, these nodes are
automatically deleted by the ZooKeeper service.

A session has a timeout period, which is specified by the application or the client
while connecting to the ZooKeeper service. The client sends a requested timeout as
a parameter in the create connection call to create a ZooKeeper, which is specified
in milliseconds. If the connection remains idle for more than the timeout period, the
session might get expired. Session expiration is managed by the ZooKeeper cluster
itself and not by the client. The current implementation requires that the timeout
be a minimum of two times the tickTime (see Chapter 1, A Crash Course in Apache
ZooKeeper) and a maximum of 20 times the tickTime.

Chapter 2

[49]

Specifying the right session timeout depends on various factors, such as network
congestion, complexity of the application logic, and even the size of the ZooKeeper
ensemble. For example, in a very busy and congested network, if the latency is
high, having a very low session timeout will lead to frequent session expiration.
Similarly, it's recommended to have a larger timeout if your ensemble is large. Also,
if the application sees frequent connection loss, increasing the session timeout can
be useful. However, another caution to that is that it should not have an inadvertent
effect on the application's core logic.

Sessions are kept alive by the client sending a ping request (heartbeat) to the
ZooKeeper service. These heartbeats are sent automatically by the client libraries,
and hence, an application programmer need not worry about keeping alive the
sessions. Sessions between a client and a ZooKeeper server is maintained using a
TCP connection. The interval between two subsequent heartbeats should be kept
low, such that connection failure between the client and the ZooKeeper server can
be detected quite early and a reconnection attempt can be made. Reconnection to
another ZooKeeper server is usually done by the client library in a transparent way.
When a reconnection to a different server of the same ensemble is done, the existing
sessions and associated ephemeral znodes created by the client remains valid. For
single sessions maintained between the client and the server, ZooKeeper guarantees
the order, which is typically in the FIFO order.

While reconnect attempts are being made to another ZooKeeper server, the
application will receive notifications of disconnections and connections to the service.
During this failover, watch notifications are not delivered to the client as the client
is typically in a disconnected mode. However, all pending event notifications are
dispatched in order when the client successfully reconnects to the service. Also, any
client operations are not honored during the reconnection time, and hence, operations
will fail. So, it's very important to handle connection-loss scenarios while developing
applications with ZooKeeper.

As mentioned in the previous section, an application establishes a session with the
ZooKeeper service using a client library. A handle that represents the connection
object is returned to the application by the ZooKeeper client API. This ZooKeeper
connection object transitions through different states during the period between
its creation and its end. The connection object lasts till the connection of the client
program is closed gracefully or the session expires because of a timeout.

Once the connection object is created, it starts with the CONNECTING state, and the
client library tries to connect to one of the servers in the ZooKeeper ensemble. When
connected to the ZooKeeper service, the object transitions to the CONNECTED state.
On account of events such as session expiration and authentication failures, or if the
application gracefully closes the connection using the library calls, the object's state
moves to the CLOSED state.

Understanding the Inner Workings of Apache ZooKeeper

[50]

The state transitions of a ZooKeeper client's session are illustrated in the
following image:

An image that represents the transitions of the ZooKeeper client state

Chapter 2

[51]

Implementation of ZooKeeper transactions
From the previous sections, we have seen how ZooKeeper runs on an ensemble of
servers and how clients connect to these servers, establish a session, and carry out
an operation in the ZooKeeper service. Among the ensemble of servers, a server is
elected as a leader, and all the remaining servers are made followers. The leader
handles all requests that change the ZooKeeper service. Followers receive the updates
proposed by the leader, and through a majority consensus mechanism, a consistent
state is maintained across the ensemble. The ZooKeeper service takes care of replacing
leaders on failures and syncing followers with leaders, and the whole process is fully
transparent to client applications.

The service relies on the replication mechanism to ensure that all updates are
persistent in all the servers that constitute the ensemble. Each server maintains an
in-core database, which represents the entire state of the ZooKeeper namespace.
To ensure that updates are durable, and thus recoverable in the event of a server
crash, updates are logged to a local disk. Also, the writes are serialized to the disk
before they are applied to the in-memory database.

ZooKeeper uses a special atomic messaging protocol called ZooKeeper Atomic
Broadcast (ZAB). This protocol ensures that the local replicas in the ensemble never
diverge. Also, the ZAB protocol is atomic, so the protocol guarantees that updates
either succeed or fail.

The replicated database and the atomic broadcast protocol together with the leader
election mechanism form the heart of the ZooKeeper service implementation. An
update or a write in the ZooKeeper service namespace, along with a read, is handled
by these core components, as you can see in this image (you can also refer to this
image at http://zookeeper.apache.org/doc/r3.4.6/zookeeperOver.html#fg_
zkComponents):

An image that represents the ZooKeeper Service Components

http://zookeeper.apache.org/doc/r3.4.6/zookeeperOver.html#fg_zkComponents
http://zookeeper.apache.org/doc/r3.4.6/zookeeperOver.html#fg_zkComponents

Understanding the Inner Workings of Apache ZooKeeper

[52]

In a ZooKeeper implementation, read requests such as exists, getData, and
getChildren are processed locally by the ZooKeeper server where the client is
connected. This makes the read operations very fast in ZooKeeper. Write or update
requests such as create, delete, and setData are forwarded to the leader in the
ensemble. The leader carries out the client request as a transaction. This transaction
is similar to the concept of a transaction in a database management system.

A ZooKeeper transaction also comprises all the steps required to successfully execute
the request as a single work unit, and the updates are applied atomically. Also, a
transaction satisfies the property of isolation, which means that no transaction is
interfered with by any other transaction. A transaction in the ZooKeeper service is
idempotent. Transactions are identified by a transaction identifier (zxid), which is a
64-bit integer split into two parts: the epoch and the counter, each being 32 bits.

Transaction processing involves two steps in ZooKeeper: leader election and atomic
broadcast. This resembles a two-phase commit protocol, which also includes a leader
election and an atomic broadcast.

Phase 1 – leader election
The servers in an ensemble go through a process of electing a master server, called
the leader. The other servers in the ensemble are called followers.

Each server that participates in the leader election algorithm has a state called
LOOKING. If a leader already exists in the ensemble, the peer servers inform the new
participant servers about the existing leader. After learning about the leader, the new
servers sync their state with the leader.

When a leader doesn't exist in the ensemble, ZooKeeper runs a leader election
algorithm in the ensemble of servers. In this case, to start with, all of the servers are
in the LOOKING state. The algorithm dictates the servers to exchange messages to elect
a leader. The algorithm stops when the participant servers converge on a common
choice for a particular server, which becomes the leader. The server that wins this
election enters the LEADING state, while the other servers in the ensemble enter the
FOLLOWING state.

Chapter 2

[53]

The message exchanged by the participant servers with their peers in the ensemble
contains the server's identifier (sid) and the transaction ID (zxid) of the most recent
transaction it executed. Each participating server, upon receiving a peer server's
message, compares its own sid and zxid with the one it receives. If the received
zxid is greater than the one held by the server, the server accepts the received zxid,
otherwise, it sets and advertises its own zxid to the peers in the ensemble.

At the end of this algorithm, the server that has the most recent transaction ID (zxid)
wins the leader election algorithm. After the algorithm is completed, the follower
servers sync their state with the elected leader.

The next step to leader election is leader activation. The newly elected leader
proposes a NEW_LEADER proposal, and only after the NEW_LEADER proposal
is acknowledged by a majority of servers (quorum) in the ensemble, the leader gets
activated. The new leader doesn't accept new proposals until the NEW_LEADER
proposal is committed.

Phase 2 – atomic broadcast
All write requests in ZooKeeper are forwarded to the leader. The leader broadcasts
the update to the followers in the ensemble. Only after a majority of the followers
acknowledge that they have persisted the change does the leader commit the update.
ZooKeeper uses the ZAB protocol to achieve consensus, which is designed to be
atomic. Thus, an update either succeeds or fails. On a leader failure, the other servers
in the ensemble enter a leader election algorithm to elect a new leader among them.

ZAB: High-performance broadcast for primary-backup systems by
Junqueira, F.P; Reed, B.C; Serafini. M
(LADIS 2008, in: Proceedings of the 2nd Workshop on Large-Scale
Distributed Systems and Middleware)
Readers can access the paper on ZAB from IEEE Xplore in this link:
http://bit.ly/1v3N1NN

Understanding the Inner Workings of Apache ZooKeeper

[54]

ZAB guarantees strict ordering in the delivery of transactions as well as in the
committing of the transactions. Pictorially, the processing of transactions through
atomic messaging can be illustrated as follows:

An image that represents the transaction commit protocol of ZooKeeper

The two-phase commit guarantees the ordering of transactions. In the protocol, once
the quorum acknowledges a transaction, the leader commits it and a follower records
its acknowledgement on disk.

Apart from leaders and followers, there can be a third personality of a
server in a ZooKeeper ensemble, known as observers. Observers and
followers are conceptually similar as they both commit proposals from
the leader. However, unlike followers, observers do not participate in
the voting processes of the two-phase commit process. Observers aid
to the scalability of read requests in a ZooKeeper service and help in
propagating updates in the ZooKeeper ensemble that span multiple
data centers.

Chapter 2

[55]

Local storage and snapshots
ZooKeeper servers use local storage to persist transactions. The transactions are
logged to transaction logs, similar to the approach of sequential append-only log
files used in database systems. ZooKeeper servers use pre-allocated files to flush
transactions onto disk media. In the two-phase protocol for transaction processing
in ZooKeeper, a server acknowledges a proposal only after forcing a write of the
transaction to the transaction log. Since ZooKeeper transaction logs are written at
great speed, it's very important for the transaction logs to be configured in a disk
separate from the boot device of the server.

The servers in the ZooKeeper service also keep on saving point-in-time copies
or snapshots of the ZooKeeper tree or the namespace onto the local filesystem.
The servers need not coordinate with the other members of the ensemble to save
these snapshots. Also, the snapshot processing happens asynchronous to normal
functioning of the ZooKeeper server.

The ZooKeeper snapshot files and transactional logs enable recovery of data in times
of catastrophic failure or user error. The data directory is specified by the dataDir
parameter in the ZooKeeper configuration file, and the data log directory is
specified by the dataLogDir parameter.

Summary
In this chapter, we learned the basics of a ZooKeeper service followed by the
ZooKeeper data model. We read about the different operations supported by the
data model and the eventing mechanism associated with it. We also studied in detail
about the intricate details of how ZooKeeper is implemented from the protocol, how
it maintains consistency guarantees, transaction-processing through a two-phase
atomic broadcast scheme, and so on.

In the next chapter, we will dive into the programming of Apache ZooKeeper.
We will learn about the ZooKeeper API model by getting acquainted with the
client libraries. In addition to this, we will look at programs to use the APIs, which
will be a big stepping stone to writing distributed applications using ZooKeeper.

Programming with Apache
ZooKeeper

In the previous chapter, we learned about the architecture and internals of
ZooKeeper, which gave us an insight into how things work in a ZooKeeper service.
So far, from the previous two chapters, we are now well versed with the ZooKeeper
data model and the operations supported by it, and we know how to use the
ZooKeeper shell (zkCli) to perform the basic ZooKeeper operations. We also read
about the API model in ZooKeeper.

In this chapter, we are going to learn how to write client applications with the
ZooKeeper client APIs.

Overall, this chapter has been organized into the following topics:

•	 Programming using the ZooKeeper Java APIs
•	 Writing ZooKeeper applications with the C library
•	 Kazoo – a high-level Python library for ZooKeeper

It is assumed that you are familiar with high-level programming languages to follow
through the sample code examples. By the end of this chapter, you will feel confident
enough to start writing applications using the ZooKeeper APIs.

The code of this chapter is tested in a Linux operating system, and
ZooKeeper version 3.4.6 is used to run the ZooKeeper server instance.

ZooKeeper is developed in Java, and the Java API docs for version 3.4.6 are available
at http://zookeeper.apache.org/doc/r3.4.6/api/index.html.

http://zookeeper.apache.org/doc/r3.4.6/api/index.html

Programming with Apache ZooKeeper

[58]

Using the Java client library
The ZooKeeper Java bindings for the development of applications are mainly
composed of two Java packages:

•	 org.apache.zookeeper

•	 org.apache.zookeeper.data

The package org.apache.zookeeper is composed of the interface definition for
ZooKeeper watches and various callback handlers of ZooKeeper. It defines the
main class of the ZooKeeper client library along with many static definitions of the
ZooKeeper event types and states. The org.apache.zookeeper.data package
defines the characteristics associated with the data registers, also known as znodes,
such as Access Control Lists (ACL), IDs, stats, and so on.

The org.apache.zookeeper.server, org.apache.zookeeper.server.quorum,
and org.apache.zookeeper.server.upgrade packages in the ZooKeeper Java
APIs are part of the server implementation. The package org.apache.zookeeper.
client defines the class of Four Letter Word, which is used to enquire the state of the
ZooKeeper server.

Refer to Chapter 1, A Crash Course in Apache ZooKeeper, for more
information on the Four Letter Word class.

Preparing your development environment
Apache ZooKeeper is a complex piece of software, and as such, it requires a lot
of other libraries to run. The dependent libraries are shipped with the ZooKeeper
distribution as jar files in the lib directory. The core ZooKeeper jar file is located in
the main tree of the distribution tar ball as zookeeper-3.4.6.jar.

To start developing applications for ZooKeeper in Java, we have to set the
CLASSPATH that points to the ZooKeeper jar and all the allied third-party libraries
on which ZooKeeper has dependencies. A script named zkEnv.sh, which is shipped
with the distribution in the bin directory, can be used to set the CLASSPATH.

We need to source the script as follows:

$ ZOOBINDIR=${ZK_HOME}/bin

$ source ${ZOOBINDIR}/zkEnv.sh

Chapter 3

[59]

The shell variable ZK_HOME is set to the path where ZooKeeper is installed, which, in
my setup, is /usr/share/zookeeper. After this, the CLASSPATH variable will be set
correctly, which, in my system, looks as follows:

$ echo $CLASSPATH

/usr/share/zookeeper-3.4.6/bin/../build/classes
:/usr/share/zookeeper-3.4.6/bin/../build/lib/*.jar
:/usr/share/zookeeper-3.4.6/bin/../lib/slf4j-log4j12-1.6.1.jar
:/usr/share/zookeeper-3.4.6/bin/../lib/slf4j-api-1.6.1.jar
:/usr/share/zookeeper-3.4.6/bin/../lib/netty-3.7.0.Final.jar
:/usr/share/zookeeper-3.4.6/bin/../lib/log4j-1.2.16.jar
:/usr/share/zookeeper-3.4.6/bin/../lib/jline-0.9.94.jar
:/usr/share/zookeeper-3.4.6/bin/../zookeeper-3.4.6.jar
:/usr/share/zookeeper-3.4.6/bin/../src/java/lib/*.jar
:/usr/share/zookeeper-3.4.6/bin/../conf:

In the Windows operating system, you will have to run the zkEnv.cmd batch script.
The CLASSPATH variable can now be used to compile and run the Java programs
written using ZooKeeper APIs. You can source the zkEnv.sh script inside the
.bashrc file of your home directory in Unix/Linux in order to avoid sourcing
it every time you start a shell session.

The first ZooKeeper program
To get introduced with the ZooKeeper Java API, let's start with a very simple
program that does the job of connecting to a ZooKeeper instance in the localhost,
and if the connection is successful, it prints the list of znodes in the root path '/' of
the ZooKeeper namespace.

The code for this program is shown as follows:

/*Our First ZooKeeper Program*/
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import org.apache.zookeeper.KeeperException;
import org.apache.zookeeper.ZooKeeper;
public class HelloZooKeeper {
 public static void main(String[] args) throws IOException {
 String hostPort = "localhost:2181";
 String zpath = "/";
 List <String> zooChildren = new ArrayList<String>();
 ZooKeeper zk = new ZooKeeper(hostPort, 2000, null);
 if (zk != null) {
 try {
 zooChildren = zk.getChildren(zpath, false);

Programming with Apache ZooKeeper

[60]

 System.out.println("Znodes of '/': ");
 for (String child: zooChildren) {
 //print the children
 System.out.println(child);
 }
 } catch (KeeperException e) {
 e.printStackTrace();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }
}

Before we build and execute the preceding code fragment, let's look into the details
of what it actually does. The code begins with the import statements. Using these
statements, we imported the packages required by the various components of the
program. As mentioned previously, the org.apache.zookeeper package contains
all the required classes and interfaces for a client to interact with the ZooKeeper
server. After importing the packages, we defined a class called HelloZooKeeper
with a main function. As we are going to connect to the ZooKeeper instance that is
running in the same system, we define the host and port string as localhost:2181
in the main function. The code line zk = new ZooKeeper(hostPort, 2000, null)
calls the ZooKeeper constructor, which tries to connect to the ZooKeeper server and
returns a handle to it. In the previous chapter, we learned that for a client program
to connect to a ZooKeeper server instance and maintain that connection, it needs
to maintain a live session. The handle returned by the constructor, zk in our case,
represents this session. The ZooKeeper API is built around this handle, and every
method call requires a handle to execute.

The constructor of the ZooKeeper class creates a handle to the ZooKeeper instance
with the following code:

ZooKeeper(String connectString, int sessionTimeout,
Watcher watcher)

The parameters used are explained as follows:

•	 connectString: This is a comma-separated list of host:port pairs, each of
which corresponds to a ZooKeeper server. For example, 10.0.0.1:2001,
10.0.0.2:2002, and 10.0.0.3:2003 represent a valid host:port pair for a
ZooKeeper ensemble of three nodes.

•	 sessionTimeout: This is the session timeout in milliseconds. This is the
amount of time ZooKeeper waits without getting a heartbeat from the client
before declaring the session as dead.

Chapter 3

[61]

•	 watcher: A watcher object, which, if created, will be notified of state changes
and node events. This watcher object needs to be created separately through
a user-defined class by implementing the Watcher interface and passing the
instantiated object to the ZooKeeper constructor. A client application can
get a notification for various types of events such as connection loss, session
expiry, and so on. We will look at implementing a Watcher interface in the
next section of this chapter.

The ZooKeeper Java API defines three more constructors with additional
argument parameters, to specify more advanced operations. These are shown
in the following code:

ZooKeeper(String connectString, int sessionTimeout,
Watcher watcher, boolean canBeReadOnly)

In the preceding constructor of the ZooKeeper class, the additional boolean
canBeReadOnly parameter, if set to true, allows the created client to go to the
read-only mode in case of network partitioning. The read-only mode is a scenario in
which a client can't find any majority servers but there's a partitioned server that it
can reach; it connects to it in a read-only mode such that read requests to the server
are allowed but write requests are not. The client continues to attempt to connect
to majority servers in the background, while still maintaining the read-only mode.
Partitioned servers are merely a subset of the ZooKeeper ensemble, which is formed
due to network portioning in the cluster. Majority servers constitute the majority
quorum in the ensemble.

