

Also	by	Mark	Myers

A	Smarter	Way
To	Learn	HTML	&	CSS

Learn	it	faster.	Remember	it	longer.
	

Mark	Myers

Copyright	©	2015	Mark	Myers
All	rights	reserved,	including	the	right	to	reproduce	this	book,	or	any	portions	of	it,	in	any

form.

1.0

http://www.ASmarterWayToLearn.com
	

Chapters

Learn	it	faster.	Remember	it	longer.

How	to	use	this	book

1	HTML	&	CSS

2	Creating	paragraphs

3	Creating	headings

4	Specifying	fonts

5	Linking	your	CSS	to	your	HTML

6	Specifying	a	font-size

7	CSS	classes

8	Classes	not	tied	to	an	element

9	Font-weight

10	Font-style

11	Styling	bits	and	pieces

12	Colors

13	Spacing

14	Aligning	text

15	First-line	indent	and	blockquote

16	Margins

17	Borders

18	Padding

19	Inheritance

20	Grouping

21	ID

22	Div

23	Images

24	Block	vs.	inline

25	Adding	more	info	to	the	image	tag

26	Positioning	an	image

27	Centering	an	image

28	Floating	images

29	Links

30	Link	addresses

31	Linking	to	a	location	on	a	page

32	Opening	a	new	window

33	Styling	links

34	Clickable	images

35	Image	maps	part	1

36	Image	maps	part	2

37	Bullet	lists	and	numbered	lists

38	Styling	lists

39	Styling	a	list’s	markers

40	More	CSS	selectors

41	Tables:	basic	structure

42	Tables:	headings

43	Tables:	spanning	columns	and	rows

44	Tables:	borders

45	Tables:	spacing	part	1

46	Tables:	spacing	part	2

47	Tables:	aligning	text

48	Tables:	background-color

49	Forms:	the	form	tag

50	Forms:	text	input

51	Forms:	textarea

52	Forms:	submit

53	Forms:	radio	buttons

54	Forms:	checkboxes

55	Forms:	select	box

56	Forms:	label

57	Grouping	related	elements

58	Forms:	styling

59	Comments

60	Layout:	nested	boxes

61	Layout:	divs

62	Layout:	div	widths	and	centering

63	Layout:	side-by-side	divs

64	Layout:	a	modern	header	part	1

65	Layout:	a	modern	header	part	2

66	Layout:	a	modern	header	part	3

67	Layout:	a	modern	header	part	4

68	Layout:	a	modern	header	part	5

69	A	vertical	navigation	bar	part	1

70	A	vertical	navigation	bar	part	2

71	A	vertical	navigation	bar	part	3

72	A	vertical	navigation	bar	part	4

73	A	vertical	navigation	bar	part	5

74	A	horizontal	navigation	bar	part	1

75	A	horizontal	navigation	bar	part	2

76	Background	images	part	1

77	Background	images	part	2

78	Iframes

79	Embedding	YouTube	videos

80	Further	customizing	YouTube	videos

81	Embedding	Vimeo	videos

82	Audio

83	Ems	vs.	percentages	vs.	pixels

84	Relative	and	static	positioning

85	Z-index

86	Media	queries

87	Min-	and	max-width,	min-	and	max-height

88	The	stuff	at	the	top

89	The	meta	description

90	Build	a	site

Acknowledgements

Learn	it	faster.
Remember	it	longer.

	

If	you	embrace	this	method	of	learning,	you’ll	get	the	hang	of	HTML	and	CSS	in
less	time	than	you	might	expect.	And	the	knowledge	will	stick.

You’ll	catch	onto	concepts	quickly.

You’ll	be	less	bored,	and	might	even	be	excited.	You’ll	certainly	be	motivated.

You’ll	feel	confident	instead	of	frustrated.

You’ll	remember	the	lessons	long	after	you	close	the	book.

Is	all	this	too	much	for	a	book	to	promise?	Yes,	it	is.	Yet	I	can	make	these	promises
and	keep	them,	because	this	isn’t	just	a	book.	It’s	a	book	plus	1,800	interactive	online
exercises.	I’ve	done	my	best	to	write	each	chapter	so	it’s	easy	for	anyone	to	understand,
but	it’s	the	exercises	that	are	going	to	turn	you	into	a	real	HTML	coder.

Cognitive	research	shows	that	reading	alone	doesn’t	buy	you	much	long-term
retention.	Even	if	you	read	a	book	a	second	or	even	a	third	time,	things	won’t	improve
much,	according	to	research.

And	forget	highlighting	or	underlining.	Marking	up	a	book	gives	us	the	illusion	that
we’re	engaging	with	the	material,	but	studies	show	that	it’s	an	exercise	in	self-deception.
It	doesn’t	matter	how	much	yellow	you	paint	on	the	pages,	or	how	many	times	you	review
the	highlighted	material.	By	the	time	you	get	to	Chapter	50,	you’ll	have	forgotten	most	of
what	you	highlighted	in	Chapter	1.

This	all	changes	if	you	read	less	and	do	more—if	you	read	a	short	passage	and	then
immediately	put	it	into	practice.	Washington	University	researchers	say	that	being	asked
to	retrieve	information	increases	long-term	retention	by	four	hundred	percent.	That	may
seem	implausible,	but	by	the	time	you	finish	this	book,	I	think	you’ll	believe	it.

Practice	also	makes	learning	more	interesting.

Trying	to	absorb	long	passages	of	technical	material	puts	you	to	sleep	and	kills	your
motivation.	Ten	minutes	of	reading	followed	by	twenty	minutes	of	challenging	practice
keeps	you	awake	and	spurs	you	on.

And	it	keeps	you	honest.

If	you	only	read,	it’s	easy	to	kid	yourself	that	you’re	learning	more	than	you	are.	But
when	you’re	challenged	to	produce	the	goods,	there’s	a	moment	of	truth.	You	know	that
you	know—or	that	you	don’t.	When	you	find	out	that	you’re	a	little	shaky	on	this	point	or
that,	you	can	review	the	material,	then	re-do	the	exercise.	That’s	all	it	takes	to	master	this
book	from	beginning	to	end.

I’ve	talked	with	many	readers	who	say	they	thought	they	had	a	problem
understanding	technical	concepts.	But	what	looked	like	a	comprehension	problem	was

really	a	retention	problem.	If	you	get	to	Chapter	50	and	everything	you	studied	in	Chapter
1	has	faded	from	memory,	how	can	you	understand	Chapter	50,	which	depends	on	your
knowing	Chapter	1	cold?	The	read-then-practice	approach	embeds	the	concepts	of	each
chapter	in	your	long-term	memory,	so	you’re	prepared	to	tackle	material	in	later	chapters
that	builds	on	top	of	those	concepts.	When	you’re	able	to	remember	what	you	read,	you’ll
find	that	you	learn	HTML	and	CSS	quite	readily.

I	hope	you	enjoy	this	learning	approach.	And	then	I	hope	you	go	on	to	set	the
Internet	on	fire	with	some	terrific	webpages.

How	to	use	this	book

	

Since	you	may	not	have	learned	this	way	before,	a	brief	user	manual	might	be
helpful.

Study,	practice,	then	rest.	If	you’re	intent	on	mastering	the	fundamentals	of	HTML
and	CSS,	as	opposed	to	just	getting	a	feel	for	it,	work	with	this	book	and	the	online
exercises	in	a	15-to-30-minute	session,	then	take	a	break.	Study	a	chapter	for	5	to	10
minutes.	Immediately	go	to	the	online	links	given	at	the	end	of	each	chapter	and	code
for	10	to	20	minutes,	practicing	the	lesson	until	you’ve	coded	everything	correctly.
Then	take	a	walk.

Don’t	wear	yourself	out.	You	learn	best	when	you’re	fresh.	If	you	try	to	cover	too
much	in	one	day,	your	learning	will	go	downhill.	Most	people	find	they	can
comfortably	cover	one	to	three	chapters	a	day.	Your	experience	may	vary.

If	you	find	some	of	the	repetition	tiresome,	skip	exercises.	I	wrote	the	exercises	for
people	like	me,	who	need	a	lot	of	repetition.	If	you’re	a	fast	learner	or	a	learner	with
some	HTML	experience,	there’s	no	reason	to	burden	yourself.	Click	the	Skip
Exercise	and	Get	Credit	button	to	jump	ahead.	Skip	whole	sets	of	exercises	if	you
don’t	need	them.	Practice	as	much	as	you	need	to,	but	no	more.

If	you	struggle	with	some	exercises,	you	know	you’re	really	learning.	An
interesting	feature	of	your	brain	is	that	the	harder	it	is	for	you	to	retrieve	a	piece	of
information,	the	better	you	remember	it	next	time.	So	it’s	actually	good	news	if	you
have	to	struggle	to	recall	something	from	the	book.	Don’t	be	afraid	to	repeat	a	set	of
exercises.	And	consider	repeating	some	exercises	after	letting	a	few	weeks	go	by.	If
you	do	this,	you’ll	be	using	spaced	repetition,	a	power-learning	technique	that
provides	even	more	long-term	retention.

Do	the	coding	exercises	on	a	physical	keyboard.	A	mobile	device	can	be	ideal	for
reading,	but	it’s	no	way	to	code.	Very,	very	few	Web	developers	would	attempt	to	do
their	work	on	a	phone.	The	same	thing	goes	for	learning	to	code.	Theoretically,	most
of	the	interactive	exercises	could	be	done	on	a	mobile	device.	But	the	idea	seems	so
perverse	that	I’ve	disabled	online	practice	on	tablets,	readers,	and	phones.	(It	also
simplified	my	own	coding	work.)

If	you	have	an	authority	problem,	try	to	get	over	it.	When	you	start	doing	the
exercises,	you’ll	find	that	I	can	be	a	pain	about	insisting	that	you	get	every	little	detail
right.	For	example,	if	you	omit	a	semicolon,	the	program	monitoring	your	work	will
tell	you	the	code	isn’t	correct,	even	though	it	might	run.	Learning	to	write	code	with
fastidious	precision	helps	you	learn	to	pay	close	attention	to	details,	a	fundamental
requirement	for	coding	in	any	language.

Subscribe,	temporarily,	to	my	formatting	biases.	Current	code	formatting	is	like
seventeenth-century	spelling.	Everyone	does	it	his	own	way.	There	are	no	universally
accepted	standards.	But	the	algorithms	that	check	your	work	when	you	do	the

interactive	exercises	need	standards.	They	can’t	grant	you	the	latitude	that	a	human
teacher	could,	because,	let’s	face	it,	algorithms	aren’t	that	bright.	So	I’ve	had	to	settle
on	certain	conventions.	All	of	the	conventions	I	teach	are	embraced	by	a	large
segment	of	the	coding	community,	so	you’ll	be	in	good	company.	But	that	doesn’t
mean	you’ll	be	married	to	my	formatting	biases	forever.	When	you	begin	coding
projects,	you’ll	soon	develop	your	own	opinions	or	join	an	organization	that	has	a
stylebook.	Until	then,	I’ll	ask	you	to	make	your	code	look	like	my	code.

1
HTML	&	CSS

An	HTML	(Hypertext	Markup	Language)	document	is	a	text	file	that	tells	the
browser	(Chrome,	Firefox,	Internet	Explorer,	Safari,	and	others)	how	to	assemble	a
webpage.	It	says	to	the	browser,	“Put	this	heading	here.	Put	that	paragraph	there.	Insert
this	picture	here.	Put	that	table	there.”

Though	it	can	create	webpages	with	formatting	that	is	sometimes	elaborate	and	even
beautiful,	an	HTML	document	itself	is	pure	text,	without	any	formatting	whatsoever.	This
means	you	can’t	use	a	word	processing	program	like	Microsoft	Word	to	write	HTML,
because	Word	and	other	word	processors	add	formatting.	Instead,	you’ll	choose	from	any
number	of	editing	programs	that	produce	pure	text.	The	simplest	of	these	is	Notepad	on	a
PC	and	TextEdit,	in	Plain	Text	mode,	on	a	Mac.	You	can	also	use	fancier	editing
programs.	And	there	are	web	development	tools	like	Dreamweaver.	They	all	create	the
pure	text	required	for	HTML.	My	favorite	code	editor	is	the	open	source	Brackets,	free	at
http://brackets.io/.

When	I	ask	you	to	do	something	in	Brackets,	Notepad,	or	TextEdit,	feel	free	to
substitute	any	of	the	alternative	editors.

Each	HTML	document	creates	a	single	webpage	in	the	browser.	If	a	site	has	a
hundred	pages,	it	has	a	hundred	HTML	documents.

An	HTML	document’s	name	ends	with	the	.html	extension,	as	in	about.html	or
products.html.

When	you’re	looking	at	a	webpage,	you	can	see	the	name	of	the	page’s	HTML
document	in	the	browser’s	address	bar.

http://www.ASmarterWayToLearn.com/htmlcss/23.html

When	the	line	of	characters	shown	above	is	entered	in	the	browser’s	address	bar,	the
browser	loads	the	HTML	document	23.html,	and	that	page	is	assembled	in	the	browser
and	displayed	on	the	user’s	screen.	If	a	user	clicks	a	link	on	the	page	for,	say
help.html,	then	the	file	help.html	loads,	and	that	page	is	displayed.

There’s	one	HTML	name	you	usually	won’t	see	in	the	browser’s	address	bar,
index.html.	That’s	the	name	of	the	page	that	loads	by	default	when	no	HTML
document	is	specified.	It’s	the	site’s	home	page.	So	if	you	enter	this	in	the	browser’s
address	bar…

http://www.asmarterwaytolearn.com

…the	document	that	loads	(with	some	exceptions)	is	index.html.

All	the	HTML	documents	for	a	site	are	stored	on	the	web	hosts’s	server,	or,	in	the
case	of	a	big,	important	site,	often	on	the	site	owner’s	own	server.	When	the	browser	is

http://brackets.io/
http://www.ASmarterWayToLearn.com/htmlcss/23.html

pointed	to	a	page	on	the	site,	the	browser	fetches	the	appropriate	HTML	file	from	the
server	and	displays	that	page.

A	browser	will	also	display	an	HTML	document	stored	on	your	computer’s	hard
drive.	That	will	prompt	your	browser	to	display	the	page	on	your	screen.

Whereas	an	HTML	document	specifies	the	contents	of	a	webpage—the	headings,
paragraphs,	images,	tables,	etc.—A	CSS	(cascading	stylesheets)	file	specifies	the	styling
of	that	page—fonts,	colors,	column	widths,	and	the	like.

Like	an	HTML	document,	a	CSS	file	is	plain	text.	You	can	create	it	with	the	same
editor	you	use	to	create	an	HTML	document.	A	CSS	file	has	the	extension	.css.

When	an	HTML	document	loads,	it	calls	the	CSS	file	that	styles	its	contents.

Rather	than	creating	a	separate	CSS	file,	it’s	possible	to	include	all	of	the	styling
specifications	in	an	HTML	document.	But	the	preferred	way	to	style	webpages	is	to	put	all
the	styling	information	in	a	separate	CSS	file,	so	that’s	what	I’m	going	to	teach	you.

These	are	the	rules	I’m	going	to	ask	you	to	follow	for	naming	both	HTML	and	CSS
files:

Use	only	lower-case	characters.

Avoid	spaces.

Stick	to	0-9,	a-z,	and	_.

Find	the	interactive	coding	exercises	for	this	chapter	at:
http://www.ASmarterWayToLearn.com/htmlcss/1.html

http://www.ASmarterWayToLearn.com/htmlcss/1.html

2
Creating	paragraphs

Let’s	get	your	feet	wet.

1.	 On	your	hard	drive	create	a	folder	called	my-smarter-site.	(If	you’re	unclear	how	to
create	a	folder	in	your	particular	operating	system,	Google	it.	There’s	plenty	of	good
Windows	and	Mac	instruction	for	this	online.)

2.	 Under	the	my-smarter-site	folder	create	a	subfolder	called	css.	(Again,	if	this	isn’t
something	you	know	how	to	do,	Google	it.)

3.	 Online,	go	to	http://asmarterwaytolearn.com/htmlcss/practice-2-0.html

4.	 Copy	all	the	text	on	the	page.

5.	 Open	your	plain-text	editor	(see	the	last	chapter)	and	create	a	new	document.

6.	 Paste	the	copied	text	into	it.

7.	 Save	the	document	in	your	my-smarter-site	folder	as	practice.html

8.	 On	the	empty	line	between	<body>	and	</body>	type	your	name.

9.	 Save	the	file.

10.	 Go	to	Windows	Explorer	(PC)	or	Finder	(Mac)	and	double-click	the	file.	And	voila!

There’s	your	name,	displayed	in	the	browser.	You’ve	just	created	and	displayed	your
first	webpage.

If	it	doesn’t	work,	take	a	look	at	the	sample	code	at:
http://asmarterwaytolearn.com/htmlcss/practice-2-1.html

Now,	on	a	new	line,	add	a	few	more	words	to	your	code,	so	it	looks	like	this.
<html>

		<head>

				<title>Practice</title>

		</head>

		<body>

				Mark	Myers

				That’s	my	name.

		</body>

</html>

Save	the	file	and	display	the	page,	following	steps	8	and	9	above.

Sample	code,	if	you	need	it,	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-2-2.html.

http://asmarterwaytolearn.com/htmlcss/practice-2-1.html
http://asmarterwaytolearn.com/htmlcss/practice-2-2.html

But	wait!	You	wrote	the	text	on	two	lines…
Mark	Myers

That’s	my	name.

But	the	browser	displayed	it	all	on	one	line.

	

Mark	MyersThat’s	my	name.

	

The	problem	is	that	the	browser	doesn’t	recognize	a	carriage	return.

When	you	hit	a	carriage	return	in	a	word	processor	or	your	text	editor,	the
application	breaks	the	text	you	write	next	into	a	new	paragraph,	but	when	you	enter	a
carriage	return	in	an	HTML	document,	the	browser	ignores	it.	If	you	want	to	display	your
two	sentences	in	two	separate	paragraphs,	you	have	to	explicitly	tell	the	browser	to	do	it.
You	do	this	with	paragraph	tags.
<html>

		<head>

				<title>Practice</title>

		</head>

		<body>

				<p>Mark	Myers</p>

				<p>That’s	my	name.</p>

		</body>

</html>

Revise	your	practice.html	text	document	to	include	the	tags	shown	above.	Save	the
file.	Display	the	page	in	your	browser.

If	you	coded	correctly,	the	page	will	now	display	the	text	in	two	separate	paragraphs.

Sample	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-2-3.html.

Tags	are	the	commonest	feature	of	an	HTML	document.	You	use	them	for	all	kinds
of	things.	Look	at	the	9	lines	of	HTML	above.	There	are	tags	on	every	line.	Usually—but
not	always—HTML	tags	come	in	pairs,	an	opening	tag	paired	with	a	closing	tag.	The
opening	tag	consists	of	some	characters	enclosed	by	and	>.	For	example,	<p>.	The
closing	tag	is	the	same	as	the	opening	tag,	except	a	/	follows	the	opening	<.	For	example,
</p>.

The	opening	tag	tells	the	browser,	“Begin	here.”	The	closing	tag	tells	the	browser,
“End	here.”	So,	for	example,	if	you	write…
<p>These	directions	are	important.	Read	them	carefully.</p>

…you’re	telling	the	browser	to	begin	the	paragraph	at	“These”	and	to	end	it	at
“carefully.”

The	browser	doesn’t	care	whether	you	put	separate	paragraphs	on	separate	lines.	As	I

http://asmarterwaytolearn.com/htmlcss/practice-2-3.html

mentioned	above,	it	ignores	carriage	returns.	But	it’s	conventional	to	break	paragraphs	in
your	code,	like	this.
<p>Hi.</p>

<p>Ho.</p>

Things	to	keep	in	mind:

It’s	legal	to	write	<P>	instead	of	<p>	but	I’ll	ask	you	to	stick	to	lower-case	tags.

There	are	no	spaces	between	the	tags	and	the	text	that	they	enclose.

Good	housekeeping	demands	that	whenever	the	browser	expects	a	closing	tag,	you
provide	it.	Sometimes	you	can	get	away	with	writing	<p>	without	closing	with
</p>,	but	it	can	produce	unpredictable	results.

Take	good	care	of	the	HTML	and	CSS	files	you	created	in	this	chapter.	You’ll	be
revising	the	files	on	a	regular	basis	as	you	make	your	way	through	this	book.	When	you
complete	the	book	and	finish	coding	the	files,	you	will	have	the	worst-looking	webpage	in
Internet	history.	But	it	will	be	a	detailed	demonstration—a	demonstration	that	you	made—
of	the	most	important	concepts	in	HTML	and	CSS	coding.

Find	the	interactive	coding	exercises	for	this	chapter	at:
http://www.ASmarterWayToLearn.com/htmlcss/2.html

http://www.ASmarterWayToLearn.com/htmlcss/2.html

3
Creating	headings

A	heading	on	a	webpage	serves	the	same	purpose	as	a	heading	in	a	newspaper	or
magazine.	It	shows	the	user	what’s	important	and	gives	her	a	sense	of	what	the	paragraphs
underneath	it	are	about.	Headings	also	help	search	engines	understand	a	page.

HTML	gives	you	six	sizes	of	headings	to	choose	from,	h1	through	h6.	h1	is	the
largest,	h6	is	the	smallest.

You	don’t	have	to	include	all	the	different	sizes	of	headings	in	your	HTML
document,	but	you	should	include	an	h1	heading,	because	search	engines	look	for	it.	You
can	have	as	many	h2,	h3,	h4,	h5,	and	h6	headings	in	your	document	as	you	want,	but
you	should	have	only	one	h1	heading.	Otherwise,	search	engines	might	get	confused.

This	is	how	you	code	the	largest	heading.
<h1>This	is	the	largest	heading.</h1>

Notice	that	there’s	both	an	opening	and	a	closing	tag.

Here’s	a	longer	one,	in	h3	size.

<h3>This	is	a	long	heading	that	goes	on	and	on	and	on,	but	it	still	has	just	one	opening	and	one	closing	tag.

</h3>

Let’s	look	at	another	heading.	If	you	write…
<h3>All	the	king’s	horses	and	all	the	king’s	men	couldn’t	put	Humpty	together	again.

</h3>

…the	browser	will	break	the	lines	according	to	how	much	width	is	available.	It
might	break	the	heading	like	this:

	

All	the	king’s	horses	and	all	the	king’s

men	couldn’t	put	Humpty	together	again.

	

Or	it	might	break	it	like	this:

	

All	the	king’s	horses	and	all	the	king’s

men	couldn’t	put	Humpty	together

again.

	

Or	maybe	it’ll	break	it	some	other	way.	But	you	won’t	control,	and	may	not	be	able
to	predict,	how	the	heading	breaks.	If	you’re	at	all	fussy,	you	might	want	to	tell	the
browser	how	to	break	it.	Maybe	you	want	it	broken	this	way:

	

All	the	king’s	horses

and	all	the	king’s	men

couldn’t	put	Humpty

together	again.

	

So	you	try	writing…
<h3>All	the	king’s	horses

and	all	the	king’s	men

couldn’t	put	Humpty

together	again.</h3>

But	this	way	of	writing	the	heading	has	no	effect	on	the	browser.	It	still	breaks	the
heading	the	way	it	wants	to.	The	browser	ignores	carriage	returns.

If	you	want	the	browser	to	break	the	heading	a	certain	way,	you	have	to	tell	it	to	do
so	explicitly,	using	the	tag	
.

<h3>All	the	king’s	horses
and	all	the	king’s	men
couldn’t	put	Humpty

</h3>

Note	that	there’s	no	space	between	the	text	and	
.	And	there’s	no	closing	br
tag.

By	default,	browsers	separate	paragraphs	by	adding	space	between	them.	For
example,	if	you	write…
<p>Slow	lorises	are	a	group	of	several	species	of	primates	which	make	up	the	genus	Nycticebus.

</p>

<p>They	have	a	round	head,	narrow	snout,	large	eyes,	and	distinctive	coloration	patterns	that	are	species-

dependent.</p>

	

…the	two	paragraphs	might	come	out	looking	something	like	this:

	

Slow	lorises	are	a	group	of	several	species	of	strepsirrhine	primates	which
make	up	the	genus	Nycticebus.

They	have	a	round	head,	narrow	snout,	large	eyes,	and	a	variety	of
distinctive	coloration	patterns	that	are	species-dependent.

	

If	you	wanted	a	break	at	the	end	of	the	first	sentence,	but	no	space	between	it	and	the
next	sentence,	you’d	consolidate	both	sentences	into	a	single	paragraph	and	use	
.

<p>Slow	lorises	are	a	group	of	several	species	of	primates	which	make	up	the	genus	Nycticebus.

They	have	a	round	head,	narrow	snout,	large	eyes,	and	distinctive	coloration	patterns	that	are	species-

dependent.</p>

Then	it	would	display	like	this:

	

Slow	lorises	are	a	group	of	several	species	of	strepsirrhine	primates	which
make	up	the	genus	Nycticebus.
They	have	a	round	head,	narrow	snout,	large	eyes,	and	a	variety	of
distinctive	coloration	patterns	that	are	species-dependent.

	

The	browser	displays	each	heading	on	its	own	line.	The	browser	doesn’t	care
whether	you	put	each	heading	on	its	own	separate	line,	but	for	human-readability,	please
do.	For	example:
<h1>Our	Mission</h1>

<h2>Helping	People	Help	People</h2>

In	your	practice.html	document	replace	the	two	paragraphs	about	your	name	with	an
h1	heading,	an	h2	heading,	and	a	multi-line	paragraph.	Save	the	file	and	display	it	in	your
browser.	Sample	HTML	code:
http://asmarterwaytolearn.com/htmlcss/practice-3-1.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:
http://www.ASmarterWayToLearn.com/htmlcss/3.html

http://asmarterwaytolearn.com/htmlcss/practice-3-1.html
http://www.ASmarterWayToLearn.com/htmlcss/3.html

4
Specifying	fonts

Browsers	display	headings	and	paragraphs	in	the	font	of	their	own	choosing.	But	you
can	specify	the	font	you	want.	Let’s	specify	a	font	for	paragraphs.	Open	your	text	editor
and	create	a	new	file.

1.	 In	the	new	file	type:
p	{

		font-family:	Georgia,	“Times	New	Roman”,	Times,	serif;

}	

2.	 Save	the	file	as	styles.css	in	the	css	subfolder	of	your	my-smarter-site
folder.

Now	you	have	two	files,	practice.html	in	the	my-smarter-site	folder	and
styles.css	in	the	css	subfolder	of	the	my-smarter-site	folder.	Things	to	keep
in	mind:

There’s	nothing	sacred	about	calling	your	HMTL	document	practice.html	and
your	CSS	file	styles.css.	You	can	name	the	files	anything	you	want,	as	long	as
the	HTML	file	has	the	extension	html	and	the	CSS	file	has	the	extension	css.

I’ve	asked	you	to	put	the	CSS	file	in	a	subfolder	of	your	main	folder.	This	is
conventional,	but	not	necessary.	You	could	put	the	CSS	file	in	the	same	folder	as	your
HTML	file	if	you	wanted	to,	but	most	developers	do

Let’s	look	at	your	CSS	code	in	detail.	It	begins	with	p.	It	means,	“This	is	a	style	for
paragraphs”—that	is,	all	text	enclosed	by	the	tags	<p>	and	</p>.

p	{

		font-family:	Georgia,	“Times	New	Roman”,	Times,	serif;

}

p	is	followed	by	a	space	and	an	opening	curly	bracket.

p	{

		font-family:	Georgia,	“Times	New	Roman”,	Times,	serif;

}

Next,	indented	2	spaces,	is	the	specification.
p	{

		font-family:	Georgia,	“Times	New	Roman”,	Times,	serif;

}

Notice	that	it’s	font-family,	followed	by	a	colon	and	a	space.	The	list	of	four

fonts	that	follow	is	known	as	a	font	stack.	If	you’re	specifying	a	font	other	than	the	generic
serif,	sans-serif,	etc.,	you	need	to	give	the	browser	one	or	more	fallback	fonts.	(If	you’re
unclear	about	the	difference	between	serif	and	sans-serif	fonts,	Google	it.)	Fallback	fonts
are	necessary	because	the	browser	grabs	the	fonts	for	the	webpage	from	the	user’s
computer.	If	your	first	font	choice	isn’t	installed	on	the	computer,	the	browser	moves	on	to
your	second-choice	font,	then	your	third-choice	font,	etc.	The	stack	can	list	as	many	fonts
as	you	like,	but	the	common	practice	is	to	list	three	or	four.	The	last	fallback—the	last	font
in	the	stack—is	always	the	generic,	for	example	sans-serif,	to	guarantee	that	the	browser
will	be	able	to	display	something	in	the	family	if	none	of	your	other	choices	is	found.	If	a
font	name	has	any	spaces	in	it,	enclose	it	in	quotation	marks,	as	in	“Times	New
Roman”.	The	specification	ends	with	a	semicolon.

p	{

		font-family:	Georgia,	“Times	New	Roman”,	Times,	serif;

}

Finally,	on	a	line	of	its	own,	there’s	a	closing	curly	bracket.
p	{

		font-family:	Georgia,	“Times	New	Roman”,	Times,	serif;

}

Web	safe	fonts	are	fonts	that	have	a	high	likelihood	of	being	found	on	the	user’s
computer,	which	makes	them	good	to	use	on	your	page.	You	can	find	a	list	of	common
web	safe	font	stacks	at	http://abt.cm/O7bwre.	Now	let’s	specify	a	different	font	for	h1
headings.	Add	this	code	to	your	CSS	file.
h1	{

		font-family:	“Trebuchet	MS”,	Helvetica,	sans-serif;

}

Your	CSS	file	should	now	include	two	styles.
p	{

		font-family:	Georgia,	“Times	New	Roman”,	Times,	serif;

}

h1	{

		font-family:	“Trebuchet	MS”,	Helvetica,	sans-serif;

}

Save	the	file.	Sample	CSS	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-4-1.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:
http://www.ASmarterWayToLearn.com/htmlcss/4.html

http://asmarterwaytolearn.com/htmlcss/practice-4-1.html
http://www.ASmarterWayToLearn.com/htmlcss/4.html

5	
Linking	your	CSS
to	your	HTML

Since	the	CSS	file	is	separate	from	the	HTML	file,	the	browser	has	to	be	told	where
to	find	it.	This	is	how	you	do	it.
<html>

		<head>

				<title>Practice</title>

				<link	rel=“stylesheet”	type=“text/css”	href=“css/styles.css”>

		<body>

				<p>Mark	Myers</p>

				<p>That’s	my	name.</p>

		</body>

</html>

This	is	a	mouthful,	so	let’s	break	it	down.

First,	notice	that	the	link	information	goes	between	the	<head>	and	</head>	tags,
rather	than	between	the	<body>	and	</body>	tags,	where	you	wrote	your	two
paragraphs.	The	difference	between	the	head	and	body	sections	is	that	the	head	section
deals	with	a	few	technical	matters—like	telling	the	browser	where	to	find	the	CSS	file—
while	the	body	section	contains	the	content	of	the	page.

Next,	notice	that	the	link	information	itself	is	a	tag.	It’s	placed	inside	an	opening	<
and	a	closing	>.	But	unlike	all	the	other	tags	you	see	in	the	code	above,	it	isn’t	paired	with
a	closing	tag.	It	stands	alone.

The	link	tag	consists	of	three	“equations:”	Each	equation	says	that	something	equals
something	else.	The	second	something	is	in	quotation	marks.

1st	“equation”:	link	rel=“stylesheet”	tells	the	browser	that	the	link
relationship	is	with	a	stylesheet.

2nd	“equation”:	This	is	a	useless,	vestigial	part	of	the	tag,	like	your	appendix.	We’ve
already	told	the	browser	the	link	is	to	a	stylesheet.	All	stylesheets	end	with	the	extension
“css,”	and	they’re	all	text	documents,	so	this	just	repeats	what	the	browser	should	already
know.	But	we	still	have	to	include	it	(but	maybe	not	for	long).

3rd	“equation”:	href	stands	for	hypertext	reference.	This	part	of	the	tag	tells	the
browser	where	to	find	the	CSS	file	to	link	to.	We’ve	put	it	in	the	css	subfolder	of	the
folder	where	this	HTML	document	resides,	the	my-smarter-site	folder.	The	file
name	is	“styles.css.”

