

Android	SQLite	Essentials

Table	of	Contents

Android	SQLite	Essentials

Credits

About	the	Authors

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers	and	more

Why	Subscribe?

Free	Access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	Enter	SQLite

Why	SQLite?

The	SQLite	architecture

The	SQLite	interface

The	SQL	compiler

The	virtual	machine

The	SQLite	backend

A	quick	review	of	database	fundamentals

What	is	an	SQLite	statement?

The	SQLite	syntax

Datatypes	in	SQLite

Storage	classes

The	Boolean	datatype

The	Date	and	Time	datatype

SQLite	in	Android

SQLite	version

Database	packages

APIs

The	SQLiteOpenHelper	class

The	SQLiteDatabase	class

ContentValues

Cursor

Summary

2.	Connecting	the	Dots

Building	blocks

A	database	handler	and	queries

Building	the	Create	query

Building	the	Insert	query

Building	the	Delete	query

Building	the	Update	query

Connecting	the	UI	and	database

Summary

3.	Sharing	is	Caring

What	is	a	content	provider?

Using	existing	content	providers

What	is	a	content	resolver?

Creating	a	content	provider

Understanding	content	URIs

Declaring	our	contract	class

Creating	UriMatcher	definitions

Implementing	the	core	methods

Initializing	the	provider	through	the	onCreate()	method

Querying	records	through	the	query()	method

Adding	records	through	the	insert()	method

Updating	records	through	the	update()	method

Deleting	records	through	the	delete()	method

Getting	the	return	type	of	data	through	the	getType()	method

Adding	a	provider	to	a	manifest

Using	a	content	provider

Summary

4.	Thread	Carefully

Loading	data	with	CursorLoader

Loaders

Loader	API’s	summary

Using	CursorLoader

Data	security

ContentProvider	and	permissions

Encrypting	critical	data

General	tips	and	libraries

Upgrading	a	database

Database	minus	SQL	statements

Shipping	with	a	prepopulated	database

Summary

Index

Android	SQLite	Essentials

Android	SQLite	Essentials
Copyright	©	2014	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	authors,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	August	2014

Production	reference:	1200814

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78328-295-1

www.packtpub.com

Cover	image	by	Pratyush	Mohanta	(<tysoncinematics@gmail.com>)

http://www.packtpub.com
mailto:tysoncinematics@gmail.com

Credits
Authors

Sunny	Kumar	Aditya

Vikash	Kumar	Karn

Reviewers

Amey	Haldankar

Gaurav	Maru

Commissioning	Editor

Pramila	Balan

Acquisition	Editor

Nikhil	Karkal

Content	Development	Editor

Ruchita	Bhansali

Technical	Editors

Dennis	John

Gaurav	Thingalaya

Copy	Editors

Roshni	Banerjee

Gladson	Monteiro

Adithi	Shetty

Project	Coordinator

Kranti	Berde

Proofreaders

Simran	Bhogal

Joanna	McMahon

Indexers

Mariammal	Chettiyar

Rekha	Nair

Graphics

Ronak	Dhruv

Production	Coordinator

Saiprasad	Kadam

Cover	Work

Saiprasad	Kadam

About	the	Authors
Sunny	Kumar	Aditya	has	been	working	on	the	Android	platform	for	the	past	4	years.	His
tryst	with	Android	began	with	his	college	project,	and	he	continued	with	his	work	in	R&D
at	HCL	Infosystems	Ltd.	Sunny	loves	to	stay	up	to	date	with	the	latest	trends	and	practices
in	Android	development.	Apart	from	building	Android	applications,	he	writes	at
www.deadmango.com.	He	is	currently	the	head	of	Android	development	at	Yamunix.

I	would	like	to	thank	Packt	Publishing	for	this	opportunity	and	my	family	as	well	as
friends	for	their	support.

Vikash	Kumar	Karn	is	an	IIIT	Allahabad	alumnus	and	an	ECE	student	whose	love	for
code	drove	him	towards	the	software	development	field.	He	has	worked	with	leading
multinationals	and	is	currently	working	at	Samsung	Research	Institute,	Bangalore,
exploring	Android.

Vikash	likes	to	learn	the	intricacies	of	the	Android	framework	and	help	newcomers	in	this
field.	Some	of	his	applications,	such	as	Movtan	Fishing	and	Compare	Pictures,	can	be
found	on	the	Play	Store.

I	would	like	to	thank	my	friends	and	family	for	their	support	during	the	course	of	writing
this	book.

http://www.deadmango.com

About	the	Reviewers
Amey	Haldankar	is	an	Android	enthusiast	hooked	on	the	platform	since	its	early	days.
Equipped	with	a	degree	in	Computer	Science	Engineering	from	GIT,	Belgaum,	he	is
working	for	HCL	Infosystems	Ltd.	as	a	Senior	Software	Engineer.

Amey	has	been	working	on	the	platform	for	the	past	3	years	developing	several
applications	for	major	clients	such	as	Domino’s,	Galatsaray,	HCL,	and	Nokia.

A	note	of	thanks	to	the	publishing	house	for	considering	me	for	the	role	of	a	reviewer	for
Android	SQLite	Essentials.

Gaurav	Maru	has	a	Bachelor’s	degree	in	Computers	from	Shah	&	Anchor	Kutchhi
Engineering	College.	Since	2011,	he	has	been	working	as	an	Android	application
developer	at	various	organizations,	including	India’s	largest	retail	sector	company.	Gaurav
has	developed	various	apps,	including	the	one	developed	for	the	USA’s	largest	bookseller
(a	Fortune	500	company).	He	drinks,	eats,	and	sleeps	Android.	You	can	contact	him	at
<gaurav1maru@gmail.com>.

I	would	like	to	thank	my	family,	friends,	colleagues,	and	Packt	Publishing,	who	helped	me
pull	this	one	off	successfully.	Cheers!

mailto:gaurav1maru@gmail.com

www.PacktPub.com

Support	files,	eBooks,	discount	offers	and
more
You	might	want	to	visit	www.PacktPub.com	for	support	files	and	downloads	related	to
your	book.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

http://PacktLib.PacktPub.com

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	access,	read	and	search	across	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com

Why	Subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print	and	bookmark	content
On	demand	and	accessible	via	web	browser

Free	Access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	nine	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
Android	is	probably	the	buzzword	of	this	decade.	In	a	short	span,	it	has	taken	over	the
majority	of	the	handset	market.	Android	is	staged	to	take	over	wearables,	our	TV	rooms,
as	well	as	our	cars	this	autumn	with	the	Android	L	release.	With	the	frantic	pace	at	which
Android	is	growing,	a	developer	needs	to	up	his	or	her	skill	sets	as	well.	Database-oriented
application	development	is	one	of	the	key	skills	every	developer	should	have.	SQLite
database	in	applications	is	the	heart	of	a	data-centric	product	and	key	to	building	great
products.	Understanding	SQLite	and	implementing	the	Android	database	can	be	a	steep
learning	curve	for	some	people.	Concepts	such	as	content	providers	and	loaders	are	more
complex	to	understand	and	implement.	Android	SQLite	Essentials	equips	developers	with
tools	to	build	database-based	Android	applications	in	a	simplistic	manner.	It	is	written
keeping	in	mind	the	current	needs	and	best	practices	being	followed	in	the	industry.	Let	us
start	our	journey.

What	this	book	covers
Chapter	1,	Enter	SQLite,	provides	an	insight	into	SQLite	architecture,	SQLite	basics,	and
its	Android	connection.

Chapter	2,	Connecting	the	Dots,	covers	how	to	connect	your	database	to	Android	views.	It
also	covers	some	of	the	best	practices	one	should	follow	in	order	to	build	a	database-
centric/database-enabled	application.

Chapter	3,	Sharing	is	Caring,	will	reflect	on	how	to	access	and	share	data	in	Android	via
content	providers	and	how	to	construct	a	content	provider.

Chapter	4,	Thread	Carefully,	will	guide	you	on	how	to	use	loaders	and	ensure	security	of
database	and	data.	It	will	also	provide	you	with	tips	to	explore	alternate	approaches	to
building	and	using	databases	in	Android	applications.

What	you	need	for	this	book
To	efficiently	use	this	book,	you	will	require	a	working	system	with	Windows,	Ubuntu,	or
Mac	OS	preinstalled.	Download	and	set	up	the	Java	environment;	we	require	this	for	the
IDE	of	our	choice,	Eclipse,	to	run.	Download	Android	SDK	from	the	Android	developer’s
site	and	Android	ADT	plugin	for	Eclipse.	Alternatively,	you	can	download	the	Eclipse
ADT	bundle	that	contains	Eclipse	SDK	and	the	ADT	plugin.	You	can	also	try	Android
Studio;	this	IDE,	which	just	moved	to	beta,	is	also	available	on	the	developer	site.	Make
sure	your	operating	system,	JDK,	and	IDE	are	all	of	either	32	bit	or	64	bit.

Who	this	book	is	for
Android	SQLite	Essentials	is	a	guide	book	for	Android	programmers	who	want	to	explore
SQLite	database-based	Android	applications.	The	reader	is	expected	to	have	a	little	bit	of
hands-on	experience	of	Android	fundamental	building	blocks	and	the	know-how	of	IDE
and	Android	tools.

Conventions
In	this	book,	you	will	find	a	number	of	styles	of	text	that	distinguish	between	different
kinds	of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“To	close
the	Cursor	object,	the	close()	method	call	will	be	used.”

A	block	of	code	is	set	as	follows:

ContentValues	cv	=	new	ContentValues();

cv.put(COL_NAME,	"john	doe");

cv.put(COL_NUMBER,	"12345000");

dataBase.insert(TABLE_CONTACTS,	null,	cv);

Any	command-line	input	or	output	is	written	as	follows:

adb	shell	SQLite3	--version

SQLite	3.7.11:	API	16	-	19

SQLite	3.7.4:	API	11	-	15

SQLite	3.6.22:	API	8	-	10

SQLite	3.5.9:	API	3	-	7

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	in
menus	or	dialog	boxes	for	example,	appear	in	the	text	like	this:	“Go	to	Android	Virtual
Device	Manager	from	the	Windows	menu	to	start	the	emulator.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	may	have	disliked.	Reader	feedback	is	important	for	us	to
develop	titles	that	you	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	send	an	e-mail	to	<feedback@packtpub.com>,	and
mention	the	book	title	via	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	on	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

http://www.packtpub.com
http://www.packtpub.com/support

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	would	report	this	to	us.	By	doing	so,	you	can	save
other	readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If
you	find	any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-
errata,	selecting	your	book,	clicking	on	the	errata	submission	form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	on	our	website,	or	added	to	any	list	of	existing	errata,	under	the
Errata	section	of	that	title.	Any	existing	errata	can	be	viewed	by	selecting	your	title	from
http://www.packtpub.com/support.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Piracy
Piracy	of	copyright	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works,	in	any	form,	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors,	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
You	can	contact	us	at	<questions@packtpub.com>	if	you	are	having	a	problem	with	any
aspect	of	the	book,	and	we	will	do	our	best	to	address	it.

mailto:questions@packtpub.com

Chapter	1.	Enter	SQLite
Dr.	Richard	Hipp,	the	architect	and	primary	author	of	SQLite,	explains	how	it	all	began	in
his	interview	with	The	Guardian	published	in	June	2007:

“I	started	on	May	29	2000.	It’s	just	over	seven	years	old,”	he	says.	He	was	working
on	a	project	which	used	a	database	server,	but	from	time	to	time	the	database	went
offline.	“Then	my	program	would	give	an	error	message	saying	that	the	database
isn’t	working,	and	I	got	the	blame	for	this.	So	I	said,	this	is	not	a	demanding
application	for	the	database,	why	don’t	I	just	talk	directly	to	the	disk,	and	build	an
SQL	database	engine	that	way?	That	was	how	it	started.”

Before	we	begin	our	journey	exploring	SQLite	in	the	context	of	Android,	we	would	like	to
inform	you	of	some	prerequisites.	The	following	are	very	basic	requirements	and	will
require	little	effort	from	you:

You	need	to	ensure	that	the	environment	for	building	Android	applications	is	in
place.	When	we	say	“environment,”	we	refer	to	the	combination	of	JDK	and	Eclipse,
our	IDE	choice,	ADT	plugins,	and	Android	SDK	tools.	In	case	these	are	not	in	place,
the	ADT	bundle,	which	consists	of	IDE,	ADT	plugins,	Android	SDK	tools,	and
platform	tools,	can	be	downloaded	from	http://developer.android.com/sdk/index.html.
The	steps	mentioned	in	the	link	are	pretty	self-explanatory.	For	JDK,	you	can	visit
Oracle’s	website	to	download	the	latest	version	and	set	it	up	at
http://www.oracle.com/technetwork/java/javase/downloads/index.html.
You	need	to	have	a	basic	knowledge	of	Android	components	and	have	run	more	than
“Hello	World”	programs	on	an	Android	emulator.	If	not,	a	very	apt	guide	is	present
on	the	Android	developer	site	to	set	up	an	emulator.	We	would	suggest	you	become
familiar	with	basic	Android	components:	Intent,	Service,	Content	Providers,	and
Broadcast	Receiver.	The	Android	developer	site	has	good	repositories	of	samples
along	with	documentation.	Some	of	these	are	as	follows:

Emulator:	http://developer.android.com/tools/devices/index.html
Android	basics:
http://developer.android.com/training/basics/firstapp/index.html

With	these	things	in	place,	we	can	now	start	our	foray	into	SQLite.

In	this	chapter,	we	will	cover	the	following:

Why	SQLite?
The	SQLite	architecture
A	quick	review	of	database	fundamentals
SQLite	in	Android

http://developer.android.com/sdk/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://developer.android.com/tools/devices/index.html
http://developer.android.com/training/basics/firstapp/index.html

Why	SQLite?
SQLite	is	an	embedded	SQL	database	engine.	It	is	used	by	prominent	names	such	as
Adobe	in	Adobe	Integrated	Runtime	(AIR);	Airbus,	in	their	flight	software;	Python	ships
with	SQLite;	PHP;	and	many	more.	In	the	mobile	domain,	SQLite	is	a	very	popular	choice
across	various	platforms	because	of	its	lightweight	nature.	Apple	uses	it	in	the	iPhone	and
Google	in	the	Android	operating	system.

It	is	used	as	an	application	file	format,	a	database	for	electronic	gadgets,	a	database	for
websites,	and	as	an	enterprise	RDBMS.	What	makes	SQLite	such	an	interesting	choice	for
these	and	many	other	companies?	Let’s	take	a	closer	look	at	the	features	of	SQLite	that
make	it	so	popular:

Zero-configuration:	SQLite	is	designed	in	such	a	manner	that	it	requires	no
configuration	file.	It	requires	no	installation	steps	or	initial	setup;	it	has	no	server
process	running	and	no	recovery	steps	to	take	even	if	it	crashes.	There	is	no	server
and	it	is	directly	embedded	in	our	application.	Furthermore,	no	administrator	is
required	to	create	or	maintain	a	DB	instance,	or	set	permissions	for	users.	In	short,
this	is	a	true	DBA-less	database.
No-copyright:	SQLite,	instead	of	a	license,	comes	with	a	blessing.	The	source	code
of	SQLite	is	in	the	public	domain;	you	are	free	to	modify,	distribute,	and	even	sell	the
code.	Even	the	contributors	are	asked	to	sign	an	affidavit	to	protect	from	any
copyrights	warfare	that	may	occur	in	future.
Cross-platform:	Database	files	from	one	system	can	be	moved	to	a	system	running	a
different	architecture	without	any	hassle.	This	is	possible	because	the	database	file
format	is	binary	and	all	the	machines	use	the	same	format.	In	the	following	chapters,
we	will	be	pulling	out	a	database	from	an	Android	emulator	to	Windows.
Compact:	An	SQLite	database	is	a	single	ordinary	disk	file;	it	comes	without	a
server	and	is	designed	to	be	lightweight	and	simple.	These	attributes	lead	to	a	very
lightweight	database	engine.	SQLite	Version	3.7.8	has	a	footprint	of	less	than	350
KiB	(kibibyte)	compared	to	its	other	SQL	database	engines,	which	are	much	larger.
Fool	proof:	The	code	base	is	well	commented,	easy	to	understand,	and	modular.	The
test	cases	and	test	scripts	in	SQLite	have	approximately	1084	times	more	code	than
the	source	code	of	SQLite	library	and	they	claim	100	percent	branch	test	coverage.
This	level	of	testing	reaffirms	the	faith	instilled	in	SQLite	by	developers.

Note
Interested	readers	can	read	more	about	branch	test	coverage	from	Wikipedia	at
http://en.wikipedia.org/wiki/Code_coverage.

http://en.wikipedia.org/wiki/Code_coverage

The	SQLite	architecture
The	core,	SQL	compiler,	backend,	and	database	form	the	SQLite	architecture:

The	SQLite	interface
At	the	top	of	the	SQLite	library	stack,	according	to	documentation,	much	of	the	public
interface	to	the	SQLite	library	is	implemented	by	the	wen.c,	legacy.c,	and	vdbeapi.c
source	files.	This	is	the	point	of	communication	for	other	programs	and	scripts.

The	SQL	compiler
Tokenizer	breaks	the	SQL	string	passed	from	the	interface	into	tokens	and	hands	the
tokens	over	to	the	parser,	one	by	one.	Tokenizer	is	hand-coded	in	C.	The	parser	for	SQLite
is	generated	by	the	Lemon	parser	generator.	It	is	faster	than	YACC	and	Bison	and,	at	the
same	time,	is	thread	safe	and	prevents	memory	leaks.	The	parser	builds	a	parse	tree	from
the	tokens	passed	by	the	tokenizer	and	passes	the	tree	to	the	code	generator.	The	generator
produces	virtual	machine	code	from	the	input	and	passes	it	to	the	virtual	machine	as
executables.	More	information	about	the	Lemon	parser	generator	can	be	found	at
http://en.wikipedia.org/wiki/Lemon_Parser_Generator.

http://en.wikipedia.org/wiki/Lemon_Parser_Generator

The	virtual	machine
The	virtual	machine,	also	known	as	Virtual	Database	Engine	(VDBE),	is	the	heart	of
SQLite.	It	is	responsible	for	fetching	and	changing	values	in	the	database.	It	executes	the
program	generated	by	the	code	generator	to	manipulate	database	files.	Each	SQL
statement	is	first	converted	into	virtual	machine	language	for	VDBE.	Each	instruction	of
VDBE	contains	an	opcode	and	up	to	three	additional	operands.

The	SQLite	backend
B-trees,	along	with	Pager	and	the	OS	Interface,	form	the	backend	of	the	SQLite
architecture.	B-trees	are	used	to	organize	the	data.	The	pager	on	the	other	hand	assists	B-
tree	by	caching,	modifying,	and	rolling	back	data.	B-tree,	when	required,	requests
particular	pages	from	the	cache;	this	request	is	processed	by	the	pager	in	an	efficient	and
reliable	manner.	The	OS	Interface,	as	the	name	suggests,	provides	an	abstraction	layer	to
port	to	different	operating	systems.	It	hides	the	unnecessary	details	of	communicating	with
different	operating	systems	from	SQLite	calls	and	handles	them	on	behalf	of	SQLite.

These	are	the	internals	of	SQLite	and	an	application	developer	in	Android	need	not	worry
about	the	internals	of	Android	because	the	SQLite	Android	libraries	have	effectively	used
the	concept	of	abstraction	and	all	the	complexities	are	hidden.	One	just	needs	to	master	the
APIs	provided,	and	that	will	cater	to	all	the	possible	use	cases	of	SQLite	in	an	Android
application.

A	quick	review	of	database	fundamentals
A	database,	in	simple	words,	is	an	organized	way	to	store	data	in	a	continual	fashion.	Data
is	saved	in	tables.	A	table	consists	of	columns	with	different	datatypes.	Every	row	in	a
table	corresponds	to	a	data	record.	You	may	think	of	a	table	as	an	Excel	spreadsheet.	From
the	perspective	of	object-oriented	programming,	every	table	in	a	database	usually
describes	an	object	(represented	by	a	class).	Each	table	column	illustrates	a	class	attribute.
Every	record	in	a	table	represents	a	particular	instance	of	that	object.

Let’s	look	at	a	quick	example.	Let’s	assume	you	have	a	Shop	database	with	a	table	called
Inventory.	This	table	might	be	used	to	store	the	information	about	all	the	products	in	the
shops.	The	Inventory	table	might	contain	these	columns:	Product	name	(string),	Product
Id	(number),	Cost	(number),	In	stock	(0/1),	and	Numbers	available	(number).	You
could	then	add	a	record	to	the	database	for	a	product	named	Shoe:

ID Product	name Product	Id Cost In	stock Numbers	available

1 Carpet 340023 2310 1 4

2 Shoe 231257 235 1 2

Data	in	the	database	is	supposed	to	be	checked	and	influenced.	The	data	within	a	table	can
be	as	follows:

Added	(with	the	INSERT	command)
Modified	(with	the	UPDATE	command)
Removed	(with	the	DELETE	command)

You	may	search	for	particular	data	within	a	database	by	utilizing	what	is	known	as	a
query.	A	query	(using	the	SELECT	command)	can	involve	one	table,	or	a	number	of	tables.
To	generate	a	query,	you	must	determine	the	tables,	data	columns,	and	values	of	the	data
of	interest	using	SQL	commands.	Each	SQL	command	is	concluded	with	a	semicolon	(;).

What	is	an	SQLite	statement?
An	SQLite	statement	is	written	in	SQL,	which	is	issued	to	a	database	to	retrieve	data	or	to
create,	insert,	update,	or	delete	data	in	the	database.

All	SQLite	statements	start	with	any	of	the	keywords:	SELECT,	INSERT,	UPDATE,	DELETE,
ALTER,	DROP,	and	so	on,	and	all	the	statements	end	with	a	semicolon	(;).	For	instance:

CREATE	TABLE	table_name	(column_name	INTEGER);

The	CREATE	TABLE	command	is	used	to	create	a	new	table	in	an	SQLite	database.	A
CREATE	TABLE	command	describes	the	following	attributes	of	the	new	table	that	is	being
created:

The	name	of	the	new	table.
The	database	in	which	the	new	table	is	created.	Tables	may	be	generated	in	the	main
database,	the	temp	database,	or	in	any	database	attached.
The	name	of	each	column	in	the	table.
The	declared	type	of	each	column	in	the	table.
A	default	value	or	expression	for	each	column	in	the	table.
A	default	relation	sequence	to	be	used	with	each	column.
Preferably,	a	PRIMARY	KEY	for	the	table.	This	will	support	both	single-column	and
composite	(multiple-column)	primary	keys.
A	set	of	SQL	constraints	for	each	table.	Constraints	such	as	UNIQUE,	NOT	NULL,	CHECK,
and	FOREIGN	KEY	are	supported.
In	some	cases,	the	table	will	be	a	WITHOUT	ROWID	table.

The	following	is	a	simple	SQLite	statement	to	create	a	table:

String	databaseTable	=			"CREATE	TABLE	"	

			+	TABLE_CONTACTS	+"("	

			+	KEY_ID		

			+	"	INTEGER	PRIMARY	KEY,"

			+	KEY_NAME	+	"	TEXT,"

			+	KEY_NUMBER	+	"	INTEGER"

			+	")";

Here,	CREATE	TABLE	is	the	command	to	create	a	table	with	the	name	TABLE_CONTACTS.
KEY_ID,	KEY_NAME	and	KEY_NUMBER	are	the	column	IDs.	SQLite	requires	a	unique	ID	to	be
provided	for	each	column.	INTEGER	and	TEXT	are	the	datatypes	associated	with	the
corresponding	columns.	SQLite	requires	the	type	of	data	to	be	stored	in	a	column	to	be
defined	at	the	time	of	creation	of	the	table.	PRIMARY	KEY	is	the	data	column	constraint
(rules	enforced	on	data	columns	in	the	table).