The following constructor shows two additional parameters:

ZooKeeper(String connectString, int sessionTimeout, Watcher watcher,
long sessionId, byte[] sessionPasswd)

This constructor allows a ZooKeeper client object to be created with two
additional parameters:

•	 sessionId: In case the client is reconnecting to the ZooKeeper server, a
specific session ID can be used to refer to the previously connected session

•	 sessionPasswd: If the specified session requires a password, this can be
specified here

The following constructor is a combination of the previous two calls:

ZooKeeper(String connectString, int sessionTimeout,
 Watcher watcher, long sessionId, byte[] sessionPasswd,
 boolean canBeReadOnly)

Programming with Apache ZooKeeper

[62]

This constructor is a combination of the previous two calls, which allows
reconnecting to a specified session with the read-only mode enabled.

The detailed Java API doc of the ZooKeeper class can be read at
http://zookeeper.apache.org/doc/r3.4.6/api/index.
html.

Now, let's go back to our ZooKeeper program. After calling the constructor, we will
get a handle to the ZooKeeper server if our connection is successful. We pass the
handle to a getChildren method with the following code:

zooChildren = zk.getChildren(zpath, false)

The getChildren (String path, boolean watch) method of the ZooKeeper class
returns a list of the children of a znode at a given path. We simply iterate the list
returned by this method and print the child string to the console.

We name our program HelloZooKeeper.java, and compile our program
as follows:

$ javac –cp $CLASSPATH HelloZooKeeper.java

Before we run our program, we need to start our ZooKeeper server instance, if it's
not already started, with the following command:

$ ${ZK_HOME}/bin/zkServer.sh start

Let's run our program as follows:

$ java -cp $CLASSPATH HelloZooKeeper

Executing the programs prints a lot of log messages in the console screen, showing
us the version of ZooKeeper used, the Java version, Java class paths, the architecture
of the server, and so on. A snippet of these log messages is shown here:

http://zookeeper.apache.org/doc/r3.4.6/api/index.html
http://zookeeper.apache.org/doc/r3.4.6/api/index.html

Chapter 3

[63]

The log messages generated by the ZooKeeper Java APIs are very useful for
debugging purposes. It gives us invaluable information about what's really going
on behind the scenes when a client connects to the ZooKeeper server, establishes
a session, and so on. The last three log messages shown previously tell us how the
client is initiating a connection with the parameters specified in our program and
how, after a successful connection, the server doles out a session ID to the client.

Finally, a successful execution of our program prints out the following in the console:

We can verify the correctness of our program using the ZooKeeper shell:

$ $ZK_HOME/bin/zkCli.sh -server localhost

Congratulations! We have just successfully written our first ZooKeeper client program.

Implementing a Watcher interface
We have read in detail about the ZooKeeper watches in the previous chapter.
Watches enable a client to receive notifications from the ZooKeeper server and
process these events upon occurrence. ZooKeeper Java APIs provide a public
interface called Watcher, which a client event handler class must implement in
order to receive notifications about events from the ZooKeeper server it connects
to. Programmatically, an application that uses such a client handles these events by
registering a callback object with the client.

In this section, we will read about implementing a watcher, which handles events
generated by ZooKeeper when the data associated with a znode changes.

The Watcher interface is declared in the org.apache.zookeeper package as follows:

public interface Watcher {
 void process(WatchedEvent event);
}

Programming with Apache ZooKeeper

[64]

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books you
have purchased. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/books/content/support and
register to have the files e-mailed directly to you.

To illustrate the znode data watcher, we will have two Java classes: DataWatcher
and DataUpdater. DataWatcher will run continuously and listen for the
NodeDataChange events from the ZooKeeper server in a specific znode path called
/MyConfig. The DataUpdater class will periodically update the data field in this
znode path, which will generate events, and upon receiving these events, the
DataWatcher class will print the changed data onto the console.

The following is the code of the DataWatcher.java class:

import java.io.IOException;
import org.apache.zookeeper.CreateMode;
import org.apache.zookeeper.KeeperException;
import org.apache.zookeeper.WatchedEvent;
import org.apache.zookeeper.Watcher;
import org.apache.zookeeper.ZooDefs;
import org.apache.zookeeper.ZooKeeper;
public class DataWatcher implements Watcher, Runnable {
 private static String hostPort = "localhost:2181";
 private static String zooDataPath = "/MyConfig";
 byte zoo_data[] = null;
 ZooKeeper zk;
 public DataWatcher() {
 try {
 zk = new ZooKeeper(hostPort, 2000, this);
 if (zk != null) {
 try {

Create the znode if it doesn't exist, with the following code:

 if (zk.exists(zooDataPath, this) == null) {
 zk.create(zooDataPath, "".getBytes(),
 ZooDefs.Ids.OPEN_ACL_UNSAFE,
 CreateMode.PERSISTENT);
 }
 } catch (KeeperException | InterruptedException e) {
 e.printStackTrace();
 }
 }
 } catch (IOException e) {

http://www.packtpub.com
http://www.packtpub.com/books/content/support

Chapter 3

[65]

 e.printStackTrace();
 }
 }
 public void printData()
 throws InterruptedException, KeeperException {
 zoo_data = zk.getData(zooDataPath, this, null);
 String zString = new String(zoo_data);

The following code prints the current content of the znode to the console:

 System.out.printf("\nCurrent Data @ ZK Path %s: %s",
 zooDataPath, zString);
 }
 @Override
 public void process(WatchedEvent event) {
 System.out.printf(
 "\nEvent Received: %s", event.toString());
 //We will process only events of type NodeDataChanged
 if (event.getType() == Event.EventType.NodeDataChanged) {
 try {
 printData();
 } catch (InterruptedException e) {
 e.printStackTrace();
 } catch (KeeperException e) {
 e.printStackTrace();
 }
 }
 }
 public static void main(String[] args)
 throws InterruptedException, KeeperException {
 DataWatcher dataWatcher = new DataWatcher();
 dataWatcher.printData();
 dataWatcher.run();
 }
 public void run() {
 try {
 synchronized (this) {
 while (true) {
 wait();
 }
 }
 } catch (InterruptedException e) {
 e.printStackTrace();
 Thread.currentThread().interrupt();
 }
 }
}

Programming with Apache ZooKeeper

[66]

Let's do a code walkthrough of the DataWatcher.java class to understand the
implementation of a ZooKeeper watcher. The DataWatcher public class implements
the Watcher interface along with the Runnable interface, as we plan to run the
watcher as a thread. The main method creates an instance of the DataWatcher class.
In the preceding code, the DataWatcher constructor tries to connect to the ZooKeeper
instance that is running on localhost. If the connection is successful, we check
whether the znode path /MyConfig exists, with the following code:

if (zk.exists(zooDataPath, this) == null) {

If the znode is not present in the ZooKeeper namespace, the exists method call
returns NULL, and we try to create it as a persistent znode with the code as follows:

zk.create(zooDataPath, "".getBytes(),
 ZooDefs.Ids.OPEN_ACL_UNSAFE,
 CreateMode.PERSISTENT);

Next is the process method, which is declared in the Watcher interface of org.
apache.ZooKeeper, and implemented here by the DataWatcher class, by using
the following code:

public void process(WatchedEvent event) {

To keep things simple, in the process method, we print the event received from
the ZooKeeper instance and do further processing only for the event of type
NodeDataChanged as follows:

if (event.getType() == Event.EventType.NodeDataChanged)

When an event of type NodeDataChanged is received due to any update or change in
the data field of the znode path /MyConfig, we call the printData method to print
the current content of the znode. Observe carefully here that when we perform a
getData call on the znode, we set a watch again, which is the second parameter of
the method, as shown in the following code:

zoo_data = zk.getData(zooDataPath, this, null);

From the previous chapter, recall that a watch event is a one-time trigger that is sent
to the client that sets the watch, and to keep receiving further event notifications, the
client should reset the watch.

The DataUpdater (DataUpdater.java) is a simple class, which connects to the
ZooKeeper instance that runs the localhost and updates the data field of the znode
path /MyConfig with a random string. Here, we chose to update the znode with a
Universally Unique IDentifier (UUID) string since a subsequent call of the UUID
generator is guaranteed to generate a unique string.

Chapter 3

[67]

The DataUpdater.java class can be constructed as follows:

import java.io.IOException;
import java.util.UUID;
import org.apache.zookeeper.KeeperException;
import org.apache.zookeeper.WatchedEvent;
import org.apache.zookeeper.Watcher;
import org.apache.zookeeper.ZooKeeper;
public class DataUpdater implements Watcher {
 private static String hostPort = "localhost:2181";
 private static String zooDataPath = "/MyConfig";
 ZooKeeper zk;
 public DataUpdater() throws IOException {
 try {
 zk = new ZooKeeper(hostPort, 2000, this);
 } catch (IOException e) {
 e.printStackTrace();
 }
 }

The DataUpdater class updates the znode path /MyConfig every 5 seconds with
a new UUID string. This is shown in the following code:

 public void run() throws InterruptedException, KeeperException {
 while (true) {
 String uuid = UUID.randomUUID().toString();
 byte zoo_data[] = uuid.getBytes();
 zk.setData(zooDataPath, zoo_data, -1);
 try {
 Thread.sleep(5000); // Sleep for 5 secs
 } catch(InterruptedException e) {
 Thread.currentThread().interrupt();
 }
 }
 }

The preceding code makes the ZooKeeper server trigger a NodeDataChanged event.
Since DataWatcher had set a watch for this znode path, it receives the notification for
the data change event. It then retrieves the updated data, resets the watch, and prints
the data on the console.

Programming with Apache ZooKeeper

[68]

Finally, the main method is created as follows:

 public static void main(String[] args) throws
 IOException, InterruptedException, KeeperException {
 DataUpdater dataUpdater = new DataUpdater();
 dataUpdater.run();
 }
 @Override
 public void process(WatchedEvent event) {
 System.out.printf("\nEvent Received: %s", event.toString());
 }
}

Let's compile both our DataWatcher and DataUpdater classes using the
following commands:

$ javac –cp $CLASSPATH DataWatcher.java

$ javac –cp $CLASSPATH DataUpdater.java

To execute the watcher and updater, open two terminal windows. We need to run
the watcher first as it creates the znode named /MyConfig if not already created in
the ZooKeeper's namespace. Make sure that the ZooKeeper server is running in the
localhost before you run the watcher.

In one of the terminal windows, we execute the watcher class by running the
following command:

$ java –cp $CLASSPATH DataWatcher

This outputs a message similar to the one shown in the following screenshot:

As shown in the preceding screenshot, the znode path /MyConfig is created by the
DataWatcher class. It also prints the content of the znode, but nothing gets printed
in the console as we did not set any data while creating the znode. When the znode
gets created, the watcher in our class received an event notification of the type
NodeCreated, which gets printed in the console. The DataWatcher class continues
to run and listen for events /MyConfig from the ZooKeeper server.

Chapter 3

[69]

Let's run the DataUpdater class in another terminal window:

$ java -cp $CLASSPATH DataUpdater

The DataUpdater class continues to run silently after logging the initial
ZooKeeper-specific log messages into the console. It sets a new UUID string into
the data field of the ZooKeeper path /MyConfig. As a result of this, we will see that
every 5 seconds, something similar to the output shown in the following screenshot
gets printed in the terminal window where DataWatcher is running:

The DataWatcher can also be tested using the ZooKeeper shell. Keep running the
DataWatcher class in a terminal as before, and in another terminal, invoke the
ZooKeeper shell and run the command shown in the following screenshot:

In the terminal where the DataWatcher is running, the following message
gets printed:

Programming with Apache ZooKeeper

[70]

Example – a cluster monitor
Popular services offered over the Internet, such as e-mail, file-serving platforms,
online gaming, and so on, are served through highly available clusters of hundreds
or thousands of servers spanned over multiple data centers, which are often
geographically apart. In such clusters, a few dedicated server nodes are set up to
monitor the aliveness of the servers, which hosts the services or applications in the
production network. In a cloud computing environment, such monitoring nodes,
which are also used to administer the cloud environment, are referred to as cloud
controllers. An important job for these controller nodes is to detect the failure of the
production servers in real time, and accordingly notify the administrator and also
take necessary actions, such as failing over the applications from the failed server to
another server, thereby ensuring fault tolerance and high availability.

In this section, we'll develop a minimalistic distributed cluster monitor model
using the ZooKeeper Java client APIs. Building this monitoring model using the
ephemeral znode concept of ZooKeeper is fairly simple and elegant, as described in
the following steps:

1.	 Every production server runs a ZooKeeper client as a daemon process. This
process connects to the ZooKeeper server and creates an ephemeral znode
with a name, preferably its network name or host name under a predefined
path in the ZooKeeper namespace, say /Members.

2.	 The cloud controller node(s) runs a ZooKeeper watcher process, which
keeps a watch on the path /Members and listens for events of the type
NodeChildrenChanged. This watcher process runs as a service or daemon
and sets/resets watches on the path, and has the logic implemented to call
the appropriate module to take necessary actions for watch events.

3.	 Now, if a production server goes down due to hardware failure or software
crash, the ZooKeeper client process gets killed, causing the session between
the server and the ZooKeeper service to get terminated. Owing to the unique
property of ephemeral znodes, whenever the client connection goes down,
the ZooKeeper service automatically deletes the znode in the path /Members.

4.	 The deletion of the znode in the path raises a NodeChildrenChanged event,
and as a result, the watcher process in the cloud controller gets a notification.
By calling a getChildren method in the path /Members, it can figure out
which server node has gone down.

5.	 The controller node can then take the appropriate actions, such as spawning
off the recovery logic to restart the faulted services in another server.

6.	 This logic can be built to work in real time, guaranteeing for near-zero
downtime and highly available services.

Chapter 3

[71]

To implement this cluster-monitoring model, we will develop two Java classes. The
class ClusterMonitor will continuously run a watcher to keep a watch on the path /
Members in the ZooKeeper tree. After processing the raised events, we will print the
list of znodes in the console and reset the watch. The other class ClusterClient will
initiate a connection to the ZooKeeper server, creating an ephemeral znode under /
Members.

To emulate a cluster with multiple nodes, we will start many clients on the same
machine and create the ephemeral znodes with the process IDs of the client processes.
By looking at the process ID, the ClusterMonitor class can figure out which client
process has gone down and which ones are still alive. In a real-life scenario, the client
processes will usually create ephemeral znodes with the hostname of the server that
they are currently running on. The source codes of the two classes are shown next.

The ClusterMonitor.java class can be constructed as follows:

import java.io.IOException;
import java.util.List;
import org.apache.zookeeper.CreateMode;
import org.apache.zookeeper.KeeperException;
import org.apache.zookeeper.WatchedEvent;
import org.apache.zookeeper.Watcher;
import org.apache.zookeeper.ZooDefs.Ids;
import org.apache.zookeeper.ZooKeeper;
public class ClusterMonitor implements Runnable {
private static String membershipRoot = "/Members";
private final Watcher connectionWatcher;
private final Watcher childrenWatcher;
private ZooKeeper zk;
boolean alive=true;
public ClusterMonitor(String HostPort) throws
 IOException, InterruptedException, KeeperException {
 connectionWatcher = new Watcher() {
 @Override
 public void process(WatchedEvent event) {
 if(event.getType()==Watcher.Event.EventType.None &&
 event.getState() ==
 Watcher.Event.KeeperState.SyncConnected) {
 System.out.printf("\nEvent Received: %s",
 event.toString());
 }
 }
 };

 childrenWatcher = new Watcher() {

Programming with Apache ZooKeeper

[72]

 @Override
 public void process(WatchedEvent event) {
 System.out.printf("\nEvent Received: %s",
 event.toString());
 if (event.getType() ==
 Event.EventType.NodeChildrenChanged) {
 try {
 //Get current list of child znode,
 //reset the watch
 List<String> children = zk.getChildren(
 membershipRoot, this);
 wall("!!!Cluster Membership Change!!!");
 wall("Members: " + children);
 } catch (KeeperException e) {
 throw new RuntimeException(e);
 } catch (InterruptedException e) {
 Thread.currentThread().interrupt();
 alive = false;
 throw new RuntimeException(e);
 }
 }
 }
 };

 zk = new ZooKeeper(HostPort, 2000, connectionWatcher);

 // Ensure the parent znode exists
 if(zk.exists(membershipRoot, false) == null) {
 zk.create(membershipRoot, "ClusterMonitorRoot".getBytes(),
 Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT);
 }

 // Set a watch on the parent znode
 List<String> children = zk.getChildren(membershipRoot,
 childrenWatcher);
 System.err.println("Members: " + children);
 }

 public synchronized void close() {
 try {
 zk.close();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

Chapter 3

[73]

 public void wall (String message) {
 System.out.printf("\nMESSAGE: %s", message);
 }

 public void run() {
 try {
 synchronized (this) {
 while (alive) {
 wait();
 }
 }
 } catch (InterruptedException e) {
 e.printStackTrace();
 Thread.currentThread().interrupt();
 } finally {
 this.close();
 }
 }

 public static void main(String[] args) throws
 IOException, InterruptedException, KeeperException {
 if (args.length != 1) {
 System.err.println("Usage: ClusterMonitor <Host:Port>");
 System.exit(0);
 }
 String hostPort = args[0];
 new ClusterMonitor(hostPort).run();
 }
}

The ClusterClient.java class can be constructed as follows:

import java.io.IOException;
import java.lang.management.ManagementFactory;
import org.apache.zookeeper.CreateMode;
import org.apache.zookeeper.KeeperException;
import org.apache.zookeeper.WatchedEvent;
import org.apache.zookeeper.Watcher;
import org.apache.zookeeper.ZooDefs.Ids;
import org.apache.zookeeper.ZooKeeper;
public class ClusterClient implements Watcher, Runnable {
private static String membershipRoot = "/Members";
ZooKeeper zk;
public ClusterClient(String hostPort, Long pid) {

Programming with Apache ZooKeeper

[74]

 String processId = pid.toString();
 try {
 zk = new ZooKeeper(hostPort, 2000, this);
 } catch (IOException e) {
 e.printStackTrace();
 }
 if (zk != null) {
 try {
 zk.create(membershipRoot + '/' + processId,
 processId.getBytes(),
 Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL);
 } catch (
 KeeperException | InterruptedException e) {
 e.printStackTrace();
 }
 }
 }

 public synchronized void close() {
 try {
 zk.close();
 }
 catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

 @Override
 public void process(WatchedEvent event) {
 System.out.printf("\nEvent Received: %s", event.toString());
 }

 public void run() {
 try {
 synchronized (this) {
 while (true) {
 wait();
 }
 }
 } catch (InterruptedException e) {
 e.printStackTrace();
 Thread.currentThread().interrupt();
 } finally {
 this.close();

Chapter 3

[75]

 }
 }

 public static void main(String[] args) {
 if (args.length != 1) {
 System.err.println("Usage: ClusterClient <Host:Port>");
 System.exit(0);
 }
 String hostPort = args[0];
 //Get the process id
 String name = ManagementFactory.getRuntimeMXBean().getName();
 int index = name.indexOf('@');
 Long processId = Long.parseLong(name.substring(0, index));
 new ClusterClient(hostPort, processId).run();
 }
}

Let's compile both these classes as follows:

$ javac -cp $CLASSPATH ClusterMonitor.java

$ javac -cp $CLASSPATH ClusterClient.java

To execute the cluster-monitoring model, open two terminals. In one of the terminals,
we will run the ClusterMonitor class. In another terminal, we will execute more
than one instance of the ClusterClient class by running it in the background.