Something	to	notice	about	formatting	here:	There	are	no	spaces	in	the	tag,	except

those	separating	the	three	“equations.”

Enter	the	link	tag	in	your	practice.html	document.	Save	it,	and	have	your
browser	display	the	webpage	it	creates.	Expect	the	paragraphs	to	be	in	a	serif	font	and	the
heading	in	a	sans-serif	font,	as	you	specified	in	the	CSS	file.	Find	sample	HTML	code	at:
http://asmarterwaytolearn.com/htmlcss/practice-5-1.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:
http://www.ASmarterWayToLearn.com/htmlcss/5.html

http://asmarterwaytolearn.com/htmlcss/practice-5-1.html
http://www.ASmarterWayToLearn.com/htmlcss/5.html

6	
Specifying	a	font	size

Let’s	change	the	font-size	of	your	paragraph	text	and	your	h1	heading.	Open	your
styles.css	file	and	add	the	two	lines	highlighted	below.
p	{

		font-family:	Georgia,	“Times	New	Roman”,	Times,	serif;

		font-size:	1.2em;

}

h1	{

		font-family:	“Trebuchet	MS”,	Helvetica,	sans-serif;

		font-size:	2em;

}

When	you	specify	1.2em	as	the	paragraph	font	size,	you’re	saying	(without	getting
too	technical)	that	you	want	paragraph	text	to	be	1.2	times	the	default	text	size—the	size
that	the	browser	would	display	if	you	didn’t	specify	a	size.	If	you	specified	1em,	you’d	get
the	default	size.	.75em	would	be	three-quarters	of	default	size.	1.5em	would	be	150%	of
default	size.	3.5em	would	be	three-and-a-half	times	default	size.	This	may	come	as	a
surprise:	When	you	specify	2em	as	the	h1	size,	you’re	not	saying	you	want	the	h1
heading	to	be	200%	of	the	default	h1	size,	but	200%	of	the	default	text	size.	A	2em
heading	is	the	same	size	as	2em	paragraph	text.	The	heading,	though,	will	be	bold	by
default	and	the	paragraph	won’t	be.	Things	to	notice:

font-size:	1.2em;	is	indented	2	spaces.

There	is	no	space	between	1.2	and	em.

The	line	ends	with	a	semicolon.

Coding	Alternatives	to	be	Aware	Of
Instead	of	specifying	font-size	in	ems,	you	can	specify	it	in	percentages,	pixels,	or

points.	In	this	program	we’ll	stick	to	ems	for	font-size.

	

Save	the	CSS	file.	Display	your	HTML	file.	Find	sample	CSS	code	at:
http://asmarterwaytolearn.com/htmlcss/practice-6-1.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:
http://www.ASmarterWayToLearn.com/htmlcss/6.html

http://asmarterwaytolearn.com/htmlcss/practice-6-1.html
http://www.ASmarterWayToLearn.com/htmlcss/6.html

7	
CSS	classes

You’ve	specified	a	font	family	and	a	font	size	for	paragraphs	and	h1	headings.	You
can	also	create	classes	of	paragraphs	and	headings	with	formatting	that	varies	from
general	styling	for	paragraphs	and	headings.	In	fact,	you	can	create	classes	of	just	about
any	element	on	the	page	for	custom	formatting.	Open	your	styles.css	file	and	add
this	style…
p.important	{

		font-size:	1.5em;

}

Save	your	CSS	file.	Now	you’ve	created	special	styling	for	a	class	of	paragraphs.
This	special	style	named	“important”	will	override	the	general	style	that	you	created
earlier.	When	you	say	you	want	text	in	paragraphs	of	the	class	“important”	to	have	a	font-
size	of	1.5em,	you’re	saying	you	want	the	text	to	be	one-and-a-half	times	normal	size.
But	what	is	normal	size?	It	depends	on	whether	you’ve	created	a	general	style	in	your	CSS
file	that	applies	to	the	whole	page	(See	Chapter	19).	If	you	haven’t	created	a	general
paragraph	style,	normal	size	is	the	browser	default	size—1em.	So	then	a	1.5em	font-size
for	the	paragraph	class	“important”	would	be	one-and-a-half	times	the	browser	default
size.	The	rules	for	naming	classes	would	fill	a	book.	To	keep	things	simple,	I’m	going	to
ask	you	to	use	lowercase	alphabet	letters,	hyphens,	underlines,	and	numbers.	But	don’t
start	a	name	with	a	number.	Here’s	an	example	of	a	class	for	h3	headings.

h3.bigger	{

		font-size:	2.5em;

}

This	class	will	be	250%	of	the	size	of	normal	text.	Again,	“normal”	means	250%	of
the	size	of	the	browser	default	text	size	if	you	haven’t	specified	a	style	for	the	whole	page.
If	you	have	styled	h3	headings,	the	“bigger”	class	of	headings	will	be	250%	of	that	size.
Save	your	CSS	file.	Open	your	HTML	file	and	add	this	line…
<p	class=“important”>Warning:	We	have	no	slow	lorises	here.

</p>

Now	the	text	“Warning:	We	have	no	slow	lorises	here.”	will	be	one-and-a-half	times
“normal”	text	size.	Things	to	notice:

The	class	reference	is	part	of	the	opening	p	tag,	all	enclosed	in	brackets.

The	class	name	is	enclosed	in	quotation	marks.

The	closing	paragraph	tag	doesn’t	change.	It’s	still	</p>.

Note:	The	same	class	can	be	assigned	to	any	number	of	elements.	And	you	can

assign	more	than	one	class	to	an	element.	You	just	separate	the	class	names	by	a	space.
Here’s	an	example.
<h3	class=”special	conspicuous	enhanced“>Hey	now!<h3/>

Let’s	say	you’ve	created	a	class	named	“special”	that	specifies	a	font	size,	a	second
class	called	“conspicuous”	that	displays	it	in	red,	and	a	third	class	called	“enhanced”	that
specifies	a	font-weight	of	bold.	In	the	example	above,	all	three	classes	will	apply	to	the
heading.	It	will	be	extra-large,	red,	and	bold.

Save	your	files.	Display	the	page.

Sample	CSS	code:
http://asmarterwaytolearn.com/htmlcss/practice-7-1.html.

Sample	HTML	code:
http://asmarterwaytolearn.com/htmlcss/practice-7-2.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:
http://www.ASmarterWayToLearn.com/htmlcss/7.html

http://asmarterwaytolearn.com/htmlcss/practice-7-1.html
http://asmarterwaytolearn.com/htmlcss/practice-7-2.html
http://www.ASmarterWayToLearn.com/htmlcss/7.html

8	
Classes	not	tied
to	an	element

If	you	intend	to	define	a	particular	class	for	only	one	type	of	element—for	example,
only	paragraph	text	or	only	h3	headings—write	the	element	name	before	the	dot	and	class
name,	as	in…
p.special	{

…or…
h3.special	{

If	you	want	a	class	to	be	useable	for	more	than	one	type	of	element—for	example,
both	paragraph	text	and	headings—omit	the	element	name.	Just	write,	for	example…
.special	{

Open	your	CSS	file	and	add	the	style	below.
.typewriter	{

		font-family:	“Courier	New”,	Courier,	monospace;

}

You’ve	created	a	new	style	named	“typewriter”	that	will	style	text	in	a	typewriter
font.	It	could	be	paragraph	text.	It	could	be	heading	text.	It	could	be	other	kinds	of	text
elements	that	I’ll	introduce	you	to	later.

Notice	that	there’s	no	element	name,	like	p	or	h3,	involved	here.	It’s	just	a	dot	with
the	class	name	following	it.	Save	the	file.

Open	your	HTML	file	and	add	the	code	below.
<h2	class=“typewriter”>This	heading	is	in	typewriter	text.

</h2>

<p	class=“typewriter”>This	paragraph	is	also	in	typewriter	text.

</p>

You’ve	assigned	the	class	“code”	to	a	heading	and	a	paragraph.	Since	your	CSS	file
doesn’t	tie	the	class	to	any	particular	element,	you	can	use	it	for	any	text	element.

Save	the	HTML	file	and	display	it.

Sample	CSS	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-8-1.html.

Sample	HTML	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-8-2.html.

http://asmarterwaytolearn.com/htmlcss/practice-8-1.html
http://asmarterwaytolearn.com/htmlcss/practice-8-2.html

Find	the	interactive	coding	exercises	for	this	chapter	at:
http://www.ASmarterWayToLearn.com/htmlcss/8.html

http://www.ASmarterWayToLearn.com/htmlcss/8.html

9	
Font-weight

In	Chapter	7	you	created	a	paragraph	class	called	“important,”	and	specified	a	font
size	one-and-a-half	times	“normal.”	Now	let’s	make	paragraphs	classed	as	“important”
even	more	important.	We’ll	bold	them.

Open	your	CSS	file	and	add	the	line	highlighted	below.
p.important	{

		font-size:	1.5em;

		font-weight:	900;

By	specifying	a	font-weight	of	900,	you’re	telling	the	browser	to	make	all	the
paragraphs	of	the	class	important	as	bold	as	possible.	The	scale	for	font-weight	ranges
from	100	through	900—100,	200,	300	and	so	on.	100	is	the	lightest	weight.	400	is	normal.
900	is	as	heavy	as	it	gets.

Now,	when	the	browser	encounters	a	paragraph	of	the	important	class,	it	will
display	it	larger	and	in	boldface.

A	note	about	font-weight:	As	an	alternative	to	the	numerical	scale,	you	can	use	one
of	four	font-weight	words:	lighter,	normal,	bold,	and	bolder.

Save	your	CSS	file.	Display	your	HTML	file.	“Warning:	We	have	no	slow	lorises
here.”	should	now	be	in	bold.

Find	sample	CSS	code	at:	
http://asmarterwaytolearn.com/htmlcss/practice-9-1.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/9.html

http://asmarterwaytolearn.com/htmlcss/practice-9-1.html
http://www.ASmarterWayToLearn.com/htmlcss/9.html

10	
Font	style

You	can	specify	italics	for	any	text.	Here’s	a	class	that	applies	italics	to	a	paragraph.
p.standout	{

		font-style:	italic;

}

Here’s	a	class	that	applies	italics	to	h4	headings	of	the	class	“special”.

h4.special	{

		font-style:	italic;

}

Here’s	a	class	that	applies	italics	to	any	text,	whether	it’s	a	paragraph,	heading,	or
some	other	text	element.
.emphasized	{

		font-style:	italic;

}

Remember,	class	names	can	be	anything	you	like,	within	the	bounds	of	the	naming
rules	I	covered	in	Chapter	7.

Instead	of	defining	CSS	classes	to	italicize	text,	you	can	use	the	<i>	tag	in	your
HTML.

In	the	following	paragraph,	the	words	“David	Copperfield”	are	italicized.
<p>Leading	style	manuals	say	book	titles,	like	<i>David	Copperfield

</p>

An	alternative	to	the	<i>	tag	is	the		tag.

<p>You	must	be	dressed	and	ready	to	go.</p>

By	default,	the		tag	has	the	same	visual	effect	as	the	<i>	tag.	They	both
italicize	text.	The	main	difference	is	that	when	a	screen	reader	sees	the		tag,	it	puts
extra	vocal	emphasis	on	the	text	enclosed	in	the	tag.	It	doesn’t	do	that	with	<i>	text.

Instead	of	creating	a	class	for	bold	text	in	CSS,	you	can	use	the		tag	in	HTML.
In	the	following	paragraph	the	text	“Please	note:”	is	bolded.
<p>Please	note:

	The	flight	schedule	is	subject	to	change	without	notice.

</p>

An	alternative	to	the		tag	is	the		tag.	By	default,	the		tag
has	the	same	visual	effect	as	the		tag.	They	both	bold	text	in	most	browsers.	The	main

difference	is	that	when	a	screen	reader	sees	the		tag,	the	reader	may	say	the
text	in	a	lower	tone.	It	doesn’t	do	that	with		text.

In	your	CSS	file,	add	a	class	not	tied	to	an	element	that	italicizes	text.	In	your	HTML
file	code	a	heading	of	that	class.	Then	write	a	one-sentence	paragraph.	In	the	paragraph,
use	the	two	HTML	tags	that	italicize	text	and	the	two	HTML	tags	that	bold	text.	Save	the
files	and	display	your	HTML	file.

Sample	CSS	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-10-1.html.

Sample	HTML	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-10-2.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/10.html

http://asmarterwaytolearn.com/htmlcss/practice-10-1.html
http://asmarterwaytolearn.com/htmlcss/practice-10-2.html
http://www.ASmarterWayToLearn.com/htmlcss/10.html

11	
Styling	bits	and	pieces

So	far	you’ve	been	using	CSS	to	style	whole	blocks	of	text—paragraphs	and
headings.	But	you	can	also	style	bits	and	pieces	of	those	blocks	using	the		tag.
Let’s	go	back	to	the	emphasized	class	from	the	last	chapter.

.emphasized	{

		font-style:	italic;

}

Since	the	class,	as	you	defined	it,	isn’t	tied	to	any	particular	text	element—it	isn’t
p.emphasized	or	h5.emphasized	but	just	.emphasized—it	can	be	applied	to
any	text	you	choose,	including	part	of	a	paragraph	or	heading.	In	the	following	paragraph
the	words	“so	much”	are	italicized.
<p>I	love	you	so	much	I	have	to	use	italics.

</p>

In	your	HTML	file	italicize	a	portion	of	the	paragraph	you	created	in	the	last	chapter,
using	a	span	class	of	“emphasized.”	Save	your	HTML	file	and	display	it.

Sample	HTML	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-11-1.html.
Find	the	interactive	coding	exercises	for	this	chapter	at:
http://www.ASmarterWayToLearn.com/htmlcss/11.html

http://asmarterwaytolearn.com/htmlcss/practice-11-1.html
http://www.ASmarterWayToLearn.com/htmlcss/11.html

12	
Colors

Let’s	say	you	want	to	display	certain	text	in	red.	We’ll	call	the	class	standout.

.standout	{

		color:	#cc0000;

}

You	could,	of	course,	tie	the	class	to	a	text	element.	It	could	be	p.standout	or
h2.standout,	for	instance.	But	we’ll	make	it	an	all-purpose	class	so	we	can	use	it	for
any	type	of	text	element.	Here	it	is,	applied	to	a	single	hyphenated	word.
<p>This	is	going	to	be	a	red-

letter	day!</p>

Here	it	is,	applied	to	a	whole	paragraph.
<p	class=“standout”>Please	read	this	chapter	carefully.	There	will	be	a	quiz.

</p>

And	here	it	is,	applied	to	a	heading.
<h1	class=“standout”>Robots	that	Care</h1>

In	the	CSS	class	as	I	defined	it,	the	color	is	specified	by	a	hex	value,	#cc0000.	You
can	also	use	names	from	the	CSS	list	of	colors,	like	red,	gold,	and
mediumslateblue.	Get	hex	values	for	colors	at	http://www.colorpicker.com/.	Get	a
list	of	CSS	color	names	at	http://www.crockford.com/wrrrld/color.html.

In	your	CSS	file	create	a	class	not	tied	to	an	element	that	colors	text	red.	In	your
HTML	file	use	a	span	to	color	some	text	red.	Save	the	files	and	display	your	HTML	file.

Sample	CSS	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-12-1.html.

Sample	HTML	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-12-2.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/12.html

http://www.colorpicker.com/
http://www.crockford.com/wrrrld/color.html
http://asmarterwaytolearn.com/htmlcss/practice-12-1.html
http://asmarterwaytolearn.com/htmlcss/practice-12-2.html
http://www.ASmarterWayToLearn.com/htmlcss/12.html

13	
Spacing

You	can	create	styles	for	text	spacing.	Let’s	say	your	h2	heading	normally	looks	like
this.	Sign	up	for	the	course	now.	If	you	create	this	style…
h2	{

		letter-spacing:	.1em;

}

…the	h2	heading	would	add	extra	space	between	the	letters.	It	would	look	like
this…

	

Sign	up	for	the	course	now.
	

Note	that	when	you	specify	an	em	value	for	letter-spacing,	it	tells	the	browser	how
much	more	space	you	want	beyond	the	normal	spacing.	Or	how	much	less.	Look	at	this
style.
h2	{

		letter-spacing:	-.05em;

}

The	code	above	tightens	the	space	between	letters,	so	the	heading	looks	like	this…

	

Sign	up	for	the	course	now.
	

If	you	wanted	to	use	default	letter-spacing,	you’d	write…
h2	{

		letter-spacing:	0;

}

Letter-spacing	doesn’t	distinguish	between	characters	in	the	middle	of	a	word	and
characters	that	begin	or	end	a	word.	This	means	that	letter	spacing	adjusts	the	space	not
only	between	characters	in	a	word	but	also	between	the	last	character	of	a	word	and	the
first	character	of	the	next	word.	If	you	increase	letter-spacing,	the	spacing	between	words
increases	automatically.	If	you	compare	the	three	examples	above,	you’ll	see	that	space
has	opened	up	between	words	in	the	first	and	second	examples.

If	you	want	to	adjust	spacing	only	between	words,	use	word-spacing.

I’ll	exaggerate	the	word-spacing	so	you	can	clearly	see	it.

h2	{

		word-spacing:	1em;

}

The	CSS	above	styles	the	heading	to	look	like	this.

	

Sign			up			for			the			course			now.
	

You	probably	won’t	use	word-spacing	very	often.	The	most	common	use	for	it	is	to
slightly	open	up	the	space	between	bolded	words,	for	better	readability.

You	can	specify	the	spacing	between	text	lines,	known	in	the	analog	world	as
“leading,”	by	using	line-height.

Here’s	a	paragraph	with	normal	line-height.

	
Slow	lorises	are	a	group	of	several	species	of	strepsirrhine	primates	which	make	up	the	genus
Nycticebus.	They	have	a	round	head,	narrow	snout,	large	eyes,	and	a	variety	of	distinctive	coloration
patterns	that	are	species-dependent.

	

Suppose	you	create	this	style.
p.more-readable	{

		line-height:	2em;

}

Any	paragraph	in	the	HTML	file	assigned	the	class	“more-readable”	would	look	like
this.

	

Slow	lorises	are	a	group	of	several	species	of	strepsirrhine	primates	which	make	up	the	genus

Nycticebus.	They	have	a	round	head,	narrow	snout,	large	eyes,	and	a	variety	of	distinctive	coloration

patterns	that	are	species-dependent.

	

In	the	case	of	line-height,	1.2em	means	normal	line	spacing.	1.8em	would	be
roughly	an	extra	half-line	of	spacing.	1em	would	be	slightly	tighter	spacing	than	normal.
In	your	CSS	file	code	a	paragraph	class	that	increases	letter-spacing,	word-spacing,	and
line-height.

In	your	HTML	file	code	a	paragraph	and	assign	it	that	class.	Save	the	files	and
display	your	HTML	file.	Sample	CSS	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-13-1.html.

Sample	HTML	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-13-2.html.

http://asmarterwaytolearn.com/htmlcss/practice-13-1.html
http://asmarterwaytolearn.com/htmlcss/practice-13-2.html

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/13.html

http://www.ASmarterWayToLearn.com/htmlcss/13.html

14	
Aligning	text

You	can	center,	left-align,	right-align,	and	justify	text.	This	code	centers	h1
headings…
h1	{

		text-align:	center;

}

An	h1	heading	that	would	normally	look	like	this…

	

Hydrogen	Skateboards

	

…now	looks	like	this…

	

Hydrogen	Skateboards

	

Left-aligned	is	the	default	style	for	HTML	text.	But	you	can	make	it	explicit:
p	{

		text-align:	left;

}

Suppose	you	want	to	place	a	date	all	the	way	over	to	the	right.	You	could	write…
.date-style	{

		text-align:	right;

}

Text	assigned	that	class	would	look	this	this.	(Look	for	the	date	way	over	on	the
right.)

	

July	1,	2018

	

Here’s	a	paragraph	in	the	default	left-aligned	style.

	
Slow	lorises	are	a	group	of	several	species	of	strepsirrhine	primates	which	make	up	the	genus
Nycticebus.	They	have	a	round	head,	narrow	snout,	large	eyes,	and	a	variety	of	distinctive	coloration
patterns	that	are	species-dependent.	Found	in	Southeast	Asia	and	bordering	areas,	they	range	from

Bangladesh	and	Northeast	India	in	the	west	to	the	Phillipines	in	the	east,	and	from	Yunnan	province	in
China	in	the	north	to	the	island	of	Java	in	the	south.

	

Notice	that	the	right	side	is	“ragged.”

	

If	you	want	to	even	it	up,	you	could	create	a	style…
p.pretty	{

		text-align:	justify;

}

A	paragraph	assigned	the	pretty	class	would	have	an	even	right	edge,	like	this.

	
Slow	 lorises	 are	 a	 group	 of	 several	 species	 of	 strepsirrhine	 primates	 which	 make	 up	 the	 genus
Nycticebus.	They	have	a	 round	head,	narrow	snout,	 large	eyes,	and	a	 variety	of	 distinctive	 coloration
patterns	 that	 are	 species-dependent.	 Found	 in	 Southeast	 Asia	 and	 bordering	 areas,	 they	 range	 from
Bangladesh	and	Northeast	India	in	the	west	to	the	Phillipines	in	the	east,	and	from	Yunnan	province	in
China	in	the	north	to	the	island	of	Java	in	the	south.

	

In	your	CSS	file	code	all	h3	headings	so	they	center.	Create	a	class	of	paragraphs
that	justifies	the	paragraph.	In	your	HTML	file	code	a	centered	heading	and	a	justified
paragraph.

Sample	CSS	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-14-1.html.

Sample	HTML	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-14-2.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/14.html

http://asmarterwaytolearn.com/htmlcss/practice-14-1.html
http://asmarterwaytolearn.com/htmlcss/practice-14-2.html
http://www.ASmarterWayToLearn.com/htmlcss/14.html

15	
First-line	indent
and	blockquote

By	default,	browsers	don’t	indent	the	first	line	of	a	paragraph.	The	following
paragraph	shows	how	the	browser	displays	a	paragraph	if	you	don’t	tell	it	to	display	it
differently.

	
Slow	lorises	are	a	group	of	several	species	of	strepsirrhine	primates	which	make	up	the	genus
Nycticebus.	They	have	a	round	head,	narrow	snout,	large	eyes,	and	a	variety	of	distinctive	coloration
patterns	that	are	species-dependent.

	

But	you	can	specify	a	first-line	indent.
p	{

		text-indent:	1em;

}

So	now	a	paragraph	would	have	a	first-line	indent,	like	this.

	
Slow	lorises	are	a	group	of	several	species	of	strepsirrhine	primates	which	make	up	the	genus

Nycticebus.	They	have	a	round	head,	narrow	snout,	large	eyes,	and	a	variety	of	distinctive	coloration
patterns	that	are	species-dependent.

	

Note	that	any	positive	em	value	gives	you	an	indent.	The	larger	the	value,	the	deeper
the	indent.

To	explicitly	specify	the	default,	no	first-line	indent,	you	could	write…
p	{

		text-indent:	0;

}

You	use	blockquote	to	visually	set	off	a	quotation	that’s	more	than	a	few	words	long.
By	default,	any	paragraph	placed	inside	blockquote	tags	is	indented,	like	this.

We	hold	these	truths	to	be	self-evident,	that	all	men	are	created	equal,	that	they	are	endowed	by	their
Creator	with	certain	unalienable	Rights,	that	among	these	are	Life,	Liberty	and	the	pursuit	of
Happiness.

This	is	the	HTML.
<blockquote><p>We	hold	these	truths	to	be	self-

evident,	that	all	men	are	created	equal,	that	they	are	endowed	bytheir	Creator	with	certain	unalienable	Rights,	that	among	these	are	Life,	Liberty	and	the	pursuit	of	Happiness.

</p><blockquote>

You	can	enclose	more	than	one	paragraph	in	blockquote	tags.	You	can	enclose
headings,	too.	And	if	you	don’t	like	the	default	blockquote	styling,	you	can	change	it	in
your	CSS.	For	example,	this	code	increases	the	size	of	the	text	and	displays	the	text	in
gray.
blockquote	{

		font-size:	1.4em;

		color:	darkslategray;

}

You	can	even	increase	or	eliminate	the	amount	of	blockquote	indent.	That’s	in	the
next	chapter.

In	your	CSS	file	code	a	class	of	paragraphs	that	indents	the	first	line.	Then	code	a
blockquote	that	decreases	the	text	size	and	colors	the	text	gray.	In	your	HTML	file	code	a
paragraph	that	indents	the	first	line.	Then	code	a	paragraph	inside	blockquote	tags.

Sample	CSS	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-15-1.html.

Sample	HTML	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-15-2.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/15.html

http://asmarterwaytolearn.com/htmlcss/practice-15-1.html
http://asmarterwaytolearn.com/htmlcss/practice-15-2.html
http://www.ASmarterWayToLearn.com/htmlcss/15.html

16	
Margins

You	can	put	margins	around	paragraphs,	headings,	and	many	other	HTML	elements.
A	margin	creates	extra	whitespace	around	the	top,	bottom,	or	sides	of	an	element.	For
example,	if	you	have	a	paragraph	that	would	normally	look	like	this…

	
Slow	lorises	are	a	group	of	several	species	of	strepsirrhine	primates	which	make	up	the	genus
Nycticebus.	They	have	a	round	head,	narrow	snout,	large	eyes,	and	a	variety	of	distinctive	coloration
patterns	that	are	species-dependent.

	

…adding	a	left	margin	would	add	whitespace	on	the	left,	like	this…

	
Slow	lorises	are	a	group	of	several	species	of	strepsirrhine	primates	which	make	up	the	genus
Nycticebus.	They	have	a	round	head,	narrow	snout,	large	eyes,	and	a	variety	of	distinctive
coloration	patterns	that	are	species-dependent.

	

And	adding	a	right	margin,	in	addition	to	a	left	margin,	would	add	whitespace	on	the
right,	like	this…

	
Slow	lorises	are	a	group	of	several	species	of	strepsirrhine	primates	which
make	up	the	genus	Nycticebus.	They	have	a	round	head,	narrow	snout,	large
eyes,	and	a	variety	of	distinctive	coloration	patterns	that	are	species-
dependent.

	

If	you	wanted,	you	could	specify	top	and/or	bottom	margins	to	add	whitespace	above
and/or	below	the	paragraph.

Here’s	some	CSS	code	that	creates	a	class	of	paragraphs	that	I’ve	named	offset	that
adds	margin	space	all	around	the	text.	The	amount	of	whitespace	is	two	times	the	size	of
default	text.
p.offset	{

		margin:	2em	2em	2em	2em;

}

A	more	concise	way	to	code	equal	margins	on	all	four	sides…
p.offset	{

		margin:	2em;

}

When	you’re	specifying	all	four	margins	in	one	statement,	you	specify	them	in

clockwise	order,	starting	at	the	top.	Let’s	say	you	want	a	right	margin	twice	the	size	of
default	text,	a	left	margin	1.75	the	size	of	the	font,	and	no	margins	on	the	top	or	bottom.
You’d	write…
p.offset	{

		margin:	0	2em	0	1.75em;

}

Note	that	when	you	want	no	margin,	you	write	0,	not	0em.

If	you	want	to	add	space	between	paragraphs,	instead	of	or	in	addition	to	a	first-line
indent,	specify	a	bottom	margin.	This	code	adds	space	between	paragraphs.

p	{

		margin:	0	0	1em	0;

}

Instead	of	specifying	all	four	margins,	you	can	specify	individual	margins.	An
alternative	to	the	example	above	is…
p	{

		margin-bottom:	1em;

}

You	can	also	specify	margin-top,	margin-right,	and	margin-left.

Add	a	class	of	paragraphs	to	your	CSS	file	that	has	extra	whitespace	all	around	it.
Then	add	a	paragraph	to	your	HTML	document	that’s	in	this	class.	Display	the	page.

Sample	CSS	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-16-1.html.

Sample	HTML	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-16-2.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/16.html

http://asmarterwaytolearn.com/htmlcss/practice-16-1.html
http://asmarterwaytolearn.com/htmlcss/practice-16-2.html
http://www.ASmarterWayToLearn.com/htmlcss/16.html

17	
Borders

You	can	put	a	border	around	a	paragraph,	a	heading,	and	many	other	HTML
elements	that	I’ll	introduce	you	to	in	later	chapters.	The	following	code	demonstrates	the
simplest	way	to	specify	a	border.	(I	made	up	the	class	name.	You	could	make	up	a
different	name.)
p.boxed	{

		border:	5px	solid	red;

}

Now	any	paragraph	with	the	class	boxed	assigned	to	it	will	have	a	5-pixel-wide,
solid,	red	border	on	all	four	sides.

As	usual,	you	don’t	have	to	tie	the	style	to	a	particular	element,	like	a	paragraph	or
heading.	You	can	write,	for	instance…
.enclosed	{

		border:	1px	dotted	#0000ff;

}

Now	any	element	with	the	class	“enclosed”	assigned	to	it—paragraph,	heading,	or
something	else—will	have	a	1-pixel-wide,	dotted,	blue	border	on	all	four	sides.

You	can	choose	among	8	border	styles:

dotted

dashed

solid

double

groove

ridge

inset

outset

Things	to	keep	in	mind:

There’s	no	space	between	the	number	and	px.	It’s	2px,	not	2	px.

You	can	use	hex	values	like	#ff00ff	or	color	names	like	blue	to	specify	colors.
Get	hex	values	for	colors	at	http://www.colorpicker.com/.	Get	a	list	of	CSS	color
names	at	http://www.crockford.com/wrrrld/color.html.

http://www.colorpicker.com/
http://www.crockford.com/wrrrld/color.html

Always	state	the	specs	in	this	order:	width,	style,	color.	There’s	a	space	between
them,	but	no	comma.

You	aren’t	limited	just	to	4-sided	borders.	You	can	specify	which	sides	you	want,
and	can	even	mix	widths,	styles,	and	colors	on	different	sides	of	the	same	border	(though
this	wouldn’t	necessarily	be	considered	good	graphic	design).	Here	are	some	examples.
border-top:	4px	double	red;

border-right:	2px	solid	#666666;

border-bottom:	6px	dashed	darkviolet;

border-left:	1px	dotted	#00ee44;

In	your	CSS	file	add	a	class	not	tied	to	an	element	that	specifies	a	border.	In	your
HTML	file	write	a	heading	of	that	class.	Save	the	files	and	display	the	page.

Sample	CSS	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-17-1.html.

Sample	HTML	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-17-2.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/17.html

http://asmarterwaytolearn.com/htmlcss/practice-17-1.html
http://asmarterwaytolearn.com/htmlcss/practice-17-2.html
http://www.ASmarterWayToLearn.com/htmlcss/17.html

18	
Padding

When	you	put	a	border	around	a	paragraph,	heading,	or	other	element,	you’ll	often
want	to	add	breathing	room—whitespace—between	the	border	and	what’s	inside	it.	To
add	a	few	pixels	of	whitespace	all	around,	for	example,	you	could	write…
p.boxed	{

		border:	5px	solid	red;

		padding:	.1em;

}

The	higher	the	em	value,	the	wider	the	gap	between	the	border	and	its	content.

To	specify	gaps	of	different	widths	for	different	sides:
p.boxed	{

		border:	5px	solid	red;

		padding:	.1em	.2em	0	.3em;

}

The	code	above	specifies	a	small	gap	at	the	top,	a	larger	gap	on	the	right,	no	gap	at
the	bottom,	and	the	largest	gap	on	the	left.

Like	code	for	margins,	the	numbers	start	at	the	top	and	go	clockwise.

You	can	also	specify	padding	for	individual	sides.	The	following	code	duplicates	the
effect	of	the	more	concise	code	above.
p.boxed	{

		border:	5px	solid	red;

		padding-top:	.1em;

		padding-right:	.2em;

		padding-bottom:	0;

		padding-left:	.3em;

}

If	you’re	going	to	specify	padding	for	all	four	sides,	the	more	concise	code	is
preferable.	But	if	you	want	to	specify	padding	for	just	one	or	two	sides,	you	might	prefer
the	individual	specifications.

Revise	your	CSS	file	to	include	some	padding	in	the	class	that	specifies	a	border.
Save	the	file.	Display	your	HTML	file.