SQLite	supports	more	attributes	that	can	be	used	for	creating	a	table,	for	instance,	let	us
create	a	create	table	statement	that	inputs	a	default	value	for	empty	columns.	Notice
that	for	KEY_NAME,	we	are	providing	a	default	value	as	xyz	and	for	the	KEY_NUMBER	column,
we	are	providing	a	default	value	of	100:

String	databaseTable	=	

			"CREATE	TABLE	"	

			+	TABLE_CONTACTS		+	"("	

			+	KEY_ID				+	"	INTEGER	PRIMARY	KEY,"

			

			+	KEY_NAME	+	"	TEXT	DEFAULT		xyz,"

			

			+	KEY_NUMBER	+	"	INTEGER	DEFAULT	100"	+	")";

Here,	when	a	row	is	inserted	in	the	database,	these	columns	will	be	preinitialized	with	the
default	values	as	defined	in	the	CREATE	SQL	statement.

There	are	more	keywords,	but	we	don’t	want	you	to	get	bored	with	a	huge	list.	We	will	be
covering	other	keywords	in	the	subsequent	chapters.

The	SQLite	syntax
SQLite	follows	a	unique	set	of	rules	and	guidelines	called	syntax.

An	important	point	to	be	noted	is	that	SQLite	is	case-insensitive,	but	there	are	some
commands	that	are	case-sensitive,	for	example,	GLOB	and	glob	have	different	meaning	in
SQLite.	Let	us	look	at	the	SQLite	DELETE	statement’s	syntax	for	instance.	Although	we
have	used	capital	letters,	replacing	them	with	lowercase	letters	will	also	work	fine:

DELETE	FROM	table	WHERE	{condition};

Datatypes	in	SQLite
SQLite	uses	a	dynamic	and	weakly	typed	SQL	syntax,	whereas	most	of	the	SQL	databases
use	static,	rigid	typing.	If	we	look	at	other	languages,	Java	is	a	statically	typed	language
and	Python	is	a	dynamically	typed	language.	So	what	do	we	mean	when	we	say	dynamic
or	static?	Let	us	look	at	an	example:

a=5

a="android"

In	statically	typed	languages,	this	will	throw	an	exception,	whereas	in	a	dynamically	typed
language	it	will	work.	In	SQLite,	the	datatype	of	a	value	is	not	associated	with	its
container,	but	with	the	value	itself.	This	is	not	a	cause	of	concern	when	dealing	with
statically	typed	systems,	where	a	value	is	determined	by	a	container.	This	is	because
SQLite	is	backwards	compatible	with	the	more	common	static	type	systems.	Hence,	the
SQL	statements	that	we	use	for	static	systems	can	be	used	seamlessly	here.

Storage	classes
In	SQLite,	we	have	storage	classes	that	are	more	general	than	datatypes.	Internally,
SQLite	stores	data	in	five	storage	classes	that	can	also	be	referred	to	as	primitive
datatypes:

NULL:	This	represents	a	missing	value	from	the	database.
INTEGER:	This	supports	a	range	of	signed	integers	from	1,	2,	3,	4,	6,	or	8	bytes
depending	on	the	magnitude	of	the	value.	SQLite	handles	this	automatically	based	on
the	value.	At	the	time	of	processing	in	the	memory,	they	are	converted	to	the	most
general	8-byte	signed	integer	form.
REAL:	This	is	a	floating	point	value,	and	SQLite	uses	this	as	an	8-byte	IEEE	floating
point	number	to	store	such	values.
TEXT:	SQLite	supports	various	character	encodings,	such	as	UTF-8,	UTF-16BE,	or
UTF-16LE.	This	value	is	a	text	string.
BLOB:	This	type	stores	a	large	array	of	binary	data,	exactly	how	it	was	provided	as
input.

SQLite	itself	does	not	validate	if	the	types	written	to	the	columns	are	actually	of	the
defined	type,	for	example,	you	can	write	an	integer	into	a	string	column	and	vice	versa.
We	can	even	have	a	single	column	with	different	storage	classes:

	id																			col_t

------															------

1																							23

2																					NULL

3																					test

The	Boolean	datatype
SQLite	does	not	have	a	separate	storage	class	for	Boolean	and	uses	the	Integer	class	for
this	purpose.	Integer	0	represents	the	false	state	whereas	1	represents	a	true	state.	This
means	that	there	is	an	indirect	support	for	Boolean	and	we	can	create	Boolean	type

columns	only.	The	catch	is,	it	won’t	contain	the	familiar	TRUE/FALSE	values.

The	Date	and	Time	datatype
As	we	saw	for	the	Boolean	datatype,	there	is	no	storage	class	for	the	Date	and	Time
datatypes	in	SQLite.	SQLite	has	five	built-in	date	and	time	functions	to	help	us	with	it;	we
can	use	date	and	time	as	integer,	text,	or	real	values.	Moreover,	the	values	are
interchangeable,	depending	on	the	need	of	the	application.	For	example,	to	compute	the
current	date,	use	the	following	code:

SELECT	date('now');

SQLite	in	Android
The	Android	software	stack	consists	of	core	Linux	kernel,	Android	runtime,	Android
libraries	that	support	the	Android	framework,	and	finally	Android	applications	that	run	on
top	of	everything.	The	Android	runtime	uses	Dalvik	virtual	machine	(DVM)	to	execute
the	dex	code.	In	newer	versions	of	Android,	that	is,	from	KitKat	(4.4),	Android	has
enabled	an	experimental	feature	known	as	ART,	which	will	eventually	replace	DVM.	It	is
based	on	Ahead	of	Time	(AOT),	whereas	DVM	is	based	on	Just	in	Time	(JIT).	In	the
following	diagram,	we	can	see	that	SQLite	provides	native	database	support	and	is	part	of
the	libraries	that	support	the	application	framework	along	with	libraries	such	as	SSL,
OpenGL	ES,	WebKit,	and	so	on.	These	libraries,	written	in	C/C++,	run	over	the	Linux
kernel	and,	along	with	the	Android	runtime,	forms	the	backbone	of	the	application
framework,	as	shown	in	the	following	diagram:

Before	we	start	exploring	SQLite	in	Android,	let’s	take	a	look	at	the	other	persistent
storage	alternatives	in	Android:

Shared	preference:	Data	is	stored	in	a	shared	preference	in	the	key-value	form.	The
file	itself	is	an	XML	file	containing	the	key-value	pairs.	The	file	is	present	in	the

internal	storage	of	an	application,	and	access	to	it	can	be	public	or	private	as	needed.
Android	provides	APIs	to	write	and	read	shared	preferences.	It	is	advised	to	use	this
in	case	we	have	to	save	a	small	collection	of	such	data.	A	general	example	would	be
saving	the	last	read	position	in	a	PDF,	or	saving	a	user’s	preference	to	show	a	rating
box.
Internal/external	storage:	This	terminology	can	be	a	little	misleading;	Android
defines	two	storage	spaces	to	save	files.	On	some	devices,	you	might	have	an
external	storage	device	in	form	of	an	SD	card,	whereas	on	others,	you	will	find	that
the	system	has	partitioned	its	memory	into	two	parts,	to	be	labeled	as	internal	and
external.	Paths	to	the	external	as	well	as	internal	storage	can	be	fetched	by	using
Android	APIs.	Internal	storage,	by	default,	is	limited	and	accessible	only	to	the
application,	whereas	the	external	storage	may	or	may	not	be	available	in	case	it	is
mounted.

Tip
android:installLocation	can	be	used	in	the	manifest	to	specify	the
internal/external	installation	location	of	an	application.

SQLite	version
Since	API	level	1,	Android	ships	with	SQLite.	At	the	time	of	writing	this	book,	the	current
version	of	SQLite	was	3.8.4.1.	According	to	the	documentation,	the	version	of	SQLite	is
3.4.0,	but	different	Android	versions	are	known	to	ship	with	different	versions	of	SQLite.
We	can	easily	verify	this	via	the	use	of	a	tool	called	SQLite3	present	in	the	platform-
tools	folder	inside	the	Android	SDK	installation	folder	and	Android	Emulator:

adb	shell	SQLite3	--version

SQLite	3.7.11:	API	16	-	19

SQLite	3.7.4:	API	11	-	15

SQLite	3.6.22:	API	8	-	10

SQLite	3.5.9:	API	3	-	7

We	need	not	worry	about	the	different	versions	of	SQLite	and	should	stick	to	3.5.9	for
compatibility,	or	we	can	go	by	the	saying	that	API	14	is	the	new	minSdkVersion	and
switch	it	with	3.7.4.	Until	and	unless	you	have	something	very	specific	to	a	particular
version,	it	will	hardly	matter.

Note
Some	additional	handy	SQLite3	commands	are	as	follows:

.dump:	To	print	out	the	contents	of	a	table

.schema:	To	print	the	SQL	CREATE	statement	for	an	existing	table

.help:	For	instructions

Database	packages
The	android.database	package	contains	all	the	necessary	classes	for	working	with
databases.	The	android.database.SQLite	package	contains	the	SQLite-specific	classes.

APIs
Android	provides	various	APIs	to	enable	us	to	create,	access,	modify,	and	delete	a
database.	The	complete	list	can	be	quite	overwhelming;	for	the	sake	of	brevity,	we	will
cover	the	most	important	and	used	ones.

The	SQLiteOpenHelper	class
The	SQLiteOpenHelper	class	is	the	first	and	most	essential	class	of	Android	to	work	with
SQLite	databases;	it	is	present	in	the	android.database.SQLite	namespace.
SQLiteOpenHelper	is	a	helper	class	that	is	designed	for	extension	and	to	implement	the
tasks	and	actions	you	deem	important	when	creating,	opening,	and	using	a	database.	This
helper	class	is	provided	by	the	Android	framework	to	work	with	the	SQLite	database	and
helps	in	managing	the	database	creation	and	version	management.	The	modus	operandi
would	be	to	extend	the	class	and	implement	tasks	and	actions	as	required	by	our
application.	SQLiteOpenHelper	has	constructors	defined	as	follows:

SQLiteOpenHelper(Context	context,	String	name,	SQLiteDatabase.CursorFactory	

factory,	int	version)

SQLiteOpenHelper(Context	context,	String	name,	SQLiteDatabase.CursorFactory	

factory,	int	version,	DatabaseErrorHandler	errorHandler)

The	application	context	permits	access	to	all	the	shared	resources	and	assets	for	the
application.	The	name	parameter	consists	of	the	database	filename	in	the	Android	storage.
SQLiteDatabase.CursorFactory	is	a	factory	class	that	creates	cursor	objects	that	act	as
the	output	set	for	all	the	queries	you	apply	against	SQLite	under	Android.	The	application-
specific	version	number	for	the	database	will	be	the	version	parameter	(or	more
particularly,	its	schema).

The	constructor	of	SQLiteOpenHelper	is	used	to	create	a	helper	object	to	create,	open,	or
manage	a	database.	The	context	is	the	application	context	that	allows	access	to	all	the
shared	resources	and	assets.	The	name	parameter	either	contains	the	name	of	a	database	or
null	for	an	in-memory	database.	The	SQLiteDatabase.CursorFactory	factory	creates	a
cursor	object	that	acts	as	the	result	set	for	all	the	queries.	The	version	parameter	defines
the	version	number	of	the	database	and	is	used	to	upgrade/downgrade	the	database.	The
errorHandler	parameter	in	the	second	constructor	is	used	when	SQLite	reports	database
corruption.

SQLiteOpenHelper	will	trigger	its	onUpgrade()	method	if	our	database	version	number	is
not	at	default	1.	Important	methods	of	the	SQLiteOpenHelper	class	are	as	follows:

synchronized	void	close()

synchronized	SQLiteDatabase	getReadableDatabase()

synchronized	SQLiteDatabase	getWritableDatabase()

abstract	void	onCreate(SQLiteDatabase	db)

void	onOpen(SQLiteDatabase	db)

abstract	void	onUpgrade(SQLiteDatabase	db,	int	oldVersion,	int

newVersion)

The	synchronized	close()	method	closes	any	open	database	object.	The	synchronized
keyword	prevents	thread	and	memory	consistency	errors.

The	next	two	methods,	getReadableDatabase()	and	getWriteableDatabase(),	are	the
methods	in	which	the	database	is	actually	created	or	opened.	Both	return	the	same
SQLiteDatabase	object;	the	difference	lies	in	the	fact	that	getReadableDatabase()	will
return	a	readable	database	in	case	it	cannot	return	a	writable	database,	whereas
getWriteableDatabase()	returns	a	writable	database	object.	The
getWriteableDatabase()	method	will	throw	an	SQLiteException	if	a	database	cannot	be
opened	for	writing.	In	case	of	getReadableDatabase(),	if	a	database	cannot	be	opened,	it
will	throw	the	same	exception.

We	can	use	the	isReadOnly()	method	of	the	SQLiteDatabase	class	on	the	database	object
to	know	the	state	of	the	database.	It	returns	true	for	read-only	databases.

Calling	either	methods	will	invoke	the	onCreate()	method	if	the	database	doesn’t	exist
yet.	Otherwise,	it	will	invoke	the	onOpen()	or	onUpgrade()	methods,	depending	on	the
version	number.	The	onOpen()	method	should	check	the	isReadOnly()	method	before
updating	the	database.	Once	opened,	the	database	is	cached	to	improve	performance.
Finally,	we	need	to	call	the	close()	method	to	close	the	database	object.

The	onCreate(),	onOpen(),	and	onUpgrade()	methods	are	designed	for	the	subclass	to
implement	the	intended	behavior.	The	onCreate()	method	is	called	when	the	database	is
created	for	the	first	time.	This	is	the	place	where	we	create	our	tables	by	using	SQLite
statements,	which	we	saw	earlier	in	the	example.	The	onOpen()	method	is	triggered	when
the	database	has	been	configured	and	after	the	database	schema	has	been	created,
upgraded,	or	downgraded	as	necessary.	Read/write	status	should	be	checked	here	with	the
help	of	the	isReadOnly()	method.

The	onUpgrade()	method	is	called	when	the	database	needs	to	be	upgraded	depending	on
the	version	number	supplied	to	it.	By	default,	the	database	version	is	1,	and	as	we
increment	the	database	version	numbers	and	release	new	versions,	the	upgrade	will	be
performed.

A	simple	example	illustrating	the	use	of	the	SQLiteOpenHelper	class	is	present	in	the	code
bundle	for	this	chapter;	we	would	be	using	it	for	explanation:

class	SQLiteHelperClass

				{

				...

				...

				public	static	final	int	VERSION_NUMBER	=	1;

				sqlHelper	=

							new	SQLiteOpenHelper(context,	"ContactDatabase",	null,

						VERSION_NUMBER)

				{

						@Override

						public	void	onUpgrade(SQLiteDatabase	db,			

												int	oldVersion,	int	newVersion)	

						{

								//drop	table	on	upgrade

								db.execSQL("DROP	TABLE	IF	EXISTS	"	

																+	TABLE_CONTACTS);

								//	Create	tables	again

								onCreate(db);

						}

			@Override

			public	void	onCreate(SQLiteDatabase	db)

			{

						//	creating	table	during	onCreate

						String	createContactsTable	=	

	"CREATE	TABLE	"

	+	TABLE_CONTACTS	+	"("	

	+	KEY_ID	+	"	INTEGER	PRIMARY	KEY,"	

	+	KEY_NAME	+	"	TEXT,"

	+	KEY_NUMBER	+	"	INTEGER"	+	")";

			

								try	{

							db.execSQL(createContactsTable);

								}	catch(SQLException	e)	{

										e.printStackTrace();

								}

			}

			

			@Override

			public	synchronized	void	close()

			{

						super.close();

						Log.d("TAG",	"Database	closed");

			}

			@Override

			public	void	onOpen(SQLiteDatabase	db)

			{

									super.onOpen(db);

									Log.d("TAG",	"Database	opened");

			}

};

...

...	

//open	the	database	in	read-only	mode

SQLiteDatabase	db	=	SQLiteOpenHelper.getWritableDatabase();

...

...

//open	the	database	in	read/write	mode

SQLiteDatabase	db	=	SQLiteOpenHelper.getWritableDatabase();

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

The	SQLiteDatabase	class
Now	that	you	are	familiar	with	the	helper	class	that	kick-starts	the	use	of	SQLite	databases
within	Android,	it’s	time	to	look	at	the	core	SQLiteDatabase	class.	SQLiteDatabase	is	the
base	class	required	to	work	with	an	SQLite	database	in	Android	and	provides	methods	to
open,	query,	update,	and	close	the	database.

More	than	50	methods	are	available	for	the	SQLiteDatabase	class,	each	with	its	own
nuances	and	use	cases.	Rather	than	an	exhaustive	list,	we’ll	cover	the	most	important
subsets	of	methods	and	allow	you	to	explore	some	of	the	overloaded	methods	at	your
leisure.	At	any	time,	you	can	refer	to	the	full	online	Android	documentation	for	the
SQLiteDatabase	class	at
http://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html.

Some	methods	of	the	SQLiteDatabase	class	are	shown	in	the	following	list:

public	long	insert	(String	table,	String	nullColumnHack,	ContentValues

values)

public	Cursor	query	(String	table,	String[]	columns,	String	selection,

String[]	selectionArgs,	String	groupBy,	String	having,	String	orderBy)

public	Cursor	rawQuery(String	sql,	String[]	selectionArgs)

public	int	delete	(String	table,	String	whereClause,	String[]

whereArgs)

public	int	update	(String	table,	ContentValues	values,	String

whereClause,	String[]	whereArgs)

Let	us	see	these	SQLiteDatabase	classes	in	action	with	an	example.	We	will	insert	a	name
and	number	in	our	table.	Then	we	will	use	the	raw	query	to	fetch	data	back	from	the	table.
After	this,	we	will	go	through	the	delete()	and	update()	methods,	both	of	which	will
take	id	as	a	parameter	to	identify	which	row	of	data	in	our	database	table	we	intend	to
delete	or	update:

public	void	insertToSimpleDataBase()	

{

			SQLiteDatabase	db	=	sqlHelper.getWritableDatabase();

			ContentValues	cv	=	new	ContentValues();

http://www.packtpub.com
http://www.packtpub.com/support
http://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html

			cv.put(KEY_NAME,	"John");

			cv.put(KEY_NUMBER,	"0000000000");

			//	Inserting	values	in	different	columns	of	the	table	using

			//	Content	Values

			db.insert(TABLE_CONTACTS,	null,	cv);

			cv	=	new	ContentValues();

			cv.put(KEY_NAME,	"Tom");

			cv.put(KEY_NUMBER,	"5555555");

			//	Inserting	values	in	different	columns	of	the	table	using

			//	Content	Values

			db.insert(TABLE_CONTACTS,	null,	cv);

}

...

...

public	void	getDataFromDatabase()

{		

			int	count;

			db	=	sqlHelper.getReadableDatabase();

			//	Use	of	normal	query	to	fetch	data

			Cursor	cr	=	db.	query(TABLE_CONTACTS,	null,	null,	

																											null,	null,	null,	null);

			if(cr	!=	null)	{

						count	=	cr.getCount();

						Log.d("DATABASE",	"count	is	:	"	+	count);

			}

			//	Use	of	raw	query	to	fetch	data

			cr	=	db.rawQuery("select	*	from	"	+	TABLE_CONTACTS,	null);

			if(cr	!=	null)	{

						count	=	cr.getCount();

						Log.d("DATABASE",	"count	is	:	"	+	count);

			}

}

...

...

public	void	delete(String	name)

	{

					String	whereClause	=	KEY_NAME	+	"=?";

					String[]	whereArgs	=	new	String[]{name};

					db	=	sqlHelper.getWritableDatabase();

					int	rowsDeleted	=	db.delete(TABLE_CONTACTS,	whereClause,	whereArgs);

	}

...

...

public	void	update(String	name)

	{

					String	whereClause	=	KEY_NAME	+	"=?";

					String[]	whereArgs	=	new	String[]{name};

					ContentValues	cv	=	new	ContentValues();

					cv.put(KEY_NAME,	"Betty");

					cv.put(KEY_NUMBER,	"999000");

					db	=	sqlHelper.getWritableDatabase();

					int	rowsUpdated	=	db.update(TABLE_CONTACTS,	cv,	whereClause,	

whereArgs);

	}

ContentValues
ContentValues	is	essentially	a	set	of	key-value	pairs,	where	the	key	represents	the	column
for	the	table	and	the	value	is	the	value	to	be	inserted	in	that	column.	So,	in	the	case	of
values.put("COL_1",	1);,	the	column	is	COL_1	and	the	value	being	inserted	for	that
column	is	1.

The	following	is	an	example:

ContentValues	cv	=	new	ContentValues();

cv.put(COL_NAME,	"john	doe");

cv.put(COL_NUMBER,	"12345000");

dataBase.insert(TABLE_CONTACTS,	null,	cv);

Cursor
A	query	recovers	a	Cursor	object.	A	Cursor	object	depicts	the	result	of	a	query	and
fundamentally	points	to	one	row	of	the	result	of	the	query.	With	this	method,	Android	can
buffer	the	results	of	the	query	in	a	productive	manner;	as	it	doesn’t	need	to	load	all	of	the
data	into	memory.

To	obtain	the	elements	of	the	resulting	query,	you	can	use	the	getCount()	method.

To	navigate	amid	individual	data	rows,	you	can	utilize	the	moveToFirst()	and
moveToNext()	methods.	The	isAfterLast()	method	permits	you	to	analyze	whether	the
end	of	the	output	has	arrived.

The	Cursor	object	provides	typed	get*()	methods,	for	example,	the
getLong(columnIndex)	and	getString(columnIndex)	methods	to	gain	entry	to	the
column	data	for	the	ongoing	position	of	the	result.	columnIndex	is	the	number	of	the
column	you	will	be	accessing.

The	Cursor	object	also	provides	the	getColumnIndexOrThrow(String)	method	that
permits	you	to	get	the	column	index	for	a	column	name	of	the	table.

To	close	the	Cursor	object,	the	close()	method	call	will	be	used.

A	database	query	returns	a	cursor.	This	interface	provides	random	read-write	access	to	the
result	set.	It	points	to	a	row	of	the	query	result	that	enables	Android	to	buffer	the	results
effectively	since	now	it	is	not	required	to	load	all	the	data	in	the	memory.

The	pointer	of	the	returned	cursor	points	to	the	0th	location,	which	is	known	as	the	first
location	of	the	cursor.	We	need	to	call	the	moveToFirst()	method	on	the	Cursor	object;	it
takes	the	cursor	pointer	to	the	first	location.	Now	we	can	access	the	data	present	in	the
first	record.

Cursor	implementations,	if	from	multiple	threads,	should	perform	their	own
synchronization	when	using	the	cursor.	A	cursor	needs	to	be	closed	to	free	the	resource	the

object	holds	by	calling	the	close()	method.

Some	other	support	methods	we	will	encounter	are	as	follows:

The	getCount()	method:	This	returns	the	numbers	of	elements	in	the	resulting	query.
The	get*()	methods:	These	are	used	to	access	the	column	data	for	the	current
position	of	the	result,	for	example,	getLong(columnIndex)	and
getString(columnIndex).
The	moveToNext()	method:	This	moves	the	cursor	to	the	next	row.	If	the	cursor	is
already	past	the	last	entry	in	the	result	set,	it	will	return	false.