In the first terminal, execute the ClusterMonitor class as follows:

$ java -cp $CLASSPATH ClusterMonitorlocalhost:2181

As shown in the previous examples, we will see debug log messages from the client
APIs, and finally, the ClusterMonitor class will start watching for events with the
output as follows:

Programming with Apache ZooKeeper

[76]

Now, let's execute five instances of the ClusterClient class to simulate five nodes of
a cluster. The ClusterClient creates ephemeral znodes with its own process ID in
the /Members path of the ZooKeeper tree:

$ java -cp $CLASSPATH ClusterClient localhost:2181 2>&1>/dev/null &

[1] 4028

$ java -cp $CLASSPATH ClusterClient localhost:2181 2>&1>/dev/null &

[2] 4045

$ java -cp $CLASSPATH ClusterClient localhost:2181 2>&1>/dev/null &

[3] 4057

$ java -cp $CLASSPATH ClusterClient localhost:2181 2>&1>/dev/null &

[4] 4072

$ java -cp $CLASSPATH ClusterClient localhost:2181 2>&1>/dev/null &

[5] 4084

Corresponding to this, we will observe that our ClusterMonitor class detects these
new ClusterClient class instances coming up, as it was watching for events in the
/Members path of the ZooKeeper tree. This emulates a Node Join event in a real
cluster. You can see the output in the terminal where the ClusterMonitor class is
running, and this is similar to the one shown in the following screenshot:

Chapter 3

[77]

Now, if we kill a ClusterClient java process, the session that it was maintaining
with the ZooKeeper server will get terminated. As a result of this, the ephemeral
znode that the client had created will be deleted. The deletion will trigger a
NodeChildrenChanged event, which will be caught by the ClusterMonitor class.
This emulates a Node Leave scenario in a cluster.

Let's terminate the ClusterClient process with the ID 4084:

$ kill -9 4084

The following screenshot shows the output in the terminal of the ClusterMonitor
class. It lists the currently available processes with their process IDs, which emulates
live servers:

The preceding example implementation of a simple yet elegant cluster-monitoring
model shows the real power of ZooKeeper. In the absence of ZooKeeper, developing
such a model that monitors the aliveness of nodes in real time will be a real
Herculean task.

The C client library
ZooKeeper is shipped with an official C client library, which can be used to develop
distributed applications in C/C++. Many of the other language bindings such as the
Python client binding shipped with ZooKeeper distribution are built using the C
library. In this section, we will learn about the C client APIs and illustrate their usage
by developing a znode data-watcher client.

In the Connecting to ZooKeeper with C-based shell section of Chapter 1, A Crash Course in
Apache ZooKeeper, we learned how to build the ZooKeeper C library and the C-based
shell using the make command. Once we build the C library, the following two
shared libraries get built:

•	 The multi-threaded library:libzookeeper_mt.so.2.0.0
•	 The single-thread library:libzookeeper_st.so.2.0.0

The libraries are usually installed in /usr/local/lib. You need to have this path
exported through your LD_LIBRARY_PATH environment variables for the applications
to find the libraries.

Programming with Apache ZooKeeper

[78]

The multi-threaded library is most commonly used and recommended. It provides
both the synchronous as well as the asynchronous APIs. This library functions by
creating an I/O thread and an event dispatch thread to handle connections and
event callbacks. The single-thread library provides only the asynchronous APIs
and callbacks. This library is used only on platforms where the pthread library is
not available.

The C header file zookeeper.h in src/c/include in the ZooKeeper distribution
outlines the main reference for the C client APIs. The ZooKeeper C command line
shell's implementation is available in src/c/src as cli.c. Readers are advised to
go through this code to understand how client applications are written using the
ZooKeeper C API.

Getting started with the C API
The ZooKeeper C API provides a way for the client to create a session with the
ZooKeeper server through a handle. The handle represents a connection to the
ZooKeeper service and is needed to invoke any ZooKeeper function. A handle
is declared as type zhandle_t, and is obtained by calling the zookeeper_init
function:

ZOOAPI zhandle_t*
zookeeper_init (
 const char *host, /* comma separated host:port pairs */
 watcher_fn fn, /* watcher callback function */
 int recv_timeout, /* session expiration time */
 const clientid_t *clientid, /* session id for reconnection */
 void *context, /* context of the handle object */
 int flags /* for future use, should be set to zero*/
)

The zookeeper_init function returns a handle, which is a pointer to the opaque
zhandle structure and is used to communicate with the ZooKeeper service. Also, a
zookeeper session gets established after this call, which corresponds to the handle.
If the function fails to create a new zhandle structure, it returns NULL, and the error
is set accordingly. The session establishment is asynchronous and hence the session
should not be considered established until (and unless) an event of the state ZOO_
CONNECTED_STATE is received by the client program. This event can be processed by
implementing a watcher function with the following signature:

typedef void
(* watcher_fn)(
 zhandle_t *zh, /* the zookeeper handle */
 int type,/* event type, e.g. ZOO_SESSION_EVENT */

Chapter 3

[79]

 int state,/* connection state, e.g. ZOO_CONNECTED_STATE */
 const char *path, /* znode path for which the watcher is
 triggered. NULL for session events */
 void *watcherCtx/* watcher context object */
)

Having seen how to connect to a ZooKeeper service, let's now write a simple
program to connect to the ZooKeeper service and list the children under the / root
znode path.

The source code for our ZooKeeper client that uses the C library follows next.

Let's name this file hello_zookeeper.c:

#include <stdio.h>
#include "zookeeper.h"
static zhandle_t *zh;
typedef struct String_vector zoo_string;
/* An empty Watcher function */
void my_watcher_func(zhandle_t *zzh, int type, int state,
const char *path, void *watcherCtx) {}
/* Main Function */
int
main(int argc, char *argv[])
{
 int i, retval;
 char *host_port = "localhost:2181";
 char *zoo_root = "/";
 zoo_string *children_list =
 (zoo_string *) malloc(sizeof(zoo_string));
 /* Connect to ZooKeeper server */
 zh = zookeeper_init(host_port, my_watcher_func,
 2000, 0, NULL, 0);
 if (zh == NULL)
 {
 fprintf(stderr, "Error connecting to ZooKeeper server!\n");
 exit(EXIT_FAILURE);
 }
 /* Get the list of children synchronously */
 retval = zoo_get_children(zh, zoo_root, 0, children_list);
 if (retval != ZOK)
 {
 fprintf(stderr, "Error retrieving znode from path %s!\n",
 zoo_root);
 exit(EXIT_FAILURE);
 }

Programming with Apache ZooKeeper

[80]

 fprintf(stderr, "\n=== znode listing === [%s]", zoo_root);
 for (i = 0; i < children_list->count; i++)
 {
 fprintf(stderr, "\n(%d): %s", i+1, children_list->data[i]);
 }
 fprintf(stderr, "\n=== done ===\n");
 /* Finally close the ZooKeeper handle */
 zookeeper_close(zh);
 return 0;
}

Assuming the ZooKeeper C client-shared libraries are installed in /usr/local/lib,
we can compile the preceding program as follows:

$ gcc -Wall hello_zookeeper.c -o hello_zookeeper

-I${ZK_HOME}/src/c/include -I${ZK_HOME}/src/c/generated/

-L/usr/local/lib/ -lzookeeper_mt

Before executing the program, let's create a few znodes in the ZooKeeper / root
znode path using the ZooKeeper shell:

Now, let's try to list the znodes using the C client program that we have written, as
shown in the following screenshot:

Chapter 3

[81]

In the preceding output, we can see that as the C client executes, the client library
displays a lot of informative log messages that pertain to the client library version,
the operating system, and the architecture of the machine. Then, it tries to connect
to the ZooKeeper server, and once connected, it prints the listing of znodes, which
is the same as what we get through the ZooKeeper shell. Finally, it closes the session
with the ZooKeeper server.

Example – the znode data watcher
In this section, we will implement a znode data-watcher client similar to what we
did while reading about the ZooKeeper Java client APIs. To illustrate the znode
data watcher, we will write a client zdata_watcher.c using the C APIs, which
will continuously listen for ZOO_CHANGED_EVENT events from the ZooKeeper server
in a znode path called /MyData. Another client program, zdata_updater.c, will
periodically update the data field in /MyData, which will result in the generation of
events, and upon receiving these events, zdata_watcher.c will print the changed
data into the terminal.

Programming with Apache ZooKeeper

[82]

Let's take a look at the source code of zdata_watcher.c:

#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <zookeeper.h>

/* ZooKeeper Znode Data Length (1MB, the max supported) */
#define ZDATALEN 1024 * 1024
static char *host_port;
static char *zoo_path = "/MyData";
static zhandle_t *zh;
static int is_connected;
static char *watcher_ctx = "ZooKeeper Data Watcher";
/**
* Watcher function for connection state change events
*/
void connection_watcher(zhandle_t *zzh, int type, int state,
 const char *path, void* context)
{
 if (type == ZOO_SESSION_EVENT)
 {
 if (state == ZOO_CONNECTED_STATE)
 {
 is_connected = 1;
 }
 else
 {
 is_connected = 0;
 }
 }
}
/**
* Data Watcher function for /MyData node
*/
static void
data_watcher(zhandle_t *wzh, int type, int state, const char
 *zpath, void *watcher_ctx)
{
 char *zoo_data = malloc(ZDATALEN * sizeof(char));
 int zoo_data_len = ZDATALEN;

 if (state == ZOO_CONNECTED_STATE)

Chapter 3

[83]

 {
 if (type == ZOO_CHANGED_EVENT)
 {
 /* Get the updated data and reset the watch */
 zoo_wget(wzh, zoo_path, data_watcher,
 (void *)watcher_ctx, zoo_data, &zoo_data_len, NULL);
 fprintf(stderr, "!!! Data Change Detected !!!\n");
 fprintf(stderr, "%s\n", zoo_data);
 }
 }
}

int main(int argc, char *argv[])
{
 int zdata_len;
 char *zdata_buf = NULL;

 if (argc != 2)
 {
 fprintf(stderr, "USAGE: %s host:port\n", argv[0]);
 exit(EXIT_FAILURE);
 }

 host_port = argv[1];

 zh = zookeeper_init(host_port, connection_watcher,
 2000, 0, 0, 0);

 if (zh == NULL)
 {
 fprintf(stderr,
 "Error connecting to ZooKeeper server[%d]!\n", errno);
 exit(EXIT_FAILURE);
 }

 while (1)
 {
 if (is_connected)
 {
 zdata_buf = (char *)malloc(ZDATALEN * sizeof(char));

 if (ZNONODE == zoo_exists(zh, zoo_path, 0, NULL))
 {

Programming with Apache ZooKeeper

[84]

 if (ZOK == zoo_create(zh, zoo_path, NULL, -1,
 & ZOO_OPEN_ACL_UNSAFE, 0, NULL, 0))
 {
 fprintf(stderr, "%s created!\n", zoo_path);
 }
 else
 {
 fprintf(stderr,
 "Error Creating %s!\n", zoo_path);
 exit(EXIT_FAILURE);
 }
 }
 if (ZOK != zoo_wget(zh, zoo_path, data_watcher,
 watcher_ctx, zdata_buf, &zdata_len, NULL))
 {
 fprintf(stderr, "Error setting watch at %s!\n", zoo_path);
 }

 pause();
 }
 }

 free(zdata_buf);
 return 0;
}

The zdata_updater connects to the ZooKeeper instance that is running in the
localhost and updates the data field of the znode path /MyData with the current
local date and time. It updates the znode path /MyData every 5 seconds, which
makes the ZooKeeper server to trigger an event of type ZOO_CHANGED_EVENT. The
zdata_watcher, which had set a watch for this znode path, receives the notification
for the data change event. It then retrieves the current data, resets the watch, and
prints the data in the console.

The code for the data updater is illustrated next:

#include <time.h>
#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <zookeeper.h>
/* ZooKeeper Znode Data Length (1MB, the max supported) */
#define ZDATALEN 1024 * 1024

Chapter 3

[85]

static char *host_port;
static char *zoo_path = "/MyData";

static zhandle_t *zh;
static int is_connected;

/**
* Watcher function for connection state change events
*/
void connection_watcher(zhandle_t *zzh, int type, int state,
 const char *path, void* context)
{
 if (type == ZOO_SESSION_EVENT)
 {
 if (state == ZOO_CONNECTED_STATE)
 {
 is_connected = 1;
 }
 else
 {
 is_connected = 0;
 }
 }
}

int main(int argc, char *argv[])
{
 char zdata_buf[128];
 struct tm *local;
 time_t t;

 if (argc != 2)
 {
 fprintf(stderr, "USAGE: %s host:port\n", argv[0]);
 exit(EXIT_FAILURE);
 }

 host_port = argv[1];

 zh = zookeeper_init(host_port, connection_watcher,
 2000, 0, 0, 0);

 if (zh == NULL)

Programming with Apache ZooKeeper

[86]

 {
 fprintf(stderr,
 "Error connecting to ZooKeeper server[%d]!\n", errno);
 exit(EXIT_FAILURE);
 }

 sleep(3); /* Sleep a little for connection to complete */

 if (is_connected)
 {
 if (ZNONODE == zoo_exists(zh, zoo_path, 0, NULL))
 {
 fprintf(stderr, "%s doesn't exist! \
 Please start zdata_watcher.\n", zoo_path);
 exit(EXIT_FAILURE);
 }

 while(1)
 {
 t = time(NULL);
 local = localtime(&t);
 memset(zdata_buf,'\0',strlen(zdata_buf));
 strcpy(zdata_buf,asctime(local));

 if (ZOK != zoo_set(zh, zoo_path, zdata_buf,
 strlen(zdata_buf), -1))
 {
 fprintf(stderr, "Error in write at %s!\n", zoo_path);
 }

 sleep(5);
 }
 }

 return 0;
 }
}

Let's compile these two programs and see them in action:

$ gcc -Wall zdata_watcher.c -o zdata_watcher

-I${ZK_HOME}/src/c/include -I${ZK_HOME}/src/c/generated/

-L/usr/local/lib/ -lzookeeper_mt

$ gcc -Wall zdata_updater.c -o zdata_updater

-I${ZK_HOME}/src/c/include -I${ZK_HOME}/src/c/generated/

-L/usr/local/lib/ -lzookeeper_mt

Chapter 3

[87]

In one terminal window, when you execute zdata_watcher, it creates a znode in the
path /MyData, and starts listening for events of the type ZOO_CHANGED_EVENT:

Once we execute the zdata_watcher, it initiates a connection to the ZooKeeper
server, and after the session is established, it creates a znode called /MyData in the
root path of the ZooKeeper tree.

Now, in another terminal, when you run the zdata_updater, the zdata_watcher
starts receiving the ZooKeeper events.

$./zdata_updater localhost:2181

After starting the zdata_updater client, you will see output similar to the following
in the terminal window where the zdata_watcher is running:

Our data-watcher client is working successfully. From these examples, you will
have a firm grasp on the ZooKeeper C client APIs. In these examples, we have
used the synchronous APIs provided by the C APIs. However, in real applications,
the asynchronous APIs are most commonly used. Implementation of the previous
examples using the asynchronous API calls is left as an exercise for the readers.
Also, it's recommended that you use the multithreaded version of the API. For
example, with the single-threaded library, a callback might block a thread while
performing other operations such as disk I/O, which might cause session timeout.
The multithreaded library uses separate threads to handle callbacks, and this issue
will not occur.

In the next section, we will learn about the ZooKeeper APIs for the Python
programming language.

Programming with Apache ZooKeeper

[88]

Python client bindings
Apache ZooKeeper is shipped with an official client binding for Python, which
is developed on top of the C bindings. It can be found in the contrib/zkpython
directory of the ZooKeeper distribution. To build and install the Python binding,
refer to the instructions in the README file there. In this section, we will learn about
another popular Python client library for ZooKeeper, called Kazoo (https://kazoo.
readthedocs.org/).

Kazoo is a pure Python library for ZooKeeper, which means that, unlike the official
Python bindings, Kazoo is implemented fully in Python and has no dependency
on the C bindings of ZooKeeper. Along with providing both synchronous and
asynchronous APIs, the Kazoo library also provides APIs for some distributed data
structure primitives such as distributed locks, leader election, distributed queues,
and so on.

Installation of Kazoo is very simple, which can be done either with pip or easy_
install installers:

Using pip, Kazoo can be installed with the following command:

$ pip install kazoo

Using easy_install, Kazoo is installed as follows:

$ easy_install kazoo

To verify whether Kazoo is installed properly, let's try to connect to the ZooKeeper
instance and print the list of znodes in the root path of the tree, as shown in the
following screenshot:

In the preceding example, we imported the KazooClient, which is the main
ZooKeeper client class. Then, we created an object of the class (an instance of
KazooClient) by connecting to the ZooKeeper instance that is running on the
localhost. Once we called the start() method, it initiates a connection to the
ZooKeeper server.

https://kazoo.readthedocs.org/
https://kazoo.readthedocs.org/

Chapter 3

[89]

Once successfully connected, the instance contains the handle to the ZooKeeper
session. Now, when we called the get_children() method on the root path of
the ZooKeeper namespace, it returned a list of the children. Finally, we closed the
connection by calling the stop() method.

Detailed documentation of the Kazoo Python library is available at
https://kazoo.readthedocs.org/en/latest/index.html.

A watcher implementation
Kazoo provides a higher-level child and data-watching APIs as a recipe
through a module called kazoo.recipe.watchers. This module provides the
implementation of DataWatch and ChildrenWatch along with another class called
PatientChildrenWatch. The PatientChildrenWatch class returns values after the
children of a node don't change for a period of time, unlike the other two, which
return each time an event is generated.