Sample	CSS	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-18-1.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/18.html

http://asmarterwaytolearn.com/htmlcss/practice-18-1.html
http://www.ASmarterWayToLearn.com/htmlcss/18.html

19	
Inheritance

Inheritance	is	an	efficiency	feature	of	CSS.	It	means	you	have	to	write	far	less	code.

In	order	to	understand	inheritance,	you	need	to	understand	that	an	HTML	page	is
organized	into	parents	and	children.	A	child	element	of	a	parent	element	is	any	element
that’s	enclosed	by	the	parent	element.

Let’s	start	with	the	uber-parent.	In	an	HTML	document,	the	parent	of	all	the	content
that	displays	on	the	page	is	<body>.	Everything	on	the	page	is	a	child	of	<body>,
because	every	element	is	enclosed	by	the	<body>	tags.	(Both	<head>	and	<body>
have	a	parent,	<html>,	but	we’re	not	concerned	with	that	now.)

Look	at	the	simplified	webpage	from	Chapter	2.
<html>

		<head>

				<title>Practice</title>

		</head>

		<body>

				<p>Mark	Myers</p>

				<p>That’s	my	name.</p>

		</body>

</html>

The	two	paragraphs,	like	everything	else	we	might	add	to	the	page,	are	enclosed	by
the	opening	and	closing	<body>	tags,	so	they	are	all	children	of	<body>.	As	the	body
element’s	children,	they	inherit	all	the	CSS	properties	of	that	element.	So,	for	example,	if
we	style	the	body	element	like	this…
body	{

		font-family:	Georgia,	“Times	New	Roman”,	Times,	serif;

		font-size:	1.2em;

		color:	darkslategray;

}

…all	the	text	on	the	page	will	display	in	Georgia	or	one	of	the	alternatives,	at	1.2
times	the	default	size,	and	in	gray.	Paragraphs	will	be	in	Georgia	or	one	of	its	alternatives.
So	will	headings.	All	text	will	be	based	on	a	“normal”	text	size	of	1.2	times	the	browser’s
default	text	size.	All	text,	whether	paragraphs	or	headings,	will	be	gray.	Unless…

…you	override	the	inheritance.

For	example,	if	you	include	this	style	in	your	CSS…
h2	{

		font-family:	“Trebuchet	MS”,	Helvetica,	sans-serif;

}	

…it	overrides	the	inherited	font-family,	Georgia	or	its	relatives,	and	styles	all	h2
headings	in	Trebuchet	or	its	relatives.	Since	you	haven’t	specified	any	overriding	styles
for	size	or	color,	the	h2	headings	will	inherit	these	styles	as	specified	for	the	parent,	the
body	element.	h2	headings	will	be	120%	the	size	of	the	default	for	h2	headings,	and
they’ll	be	gray.	Of	course,	you	can	override	these	inherited	styles	as	well,	for	example:
h2	{

		font-family:	“Trebuchet	MS”,	Helvetica,	sans-serif;

		font-size:	.5em;

		color:	black;

}

Now	we’ve	overridden	all	the	inherited	styles.

When	you	override	an	inherited	size	with	an	em	value	as	in	the	code	above,	the	new
em	value	is	relative	to	the	inherited	size.	The	style	that	the	h2	heading	in	the	code	above
inherits	from	the	body	element	is	1.2em—1.2	times	the	default	text	size.	So	when	we
style	the	h2	heading	at	.5em,	we’re	saying,	“Make	h2	headings	half	the	inherited	size.”
The	inherited	size,	thanks	to	the	style	of	the	body	element,	is	1.2	times	the	default	size.
Half	of	that	size,	specified	by	.5em,	is	.6	times	the	default	size.

That’s	pretty	confusing,	which	is	why	many	developers	specify	1em	for	font-size	in
the	body	style.	That	makes	it	clear	that	all	em	values	specified	for	other	elements	will	be
relative	to	the	browser’s	default	size.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/19.html

http://www.ASmarterWayToLearn.com/htmlcss/19.html

20	
Grouping

You	can	group	elements	that	share	one	or	more	style	characteristics.	For	example,	if
h1,	h3,	and	h5	headings	are	all	to	be	in	the	Arial	font	or	one	of	its	relatives	and	you	want
them	all	centered,	you	can	write…
h1,	h3,	h5	{

		font-family:	Arial,	Helvetica,	sans-serif;

		text-align:	center;

}

Now	all	three	types	of	headings	share	the	same	font-family	and	text	alignment.

This	doesn’t	prevent	you	from	individually	styling	these	elements	with	other
characteristics.	For	example,	if	you	want	h1	and	h5	headings	in	one	color	and	h3
headings	in	another	color,	you	could	add	this	code…
h1,	h5	{

		color:	#333333;

}

h3	{

		color:	#999999;

}

Now	all	three	heading	types	share	the	same	font-family	and	text	alignment.	h1	and
h5	headings	are	one	color.	And	h3	headings	are	another	color.

In	your	CSS	file	group	h4	headings	and	a	class	of	paragraphs	that	center.	In	your
HTML	file	code	an	h4	heading	and	a	paragraph	of	that	class.	Save	the	files	and	display
the	page.

Sample	CSS	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-20-1.html.

Sample	HTML	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-20-2.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/20.html

http://asmarterwaytolearn.com/htmlcss/practice-20-1.html
http://asmarterwaytolearn.com/htmlcss/practice-20-2.html
http://www.ASmarterWayToLearn.com/htmlcss/20.html

21	
ID

At	this	point	you	should	be	clear	about	CSS	classes.	They	can	be	tied	to	an	element,
like	this.
p.extra-special	{

		font-style:	italic;

}

Or	they	can	be	for	general	use—that	is,	not	tied	to	any	particular	element,	like	this.
.extra-special	{

		font-style:	italic;

}

In	HTML	you	assign	a	class	to	an	element	like	this.
<p	class=“extra-special”>Daily	Special<p/>

A	class	can	be	assigned	to	any	number	of	elements.	And	an	element	can	be	assigned
any	number	of	classes.	If	you	have	a	paragraph	class,	it	can	be	assigned	to	a	thousand
different	paragraphs	if	you	like.	If	you	have	a	class	that	isn’t	tied	to	a	particular	element,	it
can	be	assigned	to	different	kinds	of	elements.

An	id	is	like	a	class,	but	more	exclusive.	It	can	be	assigned	only	once	in	an	HTML
document.	And	an	element,	though	it	can	have	many	classes,	can	have	only	one	id.

For	example,	suppose	you’re	styling	a	paragraph	that	contains	a	mission	statement.
This	particular	styling	won’t	be	used	for	any	other	paragraph.	You	could	style	this	special
paragraph	with	a	class,	but	it	would	be	clearer,	from	a	human	point	of	view,	to	single	it	out
as	unique	by	assigning	it	an	id.

The	following	code	creates	an	id	and	styling	for	the	mission	statement.
p#mission-statement	{

		font-family:	“Times	New	Roman”,	Times,	serif;

		font-size:	1.2em;

		color:	darkblue;

}

Note	that	in	the	CSS	the	syntax	you	use	to	define	ids	is	exactly	the	same	as	for
classes,	except	that	a	#	replaces	the	dot.

The	following	code	creates	a	heading	id.

The	following	code	creates	an	id	that	can	be	used	for	a	paragraph,	a	heading,	or	other
elements	that	you’ll	learn	about	later.	But	remember,	any	id,	including	this	one,	should	be
used	only	once	on	any	HTML	page.	For	example,	if	you	use	it	for	a	paragraph,	don’t	use	it
for	another	paragraph,	a	heading,	or	any	other	element	on	the	page.

#special	{

		font-size:	1.5em;

		font-style:	italic;

}

Here’s	an	example	of	HTML	that	assigns	an	id	to	an	element.
<p	id=“whatever”>This	paragraph	has	a	unique	id.</p>

In	the	HTML	the	syntax	is	exactly	the	same,	except	that	you	replace	class	with
id.

ids	are	important	in	HTML,	but	they	play	an	even	larger	role	in	JavaScript,	as	you’ll
learn	in	my	book	A	Smarter	Way	to	Learn	JavaScript,	available	at	Amazon.

In	your	CSS	file	code	an	h2	id	that	colors	the	heading	orange.	In	your	HTML	file
code	a	heading	with	that	id.	Save	the	files.	Display	the	page.

Sample	CSS	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-21-1.html.

Sample	HTML	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-21-2.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/21.html

http://www.amazon.com/Smarter-Way-Learn-JavaScript-technology-ebook/dp/B00H1W9I6C/ref=tmm_kin_swatch_0?_encoding=UTF8&sr=1-3&qid=1399211084
http://asmarterwaytolearn.com/htmlcss/practice-21-1.html
http://asmarterwaytolearn.com/htmlcss/practice-21-2.html
http://www.ASmarterWayToLearn.com/htmlcss/21.html

22	
Div

You	can	break	up	a	webpage	into	sections,	called	divs.	Each	of	these	divs	can	have
its	own	styling,	using	either	a	class	or	an	id.	Coders	commonly	create	separate	divs	for
headers,	navigation	bars,	main	content,	and	footers.	Here’s	some	code	that	creates	a	div
for	the	main	content	of	the	page.	Since	there	would	be	only	one	such	section,	I	use	an	id
rather	than	a	class.
div#main	{

		font-size:	1.1em;

		margin:	.1em	.2em	.2em	.2em;

}

Here’s	the	HTML	that	assigns	the	id.
<div	id=“main”>

		<h2>Here’s	the	whole	story.</h2>

		<p>It’s	soft.</p>

		<p>It’s	fluffy.</p>

</div>

All	elements	within	this	div	will	be	contained	in	a	section	that	has	a	margin	on	each
side.	Unless	you’ve	written	overriding	CSS	code	that	changes	the	font-size	of	certain	text
elements,	all	elements	in	the	div,	which	are	children	of	the	div,	will	be	110%	of
“normal”	size	(however	you’ve	defined	“normal”	when	you	styled	the	body).	If	those
individual	text	elements	are	styled	smaller	(less	than	1em)	or	larger	(more	than	1em)	than
normal,	they’ll	be	scaled	up	or	down	in	relation	to	the	1.1em	specified	for	the	div,	not	the
“normal”	specified	for	the	body.	So	if	you	specified	1em	(the	browser’s	default	size)	for
the	body,	1.1em	for	the	div,	and	1.5em	for	h3	headings,	the	headings	will	be	150%	of
110%	of	the	browser’s	default	text	size.

Note	that	the	<div>	tag	is	closed,	and	that	the	elements	that	are	enclosed	by	the
<div>	tags	are	indented	2	spaces,	since	they’re	all	children	of	the	div.

When	you’re	styling	a	div	that	appears	only	once	on	the	page,	like	the	navigation
section,	main	content,	or	footer,	it’s	best	to	create	an	id	rather	than	a	class	for	it.	If	there’s	a
possibility	a	div	style	may	be	used	more	than	once,	define	a	class.	For	example:
div.special	{

		margin:	.1em	.5em	.1em	.5em;

}

Any	div	assigned	the	“special”	class	will	have	extra	margins	on	the	left	and	right.
The	result	is	that	it	will	be	inset.

Add	a	div	id	to	your	CSS	file.	Give	it	3em	left	and	right	margins.	Assign	it	the	font

family	Arial,	Helvetica,	sans-serif.	In	your	HTML	file	code	a	div	with	that	id.	Inside	the
div	code	a	heading	and	paragraph.	Save	the	files	and	display	the	page.

Sample	CSS	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-22-1.html.

Sample	HTML	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-22-2.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/22.html

http://asmarterwaytolearn.com/htmlcss/practice-22-1.html
http://asmarterwaytolearn.com/htmlcss/practice-22-2.html
http://www.ASmarterWayToLearn.com/htmlcss/22.html

23	
Images

Images	on	a	webpage	are	almost	always	one	of	three	types:	jpg,	gif,	or	png.	In	each
case,	the	three	initials	refer	to	the	file	extension	that	denotes	the	image	format.	The	jpg
format	is	best	for	photographs	and	for	illustrations	with	many	subtle	colors.	The	gif	format
can	be	used	for	line	drawings,	illustrations	with	just	a	few	colors,	and	images	of	text.	Gifs
offer	transparency,	meaning	that	the	background	color	can	show	through	wherever	you
want	it	to.	Gifs	can	be	animated.	Unless	you	need	animation,	the	gif	format	is	rarely	your
best	choice.	The	png	format	is	better.	It	has	the	same	general	features	as	gif,	but	has	no
animation.	It’s	preferred	over	gif	because	it	gives	you	higher	quality	than	a	gif	and	in	a
smaller	file	size.	A	smaller	file	size	means	pages	load	faster.

An	HTML	file	tells	the	browser	which	images	to	place	on	the	page	and	where	to
place	them,	but	the	images	themselves	aren’t	part	of	the	HTML	file.	They’re	individual
jpg,	gif,	or	png	files	that	can	be	stored	anywhere	on	the	Internet.	In	practice,	they’re
usually	placed	in	a	subfolder	under	the	site’s	main	folder.	The	name	most	often	used	for
the	subfolder	is	“images.”

Let’s	assume	that	your	site’s	images	are	in	the	“images”	subfolder	of	your	site’s	main
folder.	This	is	how	to	place	an	image	called	“founder.jpg”	on	your	page.
img	src=“images/founder.jpg”>

img	src	stands	for	“image	source.”	It	tells	the	browser	where	to	find	the	image.
An	equal	sign	comes	next.	Then	there’s	the	path	and	file	name,	all	in	quotes.

There	is	no	closing	tag.

In	the	normal	flow	of	HTML	code,	an	image	will	be	placed	on	the	page	in	the	same
location	as	it	appears	in	the	code.	For	example,	in	the	following	code…
<h3>Our	founder</h3>

<p>Our	founder	is	no	longer	with	us,	alas.<p/>

…the	photo	appears	under	the	heading	and	before	the	paragraph.

You	can,	although	often	not	legally,	display	an	image	from	another	website.	In	that
case,	you	have	to	include	the	whole	URL.

The	following	displays	an	image	stored	in	the	subfolder	“pics”	of	my	website.

Unless	you	tell	it	otherwise	in	your	CSS	file,	the	browser	will	place	an	image	all	the
way	over	on	the	left.	Later,	you’ll	learn	how	to	place	it	where	you	want	it—for	example,
in	the	center	of	the	page.

Add	an	image	to	your	HTML	file:	
http://www.asmarterwaytolearn.com/loris.jpg.

Save	the	file	and	display	it.

Sample	HTML	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-23-1.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/23.html

http://www.asmarterwaytolearn.com/loris.jpg
http://asmarterwaytolearn.com/htmlcss/practice-23-1.html
http://www.ASmarterWayToLearn.com/htmlcss/23.html

24	
Block	vs.	inline	

Most	major	HTML	elements—headings,	paragraphs,	lists,	tables,	and	divs—are
block	elements.	When	an	element	is	a	block	element,	it	means	the	browser	doesn’t	put	any
other	element	beside	it.	If	you	write	a	heading,	then	a	paragraph,	then	a	list,	the	heading
will	begin	on	a	new	line.	The	paragraph	will	begin	on	a	new	line.	The	list	will	begin	on	a
new	line.

Block	elements	can	be	placed	side-by-side,	but	only	if	you	specify	special	styling.
Divs	are	block	elements,	but	we	place	them	side-by-side	all	the	time	using	something
called	float,	for	example	when	we	place	a	sidebar	next	to	a	content	section.	You’ll	learn
more	about	this	later.

All	block	elements	inside	a	div	own	their	own	horizontal	space	only	inside	that	div.
If	your	CSS	specifies	that	two	divs	are	to	be	placed	side-by-side,	then	of	course	elements
of	one	div	will	sit	next	to	elements	of	the	other	div.	It’ll	be	like	two	columns,	with	each
element	having	its	own	horizontal	space,	but	only	within	its	column.

In	addition	to	starting	each	block	element	on	a	new	line,	the	browser	will	add	extra
space	between	them.	Later	you’ll	learn	to	adjust	this	space	using	CSS.

Inline	elements	don’t	start	on	a	new	line.	For	example,	a	link	is	an	inline	element.	If
you	write…
<p>To	find	the	color	that	complements	your	complexion,	try	our	

picker.html”>Color	Picker.</p>

…the	a	href	element	doesn’t	start	on	a	new	line.	That’s	good,	because	you	want	it
to	be	part	of	the	sentence	flow,	not	set	off.

You	may	find	it	surprising	that	images	are	inline	rather	than	block	elements.	If	you
write…

…the	three	images	will	be	arrayed	across	the	div,	if	there’s	room	for	them	all.

You	can	convert	images	into	block	elements	using	CSS.
img.owns-its-own-line	{

		display:	block;

}

Now	any	image	assigned	to	the	class	“owns-its-own-line”	won’t	share	horizontal
space	with	other	images.

In	your	CSS	file	code	a	class	of	images	that	displays	as	a	block.	In	your	HTML	file
assign	that	class	to	the	loris	image	that	you’ve	already	coded.	Then	duplicate	that	image
tag.	Now	you	have	two	images	of	the	loris.	Save	the	files	and	display	the	page.

Sample	CSS	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-24-1.html.

Sample	HTML	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-24-2.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/24.html

http://asmarterwaytolearn.com/htmlcss/practice-24-1.html
http://asmarterwaytolearn.com/htmlcss/practice-24-2.html
http://www.ASmarterWayToLearn.com/htmlcss/24.html

25
Adding	more	info
to	the	image	tag

In	the	last	chapter	you	learned	to	write	the	minimal	amount	of	code	for	placing	an
image	on	the	page.

This	tag	gives	the	browser	the	name	of	the	image	file	and	the	path	where	it’s	stored.
That	will	get	the	job	done.	In	practice,	though,	you’ll	want	to	write	a	more	elaborate	tag.
<img	src=“images/founder.jpg”	alt=“Our	founder”	width=“55”	height=“85”

The	alt	specification	provides	a	word	or	a	few	words	that	describe	the	image.	It’s
the	text	alternative	to	the	image,	which	the	browser	may	display	in	case	the	browser	fails
to	display	the	image	for	some	reason	or	a	person	is	using	a	screen	reader.	The	text	is	up	to
you,	but	it	should	be	brief.

The	width	and	height	specifications	tell	the	browser	how	big	the	image	is	to	be	when
it’s	displayed.	The	numbers	are	pixels.

The	common	practice	is	to	size	original	images	to	exactly	the	dimensions	that	they’ll
display	in	the	browser.	So,	in	the	example	above,	the	image	founder.jpg	would	be	saved	in
Photoshop	or	another	image	editing	program	55	pixels	wide	and	85	pixels	high.	Stating
the	dimensions	in	the	image	tag	gives	the	browser	a	head-start	on	displaying	the	image
correctly,	which	speeds	up	loading.

The	dimensions	you	specify	in	the	image	tag	don’t	have	to	be	the	same	as	the
dimensions	of	the	image.	For	example,	if	you	have	an	image	that’s	200	pixels	wide	by	300
pixels	high,	you	could	ask	the	browser	to	scale	it	to	50%	by	writing	width=“100”
height=“150”.	You	could	also	ask	the	browser	to	scale	up	an	image,	but	this	is	rarely
done,	since	it	degrades	the	image.

Asking	the	browser	to	rescale	an	image	slows	down	page	loading	minutely.	If	you
have	many	images	on	your	page,	there	might	be	a	noticeable	delay.

Browsers	don’t	care	about	the	order	in	which	you	specify	src,	alt,	width,	and
height,	but	the	order	I’ve	given	is	conventional.	I’ll	ask	you	to	stick	to	it	in	the	exercises.
A	reader	and	beta-tester,	John	Koch,	remembers	the	order	of	the	first	three	specifications
by	thinking	of	a	SAW.

In	your	HTML	file	add	an	alt	specification	to	both	loris	image	tags.	Also	add	width
and	height	specifications.	The	image	size	is	250	x	197.	Specify	that	for	the	first	image.
Specify	125	x	99	for	the	second	image.	Save	the	file	and	display	the	page.

Sample	HTML	code	is	at:

http://asmarterwaytolearn.com/htmlcss/practice-25-1.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/25.html

http://asmarterwaytolearn.com/htmlcss/practice-25-1.html
http://www.ASmarterWayToLearn.com/htmlcss/25.html

26	
Positioning	an	image

If	you	don’t	tell	the	browser	where	you	want	an	image	placed,	the	browser	will	place
it	all	the	way	over	on	the	left.	It’ll	also	array	consecutive	images	side-by-side	across	the
screen	if	there’s	room.

You	can	isolate	an	image	on	its	own	line	by	letting	the	browser	know	that	you	want
the	image	treated	as	a	block,	not	an	inline	element.	When	it’s	treated	as	a	block,	it	gets	to
monopolize	the	horizontal	space	it	sits	in.

As	you’ve	learned,	this	is	how	you	tell	the	browser	to	treat	an	image	as	a	block.
img.normal	{

		display:	block;

}

Even	though	the	browser	positions	an	image	all	the	way	over	on	the	left	by	default,
you	can	move	it	to	the	right	as	far	as	you	like,	using	margins.	The	following	code	defines
an	image	class	that	moves	an	image	slightly	to	the	right	of	the	left	edge	of	the	page	or	of
the	div	that	contains	it.

img.inset	{

		display:	block;

		margin-left:	1em;

}

If	you	wanted	it	farther	to	the	right,	you’d	increase	the	em	number.

A	reminder:	inset	is	a	name	I	made	up.	You	can	name	a	class	anything	you	like	as
long	as	you	follow	the	naming	rules.

In	your	CSS	file	create	a	class	that	moves	an	image	right.	In	your	HTML	file	add
that	class	to	the	second	loris	image.	Remember,	an	element	can	have	more	than	one	class
assigned	to	it.	So	the	image	will	have	both	the	class	“has-own-line”	and	the	class	“inset.”
Save	the	files	and	display	the	page.

Sample	CSS	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-26-1.html.

Sample	HTML	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-26-2.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:
http://www.ASmarterWayToLearn.com/htmlcss/26.html

http://asmarterwaytolearn.com/htmlcss/practice-26-1.html
http://asmarterwaytolearn.com/htmlcss/practice-26-2.html
http://www.ASmarterWayToLearn.com/htmlcss/26.html

27	
Centering	an	image

Let’s	create	a	class	for	centering	images.	I’m	going	to	give	it	a	ridiculous	name,	to
remind	you	that	class	names	are	made	up.
img.smack-in-the-middle	{

		display:	block;

		margin-left:	auto;

		margin-right:	auto;

}

auto	tells	the	browser	to	split	the	left	and	right	margins	equally.	The	result	is	a
centered	image.

Here’s	the	HTML.
<img	class=“smack-in-the-

middle”	src=“images/founder.jpg”	alt=“Our	founder”	width=“55”	height=“85”>

Note	that	in	the	HTML	above	class	comes	before	src	and	all	the	other
specifications.	This	isn’t	strictly	necessary,	but	I’ll	ask	you	to	follow	the	convention	when
you	do	the	exercises.

An	alternative	way	to	code	the	styling:
img.smack-in-the-middle	{

		display:	block;

		margin:	0	auto	0	auto;

}

In	your	CSS	file	code	a	class	of	images	that	centers.	In	your	HTML	file	add	a	third
loris	image	and	assign	it	this	class.	Save	the	files	and	display	the	page.

Sample	CSS	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-27-1.html.

Sample	HTML	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-27-2.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/27.html

http://asmarterwaytolearn.com/htmlcss/practice-27-1.html
http://asmarterwaytolearn.com/htmlcss/practice-27-2.html
http://www.ASmarterWayToLearn.com/htmlcss/27.html

28	
Floating	images

Would	you	like	to	wrap	some	text	around	an	image?	Here’s	how.
img.wrap-around-the-right-side	{

		float:	left;

}

Now	any	text	that	comes	after	the	image	in	your	HTML	code	will	wrap	around	the
image,	on	the	right.	If	the	text	is	too	long	to	fit	completely	next	to	the	image,	it’ll	continue
at	full	width	under	the	image.

Note	that	there’s	no	display:	block	here.	The	image	will	share	its	horizontal	space	if
there’s	room.

If	you	want	text	to	wrap	around	the	left	side	of	the	image,	you’d	write:
img.r-float	{

		float:	right;

}

When	you	do	this,	you’ll	notice	that	the	browser	jams	the	text	up	against	the	image,
leaving	no	breathing	room.	You	can	correct	this	by	adding	some	margin	to	the	image.	In
the	following	code,	whitespace	is	added	between	the	image	and	the	text	on	its	right.
Whitespace	is	also	added	below	the	image,	to	give	breathing	room	between	the	image	and
any	text	that	flows	beneath	the	image.
img.wrap-around-the-right-side	{

		float:	left;

		margin:	0	.75em	.5em	0;

}

There’s	one	unintended	consequence	you	need	to	avoid.	Let’s	say	you	have	a	short
paragraph	wrapping	around	the	left	side	of	an	image.	The	paragraph	is	so	short	that	it
doesn’t	fill	all	the	space	to	the	left	of	the	image.	If	you	add	another	paragraph	under	the
short	paragraph,	it	will	wrap.	If	you	don’t	want	this,	you	need	to	tell	the	browser	to	clear
the	float	after	the	first	paragraph.	To	do	this,	you	create	a	class.
p.no-wrap	{

		clear:	both;

}

By	telling	the	browser	to	clear	both,	you’re	saying,	“Don’t	wrap	anything	from	here
on.”	Here’s	the	HTML.
<img	class=“wrap-around-the-right-

side”	src=“images/founder.jpg”	alt=“Our	founder”	width=“55”	height=“85”>

<p>This	is	our	founder,	Bradley	B.	Bradley,	who	envisioned	a	Brad’s	Breadsticks	on	every	corner.

</p><p	class=“no-

wrap”>Wherever	you	go,	you’ll	find	a	Brad’s	Breadsticks	nearby,	with	breadsticks	in	43	delicious	flavors.

</p>

1.	 In	your	CSS	file	code	a	class	of	images	that	floats	and	creates	some	space	between	it
and	the	text	that	wraps	around	it.

2.	 Create	a	class	of	paragraphs	that	clears	the	wrap.

3.	 In	your	HTML	file	copy	the	image	tag	for	the	smaller	version	of	the	loris.	Replace
the	class	name	with	the	class	that	floats.

4.	 Code	a	paragraph	that	will	wrap	around	the	image.

5.	 Code	a	paragraph	that	clears	the	wrap.

6.	 Save	the	files	and	display	the	page.

Sample	CSS	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-28-1.html.

Sample	HTML	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-28-2.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/28.html

http://asmarterwaytolearn.com/htmlcss/practice-28-1.html
http://asmarterwaytolearn.com/htmlcss/practice-28-2.html
http://www.ASmarterWayToLearn.com/htmlcss/28.html

29	
Links

Now	we	come	to	the	feature	for	which	HTML	is	named,	hypertext	a.k.a.	hyperlinks
a.k.a.	links.	You	click	on	some	text	or	an	image,	and	a	new	page	loads.	Or	perhaps
something	else	happens.

A	link	is	displayed,	by	default,	in	blue,	with	an	underline.	Let’s	say	I	want	to	have	a
link	on	my	site,	A	Smarter	Way	to	Learn,	that	takes	the	user	to	the	programming	site	Stack
Overflow.	When	the	user	clicks	Stack	Overflow,	he	is	taken	to	the	home	page	of	that	site.
This	is	the	HTML	that	creates	the	link:
Stack	Overflow

These	are	the	parts.

a	tells	the	browser	to	watch	for	an	anchor.	The	anchor	is	the	link	text	between	the
opening	<a>	tag	and	the	closing		tag.	It	is	the	text	that	the	user	sees.	In	this
case	the	anchor,	or	link	text,	is	Stack	Overflow.

href	stands	for	“hypertext	reference.”	href	tells	the	browser,	“Watch	for	an
address	immediately	following	the	equal	sign.	This	will	be	the	page	to	load	when	the
user	clicks	the	anchor.”

The	Web	address	is	in	quotes.	In	this	case	the	address	is
http://www.stackoverflow.com.

After	the	opening	tag	comes	the	anchor,	the	text	that	the	user	clicks	to	tell	the
browser	to	execute	the	link.	The	anchor	is	not	in	quotes.

The	closing	tag	ends	it.

If	you’re	linking	to	a	page	on	the	same	website,	in	the	same	folder,	all	you	need	is
the	page	name:
Our	products

If	it’s	on	the	same	website	but	in	a	subdirectory,	you	add	the	subdirectory	name.	In
the	following	code,	the	file	is	in	the	catalog	subdirectory.
Our	products

In	your	HTML	file	code	a	link	to	Stack	Overflow	at	http://www.stackoverflow.com”.
Save	the	file	and	display	the	page.	Click	the	link.

Sample	HTML	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-29-1.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/29.html

http://www.stackoverflow.com
http://asmarterwaytolearn.com/htmlcss/practice-29-1.html
http://www.ASmarterWayToLearn.com/htmlcss/29.html

30	
Link	addresses

When	a	link	address	doesn’t	specify	a	page,	like	about.html	or	faq.html,	the
browser	knows	to	go	to	the	home	page	of	the	site,	usually	called	index.html.

http://www.stackoverflow.com…

…is	the	same	as…

http://www.stackoverflow.com/index.html

If	I	wanted	to	link	to	a	page	other	than	index.html,	I	would	include	the	page	name	in
the	address,	like…	http://www.stackoverflow.com/web-design.html

Note	that	there’s	a	/	between	the	domain	name	and	the	page	name.	There	are	no
spaces.

If	the	page	I	wanted	to	link	to	were	in	a	subfolder	under	the	main	folder,	I’d	include
the	subfolder	name	as	well:

http://www.stackoverflow.com/questions/web-design.html

A	link	might	drill	down	through	additional	levels	of	subdirectories,	to	get	to	a	page.
For	example:

http://www.stackoverflow.com/questions/rookie/newest/web-design.html

You	don’t	have	to	have	several	levels	of	subdirectories	in	your	site	structure,	but	you
might	want	to	for	purposes	of	organization	if	the	site	has	hundreds	of	pages.	On	the	other
hand,	if	it’s	a	simple	site,	you	might	have,	for	example,	just	an	“images”	subfolder	and	a
“styles”	subfolder	under	the	main	folder.	All	the	HTML	pages	would	be	in	the	main
folder.	Or	you	might	choose	to	have	a	flat	structure,	with	no	subdirectories	at	all.	It’s	up	to
you.

When	you	link	to	a	page	on	your	own	site,	you	can	skip	the	domain	name.	For
example,	if	I	want	to	display	a	link	on	the	home	page	of	my	site	that	takes	the	user	to	my
own	site’s	faq	page,	I	won’t	have	to	write…
	Frequently	Asked	Questions

I	can	write,	simply…
Frequently	Asked	Questions

When	I	omit	the	domain	name,	the	browser	understands	that	I’m	linking	to	a	page	on
the	same	site.

If	the	page	I’m	linking	to	is	on	the	same	site	but	in	a	folder	or	several	levels	of
directories	lower	than	the	folder	you’re	linking	from,	you	can	still	skip	the	domain	name,
but	you	have	to	include	the	name(s)	of	the	lower	folder	or	directories.

<a	href=”services/code-

checking.html”>Frequently	Asked	Questions

In	the	example	above,	you’re	telling	the	browser	that	the	page	code-checking.html
is	one	level	below	the	folder	you’re	linking	from,	in	the	subfolder	services.	Note	that	there
is	no	/	before	the	subfolder	name.

But	suppose	you	want	to	link	from	a	page	in	the	services	subfolder	to	a	page	in	the
products	subfolder	that’s	on	the	same	level	as	the	services	subfolder.	So	now	you	have	to
tell	the	browser	to	first	go	back	up	one	level,	and	then	go	down	from	there	to	the	products
subfolder.	This	is	how	you	do	it.
<a	href=”../products/text-

editors.html”>Frequently	Asked	Questions

For	each	level	the	browser	needs	to	go	back	up	in	order	to	go	down	again,	add	an
additional	../

For	example,	suppose	you’re	writing	a	link	on	a	page	that’s	in	a	folder	two	levels
down	from	the	home	page.	To	link	back	to	the	home	page	(index.html),	you’d	write:
Home

In	your	HTML	file	create	a	brief	paragraph	that	includes	a	link	that	takes	the	user	to
the	why-exercises.html	page	at	smarterwaytolearn.com.	Save	the	file	and	display	the
page.	Click	the	link.