Summary
We	covered	in	this	chapter	the	know-how	of	SQLite	features	and	its	internal	architecture.
We	started	with	a	discussion	on	what	makes	SQLite	so	popular	by	looking	at	its	salient
features,	then	we	covered	the	underlying	architecture	of	SQLite	and	went	over	database
fundamentals	such	as	syntax	and	datatypes,	and	finally	moved	on	to	SQLite	in	Android.
We	explored	the	Android	APIs	for	using	SQLite	in	Android.

In	the	next	chapter,	we	will	focus	on	carrying	forward	what	we	have	learned	in	this
chapter	and	apply	it	to	build	Android	applications.	We	will	focus	on	the	UI	elements	and
connecting	UI	to	the	database	components.

Chapter	2.	Connecting	the	Dots
	 “You	don’t	understand	anything	until	you	learn	it	more	than	one	way.” 	

	 —-Marvin	Minsky

In	the	previous	chapter,	we	learned	the	two	important	Android	classes	and	their
corresponding	methods	in	order	to	work	with	an	SQLite	database:

The	SQLiteOpenHelper	class
The	SQLiteDatabase	class

We	also	saw	code	snippets	explaining	their	implementation.	Now,	we	are	ready	to	use	all
these	concepts	in	an	Android	application.	We	will	be	leveraging	what	we	learned	in	the
previous	chapter	to	make	a	functional	application.	We	will	further	look	into	the	SQL
statements	to	insert,	query,	and	delete	data	from	a	database.

In	this	chapter,	we	will	be	building	and	running	an	Android	application	on	an	Android
emulator.	We	will	also	be	building	our	own	full-fledged	contacts	database.	We	will
encounter	Android	UI	components,	such	as	Buttons	and	ListView,	while	progressing
through	this	chapter.	In	case	a	revisit	of	UI	components	in	Android	is	required,	please	visit
the	link	http://developer.android.com/design/building-blocks/index.html.

Before	we	begin,	the	code	in	this	chapter	is	meant	to	explain	the	concepts	related	to	an
SQLite	database	in	Android	and	is	not	production	ready;	in	a	lot	of	places,	you	will	find
lack	of	proper	exception	handling	or	lack	of	proper	null	checks	and	similar	practices	to
reduce	verbosity	in	the	code.	You	can	download	the	complete	code	from	Packt’s	website
for	the	current	and	following	chapters.	For	best	results,	we	recommend	downloading	the
code	and	referring	to	it	as	we	move	along	the	chapter.

In	this	chapter,	we	will	cover:

Building	blocks
Database	handler	and	queries
Connecting	the	UI	and	database

http://developer.android.com/design/building-blocks/index.html

Building	blocks
Android	is	known	to	run	on	a	variety	of	devices	with	different	hardware	and	software
specifications.	At	the	time	of	writing	this	book,	1	billion	activation	marks	have	been
crossed.	The	number	of	devices	running	Android	is	staggering,	providing	users	with	a	rich
variety	of	options	in	different	form	factors	and	on	different	hardware	bases.	This	adds	a
roadblock	when	it	comes	to	testing	your	application	on	different	devices,	because	it	is
humanly	impossible	to	get	hold	of	them	all,	not	to	forget	the	time	and	capital	needed	to	be
invested	in	it.	Emulator	in	itself	is	a	great	tool;	it	enables	us	to	circumvent	this	problem	by
giving	us	the	flexibility	to	mimic	different	hardware	features,	such	as	CPU	architecture,
RAM,	and	camera,	and	different	software	versions	ranging	from	early	Cupcake	to	KitKat.
We	will	also	try	to	leverage	this	to	our	advantage	in	our	project	and	try	to	run	our
application	on	the	emulator.	An	added	benefit	of	using	the	emulator	is	that	we	will	be
running	a	rooted	device	that	will	allow	us	to	perform	some	actions.	We	will	not	be	able	to
achieve	these	actions	on	a	normal	device.

Let’s	start	by	setting	up	an	emulator	in	Eclipse:

1.	 Go	to	Android	Virtual	Device	Manager	from	the	Window	menu	to	start	the
emulator.

We	can	set	different	hardware	properties	such	as	the	CPU	type,	front/back	camera,
RAM	preferably	less	than	768	MB	on	a	Windows	machine,	internal,	and	external
storage	size.

2.	 While	launching	the	app,	enable	Save	to	snapshot;	this	will	reduce	the	launch	time
the	next	time	we	are	launching	an	emulator	instance	from	the	snapshot:

Note
Interested	readers	who	want	to	try	out	a	faster	emulator	can	give	Genymotion	a	try	at
http://www.genymotion.co.

Let’s	start	building	our	Android	application	now.

3.	 We	will	start	by	creating	a	new	project	PersonalContactManager.	Go	to	File	|	New	|
Project.	Now,	navigate	to	Android	and	then	select	Android	Application	Project.
This	step	will	give	us	an	activity	file	and	a	corresponding	XML	file.

We	will	come	back	to	these	components	after	we	have	all	the	blocks	we	need	in	place.	For

http://www.genymotion.co

our	application,	we	will	create	a	database	called	contact,	which	will	contain	one	table,
ContactsTable.	In	the	previous	chapter,	we	went	over	how	to	create	a	database	using	a
SQL	statement;	let’s	construct	a	database	schema	for	our	project.	This	is	a	very	important
step	that	is	based	on	our	application’s	requirements;	for	example,	in	our	case,	we	are
building	a	personal	contact	manager	and	will	require	fields	such	as	name,	number,	e-mail,
and	a	display	picture.

The	database	schema	for	ContactsTable	is	outlined:

Column Data	type

Contact_ID Integer	/	primary	key/	autoincrement

Name Text

Number Text

Email Text

Photo Blob

Note
An	Android	application	can	have	more	than	one	database	and	each	database	can	have
more	than	one	table.	Each	table	stores	data	in	the	2D	(rows	and	columns)	format.

The	first	column	is	Contact_ID.	Its	datatype	is	integer	and	its	column	constraint	is	the
primary	key.	Also,	the	column	is	autoincremented,	which	means	for	each	row	it	will	be
incremented	by	one	when	data	is	inserted	in	that	row.

The	primary	key	uniquely	identifies	each	row	and	cannot	be	null.	Each	table	in	a	database
can	have	one	primary	key	at	the	most.	The	primary	key	of	one	table	can	act	as	the	foreign
key	for	another	table.	The	foreign	key	serves	as	a	connection	between	two	related	tables;
for	instance,	our	current	ContactsTable	schema	is:

ContactsTable	(Contact_ID,Name,	Number,	Email,	Photo)

Let’s	say	we	have	another	table	ColleagueTable	with	the	following	schema:

ColleagueTable	(Colleague_ID,	Contact_ID,	Position,	Fax)

Here,	the	primary	key	of	ContactTable,	that	is,	Contact_ID	can	be	termed	as	a	foreign
key	for	ColleagueTable.	It	serves	the	purpose	of	linking	two	tables	in	a	relational
database	and	hence	allows	us	to	perform	operations	on	ColleagueTable.	We	will	explore
this	concept	in	detail	in	the	chapters	and	examples	ahead.

Note
Column	constraint

Constraints	are	the	rules	enforced	on	data	columns	in	a	table.	This	ensures	the	accuracy
and	reliability	of	data	in	the	database.

Unlike	most	SQL	databases,	SQLite	does	not	restrict	the	type	of	data	that	may	be	inserted
into	a	column	based	on	the	declared	type	of	columns.	Instead,	SQLite	uses	dynamic
typing.	The	declared	type	of	a	column	is	used	to	determine	the	affinity	of	the	column
only.	There	is	a	type	conversion	also	(automatically)	when	one	type	of	variable	is	stored	in
the	other.

Constraints	can	be	column	level	or	table	level.	Column-level	constraints	are	applied	only
to	one	column,	whereas	table-level	constraints	are	applied	to	the	whole	table.

The	following	are	the	commonly	used	constraints	and	keywords	available	in	SQLite:

The	NOT	NULL	constraint:	This	ensures	that	a	column	does	not	have	a	NULL	value.
The	DEFAULT	constraint	:	This	provides	a	default	value	for	a	column	when	none	is
specified.
The	UNIQUE	constraint:	This	ensures	that	all	the	values	in	a	column	are	different.
The	PRIMARY	key:	This	uniquely	identifies	all	rows/records	in	a	database	table.
The	CHECK	constraint:	The	CHECK	constraint	ensures	that	all	the	values	in	a	column
satisfy	certain	conditions.
The	AUTO	INCREMENT	keyword:	AUTOINCREMENT	is	a	keyword	used	to	autoincrement	a
value	of	a	field	in	the	table.	We	can	autoincrement	a	field	value	by	using	the
AUTOINCREMENT	keyword	when	creating	a	table	with	a	specific	column	name	to
autoincrement	it.	The	keyword	AUTOINCREMENT	can	be	used	with	the	INTEGER	field
only.

The	next	step	is	to	prepare	our	data	model;	we	will	use	our	schema	to	frame	the	data
model	class.	The	ContactModel	class	will	have	Contact_ID,	Name,	Number,	Email,	and
Photo	as	fields,	they	are	represented	as	id,	name,	contactNo,	email,	and	byteArray
respectively.	The	class	will	consist	of	a	getter/setter	method	to	set	and	fetch	property
values	as	needed.	The	use	of	a	data	model	will	facilitate	in	the	communication	of	the
activity	used	to	show/process	data	and	our	database	handler,	which	we	are	going	to	define
later	in	this	chapter.	We	will	create	a	new	package	and	a	new	class	in	it	called	the
ContactModel	class.	Please	note	that	creating	a	new	package	is	not	a	necessary	step;	it	is
used	to	organize	our	classes	in	a	logical	and	easily	accessible	manner.	This	class	can	be
described	as	follows:

public	class	ContactModel	{

		private	int	id;

		private	String	name,	contactNo,	email;

		private	byte[]	byteArray;

		

		public	byte[]	getPhoto()	{

				return	byteArray;

		}

		public	void	setPhoto(byte[]	array)	{

				byteArray	=	array;

		}

		public	int	getId()	{

				return	id;

		}

		public	void	setId(int	id)	{

				this.id	=	id;

		}

		……………

}

Tip
Eclipse	provides	a	lot	of	helpful	shortcuts	but	not	for	generating	getter	and	setter	methods.
We	can	bind	generating	getter	and	setter	methods	to	any	key	binding	as	per	our	liking.	In
Eclipse,	go	to	Window	|	Preferences	|	General	|	Keys,	search	for	getter,	and	add	your
bindings.	We	are	using	Alt	+	Shift	+	G;	you	are	free	to	set	any	other	key	combination.

A	database	handler	and	queries
We	will	build	our	support	class	that	will	contain	methods	to	read,	update,	and	delete	data
as	per	our	database	requirements.	This	class	will	enable	us	to	create	and	update	the
database	and	will	act	as	our	hub	for	data	management.	We	will	use	this	class	to	run	SQLite
queries	and	send	across	data	to	the	UI;	in	our	case,	a	listview	to	display	the	results:

public	class	DatabaseManager	{

		private	SQLiteDatabase	db;	

		private	static	final	String	DB_NAME	=	"contact";

		

		private	static	final	int	DB_VERSION	=	1;

		private	static	final	String	TABLE_NAME	=	"contact_table";

		private	static	final	String	TABLE_ROW_ID	=	"_id";

		private	static	final	String	TABLE_ROW_NAME	=	"contact_name";

		private	static	final	String	TABLE_ROW_PHONENUM	=	"contact_number";

		private	static	final	String	TABLE_ROW_EMAIL	=	"contact_email";

		private	static	final	String	TABLE_ROW_PHOTOID	=	"photo_id";

	

}

We	will	create	an	object	of	the	SQLiteDatabase	class,	which	we	will	initialize	later	with
either	getWritableDatabase()	or	getReadableDatabase().	We	will	define	the	constants
that	we	will	be	using	through	the	class.

Note
By	convention,	constants	are	defined	in	capitals	but	use	of	static	final	in	defining	a
constant	is	bit	more	than	the	convention.	To	know	more,	refer	to	http://goo.gl/t0PoQj.

We	will	define	the	name	of	our	database	as	contact	and	define	the	version	as	1.	If	we	look
back	to	the	previous	chapter,	we	will	recall	the	importance	of	this	value.	A	quick	recap	of
this	enables	us	to	upgrade	the	database	from	the	current	version	to	the	new	version.	The
use	case	will	become	clear	with	this	example.	Let’s	say	in	future	there	is	a	new
requirement,	that	is,	we	need	to	add	a	fax	number	to	our	contact	details.	We	will	modify
our	current	schema	to	incorporate	this	change	and	our	contact	database	will
correspondingly	change.	If	we	are	installing	the	application	on	new	devices,	there	will	be
no	issue;	but	in	case	of	a	device	where	we	already	have	a	running	instance	of	the
application,	we	will	face	problems.	In	this	situation,	DB_VERSION	will	come	in	handy	and
help	us	replace	the	old	version	of	the	database	with	the	current	version.	Another	approach
would	be	to	uninstall	the	application	and	install	it	again,	but	that	is	not	encouraged.

The	table	name	and	important	fields	such	as	table	columns	will	be	defined	now.
TABLE_ROW_ID	is	a	very	important	column.	This	will	serve	as	the	primary	key	for	the	table;
it	will	also	autoincrement	and	cannot	be	null.	NOT	NULL	is	again	a	column	constraint,
which	may	only	be	attached	to	a	column	definition	and	is	not	specified	as	a	table
constraint.	Not	surprisingly,	a	NOT	NULL	constraint	dictates	that	the	associated	column	may
not	contain	a	NULL	value.	Attempting	to	set	the	column	value	to	NULL	when	inserting	a	new
row	or	updating	an	existing	one,	causes	a	constraint	violation.	This	will	be	used	to	find	a

http://goo.gl/t0PoQj

particular	value	in	the	table.	The	uniqueness	of	the	ID	guarantees	that	we	do	not	have	any
conflicts	with	data	in	the	table,	since	each	row	is	uniquely	identified	by	the	key.	The	rest
of	the	table	columns	are	pretty	self-explanatory.	The	constructor	for	the	DatabaseManager
class	is	as	follows:

public	DatabaseManager(Context	context)	{

			this.context	=	context;

			CustomSQLiteOpenHelper	helper	=	new	CustomSQLiteOpenHelper(context);

			this.db	=	helper.getWritableDatabase();

		}

Notice	that	we	are	using	a	class	called	CustomSQLiteOpenHelper.	We	will	come	back	to
this	later.	We	will	use	the	class	object	to	get	our	SQLitedatabase	instance.

Building	the	Create	query
To	create	a	table	with	the	desired	columns,	we	will	build	a	query	statement	and	execute	it.
The	statement	will	contain	the	table	name,	different	table	columns,	and	respective
datatype.	We	will	now	look	at	methods	for	creating	a	new	database	and	also	upgrading	an
existing	database	according	to	the	needs	of	the	application:

private	class	CustomSQLiteOpenHelper	extends	SQLiteOpenHelper	{

		public	CustomSQLiteOpenHelper(Context	context)	{

				super(context,	DB_NAME,	null,	DB_VERSION);

		}

		@Override

		public	void	onCreate(SQLiteDatabase	db)	{

String	newTableQueryString	=	"create	table	"

+	TABLE_NAME	+	"	("

+	TABLE_ROW_ID	

+	"	integer	primary	key	autoincrement	not	null,"

+	TABLE_ROW_NAME

+	"	text	not	null,"	

+	TABLE_ROW_PHONENUM	

+	"	text	not	null,"

+	TABLE_ROW_EMAIL

+	"	text	not	null,"

+	TABLE_ROW_PHOTOID	

+	"	BLOB"	+	");";

				db.execSQL(newTableQueryString);

		}

		@Override

		public	void	onUpgrade(SQLiteDatabase	db,	int	oldVersion,	

int	newVersion)	{

				String	DROP_TABLE	=	"DROP	TABLE	IF	EXISTS	"	+	

TABLE_NAME;

				db.execSQL(DROP_TABLE);

				onCreate(db);

		}

}

CustomSQLiteOpenHelper	extends	SQLiteOpenHelper	and	provides	us	with	the	key
methods	onCreate()	and	onUpgrade().	We	have	defined	this	class	as	the	inner	class	of
our	DatabaseManager	class.	This	enables	us	to	manage	all	the	database-related	functions,
namely	CRUD	(Create,Read,Update,	and	Delete),	from	one	place.

In	our	CustomSQLiteOpenHelper	constructor,	which	is	responsible	for	creating	an	instance
of	our	class,	we	will	pass	a	context,	which	in	turn	will	be	passed	to	the	super	constructor
with	the	following	parameters:

Context	context:	This	is	the	context	we	passed	to	our	constructor
String	name:	This	is	the	name	of	our	database
CursorFactory	factory:	This	is	the	cursor	factory	object,	which	can	be	passed	as
null

int	version:	This	is	the	database	version	of	the	database

The	next	important	method	is	onCreate().	We	will	build	our	SQLite	query	string,	which
will	create	our	database	table:

"create	table	"	+	TABLE_NAME	+	"	("

+	TABLE_ROW_ID

+	"	integer	primary	key	autoincrement	not	null,"

….....

+	TABLE_ROW_PHOTOID	+	"	BLOB"	+	");";

The	previous	statement	is	based	on	the	following	syntax	diagram:

Here,	the	keyword	create	table	is	used	to	create	a	table.	This	is	followed	by	the	table
name,	the	declaration	of	columns,	and	their	datatype.	After	preparing	our	SQL	statement,
we	will	execute	it	using	the	execSQL()	method	of	the	SQLite	database.	In	case	something
is	wrong	with	the	query	statement	that	we	built	earlier,	we	will	encounter	the	exception,
android.database.sqlite.SQLiteException.	By	default,	the	database	is	formed	in	the
internal	memory	space	allocated	to	the	application.	The	folder	can	be	found	at
/data/data/<yourpackage>/databases/.

We	can	easily	verify	whether	our	database	is	formed	while	running	this	piece	of	code	on
an	emulator	or	a	rooted	phone.	In	Eclipse,	go	to	the	DDMS	perspective	and	then	go	to	the
file	manager.	We	can	easily	navigate	to	the	given	folder	if	we	have	sufficient	permission,
that	is,	a	rooted	device.	We	can	also	pull	up	our	database	with	the	help	of	the	file	explorer,
and	with	the	help	of	a	standalone	SQLite	manager	tool,	we	can	view	our	database	and
perform	CRUD	operations	on	it	as	well.	What	makes	the	Android	application’s	database
readable	through	another	tool?	Remember	how	we	discussed	cross-platform	in	SQLite
features	in	the	last	chapter?	In	the	following	screenshot,	notice	the	table	name,	the	SQL
statement	used	to	build	it,	and	the	column	names	along	with	their	datatype:

Note
The	SQLite	Manager	tool	can	be	downloaded	either	in	the	Chrome	or	Firefox	browser.
The	following	is	the	link	for	Firefox	extension:	http://goo.gl/NLu8JT.

Another	handy	way	of	pulling	up	our	database	or	any	other	file	is	by	using	the	adb	pull
command:

adb	pull	/data/data/your	package	name/databases		/file	location

Another	interesting	point	to	note	is	that	the	datatype	of	TABLE_ROW_PHOTOID	is	BLOB.
BLOB	stands	for	binary	large	object.	It	is	different	from	other	datatype,	such	as	text	and
integer,	as	it	can	store	binary	data.	The	binary	data	can	be	an	image,	audio,	or	any	other
type	of	multimedia	object.

It	is	not	advisable	to	store	large	images	in	a	database;	we	can	store	filenames	or	locations,
but	storing	images	is	bit	of	overkill.	Imagine	a	situation	like	this	where	we	store	contact
images.	To	amplify	this	situation,	instead	of	a	few	hundred	contacts,	make	it	a	few
thousand	contacts.	The	size	of	the	database	will	become	large	and	the	access	time	will	also
increase.	We	want	to	demonstrate	the	use	of	BLOBs	by	storing	contact	images.

The	onUpgrade()	method	is	called	when	the	database	is	upgraded.	The	database	is
upgraded	by	changing	the	version	number	of	the	database.	Here,	the	implementation
depends	on	the	need	of	the	application.	In	some	cases,	the	whole	table	may	have	to	be
deleted	and	a	new	one	may	need	to	be	created,	and	in	some	applications,	only	slight
modification	is	needed.	How	to	migrate	from	one	version	to	another	is	covered	in	Chapter
4,	Thread	Carefully.

http://goo.gl/NLu8JT

Building	the	Insert	query
To	insert	a	new	row	of	data	in	the	database	table,	we	need	to	use	either	the	insert()
method	or	we	can	make	an	insert	query	statement	and	use	the	execute()	method:

public	void	addRow(ContactModel	contactObj)	{

		ContentValues	values	=	prepareData(contactObj);

		try	{

				db.insert(TABLE_NAME,	null,	values);

		}	catch	(Exception	e)	{

				Log.e("DB	ERROR",	e.toString());	

				e.printStackTrace();

		}

}

In	case	our	table	name	is	wrong,	SQLite	will	give	a	log	no	such	table	message	and	the
exception,	android.database.sqlite.SQLiteException.	The	addRow()	method	is	used
to	insert	contact	details	in	the	database	row;	notice	that	the	parameter	of	the	method	is	an
object	of	ContactModel.	We	have	created	an	additional	method	prepareData()	to
construct	a	ContentValues	object	from	the	ContactModel	object’s	getter	methods:

.......................

values.put(TABLE_ROW_NAME,	contactObj.getName());

values.put(TABLE_ROW_PHONENUM,	contactObj.getContactNo());

....................

After	the	preparation	of	the	ContentValues	object,	we	are	going	to	use	the	insert()
method	of	the	SQLiteDatabase	class:

public	long	insert	(String	table,	String	nullColumnHack,	ContentValues	

values)

The	parameters	of	the	insert()	method	are	as	follows:

table:	The	database	table	to	insert	the	row	into.
values:	This	key-value	map	contains	the	initial	column	values	for	the	table	row.
Column	names	act	as	keys.	Values	as	the	column	values.
nullColumnHack:	This	is	as	interesting	as	its	name.	Here’s	a	quote	from	the	Android
documentation	website:

“optional;	may	be	null.	SQL	doesn’t	allow	inserting	a	completely	empty	row
without	naming	at	least	one	column	name.	If	your	provided	values	are	empty,	no
column	names	are	known	and	an	empty	row	can’t	be	inserted.	If	not	set	to	null,
the	nullColumnHack	parameter	provides	the	name	of	nullable	column	name	to
explicitly	insert	NULL	into	the	case	where	your	values	are	empty.”

In	short,	in	cases	where	we	are	trying	to	pass	an	empty	ContentValues	to	be	inserted,
SQLite	needs	some	column	that	is	safe	to	be	assigned	NULL.