Let's look at the implementation of a simple children-watcher client, which will
generate an event each time a znode is added or deleted from the ZooKeeper path:

import signal
from kazoo.client import KazooClient
from kazoo.recipe.watchers import ChildrenWatch
zoo_path = '/MyPath'
zk = KazooClient(hosts='localhost:2181')
zk.start()
zk.ensure_path(zoo_path)
@zk.ChildrenWatch(zoo_path)
def child_watch_func(children):
print "List of Children %s" % children
while True:
signal.pause()

In this simple implementation of a children watcher, we connect to the ZooKeeper
server that is running in the localhost, using the following code, and create a
path /MyPath:

zk.ensure_path(zoo_path)
@zk.ChildrenWatch(zoo_path)

We then set a children watcher on this path and register a callback method
child_watch_func, which prints the current list of children on the event generated
in /MyPath.

https://kazoo.readthedocs.org/en/latest/index.html

Programming with Apache ZooKeeper

[90]

When we run this client watcher in a terminal, it starts listening to events:

On another terminal, we will create some znodes in/MyPath with the
ZooKeeper shell:

We observe that the children-watcher client receives these znode creation events,
and it prints the list of the current children in the terminal window:

Similarly, if we delete the znodes that we just created, the watcher will receive the
events and subsequently will print the children listing in the console:

The messages shown in the following screenshot are printed in the terminal where
the children watcher is running:

Chapter 3

[91]

Summary
In this chapter, we have learned how to write client programs for Apache ZooKeeper
using three different languages: Java, C, and Python. We saw how to develop simple
client code for connecting to a ZooKeeper server, implementation of watchers, and
even more advanced use cases of development. It is recommended that you go
through the API documentation of the individual client libraries so as to be well
versed with the methods and constructs of each one of them.

In the next chapter, we will look into some advanced topics of ZooKeeper
programming, where we will look at the algorithms and steps to implement common
distributed system tasks such as leader election, group membership, and so on,
using ZooKeeper primitives. We will also learn how to implement distributed data
structures such as locks, barriers, and queues with ZooKeeper.

Performing Common
Distributed System Tasks

In the previous chapter, you learned about the ZooKeeper client API and
programming using the APIs. You saw how to write a client to connect to the
ZooKeeper server instance and execute methods to carry out operations in the
ZooKeeper namespace. You also learned how to implement watchers in a client
so as to register for specific events and get notifications when such events occur,
all in real time.

The simple yet powerful and elegant programming model of ZooKeeper enables us
to implement high-level primitives for distributed systems. For example, we used
the concept of ephemeral znodes to build an emulation of a cluster monitor in the
previous chapter.

In this chapter, you will learn:

•	 How to carry out common distributed system tasks such as leader election,
group memberships, and two-phase commit protocol

•	 How to implement a few distributed data structures such as barriers, locks,
and queues

The high-level constructs outlined in this chapter are also known as ZooKeeper
recipes. These are implemented on the client side using ZooKeeper's programming
model and require no special support from the server side. Again, in the absence of
ZooKeeper and its APIs, the implementation of these recipes would have been quite
complex and difficult.

Performing Common Distributed System Tasks

[94]

Some of the third-party and community-developed ZooKeeper client bindings
also provide these high-level distributed systems' constructs as a part of their
client library. For example, Netflix Curator, a feature-rich Java client framework
for ZooKeeper, provides many of the recipes mentioned in this chapter. You will
learn more about Curator later in this book. Kazoo, the Python client library that
you learned in the previous chapter, also implements some of these recipes that
developers can directly use in their client applications.

The ZooKeeper distribution is shipped with recipes for leader election and
distributed lock and queue; these can be used inside distributed applications.
The Java implementations for the three recipes can be found in the recipes folder
of the distribution.

ZooKeeper recipes
In this section, you will learn to develop high-level distributed system constructs and
data structures using ZooKeeper. As mentioned earlier, most of these constructs and
functions are of utmost importance in building scalable distributed architectures,
but they are fairly complicated to implement from scratch. Developers can often get
bogged down while implementing these and integrating them with their application
logic. In this section, you will learn how to develop algorithms to build some of these
high-level functions using ZooKeeper's data model and primitives and see how
ZooKeeper makes it simple, scalable, and error free, with much less code.

Barrier
Barrier is a type of synchronization method used in distributed systems to block the
processing of a set of nodes until a condition is satisfied. It defines a point where all
nodes must stop their processing and cannot proceed until all the other nodes reach
this barrier.

The algorithm to implement a barrier using ZooKeeper is as follows:

1.	 To start with, a znode is designated to be a barrier znode, say /zk_barrier.
2.	 The barrier is said to be active in the system if this barrier znode exists.
3.	 Each client calls the ZooKeeper API's exists() function on /zk_barrier

by registering for watch events on the barrier znode (the watch event is set
to true).

4.	 If the exists() method returns false, the barrier no longer exists, and the
client proceeds with its computation.

5.	 Else, if the exists() method returns true, the clients just waits for
watch events.

Chapter 4

[95]

6.	 Whenever the barrier exit condition is met, the client in charge of the barrier
will delete /zk_barrier.

7.	 The deletion triggers a watch event, and on getting this notification, the client
calls the exists() function on /zk_barrier again.

8.	 Step 7 returns true, and the clients can proceed further.

The barrier exists until the barrier znode ceases to exist!

In this way, we can implement a barrier using ZooKeeper without much of an effort.

The example cited so far is for a simple barrier to stop a group of distributed
processes from waiting on some condition and then proceed together when the
condition is met. There is another type of barrier that aids in synchronizing the
beginning and end of a computation; this is known as a double barrier. The logic
of a double barrier states that a computation is started when the required number
of processes join the barrier. The processes leave after completing the computation,
and when the number of processes participating in the barrier become zero, the
computation is stated to end.

The algorithm for a double barrier is implemented by having a barrier znode that
serves the purpose of being a parent for individual process znodes participating in
the computation. Its algorithm is outlined as follows:

Phase 1: Joining the barrier znode can be done as follows:

1.	 Suppose the barrier znode is represented by znode/barrier. Every client
process registers with the barrier znode by creating an ephemeral znode
with /barrier as the parent. In real scenarios, clients might register using
their hostnames.

2.	 The client process sets a watch event for the existence of another znode called
ready under the /barrier znode and waits for the node to appear.

3.	 A number N is predefined in the system; this governs the minimum number
of clients to join the barrier before the computation can start.

4.	 While joining the barrier, each client process finds the number of child
znodes of /barrier:
M = getChildren(/barrier, watch=false)

5.	 If M is less than N, the client waits for the watch event registered in step 3.

Performing Common Distributed System Tasks

[96]

6.	 Else, if M is equal to N, then the client process creates the ready znode under
/barrier.

7.	 The creation of the ready znode in step 5 triggers the watch event, and each
client starts the computation that they were waiting so far to do.

Phase 2: Leaving the barrier can be done as follows:

1.	 Client processing on finishing the computation deletes the znode it created
under /barrier (in step 2 of Phase 1: Joining the barrier).

2.	 The client process then finds the number of children under /barrier:
M = getChildren(/barrier, watch=True)

If M is not equal to 0, this client waits for notifications (observe that we have
set the watch event to True in the preceding call).
If M is equal to 0, then the client exits the barrier znode.

The preceding procedure suffers from a potential herd effect where all client
processes wake up to check the number of children left in the barrier when a
notification is triggered. To get away with this, we can use a sequential ephemeral
znode to be created in step 2 of Phase 1: Joining the barrier. Every client process
watches its next lowest sequential ephemeral znode to go away as an exit criterion.
This way, only a single event is generated for any client completing the computation,
and hence, not all clients need to wake up together to check on its exit condition.
For a large number of client processes participating in a barrier, the herd effect can
negatively impact the scalability of the ZooKeeper service, and developers should be
aware of such scenarios.

A Java language implementation of a double barrier can be found in
the ZooKeeper documentation at http://zookeeper.apache.
org/doc/r3.4.6/zookeeperTutorial.html.

Queue
A distributed queue is a very common data structure used in distributed systems.
A special implementation of a queue, called a producer-consumer queue, is where a
collection of processes called producers generate or create new items and put them in
the queue, while consumer processes remove the items from the queue and process
them. The addition and removal of items in the queue follow a strict ordering of FIFO.

http://zookeeper.apache.org/doc/r3.4.6/zookeeperTutorial.html
http://zookeeper.apache.org/doc/r3.4.6/zookeeperTutorial.html

Chapter 4

[97]

A producer-consumer queue can be implemented using ZooKeeper. A znode will be
designated to hold a queue instance, say queue-znode. All queue items are stored as
znodes under this znode. Producers add an item to the queue by creating a znode
under the queue-znode, and consumers retrieve the items by getting and then
deleting a child from the queue-znode.

The FIFO order of the items is maintained using sequential property of znode
provided by ZooKeeper. When a producer process creates a znode for a queue
item, it sets the sequential flag. This lets ZooKeeper append the znode name with
a monotonically increasing sequence number as the suffix. ZooKeeper guarantees
that the sequence numbers are applied in order and are not reused. The consumer
process processes the items in the correct order by looking at the sequence number
of the znode.

The pseudocode for the algorithm to implement a producer-consumer queue using
ZooKeeper is shown here:

1.	 Let /_QUEUE_ represent the top-level znode for our queue implementation,
which is also called the queue-node.

2.	 Clients acting as producer processes put something into the queue by
calling the create() method with the znode name as "queue-" and set the
sequence and ephemeral flags if the create() method call is set true:
create("queue-", SEQUENCE_EPHEMERAL)

The sequence flag lets the new znode get a name like queue-N, where N is a
monotonically increasing number.

3.	 Clients acting as consumer processes process a getChildren() method call
on the queue-node with a watch event set to true:
M = getChildren(/_QUEUE_, true)

It sorts the children list M, takes out the lowest numbered child znode from
the list, starts processing on it by taking out the data from the znode, and
then deletes it.

4.	 The client picks up items from the list and continues processing on them.
On reaching the end of the list, the client should check again whether any
new items are added to the queue by issuing another get_children()
method call.

5.	 The algorithm continues when get_children() returns an empty list;
this means that no more znodes or items are left under /_QUEUE_.

Performing Common Distributed System Tasks

[98]

It's quite possible that in step 3, the deletion of a znode by a client will fail because
some other client has gained access to the znode while this client was retrieving the
item. In such scenarios, the client should retry the delete call.

Using this algorithm for implementation of a generic queue, we can also build
a priority queue out of it, where each item can have a priority tagged to it. The
algorithm and implementation is left as an exercise to the readers.

C and Java implementations of the distributed queue recipe are shipped along with
the ZooKeeper distribution under the recipes folder. Developers can use this recipe
to implement distributed lock in their applications.

Kazoo, the Python client library for ZooKeeper, has distributed queue implementations
inside the kazoo.recipe.queue module. This queue implementation has priority
assignment to the queue items support as well as the queue locking support that is
built into it.

Lock
A lock in a distributed system is an important primitive that provides the applications
with a means to synchronize their access to shared resources. Distributed locks need
to be globally synchronous to ensure that no two clients can hold the same lock at any
instance of time.

Typical scenarios where locks are inevitable are when the system as a whole needs
to ensure that only one node of the cluster is allowed to carry out an operation at a
given time, such as:

•	 Write to a shared database or file
•	 Act as a decision subsystem
•	 Process all I/O requests from other nodes

ZooKeeper can be used to implement mutually exclusive locks for processes that run
on different servers across different networks and even geographically apart.

To build a distributed lock with ZooKeeper, a persistent znode is designated to be
the main lock-znode. Client processes that want to acquire the lock will create an
ephemeral znode with a sequential flag set under the lock-znode. The crux of the
algorithm is that the lock is owned by the client process whose child znode has the
lowest sequence number. ZooKeeper guarantees the order of the sequence number,
as sequence znodes are numbered in a monotonically increasing order. Suppose
there are three znodes under the lock-znode: l1, l2, and l3. The client process that
created l1 will be the owner of the lock. If the client wants to release the lock, it
simply deletes l1, and then the owner of l2 will be the lock owner, and so on.

Chapter 4

[99]

The pseudocode for the algorithm to implement a distributed lock service with
ZooKeeper is shown here:

Let the parent lock node be represented by a persistent znode, /_locknode_, in the
Zookeeper tree.

Phase 1: Acquire a lock with the following steps:

1.	 Call the create("/_locknode_/lock-",CreateMode=EPHEMERAL_
SEQUENTIAL) method.

2.	 Call the getChildren("/_locknode_/lock-", false) method on the
lock node. Here, the watch flag is set to false, as otherwise it can lead to
a herd effect.

3.	 If the znode created by the client in step 1 has the lowest sequence number
suffix, then the client is owner of the lock, and it exits the algorithm.

4.	 Call the exists("/_locknode_/<znode path with next lowest
sequence number>, True) method.

5.	 If the exists() method returns false, go to step 2.
6.	 If the exists() method returns true, wait for notifications for the watch

event set in step 4.

Phase 2: Release a lock as follows:

1.	 The client holding the lock deletes the node, thereby triggering the next client
in line to acquire the lock.

2.	 The client that created the next higher sequence node will be notified and
hold the lock. The watch for this event was set in step 4 of Phase 1: Acquire
a lock.

While it's not recommended that you use a distributed system with a large number
of clients due to the herd effect, if the other clients also need to know about the
change of lock ownership, they could set a watch on the /_locknode_ lock node for
events of the NodeChildrenChanged type and can determine the current owner.

If there was a partial failure in the creation of znode due to connection loss, it's
possible that the client won't be able to correctly determine whether it successfully
created the child znode. To resolve such a situation, the client can store its session ID
in the znode data field or even as a part of the znode name itself. As a client retains
the same session ID after a reconnect, it can easily determine whether the child znode
was created by it by looking at the session ID.

Performing Common Distributed System Tasks

[100]

The idea of creating an ephemeral znode prevents a potential dead-lock situation
that might arise when a client dies while holding a lock. However, as the property
of the ephemeral znode dictates that it gets deleted when the session times out
or expires, ZooKeeper will delete the znode created by the dead client, and the
algorithm runs as usual. However, if the client hangs for some reason but the
ZooKeeper session is still active, then we might get into a deadlock. This can be
solved by having a monitor client that triggers an alarm when the lock holding time
for a client crosses a predefined time out.

The ZooKeeper distribution is shipped with the C and Java language implementation
of a distributed lock in the recipes folder. The recipe implements the algorithm
you have learned so far and takes into account the problems associated with partial
failure and herd effect.

The previous recipe of a mutually exclusive lock can be modified to implement a
shared lock as well. Readers can find the algorithm and pseudocode for a shared lock
using ZooKeeper in the documentation at http://zookeeper.apache.org/doc/
r3.4.6/recipes.html#Shared+Locks.

Leader election
In distributed systems, leader election is the process of designating a single server
as the organizer, coordinator, or initiator of some task distributed among several
individual servers (nodes). After a leader election algorithm is run, a leader or a
coordinator among the set of nodes is selected, and the algorithm must ascertain that
all the nodes in the system acknowledge its candidature without any discrepancies
for the correct functioning of the system.

A leader in a distributed system is required to act as a centralized controller of tasks
that simplifies process synchronization. However, a centralized node is a single
point of failure, and during failure, it can lead to an anomaly in the system. Hence, a
correct and robust leader election algorithm is required to choose a new coordinator
or leader on failure of the existing one.

A leader election algorithm has the following two required properties:

•	 Liveness: This ensures that most of the time, there is a leader
•	 Safety: This ensures that at any given time, there is either no leader

or one leader

ZooKeeper can be used to implement a leader-election algorithm, and it can use this
algorithm as a leader elector service in distributed applications. The algorithm is
similar to the one we used to develop a global mutually-exclusive distributed lock.

http://zookeeper.apache.org/doc/r3.4.6/recipes.html#Shared+Locks
http://zookeeper.apache.org/doc/r3.4.6/recipes.html#Shared+Locks

Chapter 4

[101]

Client processes nominating themselves as leaders use the SEQUENCE|EPHEMERAL
flags when creating znodes under a parent znode. ZooKeeper automatically appends
a monotonically increasing sequence number as a suffix to the child znode as the
sequence flag is set. The process that created the znode with the smallest appended
sequence number is elected as the leader. However, the algorithm should also take
into account the failure of the leader.

The pseudocode for the algorithm is outlined here.

Let /_election_ be the election znode path that acts as the root for all clients
participating in the leader election algorithm.

Clients with proposals for their nomination in the leader election procedure perform
the following steps:

1.	 Create a znode with the /_election_/candidate-sessionID_ path, with
both the SEQUENCE and EPHEMERAL flags. The sessionID identifier, as a part
of the znode name, helps in recognizing znodes in the case of partial failures
due to connection loss. Now, say that ZooKeeper assigns a sequence number
N to the znode when the create() call succeeds.

2.	 Retrieve the current list of children in the election znode as follows:
L = getChildren("/_election_", false)

Here, L represents the list of children of "/_election_".
The watch is set to false to prevent any herd effect.

3.	 Set a watch for changes in /_election_/candidate-sessionID_M, where M
is the largest sequence number such that M is less than N, and candidate-
sessionID_M is a znode in L as follows:
exists("/_election_/candidate-sessionID_M", true)

4.	 Upon receiving a notification of znode deletion for the watches set in
step 3, execute the getChildren(("/_election_", false) method
on the election znode.

5.	 Let L be the new list of children of _election_. The leader is then elected
as follows:

1.	 If candidate-sessionID_N (this client) is the smallest node in L, then
declare itself as the leader.

2.	 Watch for changes on /_election_/candidate-sessionID_M,
where M is the largest sequence number such that M is less than N
and candidate-sessionID_M is a znode in L.

Performing Common Distributed System Tasks

[102]

6.	 If the current leader crashes, the client having the znode with the next
highest sequence number becomes the leader and so on.

Optionally, a persistent znode is also maintained where the client declaring itself
as the leader can store its identifier so that other clients can query who the current
leader is by reading this znode at any given time. Such a znode also ensures that
that the newly elected leader has acknowledged and executed the leader election
procedure correctly.

A Java language implementation for the leader election algorithm using ZooKeeper
can be found in the recipes folder of the latest ZooKeeper distribution.

Group membership
A group membership protocol in a distributed system enables processes to reach
a consensus on a group of processes that are currently alive and operational in
the system. Membership protocols belong to the core components of a distributed
system; they aid in maintaining service availability and consistency for the
applications. It allows other processes to know when a process joins the system and
leaves the system, thereby allowing the whole cluster to be aware of the current
system state.

The implementation of a basic group membership protocol is very simple, and we
have already used a variant of it while developing the cluster monitor emulation in
Chapter 3, Programming with Apache ZooKeeper. A group membership protocol can be
developed using the concept of ephemeral znodes. Any client that joins the cluster
creates an ephemeral znode under a predefined path to locate memberships in the
ZooKeeper tree and set a watch on the parent path. When another node joins or
leaves the cluster, this node gets a notification and becomes aware of the change in
the group membership.

The pseudocode for the algorithm to implement this group membership protocol is
shown here.

Let a persistent znode, /membership, represent the root of the group in the
ZooKeeper tree. A group membership protocol can then be implemented as follows:

1.	 Clients joining the group create ephemeral nodes under the group root to
indicate membership.

Chapter 4

[103]

2.	 All the members of the group will register for watch events on /membership,
thereby being aware of other members in the group. This is done as shown in
the following code:
L = getChildren("/membership", true)

3.	 When a new client arrives and joins the group, all other members
are notified.

4.	 Similarly, when a client leaves due to failure or otherwise, ZooKeeper
automatically deletes the ephemeral znodes created in step 2. This triggers
an event, and other group members get notified.