Sample	HTML	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-30-1.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/30.html

http://asmarterwaytolearn.com/htmlcss/practice-30-1.html
http://www.ASmarterWayToLearn.com/htmlcss/30.html

31	
Linking	to	a	location

on	a	page

When	you	create	a	page	of	significant	length,	you	might	want	to	provide	links	to
various	sections	of	the	page,	so	the	user	doesn’t	have	to	scroll	through	the	page	looking
for	the	section	she	wants	to	see.	On	a	long	page,	it’s	also	nice	to	provide	links	to	the	top	of
the	page,	so	when	she’s	finished	with	a	lower	section,	she	can	jump	back	to	the	top.

You	begin	by	choosing	a	heading,	paragraph,	or	other	element	to	serve	as	the	starting
point	for	the	section.	You	give	this	element	an	id.
<h2	id=“fame-claim”>OUR	CLAIM	TO	FAME</h2>

Then	you	create	a	link	to	it.
Read	all	about	our	claim	to	fame.

It’s	like	links	you	learned	about	in	the	last	chapter,	except	that	a	#	precedes	the	id	in
the	reference.

To	insert	a	link	back	to	the	top,	you’d	create	an	id	for	an	element	at	or	near	the	top	of
the	page.	It	could	be	the	main	heading	for	the	page.	Or	it	could	be	the	content	div	that
encompasses	all	the	content	on	the	page.
<div	class=“content”	id=“top”>

Then,	wherever	you	want	to	place	the	link,	you	could	write…
Back	to	the	top

When	you	want	to	link	to	a	location	on	another	page	on	the	same	site,	you	have	to
include	the	name	of	the	page.
<a	href=”faq.html#why-

me“>Get	answers	to	your	cosmic	questions

The	code	above	links	to	a	heading,	paragraph,	or	other	element	with	the	id	why-me
on	the	faq.html	page.

When	you	want	to	link	to	a	section	of	a	page	on	another	site,	you	have	to	include	the
domain	name.
<a	href=”http://www.cosmicquestions.com/faq.html#why-

me“>Get	answers	to	your	cosmic	questions

In	order	for	this	to	work,	the	page	on	the	other	site	has	to	have	an	element	with	the	id
“why-me.”

In	your	HTML	file	give	the	heading	at	the	top	of	the	page	an	id.	At	the	bottom	of	the

page	code	a	link	to	that	heading.	Save	the	file	and	display	the	page.	Scroll	down	to	the	link
and	click	it.

Sample	HTML	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-31-1.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/31.html

http://asmarterwaytolearn.com/htmlcss/practice-31-1.html
http://www.ASmarterWayToLearn.com/htmlcss/31.html

32	
Opening	a	new	window

No	one	ever	wants	to	lose	a	user	to	another	site,	but	sometimes	we	have	to	link	away
anyway.	The	tactic	for	encouraging	the	user	not	to	leave	permanently	is	to	open	the	linked
site	in	a	new	window,	leaving	your	site	in	its	existing	window.	This	is	how	to	do	it.
Look	it	up	at	<a	href=“http://www.wikipedia.org”	target=“_blank”

When	the	user	clicks	the	link	text	Wikipedia	a	new	window	opens	for	Wikipedia.
The	original	page	remains	open	in	its	own	window.

Have	you	seen	link	text	that	says	things	like	“Explain	this”	or	“What	is	this”?	When
you	click	one	of	these	links,	a	small	window	opens	on	top	of	the	main	window	with	a	bit
of	useful	information.	Most	of	the	main	window	still	shows,	so	the	user	doesn’t	get
disoriented.	She	sees	the	little	window	as	an	addendum	to	the	main	window.
Unfortunately,	you	can’t	create	one	of	these	little	informational	windows	in	HTML.	You
need	JavaScript.	My	book	A	Smarter	Way	to	Learn	JavaScript	shows	you	how,	step-by-
step.	But	here’s	some	code	that	you	can	paste	into	your	page	if	you’d	like	to	create	a	small
window	without	knowing	JavaScript.
<p	id=“openWindow”>Tell	me	a	little	more	about	this.</p>

<script>

document.getElementById(“openWindow”).onclick	=	openWindow;

function	openWindow()	{

		var	w	=	window.open(“more-

info.html”,	””,	“width=200,height=300,left=300,top=400”);

}

</script>

Adapt	the	script	above	to	your	needs	by	making	these	changes:

Substitute	your	anchor	for	Tell	me	a	little	more	about	this.

Substitute	your	HTML	file	name	for	more-info.html

Substitute	your	preferred	width	and	height	for	width=200,height=300.	The	numbers
are	pixels.

Substitute	your	preferred	window	placement	on	the	screen	for	left=300,top=400.	The
first	number	tells	the	browser	how	many	pixels	to	inset	the	window	from	the	left	edge
of	the	screen.	The	second	number	tells	the	browser	how	many	pixels	to	drop	the
window	from	the	top	of	the	screen.

Don’t	add	or	delete	any	spaces	from	the	code.	The	spacing	may	look	odd,	but	if	you
try	to	improve	it	in	any	of	the	wrong	places,	the	window	won’t	open.

In	your	HTML	file	code	a	paragraph	that	includes	a	link	to	asmarterwaytolearn.com.

http://www.amazon.com/Smarter-Way-Learn-JavaScript-technology-ebook/dp/B00H1W9I6C/ref=cm_rdp_product_img

Save	the	file	and	display	it.	Click	the	link.

Sample	HTML	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-32-1.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/32.html

http://asmarterwaytolearn.com/htmlcss/practice-32-1.html
http://www.ASmarterWayToLearn.com/htmlcss/32.html

33
Styling	links

By	default	browsers	style	link	text	in	blue	with	an	underline.	But	you	can	give	it	a
different	style.	You	can	specify	a	different	font-family,	font-size,	font-weight,	color,	and
other	font	characteristics.

You	can	even	lose	the	underline	if	you	like.	But	be	careful.	Users	have	been
conditioned	to	associate	the	underline	with	links.	If	there’s	no	underline,	they’ll	have	a
harder	time	identifying	text	as	something	they	can	click.	Conversely,	it’s	a	bad	idea	to
underline	non-linking	text	for	emphasis.	Some	users	will	try	to	click	on	it.	For	emphasis,
it’s	better	to	put	non-linking	text	in	italics	or	bold.

This	CSS	code	colors	all	your	links	goldenrod.
a	{

		color:	#b8860b;

}

You	can	make	links	change	their	appearance	when	the	user	hovers	the	mouse	over
them.	This	code	bolds	them	and	removes	the	underline	when	the	user	hovers.	(Removing
the	underline	on	hover	isn’t	a	problem,	because	the	user	has	already	identified	it	as	a	link.)
a:hover	{

		font-weight:	bold;

		text-decoration:	none;

}

In	the	code	above,	text-decoration:	none	removes	the	underline.

It’s	not	a	good	idea	to	underline	nonlinking	text	since	it	may	confuse	the	reader	by
signalling	that	the	text	is	clickable,	but	you	can	underline	text	if	you	choose	to,	by
specifying	text-decoration:	underline.

You	can	change	the	appearance	of	links	at	the	moment	the	user	clicks.	This	code
increases
a:active	{

		font-size:	1.25em;

}

You	can	change	the	appearance	of	links	that	the	user	has	already	clicked.	This	code
changes	their	color.
a:visited	{

		color:	deeppink;

}

In	your	CSS	file	code	links	grey	and	links	that	are	hovered	on	orange.	Save	the	file.

Display	the	page.	Check	the	links.	Hover	over	one	and	see	what	happens.

Sample	CSS	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-33-1.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/33.html

http://asmarterwaytolearn.com/htmlcss/practice-33-1.html
http://www.ASmarterWayToLearn.com/htmlcss/33.html

34
Clickable	images

You	can	substitute	an	image	for	a	link	anchor	(the	text	that	the	user	clicks).	When	the
user	clicks	on	the	image,	it	works	the	same	as	anchor	text:	a	new	page	loads	or	something
else	happens.	To	do	it,	you	combine	two	tags	you	already	know,	the	a	tag	and	the	img	tag.

Look	again	at	the	link	code	from	Chapter	28.
Stack	Overflow

When	the	user	clicks	the	words	“Stack	Overflow”	she’s	taken	to	stackoverflow.com.

Here’s	some	code	that	uses	the	Stack	Overflow	logo	instead	of	an	anchor.

<img	src=“images/stack-overflow-

logo.png	alt=“Stack	Overflow	logo”	width=“85”	height=“25”>

When	the	user	clicks	the	image,	she’s	taken	to	stackoverflow.com

One	way	to	create	a	clickable	button	is	to	make	an	image	of	a	button,	then	make	the
image	clickable.
<img	src=“images/button-

faq.png	alt=“Button	linking	to	FAQ	page”	width=“50”	height=“18”>

Another	good	use	for	clickable	images	is	a	photo	gallery.	You	array	one	or	more
rows	of	thumbnail	images	across	the	page.	When	the	user	clicks	one	of	them,	a	larger
version	of	the	image	loads	in	a	new	window.	Here’s	code	that	turns	an	array	of	thumbnails
into	a	clickable	catalog.
<img	class=“fl-

left”	src=“images/thumbnail-

1.jpg”	alt=“Robin”	width=“50”	height=“50”>

<img	class=“fl-

left”	src=“images/thumbnail-

2.jpg”	alt=“Blue	Jay”	width=“50”	height=“50”>

<img	class=“fl-

left”	src=“images/thumbnail-

3.jpg”	alt=“Cardinal”	width=“50”	height=“50”>

<img	class=“fl-

left”	src=“images/thumbnail-

4.jpg”	alt=“Sparrow”	width=“50”	height=“50”>

<img	class=“fl-

left”	src=“images/thumbnail-

5.jpg”	alt=“Pigeon”	width=“50”	height=“50”>

A	nice	way	to	do	this	is	to	add	target=“_blank”	to	the	a	tag	as	I	showed	you	in
Chapter	32,	so	the	page	with	the	big	picture	opens	in	a	new	window.	Even	nicer:	open	it	in
a	window	that’s	smaller	than	full-size	so	the	user	can	see	a	portion	of	the	original	page
underneath,	as	I	showed	you	at	the	end	of	Chapter	32.

In	your	HTML	file	create	an	image	tag	for
http://www.asmarterwaytolearn.com/robo_guy.png	and	link	it	to	asmarterwaytolearn.com.
Save	the	page	and	display	it.	Click	the	picture.

Sample	HTML	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-34-1.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/34.html

http://www.asmarterwaytolearn.com/robo_guy.png
http://asmarterwaytolearn.com/htmlcss/practice-34-1.html
http://www.ASmarterWayToLearn.com/htmlcss/34.html

35
Image	maps	part	1

An	image	map	is	special	type	of	clickable	image.	Your	code	sections	it	into	two	or
more	parts.	If	the	user	clicks	one	section	of	the	image,	a	new	page	loads.	If	he	clicks
another	section,	a	different	page	loads.	For	example,	you	might	have	a	photograph
showing	six	historical	buildings	in	a	town	square.	When	you	click	on	a	particular	building,
a	page	loads	that	tells	the	story	of	the	building.

Image	maps	require	quite	a	bit	of	code,	so	I’m	going	to	divide	the	subject	into	two
chapters.

Let’s	say	your	image	is	“6-buildings.jpg.”	You	begin	with	a	standard	img	tag.
<img	src=“6-

buildings.jpg”	alt=“6	historial	buildings”	width=“800px”	height=“550px”>

Within	the	tag	you	specify	the	name	of	the	image	map	that’s	going	to	divide	up	the
photo	into	clickable	regions.
<img	src=“6-

buildings.jgp”	alt=“6	historial	buildings”	width=“800px”	height=“550px”	

Give	the	map	any	name	you	like	as	long	as	it	doesn’t	include	spaces.	Precede	the
name	with	#.

Next	you	code	the	image	map.	It’s	a	section	of	code	that	begins	with	an	opening	map
tag	and	ends	with	a	closing	/map	tag.

<map	name=“buildings”>

		[Here	you	define	each	of	the	sections	and	give	their

		link	addresses.	I’ll	cover	this	in	the	next	chapter.]

</map>

Notice	that	the	map	name,	“buildings,”	is	the	same	name	you	specified	in	the	img
tag,	but	without	the	#.	You’ve	now	told	the	browser	to	display	the	picture	of	the	six
buildings,	and	to	connect	the	picture	to	an	image	map	named	“buildings.”	In	the	next
chapter,	we’ll	create	the	map	itself.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/35.html

http://www.ASmarterWayToLearn.com/htmlcss/35.html

36
Image	maps	part	2

You’ve	placed	an	image	on	the	page,	and	you’ve	connected	it	to	an	image	map	by
writing,	within	the	img	tag,	usemap=”#buildings”.	Then	you’ve	started	an	image
map	definition	with	the	line…
<map	name=“buildings”>

Here’s	the	whole	thing.
<map	name=“buildings”>

<area	shape=“rect”	alt=“Tuttle	House”	coords=“76,42,279,510”	href=“tuttle-

house.html”>

<area	shape=“rect”	alt=“Tittle	Hall”	coords=“286,125,346,503”	href=“tittle-

hall.html”>

<area	shape=“rect”	alt=“Tooble	Tower”	coords=“352,134,445,482”	href=“tooble-

tower.html”>

<area	shape=“rect”	alt=“Tibble	Manse”	coords=“448,119,559,471”	href=“tibble-

manse.html”>

<area	shape=“rect”	alt=“Treble	Cottage”	coords=“559,211,605,466”	href=“treble-

cottage.html”>

<area	shape=“rect”	alt=“Tikkel	Place”	coords=“606,180,682,460”	href=“tikkel-

place.html”>

</map>

These	are	the	parts	of	each	map	section.

1.	 The	shape	of	the	area.	Write	“rect”	for	rectangle,	“circle”	for	circle,	or	“polygon”	for
polygon.

2.	 Alternative	text	for	screen	readers.	You	learned	about	this	in	Chapter	2

3.	 The	screen	coordinates	that	define	the	area.	See	below	for	how	to	get	these
coordinates.	Examples:	For	a	rectangle,	coordinates	of	76,42,279,510	mean	the
clickable	rectangle	begins	76	pixels	in	from	the	left	edge	of	the	image	and	42	pixels
down	from	the	top	of	the	image,	and	extends	right	by	279	pixels	from	the	left	edge	of
the	image	and	510	pixels	down	from	the	top	of	the	image.	For	a	circle,	coordinates	of
100,60,10	mean	the	clickable	circle	has	a	center	at	100	pixels	in	from	the	left	edge	of
the	image	and	60	pixels	down	from	the	top	of	the	image,	and	has	a	radius	of	10
pixels.	For	a	polygon,	coordinates	of	150,217,190,257,150,297,110,257	create	a
diamond	shape.	The	top	point	of	the	diamond	is	150	pixels	in	from	the	left	edge	of
the	image	and	217	pixels	down	from	the	top	of	the	image.	The	right	point	of	the
diamond	is	190	pixels	in	from	the	left	edge	of	the	image	and	257	pixels	down	from
the	top	of	the	image,	and	so	on.	Three	sets	of	coordinates	create	a	triangle	area,	five
sets	a	pentagonal	area,	and	so	on.

4.	 The	Web	address	for	the	page	to	load	when	the	user	clicks	the	area.

Rather	than	trying	to	create	an	image	map	by	hand,	automate	the	task	with	a	utility
that	does	most	of	the	work	for	you,	including	the	fussy	work	of	establishing	coordinates.
Web	development	tools	like	Dreamweaver	include	such	a	utility.	You	can	also	use	a	free
online	image	map	creator	like	the	one	at	http://www.image-maps.com.	My	favorite	tool
for	creating	image	maps	is	Mapedit,	a	downloadable	program	from
http://www.boutell.com.	There’s	a	generous	free	trial	period,	after	which	you	pay	$15.

1.	 In	your	HTML	file	insert	a	break	after	the	robo_guy.png	image.

2.	 Create	an	image	map	using	http://www.asmarterwaytolearn/stooges.jpg

3.	 I’ve	mapped	the	Stooges’	faces	as	three	clickable	areas.	They’re	circles.	The
coordinates	are	56,56,47…126,93,31…and	208,66,3

4.	 Do	a	Google	search	for	each	of	the	Stooges.	Copy	the	Google	URLs	that	the	searches
generate	and	use	them	as	the	links.	For	example,	when	the	user	clicks	Curly’s	face,
she’s	taken	to	the	Google	search	for	Curly.

5.	 Save	the	file	and	display	the	page.	Click	on	each	of	the	faces.

Sample	HTML	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-36-1.html

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/36.html

http://www.image-maps.com
http://www.boutell.com
http://www.asmarterwaytolearn/stooges.jpg
http://asmarterwaytolearn.com/htmlcss/practice-36-1.html
http://www.ASmarterWayToLearn.com/htmlcss/36.html

37
Bullet	lists	

and	numbered	lists

The	HTML	term	for	a	bullet	list	is	unordered	list.	Unordered	means	not	numbered.
An	ordered	list	is	a	numbered	list.	Making	bullet	and	numbered	lists	in	HTML	is
convenient,	because	HTML	automatically	indents	lists	and	automatically	numbers	ordered
lists.

In	both	types	of	list,	you	write	a	tag	for	the	list—	for	unordered	lists	and	
for	ordered	lists.	Then	you	write	a	tag	for	each	item—	,	which	stands	for	list	item.
	is	the	tag	for	individual	items	in	either	type	of	list,	ordered	or	unordered.

This	code	creates	a	bullet	(unordered)	list.

		Sun

		Moon

		Planets

		Stars

This	code	creates	a	numbered	(ordered)	list.

		Wash

		Rinse

		Repeat

Things	to	notice:

Each	list	item	is	indented	two	spaces.

Each	opening	tag	is	completed	with	a	closing	tag.

Sample	HTML	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-37-1.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/37.html

http://asmarterwaytolearn.com/htmlcss/practice-37-1.html
http://www.ASmarterWayToLearn.com/htmlcss/37.html

38
Stlying	lists

Since	lists	are	text	elements,	you	can	style	them	the	way	you’d	style	a	paragraph	or
heading,	with	a	customized	font-family,	font-size,	font-weight,	color,	and	margins.

This	CSS	code	insets	any	unordered	list,	assigning	extra	whitespace	on	both	the	left
and	right.
ul	{

		margin:	0	1.5em	0	1.5em;

}

You	could,	of	course,	adjust	the	top	and/or	bottom	margins,	too.	Use	the	same	type
of	code	for	ordered	lists.	Just	substitute	ol	for	ul	in	the	code	above.

The	code	above	styles	all	the	unordered	lists	on	the	page.	You	could	create	a	class	of
lists,	just	for	some	of	your	lists.
ol.special	{

		margin:	0	1.5em	0	1.5em;

}

By	default,	browsers	don’t	add	any	space	between	list	items.	I	think	they	look	better
if	they’re	separated	a	bit.
li	{

		margin:	.75em;

}

Note	that	there’s	only	one	margin	number	in	the	code	above.	Browsers	understand
that	it	specifies	the	space	between	list	items.

	

The	default	is	a	bullet	on	the	outside	with	all	lines	of	text	indented.	To	make	the
default	explicit,	write…
ul	{

		list-style-position:	outside;

}

To	indent	only	the	first	line	of	text	and	make	all	other	lines	flush	with	the	bullet,
write…
ul	{

		list-style-position:	inside;

}

In	your	CSS	file	add	space	between	list	items.	Save	the	file.	Display	the	page.

Sample	CSS	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-38-1.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/38.html

http://asmarterwaytolearn.com/htmlcss/practice-38-1.html
http://www.ASmarterWayToLearn.com/htmlcss/38.html

39
Styling	a	lists’s	markers

Markers	are	the	bullets	in	an	unordered	list	or	the	numbers	in	an	ordered	list.

If	you	don’t	specify	what	kind	of	bullets	you	want	in	an	unordered	list,	the	browser
displays	a	disc:	•

This	is	the	CSS	code	that	explicitly	specifies	a	disc	as	the	marker.	It	would	normally
be	superfluous,	since	the	disc	is	the	default.
ul	{

		list-style-type:	disc;

}

To	use	a	○	for	the	bullet,	substitute	circle	for	disc	in	the	code	above.

To	use	a	■	substitute	square.

You	can	use	an	image	for	a	bullet.	The	example	below	creates	a	class	of	unordered
list	that	uses	an	image.
ul.custom	{

		list-style-image:	url(“images/heart.png”);

}

In	the	code	above,	“images/heart.png”	tells	the	browser	the	path	and	file
name	of	the	image.

An	image	used	as	a	bullet	creates	headaches.	To	begin	with,	you	must	size	the	image
to	fit	the	list	text.	Then,	if	the	user	zooms	in	or	out	on	the	page,	the	browser	doesn’t	adjust
the	bullet	to	fit,	as	it	does	with	the	built-in	disc,	circle,	and	square.	Everything	gets	out	of
whack.	It’s	possible	to	build	a	defense	against	this,	but	you’re	probably	better	off	spending
your	coding	time	on	something	that	the	user	cares	more	about.

The	default	list-style-type	for	ordered	lists	is	decimal—1,	2,	3	etc.	You	can	change
it	to	decimal-leading-zero—01,	02,	03	etc.;	lower-alpha—a,	b,	c	etc.;
upper-alpha—A,	B,	C	etc.;	lower-roman—i.,	ii.,	iii.	etc.;	and	upper-roman—I,
II,	III	etc.	Here’s	code	that	creates	a	class	for	upper-roman.

ol.second-level	{

		list-style-type:	upper-roman;

}

In	your	CSS	file	style	unordered	list	markers	as	squares.	Save	the	file.	Display	the
page.

Sample	CSS	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-39-1.html.

http://asmarterwaytolearn.com/htmlcss/practice-39-1.html

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/39.html

http://www.ASmarterWayToLearn.com/htmlcss/39.html

40
More	CSS	selectors

A	CSS	selector	is	everything	on	the	first	line	that	precedes	the	{.	It’s	the	part	of	a
style	rule	that	tells	the	browser	what	elements,	classes,	and	ids	a	rule	applies	to.	The
selectors	are	highlighted	in	the	following	code	fragments.
p	{

p.special	{

.special	{

p#intro	{

#intro	{

So	far	you’ve	learned	to	create…

1.	 An	element	selector	like	p,	div,	or	img.

2.	 An	element	class	selector	like	p.special,	div.important,	or	img.gallery.

3.	 A	class	selector	tied	to	no	particular	type	of	element	like	.special,	.important,
or	.gallery.

4.	 An	element	id	selector	like	p#intro,	div#sidebar,	or	img#logo.

5.	 An	id	selector	tied	to	no	particular	type	of	element	like	#intro,	#sidebar,	or
#logo.

You	can	combine	selectors	to	create	more	complicated	selectors.	Here’s	one.
div.important	p	{

The	code	above	selects	all	paragraphs	in	a	div	that’s	been	assigned	the	class
“important.”

The	following	code	selects	all	images…that	are	in	list	items…in	an	unordered	list…
with	the	id	“pix-list.”
ul#pixList	li	img	{

Here’s	some	code	that	selects	the	first	paragraph	following	any	div.

div	+	p	{

The	following	code	selects	only	the	first	level	of	divs	within	the	div	that	has	an	id
of	“main.”
div#content	>	div	{

So	in	the	following	code,	only	the	highlighted	divs	are	selected.

<div	id=“main”>

		<div>

				<div>

						[some	content]

				</div>

						[some	content]

				<div>

						[some	content]

				</div>

		</div>

		<div>

				[some	content]

				<div>

						[some	content]

				</div>

		</div>

You	can	learn	a	lot	about	selectors	by	playing	around	with	the	interactive	W3Schools
CSS	selector	tester	at	http://www.w3schools.com/CSSref/trysel.asp.

In	your	HTML	file	you	coded	a	div	with	an	id.	In	your	CSS	file	double	the	size	of
all	paragraphs	within	that	div.	Save	the	file.	Display	the	page.

Sample	CSS	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-40-1.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/40.html

http://www.w3schools.com/CSSref/trysel.asp
http://asmarterwaytolearn.com/htmlcss/practice-40-1.html
http://www.ASmarterWayToLearn.com/htmlcss/40.html

41
Tables:	basic	structure

All	the	HTML	code	for	a	table	is	enclosed	in	an	opening	and	closing	tag.
<table>

		[The	details	of	the	table	go	here.]

</table>

Within	those	tags	you	create	rows	and	columns.	Here’s	a	table	with	two	rows	and
two	columns.
<table>

		<tr>

				<td>Row	1,	column	1</td>

				<td>Row	1,	column	2</td>

		</tr>

		<tr>

				<td>Row	2,	column	1</td>

				<td>Row	2,	column	2</td>

		</tr>

</table>

This	is	what	the	table	looks	like	(with	a	border	that	I	added	to	make	the	rows	and
columns	stand	out).

Unless	you	style	a	border	explicitly,	most	browsers	display	it	without	borders,	like
this.

You’ll	learn	how	to	add	borders,	if	you	want	them,	in	a	later	chapter,	and	to	style
tables	so	they’re	more	attractive.	For	now,	let’s	get	you	familiar	with	this	barebones
structure.

As	you	can	see	from	the	HTML	code,	you	build	a	table	a	row	at	a	time.	You	create	a
row	using	the	<tr>	(for	“table	row”)	tag.	Then	you	create	all	the	cells	within	that	row
using	the	<td>	(for	“table	data”)	tag.

All	the	text	content	of	a	table	cell	is	enclosed	between	the	opening	tag	and	the
closing	<td>	tag.	The	opening	<tr>	tag	and	closing	</tr>	tag	don’t	enclose	any	text
content.	They	only	contain	the	<td>	tags	and	their	text	content.

All	opening	tags	are	paired	with	closing	tags.

Each	row	must	have	the	same	number	of	cells,	created	with	the	<td>	and	</td>
tags,	even	if	some	of	the	cells	are	empty.	To	create	this	table,	with	nothing	in	row	2,
column	1…

…you’d	write…
<table>

		<tr>

				<td>Apples</td>

				<td>Oranges</td>

		</tr>

		<tr>

				<td></td>

				<td>Pears</td>

		</tr>

</table>

Notice	that	all	the	<tr>	tags	are	indented	two	spaces	inside	the	<table>	tag,	and
the	<td>	tags	are	indented	two	spaces	inside	the	<tr>	tags.

In	your	HTML	file	code	a	table	with	two	rows	and	two	columns.	Save	the	file.
Display	the	page.

Sample	HTML	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-41-1.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/41.html

http://asmarterwaytolearn.com/htmlcss/practice-41-1.html
http://www.ASmarterWayToLearn.com/htmlcss/41.html

42
Tables:	headings

You	can	tell	the	browser	to	add	headings	for	tables.	Here’s	a	table	with	column
headings.

This	is	the	code.
<table>

		<tr>

				<th	scope=“col”>Dog</th>

				<th	scope=“col”>Cat</th>

		</tr>

		<tr>

				<td>Canine</td>

				<td>Feline</td>

		</tr>

		<tr>

				<td>Bark</td>

				<td>Meow</td>

		</tr>

		<tr>

				<td>Puppy</td>

				<td>Kitten</td>

		</tr>

</table>

You	begin	by	creating	a	row	for	the	headings,	just	as	you	would	for	regular	cells.
Then,	using	the	opening	<th>	(for	“table	heading”)	and	closing	</th>	tags,	you
construct	cells	with	text	in	them,	as	you	would	for	regular	text	cells.	But	note
scope=“col”.	This	tells	the	browser	that	you	want	column	headings—headings	on	top
—not	row	headings,	which	would	begin	each	row	on	the	left.	By	default,	most	browsers
bold	heading	text	and	center	it	horizontally	with	the	cell.	Now	let’s	create	a	table	with	row
headings,	like	this	one.

This	is	the	code.
<table>

		<tr>

				<th	scope=“row”>Species</th>

				<td>Canine</td>

				<td>Feline</td>

		</tr>

		<tr>

				<th	scope=“row”>Sound</th>

				<td>Bark</td>

				<td>Meow</td>

		</tr>

		<tr>

				<th	scope=“row”>Immature</th>

				<td>Puppy</td>

				<td>Kitten</td>

		</tr>

</table>

You	create	a	heading	for	each	row.	And	you	write	scope=“row”.	Here’s	the	table
with	both	column	and	row	headings.

This	is	the	code.
<table>

		<tr>

				<th	scope=“col”></th>

				<th	scope=“col”>Dog</th>

				<th	scope=“col”>Cat</th>

		</tr>

		<tr>

				<th	scope=“row”>Species</th>

				<td>Canine</td>

				<td>Feline</td>

		</tr>

		<tr>

				<th	scope=“row”>Sound</th>

				<td>Bark</td>

				<td>Meow</td>

		</tr>

		<tr>

				<th	scope=“row”>Immature</th>

				<td>Puppy</td>

				<td>Kitten</td>

		</tr>

</table>

Notice	that	there	are	three	column	headings,	the	first	one	blank.	This	tells	the
browser	that	there	is	no	column	heading	over	the	column	of	row	headings.

In	your	HTML	file	code	a	table	with	both	column	and	row	headings.	Save	the	file.
Display	the	page.

Sample	HTML	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-42-1.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/42.html

http://asmarterwaytolearn.com/htmlcss/practice-42-1.html
http://www.ASmarterWayToLearn.com/htmlcss/42.html

43
Tables:

spanning	columnsand	rows

Sometimes	you	need	to	combine	two	or	more	cells	into	a	single,	extra-wide	cell.

The	table	above	shows	the	early-afternoon	schedule	for	three	facilities.	I’ve	added
borders,	and	I’ve	highlighted	the	two	spanned	rows	that	I	want	you	to	pay	attention	to.
Neither	the	borders	nor	the	highlighting	are	part	of	the	code	below.	You’ll	learn	how	to
add	both	kinds	of	styling	in	subsequent	chapters.	This	is	the	code.
<table>

		<tr>

				<th	scope=“col”></th>

				<th	scope=“col”>1	pm</th>

				<th	scope=“col”>2	pm</th>

				<th	scope=“col”>3	pm</th>

		</tr>

		<tr>

				<th	scope=“row”>Gym</th>

				<td>Dodge	ball</td>

				<td>Kick	boxing</td>

				<td>Sack	racing</td>

		</tr>

		<tr>

				<th	scope=“row”>Exercise	room</th>

				<td>Spinning</td>

				<td	colspan=“2”>Yoga	marathon</td>

		<tr>

				<th	scope=“row”>Pool</th>

				<td	colspan=“3”>Water	polo</td>

		</tr>

</table>

The	code	for	a	column-span	cell	looks	like	a	regular	<td>	cell,	except	for	the	code
colspan=”[number	of	columns	to	span]”.	The	closing	tag	is	the	same	as	for
a	regular	<td>	cell.	Notice	that	a	<td>	with	the	colspan	feature	replaces	the	same
number	of	regular	<td>s	as	the	number	of	columns	that	are	spanned.	In	the	first	row,
there	are	three	regular	<td>s.	In	the	second	row,	where	two	columns	are	spanned,	there’s
one	regular	<td>	plus	the	span.	In	the	third	row,	where	three	columns	are	spanned,	there’s
no	regular	<td>.	You	can	make	table	headings	span	columns,	too.	The	code	is…

<th	scope=“row”	colspan=”[number	of	columns	to	span]”>Whatever</th>

Spanning	rows	works	the	same	way	as	spanning	columns,	but	uses	rowspan.
Here’s	the	table	above,	reconfigured	so	the	facilities	are	at	the	top	and	the	times	are	on	the
left.

This	is	the	code.
<table>

		<tr>

				<th	scope=“col”></th>

				<th	scope=“col”>Gym</th>

				<th	scope=“col”>Exercise	Room</th>

				<th	scope=“col”>Pool</th>

		</tr>

		<tr>

				<th	scope=“row”>1	pm</th>

				<td>Dodge	ball</td>

				<td>Spinning</td>

				<td	rowspan=“3”>Water	polo</td>

		</tr>

		<tr>

				<th	scope=“row”>2	pm</th>

				<td>Spinning</td>

				<td	rowspan=“2”>Yoga	marathon</td>

		<tr>

				<th	scope=“row”>3	pm</th>

				<td	rowspan=“3”>Sack	racing</td>

		</tr>

</table>

You	can	make	table	headings	span	rows,	too.	The	code	is…
<th	scope=“column”	rowspan=”[number	of	rows	to	span]”>Whatever</th>

You	can	divide	a	table	into	three	sections:	a	header,	body,	and	footer.	This	helps
screen	readers,	but	doesn’t	do	anything	for	sighted	users	that	you	can’t	do	using	the	code
I’ve	already	taught	you.	I’ll	show	you	an	example.	You	won’t	be	tested	on	it	in	the
exercises.