Alternatively,	instead	of	the	insert()	method,	we	can	prepare	the	SQL	statement	and
execute	it	as	shown:

public	void	addRowAlternative(ContactModel	contactObj)	{

		String	insertStatment	=	"INSERT	INTO	"	+	TABLE_NAME	

						+	"	("

						+	TABLE_ROW_NAME	+	","

						+	TABLE_ROW_PHONENUM	+	","

						+	TABLE_ROW_EMAIL	+	","

						+	TABLE_ROW_PHOTOID

						+	")	"

						+	"	VALUES	"

						+	"(?,?,?,?)";

		SQLiteStatement	s	=	db.compileStatement(insertStatment);

		s.bindString(1,	contactObj.getName());

		s.bindString(2,	contactObj.getContactNo());

		s.bindString(3,	contactObj.getEmail());

if	(contactObj.getPhoto()	!=	null)

			{s.bindBlob(4,	contactObj.getPhoto());}

		s.execute();

}

We	will	be	covering	alternatives	for	a	lot	of	the	methods	we	mentioned	here.	The	idea	is	to
make	you	comfortable	with	other	possible	ways	to	build	and	execute	queries.	The
explanation	of	the	alternative	part	is	left	as	an	exercise	for	you.	The	getRowAsObject()
method	will	return	the	fetched	row	from	the	database	in	the	form	of	a	ContactModel
object,	as	shown	in	the	following	code.	It	will	require	rowID	as	a	parameter	to	uniquely
identify	which	row	in	the	table	we	want	to	access:

public	ContactModel	getRowAsObject(int	rowID)	{	

		ContactModel	rowContactObj	=	new	ContactModel();

		Cursor	cursor;

		try	{

				cursor	=	db.query(TABLE_NAME,	new	String[]	{

TABLE_ROW_ID,	TABLE_ROW_NAME,	TABLE_ROW_PHONENUM,	TABLE_ROW_EMAIL,	

TABLE_ROW_PHOTOID	},

				TABLE_ROW_ID	+	"="	+	rowID,	null,

				null,	null,	null,	null);

				cursor.moveToFirst();

				if	(!cursor.isAfterLast())	{

						prepareSendObject(rowContactObj,	cursor);				}

		}	catch	(SQLException	e)	{

						Log.e("DB	ERROR",	e.toString());

				e.printStackTrace();

		}

		return	rowContactObj;

}

This	method	will	return	the	fetched	row	from	the	database	in	the	form	of	a	ContactModel
object.	We	are	using	the	SQLiteDatabase()	query	method	to	fetch	the	row	from	our
contact	table	against	the	provided	rowID	parameter.	The	method	returns	a	cursor	over	the
result	set:

public	Cursor	query	(String	table,	String[]	columns,	String	selection,	

String[]	selectionArgs,	String	groupBy,	String	having,	String	orderBy,	

String	limit)

The	following	are	the	parameters	of	the	previous	code:

table:	This	denotes	the	database	table	against	which	the	query	will	be	run.
columns:	This	is	a	list	of	the	columns	that	are	returned;	if	we	pass	null,	it	will	return
all	the	columns.
selection:	This	is	where	we	define	which	rows	are	to	be	returned	and	framed	as	a
SQL	WHERE	clause.	Passing	null	will	return	all	the	rows.
selectionArgs:	We	can	pass	null	for	this	parameter	or	we	may	include	question
marks	in	the	selection,	which	will	be	replaced	by	the	values	from	selectionArgs.
groupBy:	This	is	a	filter	framed	as	a	SQL	GROUP	BY	clause	declaring	how	to	group
rows.	Passing	null	will	cause	the	rows	to	not	be	grouped.
Having:	This	is	a	filter	that	tells	which	row	groups	are	to	be	made	part	of	the	cursor,
framed	as	a	SQL	HAVING	clause.	Passing	null	will	cause	all	the	row	groups	to	be
included.
OrderBy:	This	tells	the	query	how	to	order	the	rows	framed	as	an	SQL	ORDER	BY
clause.	Passing	null	will	use	the	default	sort	order.
limit:	This	will	limit	the	number	of	rows	returned	by	the	query	framed	as	the	LIMIT
clause.	Passing	null	denotes	a	no	LIMIT	clause.

Another	important	concept	here	is	moving	the	cursor	around	to	access	data.	Notice	the
following	methods:	cursor.moveToFirst(),	cursor.isAfterLast(),	and
cursor.moveToNext().

When	we	try	to	retrieve	data-building	SQL	query	statements,	the	database	will	first	create
an	object	of	the	cursor	object	and	return	its	reference.	The	pointer	of	this	returned
reference	is	pointing	to	the	0th	location,	which	is	also	known	as	“before	first	location”	of
the	cursor.	When	we	want	to	retrieve	data,	we	have	to	first	move	to	the	first	record;	hence,
the	use	of	cursor.moveToFirst().Talking	about	the	rest	of	the	two	methods,
cursor.isAfterLast()	returns	whether	the	cursor	is	pointing	to	the	position	after	the	last
row	and	cursor.moveToNext()	moves	the	cursor	to	the	next	row.

Tip
Readers	are	advised	to	go	through	more	of	the	cursor	methods	at	the	Android	developer
site:	http://goo.gl/fR75t8.

Alternatively,	we	can	use	the	following	method:

public	ContactModel	getRowAsObjectAlternative(int	rowID)	{

		ContactModel	rowContactObj	=	new	ContactModel();

		Cursor	cursor;

		try	{

				String	queryStatement	=	"SELECT	*	FROM	"	

							+	TABLE_NAME		+	"	WHERE	"	+	TABLE_ROW_ID	+	"=?";

				cursor	=	db.rawQuery(queryStatement,

						new	String[]{String.valueOf(rowID)});

				cursor.moveToFirst();

				

http://goo.gl/fR75t8

				rowContactObj	=	new	ContactModel();

				rowContactObj.setId(cursor.getInt(0));

				prepareSendObject(rowContactObj,	cursor);

		}	catch	(SQLException	e)	{

				Log.e("DB	ERROR",	e.toString());

				e.printStackTrace();

		}

		return	rowContactObj;

}

The	update	statement	is	based	on	the	following	syntax	diagram:

Before	we	move	to	other	methods	in	the	datamanager	class,	let’s	have	a	look	at	fetching
data	from	a	cursor	object	in	the	prepareSendObject()	method:

rowObj.setContactNo(cursor.getString(cursor.getColumnIndexOrThrow(TABLE_ROW

_PHONENUM)));

rowObj.setEmail(cursor.getString(cursor.getColumnIndexOrThrow(TABLE_ROW_EMA

IL)));

Here	cursor.getstring()	takes	the	column	index	as	a	parameter	and	returns	the	value	of
the	requested	column,	whereas	cursor.getColumnIndexOrThrow()	takes	the	column
name	as	a	parameter	and	returns	the	zero-based	index	for	the	given	column	name.	Instead

of	this	chaining	approach,	we	can	directly	use	cursor.getstring().	If	we	know	the
column	number	of	the	required	column	to	fetch	data	from,	we	can	use	the	following
notation:

cursor.getstring(2);

Building	the	Delete	query
To	delete	a	particular	row	of	data	from	our	database	table,	we	need	to	provide	the	primary
key	to	uniquely	identify	the	data	set	to	be	removed:

public	void	deleteRow(int	rowID)	{

		try	{

				db.delete(TABLE_NAME,	TABLE_ROW_ID	

				+	"="	+	rowID,	null);

		}	catch	(Exception	e)	{

				Log.e("DB	ERROR",	e.toString());

				e.printStackTrace();

		}

}

This	method	uses	the	SQLiteDatabase	delete()	method	to	delete	the	row	of	the	given	ID
in	the	table:

public	int	delete	(String	table,	String	whereClause,	String[]	whereArgs)

The	following	are	the	parameters	of	the	preceding	code	snippet:

table:	This	is	the	database	table	against	which	the	query	will	be	run
whereClause:	This	is	a	clause	to	be	applied	when	deleting	a	row;	passing	null	in	this
clause	will	delete	all	the	rows
whereArgs:	We	may	include	question	marks	in	the	where	clause,	which	will	be
replaced	by	the	values	that	will	be	bound	as	strings

Alternatively,	we	can	use	the	following	method:

public	void	deleteRowAlternative(int	rowId)	{

		String	deleteStatement	=	"DELETE	FROM	"	

				+	TABLE_NAME	+	"	WHERE	"	

				+	TABLE_ROW_ID	+	"=?";

		SQLiteStatement	s	=	db.compileStatement(deleteStatement);

		s.bindLong(1,	rowId);

		s.executeUpdateDelete();

}

The	delete	statement	is	based	on	the	following	syntax	diagram:

Building	the	Update	query
To	update	an	existing	value,	we	need	to	use	the	update()	method	with	the	required
parameters:

public	void	updateRow(int	rowId,	ContactModel	contactObj)	{

		ContentValues	values	=	prepareData(contactObj);

		String	whereClause	=	TABLE_ROW_ID	+	"=?";

		String	whereArgs[]	=	new	String[]	{String.valueOf(rowId)};

		db.update(TABLE_NAME,	values,	whereClause,	whereArgs);

}

Generally,	we	need	the	primary	key,	in	our	case	the	rowId	parameter,	to	identify	the	row	to
be	modified.	An	SQLiteDatabase	update()	method	is	used	to	modify	the	existing	data	of
zero	or	more	rows	in	a	database	table:

public	int	update	(String	table,	ContentValues	values,	String	whereClause,	

String[]	whereArgs)	

The	following	are	the	parameters	of	the	preceding	code	snippet:

table:	This	is	the	qualified	database	table	name	to	be	updated.
values:	This	is	a	mapping	from	the	column	names	to	the	new	column	values.
whereClause:	This	is	the	optional	WHERE	clause	to	be	applied	when	updating	a
value/row.	If	the	UPDATE	statement	does	not	have	a	WHERE	clause,	all	the	rows	in	the
table	are	modified.
whereArgs:	We	may	include	question	marks	in	the	where	clause,	which	will	be
replaced	by	the	values	that	will	be	bound	as	strings.

Alternatively,	you	can	use	the	following	code:

public	void	updateRowAlternative(int	rowId,	ContactModel	contactObj)	{

		String	updateStatement	=	"UPDATE	"	+	TABLE_NAME	+	"	SET	"

						+	TABLE_ROW_NAME					+	"=?,"

						+	TABLE_ROW_PHONENUM	+	"=?,"

						+	TABLE_ROW_EMAIL				+	"=?,"

						+	TABLE_ROW_PHOTOID		+	"=?"

						+	"	WHERE	"	+	TABLE_ROW_ID	+	"=?";

		SQLiteStatement	s	=	db.compileStatement(updateStatement);

		s.bindString(1,	contactObj.getName());

		s.bindString(2,	contactObj.getContactNo());

		s.bindString(3,	contactObj.getEmail());

		if	(contactObj.getPhoto()	!=	null)

			{s.bindBlob(4,	contactObj.getPhoto());}

		s.bindLong(5,	rowId);

		s.executeUpdateDelete();

}

The	update	statement	is	based	on	the	following	syntax	diagram:

Connecting	the	UI	and	database
Now	that	we	have	our	database	hooks	in	place,	let’s	connect	our	UI	with	the	data:

1.	 The	first	step	would	be	to	get	the	data	from	the	user.	We	can	use	the	existing	contact
data	from	the	Android’s	contact	application	by	means	of	the	content	provider.

We	will	be	covering	this	approach	in	the	next	chapter.	For	now,	we	will	be	asking	the
user	to	add	a	new	contact,	which	we	will	insert	into	the	database:

2.	 We	are	using	standard	Android	UI	widgets,	such	as	EditText,	TextView,	and
Buttons	to	collect	the	data	provided	by	the	user:

private	void	prepareSendData()	{

		if	(TextUtils.isEmpty(contactName.getText().toString())

						||	TextUtils.isEmpty(

						contactPhone.getText().toString()))	{

	

		

			}	else	{

				ContactModel	contact	=	new	ContactModel();

				contact.setName(contactName.getText().toString());

			

				

				DatabaseManager	dm	=	new	DatabaseManager(this);

				if(reqType	==	ContactsMainActivity

.CONTACT_UPDATE_REQ_CODE)	{

						dm.updateRowAlternative(rowId,	contact);

				}	else	{

						dm.addRowAlternative(contact);

				}

				setResult(RESULT_OK);

				finish();

		}

}

prepareSendData()	is	the	method	that	is	responsible	for	bundling	data	into	our	object
model	and	later	inserting	it	in	our	database.	Notice	that	instead	of	using	null	check
and	length	check	on	contactName,	we	are	using	TextUtils.isEmpty(),	which	is	a
very	handy	method.	This	returns	true	if	the	string	is	null	or	of	zero	length.

3.	 We	prepare	our	ContactModel	object	from	the	data	received	by	the	user	filling	the
form.	We	create	an	instance	of	our	DatabaseManager	class	and	access	our	addRow()
method	passing	our	contact	object	to	be	inserted	in	the	database,	as	we	discussed
earlier.

Another	important	method	is	getBlob(),	which	is	used	to	get	the	image	data	in	the
BLOB	format:

private	byte[]	getBlob()	{

		ByteArrayOutputStream	blob	=	new	ByteArrayOutputStream();

		imageBitmap.compress(Bitmap.CompressFormat.JPEG,	100,	blob);

		byte[]	byteArray	=	blob.toByteArray();

		return	byteArray;

}

4.	 We	create	a	new	ByteArrayOutputStream	object	blob.	Bitmap’s	compress()	method
will	be	used	to	write	a	compressed	version	of	the	bitmap	to	our	outputstream	object:

public	boolean	compress	(Bitmap.CompressFormat	format,	int	quality,	

OutputStream	stream)

The	following	are	the	parameters	of	the	preceding	code:

format:	This	is	the	format	of	a	compressed	image,	in	our	case,	JPEG.
quality:	This	is	a	hint	to	the	compressor,	which	ranges	from	0	to	100.	The	value
0	means	to	compress	to	a	smaller	size	and	low	quality,	while	100	is	for

maximum	quality.
stream:	This	is	the	output	stream	to	write	the	compressed	data	to.

5.	 Then,	we	create	our	byte[]	object,	which	will	be	constructed	from	the
ByteArrayOutputStream	toByteArray()	method.

Note
You	will	notice	that	we	are	not	covering	all	the	methods;	only	those	that	are	relevant
to	data	operations	and	some	methods	or	calls	that	might	cause	confusion.	There	are	a
few	more	methods	that	are	used	to	invoke	the	camera	or	gallery	to	pick	a	photo	to	be
used	as	the	contact	image.	You	are	advised	to	explore	the	methods	in	the	code
provided	along	with	the	book.

Let’s	move	on	to	the	presentation	part	where	we	use	a	custom	listview	to	display	our
contact	information	in	a	presentable	and	readable	manner.	We	are	going	to	skip	a
bulk	of	the	code	related	to	the	presentation	and	concentrate	on	the	parts	where	we
fetch	and	provide	data	to	our	listview.	We	will	also	implement	a	context	menu	in
order	to	provide	a	user	with	the	functionality	of	deleting	a	particular	contact.	We	will
be	touching	base	on	the	database	manager	methods	such	as	getAllData()	to	fetch	all
our	added	contacts.	We	will	use	deleteRow()	in	order	to	remove	any	unwanted
contacts	from	our	contacts	database.	The	final	outcome	will	be	something	like	the
following	screenshot:

6.	 To	make	a	custom	listview	similar	to	the	one	shown	in	the	preceding	screenshot,	we
create	CustomListAdapter	extending	BaseAdapter	and	using	the	custom	layout	for
the	listview	rows.	Notice	in	the	following	constructor	we	have	initialized	a	new	array
list	and	will	use	our	database	manager	to	fetch	values	by	using	the	getAllData()
method	to	fetch	all	the	database	entries:

public	CustomListAdapter(Context	context)	{

			contactModelList	=	new	ArrayList<ContactModel>();

			_context	=	context;

			inflater	=	(LayoutInflater)context.getSystemService(

Context.LAYOUT_INFLATER_SERVICE);

						dm	=	new	DatabaseManager(_context);

			contactModelList	=	dm.getAllData();

}

Another	very	important	method	is	the	getView()	method.	This	is	where	we	inflate
our	custom	layout	in	a	view:

convertView	=	inflater.inflate(R.layout.contact_list_row,	null);

We	will	use	the	view	holder	pattern	to	improve	the	listview	scrolling	smoothness:

vHolder	=	(ViewHolder)	convertView.getTag();

7.	 And	finally,	set	the	data	to	the	corresponding	views:

vHolder.contact_email.setText(contactObj.getEmail());

Note
Holding	view	objects	in	a	view	holder	improves	the	performance	by	reducing	calls	to
findViewById().	You	can	read	more	about	this	and	how	to	make	listview	scrolling
smooth	at	http://developer.android.com/training/improving-layouts/smooth-
scrolling.html.

8.	 We	will	also	be	implementing	a	way	to	delete	a	listview	entry.	We	will	use	the
context	menu	for	this	purpose.	We	will	first	create	a	menu	item	in	the	menu	folder
under	res	of	our	application	structure:

<?xml	version="1.0"	encoding="utf-8"?>

<menu	xmlns:android="http://schemas.android.com/apk/res/android"	>

				<item

								android:id="@+id/delete_item"

								android:title="Delete"/>

<item

								android:id="@+id/update_item"

					android:title="Update"/>

</menu>

9.	 Now,	in	our	main	activity	where	we	will	display	our	listview,	we	will	use	the
following	call	to	register	our	listview	with	the	context	menu.	In	order	to	launch	the
context	menu,	we	need	to	perform	a	long	press	action	on	the	listview	item:

http://developer.android.com/training/improving-layouts/smooth-scrolling.html

registerForContextMenu(listReminder)	

10.	 There	are	a	few	more	methods	that	we	need	to	implement	in	order	to	achieve	the
delete	functionality:

@Override

		public	void	onCreateContextMenu(ContextMenu	menu,	View	v,

						ContextMenuInfo	menuInfo)	{

				super.onCreateContextMenu(menu,	v,	menuInfo);

				MenuInflater	m	=	getMenuInflater();

				m.inflate(R.menu.del_menu,	menu);

		}

This	method	is	used	to	inflate	the	context	menu	with	the	menu	we	defined	earlier	in
XML.	The	MenuInfater	class	generates	menu	objects	from	the	menu	XML	files.
Menu	inflation	relies	heavily	on	the	preprocessing	of	XML	files	that	is	done	at	build
time;	this	is	done	to	improve	performance.

11.	 Now,	we	will	implement	a	method	to	capture	the	click	on	the	context	menu:

		@Override

		public	boolean	onContextItemSelected(MenuItem	item)	{

..............

				case	R.id.delete_item:

						

						cAdapter.delRow(info.position);

						cAdapter.notifyDataSetChanged();

						return	true;

				case	R.id.update_item:

						

						Intent	intent	=	new	Intent(

ContactsMainActivity.this,	AddNewContactActivity.class);

					

		}

12.	 Here,	we	will	find	the	position	ID	of	the	clicked	listview	item	and	invoke	the
delRow()	method	of	the	CustomListAdapter,	and	in	the	end,	we	will	notify	the
adapter	that	the	dataset	has	changed:

public	void	delRow(int	delPosition)	{

																		

dm.deleteRowAlternative(contactModelList.get(delPosition).getId());

							contactModelList.remove(delPosition);

The	delRow()	method	is	responsible	for	connecting	our	database’s
deleteRowAlternative()	method	to	our	context	menu’s	delete()	method.	Here,	we
fetch	the	ID	of	the	object	set	on	the	particular	listview	item	and	pass	it	to	the
deleteRowAlternative()	method	of	databaseManager	in	order	to	delete	the	data
from	the	database.	After	removing	the	data	from	the	database,	we	will	instruct	our
listview	to	remove	the	corresponding	entry	from	our	contact	list.

In	the	onContextItemSelected()	method,	we	can	also	see	the	update_item	in	case	the
user	has	clicked	on	the	update	button.	We	will	launch	the	activity	to	add	a	new	contact

and	add	the	data	we	already	have	in	case	the	user	wants	to	edit	some	fields.	The	catch	is	to
know	from	where	the	call	has	been	initiated.	Is	it	to	add	a	new	entry	or	update	an	existing
one?	We	take	the	help	of	the	following	code	to	tell	the	activity	that	this	action	is	used	to
update	rather	than	add	a	new	entry:

intent.putExtra(REQ_TYPE,	CONTACT_UPDATE_REQ_CODE);

Summary
In	this	chapter,	we	covered	the	steps	of	building	up	a	database-based	application,	from
scratch	and	then	from	schema	to	object	model	and	then	from	object	model	to	building
actual	databases.	We	underwent	the	process	of	building	our	database	manager	and	finally
implemented	the	UI	database	connect	to	achieve	a	fully	functional	application.	The	topics
covered	ranged	from	the	building	blocks	of	the	model	class,	database	schema	to	our
database	handler,	and	CRUD	methods.	We	also	covered	the	important	concept	of
connecting	a	database	to	the	Android	views	with	proper	hooks	in	place	to	pick	up	user
data,	add	data	to	the	database,	and	show	relevant	information	after	picking	up	data	from
the	database.

In	the	next	chapter,	we	will	focus	on	building	upon	the	groundwork	we	have	done	here.
We	will	explore	ContentProviders.	We	will	also	learn	how	to	fetch	data	from
ContentProviders,	how	to	make	our	own	content	provider,	the	best	practices	associated
while	building	them,	and	much	more.

Chapter	3.	Sharing	is	Caring
	 “Data	really	powers	everything	that	we	do.” 	

	 —–	Jeff	Weiner,	LinkedIn

In	the	last	chapter,	we	started	programming	our	very	own	contact	manager.	We	came
across	various	building	blocks	of	a	database-centric	application;	we	covered	database
handlers	and	building	queries	in	order	to	get	meaningful	data	from	our	database.	We	also
explored	how	to	make	a	connection	between	our	UI	and	database	and	present	it	in	a
consumable	manner	for	the	end	user.

In	this	chapter,	we	will	learn	how	to	access	other	application’s	data	via	means	of	content
providers.	We	will	also	learn	how	to	build	our	very	own	content	provider	in	order	to	share
our	data	with	other	applications.	We	will	look	into	Android’s	providers	such	as
contactprovider.	To	wrap	things	up,	we	will	construct	a	test	application	to	use	our	newly
constructed	content	provider.

In	this	chapter,	we	will	cover	the	following	topics:

What	is	a	content	provider?
Creating	a	content	provider
Implementing	the	core	methods
Using	a	content	provider

What	is	a	content	provider?
A	content	provider	is	the	fourth	component	of	an	Android	application.	It	is	used	to	manage
access	to	a	structured	set	of	data.	Content	providers	encapsulate	the	data,	and	provide
abstraction	and	the	mechanism	to	define	data	security.	However,	content	providers	are
primarily	intended	to	be	used	by	other	applications	that	access	the	provider	using	a
provider’s	client	object.	Together,	providers	and	provider	clients	offer	a	consistent,
standard	interface	for	data,	which	also	handles	interprocess	communication	and	secure
data	access.

A	content	provider	allows	one	app	to	share	data	with	other	applications.	By	design,	an
Android	SQLite	database	created	by	an	application	is	private	to	the	application;	it	is
excellent	if	you	consider	the	security	point	of	view,	but	troublesome	when	you	want	to
share	data	across	different	applications.	This	is	where	a	content	provider	comes	to	the
rescue;	you	can	easily	share	data	by	building	your	content	provider.	It	is	important	to	note
that	although	our	discussion	will	focus	on	a	database,	a	content	provider	is	not	limited	to
it.	It	can	also	be	used	to	serve	file	data	that	normally	goes	into	files,	such	as	photos,	audio,
or	videos:

In	the	preceding	diagram,	notice	how	the	interaction	between	Applications	A	and	B
happens	while	exchanging	data.	Here,	we	have	an	Application	A	whose	activity	needs	to
access	the	database	of	Application	B.	As	we	have	already	seen,	the	database	of
Application	B	is	stored	in	the	internal	memory	and	cannot	be	directly	accessed	by
Application	A.	This	is	where	Content	Provider	comes	into	the	picture;	it	allows	us	to
share	data	and	modify	access	to	other	applications.	The	content	provider	implements
methods	to	query,	insert,	update,	and	delete	data	in	databases.	Application	A	now	requests
the	content	provider	to	perform	some	desired	operations	on	behalf	of	it.	We	will	explore
both	sides	of	the	coin,	but	we	will	first	use	Content	Provider	to	fetch	contacts	from	a
phone’s	contact	database,	and	then	we	will	build	our	very	own	content	provider	for	others

to	pick	data	from	our	database.