5.	 Live members know which node joined or left by looking at the list
of children L.

The preceding algorithm suffers from the herd effect, as events of
NodeChildrenChanged emitted due to the joining or leaving of members will cause
all other members to wake up and find the current membership of the system.

Two-phase commit
The two-phase commit (2PC) protocol is a distributed algorithm that coordinates
all the processes that participate in a distributed atomic transaction on whether to
commit or abort (roll back) the transaction. 2PC is a specialized type of consensus
protocol and is widely used in transaction processing systems. It ensures an
atomic behavior that guarantees that either all the transactions or none of them are
completed so that the resources under transactional control remain synchronized.

The 2PC protocol consists of two phases, which are as follows:

•	 In the first phase, the coordinator node asks all the transaction's participating
processes to prepare and vote to either commit or abort the transaction.

•	 In the second phase, the coordinator decides whether to commit or abort
the transaction, depending on the result of the voting in the first phase. If all
participants voted for commit, it commits the transaction; otherwise, it aborts
it. It finally notifies the result to all the participants.

Performing Common Distributed System Tasks

[104]

The 2PC protocol is depicted in the following diagram:

We can develop a 2PC protocol implementation using ZooKeeper.

Let /2PC_Transactions represent the root node to run the 2PC algorithm in
ZooKeeper. The algorithm to do so is as follows.

1.	 A coordinator node creates a transaction znode, say /2PC_Transactions/
TX. We can use the leader election algorithm to elect the coordinator using
ZooKeeper. The coordinator node sets a watch on the transaction node.

2.	 Another persistent znode, tx_result, is created under /2PC_Transactions/
TX by the coordinator to post the result of the protocol, commit, or abort, and
any additional outcomes of the transactions.

3.	 Each participating client node sets a watch on the /2PC_Transactions as
well as /2PC_Transactions/TX/tx_result znode paths.

Chapter 4

[105]

4.	 When the coordinator node creates the transaction znode, it notifies the
participating client nodes that the coordinator node is requesting for voting
on the transaction.

5.	 The participants then create an ephemeral child znode in the /2PC_
Transactions/TX path, with their own identifier (say hostnames) and vote
for commit or abort by writing to the data field of their specific znodes.

6.	 The coordinator is notified of the creation of all the child znodes, and when
the number of child znodes in /2PC_Transactions/TX equals the number
of participants, it checks the votes of all the participants by reading the
participants' znodes.

7.	 If all the participants voted for commit, the coordinator commits the
transaction; otherwise, it aborts it. Subsequently, it posts the result of the
transaction by writing to the /2PC_Transactions/TX/tx_result znode.

8.	 The participant znodes get to know the outcome of the transaction when it
gets a notification of NodeDataChanged for /2PC_Transactions/TX/tx_
result.

The preceding algorithm might be a little slow, as all messaging happens through
the coordinator node, but it takes care of the participant nodes' failure during the
execution of the protocol, using ephemeral znodes.

Service discovery
Service discovery is one of the key components of distributed systems and
service-oriented architectures where services need to find each other. In the simplest
way, service discovery helps clients determine the IP and port for a service that exists
on multiple hosts. One common example of this is how a web service can find the
right host that serves a caching service in the network. At first glance, it appears that
we can use a Domain Name System (DNS) service as a service discovery system.
However, a solution with DNS is not viable when the service locations change
frequently due to auto or manual scaling, new deployments of services, or when
services are failed over or replaced with newer hosts due to host failures.

Important properties of a service discovery system are mentioned here:

•	 It allows services to register their availability
•	 It provides a mechanism to locate a live instance of a particular service
•	 It propagates a service change notification when the instances of a

service change

Performing Common Distributed System Tasks

[106]

Let /services represent the base path in the ZooKeeper tree for services of the
system or platform. Persistent znodes under /services designate services available
to be consumed by clients.

A simple service discovery model with ZooKeeper is illustrated as follows:

•	 Service registration: For service registrations, hosts that serve a particular
service create an ephemeral znode in the relevant path under /services.
For example, if a server is hosting a web-caching service, it creates an
ephemeral znode with its hostname in /services/web_cache. Again, if
some other server hosts a file-serving service, it creates another ephemeral
znode with its hostname in /services/file_server and so on.

•	 Service discovery: Now, clients joining the system, register for watches in the
znode path for the particular service. If a client wants to know the servers
in the infrastructure that serve a web-caching service, the client will keep a
watch in /services/web_cache.

If a new host is added to serve web caching under this path, the client will
automatically know the details about the new location. Again, if an existing
host goes down, the client gets the event notification and can take the
necessary action of connecting to another host.

A service discovery system provides a seamless mechanism to guarantee service
continuity in the case of failures and is an indispensable part of building a robust
and scalable distributed platform. Apache Curator provides an extension called
curator-x-discovery in its ZooKeeper library; this implements a service registration
and discovery model. It also provides a service discovery server called curator-
x-discovery-server that exposes a RESTful web service to register, remove, and
query services for non-Java or legacy applications to use the service discovery
functionalities.

Summary
In this chapter, you saw how to implement high-level constructs of distributed
systems using the ZooKeeper data model and primitives provided to it by its APIs.
You learned the algorithms to develop important distributed data structures such
as barrier, lock, and queue with ZooKeeper. We also studied the algorithms and
looked at the pseudocode to implement some of the common tasks required in the
development of distributed applications, namely leader election, group membership,
and the 2PC protocol. You saw how we can solve these problems in a simple and
lucid manner with ZooKeeper. While implementing the recipes, you also learned
how to avoid some of the problems such as the herd effect and race conditions.

Chapter 4

[107]

Developers should be careful when looking at these issues while developing their
applications with ZooKeeper, as otherwise, the scalability of ZooKeeper gets
negatively impacted, and it also leads to bursts of traffic in the network, thus
causing service downgrade.

In the next chapter, we will read about configuration and administration of
ZooKeeper in more detail. It's very important to learn about the various knobs and
parameters to configure a ZooKeeper cluster so as to make the best use of it. We will
also look at some of the best practices that developers and administrators should
keep in mind while dealing with ZooKeeper in a production environment.

Administering Apache
ZooKeeper

In the previous chapter on ZooKeeper recipes, you learned how to implement
high-level constructs of distributed systems using ZooKeeper. We saw
how ZooKeeper's data model, APIs, and its primitives drastically simplify
implementation of these higher-order functions to a great extent. However, to get
the best out of ZooKeeper in the distributed applications where it's used, we need
to know to configure it properly and to know the various parameters that govern
its functioning. Although ZooKeeper has been designed to be simple to use and
to be operated on by both developers and distributed system administrators, a
misconfigured ZooKeeper service might negatively impact the functioning of the
applications. Hence, it's of the utmost importance that we know how to correctly
configure, manage, and administer a ZooKeeper service that will help in diagnosing
issues in a production environment.

In this chapter, we will study in detail how to configure and administer a ZooKeeper
service instance. The following topics will be covered while we discuss ZooKeeper
configuration and administration:

•	 Configuration of a ZooKeeper server
•	 Configuration of a ZooKeeper ensemble
•	 Configuration of quotas and authorizations
•	 Best practices for ZooKeeper
•	 Monitoring a ZooKeeper service

A detailed description of the ZooKeeper deployment and administration can found
in the official documentation at http://zookeeper.apache.org/doc/trunk/
zookeeperAdmin.html.

http://zookeeper.apache.org/doc/trunk/zookeeperAdmin.html
http://zookeeper.apache.org/doc/trunk/zookeeperAdmin.html

Administering Apache ZooKeeper

[110]

Configuring a ZooKeeper server
In this section, we will look at the various configuration parameters of a ZooKeeper
server. These parameters are defined in the configuration file called zoo.cfg. Servers
deployed in a ZooKeeper service can share a file if they are configured for the same
applications. You have already learned about the myid file that distinguishes the
servers from one another in the same ensemble. While the default options in this
configuration file usually serve most common use cases for the evaluation or testing
of applications, in a production environment it's very important that the values for
these parameters are set properly with adequate reasoning.

It's also possible to set many of the configuration parameters using Java system
properties with zookeeper.propertyName. These properties are set using the -D
option when starting the server. However, parameters defined in the configuration
file have precedence over the ones set with -D options in the Java command line.

Minimum configuration
The basic configuration parameters that must be defined in the configuration file for
every ZooKeeper server are mentioned here. These parameters are not predefined
and must be set in the configuration file to run a ZooKeeper instance. You already
learned about these options in Chapter 1, A Crash Course in Apache ZooKeeper; they are
presented here as a recap:

•	 clientPort: This is the TCP port where clients can connect to the server.
The client port can be set to any number, and different servers can be
configured to listen on different ports. The default port is 2181.

•	 dataDir: This is the directory where ZooKeeper will store the in-memory
database snapshots. If the dataLogDir parameter is not defined separately,
the transaction logs of updates to the database would also be stored in this
directory. The myid file would also be stored in this directory if this server
is a member of an ensemble. The data directory is not very performance-
sensitive and is not required to be configured in a dedicated device if
transaction logs are stored in a different location.

•	 tickTime: This is the length of a single tick measured in milliseconds. Tick is
the basic time unit used by ZooKeeper to determine heartbeats and session
timeouts. The default tickTime parameter is 2,000 milliseconds. Lowering
the tickTime parameter enables quicker timeouts but increases network
traffic (heartbeats) and processing overhead for the ZooKeeper server.

Chapter 5

[111]

Storage configuration
In this section, we will look at some of the advanced parameters used to configure
the storage options of a ZooKeeper server:

•	 dataLogDir: This is the directory where the ZooKeeper transaction logs
are stored. The server flushes the transaction logs using sync writes. Hence,
it's very important that a dedicated transaction log device be used so that
transaction logging by the ZooKeeper server is not impacted by I/O activities
from other processes in the system. Having a dedicated log device improves
the overall throughput and assigns stable latencies to requests.

•	 preAllocSize: The zookeeper.preAllocSize Java system property is set
to preallocate the block size to the transactions log files. The default block
size is 64 MB. Preallocating the transaction log minimizes the disk seeks. If
snapshots are taken frequently, the transaction logs might not grow to 64 MB.
In such cases, we can tune this parameter to optimize the storage usage.

•	 snapCount: The zookeeper.snapCount Java system property gives us the
number of transactions between two consecutive snapshots. After snapCount
transactions are written to a logfile, a new snapshot is started, and a new
transaction logfile is created. Snapshot is a performance-sensitive operation,
and hence, having a smaller value for snapCount might negatively affect
ZooKeeper's performance. The default value of snapCount parameter is
100,000.

•	 traceFile: The requestTraceFile Java system property sets this option
to enable the logging of requests to a trace file named traceFile.year.
month.day. This option is useful for debugging, but it impacts the overall
performance of the ZooKeeper server.

•	 fsync.warningthresholdms: This is the time measured in milliseconds; it
defines a threshold for the maximum amount of time permitted to flush all
outstanding writes to the transactional log, write-ahead log (WAL). It issues
a warning message to the debug log whenever the sync operation takes
longer than this value. The default value is 1,000.

•	 autopurge.snapRetainCount: This refers to the number of snapshots
and corresponding transaction logs to retain in directories, dataDir and
dataLogDir, respectively. The default value is 3.

•	 autopurge.purgeInterval: This refers to the time interval in hours to purge
old snapshots and transaction logs. The default value is 0, which means auto
purging is disabled by default. We can set this option to a positive integer
(1 and above) to enable the auto purging. If it is disabled (set to 0), the
default, purging doesn't happen automatically. Manual purging can be done
by running the zkCleanup.sh script available in the bin directory of the
ZooKeeper distribution.

Administering Apache ZooKeeper

[112]

•	 syncEnabled: This configuration option is newly introduced in 3.4.6 and later
versions of ZooKeeper. It is set using the Java system property zookeeper.
observer.syncEnabled to enable the "observers" to log transaction and write
snapshot to disk, by default, like the "followers". Recall that observers do not
participate in the voting process unlike followers, but commit proposals from
the leader. Enabling this option reduces the recovery time of the observers on
restart. The default value is true.

Network configuration
The configuration parameters discussed in this section relate to the clients'
interaction with a ZooKeeper server:

•	 globalOutstandingLimit: This parameter defines the maximum number of
outstanding requests in ZooKeeper. In real life, clients might submit requests
faster than ZooKeeper can process them. This happens if there are a large
number of clients. This parameter enables ZooKeeper to do flow control by
throttling clients. This is done to prevent ZooKeeper from running out of
memory due to the queued requests. ZooKeeper servers will start throttling
client requests once the globalOutstandingLimit has been reached. The
default limit is 1000 requests.
(Java system property: zookeeper.globalOutstandingLimit)

•	 maxClientCnxns: This is the maximum number of concurrent socket
connections between a single client and the ZooKeeper server. The
client is identified by its IP address. Setting up a TCP connection is a
resource-intensive operation, and this parameter is used to prevent the
overloading of the server. It is also used to prevent certain classes of DoS
attacks, including file descriptor exhaustion. The default value is 60. Setting
this to 0 entirely removes the limit on concurrent connections.

•	 clientPortAddress: This is the IP address that listens for client connections.
By default, ZooKeeper server binds to all the interfaces for accepting client
connection.

•	 minSessionTimeout: This is the minimum session timeout in milliseconds
that the server will allow the client to negotiate. The default value is twice the
tickTime parameter. If this timeout is set to a very low value, it might result
in false positives due to incorrect detection of client failures. Setting this
timeout to a higher value will delay the detection of client failures.

•	 maxSessionTimeout: This is the maximum session timeout in milliseconds
that the server will allow the client to negotiate. By default, it is 20 times the
tickTime parameter.

Chapter 5

[113]

Configuring a ZooKeeper ensemble
In this section, we will look at configuration options that are mostly used with
an ensemble of ZooKeeper servers. A ZooKeeper ensemble or cluster of replicated
ZooKeeper servers should be configured optimally to avoid scenarios such as
split-brain. A split-brain scenario might happen due to network portioning
where two different servers of the same ensemble might pose as leaders and
cause inconsistencies.

The following configuration options are available with an ensemble of
ZooKeeper servers:

•	 electionAlg: This option is used to choose a leader in a ZooKeeper ensemble.
A value of 0 corresponds to the original UDP-based version, 1 corresponds
to the non-authenticated UDP-based version of fast leader election, 2
corresponds to the authenticated UDP-based version of fast leader election,
and 3 corresponds to the TCP-based version of fast leader election. Currently,
algorithm 3 is the default. The implementations of leader election 0, 1, and 2
are now deprecated, and fast leader election is the only one used. Available
options are as follows

•	 initLimit: This refers to the amount of time, measured in ticks, to allow
followers to connect with the leader. initLimit should be set depending on
the network speed (and hops) between the leader and follower and based
on the amount of data to be transferred between the two. If the amount of
data stored by ZooKeeper is huge due to a large number of znodes and
the amount of data stored in them, or if the network bandwidth is low,
initLimit should be increased.

•	 syncLimit: This is the amount of time measured in ticks to allow followers to
sync with a leader. If the followers fall too far behind the leader due to server
load or network problems, they are dropped. However, the amount of data
stored by ZooKeeper has no effect on the synchronization time between the
leader and follower. Instead, syncLimit depends on network latency and
throughput.

•	 leaderServes: By default, the server in an ensemble that runs in the
leader mode also accepts client connections. However, in a loaded and
busy ensemble with an update-heavy workload, we can configure the
leader server to not accept client connections. This can be configured
using the zookeeper.leaderServes Java system property. This can aid in
coordinating write updates at a faster rate and, hence, can lead to increased
write throughput.

Administering Apache ZooKeeper

[114]

•	 cnxTimeout: This refers to the timeout value for opening connections
for leader election notifications. This parameter is only applicable with
leader election algorithm 3 – fast leader election. The default value
is 5 seconds.

•	 server.x=[hostname]:port1[:port2]: This parameter is used to define
servers in the ZooKeeper ensemble. When the ZooKeeper server process
starts up, it determines its identity by looking for the myid file in the data
directory. The myid file contains the server number in ASCII; this should be
the same as x in server.x of the configuration parameter. This parameter
can be further explained as follows:

°° There are two TCP port numbers: port1 and port2. The first port is
used to send transaction updates, and the second one is for leader
election. The leader election port is only necessary if electionAlg is
1, 2, or 3 (default). In Chapter 1, A Crash Course in Apache ZooKeeper,
we saw how to use different port numbers to test multiple servers on
a single machine.

°° It is very important that all servers use the same server.x
configuration for proper connection to happen between them.
Also, the list of servers that make up ZooKeeper servers that is used
by the clients must match the list of ZooKeeper servers that each
ZooKeeper server has.

Configuring a quorum
ZooKeeper allows for the flexible configuration of quorums within the ensemble.
We can form hierarchical quorums by classifying the ZooKeeper servers into groups.
This is particularly useful for forming a ZooKeeper ensemble that spans multiple
data centers. An ensemble across data centers helps in ensuring a high availability
of the service during disaster scenarios. The following options are useful for forming
such groups in an ensemble:

•	 group.x=nnnnn[:nnnnn]: This enables a hierarchical quorum construction.
x is a group identifier and nnnnn corresponds to server identifiers. Groups
must be disjoint, and the union of all the groups must be the ZooKeeper
ensemble.

•	 weight.x=nnnnn: This is used to assign weight to servers in a group when
forming quorums. It corresponds to the weight of a server when voting for
leader election and for the atomic broadcast protocol Zookeeper Atomic
Broadcast (ZAB). By default, the weight of a server is 1. Assigning more
weight to a server allows it to form a quorum with other servers more easily.

Chapter 5

[115]

Quota and authorization
ZooKeeper has configurable quotas associated with its data model. It's possible to
set the quota limit on the znodes and the data amount of data stored. If a subtree in
the ZooKeeper namespace crosses the quota associated with it, ZooKeeper prints
warning messages in the log. However, the operation is never cancelled if the quota
assigned is exceeded.

ZooKeeper quotas are stored in the ZooKeeper tree in the /zookeeper/quota path.
It is possible to set, list, and delete quotas from the ZooKeeper client APIs and
through the ZooKeeper Java shell. The following screenshot shows the results of
using the set, list, and del commands:

In the preceding example, we created a new znode called /quota_example and set a
quota of two child znodes. We then did a listing of the assigned quota and also saw
how to delete the assigned quota.

When we created the third child under /quota_example, the following log message
is printed as a warning in the ZooKeeper logfile, informing us that we have exceeded
the quota:

Administering Apache ZooKeeper

[116]

ZooKeeper also provides configurable options to control authentication and
authorization by the service.