This	is	the	code.
<table>

		<thead>

				<tr>

						<th></th>

						<th>Gym</th>

						<th>Exercise	Room</th>

						<th>Pool</th>

				</tr>

		</thead>

		<tfoot>

				<tr>

						<th></th>

						<th>3	activities</th>

						<th>2	activities</th>

						<th>1	activity</th>

				</tr>

		</tfoot>

		<tbody>

				<tr>

						<th	scope=“row”>1	pm</th>

						<td>Dodge	ball</td>

						<td>Spinning</td>

						<td	rowspan=“3”>Water	polo</td>

				</tr>

				<tr>

						<th	scope=“row”>2	pm</th>

						<td>Spinning</td>

						<td	rowspan=“2”>Yoga	marathon</td>

				<tr>

						<th	scope=“row”>3	pm</th>

						<td	rowspan=“3”>Sack	racing</td>

				</tr>

		</tbody>

</table>

Code	a	simple	table	with	two	rows	and	two	columns.	In	the	second	row,	span	the
columns.

Sample	HTML	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-43-1.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/43.html

http://asmarterwaytolearn.com/htmlcss/practice-43-1.html
http://www.ASmarterWayToLearn.com/htmlcss/43.html

44
Tables:	borders

You	can	create	a	table	with	borders	or	without.	Here’s	a	table	where	all	the	cells	have
borders.

This	is	the	CSS	code.
th,	td	{

		border:	1px	solid	black;

}

By	specifying	1px	solid	black	I’m	asking	for	a	solid	black	line	of	minimal—
1-pixel—width.	For	a	heavier	line,	increase	the	pixel	number.	For	another	type	of	line,
specify	dotted	or	one	of	the	other	border	styles	covered	in	Chapter	17.

By	default,	browsers	add	a	little	space	between	cells,	as	in	the	table	shown	above.
This	creates	gaps	between	the	hairline	borders.	If	you	don’t	want	those	gaps,	add	a
specification	for	the	table:
table	{

		border-collapse:	collapse;

}

This	is	the	result.

By	default,	browsers	don’t	draw	a	border	around	anything.	If	you	don’t	want
borders,	there’s	nothing	to	code.	But	with	CSS	you	can	add	borders	anywhere	you	like.
For	example,	here’s	a	table	with	top	and	bottom	borders	framing	the	table	headers.

Here’s	the	CSS	code.
th.top-row	{

		border-top:	1px	solid	black;

		border-bottom:	1px	solid	black;

}

The	first	seven	lines	of	HTML	would	be…
<table>		

		<tr>				

				<th	class=“top-row”	scope=“col”></th>

				<th	class=“top-row”	scope=“col”>Gym</th>

				<th	class=“top-row”	scope=“col”>Exercise	Room</th>

				<th	class=“top-row”	scope=“col”>Pool</th>

		</tr>

		[etc.]

The	only	reason	I	have	to	define	a	special	class	of	<th>	is	that	I’ve	also	got	<th>s
running	down	the	left	side	of	the	table,	denoting	times.	Since	I	don’t	want	borders	on
these,	I	need	to	make	a	distinction	for	<th>s	that	have	column	scope.	Otherwise,	I	could
just	write…
th	{

		border-top:	1px	solid	black;

		border-bottom:	1px	solid	black;

}

To	create	left	and	right	borders	use	border-left	and	border-right.	For
example,	suppose	you	want	heavy	orange	borders	defining	the	left	and	right	edges	of
certain	tables.

This	is	the	code.
table.standout	{

		border-left:	5px	solid	orange;

		border-right:	5px	solid	orange;

}

The	first	line	of	HTML	would	be…
<table	class=“standout”>

In	your	CSS	file	specify	borders	for	all	cells.	Eliminate	space	between	borders.	Save
the	file.	Display	the	page.	Sample	CSS	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-44-1.html.	Find	the	interactive	coding
exercises	for	this	chapter	at:	http://www.ASmarterWayToLearn.com/htmlcss/44.html

http://asmarterwaytolearn.com/htmlcss/practice-44-1.html
http://www.ASmarterWayToLearn.com/htmlcss/44.html

45
Tables:

Spacing	part	1

By	default,	browsers	don’t	add	breathing	room	between	the	table	cell	borders	and	the
text	they	contain.	They’re	jammed	up	against	each	other.	It	looks	crowded.

The	solution	is	to	add	padding.
th,	td	{

		padding:	.25em;

}

The	CSS	code	above	adds	a	little	whitespace	all	around	the	text.

You	increase	or	decrease	the	amount	of	padding	by	changing	the	em	number.	You
can	also	specify	different	padding	for	different	sides.
td	{

		padding:	.25em	1.5em	0	1.5em;	

}

The	CSS	code	above	adds	extra	padding	at	the	top,	just	a	little	on	the	sides,	and	none

on	the	bottom.	As	with	margins,	the	numbers	start	at	the	top	and	proceed	clockwise.	To
specify	none,	write	0,	not	0em.

Suppose	you	want	cells	spaced	apart—say,	even	farther	apart	than	the	browser
default.	Here’s	the	CSS	code.	I’m	going	to	specify	large	spaces,	so	they’re	easy	to	see.
table	{

		border-spacing:	1em;

}

This	is	the	result.

Note	that	border-spacing	is	something	you	specify	for	the	whole	table,	not	the	<th>

or	<td>	elements.	As	usual,	you	can	specify	different	border-spacing	for	different	sides.

table	{

		border-spacing:	0	.25em	0	.25em;

}

The	above	CSS	code	would	add	extra	space	on	the	left	and	right	and	leave	top	and
bottom	space	at	the	default	width.

Even	if	a	table	doesn’t	have	borders,	you	can	use	border-spacing	to	add	whitespace
between	the	cells.	Here’s	the	same	table,	with	no	border	specified	but	with	the	all-around
border-spacing	of	2.5em.

In	your	CSS	file	add	.25em	of	padding	to	all	cells.	Save	the	file.	Display	the	page.
Sample	CSS	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-45-1.html.

http://asmarterwaytolearn.com/htmlcss/practice-45-1.html

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/45.html

http://www.ASmarterWayToLearn.com/htmlcss/45.html

46
Tables:

spacing	part	2
By	default,	browsers	adjust	cell	size	to	contents.	If	you	write…

<table>

		<tr>

				<th>Monday</th>

				<th>Tuesday</th>

				<th>Wednesday</th>

				<th>Thursday</th>

				<th>Friday</th>

		</tr>

		<tr>

				<td>Rome</td>

				<td>Addis	Ababa</td>

				<td>Cairo</td>

				<td>Saint	Seabury	on	the	Thames</td>

				<td>Dublin</td>

		</tr>

</table>

…the	browser	displays	this…(I’ve	styled	it	with	a	border	and	padding	and	collapsed
the	spaces	between	cells.)

The	browser	has	used	space	efficiently,	assigning	just	enough	width	to	fit	everything
in.	I	think	this	looks	better:

Instead	of	letting	the	browser	allocate	space	on	the	basis	of	need,	I	styled	the	cells	so
they’d	all	be	20%	of	the	width	of	the	full	table.	In	other	words,	they’d	all	be	the	same
width.
th,	td	{

		border:	1px	solid	black;

		padding:	5px;

		width:	20%;

}

When	I	specify	cell	width	instead	of	letting	the	browser	allocate	space	based	on
content,	I	force	the	browser	to	automatically	wrap	longer	text	lines	so	they	fit	into	my
chosen	width.

I	could,	if	I	wanted	to,	define	some	CSS	classes	or	ids	to	make	different	cells
different	widths.

Next	point:	I’m	not	sure	I	want	the	table	to	be	so	big.	So	I’ll	force	the	browser	to
give	me	a	narrower	table	by	specifying	its	width	as	less	than	100%.	I’ll	tell	it	to	make	it
three-quarters	the	width	of	the	window	or	div	that	it	sits	in.

table	{

		width:75%;

}

This	is	the	result.

Notice	that	the	browser	automatically	wraps	longer	lines	into	multiple	lines	to	fit
them	into	the	width.

1.	 In	your	HTML	file	code	a	simple	table	with	two	rows	and	two	columns.	Give	it	an	id.

2.	 In	your	CSS	file	reduce	the	table’s	width	to	a	fraction	of	the	window’s	width.

3.	 Make	the	two	rows	equal.

Sample	HTML	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-46-1.html.

http://asmarterwaytolearn.com/htmlcss/practice-46-1.html

Sample	CSS	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-46-2.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/46.html

http://asmarterwaytolearn.com/htmlcss/practice-46-2.html
http://www.ASmarterWayToLearn.com/htmlcss/46.html

47
Tables:	aligning	text

In	Chapter	14	you	learned	to	align	text	on	the	page	using…
text-align:	left;

text-align:	right;

text-align:	center;

text-align:	justify;

You	can	use	this	same	code	to	align	text	in	table	cells.	For	example,	you	can	write…
table	{

		text-align:	left

}

The	text	in	all	cells,	including	<th>	cells,	will	be	positioned	on	the	left	of	the	cell.
(The	text	in	<td>	cells	would	have	been	positioned	on	the	left	anyway,	by	default.)	You
can	be	more	surgical	by	styling,	say,	just	<th>	or	<td>	cells.	For	example,	you	know
that	by	default,	browsers	set	text	in	<td>	cells	on	the	left.	If	you’d	prefer	to	center	the
text,	you	could	write…
td	{

		text-align:	center;

}

If	you	have	a	column	of	numbers,	you	might	want	to	set	them	to	the	right.	You’d
create	a	class	of	<td>	to	do	that.

td.num	{

		text-align:	right;

}

You	can	also	control	the	vertical	alignment	within	cells,	using…

vertical-align:	top;

vertical-align:	bottom;

vertical-align:	center;

You	can’t	specify	vertical	alignment	for	the	whole	table,	only	for	<th>	and	<td>
elements.You	can,	of	course,	create	classes	of	<th>	and	<td>	elements	that	have	their
own	alignment.	By	default,	text	is	vertically	centered	in	both	<th>	and	<td>	cells.	If	you
wanted	<th>	text	moved	to	the	bottom	of	the	cell,	you	could	write.

th	{

		vertical-align:	bottom;

}

This	code	would	move	the	text	to	the	top…
th	{

		vertical-align:	top;

}

In	your	CSS	file	center	text	in	the	cells	of	the	most	recent	table,	the	one	with	the	id.
Save	the	file.	Display	the	page.

Sample	CSS	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-47-1.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:
http://www.ASmarterWayToLearn.com/htmlcss/47.html

http://asmarterwaytolearn.com/htmlcss/practice-47-1.html
http://www.ASmarterWayToLearn.com/htmlcss/47.html

48
Tables:	background	color

You	can	use	code	you	learned	in	earlier	chapters	to	style	the	text	for	an	entire	table,
for	<th>	and	<td>	elements,	and	for	classes	and	ids	of	any	of	these	elements.	For
example:
th,	td	{

		font-family:	Georgia,	“Times	New	Roman”,	Times,	serif;

		font-size:	1.5em;

		font-weight:	900;

		color:	gray;

		letter-spacing:	.1em;

}

This	what	the	table	would	look	like.

A	characteristic	that	can	be	especially	useful	in	tables	is	background-color.	For
example	you	can	use	it	to	shade	alternative	rows	to	make	reading	a	row	easier.

Start	by	defining	a	class	of	<tr>	and	specifying,	let’s	say,	lightgray	as	the
background-color.
tr.even-row	{

		background-color:	lightgray;

}

You’d	write	the	HTML	like	this.
<table>

			<tr>

					<th	scope=“col”>Product</th>

					<th	scope=“col”>Price</th>

					<th	scope=“col”>Shipping</th>

					<th	scope=“col”>Tax</th>

				<th	scope=“col”>Total</th>

			</tr>

			<tr>

					<td>Swisher</td>

					<td>76.75</td>

					<td>6.50</td>

					<td>.83</td>

					<td>83.93</td>

			</tr>

			<tr	class=“even-row”>

					<td>Stirrer</td>

					<td>106.60</td>

					<td>8.00</td>

					<td>1.33</td>

					<td>115.93</td>

			</tr>

			<tr>

					<td>Shaker</td>

					<td>31.50</td>

					<td>2.90</td>

					<td>.33</td>

					<td>34.37</td>

			</tr>

			<tr	class=“even-row”>

					<td>Swirler</td>

					<td>220.00</td>

					<td>14.00</td>

					<td>2.60</td>

					<td>236.60</td>

			</tr>

			<tr>

					<td>Splasher</td>

					<td>89.00</td>

					<td>6.50</td>

					<td>.91</td>

					<td>96.41</td>

			</tr>

</table>

With	some	additional	styling	I’m	not	showing	you	here,	the	table	would	look	like
this.

1.	 In	your	HTML	file	revise	the	most	recent	table,	the	one	with	an	id.	Assign	a	class	to
the	second	row.	Save	the	file.

2.	 In	your	CSS	file	code	a	light	background	color	for	that	class.	Save	the	file.

3.	 Display	the	page.

Sample	HTML	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-48-1.html.

Sample	CSS	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-48-2.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/48.html

http://asmarterwaytolearn.com/htmlcss/practice-48-1.html
http://asmarterwaytolearn.com/htmlcss/practice-48-2.html
http://www.ASmarterWayToLearn.com/htmlcss/48.html

49
Forms:	the	form	tag

It’s	a	rare	website	that	doesn’t	use	some	forms.	At	a	minimum,	you’re	probably
going	to	want	to	include	an	email	form	on	your	site	to	make	it	easy	for	users	to	contact
you.	Every	form	begins	and	ends	with	an	opening	<form>	and	closing	</form>	tag.

<form	action=“send-email.php”	method=“post”>

		[Here’s	where	the	contents	of	the	form,	like	input

		fields	and	a	submit	button,	are	coded.	We’ll	start

		working	on	these	in	the	next	chapter.]

</form>

In	most	cases,	when	a	user	completes	a	form,	a	program	separate	from	the	HTML
file	runs.	In	the	example	above,	action=“send-email.php”	tells	the	browser	that
when	the	user	submits	the	form,	the	information	the	user	has	entered	in	the	form	is	to	be
sent	to	a	PHP	program	on	the	website	for	processing.	The	program’s	URL	is	“send-
email.php.”	It’s	a	program	that	runs	on	the	host’s	server.	This	is	different	from	an	HTML
file.	An	HTML	file	is	stored	on	the	host’s	server	but	runs	in	the	user’s	browser.

In	the	case	of	the	example,	send-email.php	might	send	an	email	to	the	site
owner	that	includes	the	data	the	user	has	entered.	Or	a	program	might	write	the	data
entered	by	the	user	to	a	database	on	the	server.	Or	a	program	might	process	credit	card
information	entered	in	a	form.

There	are	all	kinds	of	programs,	written	in	various	languages,	that	can	process	data
from	a	form.	The	languages	include	PHP,	Ruby,	Python,	Perl,	Java,	and	C#.	The
processing	programs	written	in	these	languages	are	outside	the	scope	of	this	book,	so	you
won’t	learn	anything	about	processing	forms	here,	other	than	learning	how	to	specify	the
form	action	in	HTML	tags.

But	don’t	be	discouraged	if	you	don’t	know	any	of	these	languages.	At	sites	like
http://www.hotscripts.com/	you’ll	find	thousands	of	programs,	both	free	and	for	sale,	that
process	forms	for	every	purpose.	You	don’t	need	to	know	a	computer	language	to	use
these	scripts.	The	people	who	write	them	tell	you	how	to	change	a	few	lines	of	the	code	to
adapt	them	so	they’ll	work	on	your	site.	Make	a	few	simple	changes,	then	upload	the	code
to	your	site,	and	you’re	in	business.

The	example	above	specifies	method=“post”.	This	method	is	the	one	you	use	to
process	more	than	a	little	bit	of	information,	and	when	you	want	to	keep	the	information
secure.	The	second	method,	get,	is	used	mostly	for	search	forms.	You	know	a	form	is
using	the	get	method	when	the	information	entered	in	the	form	(connected	by	plus	signs)
appears	in	the	URL	after	you	click	Submit.	Here’s	the	URL	that	displayed	when	I	searched

http://www.hotscripts.com/

the	New	Yorker	site	for	“alice	munro.”	

http://www.newyorker.com/search?
qt=dismax&sort=score+desc&query=alice+munro&submit=

	

If	you	don’t	specify	a	method,	the	get	method	is	used.	Since	this	unsecure	method
isn’t	appropriate	for	most	purposes,	you’ll	usually	want	to	specify	the	post	method.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/49.html

http://www.ASmarterWayToLearn.com/htmlcss/49.html

50
Forms:	text	input

Here’s	a	form	that’s	limited	to	one	single-line	text	field.	It’s	useless,	because	it
doesn’t	include	a	Submit	button.	We’ll	add	that	later.

This	is	the	HTML.
<form	action=“send-email.php”	method=“post”>

		Last	name:

		<input	type=“text”	name=“surname”	size=“25”	maxlength=“40

</form>

It	begins	with	some	plain	text,	Last	name:	It	doesn’t	have	to	be	placed	to	the	left
of	the	field.	It	could	be	above,	to	the	right,	or	even	below	the	field.

The	input	tag	has	four	parts:

1.	 type=“text”.	This	tells	the	browser	to	display	a	single-line	box	in	which	the	user
can	enter	text.

2.	 name=“surname”.	The	name	can	be	almost	anything	you	like,	but	don’t	use
spaces	in	it.	The	name	tells	the	program	that’s	processing	the	data	what	to	call	the
information	that	the	user	enters	in	that	field.

3.	 size=“25”.	This	tells	the	browser	how	wide	to	make	the	box.	When	you	write
size=“25”	you’re	telling	the	browser	to	make	the	box	roughly	25	characters	wide.
If	the	user	types	more	than	25	characters,	the	line	will	scroll	horizontally.	Specifying
the	size	is	optional.	If	you	don’t	specify	it,	the	browser	will	make	a	text	box	20
characters	wide	by	default.

4.	 maxlength=“40”.	This	tells	the	browser	to	put	a	limit	on	the	number	of	characters
that	can	be	typed	into	this	field.	If	there’s	scrolling,	the	scrolling	will	stop	at	this
limit.	Specifying	the	maximum	length	is	optional.	If	you	don’t	specify	it,	the	box	will
accept	any	number	of	characters	and	will	scroll	as	far	as	it	needs	to	in	order	to
accommodate	all	the	characters.

A	password	field	is	like	a	text	input	field,	except	that	the	characters	that	the	user
enters	are	disguised	as	asterisks	or	circles	in	the	field.	You	code	a	password	field	the	same
way	you	code	a	text	input	field,	except	that	you	replace	the	world	“text”	with	the	word
“password”.

<input	type=“password”	name=“pass”	size=“20”	maxlength=“40”>

All	of	the	individual	parts	of	a	form—the	one-line	text	box	that	you	just	learned	to
create	and	all	the	rest	that	you’re	about	to	learn—are	called	controls.

Code	a	form	with	a	single	text	input.	Don’t	bother	with	the	action	or	method.	Specify
name,	size,	and	maxlength.	Save	the	file.	Display	the	page.

Sample	HTML	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-50-1.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/50.html

http://asmarterwaytolearn.com/htmlcss/practice-50-1.html
http://www.ASmarterWayToLearn.com/htmlcss/50.html

51
Forms:	textarea

In	the	last	chapter	you	learned	how	to	code	a	one-line	text	box	using	input
type=“text”.	Here’s	a	second	type	of	control,	a	multi-line	text	box.	(In	this	example
form	I	haven’t	included	a	first-name	field.	This	example	form	is	only	for	learning,	so	we’ll
limit	it	to	just	one	control	of	each	type.)

This	is	the	HTML.
<form	action=“send-email.php”	method=“post”>

		Last	name:

		

		<input	type=“text”	name=“surname”	size=“25”	maxlength=“40”>

		

		Message:

		

		<textarea	name=“message”	rows=“4”	cols=“30”></textarea>

</form>

Notice,	first,	that	this	tag	is	closed,	with	</textarea>.

rows=“8”	cols=“30”	specifies	the	number	of	visible	rows	and	columns.	By

default,	entered	text	will	scroll	if	the	user	types	beyond	the	specified	number	of	rows.	By
default,	the	field	can	be	resized	by	the	user	when	she	drags	the	lower-right	corner	with	the
mouse.

In	your	HTML	file	add	a	text	area	to	the	form	you’ve	already	coded.	Specify	rows
and	columns.	Save	the	file.	Display	the	page.

Sample	HTML	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-51-1.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/51.html

http://asmarterwaytolearn.com/htmlcss/practice-51-1.html
http://www.ASmarterWayToLearn.com/htmlcss/51.html

52
Forms:	submit

Let’s	add	a	submit	button	to	the	form.	When	the	user	clicks	it,	the	form	is	submitted.
That	is,	all	the	data	is	sent	to	the	program	(PHP	or	another	language)	that	processes	it.

This	is	the	code.
<form	action=“send-email.php”	method=“post”>

		Last	name:

		

		<input	type=“text”	name=“surname”	size=“25”maxlength=“40”>

		

		Message:

		

		<textarea	name=“message”	rows=“4”	cols=“30”></textarea>

		

		<input	type=“submit”	value=“Send	email	message”>

</form>

This	is	a	simple	input	tag,	with	only	two	parts.	The	first	part	creates	the	button	that,
when	clicked,	submits	the	form:
input	type=“submit”

The	second	part	specifies	the	button	text.	Instead	of	“Send	email	message,”	it	could
be	“Submit,”	“Send,”	“Subscribe,”	“Purchase,”	or	any	other	text	you	want…
value=“Send	email	message”

The	submit	tag	creates	a	standard	button.	If	you	want	a	custom	button,	create	your
own	button	image	and	write	a	tag	like	this.
<input	type=“image”	src=“images/subscribe-

button.png”	alt=“Sign	up”	width=“72”	height=“18”>

The	browser	knows	this	is	a	Submit	button	even	though	you	say	the	input	type	is
“image”.	Everything	you	write	after	<input	type=“image”	is	exactly	the	same	as
the	img	tag	you	learned	to	write	in	Chapter	24.

In	your	HTML	file	add	a	Submit	button	to	the	form	you’ve	already	created.	Save
the	file.	Display	the	page.	Sample	HTML	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-52-1.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/52.html

http://asmarterwaytolearn.com/htmlcss/practice-52-1.html
http://www.ASmarterWayToLearn.com/htmlcss/52.html

53
Forms:	radio	buttons

Now	we’ll	add	radio	buttons	to	the	form.	Radio	buttons	allow	the	user	to	make	one
and	only	one	selection.	We’ll	ask	the	user	to	tell	us	how	she	found	our	site.

This	is	the	code.
<form	action=“send-email.php”	method=“post”>

		Last	name:

		

		<input	type=“text”	name=“surname”	size=“25”maxlength=“40”>

		

		How	did	you	find	us?

		<input	type=“radio”	name=“found-

thru”	value=“Google”	checked=“checked”>	Google

		<input	type=“radio”	name=“found-

thru”	value=“Review”>			Review

		<input	type=“radio”	name=“found-

thru”	value=“Friend”>	Friend

		

		Message:

		

		<textarea	name=“message”	rows=“4”	cols=“30”></textarea>

		

		<input	type=“submit”	value=“Send	email	message”>

</form>

Notice	that	each	radio	button	has	its	own	separate	input	tag.	What	binds	all	the
radio	buttons	in	a	group	together	is	that	they’re	all	given	the	same	name.	In	the	example,
I’ve	given	it	the	name	“found-thru.”

It	begins	as	other	input	tags	do,	but	specifies	“radio”	instead	of	“text,”	“submit,”
or	another	input	type…
input	type=“radio”

The	name,	shared	by	all	the	radio	buttons	in	a	particular	radio	button	group,	binds	all
the	buttons	within	the	group	together.	You	make	up	the	name…
name=“found-thru”

The	value	is	the	word	or	words	sent	to	the	processing	program	telling	the	program
which	button	has	been	checked.
value=“Google”

The	next	part	is	optional.	When	you	include	it	in	a	tag,	it	means	the	button	is
checked	by	default.	Since	only	one	button	in	a	group	can	be	checked,	you	would	include
this	in	only	one	button	tag	within	a	group.	If	you	omit	it,	no	button	is	checked	by	default.
checked=“checked”

Finally,	there’s	the	text	that	the	user	sees.	It	would	normally	be	the	same	word	or
words	that	you	specify	for	value.

Google

In	your	HTML	file	add	two	radio	buttons	to	the	form	you’ve	already	coded.	Save	the

file.	Display	the	page.

Sample	HTML	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-53-1.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/53.html

http://asmarterwaytolearn.com/htmlcss/practice-53-1.html
http://www.ASmarterWayToLearn.com/htmlcss/53.html

54
Forms:	checkboxes

Checkboxes	work	like	radio	buttons,	except	that	the	user	can	check	more	than	one.
Let’s	add	checkboxes	that	allow	the	user	to	give	us	some	feedback.

This	is	the	code.
<form	action=“send-email.php”	method=“post”>

		Last	name:

		

		<input	type=“text”	name=“surname”	size=“25”maxlength=“40”>

		

		How	did	you	find	us?

		<input	type=“radio”	name=“found-

thru”	value=“Google”	checked=“checked”>	Google

		<input	type=“radio”	name=“found-

thru”	value=“Review”>			Review

		<input	type=“radio”	name=“found-

thru”	value=“Friend”>	Friend

		

		How	would	you	describe	our	site?

		<input	type=“checkbox”	name=“feedback”	value=“Wonderful”	checked=“checked”>	Wonderful

		<input	type=“checkbox”	name=“feedback”	value=“Fabulous”>	Fabulous

		<input	type=“checkbox”	name=“feedback”	value=“Brilliant”>	Brilliant

		

		Message:

		

		<textarea	name=“message”	rows=“4”	cols=“30”></textarea>

		

		<input	type=“submit”	value=“Send	email	message”>

</form>

Again,	as	with	radio	buttons,	each	checkbox	has	its	own	separate	input	tag.	And
again,	what	binds	all	the	checkboxes	in	a	group	together	is	that	they’re	all	given	the	same
name.	In	the	example,	the	name	is	“feedback.”

You’re	familiar	with	the	beginning	part	by	now.
input	type=“checkbox”

The	name,	shared	by	all	the	checkboxes	in	a	particular	checkbox	group,	binds	all	the
checkboxes	within	the	group	together.	You	make	up	the	name.
name=“feedback”

The	value	is	the	word	or	words	sent	to	the	processing	program	telling	the	program
that	this	box	has	been	checked.
value=“Wonderful”

The	next	part	is	optional.	When	you	include	it	in	a	tag,	it	means	the	box	is	checked
by	default.	You	can	use	this	specification	to	pre-check	as	many	boxes	as	you	like.	If	you
omit	it	from	all	checkbox	tags,	no	box	is	pre-checked.
checked=“checked”

Finally,	there’s	the	text	that	the	user	sees.	It	would	normally	be	the	same	word	or

words	that	you	specify	for	value.

Wonderful

In	your	HTML	file	add	two	checkboxes	to	the	form	you’ve	already	coded.	Save	the
file.	Display	the	page.	Sample	HTML	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-54-1.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/54.html

http://asmarterwaytolearn.com/htmlcss/practice-54-1.html
http://www.ASmarterWayToLearn.com/htmlcss/54.html

55
Forms:	select	box

The	standard	way	to	ask	the	user	to	tell	you	the	state	he	lives	in	is	the	select	box.	A
select	box	works	well	when	you	want	the	user	to	select	from	a	list	that’s	too	long	to	be
handled	gracefully	by	radio	buttons.	Like	radio	buttons,	only	one	selection	can	be	made	in
a	select	box.	Let’s	add	one	for	a	state	selection.	I’ll	just	do	three	states	to	show	you	how	it
works.

This	is	the	code.
<form	action=“send-email.php”	method=“post”>

		Last	name:

		

		<input	type=“text”	name=“surname”	size=“25”maxlength=“40”>

		

		How	did	you	find	us?

		<input	type=“radio”	name=“found-

thru”	value=“Google”	checked=“checked”>	Google

		<input	type=“radio”	name=“found-

thru”	value=“Review”>			Review

		<input	type=“radio”	name=“found-

thru”	value=“Friend”>	Friend

		

		How	would	you	describe	our	site?

		<input	type=“checkbox”	name=“feedback”	value=“Wonderful”	checked=“checked”>	Wonderful

		<input	type=“checkbox”	name=“feedback”	value=“Fabulous”>	Fabulous

		<input	type=“checkbox”	name=“feedback”	value=“Brilliant”>	Brilliant

		

Your	state:

<select	name=“current-state”>

		<option	value=“AL”>Alabama</option>

		<option	value=“AK”>Alaska</option>

		<option	value=“AZ”>Arizona</option>

</select>

		Message:

		

		<textarea	name=“message”	rows=“4”	cols=“30”></textarea>

		

		<input	type=“submit”	value=“Send	email	message”>

</form>

The	syntax	for	a	select	box	is	different	than	the	syntax	you’ve	learned	for	other	input
types.

Starts	with	<select,	not	<input	type=

Unlike	radio	buttons	and	checkboxes,	which	are	freestanding	and	bound	together	by	a
common	name,	all	the	choices	are	enclosed	by	opening	and	closing	select	tags.

Unlike	most	other	input	types,	option	tags	are	closed.

The	name	is	specified	only	once,	in	the	select	tag.

By	default,	the	first	option	is	pre-selected.	In	the	example,	it’s	Alabama.	You	can
pre-select	another	option	by	including	in	one	of	the	option	tags	the	words

select=“selected”.

A	problem	with	the	example	is	that	if	the	user	doesn’t	bother	to	make	a	selection,	his
state	will	be	input	as	Alabama	even	if	he	lives	in	Alaska,	since	Alabama	defaults	as	the
choice	if	the	user	doesn’t	make	one.	The	solution	is	to	make	the	first	option	something	like
“Select	a	state.”	When	the	user	clicks	the	input	button,	a	little	JavaScript	routine	can	check
to	see	whether	“Select	a	state”	is	the	selected	option,	which	means	that	the	user	hasn’t
made	a	selection.	If	so,	the	user	can	be	prompted	to	select	a	state.	My	book	A	Smarter
Way	to	Learn	JavaScript,	available	at	Amazon,	shows	you	how	to	write	this	routine.

In	your	HTML	file	add	a	select	box	with	two	selections	to	the	form	you’ve	already
coded.	Save	the	file.	Display	the	page.

Sample	HTML	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-55-1.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/55.html

http://www.amazon.com/Smarter-Way-Learn-JavaScript-technology-ebook/dp/B00H1W9I6C/ref=tmm_kin_swatch_0?_encoding=UTF8&sr=&qid=
http://asmarterwaytolearn.com/htmlcss/practice-55-1.html
http://www.ASmarterWayToLearn.com/htmlcss/55.html

56
Forms:	label

It’s	a	good	idea	to	give	each	control	a	label	tag.	The	form	tag	itself	doesn’t	take
one,	but	it’s	a	good	idea	to	add	one	to	each	text	field,	text	area,	radio	button,	checkbox,
and	selection	option.	But	it	isn’t	required.

Labels	allow	screen	readers	to	call	out	the	text	that	goes	with	each	control.

For	example,	if	the	user	is	working	with	a	screen	reader	and	you’re	got	a	one-line
text	box	for	the	user’s	last	name,	the	label	tag	makes	the	screen	reader	say,	“Last	name”
when	the	user	tabs	to	the	field.

In	addition	to	making	the	text	readable	by	a	screen	reader,	a	label	makes	the	text
clickable	like	the	control	itself,	giving	the	user	a	bigger	target.	This	is	especially	helpful
for	radio	buttons	and	boxes,	which	can	be	hard	to	hit	with	the	cursor.	For	example,	if	you
write…
<label><input	type=“radio”	name=“found-

thru”	value=“Google”>Google</label>

…the	user	doesn’t	have	to	hit	the	button.	He	can	click	“Google”	and	the	button	will
be	checked.