Using	existing	content	providers
Android	lists	a	lot	of	standard	content	providers	that	we	can	use.	Some	of	them	are
Browser,	CalendarContract,	CallLog,	Contacts,	ContactsContract,	MediaStore,
userDictionary,	and	so	on.

In	our	current	contact	manager	application,	we	will	add	a	new	feature.	In	the	UI	of	the
AddNewContactActivity	class,	we	will	add	a	small	button	to	fetch	contacts	from	a
phone’s	contact	list	with	help	from	the	system’s	existing	ContentProvider	and
ContentResolver	providers.	We	will	be	using	the	ContactsContract	provider	for	this
purpose.

What	is	a	content	resolver?
The	ContentResolver	object	in	the	application’s	context	is	used	to	communicate	with	the
provider	as	a	client.	The	ContentResolver	object	communicates	with	the	provider	object
—an	instance	of	a	class	that	implements	ContentProvider.	The	provider	object	receives
data	requests	from	clients,	performs	the	requested	action,	and	returns	the	results.

ContentResolver	is	a	single,	global	instance	in	our	application	that	provides	access	to
other	application’s	content	providers;	we	do	not	need	to	worry	about	handling	interprocess
communication.	The	ContentResolver	methods	provide	the	basic	CRUD	(create,	retrieve,
update,	and	delete)	functions	of	persistent	storage;	it	has	methods	that	call	identically
named	methods	in	the	provider	object	but	does	not	know	the	implementation.	We	will
cover	ContentResolver	in	more	detail	as	we	progress	through	this	chapter.

In	the	preceding	screenshot,	notice	the	new	icon	on	the	right-hand	side	to	add	contacts
directly	from	the	phone	contacts;	we	modified	the	existing	XML	to	add	the	icon.	The
corresponding	class	AddNewContactActivity	will	also	be	modified:

public	void	pickContact()	{

			try	{

							Intent	cIntent	=	new	Intent(Intent.ACTION_PICK,

												ContactsContract.Contacts.CONTENT_URI);

						startActivityForResult(cIntent,	PICK_CONTACT);

				}	catch	(Exception	e)	{

						e.printStackTrace();

						Log.i(TAG,	"Exception	while	picking	contact");

				}

			}

We	added	a	new	method	pickContact()	to	prepare	an	intent	in	order	to	pick	contacts.
Intent.ACTION_PICK	allows	us	to	pick	an	item	from	a	data	source;	in	addition,	all	we
need	to	know	is	the	Uniform	Resource	Identifier	(URI)	of	the	provider,	which	in	our
case	is	ContactsContract.Contacts.CONTENT_URI.	This	functionality	is	also	provided	by
Messaging,	Gallery,	and	Contacts.	If	you	look	into	the	code	from	Chapter	2,	Connecting
the	Dots,	you	will	find	we	have	used	the	same	code	to	pick	images	from	Gallery.	The
Contacts	screen	will	pop	up	allowing	us	to	browse	or	search	for	contacts	we	require	to
migrate	to	our	new	application.	Notice	onActivityResult,	that	is,	our	next	stop	we	will
modify	this	method	to	handle	our	corresponding	request	to	handle	contacts.	Let	us	look	at
the	code	we	have	to	add	to	pick	contacts	from	an	Android’s	contact	provider:

{

.

.

.

else	if	(requestCode	==	PICK_CONTACT)	{

						if	(resultCode	==	Activity.RESULT_OK)

							{

										Uri	contactData	=	data.getData();

										Cursor	c	=	getContentResolver().query(contactData,	null,	null,	

null,	null);

									if	(c.moveToFirst())	{

													String	id	=	c

																			.getString(c

																									

.getColumnIndexOrThrow(ContactsContract.Contacts._ID));

													String	hasPhone	=	c

																			.getString(c

																									

.getColumnIndex(ContactsContract.Contacts.HAS_PHONE_NUMBER));

												if	(hasPhone.equalsIgnoreCase("1"))	{

																Cursor	phones	=	getContentResolver()

																						

.query(ContactsContract.CommonDataKinds.Phone.CONTENT_URI,

																											null,

																											

ContactsContract.CommonDataKinds.Phone.CONTACT_ID

																																		+	"	=	"	+	id,	null,	null);

															phones.moveToFirst();

															contactPhone.setText(phones.getString(phones

																						.getColumnIndex("data1")));

															contactName

																						.setText(phones.getString(phones

																												

.getColumnIndex(ContactsContract.Contacts.DISPLAY_NAME)));

	}

…..

Tip
To	add	a	little	flair	to	your	application,	download	the	entire	set	of	stencils,	sources,	the
action	bar	icon	pack,	color	swatches,	and	the	Roboto	font	family	from	the	Android
developer	site,	http://goo.gl/4Msuct.	Designing	a	functional	application	is	incomplete
without	a	consistent	UI	that	follows	Android	guidelines.

We	start	by	checking	whether	the	request	code	matches	ours.	Then,	we	cross-check
resultcode.	We	get	the	ContentResolver	object	by	making	a	call	to
getcontentresolver	on	the	Context	object;	it	is	a	method	of	the
android.content.Context	class.	As	we	are	in	an	activity	that	inherits	from	Context,	we
do	not	need	to	be	explicit	in	making	a	call	to	it.	The	same	goes	for	services.	We	will	now
verify	whether	the	contact	we	picked	has	a	phone	number	or	not.	After	verifying	the
necessary	details,	we	pull	the	data	that	we	require,	such	as	contact	name	and	phone
number,	and	set	them	in	relevant	fields.

http://goo.gl/4Msuct

Creating	a	content	provider
A	content	provider	provides	access	to	data	in	two	ways:	one	is	structured	data	that	goes	in
the	form	of	a	database,	as	the	example	we	are	working	on	currently,	or	in	the	form	of	file
data,	that	is,	data	that	goes	in	the	form	of	pictures,	audio,	video,	and	so	on	stored	in	the
private	space	of	the	application.	Before	we	begin	digging	into	how	to	create	a	content
provider,	we	should	also	retrospect	whether	we	need	one.	If	we	want	to	offer	data	to	other
applications,	allow	users	to	copy	data	from	our	app	to	another,	or	use	the	search
framework	in	our	application,	then	the	answer	is	yes.

Just	like	other	Android	components	(Activity,	Service,	or	BroadcastReceiver),	a
content	provider	is	created	by	extending	the	ContentProvider	class.	Since
ContentProvider	is	an	abstract	class,	we	have	to	implement	the	six	abstract	methods.
These	methods	are	as	follows:

Method Usage

void	onCreate() Initializes	the	provider

String	getType(Uri)
Returns	the	MIME	type	of	data	in
the	content	provider

int	delete(Uri	uri,	String	selection,	String[]	selectionArgs)
Deletes	data	from	the	content
provider

Uri	insert(Uri	uri,	ContentValues	values)
Inserts	new	data	into	the	content
provider

Cursor	query(Uri	uri,	String[]	projection,	String	selection,

String[]	selectionArgs,	String	sortOrder)
Returns	data	to	the	caller

int	update(Uri	uri,	ContentValues	values,	String	selection,	String[]

selectionArgs)

Updates	the	existing	data	in	the
content	provider

These	methods	will	be	dealt	with	in	more	detail	later	as	we	progress	through	the	chapter
and	build	our	application.

Understanding	content	URIs
Every	data	access	method	of	ContentProvider	has	a	content	URI,	as	an	argument	that
allows	it	to	determine	the	table,	row,	or	file	to	access.	It	generally	follows	the	following
structure:

content://authority/Path/Id

Let’s	analyze	the	breakdown	of	the	components	of	the	content://	URI.	The	scheme	for
content	providers	is	always	content.	The	colon	and	double-slash	(://)	act	as	a	separator
from	the	authority	part.	Then,	we	have	the	authority	part.	By	rule,	authorities	have	to	be
unique	for	every	content	provider.	The	naming	convention	the	Android	documentation
recommends	using	is	the	fully	qualified	class	name	of	your	content	provider	subclass.
Generally,	it	is	built	as	a	package	name	plus	a	qualifier	for	each	content	provider	we
publish.

The	remaining	part	is	optional,	also	referred	to	as	path,	and	is	used	for	segregation
between	different	types	of	data	our	content	provider	can	provide.	A	very	good	example	is
the	MediaStore	provider	which	needs	to	distinguish	between	audio,	video,	and	image
files.

Another	optional	part	is	id,	which	points	to	a	specific	record;	depending	on	whether	id	is
present	or	not,	the	URI	becomes	ID-based	or	directory-based,	respectively.	Another	way
to	understand	it	would	be	that	an	ID-based	URI	enables	us	to	interact	with	data
individually	at	row	level,	whereas	a	directory-based	URI	enables	us	to	interact	with
multiple	rows	of	a	database.

For	example,	consider	content://com.personalcontactmanager.provider/contacts;
we	will	encounter	this	soon	enough	as	we	move	ahead	with	the	chapter	where	we	define
how	to	access	the	content	provider	we	are	currently	building.

Note
On	a	side	note,	the	package	name	for	applications	should	always	be	unique;	this	is	because
all	the	applications	on	Play	Store	are	identified	by	their	package	name.	All	the	updates	for
an	application	on	Play	Store	need	to	have	the	same	package	name	and	be	signed	with	the
same	keystore	used	initially.	For	instance,	the	following	is	the	Play	Store	link	of	a	Gmail
application;	notice	that	at	the	end	of	URL,	we	will	find	the	package	name	of	the
application:

play.google.com/store/apps/details?id=com.google.android.gm

http://play.google.com/store/apps/details?id=com.google.android.gm

Declaring	our	contract	class
Declaring	a	contract	is	a	very	important	part	of	building	our	content	provider.	This	class,
as	the	name	suggests,	will	act	as	a	contract	between	our	content	provider	and	the
application	that	is	going	to	access	our	content	provider.	It	is	a	public	final	class,	which
contains	constant	definitions	for	URIs,	column	names,	and	other	metadata.	It	can	also
contain	Javadoc,	but	the	biggest	advantage	is	that	the	developer	using	it	need	not	worry
about	the	names	of	tables,	columns,	and	constants,	leading	to	less	error-prone	code.

The	contract	class	provides	us	with	the	necessary	abstraction;	we	can	change	the
underlying	operations	as	and	when	required	and	we	can	also	change	the	corresponding
data	manipulation	affecting	other	dependent	applications.	An	important	thing	to	note	is
that	we	need	to	be	careful	while	changing	the	contract	in	future;	if	we	are	not	careful,	we
might	break	the	other	applications	that	are	using	our	contract	class.

Our	contract	class	looks	like	the	following:

public	final	class	PersonalContactContract	{

			

			/**

				*	The	authority	of	the	PersonalContactProvider

				*/

			public	static	final	String	AUTHORITY	=	

"com.personalcontactmanager.provider";

			public	static	final	String	BASE_PATH	=	"contacts";

			/**

				*	The	Uri	for	the	top-level	PersonalContactProvider

				*	authority

				*/

			public	static	final	Uri	CONTENT_URI	=	Uri.parse("content://"	+	AUTHORITY		

									+	"/"	+	BASE_PATH);

			/**

				*	The	mime	type	of	a	directory	of	items.

				*/

			public	static	final	String	CONTENT_TYPE	=																		

ContentResolver.CURSOR_DIR_BASE_TYPE	+	

																		"/vnd.com.personalcontactmanager.provider.table";

			/**

				*	The	mime	type	of	a	single	item.

				*/

			public	static	final	String	CONTENT_ITEM_TYPE	=	

ContentResolver.CURSOR_ITEM_BASE_TYPE	+	

																	"/vnd.com.personalcontactmanager.provider.table_item";

			/**

				*	A	projection	of	all	columns	

				*	in	the	items	table.

				*/

			public	static	final	String[]	PROJECTION_ALL	=	{	"_id",	

						"contact_name",	"contact_number",	

						"contact_email",	"photo_id"	};

			/**

				*	The	default	sort	order	for	

				*	queries	containing	NAME	fields.

				*/

			//public	static	final	String	SORT_ORDER_DEFAULT	=	NAME	+	"	ASC";

			

			public	static	final	class	Columns	{

						public	static	String	TABLE_ROW_ID	=	"_id";

						public	static	String	TABLE_ROW_NAME		=	"contact_name";

						public	static	String	TABLE_ROW_PHONENUM	=	"contact_number";

						public	static	String	TABLE_ROW_EMAIL	=	"contact_email";

						public	static	String	TABLE_ROW_PHOTOID	=	"photo_id";

			}

}

AUTHORITY	is	the	symbolic	name	that	identifies	the	provider	among	many	other	providers
registered	as	part	of	an	Android	system.	BASE_PATH	is	the	path	of	the	table.	CONTENT_URI	is
the	URI	of	the	table	encapsulated	by	the	provider.	CONTENT_TYPE	is	the	Android	platform’s
base	MIME	type	for	content	URI	containing	a	cursor	of	zero	or	more	items.
CONTENT_ITEM_TYPE	is	the	Android	platform’s	base	MIME	type	for	content	URIs
containing	a	cursor	of	a	single	item.	PROJECTION_ALL	and	Columns	contain	the	column	IDs
of	the	table.

Without	this	information,	other	developers	will	not	be	able	to	access	your	provider	even
though	it	is	open	for	access.

Note
There	can	be	many	tables	inside	a	provider	and	each	should	have	a	unique	path;	the	path	is
not	a	real	physical	path	but	an	identifier.

Creating	UriMatcher	definitions
UriMatcher	is	a	utility	class,	which	aids	in	matching	URIs	in	content	providers.	The
addURI()	method	takes	the	content	URI	patterns	that	the	provider	should	recognize.	We
add	a	URI	to	match,	and	the	code	to	return	when	this	URI	is	matched:

addURI(String	authority,	String	path,	int	code)

We	pass	authority,	a	path	pattern,	and	an	integer	value	to	the	addURI()	method	of
UriMatcher;	it	returns	the	int	value,	which	we	defined	as	constant	when	we	tried	to
match	patterns.

Our	UriMatcher	looks	like	the	following:

private	static	final	int	CONTACTS_TABLE	=	1;

private	static	final	int	CONTACTS_TABLE_ITEM	=	2;

private	static	final	UriMatcher	mmURIMatcher	=	new	

UriMatcher(UriMatcher.NO_MATCH);

			static	{

						mmURIMatcher.addURI(PersonalContactContract.AUTHORITY,	

												PersonalContactContract.BASE_PATH,	CONTACTS_TABLE);

						mmURIMatcher.addURI(PersonalContactContract.AUTHORITY,	

												PersonalContactContract.BASE_PATH+		"/#",		

																							CONTACTS_TABLE_ITEM);

			}

Notice	that	it	also	supports	the	use	of	wildcards;	we	have	used	hashtag	(#)	in	the	preceding
code	snippet,	we	can	also	use	wildcards	such	as	*.	In	our	case,	with	the	hashtag,	"
content://com.personalcontactmanager.provider/contacts/2"	this	expression
matches,	but	using	*	"content://com.personalcontactmanager.provider/contacts	it
doesn’t.

Implementing	the	core	methods
In	order	to	build	our	content	provider,	the	next	step	will	be	to	prepare	our	core	database
access	and	data	modifying	methods,	better	known	as	CRUD	methods.	This	is	where	the
core	logic	of	how	we	want	to	interact	with	our	data	depending	on	the	insert,	query,	or
delete	calls	received	is	specified.	We	will	also	implement	the	Android	architecture’s	life
cycle	methods	such	as	onCreate().

Initializing	the	provider	through	the	onCreate()
method
We	create	an	object	of	our	database	manager	class	in	onCreate().	There	should	be
minimum	operations	in	oncreate()	as	it	runs	on	the	Main	UI	thread,	and	it	may	cause	lag
for	some	users.	It	is	good	practice	to	avoid	long-running	tasks	in	oncreate()	as	it
increases	the	startup	time	of	the	provider.	It	is	even	recommended	to	defer	database
creation	and	data	loading	until	our	provider	actually	receives	a	request	for	the	data,	that	is,
to	move	long-lasting	actions	to	the	CRUD	methods:

@Override

Public	Boolean	onCreate()	{

			dbm	=	new	DatabaseManager(getContext());

			return	false;

}			

Querying	records	through	the	query()	method
The	query()	method	will	return	a	cursor	over	the	result	set.	The	URI	is	passed	to	our
UriMatcher	to	see	whether	it	matches	any	patterns	we	defined	earlier.	In	our	switch	case
statement,	if	it	is	a	table-item-related	case,	we	check	whether	the	selection	statement	is
empty;	in	case	it	is,	we	build	our	selection	statement	up	to	the	lastpathsegment,	else	we
append	the	selection	to	the	lastpathsegment	statement.	We	use	a	DatabaseManager
object	to	a	run	query	on	the	database	and	get	a	cursor	as	a	result.	It	is	expected	of	the
query()	method	to	throw	an	IllegalArgumentException	to	inform	of	an	unknown	URI;
it	is	also	good	practice	to	throw	a	nullPointerException	in	case	we	encounter	an	internal
error	during	the	query	process:

@Override

public	Cursor	query(Uri	uri,	String[]	projection,	String	selection,

						String[]	selectionArgs,	String	sortOrder)	{

			int	uriType	=	mmURIMatcher.match(uri);

			switch(uriType)	{

			case	CONTACTS_TABLE:

						break;

			case	CONTACTS_TABLE_ITEM:

						if	(TextUtils.isEmpty(selection))	{

									selection	=	PersonalContactContract.Columns.TABLE_ROW_ID	

																		+	"="	+	uri.getLastPathSegment();

						}	else	{

									selection	=	PersonalContactContract.Columns.TABLE_ROW_ID	

																		+	"="	+	uri.getLastPathSegment()	+	

															"	and	"	+	selection;

						}

						break;

			default:

						throw	new	IllegalArgumentException("Unknown	URI:	"	+	uri);

			}

			Cursor	cr	=	dbm.getRowAsCursor(projection,	selection,	

															selectionArgs,	sortOrder);

			return	cr;

}

Note
Remember	that	an	Android	system	must	be	able	to	communicate	the	exception	across
process	boundaries.	Android	can	do	this	for	the	following	exceptions	that	may	be	useful	in
handling	query	errors:

IllegalArgumentException:	You	may	choose	to	throw	this	if	your	provider	receives
an	invalid	content	URI
NullPointerException:	This	is	thrown	when	the	object	is	null	and	we	try	to	access
its	field	or	method

Adding	records	through	the	insert()	method
As	the	name	suggests,	the	insert()	method	is	used	to	insert	a	value	in	our	database.	It
returns	the	URI	of	the	inserted	row	and,	while	checking	the	URI,	we	need	to	remember
that	an	insertion	can	happen	at	the	table	level,	hence	the	operations	in	the	method	are
processed	at	the	URI	that	matches	the	table.	After	matching,	we	use	the	standard
DatabaseManager	object	to	insert	our	new	value	into	the	database.	The	content	URI	for
the	new	row	is	constructed	by	appending	the	new	row’s	_ID	value	to	the	table’s	content
URI:

@Override

public	Uri	insert(Uri	uri,	ContentValues	values)	{

			int	uriType	=	mmURIMatcher.match(uri);

			long	id;

			switch(uriType)	{

			case	CONTACTS_TABLE:

						id	=	dbm.addRow(values);

						break;

			default:

						throw	new	IllegalArgumentException("Unknown	URI:	"	+	uri);

			}

			Uri	ur	=	ContentUris.withAppendedId(uri,	id);

			return	ur;

}

Updating	records	through	the	update()	method
The	update()	method	updates	an	existing	row	in	the	appropriate	table,	using	the	values	in
the	ContentValues	argument.	First,	we	identify	the	URI,	whether	it	is	directory-based	or
ID-based,	then	we	build	our	selection	statement	as	we	did	in	the	query()	method.	Now,
we	will	execute	the	standard	updateRow()	method	of	DatabaseManager	that	we	defined
earlier	while	building	this	application	in	Chapter	2,	Connecting	the	Dots,	which	returns	the
number	of	affected	rows.

The	update()	method	returns	the	number	of	rows	updated.	Based	on	the	selection	clause,
one	or	more	rows	can	be	updated:

@Override

public	int	update(Uri	uri,	ContentValues	values,	String	selection,

						String[]	selectionArgs)	{

			int	uriType	=	mmURIMatcher.match(uri);

			switch(uriType)	{

			case	CONTACTS_TABLE:

						break;

			case	CONTACTS_TABLE_ITEM:

						if	(TextUtils.isEmpty(selection))	{

									selection	=	PersonalContactContract.Columns.TABLE_ROW_ID

	+	"="	+	uri.getLastPathSegment();

						}	else	{

									selection	=	PersonalContactContract.Columns.TABLE_ROW_ID	

+	"="	+	uri.getLastPathSegment()	

+	"	and	"	+	selection;

						}

						break;

			default:

						throw	new	IllegalArgumentException("Unknown	URI:	"	+	uri);

			}

			int	count	=	dbm.updateRow(values,	selection,	selectionArgs);

			return	count;

}

Deleting	records	through	the	delete()	method
The	delete()	method	is	very	similar	to	the	update()	method	and	the	process	of	using	it	is
similar;	here,	the	call	is	made	to	delete	a	row	instead	of	updating	it.	The	delete()	method
returns	the	number	of	rows	deleted.	Based	on	the	selection	clause,	one	or	more	rows	can
be	deleted:

@Override

public	int	delete(Uri	uri,	String	selection,	String[]	selectionArgs)	{

			int	uriType	=	mmURIMatcher.match(uri);

			switch(uriType)	{

			case	CONTACTS_TABLE:

						break;

			case	CONTACTS_TABLE_ITEM:

						if	(TextUtils.isEmpty(selection))	{

									selection	=	PersonalContactContract.Columns.TABLE_ROW_ID

	+	"="	+	uri.getLastPathSegment();

						}	else	{

									selection	=	PersonalContactContract.Columns.TABLE_ROW_ID	

	+	"="	+	uri.getLastPathSegment()	

	+	"	and	"	+	selection;

						}

						break;

			default:

						throw	new	IllegalArgumentException("Unknown	URI:	"	+	uri);

			}

			int	count	=	dbm.deleteRow(selection,	selectionArgs);

			return	count;

}

Getting	the	return	type	of	data	through	the
getType()	method
The	signature	of	this	simple	method	takes	a	URI	and	returns	a	string	value;	every	content
provider	must	return	the	content	type	for	its	supported	URIs.	A	very	interesting	fact	is	that
no	permissions	are	needed	for	an	application	to	access	this	information;	if	our	content
provider	requires	permissions,	or	is	not	exported,	all	the	applications	can	still	call	this
method	regardless	of	their	access	permissions	to	retrieve	MIME	types.