A zookeeper.DigestAuthenticationProvider.superDigest parameter enables
a ZooKeeper ensemble administrator to access the znode hierarchy as a superuser.
The ZooKeeper service doesn't do any ACL checking for a user who is authenticated
as a superuser. This feature is disabled by default.

To generate a super digest for the superuser, the Java system property called org.
apache.zookeeper.server.auth.DigestAuthenticationProvider can be used by
calling with the parameter super:<password>. Once the superDigest is generated,
we need to provide super:<data> as a system property while starting
the ZooKeeper servers.

A ZooKeeper client need to pass a scheme of digest and authentication data of
super:<password> to authenticate with the ZooKeeper server. While using the
ZooKeeper shell, we can use the addauth command.

ZooKeeper best practices
Some of the best practices of running and managing a ZooKeeper ensemble are
show here:

•	 The ZooKeeper data directory contains the snapshot and transactional
log files. It is a good practice to periodically clean up the directory if the
autopurge option is not enabled. Also, an administrator might want to keep
a backup of these files, depending on the application needs. However, since
ZooKeeper is a replicated service, we need to back up the data of only one of
the servers in the ensemble.

•	 ZooKeeper uses Apache log4j as its logging infrastructure. As the logfiles
grow bigger in size, it is recommended that you set the auto-rollover of the
logfiles using the in-built log4j feature for ZooKeeper logs.

•	 The list of ZooKeeper servers used by the clients in their connection strings
must match the list of ZooKeeper servers that each ZooKeeper server has.
Strange behaviors might occur if the lists don't match.

•	 The server lists in each Zookeeper server configuration file should be
consistent with the other members of the ensemble.

•	 As already mentioned, the ZooKeeper transaction log must be configured in
a dedicated device. This is very important to achieve best performance from
ZooKeeper.

Chapter 5

[117]

•	 The Java heap size should be chosen with care. Swapping should never be
allowed to happen in the ZooKeeper server. It is better if the ZooKeeper
servers have a reasonably high memory (RAM).

•	 System monitoring tools such as vmstat can be used to monitor virtual
memory statistics and decide on the optimal size of memory needed,
depending on the need of the application. In any case, swapping should
be avoided.

Monitoring a ZooKeeper instance
The ZooKeeper service can be monitored in the following two ways:

•	 Monitoring of health and status using a set of four-letter words
•	 Using Java Management Extensions capabilities built into ZooKeeper

Four-letter words
ZooKeeper responds to a small set of commands, each being composed of four
letters. These commands can be issued through telnet or nc at the client port.
The main objective of these commands is to provide a simple mechanism to check
health of the server or diagnose any problems.

The following are the four-letter words supported by ZooKeeper services at the time
of writing this book:

•	 conf: This print details about server configuration parameters such as
clientPort, dataDir, tickTime, and so on.

•	 cons: This lists the full connection/session details for all clients connected to
this server.

•	 crst: This resets connection/session statistics for all connections.
•	 dump: This lists the outstanding sessions and ephemeral nodes. This only

works on the leader.
•	 envi: Lists the environment parameters
•	 ruok: This checks whether the server is running without any error. The

server will respond with imok if it is running. If the server is in some error
state, it will not respond to this command.

•	 srst: This resets the server statistics.
•	 stat: This provides information on the current status of the server and the

list of connected clients.

Administering Apache ZooKeeper

[118]

•	 srvr: This provides the same information as the stat command, except the
list of connected clients.

•	 wchs: This provides brief information on watches for the server.
•	 wchc: This provides detailed information on watches for the server,

sorted by sessions (connections), showing a list of sessions with associated
watches (paths).

•	 wchp: This provides detailed information on watches for the server, sorted
by paths (znodes). This shows a list of paths with associated sessions.

•	 mntr: This outputs a list of variables that can be used to monitor the health
of the cluster.

Some examples of running these four-letter commands to monitor the current status
of the ZooKeeper server are shown in this screenshot:

Chapter 5

[119]

Java Management Extensions
ZooKeeper provides for extensive monitoring and management capabilities with
Java Management Extensions (JMX). In this section, we will look at using jconsole,
a simple management console available with JMX, to explore ZooKeeper management.

Setting up of JMX for monitoring and management is beyond the scope of this book.
For more details, visit https://docs.oracle.com/javase/7/docs/technotes/
guides/management/agent.html.

Now, let's start jconsole from the command line on the same system where
ZooKeeper is also running. In our case, the ZooKeeper service is running on
localhost. Running jconsole starts a window similar to the one shown in the
following screenshot:

https://docs.oracle.com/javase/7/docs/technotes/guides/management/agent.html
https://docs.oracle.com/javase/7/docs/technotes/guides/management/agent.html

Administering Apache ZooKeeper

[120]

We can see that the ZooKeeper process with PID 4824 is discovered by jconsole.
Let's connect to this process by double-clicking on it. Once jconsole attaches to the
ZooKeeper process, we will see a window similar to the following one with various
forms of system statistics, such as memory usage, thread, JVM-specific information,
and so on. These statistics and system counters are very important to monitor the
state of the ZooKeeper server and to help in debugging performance issues in a
production cluster.

The MBeans tab shows detailed information on ZooKeeper's internal state, such
as details of the clients connected and the various attributes and details about
operations done in the ZooKeeper namespace. Managed Beans (MBeans) is a very
elegant and flexible way to expose internal information on the ZooKeeper server
through JMX.

More details on the various MBeans available for ZooKeeper management and
monitoring can be found at https://zookeeper.apache.org/doc/trunk/
zookeeperJMX.html.

https://zookeeper.apache.org/doc/trunk/zookeeperJMX.html
https://zookeeper.apache.org/doc/trunk/zookeeperJMX.html

Chapter 5

[121]

Summary
In this chapter, you learned in detail about the various configuration options of
ZooKeeper that are an essential part of using and operating ZooKeeper. You also
learned the various best practices of using ZooKeeper, followed by methods of
monitoring and managing ZooKeeper servers in real time. Knowing the various
knobs of ZooKeeper configuration is very important for production deployment
and can help prevent many problems, which might be hard to debug later.

In the next chapter, you will learn about Curator, which is a high-level framework for
Apache ZooKeeper. Curator is a set of wrapper libraries built on top of ZooKeeper
with a lot of enhanced features and capabilities. Originally developed by Netflix,
Curator is now an Apache project and is very popular among ZooKeeper users.

Decorating ZooKeeper with
Apache Curator

So far in this book, we have studied Apache ZooKeeper in detail, from theoretical
concepts to its programming. We have read and understood how ZooKeeper can
be used in distributed systems to solve common and important tasks in a simple
and neat way. We also looked into the administration aspects, and you saw how to
configure ZooKeeper to get the best out of it in production systems.

Apache ZooKeeper is one among those software tools that aids in solving complex
problems by relieving users from the intricacies of implementing them from scratch.
However, ZooKeeper exposes only the primitives, and it's up to the users how they
use these primitives to work out the coordination problems in their applications.
To prevent users further from the involutions of using ZooKeeper, there have been
numerous efforts in the community to develop high-level frameworks on top of the
ZooKeeper data model and its APIs. Apache Curator is a high-level wrapper library
and framework that makes ZooKeeper very simple and easy to use.

In this chapter, we will read about Curator and discuss the following topics:

•	 Curator and its components
•	 The Curator ZooKeeper client
•	 The Curator framework
•	 Curator recipes for ZooKeeper
•	 Netflix Exhibitor

Curator was originally developed by Netflix and is now an Apache
project. The project page is located at http://curator.apache.org/.

http://curator.apache.org/

Decorating ZooKeeper with Apache Curator

[124]

Curator components
Curator is a high-level library for ZooKeeper; it makes dealing with ZooKeeper
much easier and it extends the functionality of core ZooKeeper. At a high level,
Curator is composed of the following components:

•	 Client: The Curator client is a wrapper around ZooKeeper's Java client.
It's a low-level API in the curator stack and abstracts functionalities out
of the ZooKeeper client.

•	 Framework: The Curator framework is a high-level API with advanced
features such as automatic connection management, retrying of operations,
and so on. It simplifies the usage of ZooKeeper to a great extent.

•	 Recipes: The Curator recipes provide implementations of ZooKeeper recipes;
these implementations can be directly used in distributed applications to
solve coordination problems.

•	 Extensions: The Curator recipes package implements the common recipes.
To avoid bloating this package, a separate extension package is used.

In addition to the preceding components, Curator also ships with a bunch of useful
utilities for ZooKeeper. The Curator stack is shown in the following diagram:

The Curator JARs are available in repositories of Maven Central. Curator can be
easily included in the build scripts of Maven, Gradle, Ivy, SBT, and so on.

The various Maven artifacts are listed at http://mvnrepository.com/artifact/
org.apache.curator.

http://mvnrepository.com/artifact/org.apache.curator
http://mvnrepository.com/artifact/org.apache.curator

Chapter 6

[125]

Curator client
Curator Client is a wrapper around ZooKeeper's Java client. It makes client access
to ZooKeeper much simpler and less error-prone.

The curator client provides the following capabilities:

•	 Connection management: This manages the connection to the
ZooKeeper server

•	 Operations retry utilities: This is a mechanism to retry operations
•	 Test ZooKeeper server: This is a ZooKeeper test server for testing

A sample code fragment of the MyCuratorClient.java file to connect to the
ZooKeeper server with the curator client is shown as follows:

public void myCuratorClient() throws Exception
{
 CuratorZookeeperClient client =
 new CuratorZookeeperClient(server.getConnectString(),
 10000, 10000, null,new RetryOneTime(1));
 client.start();
 try
 {
 client.blockUntilConnectedOrTimedOut();
 String path = client.getZooKeeper().create("/test_znode",
 "".getBytes(),ZooDefs.Ids.OPEN_ACL_UNSAFE,
 CreateMode.PERSISTENT);
 }
 finally
 {
 client.close();
 }
}

The CuratorZooKeeperClient constructor is used to connect to the ZooKeeper
server. It takes a connection string or a list of ZooKeeper host-port pairs, the session
and connection timeout, an optional watcher object, and the retry policy to use.
A retry policy is a mechanism for the client to try various retry mechanisms while
retrying connections. In the preceding example, we used a policy where the client
will retry only once.

Decorating ZooKeeper with Apache Curator

[126]

The Curator client supports the following retry policies:

•	 BoundedExponentialBackoffRetry: This retries a specified number of
times by increasing the sleep time between the retries up to a maximum
upper bound

•	 ExponentialBackoffRetry: This retries a specified number of times by
increasing the sleep time between the retries

•	 RetryNTimes: This retries n number of times
•	 RetryOneTime: This retries only once
•	 RetryUntilElapsed: This retries until a specified timeout has elapsed

Once the client is started, the blockUntilConnectedOrTimedOut method blocks
until the connection to the ZooKeeper server succeeds or the connection timeout has
elapsed. Once the connection succeeds, we will create a znode named /test_znode.
The getZooKeeper()method returns the instance of the connection to the managed
ZooKeeper server.

The Curator API doc is available at http://curator.apache.org/
apidocs/index.html.

The Curator client is a low-level API that gives an abstraction over the ZooKeeper
client APIs. Developers should use the Curator framework instead of directly using
the CuratorZookeeperClient class in their applications as a recommended practice.

Curator framework
The Curator framework (org.apache.curator.framework) is a high-level API
that simplifies using ZooKeeper to a great extent. Some of the features it provides
are as follows:

•	 Automatic Connection Management: This feature automatically and
transparently handles the scenarios where clients need to recreate a
connection to the ZooKeeper server and/or retry operations.

•	 Simple and Flexible APIs: This feature applies the raw ZooKeeper API
with a set of modern, fluent interfaces.

•	 Recipes: This feature implements common ZooKeeper recipes. We will
discuss them in the next section.

http://curator.apache.org/apidocs/index.html
http://curator.apache.org/apidocs/index.html

Chapter 6

[127]

CuratorFramework is allocated using CuratorFrameworkFactory. It provides the
factory methods as well as a builder to create instances. CuratorFramework instances
are fully thread-safe. While developing applications using CuratorFramework,
developers should create and share one CuratorFramework instance for every
ZooKeeper cluster. The CuratorFramework uses a fluent-style interface.

A sample ZooKeeper client using CuratorFramework is shown in the following
code snippet:

public void myCuratorFrameworkClient()
throws Exception
{
 CuratorFramework client =
 CuratorFrameworkFactory.newClient(server.getConnectString(),
 new RetryOneTime(1));
 client.start();
 try
 {
 String path = client.create().withMode(
 CreateMode.PERSISTENT).forPath(
 "/test_znode", "".getBytes());
 }
 finally
 {
 client.close();
 }
}

The newClient() factory method creates a new client instance with the default
session timeout and default connection timeout. It takes a connection string that
is a list of ZooKeeper host-port pairs and the retry policy to use.

CuratorFramework has a concept of a namespace. With this, it's possible to set
the namespace when creating a CuratorFramework instance with the builder.
The framework prepends the namespace to all paths when one of its APIs is called:

CuratorFrameworkFactory.Builder builder =
 CuratorFrameworkFactory.builder();
CuratorFramework client = builder.connectString
 (server.getConnectString()).namespace("MyApp").retryPolicy(new
 RetryOneTime(1)).build();
client.create().forPath("/test_znode", data);

Here, although the name of the znode is specified as /test_znode, the actual znode
that gets created is /MyApp/test_znode.

Decorating ZooKeeper with Apache Curator

[128]

The Curator framework also provides a limited-feature framework interface named
CuratorTempFramework for temporary connections over unreliable networks, such
as a WAN. In this framework, the ZooKeeper connection is closed if the session
remains idle for some time.

Curator recipes
Curator provides a bunch of ready-to-use recipes for ZooKeeper. A detailed listing
and description for the recipes implemented by Curator can be read from the project
page at http://curator.apache.org/curator-recipes/index.html.

Here, we will go through brief outlines of the ZooKeeper recipes in Curator:

•	 Leader election: Curator provides two algorithms for leader election: leader
latch and leader selector. Both the algorithms select a "leader" among the
multiple contenders connected to the Zookeeper cluster.
If a group of n participants contend for leadership with leader latch, one
among the n participants is randomly assigned as a leader, while with leader
selector, a leader is selected in the order of requests coming to the Zookeeper
server. When the leader releases its leadership, another contender from the
group of n participants in the cluster is chosen.

•	 Locks: Curator implements the following different types of distributed locks:
°° Shared re-entrant lock: This type of lock provides globally

synchronous fully-distributed locks.
°° Shared lock: This is non re-entrant shared re-entrant lock.
°° Shared re-entrant read/write lock: This is a re-entrant read/write

mutex that works across JVMs.
°° Shared semaphore: This is a counting semaphore that works

across JVMs.
°° Multishared lock: This is used to manage multiple locks as a single

entity. An acquire() call acquires all the locks. If the call fails, all
the acquired paths are released. A release() call releases all the
managed locks.

•	 Barrier: This provides implementation for both barrier and double barrier.
•	 Counters: This provides a mechanism to manage a shared integer with a

shared counter. It also gives a mechanism for distributed atomic increments
with distributed atomic long, distributed atomic integer, and distributed
atomic value.

http://curator.apache.org/curator-recipes/index.html

Chapter 6

[129]

•	 Cache: Caching is implemented through the path cache, node cache, and tree
cache recipes to keep the data of change in states of znodes, locally cached
nodes and all the locally cached children of a ZK path respectively.

•	 Queues: This provides distributed queue implementation. The following
different types of queues are supported:

°° Distributed queue: This is a simple distributed queue where items
put into the queue are ordered in FIFO.

°° Distributed ID queue: This is a version of distributed queue that
allows some identifiers to be associated with queue items.

°° Distributed priority queue: This is an implementation of the
distributed priority queue of ZooKeeper. Internally, it uses a
distributed queue where a priority can be specified to the items.

°° Distributed delay queue: This is a variation of the distributed
priority queue that uses time as the priority. When items are added
to the queue, a delay value is given. The item will not be sent to a
consumer until the time elapses.

°° Simple distributed queue: This is a replacement of the org.
apache.zookeeper.recipes.queue.DistributedQueue queue
implementation that is part of the ZooKeeper distribution.

•	 Nodes: This provides a recipe for a persistent ephemeral node; this is an
ephemeral node that attempts to stay present in ZooKeeper, even with
connection and session interruptions.

Curator utilities
The Curator library also provides a collection of useful utilities for ZooKeeper.
Some of these are shown here:

•	 Test server: This is a local, in-process ZooKeeper server that can be used
for testing

•	 Test cluster: This is an internally running ensemble of ZooKeeper servers
for testing

•	 ZKPaths: This provides various static methods to use the ZooKeeper
znode paths

•	 EnsurePath: This is a utility to ensure that a particular znode path is created
before use

Decorating ZooKeeper with Apache Curator

[130]

•	 BlockingQueueConsumer: This is a queue consumer similar to Java's
BlockingQueue

•	 Reaper: This is a utility to delete paths with no children and nodes with
no data

Curator extensions
The curator extension package includes extra recipes in addition to the ones included
in the recipe package. The recipes in the extension package have the naming
convention of curator-x-name.

The following extensions are currently available with Curator:

•	 Service discovery: This is a system to use ZooKeeper as a service discovery
mechanism. We looked at a service discovery recipe using ZooKeeper in
Chapter 4, Performing Common Distributed System Tasks.

•	 Service discovery server: This is a Curator service discovery with a REST
server for for non-Java and legacy applications. It exposes RESTful web
services to register, remove, and query services.

•	 Curator RPC proxy: This module implements a proxy that bridges non-Java
environments with the Curator framework and recipes. It uses Apache Thrift
that enables a large set of languages and environments to use Curator's
capabilities and unify ZooKeeper usages across languages/environments.

•	 ZKClient bridge: This extension acts as a bridge between Curator and
ZKClient (https://github.com/sgroschupf/zkclient). It is useful for
applications written using ZKClient to use the Curator library without
changing the existing code. The ZKClient bridge is not packaged as a part
of the official Curator distribution. It can be found in its own package in the
Maven Central repository as curator-x-zkclient-bridge.

So far, we have read about the Curator library and its various components. Curator
implements a very nice and robust extension to the ZooKeeper APIs, abstracting
away many of the complexities of ZooKeeper. It's highly recommended for
developers to consider using Curator to develop distributed applications using
ZooKeeper in Java language. As we have seen, the power of Curator can be
harnessed from applications written in languages other than Java too.

In the next section, we will read about Exhibitor, which is a tool for the management
of ZooKeeper server processes.

https://github.com/sgroschupf/zkclient

Chapter 6

[131]

Exhibitor
Exhibitor is a supervisor service to manage ZooKeeper server instances. Developed
and open sourced by Netflix, Exhibitor is very useful for ZooKeeper instance
monitoring, backup/recovery, cleanup, and visualization.

The Netflix Exhibitor home page is located at https://github.com/
Netflix/exhibitor.