Notice	how	the	label	tag	encloses	both	the	text	and	the	control.	This	is	the	easy	way
to	add	a	label	tag.	The	hard	way,	preferred	by	experts	for	esoteric	reasons,	requires	that
you	give	the	control	an	id.	In	this	method,	the	opening	and	closing	label	tags	enclose	only
the	text.
<input	type=“radio”	name=“found-

thru”	id=“goo”	value=“Google”>

<label	for=“goo”>Google</label>

In	your	HTML	file	use	the	easy	way	to	add	labels	to	the	radio	buttons.	Use	the	hard
way	to	add	labels	to	the	checkbox	buttons.	Save	the	file.	Display	the	page.

Sample	HTML	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-56-1.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/56.html

http://asmarterwaytolearn.com/htmlcss/practice-56-1.html
http://www.ASmarterWayToLearn.com/htmlcss/56.html

57
Grouping	related	elements

If	your	form	has	a	lot	of	parts,	you	can	improve	the	user’s	experience	by	grouping
related	parts	together	visually.	Take	this	form…

It’ll	be	easier	for	the	user	to	understand	if	you	enclose	each	group	in	a	box…

This	is	the	code.	(I’ve	added	a	little	CSS	styling.	We	won’t	go	into	that	now.)
<form	action=“questionnaire.php”	method=“post”>

		<fieldset>

				<label>First	name:	<input	type=“text”	name=“first-

name”	size=“15”	maxlength=“30”></label>

				<label>Last	name:	<input	type=“text”	name=“last-

name”	size=“15”	maxlength=“30”></label>

				<label>Email:	<input	type=“text”	name=“email”	size=“25”	maxlength=“40”>

</label>	

		</fieldset>

		

		<fieldset>

				<label>What	is	the	meaning	of	life?

<textarea	name=“meaning”	rows=“4”	cols=“40”>

		</textarea></label>

				What	do	you	want	on	your	pizza?

				<label>

<input	type=“checkbox”	name=“topping”>Pepperoni	</label>

				<label>

<input	type=“checkbox”	name=“topping”>Sausage	</label>

				<label>

<input	type=“checkbox”	name=“topping”>Mushrooms	</label>

				<label>

<input	type=“checkbox”	name=“topping”>Olives	</label>								

		</fieldset>		

</form>

By	enclosing	the	two	groups	of	controls	in	opening	and	closing	fieldset	tags,	we
tell	the	browser	to	enclose	the	groups	in	separate	boxes.

Note	that	everything	within	the	fieldset	tags	is	indented	2	spaces.

We	can	improve	the	readability	of	the	form	even	further	by	adding	legends—
descriptive	text	that’s	at	the	top	of	the	box.

Now	the	first	group	has	the	legend	“Contact	info”	and	the	second	group	has	the
legend	“Questions.”	This	is	the	code.
<form	action=“questionnaire.php”	method=“post”>

		<fieldset>

				<legend>Contact	info</legend>

				<label>First	name:	<input	type=“text”	name=“first-

name”	size=“15”	maxlength=“30”></label>

				<label>Last	name:	<input	type=“text”	name=“last-

name”	size=“15”	maxlength=“30”></label>

				<label>Email:	<input	type=“text”	name=“email”	size=“25”	maxlength=“40”>

</label>

		</fieldset>

		

		<fieldset>

				<legend>Questions</legend>

				<label>What	is	the	meaning	of	life?

<textarea	name=“meaning”	rows=“4”	cols=“40”></textarea>

</label>

				What	do	you	want	on	your	pizza?

				<label>Pepperoni<input	type=“checkbox”	name=“topping”>

</label>

				<label>Sausage<input	type=“checkbox”	name=“topping”>

</label>

				<label>Mushrooms<input	type=“checkbox”	name=“topping”>

</label>

				<label>Olives<input	type=“checkbox”	name=“topping”>

</label>								

		</fieldset>		

</form>

The	legend	tags	go	on	the	line	following	the	opening	fieldset	tag	and,	like
everything	enclosed	by	the	fieldset	tags,	are	indented	2	spaces.

In	your	HTML	group	the	two	text	fields	with	one	set	of	fieldset	tags	and	the
radio,	checkbox,	and	selection	controls	with	a	second	set	of	fieldset	tags.	Make	up
legends	for	both	groups.	Save	the	file.	Display	the	page.

Sample	HTML	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-57-1.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/57.html

http://asmarterwaytolearn.com/htmlcss/practice-57-1.html
http://www.ASmarterWayToLearn.com/htmlcss/57.html

58
Forms:	styling

Here’s	a	filled-out	form	without	any	CSS	styling.

Now	I’ll	give	it	some	styling.	It	isn’t	museum-quality,	but	I	like	it	better.

There	are	more	ways	to	customize	HTML	forms	than	there	are	stars	in	the	galaxy.
Let	me	show	you	the	minimal	styling	I	used	for	the	form	shown	above.

To	begin	with,	I	styled	the	labels	and	legends	by	specifying	a	sans-serif	font-family
and	larger	font-size	for	the	form.
form	{

		width:	50%;

		margin:	0	auto	0	auto;

		font-family:	Verdana,	Geneva,	sans-serif;

		font-size:	1em;

}

The	styling	shown	above	controls	the	width	of	the	form	and	also	centers	it.	Font-
styling	for	the	form	affects	only	the	labels	and	legends.	I	wanted	a	larger	font-size	for	the
user	inputs	as	well,	so	I	had	to	create	separate	styling	for	them.
input[type=“text”],	input[type=“email”],	textarea	{

		margin-bottom:	.25em;

		padding:	.25em;

		font-size:	1em;

}

As	you	can	see,	the	syntax	varies,	depending	on	the	type	of	inputs	you’re	styling.

For	single-line	text	and	email	inputs,	the	selectors	are	input[type=“text”]	and
input[type=“email”].

For	a	textarea,	it’s	just	textarea.

I	wanted	a	hefty	Submit	button,	so	I	coded	this	styling.
input[type=“submit”]	{

		font-size:	1.25em;

}

The	button	will	expand	to	accommodate	the	enlarged	text.

I	bolded	the	legends.
legend	{

		font-weight:	700;

}

In	your	CSS	file	double	the	font-size	of	text	input	and	textarea	controls,	and	give
them	some	padding	all	around.	Save	the	file.	Display	the	page.

Sample	CSS	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-58-1.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/58.html

http://asmarterwaytolearn.com/htmlcss/practice-58-1.html
http://www.ASmarterWayToLearn.com/htmlcss/58.html

59
Comments

Commenting	is	a	way	to	tell	the	browser	to	ignore	certain	portions	of	text	that	you
include	within	the	body	of	code.	Comments	are	for	the	human,	not	the	machine.	They	help
you	and	others	understand	your	code	when	it	comes	time	to	revise.	You	can	also	use
commenting	to	comment	out	portions	of	your	code	for	testing	and	debugging.

In	HTML	any	text	enclosed	by	an	opening	<!—	tag	and	a	closing	-->	tag	is
invisible	to	the	browser.	In	the	following	code	“Beginning	of	questionnaire	form”	is	a
comment	that	the	browser	ignores.
<!—	Beginning	of	questionnaire	form	-->

<form	action=“questionnaire.php”	method=“post”>

		<fieldset>

				<legend>Contact	info</legend>

				<label>First	name:	<input	type=“text”	name=“first-

name”	size=“15”	maxlength=“30”></label>

[etc.]

Here’s	a	multi-line	comment.	When	you	write	a	multi-line	comment,	put	the	tags	on
their	own	separate	lines	for	readability.
<!—

Note	to	myself.	Think	about	combining	the

questionnaire	form	with	the	feedback	form.

-->

You	can	also	comment	CSS	code,	but	the	tags	are	different.	It’s	/*	to	open,	*/	to
close.
/*	Styles	for	headings	*/

h1	{

		font-size:	3em;

}

h2	{

[etc.]

You	can	have	mutli-line	CSS	comments.	Again,	put	tags	on	their	own	separate	lines
for	readability.
/*

This	CSS	file	was	created	on	May	28,	2018.

The	styles	are	optimized	for	a	learning	site.

*/

In	your	HTML	file	add	a	multi-line	comment.	In	your	CSS	file	add	a	multi-line

comment.	Save	the	files.	Display	the	page.	(The	HTML	comment	should	not	display.)

Sample	HTML	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-59-1.html.

Sample	CSS	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-59-2.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/59.html

http://asmarterwaytolearn.com/htmlcss/practice-59-1.html
http://asmarterwaytolearn.com/htmlcss/practice-59-2.html
http://www.ASmarterWayToLearn.com/htmlcss/59.html

60
Layout:	nested	boxes

The	first	thing	to	know	about	HTML	page	layout	is	that	it’s	always	a	collection	of
invisible	nested	boxes.	Everything,	from	the	header	to	the	shortest	paragraph	or	tiniest
icon,	is	inside	something	else.

In	an	earlier	chapter	you	learned	that	all	of	the	content	of	a	webpage	is	enclosed	by
an	opening	<body>	tag	and	closing	</body>	tag.	This	means	that	the	body	is	the
biggest	box,	the	box	that	contains	everything	else.	(Well,	it’s	the	biggest	box	your	CSS
code	can	affect.	The	body	is	actually	inside	the	box	created	by	the	opening	<html>	and
closing	</html>	tags.)	Think	of	the	body	as	the	brown	box	with	the	Amazon	logo	on	it
that	the	postal	carrier	delivers.	All	the	other	boxes	are	inside	it.	To	take	the	metaphor	even
further,	the	outermost	box,	defined	by	the	opening	and	closing	<html>	tags,	which	you
never	deal	with	except	to	write	the	tags,	is	the	mail	truck.

How	many	boxes	are	contained	inside	the	big	outer	box	(the	body),	and	how	many
levels	of	nesting	wind	up	inside	it,	are	decisions	you	make,	depending	on	what	you	want
your	page	to	look	like.	At	a	minimum,	most	professional	websites	include	a	collection	of
boxes	that	looks	something	like	this.

Of	the	boxes	shown	in	the	diagram,	the	only	big	box	that	you	absolutely	must	have
in	your	code	is	the	outer	box	created	by	the	required	opening	<body>	and	closing
</body>	tags.	You	can,	if	you	choose,	put	all	of	your	headings,	paragraphs,	images,	and
links	inside	that	one	big,	undifferentiated	box,	and	some	people	do.	You’ve	seen	such
pages.	The	text	stretches	all	the	way	across	the	browser	window.	There’s	no	layout,	really.
You	exit	the	site	as	fast	as	you	can.

The	diagram	above	shows	the	boxes	that	represent	major	sections	of	the	page.	If	I
had	wanted	to	show	all	the	smaller	boxes	that	are	contained	within	those	boxes,	I	would
have	included	the	boxes	containing	text.	These	boxes	are	created	by	opening	<p>	and
closing	</p>	tags,	opening	and	closing	heading	tags,	opening		and	closing	
tags,	and	opening		and	closing		tags.	On	an	HTML	page,	everything	is	inside
something	else.	Whenever	you	write	an	HTML	tag,	you	create	a	box.	The	opening	<p>
and	closing	</p>	tags	in	the	following	example	create	a	box	containing	the	text	“Hey
now!”
<p>Hey	now!</p>

In	the	following	example	the	opening	<a>	and	closing		tags	create	a	box
containing	the	text	“Stack	Overflow.”
a	href=“http://www.stackoverflow.com”>Stack	Overflow

For	any	box	of	any	size,	its	contents	are	affected	by	any	styles	you	specify	for	that
box.	So	if	you	write…
p	{

		color:	purple;

}

…all	the	text	enclosed	by	an	opening	<p>	tag	or	a	closing	</p>	tag	will	be,	God
help	you,	purple.

…unless	you	make	an	exception.	For	example,	you	can	write…
.sane-color	{

		color:	black;

}

Then,	although	the	general	style	for	paragraphs	is	still	purple,	any	text	enclosed	by	a
tag	that	begins	<p	class=“sane-color…”	will	be	black.

Or	you	could	write…
<p>This	is	not	a	pretty

sentence.</p>

…and	you’ve	created	a	span	box	within	the	paragraph	box	that	colors	the	word
“not”	black,	while	the	rest	of	the	sentence	is	purple.
Here’s	some	styling	for	the	biggest	box,	the	box	that	contains	everything	else,	the	body.

body	{

		width:	100%;

		font-family:	Georgia,	“Times	New	Roman”,	Times,	serif;

		font-size:	1em;

		background-color:	white;

		color:	black;	

}

Since	the	body	is	the	biggest	box,	this	bit	of	CSS	means	that	all	the	text	on	the	page,
including	all	paragraphs,	headings,	table	text,	and	list	items,	will	be	black	on	a	white
background,	will	be	in	the	Georgia	font	or	a	variant,	and	will	be	based	on	the	browser’s
default	text	size.

…unless	you	make	an	exception.	And	of	course,	you	might	make	all	kinds	of
exceptions,	on	just	about	every	level.	For	example,	you	can	create	a	general	style	for
paragraphs	that	differs	from	the	default	for	all	text	established	in	the	body	style.	Another
example:	when	you	explicitly	call	for	purple	text	as	a	p	style,	all	text	enclosed	in	<p>	tags
is	purple	rather	than	the	body’s	default	black.	As	you	learned	in	an	earlier	chapter,	you	can
also	make	exceptions	to	that	rule	by	creating	classes	and	IDs	for	paragraphs	that	specify
different	characteristics.

Later	I’ll	discuss	the	width:	100%	and	font-size:	1em	specifications	in	the
body	style	shown	above.	But	first	we	need	to	talk	about	how	to	create	the	big	sections,
like	the	header	and	main	sections,	shown	in	the	diagram	above.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/60.html

http://www.ASmarterWayToLearn.com/htmlcss/60.html

61
Layout:	divs

All	the	boxes	that	constitute	an	HTML	layout	are	contained	in	the	big	box	created	by
the	opening	<body>	and	closing	</body>	tags—the	tags	that	begin	and	end	the	main
section	of	every	HTML	document.	In	the	diagram	in	the	last	chapter,	you	saw	some
relatively	large	boxes	nested	inside	the	big	outermost	Body	box.	What	the	diagram	doesn’t
show	is	all	the	smaller	boxes	nested	inside	these	relatively	large	boxes.	The	smaller	boxes
are	created	by	the	opening	and	closing	tags	for	headings,	paragraphs,	list	items,	and	so	on.

So	how	do	you	create	the	relatively	large	boxes,	for	the	header,	navigation	section,
main	section,	and	so	on—the	boxes	shown	inside	the	big	Body	box	in	the	diagram?

You	create	these	boxes	by	using	div	tags.	For	example:
<div	id=“content”>

		<h3>The	slow	loris.</h3>

		<img	src=“slow-

loris.jpg”	alt=“Slow	loris”	width=“55”	height=“85”>

		<p>Slow	lorises	are	a	group	of	several	species	of	primates	which	make	up	the	genus	Nycticebus.

</p>	</div>

In	the	example,	there	are	three	elements	grouped	together	inside	the	div—a
heading,	an	image,	and	a	paragraph.	Just	as	any	styling	that	you	specify	for	the	body	will
be	applied	to	all	elements	contained	in	the	body	unless	you	make	explicit	exceptions,	any
styling	that	you	specify	for	the	div	will	be	applied	to	all	elements	inside	the	div	unless
you	make	explicit	exceptions.	In	the	HTML	code	above,	I’ve	created	a	div	with	an	id	of
“content.”	I’ll	style	the	div	with	a	color.

div#content	{

		color:	red;

}

With	this	style,	the	heading	and	paragraph	text	in	the	div	will	be	red—unless	you
create	exceptions.	An	exception	would	be	if	you’ve	explicitly	specified	a	particular	color
for	h3	headings	or	a	particular	color	for	paragraphs.	Then	those	specifications	will
override	the	default	color	that	you’re	specifying	for	the	div.

Styling	precedence	works	like	this:

Styling	for	an	inner	box	overrides	styling	for	an	outer	box.	For	example,	in	the	last
chapter	we	specified	black	as	the	color	for	all	the	text	in	the	body.	Black	is	the	color
unless	otherwise	specified.	This	default	is	overridden	by	the	div	we	created	above,
which	calls	for	red	text.	So	now	the	default	color	for	all	the	text	in	the	div	is	red.

Styling	for	an	element,	like	a	paragraph,	overrides	styling	for	a	div.	This	is	really
the	same	rule	as	the	first	rule	above,	since	the	box	created	by	tags	is	inside	the	box

created	by	the	<div>	tags,	and	the	rule	says	that	styling	for	an	inner	box	overrides
styling	for	an	outer	box.	Styling	for	the	div	says	black,	but	we	create	a	style	for	all	p
elements	that	says	purple,	the	purple	paragraph	style	will	override	the	div	black
style.

Class	and	id	styling	override	general	styling.	If	we	create	a	“sane-color”	class	of
paragraphs,	the	general	purple	specification	for	paragraphs	is	overridden	for	any
paragraphs	whose	tag	begins	<p	class=“sane-color…”

Why	did	I	create	an	id	for	the	div	rather	than	a	class?	Because	this	particular	div—
the	one	that	contains	all	the	content	on	the	page—occurs	just	once	in	the	document.	A
class	can	be	used	more	than	once,	an	id	only	once.	If	we	were	styling	a	div	that	might
occur	more	than	once	in	the	HTML,	we’d	create	a	class	rather	than	an	id.

As	you’ve	seen	in	this	chapter,	a	div	is	handy	for	setting	default	styling	within	a
section,	but	the	most	important	function	of	divs	is	layout	positioning.	That’s	next.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/61.html

http://www.ASmarterWayToLearn.com/htmlcss/61.html

62
Layout:

div	widths	and	centering

Let’s	talk	about	the	div	that	contains	most	of	the	content	of	the	page,	the	one	that,	in
our	example,	creates	the	Main	box.	It’s	the	third	box	down	in	the	diagram	shown	in	the
last	chapter.	Sticking	with	the	name	I	used	in	the	diagram,	we’ll	give	the	div	an	id	of
“main.”

Usually,	you	don’t	want	the	contents	of	a	section	to	bump	up	against	the	left	and
right	edges	of	the	window.	As	in	a	book,	you	create	some	whitespace	on	the	left	and	right.
A	good	way	to	do	it	is	to	specify	a	width	for	the	section,	like	this.
div#main	{

		width:	90%;

}

This	style	adds	a	minimum	amount	of	whitespace	on	the	side.

But	90%	of	what?	Well,	when	you	specify	ems	or	percentages,	these	values	are
always	relative	to	what’s	“normal”—either	the	browser’s	default	or	a	style	you’ve
overridden	with	CSS	styling.	In	our	example,	we	created	a	default	width	in	the	body
styling,	width:	100%.	This	style	tells	the	browser	to	make	the	body	width	the	full
width	of	the	browser	window.	That’s	the	browser’s	default,	so	we’re	just	telling	it	to	do
what	it	would	do	anyway.	But	by	making	it	explicit,	we	tell	any	human	readers	trying	to
understand	our	CSS	that	we’re	accepting	the	browser’s	default.

So	when	you	specify	width:	90%	for	the	main	section,	you’re	telling	the	browser
to	make	the	section	only	90%	as	wide	as	the	browser	window.	If	we	had	specified
width:	60%	for	the	body,	specifying	width:	90%	for	the	main	section	would	make
the	section	60%	times	90%,	or	54%	of	the	full	window	width.

But	there’s	a	problem.	By	default,	browsers	place	things	on	the	left.	This	means	that
if	we	make	the	main	section	narrower	than	the	body,	the	main	section	will	bump	up
against	the	left	edge	of	the	browser	window,	and	all	the	whitespace	will	wind	up	on	the
right.	That’s	not	what	we	want.	We	want	the	section	centered.	So	we	add	a	line.
div#main	{

		width:	90%;

		margin:	0	auto	0	auto;

}

Once	we’ve	told	the	browser	how	wide	to	make	the	div,	specifying	auto	for	left
and	right	margins	tells	the	browser	that	if	there’s	any	width	left	over—in	this	case	10%—
to	split	the	difference.	Now	there’ll	be	a	margin	on	the	left	that’s	equal	to	5%	of	the

browser	window	width	and	a	margin	on	the	right	of	the	same	width.	That	is,	the	section
will	be	centered.

You	can	make	the	section	narrower,	with	wider	margins,	by	reducing	the	percentage
you	specify	for	the	width.

You	can	add	whitespace	above	and/or	below	the	section	by	replacing	the	zeros	with
em	values.

div#main	{

		width:	90%;

		margin:	1.5em	auto	1%	auto;

}

You’ll	have	to	play	around	with	the	em	values	to	get	the	margins	to	suit	you.

Now	suppose	you	have	several	different	divs	within	the	main	div,	and	you	want
to	give	these	proportionally	the	same	margins	that	you’ve	assigned	to	the	main	div	(not
that	the	margins	have	to	be	proportional).	You	could	do	this	by	using	exactly	the	same
specifications	you	used	for	the	main	div.

div.inset	{

		width:	90%;

		margin	0	auto	0	auto;

}

Since	all	values	of	the	inner	div	are	relative	to	the	values	of	the	outer	div,	the
divs	of	the	class	“inset”	will	have	90%	of	the	width	of	the	outer	div.	This	is	the	result.

Of	course,	the	inner	div’s	width	value	doesn’t	have	to	be	the	same	as	the	width
value	of	the	outer	div.	I	just	did	it	this	way	so	you	can	see	that	the	width	of	the	inner
div,	though	it	shares	the	same	value,	is	narrower	than	the	outer	div,	since	it’s	90%	of
90%	of	the	body	width,	whereas	the	outer	div	is	90%	of	the	full	body	width.

In	Chapter	60	I	promised	to	discuss	two	specifications	in	the	body	styling:
body	{

		width:	100%;

		font-family:	Georgia,	“Times	New	Roman”,	Times,	serif;

		font-size:	1em;

		background-color:	white;

		color:	black;

}

A	moment	ago,	I	discussed	the	width:	100%	specification	for	the	body	style,
saying	that	it’s	redundant	in	the	sense	that	you’re	telling	the	browser	to	do	what	it	would
do	anyway.	The	purpose	is	to	help	other	coders,	by	explicitly	saying	that	you’re	accepting
the	default	width—the	full	width	of	the	browser	window—as	the	body	width	that	the

styles	that	follow	will	be	based	on.	The	same	applies	to	font-size:	1em.	You’re
letting	other	coders	know	that	you’re	accepting	the	browser’s	default	size	as	the	value	that
all	other	styles	will	be	based	on.

In	your	CSS	file	code	a	div	id	that’s	20%	wide	and	centered.	In	your	HTML	file
code	the	div	and	put	a	paragraph	in	it.	Save	the	files.	Display	the	page.

Sample	CSS	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-62-1.html.

Sample	HTML	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-62-2.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/62.html

http://asmarterwaytolearn.com/htmlcss/practice-62-1.html
http://asmarterwaytolearn.com/htmlcss/practice-62-2.html
http://www.ASmarterWayToLearn.com/htmlcss/62.html

63
Side-by-side	divs

Look	at	the	box	diagram	again.	I’ve	made	a	small	change	to	it.	I’ve	nudged	the
Content	section	left,	so	it’s	up	against	the	left	side	of	the	Main	box,	and	the	Sidebar
section	right,	so	it’s	up	against	the	right	side	of	the	Main	box.	In	the	original	diagram,	I
left	some	space	between	these	two	sections	and	the	Main	section	so	you	could	see	all	the
boxes	clearly,	but	I	don’t	really	want	any	extra	whitespace	on	the	left	and	right	between
the	outer	box	and	the	two	inner	boxes.

I	want	the	two	sections	to	sit	side-by-side.	I	want	no	extra	whitespace	on	the	left	or
right,	separating	them	from	the	outer	Main	box.	This	is	how	we	do	it.

First,	we	specify	a	width	for	each	of	the	two	inner	boxes	so	when	their	widths	are
added	together	they	don’t	add	up	to	more	than	100%	of	the	width	of	the	div	that	contains
them,	the	Main	box.	But	since	I	don’t	want	them	bumping	up	against	each	other	in	the
middle,	I’m	going	to	give	them	widths	that	add	up	to	just	97%.	This	leaves	the	remaining
3%	for	a	center	gutter	between	them.	Here’s	the	code.
div#content	{

		width:	68%;

}

div#sidebar	{

		width:	29%;

}

So	far,	this	styling	doesn’t	prevent	the	browser	from	placing	one	element	underneath
the	other.	If	we	don’t	do	something	about	it,	the	second	div	will	go	right	underneath	the
first	div,	since	a	div	is	a	block	element.	Both	of	them	will	be	flush	with	the	left	edge	of
the	Main	box.	So	we	need	to	do	one	more	thing.	Remember	how	you	learned	to	write
float:	left	and	float:	right	to	style	an	image	so	text	wraps	around	it?	We	use
the	same	language	to	place	the	two	divs	side-by-side.

div#content	{

		width:	68%;

		float:	left;

}

div#sidebar	{

		width:	29%;

		float:	right;

}

Now	they’re	side-by-side,	and	there’s	a	gutter	between	them	that’s	3%	of	the	width
of	their	containing	element,	the	Main	box.

Let	me	give	you	another	example.	Suppose	you	want	three	divs	of	equal	width
placed	side-by-side.
div#d1	{

		width:	31%;

		float:	left;	

}

div#d2	{

		width:	31%;

		float:	left;

		margin:	0	0	0	3.5%;

}

div#d3	{

		width:	31%;

		float:	right;

}

The	first	two	divs	are	floated	left.	The	third	div	is	floated	right.	Each	div	is	31%
wide,	adding	up	to	a	total	of	93%	of	the	width	of	the	containing	Main	box.	That	leaves	7%
for	the	two	gutters.	I	specify	a	left	margin	of	3.5%	for	the	second	div,	forcing	it	to	the
right.	This	leaves	3.5%	for	the	second	gutter.	Now	the	three	sections	are	spaced	evenly.
Remember	learning	in	Chapter	27	that	you	need	to	clear	image	floats	to	avoid	unintended
wraps?	You	do	the	same	thing	with	div	floats.

.no-wrap	{

		clear:	both;

}

After	coding	side-by-side	divs	in	HTML,	you’d	code	an	empty	div	whose	only
purpose	is	to	clear	the	float	above	it.
<div	class=“no-wrap”></div>

Or	you	could	do	it	with	a	paragraph	that	clears	the	float.

In	your	CSS	file	create	two	div	ids	that	will	place	the	divs	side-by-side,	with	a
gutter	of	whitespace	between	them.	In	your	HTML	file	code	the	two	divs	and	put	a
paragraph	in	each	one.	Save	the	files.	Display	the	page.

Sample	CSS	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-63-1.html.

Sample	HTML	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-63-2.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/63.html

http://asmarterwaytolearn.com/htmlcss/practice-63-1.html
http://asmarterwaytolearn.com/htmlcss/practice-63-2.html
http://www.ASmarterWayToLearn.com/htmlcss/63.html

64
Layout:

a	modern	header	part	1

The	box	diagram	we’ve	been	working	with	shows	the	header	section	scaled	a	little
narrower	than	the	body	section,	with	some	whitespace	at	the	top.

When	the	page	displays,	there’s	a	small	amount	of	whitespace	between	the	top	edge
of	the	window	and	the	top	of	the	header.	And	there’s	a	small	amount	of	whitespace	also	on
both	sides	of	the	header.	This	happens	automatically	if	you	don’t	override	it.

A	header	with	whitespace	all	around	it	is	acceptable,	but	a	more	modern	design
would	have	the	header	on	a	color	block	that	is	flush	with	the	top	of	the	window	and
stretches	all	the	way	across	the	window	from	edge	to	edge.	The	box	diagram	would	look
like	this.

Let’s	make	one	of	these	modern	headers.

We	start	by	making	the	header	stretch	from	edge	to	edge.	And	we	create	the	color
block	by	giving	it	a	background-color	of	dark	crimson.
div#header	{

		width:	100%

		background-color:	#990000;

}	

This	is	the	HTML	that	creates	the	div.

<div	id=“header”>

		[The	contents	of	the	div	will	go	here.]

</div>

By	specifying	a	width	of	100%,	we’ve	asked	the	browser	to	stretch	the	div	from
edge-to-edge,	but	the	browser	isn’t	cooperating	fully.	It’s	still	leaving	a	little	whitespace
on	the	left	and	right	edges.

So	we	need	to	force	the	issue:
div#header	{

		width:	100%

		position:	absolute;

		left:	0;

		background-color:	#990000;

}

By	specifying	position:	absolute,	we	override	whatever	the	browser	thinks
we	mean	by	width:	100%	and	explicitly	tell	it	where	we	want	the	left	edge	to	start.	By
specifying	left:	0,	we	say,	“Start	it	0	pixels	in	from	the	left	edge	of	the	window.”	In
other	words,	eliminate	all	whitespace.	Happily,	without	any	additional	instructions,	the
browser	eliminates	all	whitespace	on	the	right	edge	as	well.

But,	thanks	to	the	browser’s	tendency	to	surround	a	div	with	whitespace,	we	still
have	a	gap	above	the	header.	How	do	we	solve	this?	You	can	probably	guess.
div#header	{

		width:	100%

		position:	absolute;

		top:	0;

		left:	0;

		background-color:	#990000;

}

Now	we’ve	told	the	browser	to	start	the	div	0	pixels	from	the	top	of	the	window.
The	gap	disappears.

So	do	we	see	a	color	block	at	the	top	of	the	browser?	No.	If	you	open	the	page	in	a
browser,	the	color	block	isn’t	anywhere	to	be	found.

In	the	next	chapter	I’ll	deal	with	this.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/64.html

http://www.ASmarterWayToLearn.com/htmlcss/64.html

65
Layout:

a	modern	header	part	2

In	the	last	chapter	we	took	the	first	steps	to	create	a	header	that’s	flush	with	the	top
of	the	browser	window	and	stretches	from	edge	to	edge	of	the	window.	We	specified	a
width	of	100%	for	the	div.	We	instructed	the	browser	to	eliminate	the	whitespace	it	would
normally	add	to	the	top	and	sides.	And	we	added	a	background	color.

But	no	header	color	block	showed	up.	Why?	Because	without	a	height	specification
or	any	content	that	would	force	the	browser	to	stretch	the	div	up	and	down	to
accommodate	the	content,	the	browser	assigns	the	div	a	height	of	0.	The	crimson	color
block	has	a	width	but	no	height.	It’s	one-dimensional,	an	invisible	phantom.

We	could	assign	it	a	height,	specifying	a	number	of	pixels,	but	we’re	avoiding	pixels
because	they	prevent	the	page	from	adapting	to	different-size	windows.	We	could	assign	it
a	height	as	a	percentage	to	avoid	the	pixel	problem,	but	we	don’t	need	to.	When	we	put
some	content	inside	the	div,	the	div	will	expand	to	accommodate	it.	For	content,	I’ll
start	with	a	heading.

We	start	by	creating	a	style	for	the	heading.
div#header	h2	{

		font-family:	Verdana,	Geneva,	sans-serif;

		font-weight:	900;

		color:	white;

}

The	highlighted	first	line	says,	“Apply	this	style	to	an	h2	heading	within	the	div
whose	id	is	“header.”	Now	we	can	write…
<div	id=“header”>

		<h2>A	Smarter	Way	to	Learn</h2>

</div>

…and	a	header	appears	in	the	browser.

I’d	like	to	make	the	heading	a	little	beefier,	so	I	add	this:
div#header	h2	{

		font-family:	Verdana,	Geneva,	sans-serif;

		font-weight:	900;

		color:	white;

		font-size:	2em;	

}

This	is	the	result:

Finally,	let’s	give	the	heading	some	whitespace	on	the	left.
div#header	h2	{

		font-family:	Verdana,	Geneva,	sans-serif;

		font-weight:	900;

		color:	white;

		font-size:	2em;

		margin-left:	2%;

		padding:	0;

}

And	here	we	go:

In	your	CSS	file	code	a	100%-wide	div	with	absolute	positioning	at	the	top	left.
Assign	it	a	light	color.	In	your	HTML	file	code	the	div	and	put	a	heading	in	it.	Save	the
files.	Display	the	page.	(The	div	will	be	at	the	top	of	the	page	if	you	coded	correctly.)

Sample	CSS	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-65-1.html.