All	these	MIME	types	should	be	declared	in	the	contract	class:

@Override

public	String	getType(Uri	uri)	{

			int	uriType	=	mmURIMatcher.match(uri);

			switch(uriType)	{

			case	CONTACTS_TABLE:

						return	PersonalContactContract.CONTENT_TYPE;

			case	CONTACTS_TABLE_ITEM:

						return	PersonalContactContract.CONTENT_ITEM_TYPE;

			default:

						throw	new	IllegalArgumentException("Unknown	URI:	"	+	uri);			

			}

}

Adding	a	provider	to	a	manifest
Another	important	step	is	to	add	our	content	provider	to	a	manifest,	like	we	do	with	other
Android	components.	We	can	register	multiple	providers	here.	The	important	bit	here,
other	than	android:authorities,	is	android:exported;	it	defines	whether	the	content
provider	is	available	for	other	applications	to	use.	In	case	of	true,	the	provider	is	available
to	other	applications;	if	it	is	false,	the	provider	is	not	available	to	other	applications.	If
applications	have	the	same	user	ID	(UID)	as	the	provider,	they	will	have	access	to	it:

<provider

			

android:name="com.personalcontactmanager.provider.PersonalContactProvider"

			android:authorities="com.personalcontactmanager.provider"

			android:exported="true"

			android:grantUriPermissions="true"	>

			</provider>

Another	important	concept	is	permissions.	We	can	add	additional	security	by	adding	read
and	write	permissions,	which	the	other	application	has	to	add	in	their	manifest	XML	file
and,	in	turn,	automatically	inform	a	user	that	they	are	going	to	use	a	particular
application’s	content	provider	either	to	read,	write,	or	both.	We	can	add	permissions	in	the
following	manner:

android:readPermission="com.personalcontactmanager.provider.READ"

Using	a	content	provider
The	main	reason	we	built	a	content	provider	was	to	allow	other	applications	to	access	the
complex	data	store	in	our	database	and	perform	CRUD	operations.	We	will	now	build	one
more	application	in	order	to	test	our	newly	built	content	provider.	The	test	application	is
very	simple,	comprising	of	only	one	activity	class	and	one	layout	file.	It	has	standard
buttons	to	perform	actions.	Nothing	fancy,	just	the	tools	for	us	to	test	the	functionality	we
just	implemented.	We	will	now	delve	into	the	TestMainActivity	class	and	look	into	its
implementation:

public	class	TestMainActivity	extends	Activity	{

public	final	String	AUTHORITY	=	"com.personalcontactmanager.provider";

public	final	String	BASE_PATH	=	"contacts";

private	TextViewqueryT,	insertT;

public	class	Columns	{

			public	final	static	String	TABLE_ROW_ID	=	"_id";

			public	final	static	String	TABLE_ROW_NAME	=	"contact_name";

			public	final	static	String	TABLE_ROW_PHONENUM	=

"contact_number";

			public	final	static	String	TABLE_ROW_EMAIL	=	"contact_email";

			public	final	static	String	TABLE_ROW_PHOTOID	=	"photo_id";

			}

To	access	a	content	provider,	we	need	details	such	as	AUTHORITY	and	BASE_PATH	and	the
names	of	the	columns	of	database	tables;	we	need	to	access	the	public	class	Columns	for
this	purpose.	We	have	more	tables	and	we	will	see	more	of	these	classes.	Generally,	all
this	necessary	information	will	be	taken	from	the	published	contract	class	of	the	content
provider.	Some	content	providers	also	require	implementing	read	or	write	permissions	in
the	manifest:

<uses-permissionandroid:name="AUTHORITY.permission.WRITE_TASKS"/>

In	some	cases,	the	content	provider	we	need	to	access	can	ask	us	to	add	permissions	in	our
manifest.	When	the	users	install	the	application,	they	will	see	an	added	permission	in	their
permission	list:

@Override

protected	void	onCreate(Bundle	savedInstanceState)	{

			super.onCreate(savedInstanceState);

			setContentView(R.layout.activity_test_main);

			queryT	=	(TextView)	findViewById(R.id.textQuery);

			insertT	=	(TextView)	findViewById(R.id.textInsert);

			}

Note
To	try	out	some	other	app’s	content	provider,	refer	to	http://goo.gl/NEX2hN.

It	lists	how	you	can	use	the	Any.do’s	content	provider—a	very	famous	task	application.

http://goo.gl/NEX2hN

We	will	set	our	layout	and	initialize	the	views	we	require	in	onCreate()	of	activity.	To
query,	we	first	need	to	prepare	the	URI	object	that	matches	the	table.

Content	resolver	now	comes	into	play;	it	acts	as	a	resolver	for	the	content	URI	we
prepared.	Our	getContentResolver.query()	method,	in	this	case,	will	fetch	all	the
columns	and	rows.	We	will	now	move	the	cursor	to	the	first	position	in	order	to	read	the
result.	For	testing	purposes,	it’s	read	as	a	string:

public	void	query(View	v)	{

		Uri	contentUri	=	Uri.parse("content://"	+	AUTHORITY	

															+	"/"	+	BASE_PATH);

		Cursor	cr	=	getContentResolver().query(contentUri,	null,	

												null,	null,	null);					

		if	(cr	!=	null)	{

						if	(cr.getCount()	>	0)	{

									cr.moveToFirst();

									String	name	=	cr.getString(cr.getColumnIndexOrThrow(

Columns.TABLE_ROW_NAME));

									queryT.setText(name);

						}

		}

	

	

}

Now,	we	build	a	URI	to	read	a	particular	row	instead	of	a	complete	table.	We	already
mentioned	that	to	make	URI	ID-based,	we	need	to	add	the	ID	part	to	our	existing
contenturi.	Now,	we	build	our	projection	string	array	to	be	passed	as	a	parameter	in	our
query()	method:

public	void	query(View	v)	{

	...

	...

		Uri	rowUri	=	contentUri	=	ContentUris.withAppendedId

												(contentUri,	getFirstRowId());

		String[]	projection	=	new	String[]	{

						Columns.TABLE_ROW_NAME,	Columns.TABLE_ROW_PHONENUM,

						Columns.TABLE_ROW_EMAIL,	Columns.TABLE_ROW_PHOTOID	};

		cr	=	getContentResolver().query(contentUri,	projection,

						null,	null,	null);

		if	(cr	!=	null)	{

						if	(cr.getCount()	>	0)	{

									cr.moveToFirst();

									String	name	=	cr.getString(cr.getColumnIndexOrThrow(

																		Columns.TABLE_ROW_NAME));

									queryT.setText(name);

						}

		}

		

}			

The	getFirstRowId()	method	gets	the	ID	of	the	first	row	in	the	table.	It	is	done	because
the	ID	of	the	first	row	will	not	always	be	1.	It	changes	when	the	rows	are	deleted.	If	the
first	item	in	the	table	with	row	ID	1	is	deleted,	then	the	second	item	with	row	ID	1
becomes	the	first	item:

private	int	getFirstRowId()	{

		int	id	=	1;

		Uri	contentUri	=	Uri.parse("content://"	+	AUTHORITY	+	"/"

															+	"contacts");

		Cursor	cr	=	getContentResolver().query(contentUri,	null,

												null,	null,	null);

		if	(cr	!=	null)	{

						if	(cr.getCount()	>	0)	{

									cr.moveToFirst();

									id	=	cr.getInt(cr.getColumnIndexOrThrow(

												Columns.TABLE_ROW_ID));

						}

		}

return	id;

}

Let’s	take	a	closer	look	at	the	query()	method:

public	final	Cursor	query	(Uri	uri,	String[]	projection,	String	selection,	

String[]	selectionArgs,	String	sortOrder)

Present	in	API	level	1,	the	query()	method	returns	a	cursor	over	the	result	set	against	the
parameters	we	supplied.	The	following	are	the	parameters	of	the	preceding	code:

uri:	This	is	contentURI	in	our	case,	using	the	content://	scheme	for	the	content	to
be	retrieved.	It	can	be	ID-based	or	directory-based.
projection:	This	is	a	list	of	the	columns	to	be	returned	as	we	have	prepared	using
the	column	names.	Passing	null	will	return	all	the	columns.
selection:	Formatted	as	a	SQL	WHERE	clause,	excluding	the	WHERE	itself,	this	acts	as
a	filter	declaring	which	rows	to	return.
selectionArgs:	We	may	include	?	parameter	markers	in	selection.	Android	SQL
query	builder	will	replace	the	?	parameter	markers	by	the	values	bound	as	string	from
selectionArgs,	in	the	order	that	they	appear	in	the	selection.
sortOrder:	This	tells	us	how	to	order	the	rows,	formatted	as	an	SQL	ORDER	BY
clause.	A	null	value	will	use	the	default	sort	order.

Note
According	to	official	documentation,	there	are	a	few	guidelines	we	should	follow	for

optimum	performance:

Provide	an	explicit	projection	to	prevent	reading	data	from	storage	that	isn’t
going	to	be	used.
Use	question	mark	parameter	markers	such	as	phone=?	instead	of	explicit	values
in	the	selection	parameter,	so	that	queries	that	differ	only	by	those	values	will	be
recognized	as	the	same	for	caching	purposes.

The	same	process	we	used	earlier	to	check	for	null	values	and	an	empty	cursor	is
performed,	and	finally,	a	required	value	is	extracted	from	the	cursor.

Now,	let	us	look	at	the	insert	method	for	our	test	application.

We	start	by	building	our	content	value	object	and	relevant	key-value	pairs,	for	instance,
putting	a	phone	number	in	the	relevant	Columns.TABLE_ROW_PHONENUM	field.	Notice	that
because	details	such	as	a	column’s	name	were	shared	with	us	in	the	form	of	a	class,	we
need	not	worry	about	details	such	as	the	actual	column	name.	We	just	need	to	access	it	via
means	of	the	Columns	class.	This	ensures	that	we	only	need	to	update	the	relevant	values.
If	in	future	the	content	provider	undergoes	some	change	and	changes	the	table	names,	the
rest	of	the	functionality	and	implementation	remains	the	same.	We	build	our	projection
string	array	with	the	column	names	we	required,	as	we	did	earlier	in	the	case	of	querying
the	content	provider	for	data.

We	also	build	our	content	URI;	notice	that	it	matches	the	table	and	not	individual	rows.
The	insert()	method	also	returns	a	URI	unlike	the	query()	method,	which	returned	a
cursor	over	the	result	set:

public	void	insert(View	v)	{

		String	name	=	getRandomName();

		String	number	=	getRandomNumber();

		ContentValues	values	=	new	ContentValues();

		values.put(Columns.TABLE_ROW_NAME,	name);

		values.put(Columns.TABLE_ROW_PHONENUM,	number);

		values.put(Columns.TABLE_ROW_EMAIL,	name	+	"@gmail.com");

		values.put(Columns.TABLE_ROW_PHOTOID,	"abc");

		String[]	projection	=	new	String[]	{

						Columns.TABLE_ROW_NAME,	Columns.TABLE_ROW_PHONENUM,

						Columns.TABLE_ROW_EMAIL,	Columns.TABLE_ROW_PHOTOID	};

		Uri	contentUri	=	Uri.parse("content://"	+	AUTHORITY	+	"/"

												+	BASE_PATH);

		Uri	insertedRowUri	=	getContentResolver().insert(

												contentUri,	values);

		//checking	the	added	row

		Cursor	cr	=	getContentResolver().query(insertedRowUri,

									projection,	null,	null,	null);

		if	(cr	!=	null)	{

						if	(cr.getCount()	>	0)	{

											cr.moveToFirst();

											name	=	cr.getString(cr.getColumnIndexOrThrow(

															Columns.TABLE_ROW_NAME));

											insertT.setText(name);

						}

		}

}

The	getRandomName()	and	getRandomNumber()	methods	generate	a	random	name	and
number	to	insert	in	the	table:

private	String	getRandomName()	{

						Random	rand	=	new	Random();

						String	name	=	""	+	(char)	(122-rand.nextInt(26))

									+	(char)	(122-rand.nextInt(26))

									+	(char)	(122-rand.nextInt(26))

									+	(char)	(122-rand.nextInt(26))

									+	(char)	(122-rand.nextInt(26))

									+	(char)	(122-rand.nextInt(26))

									+	(char)	(122-rand.nextInt(26))

									+	(char)	(122-rand.nextInt(26))	;

						return	name;

}

public	String	getRandomNumber()	{

		Random	rand	=	new	Random();

		String	number	=	rand.nextInt(98989)*rand.nextInt(59595)+"";

		

		return	number;

}

Let’s	take	a	closer	look	at	the	insert()	method:

public	final	Uri	insert	(Uri	url,	ContentValues	values)

The	following	are	the	parameters	of	the	preceding	line	of	code:

url:	The	URL	of	the	table	to	insert	the	data	into
values:	The	values	for	the	newly	inserted	row	in	the	form	of	a	ContentValues
object,	the	key	is	the	column	name	for	the	field

Notice	that	after	inserting,	we	are	running	the	query()	method	again	with	the	URI	that
was	returned	by	the	insert()	method.	We	run	this	to	see	that	the	value	we	intended	to
insert	has	been	inserted;	this	query	will	return	columns	as	per	the	projection	of	the	row
whose	ID	is	appended.

So	far,	we	have	covered	the	query()	and	insert()	methods;	now,	we	will	cover	the
update()	method.

We	progressed	in	the	insert()	method	by	preparing	the	ContentValues	object.	Similarly,
we	will	prepare	an	object	that	we	will	use	in	the	update()	method	of	ContentResolver	to

update	an	existing	row.	We	will	build	our	URI	in	this	case	up	to	the	ID,	as	this	operation	is
ID	based.	Update	the	row	as	pointed	by	the	rowUri	object	and	it	will	return	the	number	of
rows	updated,	which	will	be	the	same	as	the	URI;	in	this	case,	it	is	rowUri	that	points	to
only	a	single	row.	An	alternate	method	could	be	using	a	combination	of	contentUri
(which	points	to	the	table)	and	selection/selectionArgs.	In	this	case,	the	rows	updated
could	be	more	than	one	as	per	the	selection	clause:

public	void	update(View	v)	{

		String	name	=	getRandomName();

		String	number	=	getRandomNumber();

		ContentValues	values	=	new	ContentValues();

		values.put(Columns.TABLE_ROW_NAME,	name);

		values.put(Columns.TABLE_ROW_PHONENUM,	number);

		values.put(Columns.TABLE_ROW_EMAIL,	name	+	"@gmail.com");

		values.put(Columns.TABLE_ROW_PHOTOID,	"	");

		Uri	contentUri	=	Uri.parse("content://"	+	AUTHORITY

																				+	"/"	+	BASE_PATH);

		Uri	rowUri	=	ContentUris.withAppendedId(

																				contentUri,	getFirstRowId());

		int	count	=	getContentResolver().update(rowUri,	values,	null,	null);

}

Let’s	take	a	closer	look	at	the	update()	method:

public	final	int	update	(Uri	uri,	ContentValues	values,	String	where,	

String[]	selectionArgs)

The	following	are	the	parameters	of	the	preceding	line	of	code:

uri:	This	is	the	content	URI	we	wish	to	modify
values:	This	is	similar	to	the	values	we	used	earlier	with	other	methods;	passing	a
null	value	will	remove	an	existing	field	value
where:	A	SQL	WHERE	clause	that	acts	as	a	filter	to	rows	before	updating	them

We	can	run	the	query()	method	again	to	see	whether	the	change	is	reflected;	this	activity
has	been	left	as	an	exercise	for	you.

The	last	method	is	delete(),	which	we	require	in	order	to	complete	our	arsenal	of	CRUD
methods.	The	delete()	method	begins	in	a	similar	fashion	as	the	rest	of	the	methods	do;
first,	prepare	our	content	URI	at	the	directory	level	and	then	build	it	for	the	ID	level,	that
is,	at	the	individual	row	level.	After	that,	we	pass	it	to	the	delete()	method	of
ContentResolver.	Unlike	the	query()	and	insert()	methods	that	return	an	integer	value,
the	delete()	method	deletes	a	row	as	pointed	by	our	ID-based	content	URI	object	rowUri
and	returns	the	number	of	rows	deleted.	This	will	be	1	in	our	case	as	our	URI	points	to
only	one	row.	An	alternate	method	could	be	using	a	combination	of	contentUri,	which
points	to	the	table,	and	selection/selectionArgs.	In	this	case,	the	rows	deleted	could	be
more	than	1	as	per	the	selection	clause:

public	void	delete(View	v)	{

						Uri	contentUri	=	Uri.parse("content://"	+	AUTHORITY

																														+	"/"	+	BASE_PATH);

						Uri	rowUri	=	contentUri	=	ContentUris.withAppendedId(

																														contentUri,	getFirstRowId());

						int	count	=	getContentResolver().delete(rowUri,	null,

															null);

}

The	UI	and	output	look	like	the	following:

Note
If	you	want	to	dive	in	a	little	more	into	how	an	Android	content	provider	actually	manages
various	write	and	read	calls	between	various	tables	(hint:	it	uses	CountDownLatch),	you
can	check	out	the	video	at	Coursera	by	Dr.	Douglas	C.	Schmidt	for	more	information.	The
video	can	be	found	at	https://class.coursera.org/posa-002/lecture/49.

https://class.coursera.org/posa-002/lecture/49

Summary
In	this	chapter,	we	covered	the	basics	of	content	providers.	We	learned	how	to	access
system-provided	content	providers	and	even	our	own	version	of	a	content	provider.	We
went	from	creating	a	basic	contact	manager	to	evolving	it	into	a	fully-fledged	citizen	of
the	Android	ecosystem	by	implementing	ContentProvider	in	order	to	share	data	across
other	applications.

In	the	following	chapter,	we	will	cover	Loaders,	CursorAdapters,	nifty	hacks	and	tips,
and	some	open	source	libraries	to	make	our	life	easier	while	working	with	the	SQLite
database.

Chapter	4.	Thread	Carefully
	 “Premature	optimization	is	the	root	of	all	evil.” 	

	 —-Donald	Knuth

We	covered	a	very	important	concept	in	the	previous	chapter:	content	provider.	We
progressed	in	a	step-by-step	manner,	covering	essential	questions	such	as	how	to	create	a
content	provider	and	how	to	use	an	existing	system	with	a	content	provider	in	detail.	We
also	covered	how	to	use	the	content	provider	we	created	by	means	of	creating	a	test
application	to	access	it.

In	this	chapter,	we	will	explore	how	to	use	loaders,	in	particular,	a	loader	called	cursor
loader.	We	will	look	at	how	to	interact	with	a	content	provider	asynchronously	with	the
help	of	an	example.	We	will	discuss	the	important	topic	of	security	in	the	Android
database	and	how	we	can	ensure	that	data	is	secured	in	an	Android	model.	Last	but	not
least,	we	will	also	see	some	code	snippets	that	will	cover	topics	such	as	how	to	upgrade	a
database	and	how	to	ship	a	preloaded	database	with	our	application.

In	this	chapter,	we	will	cover	the	following	topics:

Loading	data	with	CursorLoader
Data	security
General	tips	and	libraries

Loading	data	with	CursorLoader
CursorLoader	is	part	of	the	loader	family.	Before	we	dive	deep	into	an	example
explaining	how	to	use	CursorLoader,	we	will	explore	a	bit	about	loaders	and	why	it	is
important	in	the	current	scenario.

Loaders
Introduced	in	HoneyComb	(API	level	11),	loaders	serve	the	purpose	of	asynchronously
serving	data	in	an	activity	or	fragment.	The	need	to	have	loaders	arose	from	many	things:
calls	to	various	time-consuming	methods	on	the	main	UI	thread	in	order	to	fetch	data	that
leads	to	a	clunky	UI,	and	even	in	some	cases,	the	dreaded	ANR	box.	This	is	demonstrated
in	the	following	screenshot:

For	example,	the	managedQuery()	method,	which	was	deprecated	in	API	11,	was	a
wrapper	around	the	ContentResolver'squery()	method.

In	the	previous	chapter,	while	highlighting	how	to	fetch	data	from	a	content	provider
inside	the	query	method,	we	used	getContentResolver.query()	instead	of
managedQuery().	Using	deprecated	methods	can	lead	to	problems	with	future	releases	and
should	be	avoided.

Loaders	provide	asynchronous	loading	of	data	for	an	activity	of	fragment	on	a	non-UI
thread.	The	loader	or	the	subclasses	of	a	loader	perform	their	work	in	a	separate	thread	and
deliver	their	results	to	the	main	thread.	The	segregation	of	calls	from	the	main	thread	and
the	posting	of	results	on	the	main	thread	while	working	in	a	separate	thread	ensure	that	we
have	a	responsive	application.

Tip
Post	the	loader	era,	we	were	faced	with	problems	such	as	when	an	activity	should	be
recreated	due	to	a	configuration	change,	for	instance,	rotation	of	a	device’s	orientation.	We
had	to	worry	about	data	and	refetch	data	while	creating	a	new	instance.	But	with	loaders,
we	don’t	have	to	worry	about	all	these	as	loaders	automatically	reconnect	to	the	last
loader’s	cursor	when	being	recreated	after	a	device	configuration	change	and	refetch	the
data.	As	an	added	bonus,	loaders	monitor	the	data	source	and	deliver	new	results	when	the
content	changes.	In	other	words,	loaders	automatically	get	updated,	and	hence,	there	is	no
need	to	requery	the	cursor.	Read	more	about	keeping	your	Android	application	responsive
and	avoiding	application	not	responding	(ANR)	messages	at	the	Android	developer
website,	http://developer.android.com/training/articles/perf-anr.html.

http://developer.android.com/training/articles/perf-anr.html

Loader	API’s	summary
Let’s	look	at	the	loader	API	that	consists	of	various	classes	and	interfaces.	In	this	section,
we	will	look	at	the	implementation	aspect	of	loader	API’s	classes/interfaces:

Class/interface Description

LoaderManager

This	is	an	abstract	class	associated	with	an	activity	or	fragment	to	manage	a	loader.
Although	there	can	be	one	or	more	loader	instances,	only	one	instance	of
LoaderManager	per	activity	or	fragment	is	permitted.	It	is	responsible	for	dealing
with	the	activity	or	fragment’s	life	cycle	and	particularly	helpful	when	running
long-running	tasks.

LoaderManager.LoaderCallbacks This	is	a	callback	interface	we	must	implement	to	interact	with	LoaderManager.

Loader

This	is	the	base	class	for	a	loader.	It’s	an	abstract	class	that	performs	asynchronous
loading	of	data.	We	can	implement	our	own	subclass	instead	of	using	subclasses
such	as	CursorLoader.

AsyncTaskLoader

This	is	an	abstract	loader	that	provides	AsyncTask	to	perform	the	work	in	the
background,	that	is,	on	a	separate	thread;	however,	the	result	is	delivered	on	the
main	thread.	According	to	the	documentation,	it	is	advised	to	subclass
AsyncTaskLoader	instead	of	directly	subclassing	the	Loader	class.

CursorLoader
This	is	a	subclass	of	AsyncTaskLoader	that	queries	ContentResolver	on	the
background	thread	in	a	non-blocking	manner	and	returns	a	cursor.

Using	CursorLoader
Loaders	provide	us	with	a	lot	of	handy	features;	one	of	them	is	that	once	our	activity	or
fragment	implements	a	loader,	it	need	not	worry	about	refreshing	the	data.	A	loader
monitors	the	data	source	for	us,	reflects	any	changes,	and	even	performs	new	loads;	all	of
this	is	done	asynchronously.	Hence,	we	do	not	need	to	take	care	of	implementing	and
managing	threads,	offloading	queries	on	the	background	thread,	and	retrieving	results
once	the	query	is	completed.

A	loader	can	be	in	any	one	of	the	following	three	distinct	states:

Started	state:	Once	started,	loaders	remain	in	this	state	until	stopped	or	reset.	It
executes	loads,	monitors	any	change,	and	reflects	the	same	to	the	listeners.
Stopped	state:	Here,	loaders	continue	to	monitor	changes	but	do	not	pass	the	result
to	the	clients.
Reset	state:	In	this	state,	loaders	release	any	resources	they	have	held	and	do	not
perform	the	process	of	executing,	loading,	or	monitoring	data.