Managing and administering a ZooKeeper cluster requires a lot of manual
effort, which might lead to human errors and create undesirable problems in the
applications. A ZooKeeper ensemble is statically configured with the configuration
of each individual instance comprising a configuration file. This file must be identical
on each of the ZooKeeper instances. The reconfiguration of the ensemble requires an
update of this configuration file as well as a restart of the server process. A proper
configuration is essential for correct functioning of ZooKeeper. Along with the right
configuration needs, ZooKeeper might also need a periodic backup of the transaction
logs, cleanup of the logs, and so on.

Exhibitor provides all the preceding ZooKeeper management needs along with a lot
of other features, which are cited as follows:

•	 Monitoring: Exhibitor monitors the ZooKeeper server. If the ZooKeeper
server process crashes or is not running for some reasons, Exhibitor rewrites
the configuration file and restarts the server process.

•	 Log cleanup: Exhibitor can periodically do a cleanup of ZooKeeper logs.
However, post version 3.4.x, ZooKeeper comes with an option to auto purge
the logfile.

•	 Backup/restore: Exhibitor can be used to back up the ZooKeeper transaction
logfile. It also allows indexing of these logs by which any specified
transactions can be searched and used to restore a given znode to the
ZooKeeper instance.

•	 Cluster-wide configuration: Exhibitor enables the application of
configuration changes to the entire ZooKeeper ensemble by presenting
a single system view.

•	 Rolling configuration update: Exhibitor allows hot updating of configuration;
this allows configuration updates to be done even when the ZooKeeper
ensemble is running, without any downtime.

•	 REST API: Exhibitor exposes a REST API that allows developers to write
programs to carry out ZooKeeper management tasks.

https://github.com/Netflix/exhibitor
https://github.com/Netflix/exhibitor

Decorating ZooKeeper with Apache Curator

[132]

•	 Visualization: Exhibitor presents a graphical visualization of the
ZooKeeper tree.

•	 Curator integration: Exhibitor and Curator can be configured to work
together. It allows Curator instances to get updated for any changes made
to the ZooKeeper ensemble.

More details on this integration can be found at http://curator.
apache.org/exhibitor.html.

Exhibitor binaries are available from the Maven Central repository. They come in
two versions:

•	 Standalone: This version provides a preconfigured, self-contained Jetty-
based application. Details on running the standalone application can be
found at https://github.com/Netflix/exhibitor/wiki/Running-
Exhibitor.

•	 Core: This version allows us to build extensions to Exhibitor by integrating
with the existing application.

Summary
In this chapter, you learned about Apache Curator, which is a high-level wrapper
library and framework for Apache ZooKeeper. Curator makes programming with
ZooKeeper very simple by abstracting many of the intricacies and also extends it
by providing a lot of add-on features and recipes. Curator also makes it possible for
legacy applications to use ZooKeeper's capabilities through various extensions. We
also looked at Exhibitor to supervise ZooKeeper server instances, and you learned
how it can be used for easy configuration of the ZooKeeper ensemble and many
other maintenance tasks.

By now, we have almost come to the end of learning the essentials of ZooKeeper.
In the next chapter, we will look at how ZooKeeper is being used in other software
projects, and we will also look at the tools used to achieve distributed coordination.
We will also look at a few examples of how ZooKeeper is used by organizations
on their production platforms. This will give you a feel that what you learned
throughout this book is actually being used in real-world applications.

http://curator.apache.org/exhibitor.html
http://curator.apache.org/exhibitor.html
https://github.com/Netflix/exhibitor/wiki/Running-Exhibitor
https://github.com/Netflix/exhibitor/wiki/Running-Exhibitor

ZooKeeper in Action
In the last six chapters, we learned all the essentials about Apache ZooKeeper, which
has given us a firm grip on its background concepts, usage, and administration. We
read about community projects such as Curator, which makes programming with
ZooKeeper much simpler, and also adds more functionality on top of it. We saw
how Exhibitor makes the managing of ZooKeeper instances easier in a production
environment. ZooKeeper is one of the successful projects from Apache Software
Foundation, and has gained wide adoption by other projects and organizations in
their production platforms.

In this chapter, we are going to read about how ZooKeeper is used by software
projects for their inherent need of distributed coordination. We will particularly
look at the following projects that use and depend on ZooKeeper for some of
their functionality:

•	 Apache BookKeeper
•	 Apache Hadoop
•	 Apache HBase
•	 Apache Helix
•	 OpenStack Nova

We will also look at how ZooKeeper is used by organizations such as Yahoo!,
Netflix, Facebook, Twitter, eBay, and so on in their production platform to achieve
distributed coordination and synchronization. In addition to this, we will also
learn how companies such as Nutanix and VMware leverage ZooKeeper in their
enterprise-grade compute and storage appliances.

The use of ZooKeeper by various organizations has been compiled
from blogs and tech notes available in the public domain. The
author or the publisher of this book bears no responsibility for the
authenticity of the information.

ZooKeeper in Action

[134]

Projects powered by ZooKeeper
In this section, we will delve into the details of how various open source software
projects use Apache ZooKeeper to implement some of their functionality. As it's
beyond the scope of this book to give a full functional description of the individual
projects, readers are advised to go through the respective project pages to learn more
about their design and architectural details.

Apache BookKeeper
The Apache BookKeeper (http://zookeeper.apache.org/bookkeeper/) is a
subproject of ZooKeeper. BookKeeper is a highly available and reliable distributed
logging service. Hedwig is a topic-based distributed publish/subscribe system built
on BookKeeper. In this section, we will take a sneak peek of Apache BookKeeper.

BookKeeper can be used to reliably log streams of records. It achieves high availability
through replication. Applications that need to log operations or transactions in
a reliable fashion so that crash recovery can be done in case of failure can use
BookKeeper. It is highly scalable, fault-tolerant, and high performant. In a nutshell,
BookKeeper comprises the following components:

•	 Ledger: Ledgers are streams of logs that consist of a sequence of bytes.
Log streams are written sequentially to a ledger in an append-only semantics.
It uses the write-ahead logging (WAL) protocol.

•	 BookKeeper client: A BookKeeper client creates ledgers. It runs in the
same machine as the application and enables the application to write to
the ledgers.

•	 Bookie: Bookies are BookKeeper storage servers that store and manage
the ledgers.

•	 Metadata storage service: The information related to ledgers and bookies
are stored with this service.

BookKeeper uses ZooKeeper for its metadata storage service. Whenever the
application creates a ledger with the BookKeeper client, it stores the metadata
about the ledger in the metadata storage service backed by a ZooKeeper instance.
Clients use ZooKeeper coordination to ascertain that only a single client is writing
to a ledger. The writer has to close the ledger before any other client issues a read
operation on that ledger. BookKeeper ensures that after the ledger has been closed,
other clients can see the same content while reading from it. The closing of a ledger is
done by creating a close znode for the ledger, and the use of ZooKeeper prevents any
race conditions.

http://zookeeper.apache.org/bookkeeper/

Chapter 7

[135]

Apache Hadoop
The Apache Hadoop project (http://hadoop.apache.org/) is an umbrella of
projects, and ZooKeeper is one of the allied subprojects.

Apache Hadoop is a distributed framework that processes large datasets using
clusters that span over a large number of nodes. It uses simple programming
models such as MapReduce to process the datasets. It is scalable up to thousands
of servers. Rather than rely on hardware to deliver high availability, the library
itself is designed to detect and handle failures at the application layer.

The project includes the following components:

•	 Hadoop Common: This includes the libraries and utilities used by other
Hadoop modules

•	 Hadoop Distributed File System (HDFS): This is a scalable and fault-tolerant
distributed filesystem that stores large datasets and provides high-performant
access to it

•	 Hadoop YARN (Yet Another Resource Negotiator): YARN is a distributed
framework that provides job scheduling and cluster resource management

•	 Hadoop MapReduce: This is a YARN-based software framework that
performs parallel processing of large datasets

Apache ZooKeeper is used in Hadoop to implement high availability in YARN
and HDFS.

YARN (http://bit.ly/1xDJG8r) is the next-generation compute and
resource-management framework in Apache Hadoop. It consists of a global
ResourceManager (RM) and a per-application ApplicationMaster:

•	 The RM mediates resource allocation among all the applications in the
system. It has two components: Scheduler and ApplicationsManager. The
Scheduler is responsible for allocating resources to the applications, and
the ApplicationsManager manages job- and application-specific details. RM
uses a per-node daemon called the NodeManager to monitor resource usage
(CPU, memory, disk, and network) and report the same to the RM.

•	 The ApplicationMaster is a library that is specific to every application.
It runs along with the application in the Hadoop cluster, does resource
negotiating with the RM, and assists the NodeManager(s) to execute and
monitor the tasks.

http://hadoop.apache.org/
http://bit.ly/1xDJG8r

ZooKeeper in Action

[136]

The RM coordinates the running tasks in a YARN cluster. However, in a Hadoop
cluster, only one instance of the RM runs and is a single point of failure. A ZooKeeper
solution provides high availability (HA) to the RM, which allows a failover of the RM
to another machine when the active one crashes.

The solution works by storing the current internal state of the RM in ZooKeeper.
Since ZooKeeper itself is a highly available data store for small amount of data, it
makes the RM state highly available too. Whenever an RM resumes after a restart or
a crash, it loads the internal state from ZooKeeper.

An extension to the solution to provide failover capability is to have multiple RMs, of
which one is in an active role and the others are mere standbys. When the active RM
goes down, a leader election can be done with ZooKeeper to elect a new RM. Use of
ZooKeeper prevents the potential problem of more than one node claiming the active
role (fencing).

More details on YARN HA with ZooKeeper can be found on the blog
written by Karthik Kambatla, Wing Yew Poon, and Vikram Srivastava
at http://blog.cloudera.com/blog/2014/05/how-apache-
hadoop-yarn-ha-works/.

ZooKeeper is also used in Hadoop for the purpose of achieving high availability
for HDFS. The metadata node or the NameNode (NN), which stores the metadata
information of the whole filesystem is a single point of failure (SPOF) in HDFS.
The NN being a SPOF was a problem till Hadoop 1.x. However, in Hadoop 2.x, an
automatic failover mechanism is available in HDFS, for a fast failover of the NN role
from the active node to another node in the event of a crash.

The problem is solved in a similar manner to the approach used for YARN RM.
Multiple NNs are set up, of which only one NN assumes the active role, and the
others remain in the standby mode. All client filesystem operations go to the active
NN in the cluster, while the standby acts as a slave. The standby NN maintains
enough state about the filesystem namespace to provide a fast failover. Each of the
NNs (active as well as standbys) runs a ZKFailoverController (ZKFC) in it. ZKFC
maintains a heartbeat with the ZooKeeper service. The ZKFC in the active NN holds
a special "lock" znode through an ephemeral znode in the ZooKeeper tree. In the
event of a failure of the current active NN, the session with the ZooKeeper service
expires, triggering an election for the next active NN. One among the standby NNs
wins the election and acquires the active NN role.

http://blog.cloudera.com/blog/2014/05/how-apache-hadoop-yarn-ha-works/
http://blog.cloudera.com/blog/2014/05/how-apache-hadoop-yarn-ha-works/

Chapter 7

[137]

Apache HBase
Apache HBase (http://hbase.apache.org/) is a distributed, scalable, big data
store. It's a non-relational database on top of HDFS.

In HBase architecture, there is a master server called HMaster, and a number of slave
servers called RegionServer. The HMaster monitors the RegionServers, which store
and manage the regions. Regions are contiguous ranges of rows stored together.
The data is stored in persistent storage files called HFiles.

HBase uses ZooKeeper for distributed coordination. Every RegionServer creates
its own ephemeral znode in ZooKeeper, which the HMaster uses in order to
discover available servers. HBase also uses ZooKeeper to ensure that there is only
one HMaster running and to store the root of the regions for region discovery.
ZooKeeper is an essential component in HBase, without which HBase can't operate.

For more details on HBase architecture, refer to
http://hbase.apache.org/book.html.

Apache Helix
Apache Helix (http://helix.apache.org/) is a cluster management framework.
It provides a generic way of automatically managing the resources in a cluster. Helix
acts as a decision subsystem for the cluster, and is responsible for the following tasks
and many more:

•	 Automating the reassignment of resources to the nodes
•	 Handling node failure detection and recovery
•	 Dynamic cluster reconfiguration (node and resource addition/deletion)
•	 Scheduling of maintenance tasks (backups, index rebuilds, and so on)
•	 Maintaining load balancing and flow control in the cluster

In order to store the current cluster state, Helix needs a distributed and highly
available configuration or cluster metadata store, for which it uses ZooKeeper.

ZooKeeper provides Helix with the following capabilities:

•	 This framework represents the PERSISTENT state, which remains until
it's removed

•	 This framework also represents the TRANSIENT/EPHEMERAL state,
which goes away when the process that created the state leaves the cluster

http://hbase.apache.org/
http://hbase.apache.org/book.html
http://helix.apache.org/

ZooKeeper in Action

[138]

•	 This framework notifies the subsystem when there is a change in the
PERSISTENT and EPHEMERAL state of the cluster

Helix also allows simple lookups of task assignments through the configuration store
built on top of ZooKeeper. Through this, clients can look up where the tasks are
currently assigned. This way, Helix can also provide a service discovery registry.

OpenStack Nova
OpenStack (http://www.openstack.org/) is an open source software stack for the
creation and management of private and public clouds. It is designed to manage
pools of compute, storage, and networking resources in data centers, allowing the
management of these resources through a consolidated dashboard and flexible APIs.

Nova is the software component in OpenStack, which is responsible for managing the
compute resources, where virtual machines (VMs) are hosted in a cloud computing
environment. It is also known as the OpenStack Compute Service. OpenStack
Nova provides a cloud computing fabric controller, supporting a wide variety of
virtualization technologies such as KVM, Xen, VMware, and many more. In addition
to its native API, it also includes compatibility with Amazon EC2 and S3 APIs.

Nova depends on up-to-date information about the availability of the various
compute nodes and services that run on them, for its proper operation. For example,
the virtual machine placement operation requires to know the currently available
compute nodes and their current state.

Nova uses ZooKeeper to implement an efficient membership service, which
monitors the availability of registered services. This is done through the ZooKeeper
ServiceGroup Driver, which works by using ZooKeeper's ephemeral znodes. Each
service registers by creating an ephemeral znode on startup. Now, when the service
dies, ZooKeeper will automatically delete the corresponding ephemeral znode. The
removal of this znode can be used to trigger the corresponding recovery logic.

For example, when a compute node crashes, the nova-compute service that is running
in that node also dies. This causes the session with ZooKeeper service to expire, and as
a result, ZooKeeper deletes the ephemeral znode created by the nova-compute service.
If the cloud controller keeps a watch on this node-deletion event, it will come to know
about the compute node crash and can trigger a migration procedure to evacuate all
the VMs that are running in the failed compute node to other nodes. This way, high
availability of the VMs can be ensured in real time.

http://www.openstack.org/

Chapter 7

[139]

ZooKeeper is also being considered for the following use cases in OpenStack Nova:

•	 Storing the configuration metadata (nova.conf)
•	 Maintaining high availability of services and automatic failover using

leader election

Organizations powered by ZooKeeper
In this section, we will learn about how organizations around the world are using
Apache ZooKeeper in their production clusters to solve distributed coordination
problems. The real-world use cases depicted here give us a transparent view of
how ZooKeeper can be an indispensable component for distributed platforms.
The following organizations use Apache ZooKeeper:

Yahoo!
ZooKeeper was originally developed by Yahoo! before it became an Apache project.
It is used for a multitude of services inside Yahoo! to perform leader election,
configuration management, naming system, sharding, distributed locking, group
membership, and so on. Yahoo! is a big Hadoop shop that performs analysis in its
massive datasets, and ZooKeeper is used for various distributed coordination and
synchronization tasks.

Facebook
Facebook uses ZooKeeper in its messaging platform and many other use cases.
Facebook's messaging system is powered by a system called cell system. The entire
messaging system (e-mail, SMS, Facebook Chat, and the Facebook Inbox) is divided
into cells. Cells are composed of a cluster of servers and services, and each cell serves
only a fraction of Facebook users. The use of cells has the following advantages:

•	 Incremental scaling with minuscule failures
•	 Easy upgrading of hardware and software
•	 Failures affect only the cell boundary, which affects limited users
•	 Hosting cells in distributed data centers avoids disasters

Each cell comprises a cluster of servers and is coordinated by a ZooKeeper ensemble.
The servers that host a particular application register themselves with ZooKeeper.
The mapping between users and servers is then done using the consistent hashing
algorithm. Basically, the nodes are arranged in a ring, and each node is responsible
for a specified range of the users depending on the hash values.

ZooKeeper in Action

[140]

If a node fails, another node in the neighboring position in the ring takes over the
load for those users affected by the failure. This allows for an even distribution of the
load and also enables easy addition and removal of nodes into and from the cluster
in the cell.

eBay
eBay uses ZooKeeper to develop a job type limiter. The job limiter limits the
execution of the same type of jobs from running simultaneously beyond a specified
number in the grid. For each job type, the type limiter keeps track of the running
count and the limit. When the running count hits the limit, spawning of a new job
is not allowed until a job of that type finishes or terminates. This job type limiter is
used for jobs that use third-party services using APIs to update the maximum bid for
keyword ads. Usually, the API call capacity is limited. Even if the grid has enough
capacity to run hundreds of jobs, the job limiter system built with ZooKeeper allows
only a predetermined number (for example, N) of concurrent jobs against a partner
API. The type limiter ensures that the (N+1)th job waits until one of the N running
jobs has completed.

For details on how the job type limiter system is implemented, visit the
blog Grid Computing with Fault-Tolerant Actors and ZooKeeper by Matthias
Spycher at http://bit.ly/11eyJ1b.

Twitter
Twitter uses ZooKeeper service discovery within its data centers. Services register
themselves in ZooKeeper to advertise the services for clients. This allows clients to
know what services are currently available and the servers where these are hosted.
Clients can also query for services in the service discovery system. The system ensures
an up-to-date host list that provides the queried services and makes it available for the
clients. Whenever new capacity is added for the services, the client will automatically
become aware of it and can do load balancing across all servers.

Netflix
Netflix is an avid ZooKeeper user in its distributed platform, which led them
to develop Curator and Exhibitor to enhance the functionalities of ZooKeeper.
A few of the use cases of ZooKeeper/Curator at Netflix are as follows:

•	 Ensuring the generation of unique values in various sequence ID generators
•	 Cassandra backups

http://bit.ly/11eyJ1b

Chapter 7

[141]

•	 Implementing the TrackID service
•	 Performing leader election with ZooKeeper for various distributed tasks
•	 Implementing a distributed semaphore for concurrent jobs
•	 Distributed caching

Zynga
Zynga uses ZooKeeper for configuration management of their hosted games.
ZooKeeper allows Zynga to update the configuration files for a plethora of online
games, which are used across the world by millions of users in a very short span of
time. The games are served from Zynga's multiple data centers. With ZooKeeper, the
configuration's system updates thousands of configuration files in a very small span
of time. The configurations are validated by validation systems against the business
logic to ensure that configurations are updated correctly and services are properly
configured to the updated data. In the absence of ZooKeeper, the configuration
update at the same time in a short time interval would be a real nightmare. Again,
failure to sync these configuration files within the available time span would have
caused severe service disruption.