Sample	HTML	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-65-2.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/65.html

http://asmarterwaytolearn.com/htmlcss/practice-65-1.html
http://asmarterwaytolearn.com/htmlcss/practice-65-2.html
http://www.ASmarterWayToLearn.com/htmlcss/65.html

66
Layout:

a	modern	header	part	3

Let’s	add	a	logo	to	the	header.	We’ll	place	it	to	the	left	of	the	header	text.

Here’s	a	start:
<div	id=“header”>

		

		<h2>A	Smarter	Way	to	Learn</h2>

</div>

That	gives	us	this:

That’s	not	what	we	want.	We’ll	have	to	float	the	image.
div#header	img	{

		float:	left;

}

Here’s	what	the	float	accomplishes:

We’re	getting	close.	We	just	need	to	add	some	space	around	the	logo.
div#header	img	{

		float:	left;

		margin:	.9em	.6em	0	.75em;

}

And	there	you	have	it.

Notice	that	the	color	block—the	div—has	expanded	vertically	to	accommodate	the
top	and	bottom	margins.

1.	 In	your	CSS	file	style	the	image	inside	the	div	so	it	floats	left	and	has	1em	of
margin.

2.	 Give	the	heading	inside	the	div	some	top-padding	so	it	moves	down	to	center
vertically.

3.	 In	your	HTML	file	add	an	image	inside	the	div:
http://www.asmarterwaytolearn.com/loris_50.jpg

4.	 Save	the	file	and	display	the	page.	(Don’t	be	surprised	to	see	the	header	cover	up
some	content.	We’ll	deal	with	this	in	Chapter	6)

Sample	CSS	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-66-1.html.

Sample	HTML	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-66-2.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/66.html

http://asmarterwaytolearn.com/htmlcss/practice-66-1.html
http://asmarterwaytolearn.com/htmlcss/practice-66-2.html
http://www.ASmarterWayToLearn.com/htmlcss/66.html

67
Layout:

a	modern	header	part	4

In	the	last	chapter	you	learned	how	to	force	the	browser	to	position	a	div	precisely
where	you	want	it.	The	header	that	we	created	using	this	approach	appears	in	that	position
when	the	page	first	displays.	Then	if	the	user	scrolls	the	page,	the	header	scrolls	with	all
the	other	content.	But	you	can	tell	a	browser	to	leave	a	div	where	you	put	it,	to	not	scroll
it	when	the	page	scrolls.	For	example,	you	might	want	the	header	to	stay	visible	at	the	top
of	the	browser	window	as	everything	below	it	scrolls.	Here’s	the	code.	(I’m	omitting	all
the	header	styling	that	I	covered	in	the	last	chapter.)
div#header	{

		position:	fixed;

		top:	0;

		left:	0;

}

position:	fixed	tells	the	browser	to	keep	the	div	immobilized	as	everything
else	on	the	page	scrolls.	This	makes	the	div’s	position	within	the	window	permanent.	As
you	learned	in	the	last	chapter,	top:	0	and	left:	0	tell	the	browser	to	place	the
header	flush	against	the	top	of	the	window	and	flush	against	the	left	side	of	the	window.

If	you	were	to	write	this…
div#ad-box	{

		postion:	fixed;

		top:	150px;

		left:	50px;

}

…the	div	with	the	id	“ad-box”	would	be	permanently	positioned	150	pixels	from
the	top	of	the	window	and	50	pixels	in	from	the	left	side	of	the	window.

You	can	also	specify	a	position	some	distance	(or	no	distance)	in	from	the	right	side
of	the	window.	The	following	code	positions	the	ad	box	flush	against	the	top	of	the
window	and	10	pixels	in	from	the	right.
div#ad-box	{

		postion:	fixed;

		top:	0;

		right:	10px;

}

Alternatively,	you	can	specify	a	position	some	distance	(or	no	distance)	up	from	the

bottom	of	the	window.
div#footer	{

		position:	fixed;

		bottom:	0;

		left:	0;

}

I’ve	coded	the	positions	in	pixels,	because	that’s	easier	for	you	to	understand.	But,	as
you	know,	percentages	are	preferable,	so…
div#ad-box	{

		postion:	fixed;

		top:	0;

		right:	2%;

}

In	your	CSS	file	change	the	absolutely-positioned	div	to	fixed	position.	Save	the
file	and	display	the	page.	Try	scrolling	down	from	the	top.	(Don’t	be	surprised	to	see	the
header	cover	up	some	content.	We’ll	deal	with	this	in	the	next	chapter.)

Sample	CSS	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-67-1.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/67.html

http://www.ASmarterWayToLearn.com/htmlcss/67.html

68
Layout:

a	modern	header	part	5

In	the	last	two	chapters	we	created	headers	with	a	fixed	position	at	the	top	of	the
browser	window.	In	Chapter	66,	you	learned	to	create	a	header	with	absolute	positioning
that	scrolls.	In	Chapter	67,	you	learned	to	create	a	header	with	fixed	positioning	that
doesn’t	scroll.	We’ll	soon	be	adding	more	to	the	HTML	document,	with	the	intention	of
building	a	page	whose	content	looks	like	this.	(I’m	showing	only	a	top	portion	of	the
page.)

The	picture	above	shows	what	we	want,	but	that’s	not	what	we’re	going	to	get.	When
you	specify	position:	absolute	or	position:	fixed,	you	remove	the	div

from	the	normal	flow	of	the	HTML	page.	The	div	goes	where	you	tell	it	to	go,	ignoring
the	natural	flow	of	the	other	HTML	elements.	They	return	the	favor	by	totally	ignoring	the
div	element.	They	behave	as	if	it	weren’t	there.	What	this	means	is	that	when	you	force	a
header	to	take	a	particular	position,	the	other	stuff	on	the	page	won’t	respectfully	make
room	for	it.	Since	the	other	elements	don’t	know	it’s	there,	they’ll	position	themselves	as
if	it	isn’t	there,	right	where	the	div	is,	violating	the	natural	law	that	says	two	things	can’t
occupy	the	same	space.	Unaware	of	the	div,	they’ll	flow	normally	and	will	wind	up
under	the	div.	They’ll	be	invisible.

You	could	style	the	sidebar	and	main	section	with	big	top	margins	to	move	them
down	below	the	header	so	they’re	in	the	clear.	But	I	prefer	a	more	elegant	solution.

Create	a	duplicate	of	the	header—a	copy	of	it	that	isn’t	fixed,	a	header	that	is	part	of
the	main	flow.	You	make	this	header	visible	to	the	browser	but	invisible	to	the	user.	In
effect,	it’s	a	spacer.
div#invisible-header	{

		width:	100%;

		visibility:	hidden;

}

Add	a	new	selector	to	the	header’s	h2	styling	so	the	invisible	heading	is	styled	like
the	visible	heading:
div#header	h2,	div#invisible-header	h2	{

		font-family:	Verdana,	Geneva,	sans-serif;

		font-weight:	900;

		color:	white;

		font-size:	2em;

		margin-left:	2%;

		padding:	0;

}

Do	the	same	thing	for	the	image.
div#header	img,	div#invisible-header	img	{

		float:	left;

		margin:	.9em	.6em	0	.75em;

}

visibility:	hidden,	specified	for	the	header	div	and	everything	it	encloses,
tells	the	browser	to	keep	its	contents	invisible	(though	the	browser	knows	it’s	there).

Since	we	floated	the	image,	we	need	a	paragraph	that	clears	the	float.	We’ll	style	it
this	way:
p.clearFloat	{

		clear:	both;

}

The	HMTL	code	for	the	invisible	header	and	its	contents	is	inserted	at	the	top	of	the
page.

<body>

<div	id=“invisible-header”>

		

		<h2>A	Smarter	Way	to	Learn</h2>

</div>

For	precision	placement	of	the	elements	immediately	below	the	header,	you	may
need	to	adjust	the	margin	of	the	spacer	div.	Since	the	browser	will	add	a	little	whitespace
above	the	spacer	div,	it’s	going	to	drop	a	little	below	the	visible	header.	To	move	it	up	so
it	mimics	the	visible	header,	give	it	some	negative	top-margin.

Why	is	the	visible	fixed	header	covering	up	the	other	elements	instead	of	the	other
way	around?	Because	by	default	a	fixed-position	element	goes	on	top.	But	you	can
interfere	with	this	stack	order,	using	z-index.	The	lower	the	z-index	number,	the
lower	its	place	in	the	stack	order.	All	elements	that	are	in	the	normal	HTML	flow	have	an
implicit	z-index	of	0.

In	your	CSS	file,	code	invisible	versions	of	the	fixed-position	div,	its	heading,	and
its	image.	In	your	HTML	file	insert	the	div	and	its	contents	at	the	top	of	the	page
contents,	under	<body>.

Sample	CSS	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-68-1.html.

Sample	HTML	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-68-2.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/68.html

http://asmarterwaytolearn.com/htmlcss/practice-68-1.html
http://asmarterwaytolearn.com/htmlcss/practice-68-2.html
http://www.ASmarterWayToLearn.com/htmlcss/68.html

69
A	vertical	navigation	bar

part	1

Since	a	navigation	bar	presents	the	user	with	a	list	of	choices,	the	usual	way	to	make
one	is	to	code	an	unordered	list.	Here’s	some	code.
<div	id=“navbar”>

		

				Why	Choose	Us

				Recent	Projects

				Our	Team

				Get	a	Quote

				Contact	Us

		

</div>

This	is	what	it	looks	like	so	far.

It	isn’t	a	navigation	bar	if	it	isn’t	clickable.	So	let’s	add	some	links.
<div	id=“navbar”>

		

				Why	Choose	Us

				Recent	Projects

				Our	Team

				Get	a	Quote

				Contact	Us

		

</div>

Now	the	list	items	are	blue	and	are	underlined,	indicating	links.

Since	it’s	going	to	be	a	navigation	bar,	we	don’t	need	the	bullets.	This	is	the	code
that	removes	them.
div#navbar	ul	{

		list-style-type:	none;

}

Now	the	bullets	are	gone.

We’ll	continue	with	the	navigation	bar	in	the	next	chapter.

1.	 In	your	CSS	file,	code	a	div	id	for	a	navigation	bar.	Include	an	id.	Give	it	a	clear:
both	specification	to	prevent	wrap	from	the	div	above	it.

2.	 Style	an	unordered	list	within	the	div	so	it	has	no	bullets.

3.	 In	your	HTML	file,	code	the	div.

4.	 Within	the	div,	code	an	unordered	list	with	links.	Make	up	the	links.	They	don’t
have	to	work.

5.	 Save	the	files.	Display	the	page.

Sample	CSS	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-69-1.html.

Sample	HTML	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-69-2.html.

http://asmarterwaytolearn.com/htmlcss/practice-69-1.html
http://asmarterwaytolearn.com/htmlcss/practice-69-2.html

70
A	vertical	navigation	bar

part	2

In	the	last	chapter,	we	started	constructing	a	navigation	bar.	We	created	an	unordered
list,	made	the	list	items	clickable,	and	removed	the	bullets.	Now	let’s	style	the	anchors.
The	style	will	apply	to	all	anchors	that	are	list	items	in	an	unordered	list	in	the	div	with
an	id	of	“navbar.”
div#navbar	ul	li	a	{

		font-family:	Arial,	Helvetica,	sans-serif;

		font-size:	1.1em;

		font-weight:	900;

}

Now	we	have	this.

Since	it’s	a	navigation	bar,	we	can	assume	that	the	user	knows	it’s	clickable.	We
don’t	need	the	underline	to	communicate	that	the	text	items	are	links.	So…
div#navbar	ul	li	a	{

		font-family:	Arial,	Helvetica,	sans-serif;

		font-size:	1.1em;

		font-weight:	900;

		text-decoration:	none;

}

This	is	the	result.

We’ll	continue	constructing	the	navigation	bar	in	the	next	chapter.

In	your	CSS	file,	make	the	anchors	bigger,	bolder,	and	sans-serif.	Take	away	the
underlines.	Save	the	file.	Display	the	page.

Sample	CSS	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-70-1.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/70.html

http://asmarterwaytolearn.com/htmlcss/practice-70-1.html
http://www.ASmarterWayToLearn.com/htmlcss/70.html

71
A	vertical	navigation	bar

part	3

In	the	last	chapter	we	styled	the	anchors.	Now	let’s	give	the	div	a	blue	background.

div#navbar	{

		background-color:	blue;

}

We’ll	make	the	anchors	white	so	they	show	up	on	the	blue	background.
div#navbar	ul	li	a	{

		font-family:	Arial,	Helvetica,	sans-serif;

		font-size:	1.1em;

		font-weight:	900;

		text-decoration:	none;

		color:	white;

}

And	we’ll	style	the	div	so	it’s	just	wide	enough	to	accommodate	the	list	items,	but
no	wider.
div#navbar	{

		clear:	both;

		background-color:	blue;

		display:	inline-block;

}

inline-block	tells	the	browser	to	shrink	to	fit.

Now	we	have…

The	browser	hasn’t	forgotten	that	this	is	a	list,	so	it	has	added	padding	on	the	left
side	to	indent	it.	We	don’t	want	it	indented.	So	we	specify	zero	left-side	padding	for	the
ul.

div#navbar	ul	{

		list-style-type:	none;

		padding-left:	0;

}

That	moves	it	flush-left.

Because	an	unordered	list	is	a	block	element,	the	browser	has	added	top	and	bottom
margins.	We’ll	keep	them.	In	your	CSS	file…

1.	 Make	the	navigation	bar	div	a	dark	color.

2.	 Make	the	anchors	a	light	color.

3.	 Shrink	the	navigation	bar	to	fit.

4.	 Remove	padding	from	the	left	side	of	the	list.

5.	 Save	the	file.	Display	the	page.

Sample	CSS	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-71-1.html.

http://asmarterwaytolearn.com/htmlcss/practice-71-1.html

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/71.html

http://www.ASmarterWayToLearn.com/htmlcss/71.html

72
A	vertical	navigation	bar

part	4

We’re	still	working	on	the	vertical	navigation	bar.

I	want	the	color	block	to	expand	horizontally.	We	could	do	this	by	adding	left	and
right	padding	to	the	ul,	but	because	of	something	we’re	going	to	do	in	the	next	chapter,
I’ll	add	the	padding	to	the	li	elements	instead.

div#navbar	ul	li	{

		padding:	0	1em	0	1em;

}

Now	we’ll	add	a	little	padding	below	each	list	item	to	separate	them.
div#navbar	ul	li	{

		padding:	0	1em	.3em	1em;

}

The	result:

In	your	CSS	file,	add	some	padding	on	the	left	and	right	of	list	items.	Add	a	little
padding	to	the	bottom	of	each	list	item	to	separate	them.	Save	the	file.	Display	the	page.

Sample	CSS	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-72-1.html.	Find	the	interactive	coding
exercises	for	this	chapter	at:	http://www.ASmarterWayToLearn.com/htmlcss/72.html

http://asmarterwaytolearn.com/htmlcss/practice-72-1.html
http://www.ASmarterWayToLearn.com/htmlcss/72.html

73
A	vertical	navigation	bar

part	5

The	vertical	navigation	bar	we	created	in	the	last	chapter	is	functional,	but	doesn’t
look	that	great.	Let’s	dress	it	up	a	little.

Instead	of	a	list	of	links	against	a	blue	background,	we’re	going	to	have	five	separate
blue	blocks.	Each	block	is	a	navigation	choice.

We	remove	the	blue	background	from	the	div,	since	we’re	going	to	color	the	li
elements	individually.
div#navbar	{

		background-color:	blue;

		display:inline-block;

		clear:	both;

}

The	styling	for	the	unordered	list	is	unchanged…
div#navbar	ul	{

		list-style-type:	none;

		padding-left:	0;

}

We’re	going	to	color	each	li	element	separately,	so	we	write…

div#navbar	ul	li	{

		background-color:	blue;

		padding:	0	1em	.3em	1em;

}

We’re	going	to	stretch	out	the	blue	li	elements	by	padding	the	a	elements	inside
them,	so	we	no	longer	need	padding	on	the	li	elements.
div#navbar	ul	li	{

		background-color:	blue;

		padding:	0	1em	.3em	1em;

}

To	enlarge	the	blue	background	of	the	li	elements,	we	declare	each	a	element	a
block	and	pad	it	out.
div#navbar	ul	li	a	{

		font-family:	Arial,	Helvetica,	sans-serif;

		font-size:	3em;

		font-weight:	900;

		text-decoration:	none;

		color:	white;

		display:	block;

		padding:	.35em;

	}

All	these	changes	produce	this.

Separate	the	list	items	with	a	little	bit	of	bottom	margin…
div#navbar	ul	li	{

		background-color:	blue;

		margin:	0	0	.25em	0;

}

And	there	you	have	it:

Revise	your	CSS	file	to	style	the	navbar	like	the	one	shown	above.	Save	the	file.
Display	the	page.	(Code	the	li	bottom	margin	as	above,	specifying	0	for	the	other	three
sides,	to	override	a	general	margin	specification	for	li	elements	that	you	coded	earlier.)

Sample	CSS	code	is	at:

http://asmarterwaytolearn.com/htmlcss/practice-73-1.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/73.html

http://asmarterwaytolearn.com/htmlcss/practice-73-1.html
http://www.ASmarterWayToLearn.com/htmlcss/73.html

74
A	horizontal	navigation	bar

part	1

You	don’t	need	to	know	much	more	than	you	already	know	in	order	to	create	a
horizontal	navigation	bar.	Like	a	vertical	navigation	bar,	it’s	just	a	list	of	links	with	some
styling.

We’ll	start	by	replacing	the	shrink-to-fit	inline-block	specification	with	a	width.
div#navbar	{

		display:inline-block;

		width:	100%;

}

The	ul	styling	is	the	same	as	before.

div#navbar	ul	{

		list-style-type:	none;

}

The	a	element	styling	has	only	one	change.

div#navbar	ul	li	a	{

		font-family:	Arial,	Helvetica,	sans-serif;

		font-size:	1.1em;

		font-weight:	900;

		text-decoration:	none;

		color:	white;

		display:	block;

		padding:	.75em;	

}

The	big	changes	are	in	the	li	styling.

div#navbar	ul	li	{

		background-color:	blue;

		text-align:	center;

		display:	inline;

		width:	19%;

		float:	left;

		margin-right:	.5em;

}

display:	inline	tells	the	browser	not	to	arrange	the	list	items	vertically,	the
default,	but	to	put	them	side-by-side.

We	want	each	of	the	five	blocks	to	be	the	same	width.	By	specifying	that	each	block
occupy	19%	of	the	width	of	the	div,	we	leave	room	for	the	margin	that	creates	a	little
whitespace	between	each	block.

float:	left—well,	you	know	how	that	works.	It	arrays	the	blocks	horizontally
across	the	window.

The	.5em	right	margin	separates	the	blocks	with	a	little	white	space.	We	wouldn’t
have	to	do	this,	of	course.	We	could	skip	the	margin	and	have	the	navigation	bar	be	a	solid
blue	block	across	the	window.

This	is	the	result.	(I’m	showing	you	just	the	left	half	of	the	menu.)

Change	your	CSS	file	to	convert	the	vertical	menu	to	a	horizontal	menu.	Save	the
file.	Display	the	page.

Sample	CSS	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-74-1.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/74.html

http://asmarterwaytolearn.com/htmlcss/practice-74-1.html
http://www.ASmarterWayToLearn.com/htmlcss/74.html

75
A	horizontal	navigation	bar	part	2

Let’s	add	two	more	features	to	the	navigation	bar.	When	the	user	hovers	over	a
selection,	the	blue	color	block	turns	light	blue.

In	order	to	do	this,	we	need	to	create	special	class	for	the	li	elements.	We	start	by
removing	a	line	we’ve	already	coded.
div#navbar	ul	li	{

		background-color:	blue;

		text-align:	center;

		display:	inline;

		width:	19%;

		float:	left;

		margin-right:	.5em;

}

Then	we	create	the	special	li	class.

li.changeBackground	{

We	start	by	coding	a	normal	color	for	the	class.
li.changeBackground	{

		background-color:	blue;

}

Then	we	code	the	hover	state.
li.changeBackground:hover	{

		background-color:	lightBlue;

}

We	can	also	code	a	color	for	the	active	state.
li.changeBackground:active	{

		background-color:	darkBlue;

}

When	the	user	clicks	a	selection,	the	color	block	turns	dark	blue.

This	is	the	HTML.
<div	id=“navbar”>

		

				<li	class=“changeBackground”><a	href=“why-choose-

us.html”>Why	Choose	Us

				<li	class=“changeBackground”><a	href=“recent-

projects.html”>Recent	Projects

				<li	class=“changeBackground”>	a	href=“our-

team.html”>Our	Team

				<li	class=“changeBackground”><a	href=“get-a-

quote.html”>Get	a	Quote

				<li	class=“changeBackground”><a	href=“contact-

us.html”>Contact	Us

		

</div>

Change	your	CSS	and	HTML	files	to	create	a	class	of	list	item	that	is	one	color	to
start	with,	a	second	color	when	it’s	moused	over,	and	a	third	color	when	it’s	active.	Save
the	files.	Display	the	page.

Sample	CSS	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-75-1.html.

Sample	HTML	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-75-2.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/75.html

http://asmarterwaytolearn.com/htmlcss/practice-75-1.html
http://asmarterwaytolearn.com/htmlcss/practice-75-2.html
http://www.ASmarterWayToLearn.com/htmlcss/75.html

76
Background	images	part	1

In	previous	chapters	you	learned	how	to	underlay	an	element	with	a	solid	color	using
background-color.	You	can	also	underlay	an	element	with	an	image.	This	is	an
example.
div#main	{

		background-image:	url(“images/field-of-poppies.jgp”);

}

The	div	with	an	id	of	“main”	will	be	underlaid	with	the	image	whose	URL	is	shown
inside	the	parentheses	and	quotation	marks.

You	can	put	a	background	image	behind	any	element.	It’s	common	to	underlay	the
whole	page	with	an	image.
body	{

		background-image:	url(“images/gray-gradient.png”);}

The	entire	page	will	be	underlaid	with	the	image	whose	URL	is	“images/gray-
gradient.png”.	In	the	example	above,	the	image,	which	must	be	sized	to	fit	the	whole	page,
will	be	a	large	one,	and	so	will	take	some	time	to	load.	If	your	background	image	is
nothing	but	a	repeating	pattern,	you	can	make	it	load	faster	by	specifying	a	small	slice	for
the	image	and	asking	the	browser	to	repeat	it.

You	can	cut	this	image	down	to	a	1-pixel-wide	slice	that	has	the	same	height,	and
write	this	CSS:
body	{

		background-image:	url(“images/gray-gradient-slice.png”);

		background-repeat:	repeat-x;

}

The	slice	will	be	tiled	all	across	the	width	of	the	page	(the	x-axis),	creating	the	same
effect	as	the	big	image,	but	using	a	fast-loading	small	image.

Suppose	you	have	a	gradient	fading	from	left-to-right	rather	than	top-to-bottom.
Then	you	would	take	a	1-pixel-high	horizontal	slice	and	tile	it	from	top	to	bottom	(the	y-
axis).
body	{

		background-image:	url(“images/gray-gradient-slice.png”);

		background-repeat:	repeat-y;

}

If	you	have	a	background	image	that	you	want	to	repeat	both	horizonally	and
vertically,	omit	the	background-repeat:	specification.

body	{

		background-image:	url(“images/gray-gradient-slice.png”);

		background-repeat:	repeat-x;

}

The	browser	will	automatically	tile	the	image	in	both	directions	to	fill	the	page.

In	your	CSS	file,	find	the	div	that’s	20%	wide.	Tile	the	following	image	across	the
width	of	the	div:	http://www.asmarterwaytolearn.com/gray-gradient-slice.png.	Save	the
file.	Display	the	page.	Check	out	the	div.

Sample	CSS	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-76-1.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/76.html

http://asmarterwaytolearn.com/htmlcss/practice-76-1.html
http://www.ASmarterWayToLearn.com/htmlcss/76.html

77
Background	images	part	2

Suppose	you	have	an	image	that’s	smaller	than	the	page	and	you	want	to	keep	it	that
way.	You	don’t	want	it	to	repeat.	But	if	you	write…
body	{

		background-image:	url(“images/faded-logo.png”);

}

…the	browser	will	automatically	repeat	it,	to	fill	the	page.	So	you	write…
body	{

		background-image:	url(“images/faded-logo.png”);

		background-repeat:	no-repeat;

}

A	small	image	that	doesn’t	repeat	is	placed,	by	default,	at	the	left-upper	corner.	But
you	can	specify	a	position.
body	{

		background-image:	url(“images/faded-logo.png”);

		background-repeat:	no-repeat;

		background-position:	right	top;

}

Now	the	image	will	be	positioned	at	the	right-top	corner.

The	horizontal	specifications	are	left,	center,	and	right.	The	vertical
specifications	are	top,	center,	and	bottom.	You	always	write	the	horizontal
specification	first.	It’s	left	bottom,	never	bottom	left.	If	you	want	to	center	an
image	both	horizontally	and	vertically,	you	write:
background-position:	center;

Do	you	want	the	image	to	scroll	with	everything	else?	If	so,	you	write…
body	{

		background-image:	url(“images/faded-logo.png”);

		background-repeat:	no-repeat;

		background-position:	right	top;

		background-attachment:	scroll;

}

If	you	want	the	image	to	stay	put,	you	write…
body	{

		background-image:	url(“images/faded-logo.png”);

		background-repeat:	no-repeat;

		background-position:	right	top;

		background-attachment:	fixed;

}

In	your	CSS	file,	add	a	background	image	to	the	right	top	of	the	window.	Don’t	let	it
repeat.	Fix	it	in	place.	The	image	is	http://www.asmarterwaytolearn.com/monarch.jpg.	In
your	HTML	file,	use	<!—	and	-->	to	hide	the	fixed-position	header	from	the	browser	so
it	doesn’t	display.	Save	the	file.	Display	the	page.

Sample	CSS	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-77-1.html.

Sample	HTML	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-77-2.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/77.html

http://asmarterwaytolearn.com/htmlcss/practice-77-1.html
http://asmarterwaytolearn.com/htmlcss/practice-77-2.html
http://www.ASmarterWayToLearn.com/htmlcss/77.html

78
iframes

An	iframe	is	like	your	TV’s	picture-in-picture.	It’s	an	HTML	page	within	an	HTML
page.	For	example,	suppose	I	want	to	run	the	Metropolitan	Opera’s	page	inside	my	page.
This	is	the	HTML.
<iframe	src=“http://metopera.org/”	width=”700”	height=“450”>

</iframe>

<p>The	Metropolitan	Opera,	commonly	referred	to	as	the	“Met”,	is	a	company	based	in	New	York	City,	resident	at	the	Metropolitan	Opera	House	at	the	Lincoln	Center	for	the	Performing	Arts.	The	company	is	operated	by	the	non-

profit	Metropolitan	Opera	Association,	with	Peter	Gelb	as	etc.

Things	to	notice:

There’s	an	opening	<iframe>	tag	and	a	closing	</iframe>	tag.

src=”[URL]”	specifies	the	location	of	the	HTML	file	that’s	to	be	imbedded,	the
same	way	src=”[URL]”	specifies	the	location	of	an	image	file.	I’ve	shortened	the
URL	so	you	can	focus	on	the	syntax.

You	specify	width	and	height	in	pixels.	Scrollbars	allow	the	user	to	explore	the	whole
embedded	page.

You	can	wrap	text	around	an	iframe.	This	is	the	CSS.
iframe	{

		float:	left;

		margin:	0	2em	0	0;

}

In	your	HTML,	create	an	iframe	that	embeds	an	online	webpage	of	your	choice.
Save	the	file.	Display	the	page.	Adjust	the	dimensions	of	the	iframe	until	you’re	happy
with	the	result.

Sample	HTML	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-78-1.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/78.html

http://asmarterwaytolearn.com/htmlcss/practice-78-1.html
http://www.ASmarterWayToLearn.com/htmlcss/78.html

79
Embedding	YouTube	videos

There	are	several	ways	you	can	add	video	to	your	website.	The	easiest	is	to	embed	a
YouTube	or	Vimeo	video.	Plus,	when	you	let	YouTube	or	Vimeo	host	the	video	free
instead	of	storing	it	on	your	webhost’s	server,	you	avoid	possible	extra	charges	your
webhost	might	hit	you	with	for	using	extra	bandwidth	(video	is	a	bandwidth	hog).

For	complete	control,	you	can	host	videos	yourself.	The	vast	majority	of	site	owners
don’t	do	it,	though,	because	it’s	a	headache—and	not	just	a	regular	headache	but	a
migraine.	Because	makers	of	devices,	operating	systems,	and	browsers	can’t	agree	on	one
video	standard,	you	have	to	create	a	variety	of	different	video	files	if	you	want	your	video
to	be	seen	by	everybody.	You’re	a	shoe	manufacturer	who	has	to	make	sixteen	different
sizes.

Since	it’s	so	much	easier	to	let	YouTube	or	Vimeo	handle	the	compatibility	issues,
that’s	what	I’m	going	to	focus	on.

In	the	last	chapter	you	learned	how	to	place	an	exterior	page	inside	an	HTML	page
by	coding	an	iframe.	That’s	the	method	you	use	to	embed	a	YouTube	or	Vimeo	video.

Let’s	start	with	YouTube.

You	can	find	out	how	to	post	a	YouTube	video	at	YouTube	or	elsewhere	online.	I’m
going	to	assume	you’ve	produced	your	video	and	posted	it	to	YouTube.	Here’s	how	to	put
it	on	your	webpage.

1.	 Find	your	video	on	YouTube.	Locate	“Share”	under	the	video	window	and	click	it.

2.	 Click	“Embed.”

3.	 Click	“SHOW	MORE.”

4.	 Scroll	down	to	see	some	choices	you	can	make.

5.	 Click	the	Video	size	dropdown,	and	you	can	choose	from	four	standard	video	sizes.
You	can	also	choose	“Custom.”

If	you	choose	a	custom	size,	be	sure	to	keep	the	ratio	of	width	to	height	at	16	to
Otherwise,	the	picture	will	distort.	To	remember	the	ratio,	picture	a	young	person	in
the	U.S.	getting	her	driver’s	license	(16	years	old),	and	driving	the	number	9	around.

You	can	also	use	a	ratio	of	4	to	3.	If	you	do,	you’ll	need	to	change	the	Aspect	Ratio
on	your	video’s	Player	controls	panel.	See	the	next	chapter	for	more	on	this.

6.	 Next,	look	at	the	other	choices	you	have,	below	the	Video	size	dropdown.

You’ll	want	to	uncheck	“Show	suggested	videos	when	the	video	finishes,”	unless	you

want	the	user	to	choose	from	a	gallery	of	more	YouTube	videos	when	your	video
finishes.

“Enable	privacy-enhanced	mode”	means	that	YouTube	won’t	store	information	about
visitors	to	your	site	unless	they	play	the	video.	In	most	cases,	you	won’t	care	about
this.

7.	 When	you’ve	finished	making	your	selections,	copy	and	paste	the	YouTube-
generated	iframe	code	into	your	HTML	document.

8.	 If	you’d	like	to	add	a	frame	border,	change	the	“0”	to	a	“1”.
<iframe	width=“640”	height=“360”	src=”//www.youtube.com/embed/_tky2rAxBIU?

rel=0”	frameborder=“1”	allowfullscreen></iframe>

9.	 If	you	don’t	want	the	user	to	be	able	to	enlarge	the	frame	to	fullscreen	size,	delete
allowfullscreen.

<iframe	width=“640”	height=“360”	src=”//www.youtube.com/embed/_tky2rAxBIU?

rel=0”	frameborder=“1”	allowfullscreen></iframe>

In	your	HTML	file,	replace	the	iframe	you	coded	for	the	last	chapter	with	an
embedded	YouTube	video.	It	doesn’t	have	to	be	your	own	video.	Use	mine	if	you	like:
https://www.youtube.com/watch?v=_tky2rAxBIU	Save	the	file.	Display	the	page	and	play
the	video.

Sample	HTML	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-79-1.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/79.html

http://asmarterwaytolearn.com/htmlcss/practice-79-1.html
http://www.ASmarterWayToLearn.com/htmlcss/79.html

80
Further	customizing
YouTube	videos

When	you’re	embedding	a	video	on	your	site,	you	may	not	want	a	YouTube	video	to
look	like	a	YouTube	video.	You	may	want	it	to	display	without	the	YouTube	branding	and
controls.