We	will	now	relook	at	our	personal	contact	manager	application	and	make	the
corresponding	changes	to	implement	CursorLoader	in	our	application.	CursorLoader,	as
the	name	suggests,	is	a	loader	that	queries	ContentResolver	and	returns	a	cursor.	This	is	a
subclass	of	AsyncTaskLoader	and	performs	the	cursor	query	on	the	background	thread	so
that	it	does	not	block	the	application’s	UI.	In	the	diagram,	you	can	see	the	various	methods
of	a	loader	callback	and	how	they	communicate	with	CursorLoader	and	CursorAdapter.

For	implementing	a	cursor	loader,	we	need	to	perform	the	following	steps:

1.	 To	begin	with,	we	need	to	implement	the
LoaderManager.LoaderCallbacks<Cursor>	interface:

public	class	ContactsMainActivity	extends	Activity	implements	

OnClickListener,	LoaderManager.LoaderCallbacks<Cursor>	{…}

Then,	implement	the	methods	that	reflect	the	distinct	states	of	a	loader:
onCreateLoader(),	onLoadFinished(),	and	onLoaderReset().

2.	 To	initiate	a	query,	we	will	make	a	call	to	the	LoaderManager.initLoader()	method;
this	initializes	the	background	framework:

getLoaderManager().initLoader(CUR_LOADER,	null,	this);

The	CUR_LOADER	value	is	passed	on	to	the	onCreateLoader()	method,	which	acts	as
an	ID	for	the	loader.	A	call	to	initloader()	invokes	onCreateLoader(),	passing	the
ID	we	used	to	call	initloader():

@Override

public	Loader<Cursor>	onCreateLoader(int	loaderID,	

Bundle	bundle)

{

		switch	(loaderID)	{

		case	CUR_LOADER:

				return	new	CursorLoader(this,	PersonalContactContract.CONTENT_URI,

						PersonalContactContract.PROJECTION_ALL,	null,	null,	null);

				default:	return	null;

			}

}

3.	 We	use	a	switch	case	to	take	the	loader	based	on	its	ID	and	return	null	for	an	invalid
ID.	We	create	a	URI	object	contentUri	and	pass	it	as	a	parameter	to	the
CursorLoader	constructor.	A	point	to	note	is	that	we	can	implement	a	cursor	loader
using	either	this	constructor	or	an	empty	unspecified	cursor	loader,
CursorLoader(Context	context).	Also,	we	can	set	values	via	methods	such	as
setUri(Uri),	setSelection(String),	setSelectionArgs(String[]),
setSortOrder(String),	and	setProjection(String[]):

public	CursorLoader	(Context	context,	Uri	uri,	String[]	projection,	

String	selection,	String[]	selectionArgs,	String	sortOrder)

The	following	are	the	parameters	of	the	previous	code:

context:	This	is	the	parent	activity	context.
uri:	We	employ	contentURI,	using	the	content://	scheme,	to	retrieve	the
content.	It	can	be	based	on	an	ID	or	directory.
projection:	This	is	a	list	of	columns	to	be	returned	as	we	are	prepared	with	the
column	names.	Passing	null	will	return	all	the	columns.
selection:	This	is	formatted	as	a	SQL	WHERE	clause,	excluding	the	WHERE	itself,
acting	as	a	filter	declaring	which	rows	to	return.

selectionArgs:	We	may	include	question	marks	in	the	selection,	which	will	be
replaced	by	the	values	bound	as	a	string	from	selectionArgs,	and	they	will
appear	in	the	order	of	their	selection.
sortOrder:	This	tells	us	how	to	order	rows,	formatted	as	a	SQL	ORDER	BY
clause.	A	null	value	will	use	the	default	sort	order.

4.	 onCreateLoader	starts	the	query	in	the	background,	and	when	the	query	is	finished,
the	cursor	loader	object	is	passed	to	the	background’s	framework,	which	calls
onLoadFinished(),	where	we	provide	our	adapter	instance	with	the	cursor	object
data:

@Override

public	void	onLoadFinished(Loader<Cursor>	loader,	Cursor	data)

{

		this.mAdapter.changeCursor(data);

}

5.	 The	adapter	is	a	subclass	of	CursorAdapter.	Instead	of	the	traditional	getView()
method,	which	we	get	by	extending	BaseAdapter,	we	have	the	bindView()	and
newView()	methods.	We	inflate	our	listview	row	layout	in	the	view	object	in
newView,	and	in	bind	view,	we	perform	an	action	similar	to	the	getView()	method.
We	define	our	layout	elements	and	associate	theme	with	the	relevant	data:

public	class	CustomCursorAdapter	extends	CursorAdapter

{

			...

		public	void	bindView(View	view,	Context	arg1,	Cursor	cursor)

		{

				finalImageView	contact_photo	=	(ImageView)	view

						.findViewById(R.id.contact_photo);

		...

		...

		contact_email.setText(cursor.getString(cursor

							.getColumnIndexOrThrow(DatabaseConstants.TABLE_ROW_EMAIL)));

		setImage(cursor.getBlob(cursor

							.getColumnIndex(DatabaseConstants.TABLE_ROW_PHOTOID)),

						contact_photo);

			}

			@Override

		public	View	newView(Context	arg0,	Cursor	arg1,	ViewGroup	arg2)

		{

				final	View	view	=	LayoutInflater.from(context).inflate(

						R.layout.contact_list_row,	null,	false);

				return	view;

			}

...

}

6.	 This	method	is	invoked	when	the	cursor	loader	is	being	reset.	We	clear	out	any
reference	to	the	cursor	by	passing	null	to	the	changeCursor()	method.	Whenever
the	data	associated	with	a	cursor	changes,	the	cursor	loader	calls	this	method	before	it
reruns	the	query	to	clear	any	past	references,	thereby	preventing	memory	leaks.	Once

onLoaderReset()	is	set,	the	cursor	loader	will	rerun	its	query:

@Override

public	void	onLoaderReset(Loader<Cursor>	loader)	

{

		this.mAdapter.changeCursor(null);

				}

7.	 Now	we	move	on	to	our	content	provider	where	we	have	to	make	small	changes	to
ensure	that	any	changes	we	make	to	the	database	are	reflected	in	our	application’s	list
view:

cr.setNotificationUri(getContext().getContentResolver(),uri);

8.	 We	need	to	register	observer	in	ContentResolver	through	the	cursor	in	the	query
method	of	ContentProvider.	We	do	this	to	watch	the	content	URI	for	any	changes,
which	can	be	the	URI	of	a	specific	data	row	or	table	in	our	case:

getContext().getContentResolver().notifyChange(ur,null);

9.	 In	the	insert()	method,	we	use	the	notifyChange()	method	to	inform	registered
observers	that	a	row	was	updated.	By	default,	the	CursorAdapter	objects	will	get	this
notification.	So,	now	when	we	add	a	new	row	of	data	by	inserting	a	new	contact	in
our	application,	the	insert()	method	of	contentProvider	is	invoked	via	a	call:

resolver.insert(PersonalContactContract.CONTENT_URI,	

prepareData(contact));

10.	 A	similar	action	needs	to	be	performed	for	the	delete()	and	update()	methods,	both
of	which	have	been	left	as	an	exercise	for	the	reader	as	most	of	the	boilerplate	code	is
present.	Implementing	a	loader	is	simple	and	saves	us	from	a	lot	of	headache	when	it
comes	to	threading,	and	a	jarring	UI	is	highly	recommended	to	perform	this	task.

Note
loadInBackground()	is	another	important	method;	this	returns	a	cursor	instance	for	a	load
operation	and	is	called	on	the	worker	thread.	Ideally,	loadInBackground	()should	not
directly	return	the	result	of	the	load	operation,	but	we	can	achieve	this	by	overriding	the
deliverResult(D)	method.	To	cancel,	we	need	to	check	the	value	of
isLoadInBackgroundCanceled()	as	we	do	in	the	case	of	AsyncTask,	where	we	check
isCancelled()periodically.

Data	security
Security	is	the	latest	buzzword	in	town.	The	Android	ecosystem	ensures	that	our	database
is	exposed	to	prying	eyes;	however,	a	rooted	device	can	leave	our	database	exposed,	as	we
saw	in	Chapter	2,	Connecting	the	Dots.	With	the	help	of	a	rooted	device,	an	emulator	and
the	adb	pull	command	in	our	case,	we	pulled	our	database	for	inspection	with	the	SQLite
manager	tool.	Another	important	aspect	is	content	providers;	we	need	to	be	careful	while
setting	permissions.	We	should	make	the	process	of	applying	appropriate	permissions
compulsory	in	order	to	inform	users	about	the	control	that	an	app	establishes	over	data,
using	the	contract	class.

ContentProvider	and	permissions
In	Chapter	3,	Sharing	is	Caring,	we	briefly	covered	the	topic	of	permissions	in	the	Adding
a	provider	to	a	manifest	section.	Let’s	elaborate	a	little	more	on	this:

1.	 As	mentioned	earlier,	while	adding	the	content	provider	to	the	manifest,	we	will	also
add	our	custom	permissions.	This	will	ensure	two	things,	namely,	stop	an
unauthorized	action	in	an	application	and	inform	the	users	about	permissions:

<provider

android:name="com.personalcontactmanager.provider.PersonalContactProvid

er"

android:authorities="com.personalcontactmanager.provider"

android:readPermission="com.personalcontactmanager.provider.read"

android:exported="true"

android:grantUriPermissions="true"

>

2.	 Additionally,	we	will	add	the	permissions	tag	to	the	manifest	to	indicate	the	set	of
permissions	that	other	applications	will	require:

<permission

android:name="com.personalcontactmanager.provider.read"

android:icon="@drawable/ic_launcher"

android:label="Contact	Manager"

android:protectionLevel="normal"	>

</permission>		

3.	 Now,	in	the	application	in	which	we	want	to	access	the	content	provider	we	use	the
permission	tag,	in	our	case,	Ch4-TestApp	in	code	bundle:

<uses-permission	

android:name="com.personalcontactmanager.provider.read"	/>

When	users	install	this	application,	they	will	get	our	custom	permission	message
along	with	other	permissions	required	by	the	application.	For	this	step,	instead	of
directly	running	the	application	from	Eclipse,	export	an	apk	and	install	it:

If	you	have	not	defined	the	permission	in	the	application	and	if	the	application	tries	to
access	the	content	provider,	it	will	get	the	SecurityException:	Permission	Denial
message.

If	the	content	provider	we	created	is	not	meant	to	be	shared,	we	will	need	to	change	the
android:exported="true"	property	to	false.	This	will	make	our	content	provider	secure,
and	if	someone	tries	to	run	a	malicious	query	on	it,	they	will	encounter	a	security
exception.

If	we	want	to	share	data	only	between	our	applications,	Android	provides	a	solution;	we
can	use	android:protectionLevel	and	set	the	permission	to	signature	instead	of
normal.	For	this,	both	the	apps,	the	one	that	implements	the	content	provider	and	the	one
that	wants	to	access	it,	have	to	be	signed	by	the	same	key	while	they	are	exported.	This	is
because	a	bonus	signature	permission	does	not	require	user	confirmation.	This	does	not
confuse	the	user	as	it	is	done	internally	and	also	does	not	obstruct	the	user	experience.

Encrypting	critical	data
We	have	already	discussed	what	kind	of	access	rights	other	applications	have	on	our
database	and	how	to	efficiently	share	our	content	providers,	and	we	also	briefly	discussed
why	we	should	not	believe	that	the	system	is	foolproof.	In	the	most	foolproof	method,
sensitive	data	will	not	be	kept	on	the	device	but	on	the	server	instead,	and	it	will	use
tokens	to	give	access.	If	you	have	to	store	the	data	on	the	device’s	database,	use
encryption.	Use	a	user-defined	key	to	encrypt	and	decrypt	sensitive	data.

We	will	explore	a	way	to	use	an	encrypted	database,	which	will	not	be	readable	if
someone	is	able	to	extract	it	via	means	of	a	root	or	via	exploiting	backups.	If	someone
tries	to	read	it	using	SQLite	Manager	or	some	other	tool,	they	will	receive	a	friendly
message,	such	as	the	one	shown	in	the	following	screenshot;	this	is	the	database	file	that
we	will	create	in	a	moment	with	a	library	known	as	SQLCipher.

SQLCipher	is	an	open	source	extension	to	SQLite	that	provides	a	transparent	256-bit	AES
encryption	of	database	files,	as	mentioned	on	their	website.	It	is	very	easy	to	deploy
SQLCipher.	Now	we’ll	look	at	the	steps	to	build	a	sample	application:

1.	 First,	we	will	download	the	necessary	files	from	http://sqlcipher.net/open-source.
Here,	they	have	listed	a	community	edition	of	the	Android-based	SQLCipher;
download	it.

2.	 Now	we	will	create	a	new	Android	project	in	our	eclipse	environment.
3.	 Inside	the	downloaded	folder,	we	will	find	the	libs	folder;	inside	it,	are	a	set	of	jars

that	we	will	need	to	work	with	SQLCipher.	We	will	also	notice	that	folders	are	named
as	armeabi,	armeabi-v7a,	and	x86,	and	all	of	these	contain	the	.so	files.	If	you	are
familiar	with	Android	NDK,	this	will	not	seem	new.	The	.so	file	is	a	shared	object
file,	which	is	a	component	of	dynamic	libraries.	For	different	architectures,	we
require	different	.so	files,	hence	the	three	folders.	If	you	are	running	an	x86
emulator,	you	will	need	the	x86	folder	in	your	libs	folder.	For	simplicity,	we	will
copy	all	the	folders	to	the	libs	folder.	Copy	the	asset	folder’s	content	into	our
project’s	asset	folder	and	navigate	to	the	project’s	properties.	It	will	look	something
like	the	following	screenshot.	You	can	also	see	these	JAR	files	in	the	project’s	class
path.	The	initial	setup	for	this	project	is	now	complete.

http://sqlcipher.net/open-source

After	completing	the	necessary	setup	part,	let’s	move	to	writing	code	to	make	a	small
test	application:

public	class	MainActivity	extends	Activity

{

		TextView	showResult;

			@Override

			protected	void	onCreate(Bundle	savedInstanceState)

			{		

super.onCreate(savedInstanceState);

		setContentView(R.layout.activity_main);

		showResult	=	(TextView)	findViewById(R.id.showResult);

		InitializeSQLCipher();

			}

			private	void	InitializeSQLCipher()

			{

SQLiteDatabase.loadLibs(this);

		File	databaseFile	=	getDatabasePath("test.db");

		databaseFile.mkdirs();

		databaseFile.delete();

		SQLiteDatabase	database	=	SQLiteDatabase

						.openOrCreateDatabase(databaseFile,	"test123",	null);

		database.execSQL("create	table	t1(a,	b)");

		database.execSQL("insert	into	t1(a,	b)	values(?,	?)",

								new	Object[]	{"I	am	",	"Encrypted"	});

			}

			public	void	runQuery(View	v)

			{

		File	databaseFile	=	getDatabasePath("test.db");

		SQLiteDatabase	database	=	SQLiteDatabase.openOrCreateDatabase(

						databaseFile,	"test123",	null);

		String	selection	=	"select	*	from	t1";

		Cursor	c	=	database.rawQuery(selection,	null);

		c.moveToFirst();

		showResult.setText(c.getString(c.getColumnIndex("a"))	+	

c.getString(c.getColumnIndex("b")));

				}

}

The	preceding	code	has	two	main	methods:	InitializeSQLCipher()	and
runQuery().	Inside	InitializeSQLCipher(),	we	load	our	.so	library	files	by
invoking	the	loadLibs()	method.

4.	 Now	we	find	the	absolute	path	to	the	database	and	create	a	missing	parent	folder	if
any.	With	openOrCreateDatabase(),	we	will	make	a	call	to	open	an	existing
database	or	create	one	if	the	database	is	nonexistent.	We	will	execute	standard
database	calls	to	create	a	table	with	columns	a	and	b	and	insert	values	in	a	row.

Now	we	will	perform	a	simple	query	to	fetch	the	values	back	to	the	runQuery()
method.	You	will	notice	that	apart	from	loading	the	library,	all	the	core	methods	we
used	are	pretty	much	standard,	so	where	is	the	major	change?	Go	to	the	Ch4-
PersonalContactManager	example	in	the	code	bundle	and	notice	the	packages	we
have	used:

import	android.database.Cursor;

import	android.database.sqlite.SQLiteDatabase;

We	have	SQLCipher	packages:

import	net.sqlcipher.Cursor;

import	net.sqlcipher.database.SQLiteDatabase;

The	implementation	is	simple,	familiar,	and	easy	to	implement.	If	you	pull	the	database
out	and	try	to	read	it,	you	will	find	the	error	message,	as	we	displayed	earlier	in	a
screenshot.	The	user	will	find	no	change,	and	even	our	app’s	logic	remains	the	same.	In
the	screenshot,	you	can	see	the	application	screen	we	just	built	which	encrypts	the
database:

Note
OAuth	is	an	open	standard	for	authorization.	It	provides	client	applications	with	a	secure
delegated	access	to	server	resources	on	behalf	of	a	resource	owner.	It	specifies	a	process
for	resource	owners	to	authorize	third-party	access	to	their	server	resources	without
sharing	their	credentials,	as	explained	in	Wikipedia;	read	more	about	OAuth	at
http://oauth.net/2/.

http://oauth.net/2/

General	tips	and	libraries
We	will	cover	some	general	and	not	so	general	workarounds	and	practices,	which	can	be
put	to	good	use	depending	on	the	situation.	For	instance,	in	some	cases,	we	need	to	have	a
prepopulated	database	of	values	that	we	will	make	use	of	in	our	Android	application	or
upgrading	a	database,	which	seems	trivial	but	can	break	our	application.

Upgrading	a	database
In	Chapter	2,	Connecting	the	Dots,	we	used	onUpgrade()	to	show	how	a	database	is
updated.	If	we	go	back	to	the	example,	you	will	notice	that	it	executes	a	Drop	Table
command.	What	will	happen	here	is	that	the	original	table	will	be	dropped	and	a	new	table
will	be	created	by	the	call,	onCreate().	This	will	lead	to	a	loss	of	the	existing	data	and
hence	is	not	suitable	if	we	need	to	alter	our	database.	The	onUpgrade()	function	can	be
defined	as	follows:

public	void	onUpgrade(SQLiteDatabase	db,	int	oldVersion,int	newVersion)

{

		String	DROP_TABLE	=	"DROP	TABLE	IF	EXISTS	"	+	TABLE_NAME;

		db.execSQL(DROP_TABLE);

		onCreate(db);

}

One	more	challenge	is	to	identify	the	version	we	are	using	here.	The	user	might	be
running	older	versions	of	the	application,	so	we	have	to	keep	in	mind	the	different
versions	that	an	application	has	and	whether	those	versions	would	bring	about	any
changes	in	the	database.	For	a	new	user,	we	need	not	worry	because	if	the	database	does
not	exist,	onCreate()	will	be	called.

To	make	sure	we	have	a	proper	upgrade,	we	will	use	the	DB_VERSION	constant	in	our
CustomSQLiteOpenHelper	class	to	tell	our	onUpgrade()	method	about	the	action	to	be
taken:

private	static	final	int	DB_VERSION	=	1;

We	will	change	the	DB_VERSION	constant	to	3	to	reflect	the	upgrade:

private	static	final	int	DB_VERSION	=	3;

The	constructor	will	take	care	of	the	rest:

		

public	CustomSQLiteOpenHelper(Context	context)	

{

		super(context,	DB_NAME,	null,	DB_VERSION);

}		

When	the	super	class	constructor	is	run,	it	compares	the	DB_VERSION	constant	of	the	stored
SQLite	.db	file	against	the	DB_VERSION	we	passed	as	a	parameter	and	calls	the
onUpgrade()	method	if	needed:

public	void	onUpgrade(SQLiteDatabase	db,	int	oldVersion,int	newVersion)

{

switch(oldVersion)	{

			case	1:	db.execSQL(DATABASE_CREATE_MAIN_TABLE);

			case	2:	db.execSQL(DATABASE_CREATE_MAIN_TABLE);

			case	3:	db.execSQL(DATABASE_CREATE_DEL_TABLE);

			}

}

Inside	our	onUpgrade()	method,	we	have	a	switch	case	to	make	changes.	Notice	that	we
do	not	use	the	break	statement	because	the	user	can	be	on	an	older	version	and	may	not
have	updated	the	application,	as	explained	earlier.	For	instance,	let’s	consider	that	a	user	is
on	a	particular	version	of	an	application	that	is	running	DB_VERSION	=1	and	he	or	she	skips
the	next	update	that	contained	DB_VERSION	=2,	and	eventually,	a	new	version	of	the
application	with	DB_VERSION	=3	is	released.	Now,	we	have	a	case	where	the	user	is	still
using	an	older	version	of	the	application	and	has	not	installed	the	new	updates	we	have
released.	So,	in	this	case,	when	the	user	installs	the	application,	the	onUpgrade()	method
will	first	execute	case	1	and	then	go	to	case	2	to	install	updates	that	the	user	missed;
finally,	the	user	will	install	the	updates	of	the	third	version,	ensuring	that	all	the	database
changes	are	reflected.	Notice	that	there	is	no	break	statement.	This	is	because	we	want	to
run	all	the	cases	where	the	switch	statement	obtains	the	value	1	and	the	last	two
statements	where	the	switch	case	obtains	the	value	2.

Alternatively,	we	can	also	use	the	if	statement.	This	will	also	behave	as	we	intended	as
our	test	DB_VERSION	constant	was	1,	which	will	satisfy	both	the	conditions	and	reflect	the
changes:

if	(oldVersion<2)	{db.execSQL(DATABASE_CREATE_MORE_TABLE);	}	

if	(oldVersion<3)	{db.execSQL(DATABASE_CREATE_DEL_TABLE);	}

Database	minus	SQL	statements
In	most	parts	of	the	book,	we	looked	around	for	nooks	and	corners	of	Android	and
SQLite.	For	some,	writing	SQL	statements	would	be	just	another	day	in	the	office,	while
for	some,	it	will	come	across	as	a	roller-coaster	ride.	This	section	will	cover	a	library	that
enables	us	to	save	and	retrieve	SQLite	database	records	without	writing	a	single	SQL
statement.	ActiveAndroid	is	an	active	record-style	SQLite	persistence	for	Android.
According	to	the	documentation,	each	database	record	is	wrapped	neatly	into	a	class	with
methods	such	as	save()	and	delete().	We	will	be	using	the	example	in	the
ActiveAndroid	documentation	and	build	a	working	sample	based	on	it.	Let’s	look	at	the
steps	required	to	get	it	up	and	running.

Have	a	look	at	the	official	site,	http://www.activeandroid.com/,	for	an	overview	and
download	the	files	from	http://goo.gl/oW2kod.

Once	you	download	the	file,	run	ant	on	the	root	folder	to	build	the	JAR	file.	Once	you	run
ant,	you	will	find	your	JAR	file	in	the	dist	folder.	In	Eclipse,	make	a	new	project,	add	the
JAR	file	to	the	libs	folder	of	the	project,	and	then	add	the	JAR	file	to	the	Java	Build
Path	in	the	project	properties.

ActiveAndroid	looks	out	for	some	global	settings	configured	by	performing	the	following
steps:

1.	 We	will	start	by	creating	a	class,	extending	the	application	class:

public	class	MyApplication	extends	com.activeandroid.app.Application	

{

			@Override

public	void	onCreate()

{

					super.onCreate();

					ActiveAndroid.initialize(this);

				}

			@Override

public	void	onTerminate()

{

					super.onTerminate();

					ActiveAndroid.dispose();

			}

}

2.	 Now	we	will	add	this	application	class	to	our	manifest	file	and	add	metadata
corresponding	to	our	application:

<application

		android:name="com.active.android.MyApplication">

		<meta-data

					android:name="AA_DB_NAME"

					android:value="test.db"	/>

		<meta-data

					android:name="AA_DB_VERSION"

http://www.activeandroid.com/
http://goo.gl/oW2kod

					android:value="1"	/>

………..