Nutanix
Nutanix (http://www.nutanix.com/) develops a hyper-converged storage and
compute solution, which leverages local components of a host machine, such as
storage capacity (disks) and compute (CPUs), to create a distributed platform for
virtualization. This solution is known as the Nutanix Virtual Computing Platform.
It supports industry-standard hypervisor ESXi, KVM, and Hyper-V. The platform
is bundled in the appliance form factor with two nodes or four nodes. A VM in the
platform known as the Nutanix Controller VM works as the decision subsystem,
which manages the platform.

The Nutanix platform uses Apache ZooKeeper as a Cluster configuration manager.
The configuration data that pertains to the platform, such as hostnames, IP addresses,
and the cluster state, is stored in a ZooKeeper ensemble. ZooKeeper is also used to
query the state of the various services that run in the platform.

More details on Nutanix architecture are available on the website by
Steven Poitras at http://stevenpoitras.com/the-nutanix-
bible/

http://www.nutanix.com/
http://stevenpoitras.com/the-nutanix-bible/
http://stevenpoitras.com/the-nutanix-bible/

ZooKeeper in Action

[142]

VMware vSphere Storage Appliance
VMware vSphere Storage Appliance (VSA) is a software-storage appliance. The
VMware VSA comes in a cluster configuration of two or three nodes, known as the
VSA Storage Cluster. A virtual machine instance inside each of the VMware ESXiTM
host in the VSA Storage Cluster claims all the available local directed attached storage
space and presents it as one mirrored volume of all the ESXi hosts in the VMware
vCenter Server datacenter. It uses the NFS protocol to export the volume.

VSA uses ZooKeeper as the base clustering library for the following primitives:

•	 As a cluster membership model to detect VSA failures in the cluster
•	 As a distributed metadata storage system to store the cluster states
•	 As a leader elector to select a master VSA that performs metadata operations

More details on VMware VSA can be found in the technical
paper VMware vSphere Storage Appliance Deep Dive by Cormac
Hogan at http://vmw.re/1uzUaFN

Summary
In this chapter, we got acquainted with how ZooKeeper runs as a core component
inside many software systems for providing distributed coordination and
synchronization. We saw how the data and API model of ZooKeeper along with the
recipes help other software systems to achieve their functionality. We also read about
the usage of ZooKeeper by many big organizations in their production clusters.

Finally, we have reached the end of this wonderful journey of reading and learning
the essentials about Apache ZooKeeper. I believe that by now, you have attained a
firm grasp over the various topics on ZooKeeper, which we discussed so far in this
book. Apache ZooKeeper is a mature software project, yet it is evolving everyday
due to wide adoption and community traction. You are advised to follow the project
to find out more about the enhancements and new features that are added to it from
time to time. Also, it is recommended that you participate in the ZooKeeper project
by subscribing to the developer mailing list, contributing bug fixes, and submitting
new feature requests.

The following link cites the details on how to contribute to Apache ZooKeeper:

https://cwiki.apache.org/confluence/display/ZOOKEEPER/HowToContribute

http://vmw.re/1uzUaFN
https://cwiki.apache.org/confluence/display/ZOOKEEPER/HowToContribute

Index
A
Access Control Lists (ACLs)

about 42, 58
ANYONE_ID_UNSAFE 43
AUTH_IDS 43
built-in authentication mechanisms 42
CREATOR_ALL_ACL 43
OPEN_ACL_UNSAFE 43
permissions 43
READ_ACL_UNSAFE 43

Apache BookKeeper
about 134
components 134
URL 134

Apache Curator
about 123, 124
components 124
extension package 124
URL 123

Apache Download Mirrors
URL 13

Apache Hadoop
about 135
components 135
URL 135

Apache HBase
about 137
URL 137

Apache Helix
about 137
capabilities 137, 138
URL 137

Apache ZooKeeper
about 9-12, 29
ACLs 42

architecture 29, 30
configuring 14, 15
connecting, C-based shell used 19-21
connecting, Java-based shell used 17-19
decorating, with Apache Curator 123
downloading 12, 13
installing 13
internal working 45-47
local storage 55
multinode cluster, setting up 22, 23
projects 134
server, configuring 110
snapshots 55
starting 15-17
stat structure 43

Apache ZooKeeper ensemble
best practices 116
configuring 113

ApplicationMaster 135
architecture, ZooKeeper 29, 30
authentication mechanisms, ACLs

auth 42
digest 42
IP address 42
world 42

autopurge.purgeInterval parameter 111
autopurge.snapRetainCount parameter 111

B
barrier, ZooKeeper recipes

about 94
algorithm, developing for 94
implementing, ZooKeeper used 94-96

barrier, Curator recipes 128

[144]

basic configuration parameters, ZooKeeper
about 110
clientPort 110
dataDir 110
tickTime 110

best practices, ZooKeeper 116

C
cache, Curator recipes 129
C-based shell

used, for connecting ZooKeeper 19-21
C client library

about 77, 78
C API 78-81
znode data watcher example 81-87

client bindings, ZooKeeper
URL 11

clientPortAddress parameter 112
clientPort patameter 110
cluster-monitoring model

developing 70
executing 75-77
implementing 71-73

ClusterMonitor.java class 71
common distributed coordination tasks

implementing 10
components, Apache BookKeeper

bookies 134
BookKeeper client 134
ledgers 134
metadata storage service 134

components, Apache Hadoop
Hadoop Common 135
Hadoop Distributed File System

(HDFS) 135
Hadoop MapReduce 135
Hadoop YARN 135

configuration parameters', Apache
ZooKeeper

clientPort 14
dataDir 14
tickTime 14

configuration parameters, multinode
ZooKeeper cluster

initLimit 22
syncLimit 22

connectString parameter 60
counters, Curator recipes 128
Curator. See Apache Curator
Curator client

about 124-126
cache 129
capabilities 125
retry policies 126

Curator extensions
about 130
Curator RPC proxy 130
service discovery 130
service discovery server 130
ZKClient bridge 130

Curator framework
about 124-128
features 126
URL 126

Curator JARs 124
Curator recipes

about 124, 128
barrier 128
counters 128
distributed locks 128
leader election 128
nodes 129
queues 129

Curator stack
diagrammatic representation 124

Curator utilities
about 129
BlockingQueueConsumer 130
EnsurePath 129
Reaper 130
test cluster 129
test server 129
ZKPaths 129

D
dataDir parameter 110
dataLogDir parameter 111
DataUpdater class 64, 67
DataWatcher class 64
distributed lock, ZooKeeper recipes

algorithm, developing for 99
building, ZooKeeper used 98

[145]

implementing, ZooKeeper used 99
distributed locks, Curator recipes

about 128
multishared lock 128
shared lock 128
shared re-entrant lock 128
shared re-entrant read/write lock 128
shared semaphore 128

distributed system
about 8
characteristics 8
coordination problem 10, 11

Domain Name System (DNS) service 105

E
eBay 140
ensemble 47
ephemeral znode 33
Exhibitor

about 130, 131
backup/restore 131
cluster-wide configuration 131
core version 132
Curator integration 132
features 131
log cleanup 131
monitoring 131
REST API 131
rolling configuration update 131
standalone version 132
URL 132
visualization 132

exists operation 41

F
Facebook 139
first in first out (FIFO) 36
four-letter words, ZooKeeper

about 117
conf 117
cons 117
crst 117
dump 117
mntr 118
ruok 117

srst 117
srvr 118
stat 117
wchc 118
wchp 118
wchs 118

fsync.warningthresholdms parameter 111

G
getChildren operation 41
getData operation 41
getZooKeeper()method 126
globalOutstandingLimit parameter 112
group membership protocol

about 102
algorithm, developing 102
implementing 102, 103

H
Hedwig 134
high availability (HA) 136
high-level constructs. See ZooKeeper recipes

I
installation

Apache ZooKeeper 13
internal working, ZooKeeper

about 46, 47
quorum mode 47, 48

J
Java-based shell

used, for connecting ZooKeeper 17-19
Java client library

cluster monitor example 70-77
development environment,

preparing 58, 59
using 58
Watcher interface, implementing 63-69
ZooKeeper program 59, 60

Java Management Extensions (JMX)
about 24
MBeans tab 120
monitoring 119, 120

[146]

K
Kazoo

about 88, 98
installation, verifying 88, 89
installing 88
URL 88
watcher implementation 89, 90

key characteristics, distributed system
about 8
abstraction through APIs 8
concurrency 8
extendibility 8
performance and scalability 8
resource sharing 8

L
leader election, ZooKeeper recipes 100
leader election algorithm

implementing 100-102
liveness property 100
safety property 100

leader election, Curator recipes 128
local storage 55
lock

about 98
acquiring 99
distributed lock, building with

ZooKeeper 98
releasing 99
shared lock 100

M
Managed Beans (MBeans) 120
Maven artifacts

URL 124
maxClientCnxns parameter 112
maxSessionTimeout parameter 112
minSessionTimeout parameter 112
multinode ZooKeeper cluster

multiple node modes, running 24-26
server instances, starting 23, 24
setting up 22, 23

multi operation 39

N
NameNode (NN) 136
Netflix 140
network configuration parameters,

ZooKeeper
about 112
clientPortAddress 112
globalOutstandingLimit 112
maxClientCnxns 112
maxSessionTimeout 112
minSessionTimeout 112

Network File System (NFS) 8
nodes, Curator recipes 129
Nutanix

about 141
URL 141

O
OpenStack Nova

about 138
URL 138

organizations, powered by ZooKeeper
about 139
eBay 140
Facebook 139
Netflix 140
Nutanix 141
Twitter 140
VMware vSphere Storage Appliance 142
Yahoo! 139
Zynga 141

P
persistent znode 32
ping request 49
preAllocSize parameter 111
producer-consumer queue

about 96, 97
implementing, ZooKeeper used 97, 98

projects, Apache ZooKeeper
Apache BookKeeper 134
Apache Hadoop 135
Apache HBase 137
Apache Helix 137
OpenStack Nova 138

[147]

Python client bindings
about 88
watcher implementation 89, 90

Q
queue, ZooKeeper recipes

about 96
algorithm, implementing for 97
producer-consumer queue 96

queues, Curator recipes
about 129
distributed delay queue 129
distributed ID queue 129
distributed priority queue 129
distributed queue 129
simple distributed queue 129

quorum mode 22, 47

R
ResourceManager (RM) 135
retry policies, Curator client

BoundedExponentialBackoffRetry 126
ExponentialBackoffRetry 126
RetryNTimes 126
RetryOneTime 126
RetryUntilElapsed 126

S
sequential znode

about 33
creating 34

service discovery
about 105
properties 105
service registration 106

session
about 48
client establishment 48-50

sessionId parameter 61
sessionPasswd parameter 61
sessionTimeout parameter 60
set of guarantees

atomicity 41
reliability 41
sequential consistency 41

single system image 41
timeliness 41

shared lock
URL 100

single point of failure (SPOF) 136
snapCount parameter 111
snapshots 55
stat structure, znode

about 43
aclVersion field 44
ctime field 44
cversion field 44
cZxid field 43
dataLength field 44
dataVersion field 44
ephemeralOwner field 44
mtime field 44
mZxid field 43
numChildren field 44
pZxid field 43

storage configuration parameters,
ZooKeeper

about 111
autopurge.purgeInterval 111
autopurge.snapRetainCount 111
dataLogDir 111
fsync.warningthresholdms 111
preAllocSize 111
snapCount 111
syncEnabled 112
traceFile 111

T
tickTime parameter 110
traceFile parameter 111
Twitter 140
two-phase commit (2PC) protocol

about 103
algorithm 104, 105
diagrammatic representation 104
first phase 103
second phase 103

U
Universally Unique IDentifier (UUID) 66

[148]

V
virtual machines (VMs) 138
VMware vSphere Storage Appliance (VSA)

about 142
URL 142

W
Watcher interface

implementing 63-69
watcher object 61
watch events, znode state change

NodeChildrenChanged 40
NodeCreated 40
NodeDataChanged 40
NodeDeleted 40

write-ahead log (WAL) 111

Y
Yahoo! 139
YARN

about 135
ApplicationMaster 135
ResourceManager (RM) 135
URL 135

YARN HA, with ZooKeeper
URL 136

Z
ZKClient bridge

about 130
URL 130

ZKFailoverController (ZKFC) 136
znode data watcher

implementing 81-87
znodes

about 31
changes, tracking with ZooKeeper

Watches 34-37
ephemeral znode 33
important points 31
persistent znode 32
sequential znode 33, 34
types 32

ZooKeeper. See Apache ZooKeeper
ZooKeeper Atomic Broadcast (ZAB)

protocol 51
ZooKeeper C API 78-81
ZooKeeper class

about 60
connectString parameter 60
sessionTimeout parameter 60
watcher parameter 61

ZooKeeper data model 31, 32
ZooKeeper ensemble configuration

about 113, 114
authorization 116
quorum, configuring 114
quotas 115

zookeeper_init function 78
ZooKeeper instance, monitoring

about 117
four-letter words 117, 118
Java Management Extensions

(JMX) 119, 120
ZooKeeper Java API 59-61
ZooKeeper operations

about 37-40
create 37
delete 37
exists 37
getACL 37
getChildren 37
read request 40
setACL 37
setData 37
sync 37
write request 40

ZooKeeper program 62, 63
ZooKeeper recipes

about 94
barrier 94
group membership 102
leader election 100, 101
lock 98
queue 96
service discovery 105
two-phase commit (2PC) 103

[149]

ZooKeeper server configuration
about 110
minimum configuration 110
network configuration 112
storage configuration 111

ZooKeeper service
clients, interacting with 45, 46

ZooKeeper shell (zkCli) 57

ZooKeeper transactions
atomic broadcast 53, 54
implementing 51, 52
leader election 52, 53

ZooKeeper watches
about 36
znode changes, tracking 34-37

Zynga 141

Thank you for buying
Apache ZooKeeper Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Learning Storm
ISBN: 978-1-78398-132-8 Paperback: 252 pages

Create real-time stream processing applications with
Apache Storm

1.	 Integrate Storm with other Big Data
technologies like Hadoop, HBase,
and Apache Kafka.

2.	 Explore log processing and machine learning
using Storm.

3.	 Step-by-step and easy-to-understand guide to
effortlessly create applications with Storm.

Apache Solr High Performance
ISBN: 978-1-78216-482-1 Paperback: 124 pages

Boost the performance of Solr instances and
troubleshoot real-time problems

1.	 Achieve high scores by boosting query time
and index time, implementing boost queries
and functions using the Dismax query parser
and formulae.

2.	 Set up and use SolrCloud for distributed
indexing and searching, and implement
distributed search using Shards.

3.	 Use GeoSpatial search, handling homophones,
and ignoring listed words from being indexed
and searched.

Please check www.PacktPub.com for information on our titles

Apache Accumulo for Developers
ISBN: 978-1-78328-599-0 Paperback: 120 pages

Build and integrate Accumulo clusters with various
cloud platforms

1.	 Shows you how to build Accumulo, Hadoop,
and ZooKeeper clusters from scratch on both
Windows and Linux.

2.	 Allows you to get hands-on knowledge about
how to run Accumulo on Amazon EC2, Google
Cloud Platform, Rackspace, and Windows
Azure Cloud platforms.

3.	 Packed with practical examples to enable you
to manipulate Accumulo with ease.

Scaling Big Data with Hadoop and
Solr
ISBN: 978-1-78328-137-4 Paperback: 144 pages

Learn exciting new ways to build efficient, high
performance enterprise search repositories for Big
Data using Hadoop and Solr

1.	 Understand the different approaches of making
Solr work on Big Data as well as the benefits
and drawbacks.

2.	 Learn from interesting, real-life use cases for
Big Data search along with sample code.

3.	 Work with the Distributed Enterprise Search
without prior knowledge of Hadoop and Solr.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: A Crash Course in Apache ZooKeeper
	Defining a distributed system
	Why coordination in a distributed system is so challenging
	Introducing Apache ZooKeeper
	Getting hands-on with Apache ZooKeeper
	Download and installation
	Downloading
	Installing
	Configuration
	Starting the ZooKeeper server

	Connecting to ZooKeeper with a Java-based shell
	Connecting to ZooKeeper with a C-based shell
	Setting up a multinode ZooKeeper cluster
	Starting the server instances
	Running multiple node modes for ZooKeeper

	Summary

	Chapter 2: Understanding the Inner Workings of
Apache ZooKeeper
	A top-down view of the ZooKeeper service
	The ZooKeeper data model
	Types of znodes
	The persistent znode
	The ephemeral znode
	The sequential znode

	Keeping an eye on znode changes – ZooKeeper Watches

	The ZooKeeper operations
	Watches and ZooKeeper operations
	The ZooKeeper access control lists
	The ZooKeeper stat structure
	Understanding the inner working of ZooKeeper
	The quorum mode
	Client establishment of sessions with the ZooKeeper service
	Implementation of ZooKeeper transactions
	Phase 1 – leader election
	Phase 2 – atomic broadcast

	Local storage and snapshots

	Summary

	Chapter 3: Programming with Apache ZooKeeper
	Using the Java client library
	Preparing your development environment
	The first ZooKeeper program
	Implementing a Watcher interface
	Example – a cluster monitor

	The C client library
	Getting started with the C API
	Example – the znode data watcher

	Python client bindings
	A watcher implementation

	Summary

	Chapter 4: Performing Common Distributed System Tasks
	ZooKeeper recipes
	Barrier
	Queue
	Lock
	Leader election
	Group membership
	Two-phase commit
	Service discovery

	Summary

	Chapter 5: Administering Apache ZooKeeper
	Configuring a ZooKeeper server
	Minimum configuration
	Storage configuration
	Network configuration

	Configuring a ZooKeeper ensemble
	Configuring a quorum

	Quota and authorization
	ZooKeeper best practices
	Monitoring a ZooKeeper instance
	Four-letter words
	Java Management Extensions

	Summary

	Chapter 6: Decorating ZooKeeper with Apache Curator
	Curator components
	Curator client
	Curator framework
	Curator recipes
	Curator utilities
	Curator extensions

	Exhibitor
	Summary

	Chapter 7: ZooKeeper in Action
	Projects powered by ZooKeeper
	Apache BookKeeper
	Apache Hadoop
	Apache HBase
	Apache Helix
	OpenStack Nova

	Organizations powered by ZooKeeper
	Yahoo!
	Facebook
	eBay
	Twitter
	Netflix
	Zynga
	Nutanix
	VMware vSphere Storage Appliance

	Summary

	Index