When	you	banish	the	YouTube	branding	and	controls,	a	YouTube	logo	will	appear	in
the	lower	right	corner	before	playback	and	when	the	user	mouses	over	the	video,	but
otherwise,	you’ve	got	a	video	that	looks	proprietary.

You	can	choose	from	a	number	of	options	to	make	the	video	look	and	perform	the
way	you	want	it	to.	But	you	have	to	go	to	Google,	the	owner	of	YouTube,	to	do	it.

Begin	by	copying	your	video’s	YouTube	ID	from	the	YouTube	URL	for	your	video.
It’s	the	code	that	follows	the	equal	sign.

Alternatively,	you	can	copy	the	ID	from	the	iframe	code	that	YouTube	originally
generated	for	you.
<iframe	width=“640”	height=“360”	src=”//www.youtube.com/embed/

rel=0”	frameborder=“1”	allowfullscreen></iframe>

Note	that	the	ID	ends	at	the	last	character	before	the	question	mark.	Go	to:
https://developers.google.com/youtube/youtube_player_demo.

Paste	your	video’s	ID	into	the	video	ID	field.

Click	“Update	player	with	selected	options.

Google	replaces	the	demo	videos	with	your	video	when	you	click	“Update	player
with	selected	options.”

If	your	ID	is	correct,	the	four	video	thumbnails	are	replaced	by	your	video.	It	plays.
You	can	pause	it	while	you	choose	custom	options.

Next,	click	the	Show	player	parameters	button	at	the	top	of	the	panel.

Another	panel	with	an	array	of	customizing	choices	displays.

Click	modestbranding	to	banish	the	YouTube	logo.

When	you’ve	finished	making	selections,	once	again	click	“Update	Player	with
Selected	Options”	at	the	top	of	the	panel.

The	iframe	embed	code	changes	to	reflect	your	selections.	Copy	and	paste	it	into
your	HTML	document.

In	your	HTML	file,	change	your	embedded	video	so	it	has	modest	branding.	Save

https://developers.google.com/youtube/youtube_player_demo

the	file.	Display	the	page.

Sample	HTML	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-80-1.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/80.html

http://asmarterwaytolearn.com/htmlcss/practice-80-1.html
http://www.ASmarterWayToLearn.com/htmlcss/80.html

81
Embedding	Vimeo	videos

If	YouTube	is	the	network	TV	of	online	video,	Vimeo	is	cable.	It’s	a	little	classier,
looks	a	little	better,	and	is	preferred	by	many	creative	people.	It’s	free	for	the	basic	service.
You	can	remove	all	Vimeo	branding	if	you’re	willing	to	pay	$199	a	year.

The	process	of	embedding	a	Vimeo	video	is	similar	to	YouTube’s.

I’m	assuming	you’ve	produced	your	video	and	posted	it	to	Vimeo.	Here’s	how	to	put
it	on	your	webpage.

1.	 On	your	Videos	page	at	Vimeo	locate	the	video	you	want	to	embed.	Click	the	paper-
airplane	icon	at	the	upper	right.

2.	 A	new	window	opens.	If	you	don’t	choose	to	customize,	copy	the	iframe	code	and
paste	it	into	your	HTML	document,	and	you’re	done.

3.	 To	customize,	click	+	Show	Options.

4.	 Select	the	options	to	change	from	the	dropdown.

5.	 In	the	options	panel	you	can	specify	the	dimensions	of	the	video	player.	Change	the
width	or	the	height.	Vimeo	will	automatically	change	the	other	dimension	to	preserve
the	ratio	of	16	to

6.	 By	clicking	on	a	color	block	or	specifying	a	color	by	hex	code	you	can	change	the
color	the	video	title.	The	color	of	the	progress	bar	will	change	to	match.

7.	 For	a	clean	look,	you’ll	probably	want	to	uncheck	Portrait,	Title,	Byline,	and	Show
text	link	underneath	this	video.

8.	 To	make	the	video	play	automatically,	check	Autoplay	this	video.	To	make	it	loop
check	Loop	this	video.	Chances	are,	you	don’t	want	a	video	description.	If	you
don’t,	leave	the	last	item	unchecked.

9.	 Copy	the	embed	code	and	paste	it	into	your	HTML	document.

For	$59.95	a	year	Vimeo	gives	you	additional	customization	options	and	other
privileges	including	faster	conversion.	For	$199	a	year,	the	Vimeo	logo	goes	away;	you
can,	if	you	wish,	insert	your	own	logo.

In	your	HTML	file,	replace	the	embedded	YouTube	video	with	an	embedded	Vimeo
video.	Use	mine	if	you	like:	https://vimeo.com/97326700	Since	you’re	running	the	HTML
locally	rather	than	on	the	Web,	you	need	to	insert	http:	at	the	beginning	of	the	video
URL	so	your	page	can	connect	to	the	video	online.	Save	the	file.	Display	the	page.

Sample	HTML	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-81-1.html.

https://vimeo.com/97326700
http://asmarterwaytolearn.com/htmlcss/practice-81-1.html

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/81.html

http://www.ASmarterWayToLearn.com/htmlcss/81.html

82
Audio

It’s	far	easier	to	host	your	own	audio	files	than	your	own	video	files,	because	the
compatibility	issues	are	tamer.	If	you	use	Audacity	or	another	audio	editor	to	save	your
file	in	just	two	formats,	mp3	and	Ogg	Vorbis,	your	audio	will	play	in	any	modern	browser,
using	HTML5.	This	is	the	code.
<audio	controls>

		<source	src=“whatever.ogg”>

		<source	src=“whatever.mp3”>

</audio>

If	a	particular	browser	can’t	handle	the	Ogg	Vorbis	file,	it’ll	play	the	mp3	file.

The	audio	tag	shown	above	includes	the	optional	controls.	This	tells	the	browser
to	make	the	player	visible	and	allow	the	user	to	control	it.
<audio	controls>

		<source	src=“whatever.ogg”>

		<source	src=“whatever.mp3”>

</audio>

An	alternative	is	to	have	the	audio	autoplay,	with	or	without	controls.	The	following
code	starts	the	audio	automatically,	without	a	visible	player.
<audio	autoplay>

		<source	src=“whatever.ogg”>

		<source	src=“whatever.mp3”>

</audio>

The	following	code	starts	the	audio	automatically	and	displays	controls.
<audio	controls	autoplay>

		<source	src=“whatever.ogg”>

		<source	src=“whatever.mp3”>

</audio>

Be	careful	with	autoplay.	In	most	situations,	users	find	it	annoying.

You	can	add	a	paragraph	inside	the	audio	tags	that	displays	if	the	user	has	an	antique
browser	that	doesn’t	handle	HTML5.
<audio	controls>

		<source	src=“whatever.ogg”>

		<source	src=“whatever.mp3”>

		<p>This	browser	doesn’t	support	our	audio	format.</p>

</audio>

In	your	HTML	file,	insert	a	
	at	the	bottom,	then	embed	the	audio	files
http://www.asmarterwaytolearn.com/boing.ogg	and
http://www.asmarterwaytolearn.com/boing.mp3.	Save	the	file.	Display	the	page.	Play	the
audio.

Sample	HTML	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-82-1.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/82.html

http://asmarterwaytolearn.com/htmlcss/practice-82-1.html
http://www.ASmarterWayToLearn.com/htmlcss/82.html

83
Ems	vs.	percentages	vs.	pixels

Ems,	percentages,	and	pixels	are	three	different	units	of	measurement	that	you	use	to
style	the	elements	of	a	webpage.	They’re	somewhat	interchangeable.	That	is,	although
I’ve	taught	you,	for	example,	to	express	font-size	in	ems,	you	can,	if	you	like,	express
it	in	pixels	or	as	a	percentage.

Pixels	are	easy	to	work	with,	because	they’re	simple	and	absolute.	With	pixels,	you
don’t	have	to	deal	with	the	sometimes	confusing	relativism	of	ems	and	percentages.	But
the	problem	with	pixels	is	that	they	are	absolute.	A	CSS	file	full	of	pixel	specifications
doesn’t	adapt	to	different-size	screens,	because	it	isn’t	relative.	The	need	for	responsive
design	forces	us	to	limit	our	use	of	pixels	and	stick	mostly	to	ems	and	percentages.	Here
are	the	rules	of	thumb	that	many	developers	follow,	and	that	I	usually	follow	in	this	book.

Ems	—	Use	them	for	typography,	margins,	and	padding.

Percentages	—	Use	them	for	divs,	tables,	iframes,	and	sometimes	margins	and
padding.

Pixels	—	Use	them	for	images,	borders,	windows,	iframes,	and	fixed,	absolute,	and
relative	positioning	(see	next	chapter).

In	your	CSS	file,	style	a	new	div	class.	Make	it	less	than	the	full	width	of	the
window.	Then	style	a	new	paragraph	class.	Make	it	less	than	the	full	width	of	the	div	and
center	it.	In	your	HTML	file,	code	a	div	of	that	class	and,	within	it,	a	paragraph	of	that
class.	Save	the	files.	Display	the	page.

Sample	CSS	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-83-1.html.

Sample	HTML	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-83-2.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/83.html

http://asmarterwaytolearn.com/htmlcss/practice-83-1.html
http://asmarterwaytolearn.com/htmlcss/practice-83-2.html
http://www.ASmarterWayToLearn.com/htmlcss/83.html

84
Relative	and	static	positioning

As	you	know,	the	browser	displays	the	elements	of	your	page	in	the	same	order	in
which	you	write	them	in	your	HTML	document.	If	you	write	a	heading,	follow	it	with	a
paragraph,	follow	that	with	a	table,	and	follow	the	table	with	a	second	paragraph,	the
browser	will	display	everything	in	that	order:

Heading

Paragraph	1

Table

Paragraph	2

But	as	you	saw	in	Chapters	64	and	67,	you	can	interfere	with	this	natural	order.	In
those	chapters,	you	learned	how	to	position	a	header	exactly	where	you	want	it	regardless
of	its	order	in	the	HTML	document	using	absolute	and	fixed	positioning.	So,	with	absolute
and	fixed	positioning,	where	you	place	the	code	in	the	document	doesn’t	affect	its	position
on	the	page.	You	could	add	the	code	to	the	very	end	of	the	body	section,	put	it	somewhere
in	the	middle,	or	start	it	off	at	the	beginning.	Its	location	on	the	page	is	determined	by	the
position	you	specify	in	your	CSS,	not	its	position	in	the	HTML	document.

And	remember,	with	these	types	of	positioning,	all	the	other	elements	behave	as	if
they	don’t	know	the	element	is	there.	They	don’t	make	room	for	it,	as	they	do	for	normally
positioned	elements.	This	creates	overlap	unless	you	pull	a	trick	like	the	one	you	learned
in	Chapter	68,	creating	an	invisible	copy	of	the	header	that’s	positioned	normally	and	so
acts	as	a	spacer,	to	keep	the	other	normally-positioned	elements	from	disappearing
underneath	the	fixed-position	header.

Both	absolute	and	fixed	positioning	specify	spacing	in	terms	of	how	far	they	are
from	the	edges	of	the	browser	window.

A	third	way	to	interfere	with	the	browser’s	default	layout	is	to	specify	relative
positioning.	Relative	positioning	tells	the	browser	to	position	an	element	a	certain	distance
from	its	normal	position.

For	example,	if	you	wanted	to	position	some	paragraphs	50	pixels	below	their
normal	position,	you	could	write,	for	example…
p.spaced-out	{

		position:	relative;

		top:	50px;

}

If	you	wanted	a	table	pushed	up	and	nudged	left,	you	could	write,	for	example…

table#adjusted	{

		position:	relative;

		bottom:	25%;

		right:	35%;

}

In	relative	positioning	the	other	elements	don’t	adjust	to	the	relatively	positioned
element’s	altered	position.	They	behave	as	if	the	element	were	in	its	normal	position.	So,
as	with	absolute	and	fixed	positioning,	it’s	possible	to	have	overlap.	If	necessary,	you	can
solve	this	with	a	spacing	tactic	similar	to	the	one	you	learned	in	Chapter	68.

In	most	circumstances,	you	don’t	have	to	tell	the	browser	to	position	an	element
normally,	since	that’s	the	default.	But	just	so	you	know,	a	normally	positioned	element	has
static	positioning.
div.normal	{

		position:	static;

}

In	your	CSS	file,	use	relative	positioning	to	move	the	div	that	you	created	for	the	last
chapter	to	the	right.	Save	the	file.	Display	the	page.

Sample	CSS	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-84-1.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/84.html

http://asmarterwaytolearn.com/htmlcss/practice-84-1.html
http://www.ASmarterWayToLearn.com/htmlcss/84.html

85
z-index

In	the	last	chapter	you	learned	that	when	you	override	the	normal	flow	of	a	webpage
by	using	fixed,	absolute,	or	relative	positioning,	elements	may	overlap	each	other.
Occasionally,	you	may	want	this	to	happen.	For	example,	you	might	want	to	overlay	a
heading	on	top	of	an	image.

You	want	the	heading	to	be	on	top	of	the	image,	not	the	other	way	around.	How	do
you	tell	the	browser	to	put	the	heading	on	top?	By	specifying	a	z-index	for	the	heading.

The	higher	the	z-index,	the	higher	it	goes	in	the	stack.	An	element	with	a	z-
index	of	10	will	sit	on	top	of	an	element	with	a	z-index	of	9.

The	default	z-index	of	elements	is	0.	So	if	you	give	your	heading	a	z-index	of
1,	it’ll	be	placed	on	top	of	the	image,	which,	assuming	you	haven’t	assigned	it	a	z-
index,	has	a	z-index	of	0.

h2#header	{

		z-index:	1;

}

If	you	give	it	a	z-index	of	-1,	it’ll	be	one	layer	below	the	default.

1.	 In	your	CSS	file,	code	a	div	id.

2.	 Fix	its	position	at	the	bottom-left.

3.	 Give	it	a	z-index	of	-1.

4.	 In	your	HTML	file,	code	the	id.	Place	an	image	inside	it:
http://www.asmarterwaytolearn.com/monarch.jpg.

5.	 Save	the	files.	Display	the	page.	Scroll	and	see	what	happens.

Sample	CSS	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-85-1.html.

Sample	HTML	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-85-2.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/85.html

http://asmarterwaytolearn.com/htmlcss/practice-85-1.html
http://asmarterwaytolearn.com/htmlcss/practice-85-2.html
http://www.ASmarterWayToLearn.com/htmlcss/85.html

86
Media	queries

These	days,	you	almost	have	to	make	your	site	responsive.	That	means	creating
custom	styling	for	screens	of	different	sizes,	from	the	smallest	phone	to	the	largest
desktop.

For	example,	five	medium-size	images	arrayed	across	the	screen	are	fine	if	the
screen	is	1280	pixels	wide.	But	not	if	it’s	a	480-pixel	iPhone	screen.	On	a	phone,	you’ll
want	to	force	them	to	stack	vertically.

To	create	different	style	rules	for	different	screens,	you	write	media	queries.	For
example,	a	media	query	asks,	“Is	the	screen	no	wider	than	x	pixels	and	no	narrower	than	y
pixels?	If	so,	follow	these	style	rules.”

Responsive	design	can	be	a	maddeningly	complicated	business	and	deserves	a	book
of	its	own,	but	I	want	to	give	you	a	sense	of	how	it	works,	so	I’ll	show	you	one	example.

There	are	various	ways	to	incorporate	media	queries	in	your	code.	I’ll	show	you	how
to	add	them	to	a	stylesheet.

There	are	thirteen	different	media	characteristics	you	can	test	for	in	a	media	query,
including	color	and	whether	the	user	is	looking	at	a	mobile	device	in	portrait	or	landscape
orientation.	I’ll	focus	on	the	most	common	tests,	for	a	screen	of	any	kind	(that	is,	not	a
printer)	and	for	minimum	device	width	and	maximum	device	width.

Here’s	some	code.
@media	only	screen	and	(min-device-width:	320px)	and	(max-

device-width:	480px)	{

		img.gallery	{

				display:	block;

		}

}

The	code	above	specifies	block—that	is,	one	on	each	line—for	the	“gallery”	class
of	images	when	displayed	on	a	phone,	a	device	we	define	as	having	a	minimum	width	of
320	pixels	and	a	maximum	width	of	480	pixels.

Let’s	look	at	each	piece	of	the	code.

@media	is	how	all	media	queries	begin.

@media	only	screen	and	(min-device-width:	320px)	and	(max-

device-width:	480px)	{

		img.gallery	{

				display:	block;

		}

}

only	screen	means	the	style	rule	applies	only	to	devices	with	screens.	This	means	it
doesn’t	apply	to	printers.
@media	only	screen	and	(min-device-width:	320px)	and	(max-

device-width:	480px)	{

		img.gallery	{

				display:	block;

		}

}

When	you	write	and	in	a	media	query,	you’re	saying,	“The	following	must	also	be
true	in	order	for	the	style	rule	to	apply.”	So	it’s	not	enough	for	the	device	to	be	a	screen.	It
must	be	a	screen	and	the	minimum	device	width	must	be	320	pixels	(portrait	mode)	and
the	maximum	device	width	must	be	480	pixels	(landscape	mode).
@media	only	screen	and	(min-device-width:	320px)	and	(max-

device-width:	480px)	{

		img.gallery	{

				display:	block;

		}

}

The	device-width	specifications	must	be	enclosed	in	parentheses.
@media	only	screen	and	(min-device-width:	320px)	and	(max-

device-width:	480px)	{

		img.gallery	{

				display:	block;

		}

}

By	writing	display:	block,	you	tell	the	browser	not	to	float	the	images.

@media	only	screen	and	(min-device-width:	320px)	and	(max-

device-width:	480px)	{

		img.gallery	{

				display:	block;

		}

}

The	following	media	query	tells	the	browser	to	float	the	images	when	they’re
displayed	on	a	desktop	or	laptop,	defined	as	having	a	minimum	width	of	1224	pixels.	Note
that	there’s	no	maximum	width,	since	we’re	testing	for	just	one	orientation.
@media	only	screen	and	(min-device-width:	1224px)	{

		img.gallery	{

				float:	left;

		}

}

1.	 In	your	CSS	file,	code	a	media	query	that	styles	a	class	of	paragraph	in	the	font-
family	“Comic	Sans	MS”,	cursive,	sans-serif—if	the	screen	is	at:
least	800	pixels	wide.

2.	 In	your	HTML	file,	code	a	paragraph	of	that	class.

3.	 Save	the	files.	Display	the	page.

Sample	CSS	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-86-1.html.

Sample	HTML	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-86-2.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/86.html

http://asmarterwaytolearn.com/htmlcss/practice-86-1.html
http://asmarterwaytolearn.com/htmlcss/practice-86-2.html
http://www.ASmarterWayToLearn.com/htmlcss/86.html

87
Min-	and	max-width
Min-	and	max-height

Suppose	you’ve	styled	a	div	to	occupy	20%	of	the	width	of	the	screen.	This	works
fine	as	long	as	the	screen	is	large,	but	what	happens	on	a	phone	with	a	320-pixel	screen?
The	div	width	shrinks	to	64	pixels—a	narrow	stripe	down	the	page	with	room	for	one	or
two	words	per	line.	To	prevent	this,	you	specify	a	min-width.

div#additional-info	{

		width:	20%;

		min-width:	200px;

}

Now	the	div	will	run	20%	of	the	width	of	the	screen—but	only	as	long	as	the	width
doesn’t	go	below	200	pixels.	When	that	point	is	reached,	your	CSS	tells	the	browser	to
make	the	width	200	pixels.

Then	there’s	the	opposite	problem.	You’ve	created	a	div	that	runs	40%	of	the	width
of	the	screen.	A	block	of	text	inside	this	div	might	measure	a	user-friendly	12	to	14
words	wide.	But	when	the	same	page	is	displayed	on	an	oversize	screen,	it	could	stretch	to
20	words	wide.	That’s	too	wide	for	easy	reading.	So	you	specify	a	max-width.

div#main	{

		width:	40%;

		max-width:	500px;

}

Now,	on	a	wide	screen,	the	width	will	shrink	to	500	pixels	when	40%	translates	into
more	than	500	pixels.

You	can	also	establish	limits	on	height,	using	max-height	and	min-height.

p.article	{

		min-height:	150px;

		max-height:	600px;

}

A	problem	occurs	when	the	content	of	an	element	exceeds	the	max-height	that
you’ve	specified	for	the	element.	In	the	example	above,	you	tell	the	browser	to	limit	the
paragraph	to	a	height	of	600	pixels.	If	the	text	in	the	paragraph	runs,	say	750	pixels	high,
the	text	overflows,	potentially	creating	a	mess.	You	solve	this	with	overflow:
hidden	or	overflow:	scroll.

In	the	following	example,	you	tell	the	browser	to	make	any	overflowing	content
invisible.

p.article	{

		min-height:	150px;

		max-height:	600px;

		overflow:	hidden;

}

In	the	following	example,	you	tell	the	browser	to	display	a	scroll	bar	that	allows	the
user	to	scroll	down	to	any	overflow.
p.article	{

		min-height:	150px;

		max-height:	600px;

		overflow:	scroll;

}

1.	 In	your	CSS	file,	code	a	class	of	paragraph	with	a	max-width	of	100	pixels	and	a
max-height	of	100	pixels.	Make	the	overflow	scroll.

2.	 In	your	HTML	file,	code	a	paragraph	of	that	class,	including	at	least	a	dozen	words.

3.	 Save	the	files.	Display	the	page.

Sample	CSS	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-87-1.html.

Sample	HTML	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-87-2.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/87.html

http://asmarterwaytolearn.com/htmlcss/practice-87-1.html
http://asmarterwaytolearn.com/htmlcss/practice-87-2.html
http://www.ASmarterWayToLearn.com/htmlcss/87.html

88
The	stuff	at	the	top

The	standard	code	you	find	at	the	top	of	an	HTML	document	is	gobbledygook,	but
as	a	conscientious	coder,	you’re	always	going	to	include	it,	so	you	may	as	well	know	what
it	means.

The	first	line	in	the	document	is	the	doctype	declaration.

<!DOCTYPE	HTML>

This	tells	the	browser	the	document	is	written	in	HTML5.	This	is	what	you’ll	always
write	when	you’re	creating	a	new	document,	whether	the	document	has	any	HTML5
features	in	it	or	not.	Things	to	notice:

1.	 The	exclamation	point.

2.	 It’s	in	all-capital	letters,	a	convention	not	a	requirement.

3.	 There’s	no	closing	tag.

Next	comes	the	<html>	tag.	To	keep	things	simple,	I’ve	coded	it	minimally	in
previous	chapters,	but	the	recommended	way	to	write	it	is	like	this.
<!DOCTYPE	HTML>

<html	lang=“en”>

That	little	bit	of	extra	information	tells	the	browser,	the	search	engines,	and	screen
readers	that	the	text	content	of	the	page—the	headings,	paragraphs,	and	tables—are	in
English.	If	your	page	is	in	Italian,	you’d	write	lang=“it”;	in	Hindi,	lang=“hi”;	etc.
As	you	know,	the	<html>	tag	is	closed	with	</html>	at	the	end	of	the	document.

The	<head>	tag,	which	you’re	familiar	with,	goes	on	the	third	line.

<!DOCTYPE	HTML>

<html	lang=“en”>

		<head>

It	is	closed	with	the	</head>	tag	at	the	end	of	the	head	section.	At	a	minimum,	the
head	section	contains…
<meta	charset=“utf-8”>

This	tag	tells	the	browser	to	use	a	particular	flavor	of	text	encoding	that	permits	the
greatest	variety	of	characters,	thus	accommodating	the	greatest	number	of	languages.	The
tag	isn’t	closed.

Next,	you’ll	write	opening	and	closing	title	tags.	Inside	them	you’ll	write	the	text
that	will	appear	in	the	browser	toolbar,	in	a	bookmark	list,	and	in	search	engine	results.
Give	each	page	a	unique	title	that	describes	its	particular	contents.

<!DOCTYPE	HTML>

<html	lang=“en”>

		<head>

				<meta	charset=“utf-8”>

				<title>Characteristics	of	the	Slow	Loris</title>

In	your	HTML	file,	code	the	first	two	tags	at	the	top	of	a	document.	Code	the	meta
charset	tag	beneath	the	head	tag.	Save	the	file.	Display	the	page	to	be	sure	your
changes	haven’t	broken	anything.

Sample	HTML	code	is	at:
http://asmarterwaytolearn.com/htmlcss/practice-88-1.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/88.html

http://asmarterwaytolearn.com/htmlcss/practice-88-1.html
http://www.ASmarterWayToLearn.com/htmlcss/88.html

89
The	meta	description

If	you’re	hoping	people	will	find	your	page	through	a	search	engine	and	then	click
on	the	link,	you	need	a	meta	description.	A	good	meta	description	doesn’t	improve	your
search	ranking,	but	it	does	increase	clicks,	because	search	engines	display	the	description
in	the	search	result.	When	I	googled	“Carlypso,”	Google	displayed	this	result…

www.carlypso.com
Sell	your	car	with	Carlypso.	Get	up	to	40%	more	than	trade-in	with	the	same
convenience.

The	two	sentences	following	the	link	are	the	meta	description	coded	into	the
Carlypso	home	page.	Can	you	see	why	having	Google	display	these	sentences	would
increase	the	number	of	clicks?

You	write	the	meta	description	in	the	head	section	of	your	page.
<head>

		<meta	charset=“utf-8”>

		<title>Sell	Your	Car	Hassle-Free</title>

		<meta	name=“description”	content=“Sell	your	car	with	Carlypso.	Get	up	to	40%	more	than	trade-

in	with	the	same	convenience.”>

Things	to	notice:

It	begins	with	<meta	name=“description”

That’s	followed	by	content=

Then	comes	the	description	itself,	in	quotes.

There’s	no	closing	tag.

Some	advice:

Make	your	description	as	appealing	as	possible,	but	don’t	promise	more	than	you	can
deliver.

Search	engines	cut	off	a	description	after	about	160	characters.	That’s	a	few	more
characters	than	a	Twitter	Tweet.	Limit	your	description	to	that	length.

Don’t	repeat	your	title	as	a	description.

Give	each	page	on	your	site	a	unique	meta	description.

Add	a	meta	description	to	your	HTML	file.	Save	the	file.	Display	the	page	to	make
sure	your	change	hasn’t	broken	anything.	Sample	HTML	code	is	at:

http://asmarterwaytolearn.com/htmlcss/practice-89-1.html.

Find	the	interactive	coding	exercises	for	this	chapter	at:	
http://www.ASmarterWayToLearn.com/htmlcss/89.html

http://asmarterwaytolearn.com/htmlcss/practice-89-1.html
http://www.ASmarterWayToLearn.com/htmlcss/89.html

90
Build	a	site.

Look	how	far	you’ve	come,	and	how	much	HTML	and	CSS	you’ve	learned	in	a
rather	short	time.	Congratulations.

So	now	you’re	ready	to	build	a	site.	(And	if	you’re	not	totally	ready,	you	know
where	to	find	the	information	you	need	if	you	forget	how	to	do	something:	right	here	in
this	book.)

As	a	final	project,	I’m	going	to	ask	you	to	build	a	three-page	site	for	your	city,
region,	or	country.	It’ll	demonstrate	the	most	important	things	you’ve	learned	in	this	book.

You	don’t	have	to	do	any	original	writing.	All	the	content	you	need	is	at:
Wikipedia,	your	chamber	of	commerce,	or	any	number	of	informational	websites	that
cover	your	area.

You	can	create	the	site	on	your	hard	drive	and	run	it	off	the	drive,	as	you’ve	been
doing	with	the	practice	page.	Or,	if	you	have	a	website,	you	can	upload	it	to	your	site.	If
you	do	publish	the	site,	take	care	that	you	don’t	violate	any	copyrights	when	you	copy
content	from	other	sites	and	paste	it	into	your	HTML	files.	(Wikipedia	is	safe.)

I’ve	built	an	example	site	that	you	can	use	as	a	model.	It’s	at
http://www.asmarterwaytolearn.com/htmlcss/taos.html.

Find	the	CSS	and	HTML	files	for	the	site	at:

http://www.asmarterwaytolearn.com/htmlcss/taos_css_code.html

http://www.asmarterwaytolearn.com/htmlcss/taos_code.html

http://www.asmarterwaytolearn.com/htmlcss/hiking_code.html

http://www.asmarterwaytolearn.com/htmlcss/skiing_code.html

I’ve	heavily	commented	the	first	two	files,	to	help	guide	you	in	building	your	own
site.

For	capturing	images	from	the	Web,	I	like	the	free	utility	from	http://prntscr.com.
(Again:	don’t	violate	anyone’s	copyright	if	you’re	going	to	publish.)

To	crop	and	resize	images	online,	the	free	http://picresize.com	is	excellent.

http://www.awardspace.com	offers	free	hosting	for	a	small	website.

https://filezilla-project.org	offers	a	free	FTP	client	that	makes	it	easy	to	upload	your
files	to	your	web	host.

Happy	website	building.

http://www.asmarterwaytolearn.com/htmlcss/taos.html
http://www.asmarterwaytolearn.com/htmlcss/taos_css_code.html
http://www.asmarterwaytolearn.com/htmlcss/taos_code.html
http://www.asmarterwaytolearn.com/htmlcss/hiking_code.html
http://www.asmarterwaytolearn.com/htmlcss/skiing_code.html
http://prntscr.com
http://picresize.com
http://www.awardspace.com
https://filezilla-project.org

Acknowledgements

If	you	like	the	book	and	the	online	exercises,	give	a	tip	of	the	hat	to	these	readers,
who	took	the	time	to	make	corrections	in	the	book	and	exercises.	This	program	is	now	so
much	better	because	of	their	generosity.

James	Foxworthy

John	Koch

Jack	McKinnon

Tim	Miller

Jim	Rohrer

Christopher	Urrutia

	Learn it faster. Remember it longer.
	How to use this book
	1. HTML & CSS
	2. Creating paragraphs
	3. Creating headings
	4. Specifying fonts
	5. Linking your CSS to your HTML
	6. Specifying a font-size
	7. CSS classes
	8. Classes not tied to an element
	9. Font-weight
	10. Font-style
	11. Styling bits and pieces
	12. Colors
	13. Spacing
	14. Aligning text
	15. First-line indent and blockquote
	16. Margins
	17. Borders
	18. Padding
	19. Inheritance
	20. Grouping
	21. ID
	22. Div
	23. Images
	24. Block vs. inline
	25. Adding more info to the image tag
	26. Positioning an image
	27. Centering an image
	28. Floating images
	29. Links
	30. Link addresses
	31. Linking to a location on a page
	32. Opening a new window
	33. Styling links
	34. Clickable images
	35. Image maps part 1
	36. Image maps part 2
	37. Bullet lists and numbered lists
	38. Styling lists
	39. Styling a list’s markers
	40. More CSS selectors
	41. Tables: basic structure
	42. Tables: headings
	43. Tables: spanning columns and rows
	44. Tables: borders
	45. Tables: spacing part 1
	46. Tables: spacing part 2
	47. Tables: aligning text
	48. Tables: background-color
	49. Forms: the form tag
	50. Forms: text input
	51. Forms: textarea
	52. Forms: submit
	53. Forms: radio buttons
	54. Forms: checkboxes
	55. Forms: select box
	56. Forms: label
	57. Grouping related elements
	58. Forms: styling
	59. Comments
	60. Layout: nested boxes
	61. Layout: divs
	62. Layout: div widths and centering
	63. Layout: side-by-side divs
	64. Layout: a modern header part 1
	65. Layout: a modern header part 2
	66. Layout: a modern header part 3
	67. Layout: a modern header part 4
	68. Layout: a modern header part 5
	69. A vertical navigation bar part 1
	70. A vertical navigation bar part 2
	71. A vertical navigation bar part 3
	72. A vertical navigation bar part 4
	73. A vertical navigation bar part 5
	74. A horizontal navigation bar part 1
	75. A horizontal navigation bar part 2
	76. Background images part 1
	77. Background images part 2
	78. Iframes
	79. Embedding youtube videos
	80. Further customizing youtube videos
	81. Embedding vimeo videos
	82. Audio
	83. Ems vs. percentages vs. pixels
	84. Relative and static positioning
	85. Z-index
	86. Media queries
	87. Min- and max-width, min- and max-height
	88. The stuff at the top
	Acknowledgements