</application>

3.	 With	this	basic	setup	complete,	we	will	now	proceed	on	to	creating	our	data	model.
The	ActiveAndroid	library	supports	annotation	and	we	will	use	it	in	the	following
model	classes:

//	Category	class

@Table(name	=	"Categories")

public	class	Category	extends	Model

{

@Column(name	=	"Name")

public	String	name;

}

//	Item	class

@Table(name	=	"Items")

public	class	Item	extends	Model	

{

			//	If	name	is	omitted,	then	the	field	name	is	used.

@Column(name	=	"Name")

public	String	name;

@Column(name	=	"Category")

public	Category	category;

public	Item()	

{

					super();

			}

			public	Item(String	name,	Category	category)

			{

					super();

					this.name	=	name;

					this.category	=	category;			

			}

			}

Note
If	you	want	to	explore	annotations	and	use	them	in	your	project	and	reduce
boilerplate	code,	you	can	check	out	the	following	libraries	for	Android:	Android
Annotations,	Square’s	Dagger,	and	ButterKnife.

4.	 To	add	a	new	category	or	item,	we	need	to	make	a	call	to	save().	In	the	code
segment,	we	can	see	that	an	item	object	is	created	and	associated	with	a	particular
category,	and	in	the	end,	save()	is	called:

public	void	insert(View	v)	

{

		Item	testItem	=	new	Item();

		testItem.category	=	testCategory;

		testItem.name	=	editTextItem.getText().toString();

		testItem.save();

}

To	delete	an	item,	we	can	call	item.delete().	Similarly,	to	fetch	values,	we	have
relevant	methods	as	well.	The	following	is	a	call	to	fetch	all	of	the	data	for	a
particular	category:

		List<Item>getall	=	new	Select().from(Item.class)

							.where("Category	=	?",	testCategory.getId())

							.orderBy("Name	ASC").execute();

There	is	lot	more	to	be	explored	in	ActiveAndroid.	They	have	schema	migration	and	type
serialization;	in	addition	to	this,	you	can	ship	a	prepopulated	database	by	placing	the
database	in	the	asset	folder,	and	you	can	use	content	providers	as	well.	In	short,	it	is	a
well-built	library	for	people	looking	for	indirect	ways	to	communicate	with	the	database
and	perform	database	operations.	It	helps	in	accessing	the	database	in	the	familiar	form	of
Java	methods	instead	of	preparing	SQL	statements	to	perform	the	same	action.	The
complete	sample	code	is	bundled	in	the	chapter	4	code	bundle.

Shipping	with	a	prepopulated	database
We	will	build	a	database	and	put	it	inside	our	asset	folder,	which	is	a	read-only	directory.
At	runtime,	we	will	check	whether	a	database	exists.	If	not,	we	will	copy	our	database
from	the	asset	folder	to	/data/data/yourpackage/databases.	In	Chapter	2,	Connecting
the	Dots,	we	used	a	tool	called	SQLite	Manager;	have	a	look	at	the	third	screenshot	of	the
chapter.	We	are	going	to	use	the	same	tool	to	build	our	database	now.	If	you	pull	your
database	as	explained	in	that	section	or	look	at	that	screenshot,	you	will	notice	a	few	more
tables	along	with	your	database	table:

The	steps	to	be	followed	to	create	a	prepopulated	database	are	as	follows:

1.	 To	make	a	prepopulated	database,	we	need	to	create	a	table	named
android_metadata	apart	from	the	table	we	require.	Using	the	SQLite	Manager	tool,
we	will	create	a	new	database	named	contact,	then	we	will	create	the
android_metdata	table:

CREATE	TABLE	"android_metadata"("locale"	TEXT	DEFAULT	'en_US')

2.	 We	will	insert	a	row	in	the	table:

INSERT	INTO	"android_metadata"	VALUES	('en_US')

3.	 Now	we	will	create	the	tables	we	require,	in	our	case,	contact_table	using	the	SQL
query	we	used	in	Chapter	2,	Connecting	the	Dots.	In	the	DatabaseManager	class,	we
will	just	replace	the	constants	with	the	actual	values:

CREATE	TABLE	"contact_table"	("_id"	integer	primary	key	autoincrement	

not	null,"contact_name"	text	not	null,"contact_number"	text	not	

null,"contact_email"	text	not	null,"photo_id"	BLOB)

It	is	necessary	to	rename	the	primary	ID	field	of	our	tables	to	_id	if	it	is	not	already
defined.	This	helps	Android	in	identifying	where	to	bind	the	ID	field	of	our	tables.

4.	 Let	us	fill	a	few	rows	of	data.	We	can	do	this	by	running	the	Insert	query	or
manually	typing	in	the	values	using	the	tool.	Now,	copy	the	database	file	into	the
asset	folder.

5.	 Now,	in	our	original	personal	contact	manager,	we	will	modify	our	DatabaseManager
class.	The	good	part	is	that	this	is	the	only	class	we	need	to	modify	and	the	rest	of	the
system	will	work	as	intended.

6.	 When	the	application	runs	and	creates	a	new	DatabaseManager	class	by	passing	the
context,	we	will	make	a	call	to	createDatabase()	in	which	first	of	all	we	will	check
whether	the	database	already	exists:

Private	Boolean	checkDataBase()

{

		SQLiteDatabase	checkDB	=	null;

		try	{

					String	myPath	=	DB_PATH	+	DB_NAME;

					checkDB	=	SQLiteDatabase.openDatabase(myPath,	null,

									SQLiteDatabase.OPEN_READONLY);

		}	catch	(SQLiteException	e)	{

					//	database	doesn't	exist	yet.

		}

		if	(checkDB	!=	null)	{

					checkDB.close();

		}

		return	checkDB	!=	null	?	true	:	false;

}

7.	 If	it	doesn’t,	we	will	create	an	empty	database	that	we	will	replace	with	our	database,
which	we	copied	into	our	asset	folder.	After	copying	the	database	from	the	asset
folder,	we	will	create	a	new	SQLiteDatabase	object:

private	void	copyDataBase()	throws	IOException

{

		InputStream	myInput	=	myContext.getAssets().open(DB_NAME);

		String	outFileName	=	DB_PATH	+	DB_NAME;

		OutputStream	myOutput	=	new	FileOutputStream(outFileName);

		byte[]	buffer	=	new	byte[1024];

		int	length;

		while	((length	=	myInput.read(buffer))	>	0)	{

					myOutput.write(buffer,	0,	length);

		}

		myOutput.flush();

		myOutput.close();

		myInput.close();

}

Another	point	to	note	is	that	the	onCreate()	method	of	our	CustomSQLiteOpenHelper
class	will	be	empty	as	we	are	not	creating	a	database	and	tables,	but	we	are	copying	one.
The	sample	code	is	bundled	in	the	chapter	4	code	bundle.	If	this	process	looks	tedious,
don’t	worry;	the	Android	developers’	community	has	a	solution	for	you.
SQLiteAssetHelper	is	an	Android	library	that	will	help	you	in	managing	database	creation
and	version	management,	using	an	application’s	raw	asset	files.

To	implement	this,	we	have	to	follow	a	few	simple	steps:

1.	 Copy	the	JAR	file	into	our	project’s	libs	folder.
2.	 Add	a	library	to	Java	Build	Path.
3.	 Copy	our	zipped	database	file	into	the	asset	folder	of

projectassets/databases/your_database.db.zip.
4.	 The	ZIP	file	should	contain	only	one	db	file.
5.	 Instead	of	extending	the	framework’s	SQLiteOpenHelper	class,	we	will	extend	the

SQLiteAssetHelper	class.

6.	 They	also	provide	you	with	assistance	to	upgrade	the	database	file,	which	needs	to	be
placed	in	assets/databases/<database_name>_upgrade_<from_version>-
<to_version>.sql.

7.	 The	library,	documentation,	and	its	corresponding	sample	can	be	found	at
http://goo.gl/8XSSmR.

http://goo.gl/8XSSmR

Summary
We	covered	a	myriad	of	advanced	topics	in	this	chapter,	ranging	from	loaders	to	the
security	of	data.	We	implemented	our	cursor	loader	to	understand	how	a	loader	works
magic	for	our	applications,	and	we	delved	into	securing	our	database	and	understanding
the	concept	of	permissions	while	exposing	our	content	provider	to	other	applications.	We
also	covered	some	tips	such	as	shipping	with	a	prepopulated	database,	upgrading	a
database	without	breaking	the	system,	and	using	database	queries	without	using	SQL
commands.	This	is	in	no	way	the	only	set	of	things	we	can	achieve	with	database	and
Android.	This	chapter	only	serves	as	a	nudge	towards	the	vast	programming	possibilities
out	there.

Index
A

Activeandroid
about	/	Database	minus	SQL	statements
URL	/	Database	minus	SQL	statements
global	settings,	configuring	/	Database	minus	SQL	statements

addRow()	method	/	Building	the	Insert	query
addURI()	method

about	/	Creating	UriMatcher	definitions
affinity	/	Building	blocks
Ahead	of	Time	(AOT)

about	/	SQLite	in	Android
Android

storage	/	SQLite	in	Android
android.database.SQLite	package

about	/	Database	packages
Android	developer	website

URL	/	Loaders
APIs

about	/	APIs
Application	A

about	/	What	is	a	content	provider?
Application	B

about	/	What	is	a	content	provider?
application	not	responding	(ANR)	/	Loaders
architecture,	SQLite

interface	/	The	SQLite	interface
SQL	compiler	/	The	SQL	compiler
virtual	machine	/	The	virtual	machine
backend	/	The	SQLite	backend

ART
about	/	SQLite	in	Android

AUTO	INCREMENT	keyword	/	Building	blocks

B
B-trees

about	/	The	SQLite	backend
backend,	SQLite

about	/	The	SQLite	backend
B-trees	/	The	SQLite	backend
Pager	/	The	SQLite	backend
OS	Interface	/	The	SQLite	backend

BLOB	class
about	/	Storage	classes

Boolean	datatype
about	/	The	Boolean	datatype

branch	test	coverage
reference	link	/	Why	SQLite?

building	blocks,	Android	/	Building	blocks

C
case-insensitive

about	/	The	SQLite	syntax
close()	method

about	/	The	SQLiteOpenHelper	class
column	constraint

about	/	Building	blocks
URL	/	Building	blocks

column	constraint,	SQLite
NOT	NULL	constraint	/	Building	blocks
DEFAULT	constraint	/	Building	blocks
UNIQUE	constraint	/	Building	blocks
PRIMARY	key	/	Building	blocks
CHECK	constraint	/	Building	blocks
AUTO	INCREMENT	keyword	/	Building	blocks

constraint
about	/	What	is	an	SQLite	statement?

content$//	URI
about	/	Understanding	content	URIs

content	provider
about	/	What	is	a	content	provider?
using	/	Using	existing	content	providers,	Using	a	content	provider
ContentResolver	object	/	What	is	a	content	resolver?
creating	/	Creating	a	content	provider
content	URI	/	Understanding	content	URIs
contract	class,	declaring	/	Declaring	our	contract	class
URIMatcher,	creating	/	Creating	UriMatcher	definitions
initializing,	onCreate()	method	used	/	Initializing	the	provider	through	the
onCreate()	method
adding,	to	manifest	/	Adding	a	provider	to	a	manifest

/	ContentProvider	and	permissions
ContentResolver	object

about	/	What	is	a	content	resolver?
content	URI

about	/	Understanding	content	URIs
ContentValues

about	/	ContentValues
context

about	/	The	SQLiteOpenHelper	class
contract	class

declaring	/	Declaring	our	contract	class
create	query

building	/	Building	the	Create	query

CREATE	TABLE	command
about	/	What	is	an	SQLite	statement?
attributes	/	What	is	an	SQLite	statement?

critical	data,	data	security
encrypting	/	Encrypting	critical	data

CursorLoader
used,	for	loading	data	/	Loading	data	with	CursorLoader
using	/	Using	CursorLoader
started	state	/	Using	CursorLoader
stopped	state	/	Using	CursorLoader
reset	state	/	Using	CursorLoader
implementing	/	Using	CursorLoader

Cursor	object
about	/	Cursor

Cursor	query(Uri	uri,	String[]	projection,	String	selection,	String[]	selectionArgs,
String	sortOrder)	method	/	Creating	a	content	provider

D
Dalvik	virtual	machine	(DVM)

about	/	SQLite	in	Android
data

loading,	with	CursorLoader	/	Loading	data	with	CursorLoader
data,	loading

CursorLoader,	using	/	Using	CursorLoader
data,	loading	with	CursorLoader

loaders,	using	/	Loaders
loader	API	/	Loader	API’s	summary

database
about	/	A	quick	review	of	database	fundamentals
SQLite	statement	/	What	is	an	SQLite	statement?
SQLite	syntax	/	The	SQLite	syntax
UI,	connecting	with	/	Connecting	the	UI	and	database
upgrading	/	Upgrading	a	database
prepopulated	database,	creating	/	Shipping	with	a	prepopulated	database

database	handler	/	A	database	handler	and	queries
database	packages

about	/	Database	packages
APIs	/	APIs
SQLiteOpenHelper	class	/	The	SQLiteOpenHelper	class
SQLiteDatabase	class	/	The	SQLiteDatabase	class
ContentValues	/	ContentValues
Cursor	object	/	Cursor

data	security
about	/	Data	security
content	provider	/	ContentProvider	and	permissions
permissions	/	ContentProvider	and	permissions
critical	data,	encrypting	/	Encrypting	critical	data

datatypes,	SQLite
about	/	Datatypes	in	SQLite
storage	classes	/	Storage	classes
Boolean	datatype	/	The	Boolean	datatype
Date	datatype	/	The	Date	and	Time	datatype
Time	datatype	/	The	Date	and	Time	datatype

Date	datatype
about	/	The	Date	and	Time	datatype

DEFAULT	constraint	/	Building	blocks
delete()	method	/	The	SQLiteDatabase	class

used,	for	deleting	records	/	Deleting	records	through	the	delete()	method
delete()	method,	SQLiteDatabase	/	Building	the	Delete	query
DELETE	command

about	/	A	quick	review	of	database	fundamentals
delete	query

building	/	Building	the	Delete	query
deleteRow()	method	/	Connecting	the	UI	and	database
delRow	method	/	Connecting	the	UI	and	database
dynamic	typing	/	Building	blocks

E
Eclipse

emulator,	setting	up	/	Building	blocks
emulator

about	/	Building	blocks
emulator,	Eclipse

setting	up,	steps	/	Building	blocks
external	storage

about	/	SQLite	in	Android

F
features,	SQLite

zero-configuration	/	Why	SQLite?
no-copyright	/	Why	SQLite?
cross-platform	/	Why	SQLite?
compact	/	Why	SQLite?
fool	proof	/	Why	SQLite?

G
Genymotion

URL	/	Building	blocks
get*()	methods

about	/	Cursor
getBlob()	method	/	Connecting	the	UI	and	database
getCount()	method

about	/	Cursor
getRandomName()	method	/	Using	a	content	provider
getRandomNumber()	method	/	Using	a	content	provider
getReadableDatabase()	method

about	/	The	SQLiteOpenHelper	class
getType()	method

used,	for	getting	return	type	of	content	/	Getting	the	return	type	of	data	through
the	getType()	method

getView()	method	/	Connecting	the	UI	and	database
getWriteableDatabase()	method

about	/	The	SQLiteOpenHelper	class

I
IllegalArgumentException	/	Querying	records	through	the	query()	method
insert()	method

used,	for	adding	records	/	Adding	records	through	the	insert()	method
url	parameter	/	Using	a	content	provider
values	parameter	/	Using	a	content	provider

INSERT	command
about	/	A	quick	review	of	database	fundamentals

insert	query
building	/	Building	the	Insert	query

int	delete(Uri	uri,	String	selection,	String[]	selectionArgs)	method	/	Creating	a
content	provider
INTEGER	class

about	/	Storage	classes
interface,	SQLite

about	/	The	SQLite	interface
internal	storage

about	/	SQLite	in	Android
int	update(Uri	uri,	ContentValues	values,	String	selection,	String[]	selectionArgs)
method	/	Creating	a	content	provider
isAfterLast()	method

about	/	Cursor
isReadOnly()	method

about	/	The	SQLiteOpenHelper	class

J
Just	in	Time	(JIT)

about	/	SQLite	in	Android

L
Lemon	parser	generator

URL	/	The	SQL	compiler
Loader	API

classes/interfaces	/	Loader	API’s	summary
loaders

about	/	Loaders
loadInBackground	method	/	Using	CursorLoader

M
moveToFirst()	method

about	/	Cursor
moveToNext()	method

about	/	Cursor

N
NOT	NULL	constraint	/	Building	blocks
NULL	class

about	/	Storage	classes
NullPointerException	/	Querying	records	through	the	query()	method

O
OAuth

URL	/	Encrypting	critical	data
onContextItemSelected()	method	/	Connecting	the	UI	and	database
onCreate()	method	/	Building	the	Create	query

about	/	The	SQLiteOpenHelper	class
used,	for	initializing	content	provider	/	Initializing	the	provider	through	the
onCreate()	method

onOpen()	method
about	/	The	SQLiteOpenHelper	class

onUpgrade()	method
about	/	The	SQLiteOpenHelper	class

/	Building	the	Create	query
OS	Interface

about	/	The	SQLite	backend

P
Pager

about	/	The	SQLite	backend
path

about	/	Understanding	content	URIs
permissions	/	Adding	a	provider	to	a	manifest,	ContentProvider	and	permissions
prepareData()	method	/	Building	the	Insert	query
prepareSendData()	method	/	Connecting	the	UI	and	database
prepopulated	database

shipping	/	Shipping	with	a	prepopulated	database
creating	/	Shipping	with	a	prepopulated	database

PRIMARY	key	/	Building	blocks

Q
query

about	/	A	quick	review	of	database	fundamentals,	A	database	handler	and
queries
create	query,	building	/	Building	the	Create	query
insert	query,	building	/	Building	the	Insert	query
delete	query,	building	/	Building	the	Delete	query
update	query,	building	/	Building	the	Update	query

query()	method
used,	for	querying	records	/	Querying	records	through	the	query()	method
uri	parameter	/	Using	a	content	provider
projection	parameter	/	Using	a	content	provider
selection	parameter	/	Using	a	content	provider
selectionArgs	parameter	/	Using	a	content	provider
sortOrder	parameter	/	Using	a	content	provider

R
REAL	class

about	/	Storage	classes
reset	state,	CursorLoader	/	Using	CursorLoader

S
SELECT	command

about	/	A	quick	review	of	database	fundamentals
shared	preference

about	/	SQLite	in	Android
SQLCipher

about	/	Encrypting	critical	data
URL	/	Encrypting	critical	data
sample	application,	steps	/	Encrypting	critical	data

SQL	compiler
about	/	The	SQL	compiler

SQLite
about	/	Why	SQLite?
using	/	Why	SQLite?
features	/	Why	SQLite?
architecture	/	The	SQLite	architecture
datatypes	/	Datatypes	in	SQLite

SQLite3
about	/	SQLite	version

SQLite3	command
.dump	/	SQLite	version
.schema	/	SQLite	version
.help	/	SQLite	version

SQLiteDatabase()	query	method	/	Building	the	Insert	query
SQLiteDatabase	class

about	/	The	SQLiteDatabase	class
URL,	for	documentation	/	The	SQLiteDatabase	class

SQLite	in	Android
about	/	SQLite	in	Android
version	/	SQLite	version
database	packages	/	Database	packages

SQLite	Manager	tool
URL	/	Building	the	Create	query

SQLiteOpenHelper	class
about	/	The	SQLiteOpenHelper	class

SQLite	statement
about	/	What	is	an	SQLite	statement?
INSERT	/	What	is	an	SQLite	statement?
SELECT	/	What	is	an	SQLite	statement?
UPDATE	/	What	is	an	SQLite	statement?
DELETE	/	What	is	an	SQLite	statement?
ALTER	/	What	is	an	SQLite	statement?
DROP	/	What	is	an	SQLite	statement?

SQL	statements
tips	/	Database	minus	SQL	statements

started	state,	CursorLoader	/	Using	CursorLoader
stopped	state,	CursorLoader	/	Using	CursorLoader
storage,	Android

shared	preference	/	SQLite	in	Android
external	storage	/	SQLite	in	Android
internal	storage	/	SQLite	in	Android

storage	classes
about	/	Storage	classes
NULL	/	Storage	classes
INTEGER	/	Storage	classes
REAL	/	Storage	classes
TEXT	/	Storage	classes
BLOB	/	Storage	classes

String	getType(Uri)	method	/	Creating	a	content	provider
synchronized	keyword

about	/	The	SQLiteOpenHelper	class
syntax,	SQLite

about	/	The	SQLite	syntax

T
TEXT	class

about	/	Storage	classes
TextUtils.isEmpty()	method	/	Connecting	the	UI	and	database
Time	datatype

about	/	The	Date	and	Time	datatype
tips,	prepopulated	database	/	General	tips	and	libraries

U
UI

connecting,	with	database	/	Connecting	the	UI	and	database
UNIQUE	constraint	/	Building	blocks
update()	method	/	The	SQLiteDatabase	class

used,	for	updating	records	/	Updating	records	through	the	update()	method
uri	parameter	/	Using	a	content	provider
values	parameter	/	Using	a	content	provider
WHERE	clause	/	Using	a	content	provider

update()	method,	SQLiteDatabase	/	Building	the	Update	query
UPDATE	command

about	/	A	quick	review	of	database	fundamentals
update	query

building	/	Building	the	Update	query
URI

about	/	Understanding	content	URIs
Uri	insert(Uri	uri,	ContentValues	values)	method	/	Creating	a	content	provider

V
VDBE

about	/	The	virtual	machine
version,	SQLite

about	/	SQLite	version
virtual	machine

about	/	The	virtual	machine
void	onCreate()	method	/	Creating	a	content	provider

	Android SQLite Essentials
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers and more
	Why Subscribe?
	Free Access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Enter SQLite
	Why SQLite?
	The SQLite architecture
	The SQLite interface
	The SQL compiler
	The virtual machine
	The SQLite backend
	A quick review of database fundamentals
	What is an SQLite statement?
	The SQLite syntax
	Datatypes in SQLite
	Storage classes
	The Boolean datatype
	The Date and Time datatype
	SQLite in Android
	SQLite version
	Database packages
	APIs
	The SQLiteOpenHelper class
	The SQLiteDatabase class
	ContentValues
	Cursor
	Summary
	2. Connecting the Dots
	Building blocks
	A database handler and queries
	Building the Create query
	Building the Insert query
	Building the Delete query
	Building the Update query
	Connecting the UI and database
	Summary
	3. Sharing is Caring
	What is a content provider?
	Using existing content providers
	What is a content resolver?
	Creating a content provider
	Understanding content URIs
	Declaring our contract class
	Creating UriMatcher definitions
	Implementing the core methods
	Initializing the provider through the onCreate() method
	Querying records through the query() method
	Adding records through the insert() method
	Updating records through the update() method
	Deleting records through the delete() method
	Getting the return type of data through the getType() method
	Adding a provider to a manifest
	Using a content provider
	Summary
	4. Thread Carefully
	Loading data with CursorLoader
	Loaders
	Loader API's summary
	Using CursorLoader
	Data security
	ContentProvider and permissions
	Encrypting critical data
	General tips and libraries
	Upgrading a database
	Database minus SQL statements
	Shipping with a prepopulated database
	Summary
	Index

